

The following item is made available as a courtesy to scholars by the author(s) and Drexel University Library and may
contain materials and content, including computer code and tags, artwork, text, graphics, images, and illustrations
(Material) which may be protected by copyright law. Unless otherwise noted, the Material is made available for non
profit and educational purposes, such as research, teaching and private study. For these limited purposes, you may
reproduce (print, download or make copies) the Material without prior permission. All copies must include any
copyright notice originally included with the Material. You must seek permission from the authors or copyright
owners for all uses that are not allowed by fair use and other provisions of the U.S. Copyright Law. The
responsibility for making an independent legal assessment and securing any necessary permission rests with persons
desiring to reproduce or use the Material.

Please direct questions to archives@drexel.edu

Drexel University Libraries
www.library.drexel.edu

University Archives and Special Collections:

http://www.library.drexel.edu/archives/

http://www.drexel.edu/

Department of Computer Science
Drexel University College of Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Drexel Libraries E-Repository and Archives

https://core.ac.uk/display/190327828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.drexel.edu
mailto:archives@drexel.edu
www.library.drexel.edu
http://www.library.drexel.edu/archives/
http://www.drexel.edu/
http://www.cs.drexel.edu/
http://www.drexel.edu/coe/

Automatically Transforming GNU C Source Code

Christopher Dahn, Spiros Mancoridis
Department of Computer Science

Drexel University, Philadelphia, PA, USA
{chris.dahn}@computer.org
{mancors}@drexel.edu

Abstract

To perform automated transformation techniques on pro-
duction quality GNU C source code, non-trivial normaliza-
tions must occur. The syntax of GNU C contains inherent
ambiguity that must be overcome. The techniques used by
an automated transformation tool, Gemini, are presented.

1 Introduction

The process of performing automated source code trans-
formation on GNU C code is complicated. GNU C is a
flexible language that allows developers to write code in a
variety of ways that are all semantically equivalent. This
flexibility imposes challenges to software maintainers who
wish to perform source transformation automatically.

In this paper we look at techniques used by the Gem-
ini [4, 3] tool, developed at Drexel University, which per-
forms source code transformation, automatically, on GNU
C source code. The tool transforms GNU C arrays into
pointers. The transformation must take into account the
presence of non-C input (e.g., preprocessor statements) and
an ambiguous language definition, while maintaining se-
mantic equivalence of the input and output source code.

Gemini uses the GNU C Compiler (GCC) to perform
preprocessing of GNU C source code, and TXL [1, 2, 5]
to perform the automated transformation.

The remainder of this paper is structured as follows: Sec-
tion 2 discusses some of the specific challenges posed by
GNU C, Section 3 discusses the details of the TXL trans-
formations used to normalize the source code, and Section 4
discusses the conclusions we can draw from the study.

2 Challenges of GNU C

2.1 Preprocessor Input

Gemini cannot transform GNU C source code that con-
tains macros, since macros are resolved at compile-time.
Therefore, Gemini passes the source code through the GCC
preprocessor before transformation.

Gemini’s preprocessing performs two primary tasks.
First, it pre-processes the original source code with the GCC
preprocessor. Second, it removes all of the preprocessor
statements from the result.

The output from the GCC preprocessor contains prepro-
cessor statements which must be removed. These state-
ments are used by GCC to reconstruct the original file
scopes to resolve duplicate global declarations. It isn’t pos-
sible to define a grammar that includes GNU C preproces-
sor statements everywhere they may occur. Generally, these
statements can occur anywhere in the input. Creating an
ambiguous grammar to describe them leads to parser gener-
ation problems.

2.2 C Declaration Ambiguity

GNU C is a flexible language. Its flexibility results in
a complicated grammar. One of the complications found
in GNU C grammars is embodied by an ambiguity in how
declarations and statements are parsed.

In C, users can alias types using a typedef declaration.
The presence of user-defined types causes GNU C gram-
mars to be ambiguous about how to parse statements and
declarations. Figure 1 and Figure 2 show possible gram-
mars for a GNU C declaration and statement, respectively.

An example of a declaration described by the first gram-
mar is, my type (foo);. The statement grammar de-
scribes function calls with one argument, such as, printf
(foo);. In the example declaration, the declarator type,
my type, is a user defined type alias (i.e., previously de-
fined with a typedef).

1

<declaration> ::= <type><declarator> ’;’
<type> ::= <nativetype> | <typealias>
<nativetype> ::= int | char | void | float | double
<typealias> ::= <identifier>
<declarator> ::= <identifier> | ’(’ <identifier> ’)’

Figure 1. BNF for one possible declaration
grammar.

<statement> ::= <expression> ’;’
<expression> ::= <postfixexpression>

<postfixextension>
<postfixexpression> ::= <identifier>
<postfixextension> ::= ’(’ <identifier> ’)’

Figure 2. BNF for one possible statement
grammar.

At the syntax level, both of these GNU C constructs have
the same parse tree. A compiler would differentiate the for-
mer as a declaration and the latter as a statement during se-
mantic analysis of the parse tree. However, TXL only oper-
ates on input syntax, hence the transformation that Gemini
performs must first take steps to overcome this grammatical
ambiguity.

3 TXL Transformation

The TXL transformation is composed of eleven steps.
The relevant steps are outlined in this paper. Only one of
the steps actually performs the array-to-buffer transforma-
tion, the other steps are required to normalize the way GNU
C declarations are parsed (due to the flexibility of GNU C
syntax), to account for the declaration/statement ambiguity
previously discussed, and to ease the final array-to-buffer
transformation.

Figure 3 shows an example GNU C program. This pro-
gram is used to illustrate the eleven transformation steps.
The lines affected by the current transformation step will be
highlighted.

Step 1: Expand Shorthand Types. The first step is to
find all declarations in the GNU C program that have been
declared using a shorthand form of the int type. GNU
C allows the integer qualifiers long, short, unsigned,
and signed to be used as the declarator type. In this case,
the GNU C grammar used with TXL will cause it to parse
the declaration without a type. Hence, the parse tree for the
declaration will have only a declaration type qualifier. In
order to normalize declaration types, all declarations with

#include <stdio.h>

typedef struct

{
char c;

} (char buf)[5], char st;

int main(int argc, char **argv)

{
char *test = "test";

char buf (buffer) =

{
[0].c=’t’, [1].c=’e’, [2].c=’s’,

[3].c=’t’, [4].c=’\0’
};
char buf buffer2;

struct st

{
unsigned i;

} st = {42};
}

Figure 3. Sample source code to be trans-
formed.

struct st

{
unsigned int i;

} st = {42};

Figure 4. Step 1: Expand shorthand types.

only type qualifiers are expanded to have an explicit type of
int, as shown in Figure 4.

Step 2: Name Anonymous Elaborated Types. Elabo-
rated types, or enumerated types, are user-defined types. In
C, an elaborated type is either a struct, union, or enum.
Figure 6 shows the two ways that an elaborated type can be
declared.

In Figure 6, the type of the variablefoo is an anonymous
elaborated type. These types can only be used for a single
declaration. That is, no other declaration can have the same
type as foo, even if the type definitions of both declarations
are identical.

The declaration of foo2 defines a named elaborated
type. This form is often used when the programmer intends
to declare other variables with the same type. A subsequent
declaration cannot declare the body of the struct again,
rather, it references the struct by name (e.g., struct
st bar;). In this case, the types of foo2 and bar are
equivalent.

typedef struct txl WasAnonElabType1
{

char c;

} (char buf)[5], char st;

Figure 5. Step 2: Name anonymous elabo-
rated types.

struct

{
int i;

} foo;

struct st

{
int i;

} foo2;

Figure 6. Declaration of elaborated type.

In this step, a unique name is assigned to every anony-
mous elaborated type. Each name is unique in the names-
pace of the file, as shown in Figure 5. That is, the generated
name will not be found anywhere else in the file undergoing
transformation. Assigning a unique name to an anonymous
elaborated type does not change the semantics of the pro-
gram, since a unique name guarantees that the type has not
been used anywhere else.

Step 3: Expand Declarator Lists. After all anonymous
elaborated types in the program have been named, lists of
declarators can be expanded, as shown in Figure 7. This is
performed after naming anonymous elaborated types so that
the proper type is distributed to each expanded declarator. If
the anonymous elaborated type was distributed, then none
of the new declarators would be equivalent in type which
could cause type mismatch errors at compile time.

Step 4: Remove Extraneous Parentheses. Remov-
ing unnecessary parentheses from declarators, as shown in
Figure 8, allows the assumption that a valid (i.e., trans-
formable) declaration will never contain parentheses.

Generally, any number of parentheses may be added
around a declarator without changing the semantics of the
declaration. However, each set of parentheses creates a
unique parse tree for the declaration. In particular, adding
extraneous parentheses to declarations is the cause of the
grammar ambiguity described in Section 2.2.

Due to the ambiguity, it is not possible to determine au-
tomatically if TXL has erroneously parsed a statement as a
declaration. Removing the parentheses from a function call
will always produce a syntax error at compile time. Hence,

typedef struct txl WasAnonElabType1

{
char c;

} (char buf)[5];
typedef struct txl WasAnonElabType1

char st;

Figure 7. Step 3: Expand declarator lists.

typedef struct txl WasAnonElabType1

{
char c;

} char buf[5];

int main(int argc, char **argv)

{
char *test = "test";

char buf buffer =
{

[0].c=’t’, [1].c=’e’, [2].c=’s’,

[3].c=’t’, [4].c=’\0’
};

Figure 8. Step 4: Remove extraneous paren-
theses.

this process must be conservative in its selection. Specif-
ically, if a declaration’s type is an identifier, then it is as-
sumed to be a statement (i.e., erroneously parsed) and the
parentheses are not removed. This conservative approach
allows the transformation to normalize all typedef decla-
rations for Step 6. Subsequent steps will allow us to perform
this step again to remove remaining false negatives (i.e.,
variable declarations that should have matched but were
skipped).

Step 5: Unique Local Elaborated Types. This step,
shown in Figure 9, ensures that when Step 6 removes all
typedef aliases, local declarations will not have types
that alias a globally defined elaborated type. This can lead
to errors, since typedef flattening will invalidate scope
protection of type declarators.

To make the types unique, the identifier of each elabo-
rated type defined in the body of a function is replaced with
a new, unique identifier. This takes into account forward
declarations of elaborated types. Once a unique identifier
has been chosen, all references to the previous type are re-
placed with references to the new, unique type.

Step 6: Flatten typedef aliases. This step is critical
in determining which declarations to transform. This step
also resolves any of the remaining ambiguities described in
Section 2.2 and Step 4. The ambiguity is resolved since this

struct st1
{

unsigned int i;

} st = {42};

Figure 9. Step 5: Unique local elaborated
types.

struct txl WasAnonElabType1 buffer[5] =
{

[0].c=’t’, [1].c=’e’, [2].c=’s’,

[3].c=’t’, [4].c=’\0’
};
struct txl WasAnonElabType1 buffer2[5];

Figure 10. Step 6: Flatten typedef aliases.

step replaces all identifiers that are type aliases with the type
that they alias. Hence, all type aliases are resolved to the
native or elaborated types they alias, as shown in Figure 10.

To flatten the typedef aliases, each typedef is vis-
ited once, starting at the top of the file being transformed.
It can be assumed that the very first typedef in the
file creates an alias to a native or elaborated type since it
would be a compilation error to declare a typedef for
an alias that has not been defined yet. For each typedef
that is visited, every declaration below that typedef is
visited to determine if the type of the declarator is the
current typedef alias. If a match is found, the type
alias of the declarator is replaced. This will also flatten
typedefs themselves. For example, if a typedef de-
fines an alias for a previously defined alias (e.g., typedef
my char my char2;, where my char is an alias for
char), then it will be transformed to alias the original type
(e.g., typedef char my char2;). Hence, a declara-
tion can have its type changed multiple times as the native
and elaborated types are propagated down the parse tree.

A typedef can also be used to declare a type that is
an array, as illustrated by the global type char buf in Fig-
ure 10. In this case, the dimensions of the array given in
the typedef declarator are propagated along with the type
that the typedef aliases. The array dimensions are ap-
pended to the end of the declaration being flattened to pre-
serve the semantics of the original source code. An example
of this is shown in Figure 10.

Step 7: Unique Global Declarations. As described in
Section 2.1, all preprocessor statements are removed from
the file prior to transformation by TXL. However, this can
often lead to source code that is no longer valid semanti-
cally. The preprocessor statements act as markers to GCC

about where the original files, included via #include di-
rectives, start and stop. This allows GCC to track the file
scopes that prevent re-declaration errors of function pro-
totypes from occurring. For example, a file can include
the GNU C standard library to have access to the func-
tion prototype for malloc(). If that same file also de-
clares its own function prototype for malloc() (e.g., as
an extern), then a re-declaration error can occur at com-
pile time.

To account for this change in the file, Gemini scans over
the global function and variable declarations in the file and
removes duplicates. The end result is that only one func-
tion prototype for each function definition and only one
extern declaration for each variable will remain at the
end of the transformation.

4 Conclusion

The syntax of GNU C is very flexible. It gives the de-
veloper many ways to declare variables and types that are
semantically equivalent, but the cost of this flexibility is am-
biguity while parsing C source code.

Production GNU C code is difficult to automatically
transform due to the presence of GNU C preprocessor state-
ments. These statements give the developer a way to cre-
ate macros and make other compile-time decisions. How-
ever, since these statements are not part of the GNU C syn-
tax, they must be removed prior to transformation. Since
the compiler is expecting these statements, removing them
changes the semantics of the source code.

To perform automatic transformation on GNU C source
code, many normalizing efforts must transpire. The normal-
ization process ensures predictable formats of declarations
and statements, and removes ambiguities that would other-
wise make automated transformation very difficult.

References

[1] J. R. Cordy, T. R. Dean, A. J. Malton, and K. A. Schneider.
Source Transformation in Software Engineering Using the
TXL Transformation System. Journal of Information and
Software Technology, 44(13):827–837, October 2002.

[2] J. R. Cordy, C. D. Halpern, and E. Promislow. TXL: A Rapid
Prototyping System for Programming Language Dialects. In
Proceedings from IEEE International Conference on
Computer Languages, October 1988.

[3] C. Dahn and S. Mancoridis. Using Program Transformation
to Secure C Programs Against Buffer Overflows. In
Proceedings of the Working Conference in Reverse
Engineering (WCRE’03), 2003.

[4] Gemini, http://serg.cs.drexel.edu/gemini/.
[5] TXL homepage, http://www.txl.ca/.

