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Abstract- Advanced control and optimization techniques offer
a theoretically sound basis to enable self-managing behavior
in distributed computing models such as utility computing.
To tractably solve the performance management problems of
interest, including resource allocation and provisioning in such
distributed computing environments, we develop a fully decen-
tralized control framework wherein the optimization problem
for the system is first decomposed into sub-problems, and each
sub-problem is solved separately by individual controllers to
achieve the overall performance objectives. Concepts from opti-
mal control theory are used to implement individual controllers.
The proposed framework is highly scalable, naturally tolerates
controller failures, and allows for the dynamic addition/removal
of controllers during system operation. As a case study, we
apply the control framework to minimize the power consumed
by a computing cluster subject to a dynamic workload while
satisfying the specified quality-of-service goals. Simulations using
real-world workload traces show that the proposed technique has
very low control overhead, and adapts quickly to both workload
variations and controller failures.

I. INTRODUCTION

Distributed systems hosting business, e-commerce, and sci-
entific applications must typically satisfy stringent quality-of-
service (QoS) requirements while operating in highly dynamic
environments. For example, the workload to be processed may
be time-varying, and hardware and software components may
fail during system operation. To achieve the desired QoS in
such systems and applications, numerous performance-related
parameters must be continuously tuned. As these systems
become more complex, it is highly desirable for them to be
largely autonomic or self-managing, requiring only high-level
guidance from administrators [9].

Heuristic or rule-based policies to enforce self-managing
behavior, though simple to implement, require a great deal of
expert knowledge, and are tightly coupled to the specific appli-
cation. It is also difficult to analyze their performance in terms
of convergence and stability properties. On the other hand,
advanced control and mathematical programming techniques
offer a theoretical basis to enable adaptation in distributed
applications, and have the following advantages over ad hoc

methods: (1) one can systematically pose various adaptation
problems of interest within the same basic framework and
(2) the feasibility of the adaptation algorithms with respect
to application QoS goals may be verified prior to deployment.

Using concepts from optimal control theory, this paper
develops a decentralized optimization framework to enforce
self-managing behavior in distributed computing systems. The
proposed framework has very low control overhead, is highly
scalable, and fault adaptive, in terms of seamlessly tolerating
individual controller failures. As a case study, we tackle the
problem of power management in a server cluster operating
under a time-varying workload.

Control theory is a well-established engineering methodol-
ogy that has recently been used to achieve adaptive behavior
in various computing applications [11]. For example, feedback
control has been applied to problems such as task scheduling
[18], bandwidth allocation and QoS adaptation in web servers
[2], load balancing in e-mail and file servers [17] [11], network
flow control [22], and power management [19] [25]. Assuming
a linear time-invariant system, an unconstrained state space,
and a continuous input and output domain, a closed-loop feed-
back controller is designed as an open-loop system transfer
function under stability and sensitivity requirements. However,
in more complex control problems, a pre-specified plan, i.e,
the feedback map, is inflexible and does not adapt very well to
constantly changing operating conditions. Moreover, the cost
of the control actions themselves is not taken into account.

Classical feedback control is not suitable for applications
exhibiting hybrid behavior (comprising both discrete-event and
time-based dynamics), and where control or tuning options
must be chosen from a finite set at any given time. Therefore,
receding horizon (RH) control concepts, borrowed from model
predictive control [20], have been used manage such applica-
tions [1] [14] [15]. These methods take into account multi-
objective cost functions and dynamic operating constraints
while optimizing application performance.
The above-discussed feedback and RH-based control tech-

niques have been used to manage applications executing on
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single or stand-alone processors. A major limitation of these
methods is the centralized nature of the controller itself. In a

distributed system where the performance of many hardware
and software components must be simultaneously managed to
achieve system-wide QoS goals, a centralized controller needs
to explore a large number of possible tuning options, thereby
incurring significant control overhead. Therefore, such designs
do not scale well in a distributed setting. Moreover, centralized
designs have a single point of failure.

This paper develops a fully decentralized and cooperative
controlframework to enforce adaptive behavior in a distributed
computing environment comprising multiple components. The
overall performance management problem is decomposed into
a set of corresponding sub-problems and each one is mapped to
an underlying component. Individual controllers, implemented
within each component, solve their respective sub-problems
in a cooperative fashion such that system-wide QoS goals are

satisfied. The proposed framework has the following desirable
characteristics.

. The framework is highly scalable since: (1) Each local
controller within a component has very low control
overhead; (2) Controllers can be dynamically composed,
i.e., added or removed, during system operation; and
(3) Cooperation between controllers is achieved with
no inter-controller communication. For example, in the
power management case study, the addition or failure of
a controller is inferred by other controllers via shared
system-state variables without exchanging messages.

The control framework is fault adaptive in that it tolerates
individual component and controller failures in seamless
fashion. When a failure is detected (or inferred) by other
controllers, they adapt their behavior accordingly, while
still aiming to satisfy system QoS goals.

Each individual controller within a component is designed
using concepts from optimal control theory [16]. Multiple QoS
objectives and operating constraints are explicitly specified
in the cost function and solved for a limited lookahead
control horizon. Future environment inputs as well as the
future implications of current control actions on application
performance are taken into account during optimization. The
optimal tuning decisions are obtained by solving a discrete
two-point boundary-value problem and the corresponding con-

trol algorithm is derived via Pontryagin's maximum principle
[10].
As a case study, the optimization framework is used to

manage the power consumed by a heterogeneous server cluster
processing a time-varying workload. Power has become an

important design constraint for densely packed clusters due
to electricity costs and heat dissipation issues [23]. To tackle
this problem, many modern processors allow their operating
frequency and supply voltage to be dynamically scaled [3]
[12]. We develop a distributed control solution wherein each
self-managing server decides the fraction of the incoming
workload to process locally as well as the corresponding
frequency setting that satisfies the system-wide QoS goal while

minimizing power consumption.

Centralized solutions for energy-efficient cluster operation
have been developed previously in [7] [24] [8] assuming
homogeneous servers with identical processing capabilities. In
[24], when the workload is light, some servers are turned
off and the workload distributed to the rest of the system
while [7] combines voltage scaling with powering on (off)
servers. However, the above methods take a heuristic ap-

proach wherein the number of servers and their speeds are

increased (decreased) if processor utilization exceeds (falls
below) specified threshold values. Also, guaranteeing explicit
QoS constraints is not addressed. The authors of [8] develop
a linear quadratic regulator to dynamically decide the average

operating frequency for the cluster while satisfying a specified
response time.
We evaluate the performance of the control framework

via simulations using a representative e-commerce workload
[5], and show that it is scalable, has very low run-time
overhead, and adapts quickly to dynamic workload variations
and individual controller failures. We also discuss the impact
of key design parameters such as the prediction horizon on

controller performance.
The paper is organized as follows. Section II discusses

key optimal control concepts while Section III formulates
and solves the control problem for a single server. Section
IV develops the distributed control framework and Section V
presents detailed performance evaluation results. Section VI
discusses control stability and Section VII concludes the paper

with a discussion on future work.

II. PRELIMINARIES

This section describes the dynamical model for a single
server, introduces the optimal control concepts and the perfor-
mance index to be optimized.

System Model. We will use a general nonlinear discrete-
time first order dynamical equation

x(k + 1) = fk(x(k), u(k)) (1)

with initial condition xo to model the queueing behavior of
a single processor. x(k + 1) e Rf, the system state at time
k + 1, is a function of the state x(k) and input u(k) e Rm at
time k. The system model f captures the relationship between
the observed system parameters, particularly those relevant to
the QoS specifications, and the control inputs that adjust these
parameters. The superscript on f indicates that it can in general
be time-varying.

In our problem, the dynamics of an individual server P
is captured by the discrete-time equation (1). Client requests
are serviced by P on a first-come first-serve basis. We do
not assume an a priori stochastic distribution for the request-
arrival rate but estimate it using online observations. The
request arrival rate during time step k is denoted by A(k) and
the average processing time for each request is c(k). Defining
the queue size as our system state x(k), we have the following
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state equation.

x(k1+ 1) = max {x (k) (k) u(k) Ts 0} (2)
c(k).- Umax

and the output equation

w(k) = (1 +x(k)). c(k) (3)
u(k) Umax

The operating frequency u(k) is the constrained control input
to the system and the corresponding output is the average

response time w (k), which includes the waiting time for
requests in the queue and the processing time on P.
We assume that P's operating frequency u(k) is tunable

input variable over a continuous interval [Umin, Umax]. Thus,
if the time needed to process a request while operating at the
maximum frequency Umax is c(k), then the processing time
for the request while operating P at some frequency u(k) e

[Umin, Umax] is clca(k), where ca(k) = u(k)/Umax is the

scaling factor. The queue size at the end of the next sampling
period Ts is determined by a non-linear and non-differentiable
maximum function of current queue size x(k) and input u(k).
This function includes the time-varying arrival rate A(k) and
processing time c(k) as disturbance. These signals are usually
stochastic and thus replaced by their estimates A(k) and c(k).
These estimates are obtained using an appropriate forecasting
model. This is discussed in greater detail later this section.

Equations (2) and (3) adequately model the server dynamics
when the incoming workload is mostly CPU intensive, i.e., the
processor is the bottleneck resource. This is especially true for
web and e-commerce servers where the both the application
and data can be fully cached in memory, thereby minimizing
(or eliminating altogether) hard disk accesses.

Control Concepts. Optimal control uses a predictive or

proactive approach to generate a sequence of control inputs
over a specified lookahead horizon while estimating changes
in operating conditions [16]. The performance index is a

convex cost function comprising both the state and control (or
decision) vectors that must be optimized within the constraints
imposed by the underlying system dynamics. At each time
step, the discrete-time optimal control problem is to find the
sequence u(i), ..., u(N) within the prediction horizon of length
N to minimize

N-1

J(i) = (N, x(N)) + E Lk (x(k), u(k)) (4)
k=i

subject to the system model constraint

x(k + 1) = fk(x(k), u(k))

where x(k) is the system state, is a cost function of the
goal state at the end of the horizon, and Lk(x(k),u(k)) is
a time-varying cost function at each intermediate time step
within [i, N]. The first control input u(i) in the sequence is
applied and the rest are discarded. This process then repeats
for the next time step.

Fig. 1 shows the structure of an optimal controller for the
queueing system described in (2) and (3). The environment

disturbance

state feedback q(k)

Fig. 1. The overall structure of an optimal controller

inputs (or disturbances) A(k) and c(k) are estimated, and the
controller computes the optimal inputs over a finite prediction
horizon. The control problem is solved as one of state regu-

lation, updating both the initial and final states at the end of
the prediction horizon. The parameters r and s are weights in
the cost function, to be defined in the next section.

Workload Forecasting. Returning to Fig. 1, to estimate
processor behavior over the prediction horizon, both A(k)
and c(k), must be estimated. We use an ARIMA model,
implemented using a Kalman filter [6], to provide arrival-rate
estimates to the controller. We have previously shown that a

number of published e-commerce and web workload traces [4]
[21] [5] can be estimated with good accuracy using the Kalman
filter. Other appropriate prediction models, for example, the
ones proposed in [26], may also be used in our controller
design.
The average processing-time per request is estimated using

an exponentially-weighted moving-average (EWMA) filter as

c(kH+1) = c(k)+(1 -) c(k -1) where is the smoothing
constant.

III. POWER MANAGEMENT ON A SERVER

We now formulate the control problem to be solved by a

single server. The multiple objectives for each server are to: (1)
regulate the achieved response time w(k) around a specified
set point wo, and (2) minimize the corresponding processor

power consumption cost.
Assuming a continuous domain for possible processor op-

erating frequencies, we require an optimal frequency input
u(k) at each time step that maximizes the objective function.
For the dynamical system described in (2) and (3) and an

initial condition x(O) = xo, this objective function is given as

follows:
N-1

J = D(x(N)) + ,3 [S(x(k)) + R(u(k))] e

k=1
1

-v(x(N) -rN)2
'2

N-1

+ [-s(x(k)-
2

k=l

w + -ru2(k)] (5)
2

where v, s, and r denote the weights of the three terms in
the cost function, and x,W is the set point for the controller,
given in terms of a queue size, where x,W is back-calculated
using the desired response time W, and the output equation (3).
The summation of the weighted terms S and R quadratic
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functions of the state x(k) and control input u(k) over

the intermediate time steps specifies the trade-off between
the QoS requirement, i.e., minimizing (x(k) -X")2, and
the corresponding power consumption. Finally, 1D(x(N)) is a

quadratic cost function that penalizes the number of requests
left over in the queue at the end of prediction horizon N
when compared to the desired value rN. In our simulations,
we choose rN = 0, thereby forcing the controller to generate
a sequence of frequency settings that deplete the queue by the
end of the prediction horizon.
The optimal controller explores future (estimated) states

within the prediction horizon to obtain a feasible sequence

of control decisions. In an uncertain operating environment,
however, we expect the workload and environmental parameter
estimations, and thus, the estimated system states to become
increasingly inaccurate as we go deeper into the prediction
horizon, degrading control performance. To counter this prob-
lem, we associate a discounting factor e-k with the cost
function in (5). If a > 0, then future costs matter less than
the same costs incurred at the present time, i.e., states further
out in the prediction horizon have less impact on the current
control action.
The performance index in (5) is subject to the dynamic

system equation constraint, now rewritten as a differentiable
state equation

x(k + 1) = x(k) + (A(k)
u(k) TS

c(k) * Umax
with state and control inequality constraints.

{
x(k) > 0

Umin < u(k) < Umax

The optimal control problem is to find a sequence of frequency
settings u* along the finite horizon [0, N] that drives the sys-

tem along a state trajectory x* subject to the above constraints
such that the performance index J in (5) is minimized.
We developed the control algorithm to operate a single

server using a discrete version of Pontryagin's maximum
principle where a two-point boundary-value problem is solved,
given initial and goal states [16]. During each sliding looka-
head horizon N, the controller aims to regulate the queue size
to zero, using the current queue size as the initial state. Due
to space constraints, we do not show the derivation of the
control algorithm here. The interested reader is referred to
our technical report [28] for a detailed and mathematically
rigorous derivation.
We now show a very simple example of one controller that

manages a server whose operating frequency varies from 600
MHz to 1.8 GHz while serving the time-varying traffic shown
in Fig. 2(a). We assume that requests have equal processing
times. The controller sampling period T, is set to 5 seconds
and the lookahead horizon N to 10 steps. We fix the weights
in (5) as v = 50 and s = 5, and compare the state trajectory
and control inputs obtained while varying r, the weight for the
energy consumption term. As Figs. 2 (b) and (c) show, larger r

values force the controller to reduce server power consumption

300

200

100

0

N 1800
1600

1400bT
1012000
1000

800
o 600

1
x2000

o' 1000

(a) traffic trace

2 3 4 5 6 7
time k

(b) optimal control (v=50, s=5)

8 9 10

- r=5
- r=25
- r=50

2 3 4 5 6 7
time k

(c) state trajectory (v=50, s=5)

r=5

-r-25
r=50

2 3 4 5 6 7
time k

8 9 10

8 9 10

Fig. 2. Power management on a single server where the weights v and
s are fixed; (a) the synthetic workload, (b) the operating frequencies
decided by the controller, and (c) the corresponding queue sizes

by using lower operating frequencies, thereby slowing down
the processing rate and increasing the queue size.

Finally, though the problem posed in this section assumes a

continuous domain [Umin, Umax] for possible control options,
the controller can be applied in straightforward fashion to
systems having a rich set of discrete control options. In this
case, the problem is first formulated and solved assuming
a continuous approximation of the discrete domain, and the
obtained solution is mapped to an appropriate value within
the discrete set. We provide examples of this approach in the
section on performance evaluation (see Section V).

IV. DISTRIBUTED CONTROL FRAMEWORK

We now use the controllers developed in Section III as

building blocks in a distributed framework to manage the
power consumption of a server cluster.

Our system model is a cluster comprising m servers where
a global buffer stores incoming client requests. Each server

retrieves some fraction of these requests and processes them
in first-come first-serve fashion. We assume heterogeneous
servers, and that the processor within each server supports
dynamic voltage scaling by varying both its supply voltage
and operating frequency. Therefore, the overall power con-

sumption of the cluster at any given time instant includes
a constant base cost for each operating server (due to the
energy requirements of its power supply, hard disk, etc.) and
the dynamic power consumed to process the workload. The
optimization problem addressed here is to operate this server

cluster in energy-efficient fashion by minimizing its dynamic
power consumption while processing a time-varying workload.
The QoS goal to be achieved by the cluster is an average

request response time wo.

We can develop a centralized optimal controller to minimize
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Fig. 3. The distributed system and control architecture

the following global cost function over all mn servers

Jglobal

mI
E 2Vi (xi (N) -rN)2
i=l

m N-1I
+E E [2si(xi(k)

i=l k=1

(8)

xO ) 2 +-r2 ? (k)] e-

where each server i is subject to state and control-input
constraints previously introduced in (6) and (7). However, a

centralized control solution is not a practical option for large
clusters.

Fortunately, for the power management problem of interest,
the integrated cost Jglobal is decomposable into sub-problems
in such a way that the summation recovers the centralized cost.
In other words, given multiple sub-systems whose dynamics
and operating constraints are uncoupled, and whose local cost
functions are convex, the global optimality may be obtained
by simply having each sub-system independently optimize its
local cost function. Therefore, for the centralized cost structure
in (8), we generate distributed optimal control problems for
each server to solve, and the problem to be solved by a server

i was previously introduced in Section III. We also note that
other performance management problems in utility computing
such as resource provisioning and allocation have the above-
described characteristics, and we expect the proposed control
technique to be applicable to these as well.

Fig. 3 shows the distributed system and control architecture.
Each server independently manages its operation using a local
cost function (Equation 5) by deciding the optimal frequency
settings, and thereby, the fraction of requests it plans to process

from the shared buffer. The set of self-optimizing servers can

be treated as non-communicating agents, where each agent
need not have information about the exact behavior of other

agents. Moreover, since servers can be heterogeneous in terms
of their processing and power consumption characteristics, the
weights r and s in their local cost functions can be different.
Each server in Fig. 3 executes the control algorithm de-

veloped in Section III. However, in a distributed setting, the
state-space model for the 'th server must now consider the
processing capabilities of other servers in the system and
the corresponding impact on the shared buffer (or queue).
Therefore, the queue dynamics from the viewpoint of the ith
server is as follows.

x(k + 1) =

max {x(k) + (A(k) uc(k) * itmak) Ts: °} (9)c(k) Umaxr

The estimate v(k), computed locally and independently by
server i, predicts the cumulative operating frequencies of other
servers (normalized to the frequency range of the local server

if the cluster is heterogenous) in the system. It takes the
following form:

v(k)= (A(k) ( ) ) c(k) Umax -u(k) (10)

where Ax(k) = x(k)- x(k- 1) is the change in queue
size due to request arrivals and consumption by the servers.

Thus, from the ith server viewpoint, v(k) is simply the residue
of Ax(k), obtained after deducting from the total number of
request arrivals, the number of requests processed locally by
server Z.

In our simulations, for the sake of convenience, a single
Kalman filter broadcasts arrival-rate estimates for each step
within the N-step horizon to all controllers. (Note that this
filter can also be implemented within each controller itself.)
The average request processing time is also predicted for the
next N periods by an EWMA filter. Each controller also has to
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locally maintain a Kalman filter to estimate v, the processing
capacity of other servers in the system. At each time step,
every controller generates an optimal sequence of frequency
settings within the prediction horizon, and applies the first
input in this sequence. During the next sampling period, the
various filters are updated with new information (the queue
size, request arrival-rate and processing time), and the whole
control process is repeated.

It is clear from the foregoing discussion that very little
overhead is incurred when adding new controllers to the
distributed framework. Recall that controllers themselves are
non-communicating agents, and the only overhead incurred is
in broadcasting the shared state and environment variable, the
queue size and arrival rate estimate, respectively, to the newly
added controllers. Therefore, the proposed scheme is highly
scalable.

V. PERFORMANCE EVALUATION

The performance of the distributed control scheme as well
as the impact of tuning key parameters such as r, s, v, TS,
and N on controller performance is now evaluated using a
representative e-commerce workload.

Our experiments simulated multiple servers processing a
synthetic workload, derived, in part, using HTTP requests
made to an Internet service provider in the Washington DC
area over a week [5]. Portions of this workload are shown in
Figs 4(a) and 6(a).

The processing times for individual requests within the
arrival sequence in Figs 4(a) and 6(a) were obtained as follows.
We generated a virtual store comprising 10,000 objects (or
requests), and the time needed to process an object was
randomly chosen from a uniform distribution between (4, 11)
ms. The distribution of individual requests within the arrival
sequence was determined using two key characteristics of most
web workloads.

. Popularity. It has been observed that some files are more
popular than others, and that the popularity distribution
commonly follows Zipf's law. Therefore, we partitioned
the virtual store in two a "popular" set with 1000
objects receiving 90% of all requests, and a "rare" set
containing the remaining objects in the store receiving
only 10% of requests.

. Temporal locality. This is the likelihood that once an
object is requested, it will be requested again in the near
future. In many web workloads, temporal locality follows
a lognormal distribution.

Performance Analysis. We simulated a cluster of four
servers whose processors have adjustable frequencies in the
continuous domain. First, we ensured that this cluster could
satisfy the desired response time, set as w0 = 4 seconds, under
a sustained worst-case workload scenario with each processor
operating at its maximum frequency. The worst-case scenario
is simply the maximum arrival rate observed within the trace
in Fig. 4 where each request has the maximum processing time
requirement of 11 ms. The control framework then optimizes

(a) Traffic trace and estimate
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(b) Response time observed at the end of each sampling period
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h Ime A
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Fig. 4. (a) The synthetic workload and the corresponding predictions
and (b) the average response time achieved by the cluster
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Fig. 5. The normalized power consumption (U/Umax)2 incurred by
each processor

the performance of the cluster when the workload is time-
varying.

Note that we use a cluster of four servers to clearly
explain the obtained results. However, it follows from the
discussion in Section IV that our approach can be extended
in straightforward fashion to much larger clusters with very
little overhead. In our simulations, the operating frequencies
for servers 1 and 3 range from 600 MHz to 1.8 GHz while
those for servers 2 and 4 range from 800 MHz to 2.0 GHz.
The desired response time for the cluster was w0 = 4 sec. For
each controller, we set the prediction horizon N to 5 steps and
the sampling period T, to 1 second.

Fig. 4(a) shows a portion of the workload and the corre-
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sponding predictions obtained by a Kalman filter [6]. Each
controller acquires predictions for 5 lookahead steps and
computes the sequence of frequency settings over this sliding
control horizon. To show how different weights in the cost
function (Equation 5) affect controller behavior, we set r = 1
and s = 50 as weights on the energy consumption and
response-time terms, respectively, for processors 1 and 2, and
r = 0.5 and s = 100 for processors 3 and 4. Thus, processors
1 and 2 aim to minimize their power consumption while 3 and
4 prioritize the response time. The weight v was set to 5 for
all processors, dictating how queue sizes are regulated to the
desired value of zero at the end of the prediction horizon.

Fig. 4(b) shows that the controllers cooperate well to main-
tain the cluster-wide response time close to w0 = 4 sec. The
dynamic power consumption cost incurred by each processor
is shown in Fig. 5. We use a simple model proposed in [27]
for this cost as (u(k)/umajz)2. The frequencies selected by the
controllers clearly achieve the desired behavior, as dictated
by the weights s and r. Observe that for the same r and s
values on processors 1 and 2, each generates a different power
consumption profile due to corresponding differences in their
maximum operating frequencies (1.8 GHz versus 2.0 GHz).

Finally, MATLAB simulations on a 2.4 GHz Pentium 4
processor indicate that for a 5-step prediction horizon, the
estimation and control computations take about 7 ms on each
server. Therefore, for a sampling interval ofT= 1 second, the
control overhead is only 0.7%. Intuitively, one would expect
that increasing the prediction horizon N should result in better
control performance while incurring greater computational
overhead. We will study how the choice of N affects controller
behavior is a later section.

Self-Adaptive Behavior. The following series of experi-
ments demonstrate the fault-adaptive properties of the control
framework. We use the workload in Fig. 6(a) to test the system
reaction to server and/or controller failures. Note that this
workload is lighter than the one in Fig. 4(a) to guarantee
that the desired response time can be achieved using just two
servers (since we will be simulating the failure of two servers
in the original cluster of four).
The controller parameters including the weights, control

horizon, and sampling period remain unaltered from our
previous experiments. Given the workload in Fig. 6(a), failures
of servers 2 and 3 are simulated at time steps 120 and 150,
respectively. (Note that in Fig. 7, the operating frequencies
of servers 2 and 3 suddenly drop to zero.) However, from
Fig. 6(b), we note that the response time achieved by the
cluster continues to be maintained around w0 = 4 sec.

Fig. 7 also shows the reaction of servers 1 and 4 once servers
2 and 3 fail at k = 120 and k = 150, respectively. The
surviving cluster members rapidly increase their frequencies
to process the backlog created by these failures. More impor-
tantly, the reaction by servers 1 and 4 is achieved without any
explicit communication. As shown in Fig. 8, the v estimates,
computed independently and locally by servers 1 and 4, make
them aware that the overall cluster throughput has suddenly
decreased after time steps k = 120 and k = 150. The servers,
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Fig. 6. (a) The synthetic workload and predicted values and (b) the
average response time achieved by the cluster
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Fig. 7. The power consumption cost (u/umad,,)2 on processors 1 and
4 in response to the failure of processors 2 and 3

therefore, increase their respective processing rates. Also note
that of the two survivors, Server 4 processes more requests
than 1. This difference in behavior is due to the setting of
weights within each server's local cost function. Recall that the
weights are r = 1 and s = 50 for Server 4, whereas r = 0.5
and s = 100 for Server 1. Thus, Server 4 is "altruistic" and
prioritizes the global response time achieved by the cluster
while Server 1 is more "selfish" and prioritizes its own power
consumption.

Effect ofParameter Tuning. The following results show the
effects of tuning the prediction horizon N and the sampling
time T, on control performance.
We now consider the (somewhat) idealized case of a cluster
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Fig. 8. The aggregate processing capacity estimates (iv) computed
by each controller; servers 1 and 4 use these estimates to infer the
failure of servers 2 and 3
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Fig. 9. (a) The MSE of the response time between the achieved and
desired values and (b) the average normalized power consumption,
as a function of the prediction horizon

comprising four identical servers assuming perfect arrival-rate
estimates and a constant request processing time. The control
performance of a single server, as a member of the overall
cluster, is measured. It is important to note that each server

must still estimate the aggregate processing capacity v of
the cluster to decide its operating frequencies a source of
possible estimation errors.

Under the above-described set up, Fig. 9 shows the con-

troller performance, in terms of both the mean square error

(MSE) between the achieved response time w(k) and the
set point w, and power consumption cost as a function
of N. Intuitively, as the controller looks further ahead, it
can anticipate future workload demands and start preparing
accordingly at the current time step itself. However, as noted in
Section II, control performance does not necessarily improve
by increasing N, since as N increases, so does the error in the
estimated parameter v. Therefore, N must be chosen carefully,
considering the trade-off between look-ahead performance and
estimation errors.

estimate of processor # 4

- actual
- - - estimated

Fig. 10. (a) The MSE of the response time between the achieved and
desired values and (b) the average normalized power consumption as

a function of the sampling period T,

Fig. 9 compares controller performance for different values
of a, the tunable parameter of the discounting factor e-k in
the cost function (5). We first observe that a has no appreciable
effect on the power consumption costs shown in Fig. 9(b). We
can see from Fig. 9(a) that small a values, for example, a =

0.2, decrease the achieved MSE, which is preferable, but only
when the prediction horizon is small. The control performance
for a = 0.2 actually deteriorates for larger prediction horizons,
since e-0.2k cannot sufficiently discount the large estimation
errors introduced in v as one goes deeper into the prediction
horizon. Also, a larger prediction horizon will increase the
execution overhead of the controller.

To summarize, a prediction horizon between 4 to 7 time
steps seems appropriate in this specific case to balance the
trade-off between good lookahead performance and estimation
errors.

We now examine the effect of varying the controller sam-

pling time T, on its performance. The sampling period dictates
how often the controller provides a new control input to the
underlying processor. This affects the average response times
achieved by the incoming requests as well as the processor

power consumption. Fig. 10(a) shows an almost linear rela-
tionship between the MSE versus the sampling period. We
also show the power consumption incurred by a controller
versus its sampling period in Fig. 10(b). We see that the power
consumption saturates at around T, = 12 sec. Here the choice
of discounting coefficient av has no effect on both the MSE and
the power consumption. Our results indicate that the sampling
period must be chosen to be small (around 1 second) to obtain
the best performance. A sampling time of T= 1 sec. is a

practical option in our case since the execution time of the
controller is very small approximately 7 ms.

Effects of a Discrete Control-Input Set. The final set of
experiments assume that server frequencies are not continu-
ously tunable, but must be selected from a discrete domain.
As discussed in Section IV, our approach is still applicable
to such systems by simply discretizing the obtained solutions.
Figs. 11 and 12 show cluster performance where servers 1, 2,
3, and 4 allow their frequencies to be tuned in discrete steps of
200 Hz. As the results show, overall system performance is still
good since control errors introduced by previous discretization
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Fig. 11. (a) The synthetic workload and the corresponding predictions
and (b) the average response time achieved by the cluster

The system is (marginally) stable for a finite horizon N, if,
for each E > 0, there is d = d(£) > O such that x(0) < d=3
x (k) < E, Vk, 0 < k < N. It is asymptotically stable if it is
stable and d can be chosen such that x(0) < d =, lim x(k)

k--+N

0. Our definition of stability is similar to [13] but with non-

negative state variables. We specifically consider a finite N,
since, if the state decays too slowly, we claim the controller is
unstable within this horizon, although it might be asymptoti-
cally stable in the long run, or globally asymptotically stable.
The arrival rate A(k) is a perturbation of the nominal system
x(k + 1) = x(k), which is marginally stable. However, the
perturbed system is unstable because A(k), though bounded,
is nonnegative. Therefore, for a non-autonomous system, a

N N

necessary condition for stabilization is E A(i) < Eu(i),
i=O i=O

i.e., the processing capability over N must at least equal the
worst-case arrival rate. It is straightforward to extend this
argument to multiple servers.
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VII. CONCLUSIONS
We developed a distributed optimization framework using

concepts from optimal control theory, and as a case study, min-
imized the power consumed by a cluster operating processing
a time-varying workload while satisfying QoS requirements.
Using realistic workload traces, we showed that the proposed
framework is highly scalable and has desirable self-healing
properties. Future research will develop controllers for differ-
entiated service and resource provisioning in clusters.

Future research will address differentiated service and
resource provisioning in clusters where client arrivals are

grouped into multiple classes based on their SLAs. The
problem formulation must be extended to tackle this more

complex problem, where at each time instant, the controller
must now decide two variables, the operating frequency and
the fraction of processing capacity that must be given to each
client queue.

Fig. 12. The normalized power consumption where servers allow
their frequencies to be tuned in steps of 200 Hz

steps are compensated by future control actions.

VI. CONTROL STABILITY

We now informally show bounded-input bounded-state sta-
bility for the control architecture developed in IV. To simplify
the discussion, we rewrite the system dynamics in a more

general form as

x(k + 1) = max {x(k) + T, lA(k)- T, u(k), 0} (11)

Without loss of generality, we replace the frequency scaling
and processing-time terms by a generalized input u(k), and
use x to denote the state variable. We discuss the stability
of an autonomous system (one without any external inputs),
and the input-state stability of a non-autonomous system, i.e.,
stabilization.
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