
Classifying Human Driving Behavior via Deep Neural Networks

A Thesis
Submitted to the Faculty

of
Drexel University

by
Jae Hoon Kim

in partial fulfillment of the
requirements for the degree

of
Master in Computer Science

June 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Drexel Libraries E-Repository and Archives

https://core.ac.uk/display/190327286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

c© Copyright 2017
Jae Hoon Kim.

This work is licensed under the terms of the Creative Commons Attribution-ShareAlike
4.0 International license. The license is available at
http://creativecommons.org/licenses/by-sa/4.0/.

http://creativecommons.org/licenses/by-sa/4.0/

ii

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . vii

1. Introduction . 1

2. Background . 2

2.1 Deep Learning . 2

2.1.1 Basic Concepts . 2

2.1.2 Recurrent Neural Network . 7

2.1.3 Auto-encoder . 10

2.2 Deep Learning Libraries . 13

2.2.1 Tensorflow . 13

2.2.2 Theano . 14

2.2.3 DL4J . 14

2.3 Machine Learning with Driving Data . 14

3. Data Set . 15

4. Technical Approach . 17

4.1 Cross Validation . 17

4.2 LSTM . 17

4.3 Auto-encoder . 17

4.3.1 Single layer Auto-encoder . 18

4.3.2 Multiple layer Auto-encoder . 18

4.4 Comparison of three models . 18

4.5 Sampling . 19

4.6 Normalization . 21

iii

5. Experimental Result . 22

5.1 Experiments with filtered dataset . 22

5.1.1 Resample 1 over 50 . 22

5.1.2 Resample 1 over 20 . 22

5.1.3 Resample 1 over 10 . 25

5.2 Experiments with raw dataset . 26

5.2.1 Comparison of results from three models . 26

5.2.2 Analysis Training LSTM in second model and third model 26

5.2.3 Error from AE in second model and third model . 28

6. Conclusion and Future work . 34

6.1 Data Size . 34

6.2 Limitation of Auto-encoders . 34

6.3 Training Multiple Layer Auto-encoders . 34

Bibliography . 36

iv

List of Tables

3.1 Sample length on the traces . 16

4.1 Example Data . 19

4.2 Result of Re-Sampled Data . 19

4.3 Gaussian Filter (size=11, σ=1.667) . 20

4.4 First Period applied by Gaussian Filter . 20

4.5 Second Period applied by Gaussian Filter . 20

5.1 Average Accuracy of Result from 1 over 50 Re-sampled filtered dataset 22

5.2 Standard Deviation of Result from 1 over 50 Re-sampled filtered dataset 23

5.3 Test Time from 1 over 50 Re-sampled filtered dataset . 23

5.4 Average Accuracy of Result from 1 over 20 Re-sampled filtered dataset 24

5.5 Standard Deviation of Result from 1 over 20 Re-sampled filtered dataset 24

5.6 Test Time from 1 over 20 Re-sampled filtered dataset . 24

5.7 Average Accuracy of Result from 1 over 10 Re-sampled filtered dataset 25

5.8 Standard Deviation of Result from 1 over 10 Re-sampled filtered dataset 26

5.9 Test Time from 1 over 10 Re-sampled filtered dataset . 26

5.10 Accuracy of three models with last method . 26

5.11 Standard Deviation of three models with last method 27

5.12 Test Time of three models with last method . 27

5.13 Error from AE in second model . 31

5.14 Error from AE in third model . 31

v

List of Figures

2.1 Basic Artificial Neuron . 2

2.2 General Artificial Neuron . 3

2.3 Single Layer in a Neural Network . 3

2.4 Simplified Neural Network . 4

2.5 Simplified Neural Network . 4

2.6 One Hidden Layer MLP . 5

2.7 Back-propagation for Wij . 5

2.8 Back-propagation for Vij . 6

2.9 RNN . 7

2.10 Unfolded RNN. 8

2.11 LSTM . 9

2.12 Abstract structure of Auto-encoder . 11

2.13 Basic Auto-encoder . 11

2.14 Multilayer Auto-encoder . 12

2.15 Multilayer Auto-encoder Example . 12

2.16 Pretraining First Step . 12

2.17 Pretraining Second Step . 12

2.18 Pretraining Thrid Step . 13

4.1 Cross Validation . 17

4.2 First experiment NN . 18

4.3 Second experiment NN . 18

4.4 Third experiment NN . 18

5.1 Result of 1 over 50 Re-sampled filtered dataset . 23

5.2 Result of 1 over 20 Re-sampled filtered dataset . 24

vi

5.3 Result of 1 over 10 Re-sampled filtered dataset . 25

5.4 Result of three models with last method . 27

5.5 Human Training Accuracy . 28

5.6 Human Training Loss . 28

5.7 SAE Training Accuracy . 29

5.8 SAE Training Loss . 29

5.9 MAE Training Accuracy . 30

5.10 MAE Training Loss . 30

5.11 SAE, AE Error for Column 3 . 32

5.12 SAE, AE Error for Column 17 . 32

5.13 MAE, AE Error for Column 3 . 33

5.14 MAE, AE Error for Column 17 . 33

6.1 First Step of New Way to train MAE . 35

6.2 Second Step of New Way to train MAE . 35

6.3 Thrid Step of New Way to train MAE . 35

LIST OF FIGURES LIST OF FIGURES

vii

Abstract
Classifying Human Driving Behavior via Deep Neural Networks

Jae Hoon Kim
Santiago Ontañón, Ph.D.

The average person spends several hours a day behind the wheel of their vehicles, which are usually
equipped with on-board computers capable of collecting real-time data concerning driving behavior.
However, this data source has rarely been tapped for healthcare and behavioral research purposes.
This MS thesis is done in the context of the Diagnostic Driving project, an NSF funded collaborative
project between Drexel, Children Hospital of Philadelphia (CHOP) and the University of Central
Florida that aims at studying the possibility of using driving behavior data to diagnose medical
conditions. Specifically, this paper introduces focuses on the classification of driving behavior data
collected in a driving simulator using deep neural networks. The target classification task is to
differentiate novice versus expert drivers. The paper presents a comparative study on using different
variants of LSTM (Long-Short Term Memory networks) and Auto-encoder networks to deal with
the fact that we have a small amount of labels (16 examples of people driving in the simulator, each
labeled with an “expert” or “inexpert” label), but each simulator drive is high dimensional and too
densely sampled (each drive consists of 100 variables sampled at 60Hz). Our results show that using
an intermediate number of neurons in the LSTM networks and using data filtering (only considering
one out of each 10 samples) obtains better results, and that using Auto-encoders works worse than
using manual feature selection.

1

Chapter 1: Introduction

Most people spend several hours per day for driving vehicle when they go to work, school or shopping.
Modern car systems collect real-time data of the car status and driving behavior of the driver.
Moreover, such recorded data is a very promising data source for healthcare and research, which has
currently rarely been used. This paper is done in the context of the Diagnostic Driving project, an
NSF funded collaborative project between Drexel, Children Hospital of Philadelphia, George Mason
University and the University of Central Florida that aims at studying the possibility of using driving
behavior data to diagnose medical conditions.

The paper focuses on the classification of driving simulation data from novice and expert drivers
using several different neural network models. The task is thus, to predict, whether a new unseen
before driver is an expert or a novice driving just by the data recorded from a driving simulator.
Two datasets are used on the paper. The first dataset contains 16 traces from four drivers: two are
inexpert drivers and two are expert drivers. Each drivers drove four different tracks. The second
dataset is a modification of the first dataset but after having done feature selection manually to leave
only the 23 features we considered most relevant. The three models used in this work are based on
Long-Short Term Memory (LSTM) networks. The first model directly uses the second dataset to
classify drivers using LSTMs. The second model uses a single layer auto-encoder to automatically
reduce the dimensionality of first dataset and then classifies it via an LSTM. The last model uses a
multiple layer auto-encoder to reduce the dimensionality of first dataset and then classifies it via an
LSTM.

The remaining of this document is organized as follows. Chapter 2 introduces background knowl-
edge for deep neural network including LSTM and Auto-encoder and compares three most popular
deep learning libraries. Chapter 3 explains detail about dataset. Technical approach and three
different neural networks used for experiments on the paper are described in Chapter 4. On Chapter
5, result from three different neural network models are compared and analyzed. The last chapter,
Chapter 6, forms a conclusion. The chapter mentions limitation of auto-encoder and new way to
train multiple layer auto-encoder.

2

Chapter 2: Background

This chapter presents the necessary background to understand the experiments presented later in
the paper. This chapter is divided into three sections. First, Section 2.1 covers basic deep learning
concepts including recurrent neural networks and auto-encoders. Second, Section 2.2 compares deep
learning libraries: DL4J, Theano, and Tensorflow. Finally, Section 2.3 briefly discusses existing work
in machine learning using for modeling driving data.

2.1 Deep Learning

This section covers basic concepts of deep learning. First, Section 2.1.1 introduces deep learning,
and next Section 2.1.2 deals with recurrent neural networks and Long Short Term Memory networks
(LSTMs). Finally, Section 2.1.3 covers auto-encoders.

2.1.1 Basic Concepts

Artificial Neuron

The concept of artificial neurons or perseptrons was introduced by Warren McCullock and Walter
Pitts [1]. Initially artificial neurons were described as binary output logic gates from inputs. If the
sum of weighted inputs is greater than a threshold, the output is 1, otherwise, the output is 0.

Figure 2.1 shows a basic artificial neuron. The input is ~x = {x1, ..., xn} ∈ Rn and the weights
for each input are ~w = {w1, ..., wn} ∈ Rn. Let θ be threshold and define step function as below:

U(z) =

{
1 if z > 0

0 otherwise

The function deciding output o is called an activation function. In the case of the original
McCullock and Pitts neurons, the step function U(z) is used as the activation function.

Figure 2.1 also can be described by the following equation:

o = U(~x · ~w − θ)

Figure 2.2 shows a general artificial neuron. The threshold is replaced by a bias term and the
subtract node is replaced by an add node. In general artificial neurons, the activation function φ
could be an arbitrary function such as step, linear, or sigmoid functions. A general artificial neuron
also can be described by the following equation:

o = φ(~x · ~w + b)

Figure 2.1: Basic Artificial Neuron

3

Figure 2.2: General Artificial Neuron

Figure 2.3: Single Layer in a Neural Network

Neural Network

Using a single neuron has many limitations, however, since a single neuron can solve only specific
problems. For example, single neurons cannot solve the XOR problem. Instead of using a single
neuron, standard neural networks contain a collection of neurons. Figure 2.3 illustrates this by
showing n input and m neurons. The input is ~x = {x1, ..., xn} ∈ Rn, weights for ith neuron are
~wi = {wi1, ..., win} ∈ Rn, and the bias term for the ith neuron is bi. The output ~o = {o1, ..., om} ∈
Rm of the network is calculated as follows:

~o = φ({(~x · ~w1 + b1), (~x · ~w2 + b2), ..., (~x · ~wm + bm)})

Where the activation function is applied on each element of its input.
To simplify the equation, let a transform matrix w : Rn → Rm be w =

[
~w1 ~w2 · · · ~wm

]
and

bias vector ~b = {b1, ..., bm} ∈ Rm.
The equation is

~o = φ((~xTw)T +~b)

The bias term can be skipped by extending the input vector and weight transform matrix.
Let ~X ∈ Rn+1 be {x1, x2, ..., xn, 1} which is added one more dimension from ~x with value 1 and
~Wi ∈ Rn+1 be {wi1, ..., win, bi} which is added by bias term into weights and W : Rn+1 → Rm be
W =

[
~W1

~W2 · · · ~Wm

]
Figure 2.4 shows same neural network as Figure 2.3 with ~X and W. Notice that the figure does

not have an add node anymore.
In the remainder of this paper we will use the following convention: vector in upper case contain

the bias term and vectors in lower case do not contain the bias term. For example, ~X is with bias
and ~x is without bias. Also all vectors are row vectors. Transform matrix is bold character and if
it includes bias, transform matrix uses upper case, otherwise it uses lower case. For example, W
is a transform matrix with bias and w is a transform matrix without bias. By applying this, the

Chapter 2: Background 2.1 Deep Learning

4

Figure 2.4: Simplified Neural Network

Figure 2.5: Simplified Neural Network

equation for a neural network is:
~o = φ(~XW)

For all figures in the remainder of this paper, the Σ node will be skipped, square shape nodes
represent input nodes, circle shape nodes represent computation nodes, edges with transform matrix
represent the weight matrix, edges without transform matrix represent the identity matrix as the
weight matrix and arrow with small filled circle on the end represent the output vector. Figure 2.3,
Figure 2.4, and 2.5 are thus equivalent.

Multilayer Perceptron

Single layer perceptron neural network has only an input layer and an output layer such as Figure 2.5
but multilayer perceptron (MLP) has several hidden layers between an input layer and an output
layer. This section introduces the basic ideas of MLPs by describing a neural network with one
hidden layer. Let ~x ∈ Rn be inputs, ~h ∈ Rm be outputs from hidden layers, ~c ∈ Rm be bias
for hidden layers, ~o ∈ Rl be outputs from an output layer, ~b ∈ Rl be a bias for an output layer,
v : Rn → Rm be a transform matrix for hidden layers and w : Rm → Rl be a transform matrix for
an output layer. The activation function f() is for hidden layers and the activation function g() is
for an output layer. Figure 2.6 shows one hidden layer MLP.

To compute output of MLP, forward-propagation is used. Forward-propagation is to pass inputs
~x to outputs through hidden layers [2]. For example, the output from hidden layers on Figure 2.6
can be computed as:

~h = f(~xv + ~c) = f(~XV)

Then the output layer uses outputs from hidden layer as inputs. The outputs of the neural network
can be computed as:

~o = g(~hw +~b) = g(~HW)

Therefore, a final equation for two layer neural network is as follows:

~o = g(h(~xv + ~c)w +~b) = g(h(~XV)W)

Chapter 2: Background 2.1 Deep Learning

5

Figure 2.6: One Hidden Layer MLP

Figure 2.7: Back-propagation for Wij

Back-propagation

Training a neural network means finding weights and biases. Similar as forward-propagation, back-
propagation is used when MLP is trained. As forward-propagation passes inputs ~x to outputs,
back-propagation passes an error from the output layer to hidden layers [2]. An error function E()
(some times called a loss function) usually uses a sum square error as follows:

E(~y, ~o) =
1

2

∑
i

(yi − oi)2

where ~y is an expected output from MLP.
Training neural network means finding weights and biases that make ~o close to ~y. It means that

training neural network needs a function of weights and biases. The train function J() to train
a neural network can be defined from error function E(). The error function E() is a function of
expected output and output from neural network with fixed weights and biases. Let weights and
biases be changeable and the input be fixed on the error function, then the output is depends on
weights and biases and the trained function J() for one hidden MLP (Figure 2.6) can be define
below:

J(V,W) =
1

2

∑
i

(yi − oi)2 =
1

2

∑
i

(yi − g(~HWi)
2 =

1

2

∑
i

(yi − g(h(~XV)Wi))
2

where Wi is ith column of W
The training function J() for one hidden layer MLP is a function of V and W with fixed input.

Again capital letter of transform matrix contains bias. So V is weights and biases for hidden layer
and W is weights and biases for output layer.

To train the neural network, weights and biases are regulated. To update weights and biases, let
~h′ = ~XV be inputs for a hidden layer activation function f and ~o′ = ~HW be inputs for an output
layer activation function g. So ~h = f(~h′) = f(~XV) and ~o = g(~o′) = g(~HW). Let Vij be ith neuron
weights in hidden layers for inputs Xj and Wij be ith neuron weight in an output layer for inputs
Hj .

Let’s first update Wij and Figure 2.7 shows the detail of an output layer related with Wij . The
updated weight Wij

next can be calculated as follows:

Wij
next = Wij − η

∂J

∂Wij

Chapter 2: Background 2.1 Deep Learning

6

Figure 2.8: Back-propagation for Vij

where η is a learning rate. The equation is intended to remove error, and thus the updated weight
should move in the opposite direction of the gradient of the error function. Thus, this method is
called ‘gradient descent’.

Let’s compute ∂J
∂Wij

∂J

∂Wij
=
∂J

∂oi

∂oi
∂Wij

=
∂J

∂oi

∂oi
∂o′i

∂o′i
∂Wij

So the equation has three parts.
First part is

∂o′i
∂Wij

=
∂

∂Wij

∑
k

(HkWik) =
∂

∂Wij
(HjWij) = Hj

Assume the activation function for an output layer is a sigmoid function sigm() then the second
part is

∂oi
∂o′i

=
∂

∂o′i
sigm(o′i) = sigm(o′i){1− sigm(o′i)} = oi(1− oi)

where

d

dx
sigm(x) =

d

dx

1

1 + e−x
=

e−x

(1 + e−x)2
=

1

1 + e−x
(1− 1

1 + e−x
) = sigm(x){1− sigm(x)}

Assume train function is sum square then the last part is

∂J

∂oi
=

∂

∂oi

1

2

∑
k

(yk − ok)2 =
∂

∂oi

1

2
(yi − oi)2 = −(yi − oi)

Therefore,

Wij
next = Wij − η

∂J

∂Wij
= Wij − η

∂J

∂oi

∂oi
∂o′i

∂o′i
∂Wij

= Wij + η(yi − oi)oi(1− oi)Hj

Before moving to update weights for hidden layer, define δi as follows:

δi =
∂J

∂o′i
=
∂J

∂oi

∂oi
∂o′i

The δi is useful because it is shared when back-propagation updates all weights related with ith
neuron. Also the δi is used when back-propagation updates weights on hidden layers.

The next step is to update weights in hidden layers. Let’s update Vij and Figure 2.8 shows the

Chapter 2: Background 2.1 Deep Learning

7

Figure 2.9: RNN

detail of neural network related with Vij . The updated weight Vij
next can be calculated as follows:

Vij
next = Vij − η

∂J

∂Vij

where η is a learning rate. The equation is similar as Wij
next

Let’s compute ∂J
∂Vij

∂J

∂Vij
=

∂J

∂h′i

∂h′i
∂Vij

=
∂J

∂hi

∂hi
∂h′i

∂h′i
∂Vij

So the equation also has three parts.
First part is

∂h′i
∂Vij

=
∂

∂Vij

∑
k

(XkVik) =
∂

∂Vij
(XjVij) = Xj

Assume the activation function for hidden layers is also a sigmoid function sigm() then the
second part is

∂hi
∂h′i

=
∂

∂h′i
sigm(hi) = sigm(h′i){1− sigm(h′i)} = hi(1− hi)

Then the last part is
∂J

∂hi
=
∑
k

(
∂J

∂o′k

∂o′k
∂hi

) =
∑
k

(δkwki)

Therefore,

Vij
next = Vij − η

∂J

∂Vij
= Vij − η

∂J

∂hi

∂hi
∂h′i

∂h′i
∂Vij

= Vij − η
∑
k

(δkwki)hi(1− hi)Xj

Notice that as forward-propagation sends output of a layer as input of the next layer, back-
propagation sends the error of a the layer to the previous layer. For example, if the δi = ∂J

∂o′i
is an

error on the output layer, then it is sent to hidden layers.

2.1.2 Recurrent Neural Network

Basic concepts of recurrent neural networks:

A recurrent neural network (RNN) is a neural network that is specialized for processing a sequence
of input values [3]. Figure 2.9 illustrates an abstract structure of RNN. RNN has two inputs. One
input is from data such as a normal neural network input but the other input is from the previous
output. This property makes recurrent neural networks be specially well suited to model sequential
input data. This is because past outputs affect the current output. With sequential data, the
previous data can affect the current data and RNN considers the previous outputs for the current
output. This means that even if the inputs from the data are the same, if the previous outputs are
different, the current output could also be different.

For example, human language sentences have series of words, and meanings of words are different
depending on context. RNN can be used for that. Another example is driving data which is used

Chapter 2: Background 2.1 Deep Learning

8

Figure 2.10: Unfolded RNN.

later on the paper. Driving data are multi-dimension data with time domain. RNN can be used for
the data because it is sequential data with the time domain.

To describe RNN in a mathematical equation, let ~xt = {xt1, ..., xtn} ∈ Rn be a vector that

represents the input data at time t, ~ht = {ht1, ..., htm} ∈ Rm be result from hidden layer on time

t, and ~ot = {ot1, ..., otl} ∈ Rl be output on time t. For transform matrix, let u : Rn → Rm be a
transform matrix for input data, v : Rm → Rl be a transform matrix for data from hidden layer,
and w : Rl → Rm be a transform matrix for previous output. Figure 2.10 illustrates an unfolded
RNN with defined symbols. The result from hidden layer can be calculated by

~ht = f(~XtU + ~Ot−1W)

where f is an activation function for the hidden layer. Then the output can be calculated by

~ot = g(~HtV)

where g is an activation function for the output layer. Therefore, the RNN with bias is

~ot = g(f(~xtu + ~bx + ~ot−1w + ~bo)v + ~bh)

where ~bx = {bx1, ..., bxm} ∈ Rm is the bias for the input data, ~bo = {bo1, ..., bom} ∈ Rm is the bias

for the previous output data, and ~bh = {bh1, ..., bhl} ∈ Rl is the bias for the data from the hidden
layers.

RNN is not always like Figure 2.10. Input from the previous output can be replaced by the result
of the previous hidden layer. The main idea of RNN is that when neural network decides a current
output, it considers a previous state.

Long Short Term Memory (LSTM) networks:

Basic RNNs are known to have problems modeling long term dependencies. When RNN passes the
previous output for the current output, some information in the input might or might not be needed
for future. RNN does not have an ability to filter unnecessary information or to store necessary
information. Long Short Term Memory (LSTM) neural networks are precisely designed to handle
these problems.

LSTM is a type of RNN introduced by Hochreiter and Schmidhuber [4]. LSTM solves long term
dependency problems in RNN by memory cells. LSTM manages memory cells as a storage of knowl-
edge. LSTM filters unnecessary information from memory cells and records necessary information
on memory cells.

The structure of LSTM consists of four gates: forget gate, input gate, input modulation gate,

Chapter 2: Background 2.1 Deep Learning

9

Figure 2.11: LSTM

and output gate. Each gates have different purposes and Christopher Olah’s blog 1 develops an
intuition for the concept of LSTM and explains the purpose of each gates. The paper [5] describes
LSTM in a mathematical term. Let us first provide an intuitive description of how LSTM works by
following Christopher Olah’s blog, before providing a more in-depth formalization.

1. An intuitive explanation of LSTMs:

The easiest way to understand LSTM is to understand memory cell and the purpose of four
different gates. Memory cells are what make LSTM different from RNN. Memory cells store
important information and filter unimportant information for future. Three of four gates are
involved in the memory cells to store and filter information.

The first gate affecting memory cells is a forget gate. The forget gate decides unnecessary data
from input data and previous output then applies it to memory cells. Other two gates are an
input gate and an input modulation gate and these also influence memory cells. The two gates
decide what information to remember to apply to memory cells. The last gate is an output
gate and it does not directly affect memory cells. The output gate also has two inputs from
the input data and the previous output, and outputs from the output gate is multiplied by
memory cells to make a final output. Figure 2.11 illustrates LSTM neural network with four
gates and next part describes more detail of LSTM and the figure in a mathematical terms.

2. Modeling LSTMs in mathematical terms:

1http://colah.github.io/posts/2015-08-Understanding-LSTMs

Chapter 2: Background 2.1 Deep Learning

http://colah.github.io/posts/2015-08-Understanding-LSTMs

10

To describe LSTM in a mathematical terms, let ~xt = {xt1, ..., xtn} ∈ Rn be a vector that

represents the input data at time t, ~it = {it1, ..., itm} ∈ Rm be a result from an input gate

on time t, ~mt = {mt
1, ...,m

t
m} ∈ Rm be a result from an input modulation gate on time t,

~f t = {f t1, ..., f tm} ∈ Rm be a result from a forget gate on time t, ~ot = {ot1, ..., otm} ∈ Rm be

a result from an output gate on time t, ~ct = {ct1, ..., ctm} ∈ Rm be memory cells on time t,

and ~ht = {ht1, ..., htm} ∈ Rm be a final result on time t. Each gate has transform matrices for
inputs. Let tn,m : Rn → Rm be a transform matrix from n dimension to m dimension. Let
tii
n,m be a transform matrix for the input from data in the input gate, toi

m,m be a transform

matrix for the input from the previous output in the input gate, tim
n,m be a transform matrix

for the input from the data in the input modulation gate, tom
m,m be a transform matrix for the

input from the previous output in the input modulation gate, tif
n,m be a transform matrix for

the input from the data in the forget gate, tof
m,m be a transform matrix for the input from the

previous output in the forget gate, tio
n,m be a transform matrix for the input from the data in

the output gate, too
m,m be a transform matrix for the input from the previous output in the

output gate.

The results of each gate are computed as following:

~it = sigm(~XtTii
n,m + ~Ht−1Toi

m,m)

The input gate uses a sigmoid function sigm() as an activation function

~mt = tanh(~XtTim
n,m + ~Ht−1Tom

m,m)

The input modulation gate uses a tanh function tanh() as an activation function.

~f t = sigm(~XtTif
n,m + ~Ht−1Tof

m,m)

The forget gate uses a sigmoid function sigm() as an activation function.

~ot = sigm(~XtTio
n,m + ~Ht−1Too

m,m)

The output gate uses a sigmoid function sigm() as an activation function.

Memory cells are computed as
~ct = ~it ∗ ~mt + ~f t ∗ ~ct−1

And final result is computed as
~ht = ~ct ∗ ~ot

Where ∗ is component-wise multiplication of two vectors.

LSTM neural network described above is one example of LSTMs. There are many other LSTMs
but all LSTMs has memory cells to store information for long term memory and has four gates:
input, input modulation, forget, and output gate.

2.1.3 Auto-encoder

This subsection introduces Auto-encoder and different kinds of Auto-encoder: undercomplete Auto-
encoder, overcomplete Auto-encoder, and multilayer Auto-encoder.

Basic Auto-encoder

An Auto-encoder (AE) is defined as a neural network that is trained to attempt to copy its inputs
to its outputs [3]. It means that AE takes inputs and sends it as outputs. However, AE does not
directly send inputs to outputs. AE has two layers: a encode layer and a decode layer. Figure 2.12

Chapter 2: Background 2.1 Deep Learning

11

Figure 2.12: Abstract structure of Auto-encoder

Figure 2.13: Basic Auto-encoder

illustrates an abstract structure of AE. The purpose of AE is to make outputs from a decode layer
same as inputs.

To describe AE, let ~x = {x1, ..., xn} ∈ Rn be an input, ~e = {e1, ..., em} ∈ Rm be an output

from an encoder layer, and ~d = {d1, ..., dn} ∈ Rn be an output from a decoder layer. For transform
matrix, let u : Rn → Rm be a transform matrix for an encode layer, v : Rm → Rn be a transform
matrix for a decode layer. Usually AE uses a sigmoid as an activation function. Figure 2.13 describes
AE.

The output of encoder is
~e = f(~XU)

where f is the activation function for encoder layer. It is usually a sigmoid function.
The output of decoder is

~d = g(~EV)

where g is the activation function for decoder layer. It is usually a sigmoid or a linear function.
The purpose of AE copies the input as the output. Therefore, the error function is calculated by

E(~x, ~d) = E(~x,g(~EV)) = E(~x,g(f(~xu + ~be)v + ~bd))

Where ~be = {be1, ..., bem} ∈ Rm is the bias for the encoder layer and ~bd = {bd1, ..., bdm} ∈ Rn is the
bias for the decoder layer.

AE seems not useful because it only tries to copy inputs. However, AE is usually used with other
neural network that uses data from an encoder layer of AE, not from a decoder layer. Making values
of an input and a decoder output similar guarantees that a result from an encode layer contains all
information of an input. It means that AE can represent the same information of an input data in
different dimension. When the dimension of an encoder is higher than the dimension of an input,
it is called an overcomplete Auto-encoder. When the dimension of an encoder is lower than the
dimension of an input, it is called an undercomplete Auto-encoder.

On this paper and experiment, an undercomplete AE is used for reducing an input dimension.
An undercomplete AE is often compared with principal components analysis (PCA) because both
methods reduce dimensions. The paper [6] compares undercomplete AE and PCA. The result on the
paper is that an undercomplete AE could keep more information than PCA. It means that reducing
data to low dimension by an undercomplete AE gives better performance. However, training AE
takes long time than computing information gained from PCA.

Chapter 2: Background 2.1 Deep Learning

12

Figure 2.14: Multilayer Auto-encoder

Figure 2.15: Multilayer Auto-encoder Example

Figure 2.16: Pretraining First Step

Figure 2.17: Pretraining Second Step

Multilayer Auto-encoder

Sometimes AE is designed with multiple encoder and decoder layers to reduce dimension. Figure 2.14
shows multilayer auto-encoder (MAE). However, it is difficult to find all the weights of encoders and
decoders in MAE because all weights are initialized with random numbers and it makes difficult to
find optimized weights [5]. So if the initial weights are close to optimized weights, training algorithm
gradient descent can find optimized weights. The paper [5] shows “pretraining” method to initialize
good weights.

Pretraining is to train each layer separately before training the whole layers. For example, Figure
2.15 has three encoder and decoder layers. Let ~x ∈ Rn be an input vector, e1 : Rn → Rm be a
transform matrix for the first encoder layer, e2 : Rm → Rl be a transform matrix for the second
encoder layer, e3 : Rl → Rk be a transform matrix for the third encoder layer, d1 : Rm → Rn be
a transform matrix for the first decoder layer, d2 : Rl → Rm be a transform matrix for the second
decoder layer, d3 : Rk → Rl be a transform matrix for the third decoder layer, and ~o ∈ Rn be an
output vector.

In this case, pretraining has three steps because it has three encoder and decoder layers. Figure
2.16 shows train of first encoder and decoder layer. While the first encoder and decoder layer are

Chapter 2: Background 2.1 Deep Learning

13

Figure 2.18: Pretraining Thrid Step

trained, the rest of encoders and decoders are ignored. So an error function is

E(~x,g1(f1(~XE1)D1))

Figure 2.17 shows the training of the second encoder and decoder layer. While the second encoder
and decoder layer are trained, the transform matrix e1 is fixed because the transform matrix e1 is
to create input for second layer encoder. So an error function is

E(f1(~XEfixed
1),g2(f2(f1(~XEfixed

1)E2)D2))

The last step is Figure 2.18 and it trains the third encoder and decoder. During the training, the
first and the second encoder weights are fixed. So an error function is

E(f2(f1(~XEfixed
1)Efixed

2),g3(f3(f2(f1(~XEfixed
1)Efixed

2)E3)D3))

After finishing pretraining step, all weights are close enough to optimal weights for training
algorithm to find the optimized answer when it trains the whole neural network. So an error
function training the whole network is

E(~x,g1(g2(g3(f3(f2(f1(~XE1)E2)E3)D3)D2)D1))

2.2 Deep Learning Libraries

This section introduces three popular libraries for deep learning.

2.2.1 Tensorflow

Tensorflow 2 is an open source software library for numerical computation using data flow graphs.
The biggest difference from other libraries is that Tensorflow treats all operators as nodes. For
example, multiplication, addition, or sigmoid functions are treated as nodes. This helps developers
to intuitively build neural networks. Another strength is the TensorBoard. TensorBoard is a tool
for Tensorflow to visualize neural networks. Developers can also review how neural networks are
trained from TensorBoard because TensorBoard visualizes logs to track all parameters while neural
networks are trained.

The most famous example of the utilization of Tensorflow is AlphaGo 3. A team of Google
engineers built AlphaGo using Tensorflow and the neural network parts of AlphaGo run on Tensor
Processing Units (TPU).

2https://www.tensorflow.org/
3https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.

html

Chapter 2: Background 2.2 Deep Learning Libraries

https://www.tensorflow.org/
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html

14

2.2.2 Theano

Theano 4 is a Python library for machine learning. It integrates with Numpy and dynamically
generates C code. Theano has many defined computations (called Op) and Theano allows to extend
custom Ops written in C code.

Theano has more example code and is more stable than Tensorflow. This is because Tensorflow
is newer than Theano and the APIs of Tensorlfow keep changing. For example, many APIs in
Tensorflow 1.x have different interfaces compared to the APIs in Tensorflow 0.x.

2.2.3 DL4J

DL4J 5 is an open source, distributed deep-learning library for Java and Scala under the Apache 2.0
license. To compare with other deep learning libraries, DL4J can easily interact with Hadoop and
Spark so neural networks built in DL4J can be used for big data.

2.3 Machine Learning with Driving Data

Due to its many practical applications and its importance to road safety, driving behavior modeling
has been approached from many perspectives. A significant body of work, illustrated by the work of
Macadam [7], exists on the manual creation of control models that exhibit specific aspects of human
driving behavior (see Markkula et al. [8] for an in-depth review).

A number of approaches employ machine learning methods to automatically acquire models of
human driving behavior [9, 10]. For example, case-based and instance-based learning have been
deployed for driving tasks [11] as well as other LfD tasks [12–15]. These approaches learn behavior
by observing an expert’s performance, but except for the work of Rubin and Watson, focus on small-
scale datasets, much smaller than the datasets required to analyze driving behavior. Nechyba and
Xu [16] developed a similarity measure based on Hidden Markov Models (HMM) [17]. The results
demonstrated the ability of the models to accurately differentiate driving traces generated from one
driver from those generated from other drivers however, the measures were based on relatively simple
driving data (without other traffic). Moreover, the driving data used in this paper is significantly
more complex than that used by Nechyba and Xu (for example, our data includes other traffic). In
our previous work [18], we showed how choosing the right variables to model is key in accurately
modeling driving behavior. For example, we showed that if the usual steering, throttle and brake
variables are used as the target for prediction, then the learning problem becomes non-i.i.d.

Finally, previous work has utilized models to automatically predict driver states from driving
data. Das et al. [19] showed that statistical measures over steering wheel data such as entropy and
the Lyapunov exponent can determine whether a given driver is under the effect of alcohol or not.

4http://deeplearning.net/software/theano/
5https://deeplearning4j.org/

Chapter 2: Background 2.3 Machine Learning with Driving Data

http://deeplearning.net/software/theano/
https://deeplearning4j.org/

15

Chapter 3: Data Set

Data was collected in the high-fidelity simulator [18] of the Center for Injury Research Prevention
Studies at the Children’s Hospital of Philadelphia (CHOP). The driving simulator provides an envi-
ronment similar to real driving to test users. It has a 160 degree front view, rear-view, left side, and
right side mirror images. It also features a full car chassis with active pedals, steering wheel, and a
full dashboard with even audio equipment.

The experiments on this paper use 16 traces from 4 drivers: 2 people were expert drivers and
2 people were inexpert drivers. Each person drove four different tracks and each track represents
different traffic situations and interactions with other vehicles. Each track has multiple instances
of three scenarios that have been found to result in a high likelihood of crashing for 16-18 year-
old teen drivers driving alone or with a peer passenger according to the NMVCCS (National Motor
Vehicle Crash Causation Survey): 1) turning into opposite directions (turning left), 2) right roadside
departure, and 3) rear-end events [20]. Thus, this results on a dataset that contains 8 traces of expert
drivers, and 8 traces of inexpert drivers.

The simulator records 100 features which include car status: velocity, steer, Brake, throttle and
etc. and include environment status features such as the current speed limit, whether the driver is
instructed to make the next left or right turn, etc. These data is collected at 60Hz. The traces vary
in length from 26298 to 51295, with an average of 33224.6875 instances. The specific lengths of each
trace are shown on Table 3.1

In this paper, we used two versions of the collected data set. A first version (raw dataset) contains
98 of the 100 features collected by the driving simulator (the two features that are removed are time
stamps). A second version (filtered dataset) contains only 23 features: ’velocity’, ’steer’, ’brake’,
’lane off set’, ’throttle’, ’stop’, and so on. These 23 features were manually selected as are those
that are most important for the classification task at hand. The reduced features helps save time to
train neural network.

16

Table 3.1: Sample length on the traces

Trace Driver Track Length
Trace0 Expert0 Track0 50029
Trace1 Expert0 Track1 26375
Trace2 Expert0 Track2 29629
Trace3 Expert0 Track3 26298
Trace4 Expert1 Track0 51295
Trace5 Expert1 Track1 26674
Trace6 Expert1 Track2 29680
Trace7 Expert1 Track3 27075
Trace8 Inexpert0 Track0 49691
Trace9 Inexpert0 Track1 30058
Trace10 Inexpert0 Track2 26441
Trace11 Inexpert0 Track3 27373
Trace12 Inexpert1 Track0 47658
Trace13 Inexpert1 Track1 29380
Trace14 Inexpert1 Track2 26684
Trace15 Inexpert1 Track3 27255

Chapter 3: Data Set

17

Chapter 4: Technical Approach

This chapter covers the technical methods designed for the experiments reported later in this paper
and also introduces three different neural network models used for these experiments.

4.1 Cross Validation

Cross validation (CV) is a common method used to validate models when data is not large enough
[3]. CV divides a data set into K folds and then uses the ith fold as the test set and other folds
as the training set to the target model. Experiments on this paper use 16 full traces but this has
shown not to be enough to train the complex neural networks that we studied. Thus, CV was used
to validate neural network models and to compare performance of these different models. The 16
traces dataset is divided to 4 folds. Each fold contain two traces from expert and two traces from
inexpert. The neural networks are thus trained four times with different training sets and test sets.
Figure 4.1 shows four folds cross validation. Red color is the fold for testing and other folds are for
training. All the results presented in this paper are the result of repeating a 4-fold CV four times,
and computing the average result.

4.2 LSTM

The LSTM neural network is used on three different neural network models to classify expert or
inexpert drivers because the data has time domain and LSTM gives good performance for serial
data. On the paper, LSTM neural networks are built with 16, 32, 64, 128, and 256 hidden neurons.
It means that output dimensions of LSTM is 16, 32, 64, 128, and 256 dimensions. The output from
LSTM is sent to an output layer which has two additional neurons. By using softmax, the output
from two neurons is classified. If it is [0, 1], it is classified as expert. Otherwise, it is classified as
inexpert.

Figure 4.2 shows first neural network model (first model) on the paper. Its input is filtered dataset
which has 23 chosen features. The filtered dataset is feed directly to LSTM then the result is passed
to the output layer.

4.3 Auto-encoder

The raw dataset has 98 features and it takes too much time to train nerual network if all 98 features
are used. AE can solve the problem by reducing dimensions.

Figure 4.1: Cross Validation

18

Figure 4.2: First experiment NN

Figure 4.3: Second experiment NN

Figure 4.4: Third experiment NN

4.3.1 Single layer Auto-encoder

Figure 4.3 shows the second neural network model (second model) on the paper. The second model
is added by one AE layer from first model. The purpose of the AE layer is to reduce 98 features to
25 features on raw dataset. Notice that the figure has an encoder only because after training AE,
only an encoder is used to reduce dimensions. The output from the encoder is passed to LSTM.

4.3.2 Multiple layer Auto-encoder

Figure 4.4 shows third neural network model (third model) on the paper. To compare the performance
between a single layer AE and multiple layer AE, the third model has three layers of AE. THe first
AE reduces 98 dimensions to 75 dimensions, the second AE reduces 75 dimensions to 50 dimensions
and the last AE reduces 50 dimensions to 25 dimensions. The figure describes it with three encoder
layers.

4.4 Comparison of three models

Three models are deep neural network which has multiple layers. The first model has two layers:
LSTM and softmax. The second model has three layers: one encoder, LSTM and softmax. The third
model has five layers: three encoders, LSTM and softmax. Three models contain same structure of
LSTM and softmax layer.

Chapter 4: Technical Approach 4.4 Comparison of three models

19

Table 4.1: Example Data

Example Data

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Table 4.2: Result of Re-Sampled Data

last mean gaussian
10 5.5 5.999996063
20 15.5 15.9999895

The difference between first model and other models is that the first model uses filtered dataset
which features are filtered by human but other models reduce features of raw dataset by AE. The
difference between second model and third model is that second model reduces features by SAE but
third model reduces features by MAE. The difference between three models is method for reduction
dimensions.

4.5 Sampling

The simulator records 60 samples per second, which is too high a frequency. Thus, we re-sampled
the dataset using three different periods: taking 1 out of each 10 samples, 1 out of each 20, and 1
out of each 50. For each period, we tested three different re-sampling methods. The first method
last chooses the last sample of period, the second method mean computes mean of data in period,
and the third method gaussian applies Gaussian filter. For the third method, window size is 11, 21,
and 51 for each periods which are one more greater than periods. The example below explains how
to re-sample data.

Table 4.1 shows example data and Table 4.2 shows result of re-sampled data by 1 over 10 from
each methods. To explain three re-sample methods, let first period be (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) and
second period be (11, 12, 13, 14, 15, 16, 17, 18, 19, 20). The last method takes last sample from each
periods. The result from last method is (10, 20) because last sample from first period is 10 and last
sample from second period is 20. The mean method computes mean of samples in a period. The
result from mean is (5.5, 15.5) because mean of first period is 5.5 and mean of second period is 15.5.

Before explaining gaussian method, Gaussian filter should be defined. The filter size is greater
than sampling size by 1. In this case, Gaussian filter size is 11 because sampling size is 10. Below

Chapter 4: Technical Approach 4.5 Sampling

20

Table 4.3: Gaussian Filter (size=11, σ=1.667)

x Gaussian Value

5 0.00266126292
4 0.01344760189
3 0.04740846466
2 0.1166060072
1 0.2000967085
0 0.2395592537
-1 0.2000967085
-2 0.1166060072
-3 0.04740846466
-4 0.01344760189
-5 0.00266126292

Table 4.4: First Period applied by Gaussian Filter

First Period Gaussian Value Filtered Value

1 0.00266126292 0.00266126292
2 0.01344760189 0.02689520378
3 0.04740846466 0.142225394
4 0.1166060072 0.4664240287
5 0.2000967085 1.000483542
6 0.2395592537 1.437355522
7 0.2000967085 1.400676959
8 0.1166060072 0.9328480573
9 0.04740846466 0.4266761819
10 0.01344760189 0.1344760189
11 0.00266126292 0.02927389212

Sum 5.999996063

Table 4.5: Second Period applied by Gaussian Filter

First Period Gaussian Value Filtered Value

11 0.00266126292 0.02927389212
12 0.01344760189 0.1613712227
13 0.04740846466 0.6163100406
14 0.1166060072 1.6324841
15 0.2000967085 3.001450627
16 0.2395592537 3.832948059
17 0.2000967085 3.401644044
18 0.1166060072 2.098908129
19 0.04740846466 0.9007608285
20 0.01344760189 0.2689520378
21 0.00266126292 0.05588652132

Sum 15.9999895

equation is Gaussian equation and used to make Gaussian filter.

g(x) =
1√
2πσ

e−
x2

2σ2

where σ = filter size−1
6.0 because the sum of filter closes to 1 with the σ. With filter size 11, σ is

1.667.
Table 4.3 shows size 11 Gaussian filter with σ = 1.667. Re-sampling example data by the

Gaussian filter is just multiplication between filter and data. Table 4.4 shows Gaussian filtered
values for first period. The re-sampled value from first period is sum of Gaussian filtered values.

Chapter 4: Technical Approach 4.5 Sampling

21

That is 5.999996063. Table 4.5 shows Gaussian filtered values for second period. The re-sampled
value is 15.9999895.

4.6 Normalization

After feeding re-sampled data to three neural network models, the data is normalized: mean is
0, standard deviation is 1. CV is used for all experiments. Therefore, normalization is done in a
training set without a testing set in CV. This is because the testing set should be hidden until final
neural network models are applied on that. The testing set refers mean and standard deviation from
the training set to normalize.

Chapter 4: Technical Approach 4.6 Normalization

22

Chapter 5: Experimental Result

This chapter summarizes results from all experiments. Experiments are divided to two parts: 1)
experiments with filtered dataset 2) experiments with raw dataset. First part of experiments used
first model which only has LSTM. Each experiments used 5 different number of neurons: 16, 32, 64,
128, and 256. Second part of experiments used second model which has SAE and third model which
has MAE then compared result of three models. All experiments were tested four times with four
cross validation then the average result are on the chapter.

5.1 Experiments with filtered dataset

The first part of experiments used filtered dataset which has chosen 23 features. The dataset was
re-sampled by 1 over 10, 1 over 20, and 1 over 50 with three different methods: last, mean, and
gaussian so it was 9 different re-sampled datasets.

5.1.1 Resample 1 over 50

This subsection compares results from experiments with 1 over 50 re-sampled filtered dataset by last,
mean, and gaussian methods. Each dataset were tested four times with different number of neurons
in LSTM hidden layer: 16, 32, 64, 128, and 256 neurons. Figure 5.1 shows average accuracy from
four tests on different number of neurons. Table 5.1 shows average accuracy of four tests on different
number of neurons, Table 5.2 shows standard deviation of four tests on different number of neurons,
and Table 5.3 shows test time of four tests on different number of neurons.

The best performance was from last method with 16 number of neurons. The accuracy of this was
0.59375 (59.375%). The worst performance was from gaussian method with 64 number of neurons.
It was 0.40625 (40.625%). Test with 64 neurons gave most stable result because standard deviation
of this was the smallest. Many accuracy were below 0.5 (50%) and total average accuracy is 0.492708
(49.2708%). The experiments with 1 over 50 re-sampled data took short time than experiments with
1 over 20 and 1 over 10 re-sampled data on later of this chapter.

5.1.2 Resample 1 over 20

This subsection compares results from experiments with 1 over 20 re-sampled filtered dataset by last,
mean, and gaussian methods. Each dataset were tested four times with different number of neurons
in LSTM hidden layer: 16, 32, 64, 128, and 256 neurons. Figure 5.2 shows average accuracy from
four tests on different number of neurons. Table 5.4 shows average accuracy of four tests on different
number of neurons, Table 5.5 shows standard deviation of four tests on different number of neurons,
and Table 5.6 shows test time of four tests on different number of neurons.

The best performance was from mean method with 32 and 256 number of neurons. The accuracy
of this was 0.59375 (59.375%) as same as the best performance from experiments with 1 over 50

Table 5.1: Average Accuracy of Result from 1 over 50 Re-sampled filtered dataset

1 over 50
The number of neurons

16 32 64 128 256
last 0.59375 0.484375 0.546875 0.5625 0.515625

mean 0.421875 0.5 0.484375 0.421875 0.484375
gaussian 0.578125 0.421875 0.40625 0.515625 0.453125
Average 0.53125 0.46875 0.4791666667 0.5 0.484375

23

Figure 5.1: Result of 1 over 50 Re-sampled filtered dataset

Table 5.2: Standard Deviation of Result from 1 over 50 Re-sampled filtered dataset

1 over 50
The number of neurons

16 32 64 128 256
last 0.1983000672 0.2536196299 0.1547847968 0.249478623 0.2452677109

mean 0.218303115 0.1825741858 0.213478141 0.1983000672 0.2656556355
gaussian 0.1983000672 0.2536196299 0.1547847968 0.249478623 0.2452677109
Average 0.2049677498 0.2299378152 0.1743492449 0.2324191044 0.2520636858

re-sampled data. The worst performance was also from mean method with 128 number of neurons.
It was 0.375 (37.5%), which was worse than the worst performance from experiments with 1 over
50 re-sampled data. Test with 16 neurons gave most stable result because standard deviation of
this was the smallest. Test with 64 neurons was stable because its standard deviation was similar
as standard deviation of test with 16 neurons. The total average was 0.515625 (51.5625%) which
was slightly higher than the total average 0.492708 (49.2708%) from experiments with 1 over 50
re-sampled data because size of 1 over 20 re-sampled data was 2.5 times more than size of 1 over 50
re-sampled data. More amount of data also affected the test time. On the experiments, when size
of the data was 2.5 times more, the test time took little bit more than 2.5 times than the test time
from experiments with 1 over 50 re-sampled data.

Table 5.3: Test Time from 1 over 50 Re-sampled filtered dataset

1 over 50
The number of neurons

16 32 64 128 256
last 0:17:03 0:18:48 0:22:43 0:35:43 0:51:25

mean 0:17:06 0:18:17 0:23:10 0:35:23 0:50:42
gaussian 0:16:49 0:18:20 0:22:28 0:35:38 0:52:43
Average 0:16:59 0:18:28 0:22:47 0:35:35 0:51:37

Chapter 5: Experimental Result 5.1 Experiments with filtered dataset

24

Figure 5.2: Result of 1 over 20 Re-sampled filtered dataset

Table 5.4: Average Accuracy of Result from 1 over 20 Re-sampled filtered dataset

1 over 20
The number of neurons

16 32 64 128 256
last 0.484375 0.453125 0.515625 0.515625 0.5

mean 0.546875 0.59375 0.53125 0.375 0.59375
gaussian 0.59375 0.53125 0.578125 0.46875 0.453125
Average 0.5416666667 0.5260416667 0.5416666667 0.453125 0.515625

Table 5.5: Standard Deviation of Result from 1 over 20 Re-sampled filtered dataset

1 over 20
The number of neurons

16 32 64 128 256
last 0.1929756029 0.2617051458 0.213478141 0.213478141 0.2415229458

mean 0.1875 0.2561737691 0.1547847968 0.2581988897 0.2393567769
gaussian 0.2393567769 0.3145764348 0.2536196299 0.2015564437 0.2617051458
Average 0.2066107933 0.2774851166 0.2072941892 0.2244111581 0.2475282895

Table 5.6: Test Time from 1 over 20 Re-sampled filtered dataset

1 over 20
The number of neurons

16 32 64 128 256
last 0:53:22 0:58:52 1:30:51 2:15:33 3:49:07

mean 0:48:29 0:59:33 1:27:01 2:14:11 3:46:40
gaussian 0:49:00 0:57:27 1:28:35 2:18:22 3:47:48
Average 0:50:17 0:58:37 1:28:49 2:16:02 3:47:52

Chapter 5: Experimental Result 5.1 Experiments with filtered dataset

25

Figure 5.3: Result of 1 over 10 Re-sampled filtered dataset

Table 5.7: Average Accuracy of Result from 1 over 10 Re-sampled filtered dataset

1 over 10
The number of neurons

16 32 64 128 256
last 0.5 0.5 0.6875 0.59375 0.5

mean 0.515625 0.59375 0.640625 0.4375 0.53125
gaussian 0.546875 0.40625 0.46875 0.609375 0.578125
Average 0.5208333333 0.5 0.5989583333 0.546875 0.5364583333

5.1.3 Resample 1 over 10

This subsection compares results from experiments with 1 over 10 re-sampled filtered dataset by last,
mean, and gaussian methods. Each dataset were tested four times with different number of neurons
in LSTM hidden layer: 16, 32, 64, 128, and 256 neurons. Figure 5.3 shows average accuracy from
four tests on different number of neurons. Table 5.7 shows average accuracy of four tests on different
number of neurons, Table 5.8 shows standard deviation of four tests on different number of neurons,
and Table 5.9 shows test time of four tests on different number of neurons.

The best performance was from last method with 64 number of neurons. The accuracy of this
was 0.6875 (68.75%) and it was also the best accuracy from all experiments. The worst performance
was also from gaussian method with 32 number of neurons. It was 0.40625 (40.625%). The total
average was 0.540625 (54.0625%). Test with 32 neurons gave the smallest standard deviation.

Overall performance from experiments with 1 over 10 gave better result than from experiments
with 1 over 20 and 1 over 50 re-sampled data. This is because 1 over 10 re-sampled data had largest
amount of data and it caused better performance. However, test time increased as size of data
increased. Especially, experiments with 256 neurons in LSTM hidden layer took average 6 hours 48
miniatures and total time from 12 experiments with 256 neurons took more than 3 days.

Chapter 5: Experimental Result 5.1 Experiments with filtered dataset

26

Table 5.8: Standard Deviation of Result from 1 over 10 Re-sampled filtered dataset

1 over 10
The number of neurons

16 32 64 128 256
last 0.2581988897 0.2041241452 0.2140872096 0.2015564437 0.2236067977

mean 0.1929756029 0.2015564437 0.2230237282 0.2140872096 0.1547847968
gaussian 0.2085415626 0.1796988221 0.2393567769 0.2576941016 0.2366211811
Average 0.2199053517 0.1951264703 0.2254892382 0.2244459183 0.2050042585

Table 5.9: Test Time from 1 over 10 Re-sampled filtered dataset

1 over 10
The number of neurons

16 32 64 128 256
last 2:11:58 2:21:11 3:04:34 4:28:24 6:35:52

mean 1:59:20 2:24:28 3:05:15 4:26:12 6:57:59
gaussian 2:00:20 2:22:21 3:05:58 4:29:00 6:52:17
Average 2:03:53 2:22:40 3:05:16 4:27:52 6:48:43

Table 5.10: Accuracy of three models with last method

Average The number of neurons
Model 16 32 64 128 256 Average
first 0.5 0.5 0.6875 0.59375 0.5 0.55625

second 0.421875 0.359375 0.34375 0.28125 0.28125 0.3375
third 0.359375 0.46875 0.453125 0.40625 0.453125 0.428125

5.2 Experiments with raw dataset

The second part of experiments used raw dataset which has 98 features. The dataset was re-sampled
only by 1 over 10 with last method. This is because the experiment time with second model with
SAE and third model with MAE took much more than the experiment time with first model, and
from the result of the first part of experiments, the best overall performance was from 1 over 10
re-sampled data and the best performance was from last method. The second model and third model
were also tested four times with different number of neurons in LSTM hidden layer: 16, 32, 64, 128,
and 256 neurons. The purpose of the second part of experiments is performance comparison between
three different ways to reduce dimensions: human(first model), SAE(second model), and MAE(third
model).

5.2.1 Comparison of results from three models

Figure 5.4 compares accuracy of three models with data reduced dimensions by human, SAE, and
MAE respectively. Table 5.10 shows accuracy of three models, Table 5.11 shows detail standard
deviation of three models, and Table 5.12 shows test time of three models.

The overall average accuracy from SAE is 0.3375 (33.75%) and the overall average accuracy
from MAE is 0.428125 (42.8125%). Both performance are much lower than 0.55625 (55.625%)
performance from the experiments with data filtered by human. Next subsection explains the reasons
why SAE and MAE gave worse performance.

5.2.2 Analysis Training LSTM in second model and third model

The difference between first model and other models is that other models have AE. Therefore, AE
layer from second model and third model caused worse performance. The evidence of this can be
found during training LSTM in both models. Following six figures help to visualize it. Figure 5.5

Chapter 5: Experimental Result 5.2 Experiments with raw dataset

27

Figure 5.4: Result of three models with last method

Table 5.11: Standard Deviation of three models with last method

Std. The number of neurons
Model 16 32 64 128 256 Average
first 0.2581988897 0.2041241452 0.2140872096 0.2015564437 0.2236067977 0.2203146972

second 0.1983000672 0.2576941016 0.2212653008 0.2212653008 0.2719528145 0.234095517
third 0.2733854117 0.2561737691 0.2085415626 0.2015564437 0.1359764073 0.2151267189

Table 5.12: Test Time of three models with last method

Std. The number of neurons
Model 16 32 64 128 256 Average
first 2:11:58 2:21:11 3:04:34 4:28:24 6:35:52 3:44:24

second 3:55:11 4:26:36 5:45:11 6:21:02 8:33:53 5:48:23
third 6:41:47 6:23:12 7:11:05 8:17:21 10:27:01 7:48:05

and Figure 5.6 respectively show the accuracy and loss from LSTM of first model on each iterations
during training. Figure 5.7 and Figure 5.8 respectively show the accuracy and loss from LSTM of
second model on each iterations during training. Figure 5.9 and Figure 5.10 respectively show the
accuracy and loss from LSTM of third model on each iterations during training.

Training LSTM in second model and third model were slow and most cases did not reach accuracy
1 (100%) while the training LSTM in first model easily reached accuracy 1 (100%). Also loss of second
model and third model did not close to 0. The third model gave increasing loss when it was trained
more. It implies that the data fed to LSTM had noise or problems. It also means that AE in second
model and third model did not work correctly. The next subsection covers more detailed explanation
about the error from AE in second model and third model.

Chapter 5: Experimental Result 5.2 Experiments with raw dataset

28

Figure 5.5: Human Training Accuracy

Figure 5.6: Human Training Loss

5.2.3 Error from AE in second model and third model

Table 5.13 and Table 5.14 show error from AE. We repeated each experiment for times (Test), and
we also show the error in each of the folds of the cross validation run (CV). The error function E()
is defined as following:

E(~x, ~d) =
∑
k

(xi − di)2

where ~x is input signal, ~d is output signal from last decoder. The total average error from AE in
second model is 0.1587907 and the total average error from AE in third model is 0.1720756. Both
error are big enough to affect performance because most range of normalized data for experiments
is between 3 and -3. Figure 5.11, Figure 5.12, Figure 5.13, and Figure 5.14 help visualize error.

Such big error between original input and output from decode layer implies that data from final
encode layer also has big error. The error in encoded data can interrupt train followed neural

Chapter 5: Experimental Result 5.2 Experiments with raw dataset

29

Figure 5.7: SAE Training Accuracy

Figure 5.8: SAE Training Loss

networks. In this case, the error interrupts LSTM layer.

Chapter 5: Experimental Result 5.2 Experiments with raw dataset

30

Figure 5.9: MAE Training Accuracy

Figure 5.10: MAE Training Loss

Chapter 5: Experimental Result 5.2 Experiments with raw dataset

31

Table 5.13: Error from AE in second model

Test CV
The number of neurans

16 32 64 128 256

1

1 0.178460395 0.1239250116 0.1748844814 0.1502201539 0.1886790823
2 0.1658136155 0.1384476442 0.102677634 0.2454849277 0.1165074687
3 0.1409358419 0.1701477412 0.1447305065 0.1517742854 0.1233751141
4 0.13444083 0.1528848018 0.1856264398 0.1555761881 0.1862711851

2

1 0.1573844403 0.1424119417 0.1411998086 0.1525888257 0.1580447592
2 0.141391445 0.1517100111 0.1507830191 0.1466212031 0.1407112777
3 0.1822773032 0.1744369417 0.1704759225 0.2495105062 0.1746258009
4 0.1417274438 0.1453869026 0.1316085961 0.1373841651 0.1503036991

3

1 0.1496374961 0.1435624324 0.1280109156 0.1312412135 0.1869615819
2 0.1594685651 0.1389588062 0.1716334522 0.114069676 0.166966049
3 0.2582480293 0.158985598 0.1400841698 0.1527932584 0.1612278037
4 0.157985406 0.156085087 0.1775525697 0.2080688961 0.1272955388

4

1 0.1478289105 0.3086702116 0.1200938132 0.140119426 0.179127017
2 0.1227029786 0.1786029078 0.1612949632 0.1493861414 0.1175681986
3 0.2519034538 0.1407385003 0.2101189978 0.1865597609 0.1705561783
4 0.1378952377 0.1178480741 0.1207066998 0.1200009286 0.1612533517

Mean 0.164256337 0.1589251633 0.1519676243 0.1619624723 0.1568421316
Std 0.03874978321 0.04322578706 0.02855709465 0.04024832136 0.0250276511

Table 5.14: Error from AE in third model

Test CV
The number of neurans

16 32 64 128 256

1

1 0.1731109992 0.1436949167 0.1456636973 0.187595576 0.151621541
2 0.2256366871 0.2343511172 0.225972496 0.1990794409 0.1417004224
3 0.1696365457 0.1366730388 0.1627431139 0.2070423551 0.1462982614
4 0.1305910405 0.1537955459 0.1439991277 0.1212673876 0.2361955196

2

1 0.1933368258 0.2014074977 0.1557413656 0.1772724874 0.1504026726
2 0.194492355 0.1620466933 0.186969487 0.1627819967 0.1599432845
3 0.1982949749 0.1404892672 0.1382220406 0.1454426982 0.2511638664
4 0.1465102062 0.161547171 0.2015030943 0.2068295442 0.1813242622

3

1 0.1649940163 0.1923567355 0.1391313598 0.1653740592 0.1548881214
2 0.181799693 0.1197193041 0.2793735377 0.2084757499 0.1446572952
3 0.1511649378 0.1994536668 0.1662912238 0.1363047659 0.2827695534
4 0.1715208553 0.1815536954 0.1574255787 0.1797324885 0.1525612958

4

1 0.139421409 0.179470161 0.1902030185 0.1344845295 0.154265251
2 0.157693075 0.1295783296 0.1185395364 0.1784827951 0.2548566163
3 0.2060995549 0.1818246227 0.1764678694 0.2163151987 0.1157963872
4 0.1625140198 0.1539499387 0.1419902053 0.1478702892 0.1442933325

Mean 0.1729260747 0.1669944813 0.170639797 0.1733969601 0.1764211052
Std 0.0258008777 0.03077204756 0.03992570438 0.02998005823 0.05004155784

Chapter 5: Experimental Result 5.2 Experiments with raw dataset

32

Figure 5.11: SAE, AE Error for Column 3

Figure 5.12: SAE, AE Error for Column 17

Chapter 5: Experimental Result 5.2 Experiments with raw dataset

33

Figure 5.13: MAE, AE Error for Column 3

Figure 5.14: MAE, AE Error for Column 17

Chapter 5: Experimental Result 5.2 Experiments with raw dataset

34

Chapter 6: Conclusion and Future work

6.1 Data Size

Two different data sizes should be considered on this paper. The first data size is the number of
samples in each traces. The data with more samples in each traces gave better performance from the
first part of experiments with first model. The average accuracy with 1 over 10 sampled data show
a higher accuracy than the average accuracy with 1 over 20 sampled data and 1 over 50 sampled
data. From this fact, experiments with more samples (in the extreme, using the full data without
doing any re-sampling or data from longer driving time) is expected to have better performance.
Verifying this hypothesis is part of our future work.

Another data size is the number of traces. All experiments on the paper used 16 traces. 12 traces
were used for training and the 4 traces were used for testing in each of the folds of the cross validation
runs. Using just 12 traces did not seem to be enough to train the proposed neural networks: first
model, second model, and third model. Especially, second model and third model need more data
than first model because two models are more complex than first model. To train complex neural
network needs more data. Next experiments in the future should use the data with enough sample
in each traces and enough number of traces.

6.2 Limitation of Auto-encoders

The result from experiments with with SAE in second model and MAE in third model show bad
performance. The principle of AE is to find two matrices: the first matrix is used for compression
and the second matrix is used for decompression. If these two matrices do not exist, it is impossible
to reduce original dimensions to the target dimensions, and either SAE or MAE do not work. For
example, during training the first layer of MAE in third model which reduced 98 features to 75
features, the error from this was less than 0.009. This is much better performance than reducing 98
dimensions to 25 dimensions. Therefore, the bad performance of AE implies that it is not possible
to reduce 98 features of original data to 25 features by AE.

The second limitation of AE is that auto-encoder always tries to keep all information on encoded
data. It means that auto-encoder cannot remove unimportant features other feature selection meth-
ods do. For future work, it might be necessary to study auto-encoder methods that accept some
form of supervision and can reduce dimensions with the ability to ignore unimportant features and
keep information from the important features for the classification task at hand.

6.3 Training Multiple Layer Auto-encoders

Section 2.1.3 explains how to train MAE based on the work of Hinton and Salakhutdinov [6]. The
paper introduces a pretraining process, and shows it can help for initializing good weights. However,
processing of pretraining takes a really long time. For example, average testing time for third model
with 256 neurons took 10 hours and 27 minutes but the testing time for second model with 256
neurons took 8 hours and 33 minutes. The process of pretraining took about 2 hours.

Unlike training each layer separately in pretraining, add more AE until it gives a big error or it
reaches goal dimensions. Figure 6.1, Figure 6.2, and Figure 6.3 show how to train MAE.

Figure 6.1 shows SAE and its error function is

E(~x,g1(f1(~XE1)D1))

Now if it gives small enough error, add one more layer as Figure 6.2. In this case, the error function

35

Figure 6.1: First Step of New Way to train MAE

Figure 6.2: Second Step of New Way to train MAE

Figure 6.3: Thrid Step of New Way to train MAE

is
E(~x,g1(g2(f2(f1(~XE1)E2)D2)D1))

If it gives a small enough error, add one more layer as Figure 6.3. In this case, the error function is

E(~x,g1(g2(g3(f3(f2(f1(~XE1)E2)E3)D3)D2)D1))

If it does not give a small error, stop adding more layers.
This process can give two benefits. The first benefit is to save training time. The first methods is

that compared with the method in [6], it does not train the whole network. Another benefit is being
able to find how much can the AE reduce dimensionality. As part of our future work, it is worth
comparing two different training methods for MAE and finding minimized dimensions reduced by
AE.

Chapter 6: Conclusion and Future work6.3 Training Multiple Layer Auto-encoders

36

Bibliography

[1] Sebastian Raschka. Python machine learning. Packt Publishing Ltd, 2015.

[2] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[3] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[4] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735–1780, 1997.

[5] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329, 2014.

[6] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with
neural networks. science, 313(5786):504–507, 2006.

[7] Charles C Macadam. Understanding and modeling the human driver. Vehicle System Dynamics,
40(1-3):101–134, 2003.

[8] Gustav Markkula, Ola Benderius, Krister Wolff, and Mattias Wahde. A review of near-collision
driver behavior models. Human factors, 54(6):1117–1143, 2012.

[9] H. K. G. Fernlund, Avelino J. Gonzalez, Michael Georgiopoulos, and Ronald F. DeMara. Learn-
ing tactical human behavior through observation of human performance. IEEE Transactions
on Systems, Man, and Cybernetics, Part B, 36(1):128–140, 2006.

[10] Dean Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In D.S. Touretzky,
editor, Advances in Neural Information Processing Systems 1. Morgan Kaufmann, 1989.

[11] Santiago Ontanón, Yi-Ching Lee, Sam Snodgrass, Dana Bonfiglio, Flaura K Winston, Catherine
McDonald, and Avelino J Gonzalez. Case-based prediction of teen driver behavior and skill. In
International Conference on Case-Based Reasoning, pages 375–389. Springer, 2014.

[12] Michael W. Floyd, Babak Esfandiari, and Kevin Lam. A case-based reasoning approach to
imitating robocup players. In Proceedings of the Twenty-First International Florida Artificial
Intelligence Research Society (FLAIRS), pages 251–256, 2008.

[13] Santiago Ontañón, Kinshuk Mishra, Neha Sugandh, and Ashwin Ram. On-line case-based
planning. Computational Intelligence Journal, 26(1):84–119, 2010.

[14] Jonathan Rubin and Ian Watson. On combining decisions from multiple expert imitators for
performance. In IJCAI, pages 344–349, 2011.

[15] Luc Lamontagne, Francis Rugamba, and Guy Mineau. Acquisition of cases in sequential games
using conditional entropy. In ICCBR 2012 Workshop on TRUE: Traces for Reusing Users’
Experience, 2012.

[16] Michael C Nechyba and Yangsheng Xu. Stochastic similarity for validating human control
strategy models. IEEE Transactions on Robotics and Automation, 14(3):437–451, 1998.

[17] Lawrence Rabiner and B Juang. An introduction to hidden markov models. ieee assp magazine,
3(1):4–16, 1986.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

37

[18] Santiago Ontañón, Yi-Ching Lee, Sam Snodgrass, Flaura K Winston, and Avelino J Gonzalez.
Learning to predict driver behavior from observation. In AAAI 2017 Spring Symposium on
Learning from Observation of Humans, 2017.

[19] Devashish Das, Shiyu Zhou, and John D Lee. Differentiating alcohol-induced driving behavior
using steering wheel signals. Intelligent Transportation Systems, IEEE Transactions on, 13(3):
1355–1368, 2012.

[20] Catherine McDonald, Jason Tanenbaum, Yi-Ching Lee, Donald Fisher, Daniel Mayhew, and
Flaura Winston. Using crash data to develop simulator scenarios for assessing novice driver
performance. Transportation Research Record: Journal of the Transportation Research Board,
(2321):73–78, 2012.

Bibliography

	Front Matter
	Title Page
	Copyright Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Background
	Deep Learning
	Basic Concepts
	Recurrent Neural Network
	Auto-encoder

	Deep Learning Libraries
	Tensorflow
	Theano
	DL4J

	Machine Learning with Driving Data

	Data Set
	Technical Approach
	Cross Validation
	LSTM
	Auto-encoder
	Single layer Auto-encoder
	Multiple layer Auto-encoder

	Comparison of three models
	Sampling
	Normalization

	Experimental Result
	Experiments with filtered dataset
	Resample 1 over 50
	Resample 1 over 20
	Resample 1 over 10

	Experiments with raw dataset
	Comparison of results from three models
	Analysis Training LSTM in second model and third model
	Error from AE in second model and third model

	Conclusion and Future work
	Data Size
	Limitation of Auto-encoders
	Training Multiple Layer Auto-encoders

	Back Matter
	Bibliography

