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Abstract
Applications of Symbolic Computation to the Calculus of Moving Surfaces

Mark W. Boady
Advisors: Dr. Jeremy Johnson and Dr. Pavel Grinfeld

In the physical world, objects change shape over time. A soap bubble blowing in the wind
changes shape and density as it floats through the air. Red blood cells change shape to carry oxygen
through our veins. Modeling these problems requires deforming manifolds.

The Calculus of Moving Surfaces (CMS) is an analytical framework for studying deforming
manifolds. The CMS is an extension of tensor calculus. Both approach problems from a geometric
perspective, without reference to specific coordinate systems. To evaluate a specific realization of a
problem, a coordinate system is chosen and a CMS expression is converted to a series of n-dimensional
array calculations using standard calculus.

This generality has many costs. The length of expressions grows quickly, in many cases exponen-
tially. Although it is applicable to a wide range of problems, calculations quickly become intractable.
The expressions generated are not only long and difficult to work with, evaluating them on a specific
coordinate system introduces an entirely different set of challenges.

We present the first compute algebra system designed specifically for the CMS. Our system, the
Symbolic Computation of Moving Surfaces (SCMS) supports the derivation of CMS expressions and
the evaluation of expressions on specific coordinate systems. Although large expressions are inherent
in the framework, computer automation allows for the application of the CMS to significantly larger
problems then can be done by hand and allows the CMS to be applied in an error free way to
non-trivial problems.

We have developed two libraries making up the SCMS. The first is a term rewrite system, CM-
STRS, developed in Java. This library automates the analytic framework of the CMS. Expressions
are kept at a high level, retaining the generality of the CMS. The second, CMSTensor, is for evalua-
tion on specific coordinate systems. It is implemented using the Maple computer algebra system. It
leverages the power of this computer algebra system to evaluate CMS expressions as a combination
of n-dimensional array manipulations and standard calculus operations.

We have applied our system to a non-trivial boundary variation problem: the symbolic series

expansion of the Laplace Eigenvalues on the N-sided regular polygon under Dirichlet boundary



xii

conditions. This series is computed up to N~ two orders higher then previous results. Our
calculations confirm previous hand calculations and extend the series beyond what was previously

known.






1. Introduction

The Calculus of Moving Surfaces (CMS) is an analytic framework extending tensor calculus to
deforming manifolds. Deforming manifolds appear in a wide range of physical systems as well as
mathematical structures. The CMS gives a geometric representation of a surface, its properties,
and the forces acting on it. Tensor calculus and the CMS give expressions that can be evaluated in
any coordinate system. This approach leads to generalized expressions which can give insight into
the inherent geometric structure. This generality also leads to additional complexity. None of the
simplifications that may be present in specific coordinate spaces or on particular realizations of a
problem will be present. This leads to a trade-off between generality and expression complexity.

The tensor calculus was proposed in 1900 by Gregorio Ricci-Curbastro and Tullio Levi-Civita [93].
This famous paper laid the foundations of a general and compact notation for absolute differential
calculus. Tensor calculus has become a key tool in the study of Reimannian geometry, general
relativity, euclidean geometry, and Newtonian mechanics [104]. Albert Einstein’s classic works on
General Relativity depend on tensor calculus for their generality and beauty [29].

The tensor calculus was created for the study of stationary surfaces. Jacques Hadamard created
the CMS in 1903 to allow for the study of surfaces with evolving shapes [52]. Work to merge
Hadamard’s ideas with tensor calculus culminated in 1991 when the CMS was defined as an extension
of tensor calculus [37]. This greatly extended the reach of an already powerful calculus. An improved
version of the framework was presented in 2012 by Pavel Grinfeld [44].

Moving surfaces are an intrinsic part of the physical world, like stationary surfaces they require
a unique representation [45]. The CMS is applicable to a wide breadth problems from physical
simulations, fluid film dynamics and blood cell modeling, to shape optimization and boundary
variation problems. The power and generality inherent in the CMS comes at a cost. For many
problems, working with complex models can quickly lead to intractable problems. The cost of
generality is expression swell.

Expression swell is an important problem in using the CMS. Taking repeated derivatives in the
CMS can cause exponential expression swell. Simple expressions can reach thousands of terms after
only a few derivatives. Dealing with an expression this long by hand is error prone if not impossible.
Even the seemingly simple problem of understanding the change in surface area as a shape changes

runs 94 terms at the 4th derivative. Each of these terms is the product of 5-7 values. An additional



problem is attempting to simplify these expressions by combining terms. Just comparing each of
these expressions by hand would be a long and arduous task.

Once the CMS expression has be generated, a different type of complexity is introduced. To
evaluate the expression, each term must be computed as an N-dimensional array on a particular
surface. With hundreds or thousands of terms, this may already be intractable. Even if the expres-
sions just need to be translated to a computer system, doing so without introducing error would
be difficult. Evaluation of these expressions would also be different for every surface. This means
restarting from the CMS expression for each new surface. Once these expressions are converted into
algebra using n-dimensional arrays, the value at each possible may still be an algebraic expression
running hundreds of terms.

Our system tackles all these problems, without giving up the generality of the CMS. Although
expressions can always grow past the limits of computer hardware, the system presented here reaches
far past existing methods. These are the same problems that have long motivated the automation
of mathematical calculations.

Computer Algebra Systems (CAS) have a long history of advancing analytic methods through
automation [34]. By automating the manipulation and derivation of large symbolic formulas, CAS
have allowed for numerous advancements. Specialized systems for tensor calculus [86], Groebner
basis [(8], Fourier Transforms [33], and Quantum Mechanics [I00] have all been successful. Com-
puters have long come to the rescue of mathematical problems that were outside the reach of human
abilities.

The tensor calculus contains all same problems as the CMS. Its importance in general relativity
has motivated a number of CASs [69, 08, 110} [75] 89, [81]. All these systems have advanced research
in their fields [102], O], [63]. These systems continue to push the limits of physics research [IT1].
Without an automated system, all these problems would have become intractable long ago. Our
system provides the same advantages to a new class of problems.

The CMS has reached the limits of the tools currently available. The framework can be applied to
the problems it was built to model, but those computations fail due to human limitations. Although
computers can never erase the burden of complexity, they can exceed a human’s ability to work with
large expressions. The CMS has thus far lacked a specialized tool set. Piecemeal frameworks built
on existing systems have worked in some cases, but a general purpose system will greatly improve
the usability of the CMS. It does not require users to be able to develop or modify existing systems.

It is also designed to be used in the same way as a person doing pen and paper calculations. If a



user is familiar with the CMS, our system replicates the experience they are used to.

We have provided a general purpose system called The Symbolic Computation of Moving Surfaces
(SCMS). It is a software system that fills this gap. The software contains two libraries which can be
used to create custom programs. Each of our libraries views the CMS from a different perspective.
When combined they allow for general symbolic computation within the CMS. Depending on the
type of work being done, each of the libraries may provide all the functionality needed on its own.

The Calculus of Moving Surfaces Term Rewriting System (CMSTRS) is a library developed for
the Java programming language. It treats the CMS as a purely analytical framework. Expressions
are written symbolically and computations replicate the algebraic manipulations performed during
pen and paper calculations. Expressions derived using this library retain the geometric generality
of the CMS. They are true for all coordinate systems. This library handles the expressions swell
caused by taking repeated derivatives. It also automates the process of determine if expressions
can be simplified using equivalence rules and provides automated export of expressions, eliminating
more potential errors and tedious work.

The CMSTensor library is developed for the Maple computer algebra system [78]. The second
perspective on the CMS is as a recipe book. CMS expressions can be evaluated in any coordinate
system, but how this evaluation takes place is dependent on the coordinate system. A tensor
represents a geometric property, such as curvature, but the actual value of the property is determined
by the surface coordinate system.

The CMSTensor library can evaluate CMS expressions once a coordinate system is selected.
The library transforms the expression into a coordinate specific set of algebraic computations. The
library is implemented in Maple to allow access to a plethora of existing computer algebra tools.
Specifically, we take advantage of its ability to take derivatives, integrate, and work with special
functions, such as the Bessel J functions and trigonometric functions.

This system can deal with the large expressions generated by the CMS. It can also handle the
complexity of correctly computing the values of the CMS objects in a specified coordinate system.
Finally, this library leverages the power of existing CASs to evaluate the CMS expressions on the
specified surface.

The SCMS was motivated by a question posed by Pavel Grinfeld and Gilbert Strang in 2004 [46].
What is the series in 1/N for the simple Laplace eigenvalues An on a regular polygon with N sides
under Dirichlet boundary conditions? Initial results generated interest in many fields from quantum

mechanics to pattern recognition [4, 50, [64]. Investigation into the exact series was hindered by



the lack of available tools. This problem embodies the flaws and triumphs of the CMS. General
expressions for how the Laplacian Eigenvalues change as the surface they are on deforms can be
found, but these expressions became so large and complex that they become nearly impossible to
work with.

We proposed the SCMS in 2011 [I0]. It confirmed the results of the first partial series answer
to Grinfeld and Strang’s question in 2012 [46]. The first version of the system was presented in
2013 [I1I]. The version of the system presented here extends the series from [46] by two orders in N.
The size and complexity of the expressions required for these new terms had previously hindered
their computation.

The SCMS provides advantages over current state of the art systems. First and foremost, this
is the first symbolic computation system designed specifically for the CMS. Current tools are a
combination of extensions of software built for other purposes and custom development to fill gaps.
This system is designed with applied mathematics researchers in mind.

The CMSTRS gave the first rewrite rule set for the CMS and also showed the importance of
combining TRS with object oriented design [II]. Comparison of CMS expressions to determine
equivalence is closely related to some of the hardest problems in computer science.

The CMSTensor library translates the rules of the CMS into an algorithmic framework. This
library gives algorithms to redefine the expressions of the CMS into a collection of operations on
multi-dimensional arrays. This library supports spatial fields, static surfaces, and deforming surfaces.
Current Tensor libraries are designed to handle spatial calculations, with a few extended to static
surfaces. Support for deforming manifolds is at best partially implemented in existing libraries.

The SCMS also contributes to the study of Laplacian Eigenvalues with the results it has gener-
ated. The series for the Laplace-Dirichlet Eigenvalues on the regular polygon with N sides is the
most extensive series published to date. It has confirmed recent high accuracy numerical results [5§].
The extended series also provides advances in the study of boundary variation problems and can be
applied to many fields.

We have used the SCMS to give the series for Ay up to N~°. This is the first time the values for
N~ and N6 have been computed. We have collected supporting evidence for these calculations
using multiple methods. The CMS expressions have been evaluated on two other surfaces. One with
known answers and one that can be numerically approximated to very high accuracy. These two
alternative problems provide evidence for the correctness of the CMS expressions. The solution on

the polygon is computed both numerically and algebraically to provide strong evidence supporting



the final results. This is the first time derivatives of these orders have been taken for this problem.

This thesis begins by laying out the historical and practical importance of the CMS. This builds
a foundation for the CMSTRS package where the mathematical description of the CMS is translated
into a collection of objects and rules. Next, the CMSTensor library describes how the CMS can be
translated into a series of algorithms. With this groundwork laid, an extended example is given.
The contour length (parameter) of a shape is studied with respect to its deformation.

The second half of the thesis looks at a class of problems related to the motivational question.
The Laplace-Dirichlet Eigenvalues are introduced and their computation on multiple surfaces is
described. This evaluation led to the need to extend the functionality of Maple by creating a new
library. A special framework for finding closed forms of convolutions is described, which is required
to deal with the eigenfunctions present on this surface.

Shapes with known solutions are used to test the correctness of the system. The N-sided polygon
is computed symbolically and numerically to provide evidence of correctness. The results of applying

the SCMS to these problems shows the power, accuracy, and importance of this system.



2. The Calculus of Moving Surfaces

2.1 Introduction

The CMS finds its roots in tensor calculus. The roots of tensor calculus are found in geometry.
An understanding of the CMS must find its foundation in geometric reasoning. This chapter begins
by building up the CMS from its geometric roots. First ambient space and static surfaces are
examined. This leads the way for deforming surfaces. Some of the mechanics will be left for the
implementation of the SCMS in Chapters [3] and [4

Euclid’s Elements, written in the 3rd century BCE, provides the basis for modern geometry [30].
In this work, geometry is studied from the perspective of the physical world. The axioms described
here are based the simple ideas of lines and measurements.

The introduction of algebra to geometry by Rene Descartes created the cartesian coordinate
system and lead the way for modern calculus [I6]. Many coordinate systems have been used since
Descartes’ original work. Based on the problem to be tackled, some of these coordinate systems
work better than others. For example, polar coordinates simplify calculations on a circle. This
reliance on coordinate systems has allowed for pure algebraic computation, which may not reflect
the geometric underpinnings. This algebraic representation allows for geometrically meaningless
computations [74].

Tensor calculus returns to Euclid’s geometric foundations. It is a full calculus that frees itself
from specific coordinate systems by writing expressions that are true in any coordinate system [104].
This system returns to an abstraction of geometric concepts.

The CMS retains all the advantages of the tensor calculus, but adds additional properties nec-
essary to represent deforming manifolds. This allows for geometric axioms, but in a formal calculus

on a wide range of surfaces.

2.2 Elements of Tensor Calculus

Geometric features exist regardless of a coordinate system. The tensor calculus quantifies these
features. Given any coordinate system, the values of these features can be computed.
A Euclidean space is a space that is essentially flat [30]. This means that the space allows for

straight lines. This is the everyday experience of geometry. If a space allows for straight lines, then



the notion of a vector can be defined. From some arbitrary position, a straight line can be draw of
a certain length at a certain angle. Selecting an arbitrary origin point, every position in space can
be defined by a vector starting at the origin point.

Given this general definition of a space, the elements of the tensor calculus can be defined.
The position vector R is a geometric object [45]. It represents the position of a point from an
arbitrarily selected origin. It can also be thought of as a function. Given some coordinate system
7' = {z1, 29, -}, the function R(Z") returns the position within the coordinate system Z:. An

example position vector for a cartesian space is shown in Figure

Figure 2.1: Position Vector for (2,3) in 2D Cartesian Coordinates.

The superscript in the expression Z! is used to iterate through the coordinate system. For
example, Z2? = z,. Given two coordinate systems, a tensor can be described by how it changes
relative to them. The covariant or contravariant property of a tensor describes how it changes with
respect to two coordinate systems Z' and Z* [104].

A tensor is a geometric field defining a linear and homogeneous transformation [I04]. A linear
transformation is a mapping that preserves addition and scalar multiplication [95]. All tensors
transform from a tensor to another tensor. They are homogeneous because the result of a transform
is always a tensor.

A simple linear transform is rotation. If a vector is rotated 90° and then doubled in size, its

length is the same as if it was doubled then rotated 90°. Additionally, when the vector is rotated,



it is still a vector. All operations on a tensor retain the tensor property. If the derivative is taken of
a tensor, the result is still a tensor. This means that it can be evaluated on any coordinate system.

The set of quantities T¢ is a contravariant vector. It is a vector with a position indexed by . For
example, a vector with three positions T has values T, T2, and T. When the vector is transformed

to a new coordinate system, indexed by k, the relationship between the two vectors is given by

OZF
TF =T —- 2.1
57 (2.1)
If it is a covariant vector then it transforms according to
07!
T, =T, —+ 2.2

The repeated index i denotes a contraction, a summation over the index.

These transforms give the tensor property and allow tensor expressions to be evaluated in any
coordinate system. Given any expression, in any coordinate system, these formula give a recipe to
transform it into any other coordinate system.

The position vector is used to create the covariant basis for the space. The partial derivative
of each element in R is taken with respect to each coordinate. This produces an n by n array, for
an n-dimensional coordinate space. The covariant basis Z; is a set of vectors that define the basis

imposed by the coordinate system.

OR

Zy=
oz

(2.3)

The covariant basis can be used to generate the covariant metric tensor using a pairwise dot

product [45].

This is the first tensor created for the space. This tensor can be used to measure lengths, areas,

and volumes [45]. Tt contains all the information about the dot product. There is also a contravariant



basis Z*. The contravariant metric tensor Z% is the inverse of the covariant metric tensor.

The two basis are orthonormal and their product is the Kronecker delta.

The Kronecker delta is an identity, it is 1 when ¢ = j and zero otherwise [104].

Objects which can be obtained by the measurement of distances and derivatives of distances are
intrinsic [45]. The study of geometric properties using only intrinsic objects is called Riemannian
geometry.

The Christoffel Symbol, 'y, defines parallel transportation. When taking a partial derivative,
the result may not retain the tensor property. When taking derivatives the Christoffel symbol is
combined with the partial derivative so that the result is a tensor. This will be used in Equation
231

The Levi-Civita symbol, €;;..., is the permutation tensor. It has the square root of the de-
terminant of the covariant metric times —1 for odd permutations of the indexes and 1 for even
permutations. All other spaces are 0. The covariant metric is a square matrix, so the determinant
uses the standard linear algebra formula. The contravariant version is 1 over the square root of
the determinant. Derivatives can be taken with respect to the space using the covariant derivative,
V;, and contravariant derivative, Vi. The metric tensor may also be used to switch a tensor index
between the covariant and contravariant property.

If a surface is embedded into an ambient space, it has its own metric tensors, S®? and Sag. To
differentiate the two spaces, greek letters are used for the indexes on the surface coordinates and
latin letters are used for those defined in the ambient space.

An object defined in the entire space also exists on the surface, since this is just a subset of space.
The shift tensor, Z¢, gives the relationship between the ambient space and the surface.

The shift tensor and surface metrics define the surface’s tangent plane. The normal is perpen-
dicular to the surface and of unit length. The tensor representing the surface normal is N¢. Figure
shows a curved surface with a normal and tangent plane.

Figure shows a curved plane. If a straight line is drawn on a sphere, two parallel lines may
intersect. This is not true on a flat plane. This curvature needs to be taken into account when
working on a surface. The curvature tensor Bj encapsulates the curvature of the manifold.

Forces on the surface have derivatives, just like those in the ambient space. The surface has its
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Figure 2.2: The surface normal and tangent plane at a point on a surface [3].

own versions of the covariant and contravariant derivatives V, and V<.

2.3 Example: Mean Curvature

The mean or average curvature of a surface captures geometrically the stretching of the plane [73].
In tensor calculus, the mean curvature is represented by BS.

The repeated index « is a contraction. A contraction is a summation over the repeated indexes.
In this case there are only two indexes, meaning it is the diagonal. The tensor BS can be treated
as a 2-dimensional array. The array is summed along matching indexes. The number of positions in

the two dimensions are the same, and determined by the number of dimensions on the space S.

B2 =" Blallal (2.6)

a€eS

A contraction can only take place between two indexes one contravariant and one covariant. The
indexes must both be spatial or surface indexes. The contraction is shorthand for a summation,
which means the letter representing the index can change without changing the expression. The
indexes can also be juggled, flipping the covariant and contravariant property of both.

The curvature tensor is given as

Bog = —1Z.V5(N;) (2.7)

B? =B, 8" (2.8)
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Computation of the mean curvature starts by defining the position vector. On a circle, the

position vector in polar coordinates is given by

rcos 6
= (2.9)
rsin 6
The covariant basis is the partial derivative of the position vector.
OR
Zy =——— 2.10
o {r 0} (2.10)
_0(7‘ cosf)  9(rsinb)
— or or (2.11)
d(rcosf)  9(rsinh)
|~ 90 o0
cos 6 sin 6
= (2.12)
—rsinf rcosf

The covariant metric tensor is product of Z; with itself. Since the indexes are not being con-

tracted, each copy needs its own index letter.

Zij :Zz [ ] Zj (213)
1 0

= (2.14)
0 r

The restriction of this ambient space to the circle requires fixing the radius r. The shift tensor
for this surface restriction is created by taking the partial derivative with respect to the surface

coordinates of the restricted position vector.
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zi =" (2.15)

= (2.16)

Notice the double brackets in the shift tensor’s definition. The tensor has two indexes i and «.
The 7 index has 2 positions, because the space was 2D. The a index only has one space because the
radius has been fixed. The brackets are used to clarify nested arrays.

The surface normal is computed as

N' =" e, Z§ (2.17)

N; =Z;;N7 (2.18)

On the circle, the Levi-Civita symbol is

€l = (2.19)

|
S =
)

€o =[1] (2.20)

The shift tensor has indexes in different locations then defined above. The metric tensors is used

to fix this.

Z¥ = Z;; 7555 (2.21)

The surface metric is

-[l2]
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The tensor product multiplies every element by every other element. The number of dimensions

in the matrix is the sum of the original dimensions.

This is now plugged into Equation [2.21

Z 1 0 [0]
o 2] [
o
(1]
The surface normal is now evaluated.
1
N; =
0
) 1
N* =
0

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

To complete the evaluation of the curvature tensor, the covariant derivative is needed. The

formula is given in [45] is
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oV

VoV =55

+I, V" (2.31)

The F;m term is repeated for every index in the input tensor.

The curvature tensor is now given

Bog = —1Z.V5(N;) (2.32)
[0]] [0

=1 (2.33)
Al |

=[[-rl] (2.34)

e[

By => Blo]lo] = 1 (2.36)

This is the mean curvature for a circle of radius r. The definition of the normal, positive or
negative, will determine the sign of this solution. The mean curvature of any surface is BS. Tensor

calculus allows this general formula to be written and evaluated for any surface.

2.4 The Calculus of Moving Surfaces

What happens if the coordinate system defining the surface changes over time? This is the
question that inspired the CMS.
A deforming manifold is a surface that has a coordinate system with a time parameter . The

instantaneous velocity of the manifold in the direction of the normal is called the surface velocity
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C. This tensor encapsulated the transformation of the surface.

If the surface is changing over time, it is important to study this change. How does the defor-
mation of the surface effect those tensors defined on it? The invariant time derivative V gives the
derivative with respect to change over time while keeping the tensor property for all objects [44].
The tensor property means that the expression can be evaluated on any coordinate system. Take the
derivative of a tensor will also produce a tensor and all tensors can be evaluated on any coordinate
system.

The invariant time derivative was originally conceived by Jacques Hadamard in 1903 while study-
ing discontinuities in continuous media [52]. The first attempt to apply this concept to tensors was
by T. Thomas in 1957 [I05]. Another attempt was made in 1960 by C. Truesdell and R. Toupin
[108]. None of these attempts ensured that for any tensor, application of the derivative resulted in
a tensor. This meant that taking the derivative could potentially lead to expressions that could not
be transformed between coordinate systems.

It wasn’t until the work of M. Grinfeld in 1991 that a definition was given that preserved the tensor
property for all operands, finally making the CMS an algebraically complete calculus [37]. Although
the calculus was complete, it was hindered by a large rule set. The % derivative was dependent on
the covariant or contravariant position of indexes. This means that for every permutation of index
positions, it was possible a new rule was needed.

A revised invariant time derivative, V, was proposed by Pavel Grinfeld in 2012 [44]. This new
definition retains the tensor property but is independent of the covariant/contravariant property of

the input, drastically reducing the number and complexity of rules.

VFZI/L”FPm_(._*hLF(P)

Figure 2.3: The invariant time derivative as time goes from ¢ to t + h [45].
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The CMS is described in more detail in [49] [41]. The roots of the CMS can be found in [71], [82]

106]. A historical review of the CMS can be found in [40].

2.5 Applications of the CMS

The foundation of tensor calculus is geometry, which makes its reach extremely broad. The most
popular application is the study of general relativity, where Einstein’s contributions to the field are
well known. The tensor calculus has been used in fields such as linear algebra, differential geometry,
the calculus of variations, and continuum mechanics [45].

The CMS takes this power and expands it to surfaces that change shape over time. Deforming
manifolds have applications in theoretical and physical modeling. The motivation for this symbolic
computation system lies in boundary variation problems, specifically the solution to partial differen-
tial equations on bounded surfaces. The CMS, and by extension the SCMS, is by no means limited
to only these fields.

Boundary variation problems examine fields defined on bounded surfaces and how those fields
change when the boundary is deformed. A problem of interest is, what is the series in 1/N for the
Laplace-Dirichlet Eigenvalues on a regular polygon with N-sides [46]? The solution can be found
by deforming a known value, the eigenvalues on the unit circle, and changing the boundary into an
N-sided regular polygon. The series has been shown up to 1/N* in [47]. This was accomplished by
a combination of hand calculations and computer algebra. The current series has already proven
useful in applied mathematics, quantum physics, and pattern recognition [50, [4}, [64]. This problem
is described in detail beginning Chapter @ The series is computed up to 1/N® using the SCSM.

A common theme in CMS problems is that higher order variations provide greater accuracy as well
as additional quantitative results. Computation of these variations is reliant on taking the invariant
time derivative, V. In shape optimization determining the stability of a stationary configuration
requires the second variation [40]. Even for some simple shape optimization problems, the second
variation can be to difficult to calculate. Calculation of the minimal surface with a cavity of a given
perimeter has only recently had any success due to the difficultly of determining variations [§]. A
simple minimal surface would be a soap film with a hole cut in it by a string. A more complex
minimal surface is shown in Figure

Many problems require even higher order variations, the isoperimetric problem on surfaces of

revolution of decreasing gauss curvature requires calculation of the fourth order variation [55]. In
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Figure 2.4: A minimal surface with a spherical hole [96], 22].

this problem, the goal is to enclose a prescribed area with a plane while minimizing the perimeter.
The SCMS has determined that this variation contains 1380 terms and its computation requires a
symbolic tool.

A similar problem with a physical application is the wobble of a slightly ellipsoidal inner core
inside a slightly ellipsoidal outer core and mantle [48]. The planet Mercury has a large core, as seen
in Figure |2.5] which creates an interesting wobble.

The fourth variation is also crucial in some biological applications. The fourth variation of
Helfrich energy is essential to analysis of a red blood cell’s shape [72]. Even under simplifying
assumptions some of the expressions run longer then a page and remain largely intractable.

An even more general problem is the complete dynamics of a red blood cell. An exact nonlinear
model has been proposed [41]. The blood cell is only one application of the CMS to fluid film
dynamics. The CMS introduces a great deal of analytical order to these systems [39] 411, 43| 42]. One
specific example of fluid film dynamics is the surface tension of a soap bubble. Again, these problems
have remained largely intractable for hand calculations due to complexity and rapid expression swell.
The SCMS will advance these fields through automation.

In all these applications, the CMS presents an analytical method to study the deformation. In
each case, the computation of higher order variations limits research. By automating the CMS,
computations can be done with expressions that are larger than can be manipulated by hand.
Solutions to these problems are not limited by the theoretical foundations of the CMS, but by the

technology available to apply it.
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Figure 2.5: Mercury’s large core plays an important role when modeling its motion [84].

2.6 Previous Work Automating Tensor Calculus

No existing symbolic packages are designed specifically for the CMS. A number of systems exist
for applying the tensor calculus to stationary geometries. These packages have been successful in
their respective fields, although they cannot be easily extended to the CMS. The complexity and
breadth of applications is far greater when applying the CMS. The packages described below have
proven successful within their fields, primarily General Relativity. The SCMS will provide the same
advantages on an even wider range of problems. In these fields, calculations become intractable for
many of the same reasons as in the CMS. These problems can become intractable both because
of human limitations or computational ones. For example, computing derivatives in the CMS may
become intractable because of the limits of hand calculations. On the other hand, computing all
terms with a time parameter and taking the derivatives with a computer algebra system may be
computationally difficult using available software.

Symbolic packages have helped overcome these obstacles on stationary geometries [109] 98] [86].

The CMS is an extension of tensor calculus, it contains all its complexities and more. The
analysis of moving surfaces is a more complex analytical challenge then stationary geometries. These

manifolds are Riemannian surfaces with a time-dependent metric.
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General Purpose systems, such as Maple, Mathematica, and Sage are extremely successful, but
force a reduction to specific analytical problems and lack the kind of high level view given by
the CMS [I0T, (77, 112]. During the evaluation of CMS expressions, these general purpose tools
prove extremely important. For example, computing the fourth variation of the perimeter of a
circle stretching into an ellipse can be computed in polar coordinates with Maple. A more general
questions is, "how does the curvature of a surface affect its perimeter during deformation?” This
question cannot be answered on specific coordinate system, but can be with the CMS.

Although many of these packages implement the tensor notation, none implement the CMS. The
majority of these packages originated in Relativity and lack even stationary embedded manifolds.
Some packages, such as Cadabra and MathTensor, perform symbolic index manipulations in the
tradition of classical tensor calculus, which is a challenging problem itself [79]. Other packages,
such as FTensor [69], GRTensorlI [I10], the Maple tensor package [75], focus on the translation of
expressions into literal multidimensional arrays and efficiently implementing contractions.

Cadabra [89, [88], 17, (18, [87] is closest to the system presented here. MathTensor [81] [86] is the
oldest and perhaps most advanced but also a commercial package. Other symbolic manipulation
packages focused on relativity include Ricci [70], Cartan [99], Maxima [27], RGCT [12], xAct [80],
and TeLa [I].

These packages have proven quite successful their fields.. MathTensor has supported research in
general relativity, such as [102], [91], and [63]. It has also been successful in statistical mechanics [7]
and quantum field theory [51]. Cadabra is used in general relativity [19] 28] 13| 17 83]. The xAct
package has also been used in relativity [24] 25, [[14]. In many of these works, the packages have
ensured the correctness of proofs by replicating the proof and proving a rule trace. These packages
were based in the theory of relativity and therefore closely match the research.

The SCMS handles both abstract formalism and symbolic evaluation. Although these systems
share some very high level similarities with the presented system, the underlying calculus is drasti-
cally different. Modifying one of these systems to handle the CMS would be as difficult, if not more

so, than building a new system.
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3. Term Rewriting Systems

3.1 Introduction

Term Rewriting Systems (TRSs) are a method of automating equational logic. Due to its direct
relation with equational reasoning, it has proven important in computer algebra, specifically algebraic
simplification [5]. Surveys of TRS can be found in [26], [57], and [65].

A TRS is a pair T = (X, R) where, ¥ is signature defining the language, and R is the set of
reduction rules. The signature is a set of function symbols and their arity. Constants are function
symbols with arity zero. All valid terms in the language are produced through applying functions
in this signature to each other.

The set of reduction (or rewrite) rules R is a collection of expressions with the form I — r. The
patterns [ and r are terms made from the signature > UV where V is a set of variables. The TRS is
applied to an input term generated from Y. The term is matched on the [ side of a rewrite rule by
matching variables to specific terms in the input. The term is rewritten to the expression defined
in r, replacing variables with their values. The TRS repeatedly applies the rules from R until the
there exist no matching patterns on the [ side of any rules. The final value is called a normal form,
a term for which no rewrite rules can be applied. The TRS terminates when the input term has
been rewritten to a normal form.

One important application of TRSs is the uniform word problem. Given a set of equations, F,
and two valid expressions ¢ and s, determine if ¢ = s under E. Given two expressions s and t,
determine if there exists any path using the equations of E thats makes them equivalent. A TRS
can be created by giving a direction to each equation in E to produce rewrite rules R.

To solve the uniform word problem two important properties are required of the TRS. The first
is termination, for any input term the rewrite system will terminate and produce an expression in
normal form. A normal form is a term that does not match any rewrite rules. The TRS determines
that it is at a normal form when no rules match the current term.

The second property is confluence, if multiple rules match a term which rule is applied will
not change the final result. All paths will lead to the same normal form. If both these properties
hold, the uniform word problem is solved by reducing both ¢ and s to their normal forms. If the

normal forms are exact matches, there exists a path to apply the equations which makes the original
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expressions equal.

This method is the basis for the Knuth-Bendix algorithm. The Knuth-Bendix algorithm shows
that the existence of a terminating and confluent TRS for an equational system is not guaranteed [66].
The algorithm is nonterminating, it will either find a TRS that solves the uniform word problem,
determine it is impossible and fail, or loop infinitely. Not all TRS are terminating [56]. It is possible
to create nonterminating TRS from equational specifications. It is also impossible in some cases to
determine if a TRS is terminating [56].

Although the general problem may be impossible, for many systems proving termination and
confluence is possible [66]. These properties may also be proven modulo an equational system,
such as associativity and commutativity [6, 61, 60]. This means that a single rule can match
multiple expressions because it takes into account how commutativity can reorder values around
operators. The normal forms of two equivalent terms may not be the same, but they will only differ
by parenthesis and term orders. These are both simple equivalences to deal with by sorting. The
CMSTRS presented here works modulo associativity and commutativity.

TRSs are popular for algebraic simplification. Maude, a standalone system for building TR.S,
includes an implementation of the Knuth-Bendix algorithm [20]. Rewriting is also included in
computer algebra systems Maple and Mathematica [T, I12]. The TRS that can be built in many of
these systems are first-order TRS, meaning that there can be no bound variables. A bound variable
is when a variable appears multiple times in the same term and the relationship needs to be retained.
For example, in an integral [ f(z)dz we would need to track that the integration variable is z when
simplifying. The CMS requires bounded variables.

The full source code is open source and available for download from https://www.cs.drexel.

edu/SCMS.

3.2 A TRS for the Calculus of Moving Surfaces

The signature of the TRS is derived from the formalism of the CMS. This has already been
described in Chapter [2| This section will focus symbolic definitions of the rules and objects.

The basic object of the CMS is the tensor. In the CMSTRS library, a tensor is a named value
and has a set of properties. The tensor can exist in the ambient space or be restricted to a surface.
The tensor also has an ordered list of named indexes. Each index can also be defined in space or on

the surface. The index is either a contravariant or covariant index.
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Table 3.1: TRS Signature

Symbol Description
C Surface Velocity
N* Surface Normal
B% Curvature
zZ, Shift Tensor
R.s Commutator
+ Addition
Juxtaposition Multiplication
Repeated Indexes Contraction
Integer Superscript Exponent
\Y) Covariant Space Derivative
Va Covariant Surface Derivative
v V-derivative
2 Partial Time Derivative

The primary objects of the CMS are described in Chapter |2 The set of objects implement as
part of the CMSTRS library are given in Table Transformations of the objects by index juggling
are also implemented.

A special symbol, the commutator tensor, is created to simplify implementation of the CMS rule
set. The commutator tensor facilitates switching the order of V and V, [40]. It is a shorthand for
the following;:

R_Waﬁ = V7(CByg) — V“(CB;) - V3(CBY) (3.1)

The rewrite rules for the CMS require the introduction of variables for pattern matching. Index
names are always considered variables. Unless explicitly noted, all other properties of the index
must match exactly. F and G are variables for general tensors. In the CMS any valid expression is
a tensor. If no indexes are attached to the variables F' and G, then any combination of indexes is
valid. Constant integers and rationals are given by ¢y, co, - ,Cp.

The covariant and contravariant derivatives are defined by rules to . These rules are
true for any index of the derivative. Only the rules for V, are shown, but these rules are repeated

for other indexes. The summation symbol is used explicitly when need to clarify contractions.
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ValFG) = GV o(F) + FV4(G) (3.2)
Valer) =0 (3.3)

ValF +G) = Vo(F) + Va(Q) (3.4)
Vo) Fi0) =Y Va(FIED) (3.5)

The V-derivative is at the heart of the CMS. Calculating this derivative is the key to finding
higher order variations. The differentiation table for specific tensor objects is given. These rules are

independent of index juggling.

VZi - N'V,C (3.6)
VN! = Z!veC (3.7)
VB§ — V*VsC + CBS B (3.8)
VC4 — c,C7IvVCe (3.9)
Ver =0 (3.10)
Vf— % + CN'V,;f (3.11)

In the last rule the value f is a scalar field defined in space.

The V-derivative commutes with contraction and satisfies the sum and the product rules.

VY Fin = VR (3.12)
VFG — GVF + FVG (3.13)

V(F+G)— VF+VG (3.14)

Reordering V and surface derivative introduces a collection of rules. These rules are given for
the variable tensor with no indexes A. For each index in A, an additional term is added to the sum.

Examples for all variations of A with one index are shown.
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VVLA = V,VA+CB)V, A (3.15)
VVoAd® =V VA? + CBIV,A® + RY A (3.16)
VVaAp = VoVAg+CB)V,As — R A, (3.17)

(3.18)

For each index in the A tensor, a new R A" term is added. All possible terms are shown, they
are just repeated as need for the indexes of A. Note that to add these values the tensors must be
permuted to align the index orders.

The partial derivative % is defined by the following rules.

OFG oG oF

861
OF+G) OF 0G
T — B + e (3.21)
Y Fiibn OF I
a0 — i ot (3.22)
OV F oF
o Vagr (3.23)

To complete the TRS, we add a few additional rules for simplification.

ACT A 5 Arte (3.24)
A+0— A (3.25)
A(F + G) — AF + AG (3.26)
040 (3.27)

Expressions with rationals are calculated immediately. After reaching a normal form, like terms

are combined to decrease the size of the result term. This is handled by a separate routine.
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3.3 Implementation

The CMSTRS is implemented as a Java Library. The rules and objects of the CMS have proper-
ties that can be modeled using an object oriented language. One of our goals was to make a system
that replicated how the CMS is used by hand. There are many generalized rules, for example rules
that match on any derivative. These are naturally implemented using inheritance. The result of
performing operations on tensors always results in tensors, which is again easily replicated using
inheritance. Additionally, features outside of a TRS are important to make the system more func-
tional. Additional components for combining like terms and exporting to special file formats add to

the power of this library.

3.3.1 Signature

All objects in the signature are tensors. The top level interface object is Tensor. A tensor is an
object is an ordered list of free indexes. A tensor also has a boolean denoting if it is restricted to
spatial coordinates or not.

The Tensor object has a minimum set of methods all symbols in the signature must implement.
Each object has three closely related views. The first is a tensor. The second view is a collection
of functions. Each object represents a mathematical function that takes input, or a mathematical
function of arity zero. The arity of a function is the number of inputs, a function with arity zero
is a constant or variable. The last view is as an expression tree. In this view, functions have their
inputs as children.

The basic interface for the Tensor object has the following methods. These are implemented for
every object in Table

toString: prints the tensor out as a latex expression.

numIndexes: returns the number of indexes of the tensor.

arity: return the arity of the function, this is equivalent to the number of children.

getInput: on input i, returns the i-th function input if it exists.

getIndex: on input ¢, returns the i-th index to the tensor.

replacelnput: replace input at position ¢ with tensor 7.

replacelIndex: replace index at position ¢ with new index T

copy: makes a copy of the tensor.

order: return the derivative order with respect to V.
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equals: check for exact equivalence. This means all attributes of the two objects being compared
match exactly.

The TensorAbstract class implements two methods for Tensor. The order function defaults
to returning zero. A helper method, printIndexList, is provided to display the latex code of an
index list. This class gives a general interface for working with all possible inputs and outputs of
the rewrite system.

Tensor objects, those objects with arity 0, generally have one protected property. If the object
can have indexes, then it has either an array or fixed number of index positions. The following
are the basic objects of the signature: CommuatorTensor, CurvatureTensor, Normal, ShiftTensor,
and SurfaceVelocity.

There are also two special objects. The ScalarRational object allows for multiplication by
a scalar and can perform basic rational arithmetic. The NamedTensor object allows the user to
create a generic name and define it on either the space or the surface. The TensorSpace enum gives
constants for Spacial and Surface.

The application of mathematical functions always results in a tensor, any tensor expression is
itself a tensor. The CDerivative object covers the four derivatives V;, V¢, V., and V. The
constructor takes two inputs, the tensor to take the derivative of and an index denoting the type of
derivative.

The Contraction function takes a tensor and array indexes of the two tensor indexes to contract.
Addition and multiplication are handled by the TensorSum and TensorProduct classes respectively.
These are representations of mathematical functions with a fixed arity of two. When the construc-
tors are called with more then two inputs, a tree structure is built through recursive calls to the
constructor. The Exponent takes a tensor and raises it to a rational power.

Two types of integrals are supported, both are arity one. The IntegralSpace is for integration
in the ambient space and IntegralSurface is for integration on the surface.

The CMS introduces the InvariantTimeDerivative and PartialInvariantTimeDerivative.
The InvariantTimeDerivative provides the main function for the ruleset of the CMS.

Tensor indexes are supported by the TensorIndex object. It takes two inputs, an IndexFlavor
and TensorSpace. The IndexFlavor is an enum containing Covariant and Contravariant. When
new indexes are generated, they are automatically named. If the number of indexes generated
surpasses the default letters, spatial names ri and gk are used. The values of k and ¢ are iterated as

needed to avoid name repetitions.
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This functionality allows for tensor expressions to be written using the library. To simplify an

expression, a set or rewrite rules and a strategy is needed.

3.3.2 Reduction

All reduction rules must implement the Rule interface. The two key methods are matches, which
takes a tensor and returns true if the rule can be applied to it, and reduce, which applies the rule.
The interface also includes example, toString, and name for debugging.

The RuleAbstract class provides helper methods for matching. This allows a general pattern
to be matched, for example matching index types but not positions.

The majority of rules are implemented in a straightforward manner. The matches function
checks against either exact values or a general pattern. The reduce method copies needed objects
and returns a new tensor expression with the reduced term. Inheritance is used to allow for general
rule creation. All the rules in Chapter [3.2] are implemented as their own classes. Rules -
can be easily handled by a single rule that uses a while loop to iterate over all indexes.

The rules

VN! - —Z!veC (3.28)

VN; = —ZinVeC (3.29)

Are implemented with a match that checks for the invariant time derivative and normal.

public boolean matches(Tensor T) throws Exception {
if (this.className (T,

7drexel.cs.cmstrs.signature.InvariantTimeDerivative”))

{

if (this.className (T. getInput (0),

"drexel.cs.cmstrs.signature.Normal”))

{

return true;

}

return false;



28

If the input term matches, then the reduce command get the original index attached to the

normal and uses it in the new expression.

public Tensor reduce(Tensor T) throws Exception {

TensorIndex i = T.getIndex (0);

TensorIndex alpha = new TensorIndex (
IndexFlavors. Covariant ,
TensorSpace. Surface );

TensorIndex Alpha = new TensorIndex(
IndexFlavors. Contravariant ,
TensorSpace . Surface );

Tensor answer= new Contraction (
new TensorProduct (

new ScalarRational(—1),
new ShiftTensor (i,alpha),
new CDerivative (
new SurfaceVelocity ()
,Alpha)
), 1,2);

return answer;

New objects need to be created during the reduction because an attribute, like a free index,
might appear in another part of the expression where it is not affected by the current rule.

The reduction strategy is implemented in the class Reduction. To reduce a term, first a new
Reduction object is created. This object has an array with one copy of each reduction rule. New
rules can be added by implementing the interface and adding them to the array in Reduction. The
reduction class has a counter for how many rules have been applied in any one pass.

A reduction pass does an inorder tree walk of the entire input expression. The reduction pass
first looks at the current function symbol in the tree. If the expression matches a reduction pattern,

then the reduce function is called to return the new tensor. This new tensor is then placed into
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the tree at the correct node, replacing the old tree with a new one. Once this is completed, the
reduction pass is called recursively on each input to the function. This continues until all nodes have
been checked against all rules.

It is possible that multiple rules may need to be applied to each node, or that new rules will only
match after other reductions have taken place. After one full inorder reduction walk of the expression
tree, the count of rules that matched is checked. If no rules match, completeing another tree walk
will not change the result. If the number of matches was nonzero, then another inorder reduction
walk is performed. This process repeats until no more matches are found. When a complete tree
walk is performed with no matches found, the expression is in normal form and returned. The
normal form is a sum of products. The normal formal has one additional property, all values may
be evaluated at time ¢ = 0. This will be the most important property in evaluation because it can

be used to ensure all values need to be computed on a simple surface.

3.3.3 Combining Like Terms

It is convenient to combine equivalent terms to decrease the size of the expression. The Combine-
LikeTerms object provides the method combine for this purpose. The goal is to simplify expressions

like

B§VPu + 5BV u = 6B5V u (3.30)

The combine method only works on tensors in the sum of products form. This is the normal
form produced by reduce. The reduce command can always be applied first to put expressions in
the correct form.

Given an expression in sum of products form, the first task is to create an array of all the
products. Any two products in the sum may combine. The addition operator is only binary, but
this comparison is easier once flattened into a single array. Once the array is created, all unique pairs
of products are compared. If any two products are found to match under the following properties,
then they are combined and their constant multipliers are added. Before a comparison takes place,
the expressions will need to be sorted.

The rules used to match are communtativity, associativity, index juggling, and index renaming.
Index juggling means that the type of any two indexes can be switched if they are contracted. This

can be thought of as a seesaw motion between the two indexes. Associativity is handled for both
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products and sums but converting the binary functions into lists and allowing them to be reordered.

Al = A (3.31)

Index juggling is handled by making all contracted indexes covariant for the comparison. If two
expressions have no contracted indexes, this action has no effect. If there is exactly one contracted
index, then the name must appear exact two times, one lower and once upper. Since the indexes
can be juggled indefinitely, the comparison test can be done with both indexes lowered. If the
comparison matches, then the original expressions can be made equivalent by index juggling. This
can be extended to an infinite number of indexes since each contraction only links two unique indexes.
All contracted indexes are lowered for the match. If a match is found, the indexes are arbitrarily
placed in upper and lower positions on the combined expression. If no match is found, the indexes
are returned to their original positions for the next compare.

Any two contracted indexes many be renamed as long as they remain spacial or surface indexes.
To handle this property, the lists of all names for both tensors being matches are created. All
possible permutations of the renaming are then generated. Each renaming is attempted. If any
one renaming provides a match, then that renaming is selected as the correct one. If no renamings
can lead to a match, then the two expression cannot be matched. Once a renaming is picked, the
expressions need to be sorted before matching.

The final property is commutativity. After lowering all indexes and picking a renaming, com-
muntative property is handled by sorting. The product is sorted by class name followed by index
names and any special properties. Any scalar multiples are removed. If the expressions match after
the sorting, then they are the same under commutativity. If they do not match then they cannot
be matched.

After two matching tensors are found, their scalar multiples are added together. Both expressions
are removed from the sum list and a new expression is added with the combined value. This process
repeated until no new combinations are found that can be combined. The order in which terms are
selected and compared in the addition does not matter. Within multiplications, sorting will remove
an ordering differences between two terms.

One additional property is not implemented because of the added complexity of comparison. In

tensor calculus it is legal to reorder derivatives.
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VQVQU = ngau (3.32)

This complexity will be discussed in the Section [3.3.5

3.3.4 Complexity of Reduction

It is important to understand the growth rate and complexity of expressions. The rapid increase
in the size of expressions causes many problems in the CMS to become intractable.

The largest growth comes from the chain rules, Equations and Given a product of n
tensors, the chain rule creates a sum with n terms. Each term in the sum contains an additional n
products. An asymptotic upper bound can be given on the size of the expression using O-notation.

The classic definition of O from [21] is given below.

O(g(n))

{f(n) : there exists positive constants ¢ and ng

such that 0 < f(n) < cg(n) for all n > ng} (3.33)

Taking the k-th derivative of an expression with the product of n terms using only the chain

rules causes the number of terms to increase. A recursive formula for this growth is given.

T(n,k) =nT(n,k—1) (3.34)

T(n,1) =n? (3.35)

The closed form for this recursion is

T(n, k) = n*+! (3.36)

The chain rules cause the majority of the growth in expression size. The expression size can be
bounded by O (n’“‘l). This means taking four derivatives of an expression with five terms leads to
3125x*c terms for some c. The growth rate for expressions is exponential in the number of derivatives.

The number of derivatives that need to be taken is problem dependent, so this will be an important
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limitation. For example, in our Laplace-Eigenvalue problem described in Chapter [6] the number of
terms that can be found is linearly related to the number of derivatives that can be taken.

To help with this exponential growth rate, terms can be combined to decrease the input size
before the next derivative is taken. Unfortunately, this also leads to an exponential problem. When
comparing possible index renamings, the worst case it to check all possible renamings. This is a less
critical problem because in practice the number of indexes is small and many permutations can be

easily eliminated by comparing the object types.

3.3.5 Relationship between Equivalence and Graph Isomorphism

There are two important groups of algorithms P and NP. Problems in P can be solved in poly-
nomial time, for an input size n there exists some constant ¢ such that the problem can be solved
in O(n°) [21]. The group NP contains all problems that can be solved by a nondeterministic Turing
Machine in polynomial time [2I]. A nondeterministic Turing Machine is an imaginary computer
that can run an infinite number of computations in parallel. For a problem in NP, at least one of
these infinite machines would find a solution in polynomial time and the rest can be stopped. All
problems in P are also in NP.

The hardest problems in NP are in a set called NP-complete. These problems are thought to be
hard, there exists no constant ¢ such that the problem can always be solved in O(n®). The problem
of Graph Isomorphism is known to be in NP but has not be proven to be in either P or NP [97].
There exists no known polynomial time algorithm to decide Graph Isomorphism. Unfortunately,
Tensor equivalence is at least as hard as Graph Isomorphism.

The Graph Isomorphism problem asks, given two Graphs G and H, does a bijection exist between
the vertex sets. A bijection means there is a renaming that will make the two graphs exactly the
same. The graphs shown in Figure 3.I] and Figure show the same graph with different labels
applied to the nodes. These two graphs are isomorphic.

For any graph, a tensor expression can be written. If the tensors are equivalent under associa-
tivity, commutativity, index renaming, index juggling and derivative reordering, then the graphs are
isomorphic.

To create a tensor expression for graph G in Figure [3.1] create a value u for each node. The u

values are temporarily given subscripts to make the connection to the graph more visible.

Ug UpUeUgUgUp Ui Uj (3.37)
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Figure 3.2: Graph H, shown above, is isomorphic to Graph G [15].

For every edge, add a covariant derivative to one side and a contravariant derivative to the other.

The indexes are given with tuples to show the relationship to the edges.

Via,9)Vian) Va,i)taV(b,9)V(6,0)V(5,5) UV (e,9) V (ei) V (c,5) Ue
v(dmV(d’i)V(dﬂ.)udv(a’g)V(bag)v(c’g)ugv(aﬁh)v(byh)v(d’h)uh

V(“’i)V(c’i)V(d’i)uiv(b’j)v(c’j)V(d’j)uj (3.38)

To make this a legal tensor expression, the subscripts on u are dropped and the indexes are given

single variable names.
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G ZvavacuvdveruvgvhviuVjVkvmu

AVARAVAS VAR VAl VAR vARTA A AR AR A vEA v VAR (3.39)

The same approach can be used on Graph H from Figure [3.2

H =V, V,V,uV"V,V,uV"V,V,uV’V'V,u

VOV, VouVIVI Y, uV VYV uV VP Vou (3.40)

The creation of these tensor expressions can be done in linear time, each edge must be examined
once. If H = G under tensor equivalence then the graphs are isomorphic. This shows that tensor
equivalence can be used to solve Graph Isomorphism. It is at least as hard as Graph Isomorphism.
The ability to reorder derivatives is not implemented to decrease the search space in the CMSTRS
library. This leads to a system that can only simplify equivalence with relation to index juggling,

index renaming, commutativity, and associativity, but not complete mathematical equivalence.

3.3.6 Output Methods

Output methods are provided to generate Maple worksheets and Maple scripts. These objects
are called MapleFileGenerator and MapleScriptGenerator. They generate code for the Maple
evaluation library described in Chapter [l Both these objects take a tensor expression and perform
a tree walk. At each node, a definition for how to output the class needs to be given. A single inorder
walk can output the entire object structure. Additional methods are given to meet the formating
requirements of each type of file.

Additional output methods can be easily created by extending the OutputMethod interface. The
interface has four methods. The closeFile method closes any and all files opened by the constructor.
The addEquation method takes a tensor expression, title string, and comments string. It outputs
the tensor expression is the target language with a comment section starting with the title.

The appendRawCode command allows raw code in the target language to be written directly to
the file. The addCode command also writes raw code, but in a template section with a title and

comment area to match the one made by addEquation.
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3.4 Example: Contour Length

The contour length is the outer perimeter of a surface. In the case of a one dimensional surface
embedded in a two dimensional ambient space, this is the classic definition of perimeter. For a two
dimensional surface, it is the surface area.

The contour length can be described as the integral of 1 over the surface.

L= /S 1dsS (3.41)

If a surface is changing shape over time, then its contour length will also be changing in time.
Taking the V-derivative of this expression explores how this change affects the contour length. In
this section, only the CMS expressions for the first three variations will be given. In Chapter 5] a
specific deformation from unit circle to ellipse will be evaluated.

In Java, a new class is created that imports the TRS signature and reduction rules.

import drexel.cs.cmstrs.signature.x;

import drexel.cs.cmstrs.strategies.Reduction;

public class Contourl {

public static void main(String|[] args)

{

The integral is created using the signature.

Tensor first_variation

= new IntegralSurface(new ScalarRational (1));
The integral is printed out as latex code using System.out.println.

System.out.println (” Variation 17);

System.out.println (first_variation );
The exact output from the system is
\int_{S} \left( 1 \right) ds

This renders as

/ (1)dS (3.42)
S
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An unlimited number of derivatives can be taken. A for loop is used to generate the next
derivative from the simplified form of the previous derivative. This saves on recomputing the same
simplified expressions. A variable is created for the previous order found and a reduction object is

created to perform simplification.

Tensor last_variation = first_variation;

Reduction TRS = new Reduction ();

The for loop iterates i from 1 to 3. A try block is added to catch any exceptions thrown due
to malformed expressions. As long as only the reduction rules are used, no invalid expressions can
be created. Inside the loop, the V operator is added one additional time to the previous result and

then printed.

Tensor next_variation =

new InvariantTimeDerivative (last_variation );
next_variation = TRS.reduce(next_variation );
System.out.println (” Variation "+i);

System.out.println (next_variation);

last_variation = next_variation;

The output of the next two variations are

VI = / (-1)CBYdS (3.43)
S
and
v? :L/S(I)OQBZY'B,gg%%dS+/S(—l)v[C’] BY.dS (3.44)
+ /S (—1)C°BY, B dS + /5 (-1)CV'V,CdS (3.45)

Notice that numerous new index names were automatically created during this process.
These give geometric expressions for how the contour length is changing with respect to time. In
the case of VL, it can be seen that the first derivative is the integral over the surface of C' multiplied

by the mean curvature.
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These expressions give a high level geometric view on the deformation of an arbitrary surface. To
create a more real world example, a specific surface deformation must be selected and the expressions
must be evaluated. Evaluation is described in Chapter [l After evaluation has been detailed, this
example will be discussed further in Chapter [}} At that point, all the tools needed to evaluate
these expressions will have been discussed. In Chapter [B] the change in contour length between the
unit circle and an ellipse with semi-axis A = 1 and B = 1 + ¢ will be examined. A series solution

describing the contour length on the ellipse in terms of € will be found using the above expressions.
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4. Evaluation of CMS Expressions

4.1 Package Overview

The CMSTensor Library is a Maple Library that implements the CMS as a collection of algebraic
and array manipulations. The calculations required for any specific index in an array is performed by
Maple’s built-in symbolic computation algorithms. The primary functions define the basic manip-
ulation of arrays. These are used to build the objects and advanced functions. Global information
about the surface and space in which the calculations are being completed must be given before any
features can be used.

The full source code is available for download from https://www.cs.drexel.edu/SCMS

4.2 Global Settings

The ambient space is defined by three global variables.

ambient_coordinates - A list with the variables used for the coordinate system.

time_coordinate - A variable name representing the time depended coordinate.

ambient mapping - A list of functions mapping the coordinate system to the Cartesian plane.

The function initialize_ambient_space is used to set these globals. It takes values in the order
given above. To define an ambient space in polar coordinates, the code would be

initialize_ambient_space([r,thetal,t, [r*cos(theta) ,r*sin(theta)]);

The second global setting is for a surface restriction. If no surface is being defined, this initial-
ization is not required. Likewise, if the time dependent coordinates are not being used, the variable
set for time is not required. The surface manifold must have exactly 1 fewer coordinates then the
ambient space. There are two globals set by this function.

surface_coordinates - A list containing the variable names defining the surface.

ambient_to_surface - A list of mappings from the ambient space to the surface.

To define the unit circle in the above initialized ambient space, restrict r to a fixed value.

initialize_surface(phi, [1,phil);

Once the required globals have been initialized, the library is functional. The size of the arrays
needed to define the components of a tensor are depended on the number of coordinates. Addition-

ally, these globals are used to define the derivative operators.
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4.3 CMS Object

There is only one object introduced by the library. CMSObject is an object that defines a tensor.
The object has four local variables.

indexes - A list of the indexes and their position.

coordinates - The coordinates used by this object, either the surface or ambient from the global
settings.

components - A multidimensional array of algebraic values.

is_surface - A boolean defining if the object has been restricted to the surface.

When a new CMSObject is constructed, only two inputs are required. The constructor must be
given the indexes and components. The object is assumed to be in the ambient space unless the
third argument, restricted is set to true. This argument defaults to false if not set. A spatial
object can be restricted to the surface at any point.

The list of indexes is realized as a list of integer values. There are only four valid atoms that
can be in this list. They are given in Table The components holds the values at each point in
the tensor as a multidimensional array. This array holds the actual values while the other variables

store ancillary information.

Table 4.1: Possible Atoms for Index List

Index Values
Integer Value | Meaning
1 Ambient Space index in contravariant position
-1 Ambient Space index in covariant position
2 Surface Space index in contravariant position
-2 Surface Space index in covariant position

The CMSObject has a small set of public methods. This object is primarily designed to be
manipulated by the library functions and not directly accessed. The constructor is defined by
ModuleApply and ModuleCopy. The inputs are given in the order indexes, components, then surface
restriction, which defaults to false. Two other overloaded operators are ModulePrint, for displaying
the object, and *, which maps to the prod function.

There are four accessors, getCompts, getIndexes, isSurf, and getRank. The rank of a tensor

is the number of indexes, which is the length of the indexes list. The most interesting components
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of the CMSObject are its two mutators. Both are used to restrict the object. If the object is defined
in space it is possible to call restrictSurface. This function loops through each element in the
components and replaces the spacial coordinates with the surface coordinates using the functions
defined in the global ambient_to_surface. The restrictTime function preforms a similar action
on the components, but instead replaces the variable name set in time_coordinate with a given
value. The default is to restrict the time to t = 0. Both these functions simplify the component

values after substitution.

4.4 Primary Functions

The following functions give the basic mathematical operations that can be performed on tensors.
These are independent of the deformation of the surfaces. The majority of this section is spent on
multiplication and contraction. Addition and exponents are also defined. These basic tools will then

be used to create objects and derivative functions.

4.4.1 Multiplication

The key component for multiplication is the TensorProduct function. This function defines what
is means to multiply the components of two tensors A and B. The components of these two tensors
are multi-dimensional arrays. Let A[iy, s, - -] access an expression in the A tensor and B[j1, ja, - ]

access an expression in B. Then the value in the product C'= AB is

Cliryia, -+ s j1,Ja, -] = Alinyda, -] % Blju, jas -] (4.1)

The following helper functions are needed to accomplish this task. First array_sizes determines
the positions of the elements in each array. Next, create_array creates a new array to store the
value of the product. To make implementation of the loops more straightforward, array_pos creates
a list with all the access positions for a given array size. Once all the access positions are converted
into flat lists, the multiplications can be completed at all positions. It is important to note that
these are all intended as helper functions and do not do error checking. The user accessible function
is prod, which does error checking before the calculations.

The prod function multiplies two tensors. If both tensors are spatial or surface, then the mul-
tiplication can proceed. If the product is a mix, then any spacial tensors must first be restricted

to the surface. This is done using the restrictSurface method of CMSObject. The indexes of the
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new tensor are a concatenation of the indexes of the two input tensors. Finally, if either input is a
scalar, then ScalarProduct is used instead of TensorProduct.

When multiplying a scalar by a tensor, the size of the tensor does not change. The new tensor
has the same size as the old one and each component position is multiplied by the scalar. This is
done by ScalarProduct. A scalar appears as an array with a single element, but this dimension is
not added to the final tensor. The array storing the scalar value is an artifact of the implementation

and not the same as the meaningful dimensions for non-scalar tensors.

4.4.2 Contraction

The public interface to contraction is the contract function. This function takes a CMSObject
and a list of index positions. Each pair of index positions in the list will be contracted. The new
tensor’s index list will be the original list with all contracted indexes removed. The number of
indexes to be contracted must be even and cannot contain duplicates. This function takes each pair
of indexes to contract on and calls contractij. After the two indexes are contracted, any remaining
index positions are shifted to account for the newly removed indexes. Index positions are counted
starting at one.

The contractij function contracts two indexes of a tensor, at positions ¢ and j. First, additional
error checking is performed. The indexes must be different values. One index must be covariant
and the other contravariant. The indexes must both be either spatial or surface. Lastly, the array
dimensions must match for both indexes.

When it is confirmed the contraction is possible, the array must be permuted. Let a = min(i, j)
and b = max(i, j), wherever the indexes appear in the original tensor, permute_indices is used to
reorder the indexes so that a is first and b is second. Next, create a new zero-filled array that is two
less then the original. Let A be the tensor being contracted and B be the new tensor, then for all ¢
compute

Blki, ko, -] = Blki, ka, -] + Ali, 4, k1, k2, -+ +] (4.2)

In the event that there are no free indexes remaining, the tensor’s components must be flattened
one additional time because the array will have an extra level. This happens because a tensor with
one index and a scalar appear the same using an array representation. The component attribute of
the object is always an array, this is allows for a consistent interface. A one-index, one-dimensional

array is an array with only one position. This is also how a constant is stored. Most scalar arithmetic
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works using this representation. In this case, it adds an extra dimension that appears is not be

present mathematically.

4.4.3 Addition

The 1in_com function adds two tensors. The indexes and array sizes on both tensors must match
exactly. Additionally, both tensors must be spatial or surface. If only one is on the surface, then
the spatial tensor is restricted to the surface before addition takes place. The array_pos function is

again used to flatten the multi-dimensions array access into a single loop where

Clki, ko, -] = Alk1, ka,-- -] + Blk1, ko, -] (4.3)

The indexes of the sum are the same as the indexes of either input term. A local function,
permute_indices may be used to permute the array to add non-matching index dimensions. This
is only used as a helper function in some methods. For standard addition using + or 1in_com it is

required that the indexes match.

4.4.4 Additional Methods

The exponent function takes a tensor and an integer. It repeatedly calls the prod function. The
inverse function is used to invert a Tensor. It is only possible to invert a scalar or 2 by 2 array.

Inverting a 2 by 2 array is exactly the same as the method for a matrix.

4.5 Object Constructors

Construction of the objects of the CMS starts with the covariant basis. First, a CMSObject R is
created with one contravariant surface index and the value of ambient mapping as its components.
Next, the partial derivative is computed with respect to the coordinate space.

)
o _
Zi = 8Z;

R® (4.4)

This is done using the ddZiPartial. Note that this object has two indexes, but should really be
a vector. This is a artifact of the CMSObject structure. This is only required for handling the basis
vectors. This allows it to be used directly with the entire library. The special symbol g is used to

show this is not truly a spacial or surface index. This value is not a tensor, the first two tensors are
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created next. The Zf object is just used to get from a vector to a tensor. It should not be used for
later calculations because it is not a tensor.
The covariant metric, Z;; and contravariant metric, Z* can now be defined. Z% is the

inverse of Z;;.
Ziy =Z7 Zje (4.5)

In the library this math is defined as

contravariant_basis:=proc()
return contract (
prod(contravariant_metric (),
covariant_basis ())
2,31);

end proc;

New objects can continue to be built up from their definitions using these tools. The con-

travariant_basis, Z'%, is given as

z' =2797¢ (4.6)

The metric tensors define the space, next the metrics for the surface are defined. To do this,
the shift tensor, Z{* must be created. The first index must be a space index and the second must
be a surface index, but a shift tensor is defined for each combination of positions. The function
shift_tensor takes two inputs to denote the desired indexes and returns the appropriate object.

Creation of the first shift tensor, Z! requires creating a new Ry, CMSObject using the global

ambient_to_surface. The function first creates Z! using the code below

R_cms := CMSObject ([1],
Array(ambient_to_surface) ,true);

Zla:=permute_indices (ddSaPartial (R.cms) ,[2,1]);
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The remaining three variations can be easily generated.

Zio =Zi; 7% (4.7)
Z'* =715 (4.8)
Z8 =70, S (4.9)

598 is the contravariant_surface metric, which is the inverse of Sag, the covariant_surface metric.

The shift tensor is used to compute the covariant surface metric.

Sup = 7. Zis (4.10)

Taking the partial derivative of a Tensor does not always yield another tensor. The Christoffel
symbol is used to ensure that the covariant derivative produces a tensor. The Christoffel symbol
is defined both in space, christoffel_space, and on the surface, christoffel surface. When

©
computing the value in space, the index of ggi must be pivoted with pivot_index. This is not

a true index lowering since Z! is not a true index. This is a mechanical requirement to keep
these computations in line with library. Mathematically, there are no tensors until Z;; created, but

building it requires all the same algorithms as tensor calculations.

christoffel_space:=proc()
return contract (prod (
contravariant_basis (),
pivot_index (ddZiPartial (covariant_basis ()),3))
[2,5]);

end proc;

The surface Christoffel is computed purely algebraically.

o _ 709% + Tl z0 722k (4.11)
By T 7 98 JkTE Z By ’

To create the Levi-Civita Tensor, first create a LeviCivitaMatrix. This function takes one input
with the target index position. All indexes will be of the same type. It then creates a square array
with the correct number of dimensions. For each position €[iy, ig, - - -] the value is either the sign of

the permutation of 1,2,--- ,n related to i1,49,-- or zero. The LeviCivita tensor is computed by
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multiplying the array by the determinant.

e — (hdi (4.12)
\/det(Zij)
Ei,j,m = det(Zij)Ei,j’... (413)
1
BB =P (4.14)
\/det(S;;)
Ea,g,.“ = det(Sw)ea B, (415)

The determinant of a tensor is found using determinant. This is only valid on 1x1 and 2x2
dimensional arrays.

The surface curvature is given by the curvature tensor B,g. It is created using the function
curvature_tensor which takes two indexes determining the index positions. These must be surface

indexes.

Bog =— Z.VsN; (4.16)
=S*"B.5 (4.17)

aB _gay R
B =87 Bf (4.18)
B? =B, 57" (4.19)

Creation of the surface normal depends on the number of dimensions. It is only defined for one
and two dimensions. The surface normals definition is dependent on the number of dimensions, for
higher orders it needs to be solved for. The general approach to finding the normal can be found in

[45]. For a one dimensional surface, it is defined as

N'=E"E.Z{ (4.20)

N; =Z; ;N’ (4.21)

For a two dimensional manifold, the definitions are
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1 L
N; =5 ijkEaﬁzgzg (4.22)

N =Z"N; (4.23)

Scalars are created using the CMSScalar function. The remaining functions are related to de-
forming manifolds.

The contravariant_space_velocity is created by taking the ddtPartial derivative of am-
bient_to_surface. This is represented by v’. The related tensors covariant_space_velocity,
contravariant_surface_velocity, and covariant_surface_velocity are defined by application

of the shift or metric tensor.

v; =Zijv? (4.24)
VY =Zin 0" (4.25)
Vo =Z{" (4.26)

This leads to the definition of surface_velocity.

C =v;N* (4.27)

The last object constructor function is the Grinfeld Commutor, which simplifies the relationship
between V and V,. This function takes three surface index positions. Indexes are permuted using
permute_indices to make both sides match. The left side is shown before permutation is used to

line the indexes up for addition.
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R, =V*(CBg,) — Vs(CB2) (4.28)
R3Y =S7°Rj, (4.29)
ROP =5P R (4.30)
R}, =V"(CBsa) — V5(CBY) (4.31)
RS =V?(CB.,) — V,(CB%) (4.32)

Index positions not defined above are not supported by the constructor. They can be created by
contraction with the surface metric.

The remaining functions define how derivatives and integrals are taken.

Permuations are done using permute_indices. This function takes two inputs, a tensor and a
list of integers. The list of integers gives the reordering. This function is based on the Maple function
of the same name [76]. The n-th position of the original tensor is moved to position n in the input
list. For example, [2, 3, 1] means place old index 2 into new position 1, old index 3 into new position
2, and old index 1 into new position 3.

In the above equations, this is represented by SVCRg‘C having v in a position that does not match
the right side of the equation. Note that contracted indexes are not accounted for, the contraction

will take place before the permutation.

4.6 Advanced Functions

Derivatives of elements in a tensor are taken with the ddZiPartial, ddSaPartial, and ddtPar-
tial functions. The ddZiPartial function adds a new dimension to the array, with a covariant
spacial index. For each dimension on the space, the derivative is take with respect to the dimension.

Given an array with two positions, the array looks like

f(z,y)

g(x,y)

(4.33)

Taking the derivative of this array with respect to a two dimensions space, {z,y}, results in the

array
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df (zy)  df(z,y)

de % (4.34)
dg(z,y)  dg(z,y)
dx dy

The partial surface derivative, ddSaPartial, does the same thing but on the surface coordinates.
There is only one time coordinate, which means ddtPartial does not add a new index. For all these
functions, when applied to a scalar one extra array dimension is added and must be removed. This
is because scalars are stored as arrays with one element.

The covariant derivative, V;, is given by ddZi. If the tensor this function is applied to has no

indexes then

0

T =
Vi 0Z;

T (4.35)

For every index, an adjustment must be made. This is shown by example for two indexes.

9]
k __ k mmk k m
viTj 7821 Tj - Fij Tn + FimTj (436)

The ddZi function has a local helper function adj to handle creating this sum. Given a tensor T
with dim dimensions, it will give the adjustment on index n. The ddZi function loops through all

indexes. The adj function for ddZi is given below.

adj:=proc(T,n,dim)
local tp,swap,ind_char, Christoffelljk;
Christoffelljk:=christoffel_space ();
ind_char := getIndexes(T);
if ind_char [n]J=—1 then
return prod (CMSScalar(—1),
permute_indices (
contract (prod (
Christoffelljk ,T),
[1,ntgetRank( Christoffelljk)]),
[1,¢$(3 .. n+1),2,°$(n+2 .. dim+1)])
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elif ind_char[n]=1 then
return permute_indices (
contract (
prod( Christoffelljk ,T)
,[3 ,n+getRank ( Christoffelljk )])
[2,6(3 .. n+1),1,'8$(n+2 .. dim+1)]);
else
error sprintf(
”7ddZi on index with character \%a”
,ind_char [n]);
end if;

end proc;

The contravariant version ddZI is created using contraction with the metric.

VT =79V, T (4.37)

The surface versions of both functions follow the same pattern. Their are now four possible index

types for the input.

- aTP . . . 4

Bi __ I B (i ¢ Bi ni Bm npm B
VoT,; = 08, + 10Ty — 1o, Ty + 2500 T — 210510, (4.38)
VOTI =80V, T (4.30)

The ddt function follows a similar pattern. Again, the index possibilities are shown by example.

. oTY! _ ‘
of — b5 ¢i ¢\ poi
VIg =— -+ (Va(v*) = CBY) T — (vﬁ(vé‘) — C’Bﬁ) T

+ 0", T — "I T, (4.40)

The integrate function is just a shell for Maple’s integrate command. The function accepts

scalars, tensors with no indexes, and a list of variables with ranges to integrate over. It calls the
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built-in integrate function with the input ranges as given. If the integral needs any special treatment,
for example multiplication by a variable, this will not be handled automatically. The integrate

function does not take the manifold into account.

4.7 Example: Poisson’s Equation

A brief example from [I0] is now given. The key components of evaluation will be discussed. For
a more complete explanation see [10].

This example analyzes Poisson’s equation under arbitrary smooth deformations of the domain.
The function v where Au = 1 on the regular N-sided polygon will be examined. The Poisson energy
En will be computed as a partial series. This series explores the asymptotic behavior of Fy as
N — oo.

To use the library, it must be included into the Maple worksheet. In this example, the library
is in a folder CMSTensors in the same directory as the Maple worksheet. The library functions are

imported to the namespace using with.

restart ;
libname := ”./CMSTensors”, libname;
with (CMSTensors ) ;

The surface deformation for this problem is from the unit circle to a regular N-sided polygon.

In this case it is easiest to use polar coordinates. The ambient space is defined as

initialize_ambient_space (
[r,theta], t,

[r*cos(theta),r*xsin(theta)]):

The surface restriction only has one variable, ¥, for the angle. The radius is computed based on

the angle and time, ¢.

initialize_surface ([psi],|
1—t*(1—cos (Pi/N)/cos(psi))

,psi]):

The solution to Au = 1 on the unit circle under Dirichlet boundary conditions is

u(r,0) =~ (r*—1) (4.41)

P
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This is defined in the library as
u:=CMSObject ([] , Array ([1/4*(r"2—-1)]));

The first term in the series for Ep, is the solution on the unit circle to

1 )
Ey = / <2Viuvzu + u) dQ (4.42)
Q
The integrand is computed as

EO0_integrand:=lin_com (
contract (CMSScalar (1/2)+ddZi(u)+*ddZI(u),[1,2])
U

);

To integrate f(r,0) over ), the expression expands to

1 T
/ f(r,0)dQ) = / / rf(r,0)dodr (4.43)
Q 0 -
This is done in two steps, first multiplication by r then integration.

EO0_integrand:=CMSScalar(r)*EO0_integrand ;

E0:=integrate (EO_integrand ,[r=0..1,theta=Pi..Pi]);
The value for the first term in the partial series is stored in a list.
energy [0]:=getCompts (E0)[1];

The next term is computed as

1 .
S

The surface velocity, C, is computed. The expression is evaluated at ¢t = 0. The restrictTime

function is called to simplify C.

CO:=surface_velocity ();

CO:=restrictTime (CO);

The integrand can be computed easily.
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El_integrand:=contract (
CMSScalar (—1/2)+%C0xddZi(u)*ddZI(u)

7[172]);

Integration becomes more difficult with this term. The value of C is defined from —Pi/N to
Pi/N and repeated N times. Integration of C' = —1 + cos(m/N)/ cos is also difficult.

First, the integrand is evaluated at ¢ = 0 and removed from the CMSObject structure.
El_integrand:=getCompts(restrictTime (E1l_integrand ))[1];

This sets E1_integrand to be

1= cos(v) + cos (F)

= 4.45
fl) = g (4.45)
The target integral is
/N
[rwan=n [ sy (4.46)
S —m/N
This is simplified with a change of variables.
El_integrand:=eval (El_integrand , psi=theta/N);
The expression is converted into a series at N = oo for integration.
El_integrand:=convert (expand (
series (El_integrand ,N=infinity)
), ‘polynom *);
A much simpler integral is now taken.
energy [1]:=expand (
int (El_integrand ,theta=Pi..Pi)
);
This results in the second term in the series
1 73

Computing the second variation requires dealing with infinite series. This cannot be handled by
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Maple automatically. The CMSTensor library relies on Maple for algebraic simplification. Continu-
ing the series would require specialized simplification code for the algebraic expressions.
The first two terms in the series are
2
WIS IR (4.48)

Eny = ——
N 16 N T

This shows how a general CMS expression can be evaluated on a specific coordinate system.
Maple is used to evaluate Poisson’s equation. The CMS expression are true any deforming surface,

but we evaluate a specific realization of the problem.
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5. Example: Contour Length

The SCMS combines both the CMSTRS and Maple CMSTensor library. A problem can be
simplified and evaluated by using both libraries together. This problem can also be easily calculated
using alternative means. This allows the answer to be easily confirmed.

Consider the contour length of an ellipse with semi-axis 1+ ¢ and 1. Find a series for the contour
length in terms of e. The approach to this problem is to consider a smooth evolution of the boundary

from the unit circle at ¢ = 0 to the ellipse at ¢ = 1. The evolution is shown in Figure

Figure 5.1: The unit circle being stretched into an ellipse.

The evolution is parameterized as

x(t,0) = (1 + et) cosb (5.1)

y(t,0) =sind (5.2)

The contour length at time ¢ is denoted by

L(t) = /S s (53)

To find the contour length at ¢ = 1, use a Taylor series. The series is in terms of the derivatives

of L, L" = V"L.
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L(1) = L(0) + L'(0) + %LQ(O) + %Li"(o) +-- (5.4)

The first term in the series is trivial,

2
L(0) :/ 1dS :/ 1df = 27 (5.5)
S(t=0) 0

The first derivative is found by applying the V-derivative. This is simplified by the TRS.

L'(t)y=V / 1dS (5.6)
S
:/S(va)—CBg) ds (5.7)
=— / CB%dS (5-8)
S

To evaluate this expression, the coordinate system is defined. The code below initializes the

coordinate system from equations [5.1] and

initialize_ambient_space ([x,y],t,[x,y]):

initialize_surface ([theta],[(1+ epsilonxt)*cos(theta),sin(theta)]):
Next, the needed tensors are generated for the coordinate system.

CO:=surface_velocity ():

BAb:=curvature_tensor (2, —2):
Expression [5.8] is evaluated.
SurfIntegral (contract (prod (CMSScalar(—1),prod(C0 ,BAb)) ,[1,2])):

This returns em.

Since this is a simple expression, It can also be evaluated directly. The value of the tensors are

C|=o = €cos? 0 (5.9)

B0 = —1 (5.10)

Plugging in this values computes the same answer.
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Lt =0) = —/ CB2dS|i (5.11)
S
= / cds (5.12)
S
2
= / e cos® 0db (5.13)
0

=em (5.14)

To find the next value, L?(t = 0), take an additional V-derivative. The general pattern for these
expressions is given. It is split up into the integrand and integral. The majority of the simplification

takes place in the integrand.

Mn = V (Mn—l) - CBaMn—l (515)

L™(0) = /S M, |i—odS (5.16)

With M; known, M, and L? can be determined.

M, = —CB® (5.17)

M, = -V (CBS) + C*BS B}, (5.18)

The TRS reduces this expression to a normal form. The total reduction takes 31 rewrites includ-
ing structure changes like rule (3.12)) and simple reductions like rule (3.25)). Some key reductions are
highlighted below. Subscripts are attached to the arrow symbol referencing the rule list in Section

0.2

—V (CBZ) + C*BSBj} —gmm —BLVC — CVBS + C*BLBj
avy «a a 2 pa R
—gg —BaVC - C(V*V.C+ CB]B)) + C°B; By

—pm —BLVC — CV°V,C — C2BSB) + C*B3Bj (5.19)



o7

The normal form for M is given by equation (5.19)). This expression is true for the contour
length of any deforming manifold. Code is generated to evaluate the expression for this realization

of the problem.

tempsum:=CMSScalar (0):

Terml := SurfIntegral (contract (prod( CMSScalar(1/1),
prod (exponent (CO, 2), prod(BAb, BAb))).,[ 1, 2, 3, 4]) )
Terml := restrictTime (Terml):
tempsum:=1lin_com (tempsum , Terml ):
Term2 := Surflntegral (contract (prod(CMSScalar(—1/1),
prod(C1, BAb)),[ 1, 2]) )
Term2 := restrictTime (Term2):
tempsum:=1lin_com (tempsum , Term2 ):
Term3 := SurfIntegral(contract (prod (CMSScalar(—1/1),
prod (exponent (CO, 2), prod(BAb, BaB))),[ 2, 4, 1, 3]) )

Term3 := restrictTime (Term3):

tempsum:=1lin_com (tempsum , Term3 ) :

Term4 := Surflntegral (contract (prod(CMSScalar(—1/1),
prod (C0, ddSA(ddSa(C0)))),[ 1, 2]) )
Term4 := restrictTime (Term4):

tempsum:=lin_com (tempsum , Term4 ):

The final value is determined to be ie27r.

Ms|i—¢ = €(7cos® § — 5) cos® 0 (5.20)

£2(0) = /0 " (Mo di = ie% (5.21)

The TRS repeats this process and determines the normal form of M3 which requires 118 rewrites.
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In addition, terms are combined to shorten the expression.

Mz =— C3BYB]B) +3C°ByBSB] — 2C° B3 B) B
4+ 3C?BOVPV3C — 4C?B*PV,V,,C
+3CV(C)BYB] — 3CV(C)B§BE — 2V(C)V*V,C

— V*(C)Bg — CVV,oV(C) + CRY’V,.C (5.22)

Equation already shows the rapid growth of expressions in the CMS. The challenge of
calculating M, without an automated system is obvious. My is the sum of 94 products and requires
595 rewrites. An important feature of the CMS remains in Ms, this expression is valid for any
surface deformation. The library can easily determine that L?(0) = —=2€3m and L*(0) = 3jme’.

The Taylor series is now created.

1 1/1 1

5[/2(0) = § <4€2ﬂ'> = §€27T (523)
1 1 3 1

§L3(O) - 6 <—87T63) = _Eﬁsﬂ' (524)
1 1 /51 17

SN0 = = (a3 ) = —L et 2
' O=5 (64“ ) 512° " (5:25)

This is compared with a series computed using an entirely different method. This is used to

verify the results.

L(1) = /O% (\/(1 + )2 cos2(6) + sin2(9)) do

1, 1 17 19
=(2 — S et S 5.26
( TP T Tt Tiomt )" (5.26)

The library has been verified and correctly generates the series up for L7.
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6. Laplace-Dirichlet Eigenvalues

6.1 Introduction

The study of eigenvalues touches a wide range of fields. Most people’s first interaction with the
eigenvalue comes from linear algebra. In this context, there exists some matrix A. When multiplying
a vector x by the matrix, some vectors will change direction but a rare few will not. These vectors

are eigenvectors. In these cases, there exists some number A, called the eigenvalue such that

Az = Az (6.1)

Although this is the first version of eigenvalues seen by many students, it is not the only version
of the concept. A more detailed examination of eigenvalues in linear algebra can be found in [103].

The foundations of eigenvalues can be found in the structural mechanics of the 18th century. One
key example is Euler’s 1751 work Du mouvement dun corps solide quelconque lorsquil tourne autour
dun axe mobile [3I]. In this paper, Euler examines the problem of rotating a rigid structure. Any
rotation of a rigid body such that some point remains fixed is equivalent to a rotation around the
fixed point. This work would be continued by Joseph-Louis Lagrange and Augustin-Louis Cauchy
in their study of celestial bodies [54]. These works would move the study of eigenvalues toward
more traditional linear algebra concepts. This would lead to the field of spectral theory when David
Hilbert began his study of operators and spaces [53].

The Laplacian eigenvalue also came out of this work. In this case, there is an eigenvalue, A\, and
an eigenfunction, u, such that taking the Laplacian, A, the function only changes by scalar multipli-

cation. The Laplacian operator is a second order differential operator defined on the manifold [85].

Au = Au (6.2)

This classical eigenvalue problem is still open on many bounded domains. In 1877, Lord Rayleigh
examined eigenvalues on a drum and their relationship to the sounds produced by the drum [92].
By minimization of this eigenvalue, Lord Rayleigh proposed that among all drums of a given area,
the circular drum is the one which produces the deepest bass note [2]. It would take almost 30 years

before this conjecture was proven [2]. This result is the basis for the solution on the unit circle.
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For these eigenvalues, the boundary of the domain is under the Dirichlet boundary condition.
This condition means that the eigenfunction v must be equal to zero on the boundary. This is one
of three common boundary conditions, along with Neumann and Robin conditions [36].

The Laplacian eigenvalues appear in numerous fields outside of acoustics including electron wave
functions, the theory of diffusion, and study of dynamic systems [36].

Eigenvalues are one of the most successful tools in applied mathematics [I07]. A broad range of

topics where eigenvalues are used in presented in [I07]. Some of the applications are

e acoustics e quantum mechanics

e ecology structural analysis

e fluid mechanics functional analysis

e Markov chains physics of music

e partial differential equations e vibration analysis

6.2 Eigenvalues on the Polygon

One question of current interest in the field of Laplacian eigenvalues was proposed in 2004, what
is the series in 1/N for the simple Laplace eigenvalues on the N sided regular polygon under Dirichlet
boundary conditions [46]?

In this paper, the spectrum analysis of a regular polygon is proposed. At the time, the closed form
was known for only the square and three special triangles [46]. This attempt uses two approaches,
the finite element method and a Taylor series approach. The Taylor series approach will be the one
implemented in the SCMS.

The finite element method is shown to have difficulties in this problem space. The size of mesh
needed to create an estimate grows quadratically with respect to the number of nodes and the
number of nodes is strictly defined in terms of the number of edges on the polygon. Additionally the
error grows rapidly and cannot be improved by series acceleration tools [46]. Finally, this approach
is applicable for fixed values of N and does not lead to a general solution. Recent work has been
done by Robert Jones improving these numerical approximations [58].

The Taylor series approach provides an algebraic solution that is shown to be more accurate

than the finite method approach. It has been used to find numerical estimates for the first 10 simple
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eigenvalues on the regular 128-sided polygon [46].

Although this question is interesting in and of itself, it has a number of applications. An algebraic
series in terms of the number of sides N gives all eigenvalues for all possible N > 2. These can be
used for both numerical and exact computations. The relationship between eigenvalues and shapes
is a rich and important field [36].

Many approaches to finite elements and the level set method approximate original domains by
replacing them with polygonal meshes. The error created by the replacement of smooth boundaries
with polygonal boundaries can be further examined through study of these eigenvalues [46].

The results of [46] drew interest in a number of fields. It provided new insight into the study of
eigenvalues on general 2 dimensional domains [50]. The study of quantum billiards investigates the
movement of particles bouncing in a bounded domain [36]. The eigenvalues on the polygon can be
applied to quantum systems with polygonal domains as well as their spectroscopy [4]. Returning to
the relationship between shapes and eigenvalues, knowledge of the eigenvalues on the polygon can
be used to improve shape recognition techniques [64].

The next significant advance was an exact series up to N~* which was presented in [47]. This
solution no longer required numerical approximation. The truncated series is now given for the
general N and for any order eigenvalue. An early version of the CMSTRS presented here was used
to find and correct errors in these hand calculations. The results promoted more investigation [9, [G8].
The results were immediately found useful in a variety of fields.

The approach presented in [47] is extended and generalized below. The methods described are
recursive and algorithmic. Given the starting cases, the series can be theoretically extended to
any number of terms. The approach shows both that the presented system works, but also that it
improves on previous research. This approach is only limited by the algebraic simplification tools
and computational resources.

In the remainder of this chapter, the mathematics of computing eigenvalues will be examined.
The solution on the unit circle is used as both the basis for boundary variation and an example
domain. The first term in the series on the regular N sided polygon is found. Additionally, the first
term on the ellipse with semi-axis A =1 and B = 1 + ¢ is found. The second deformation uses the
same CMS expressions, since these expressions are true for all coordinate systems, but can be more
easily numerically approximated. This problem provides both interesting results and an additional

method of error checking.
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6.3 Solution on Unit Circle

The eigenvalues on the unit circle can be visualized using an ideal drum. A drum, such as the one
in Figure[6.1] is a circle with a rigid frame. When any point on the drum is hit, the drum vibrates.
These vibrations stop when they reach the edge of the drum. The different vibrations of the drum
are related to the sounds that can be produced. The eigenvalues of the surface will determine these
vibrations, and therefore sounds, that the drum can produce. More about the relationship between

eigenvalues and sounds produced by drums can be found in [62], [90], [113], and [35].

Figure 6.1: Drum used by 40th Regiment New York Veteran Volunteer Infantry Mozart Regiment

The idealized drum is a circle of radius 1 centered at (0,0). The eigenfunction u(r,d) and the
eigenvalues, A, are defined by a system of three equations.

The Laplacian provides a relationship between the derivatives of u and the eigenvalues [32].

Au+Adu=0 (6.3)
The Laplacian is defined as
"L 9%

When restricted to polar coordinates, this is

2
Auzlﬁ(@u)_'_l[)u (65)

ror \"ar ) T ae

The Dirichlet boundary condition states that the eigenfunction is zero along the boundary of the
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surface [32]. This can be visualized as the rigid frame of the drum. S is the boundary restriction of

space ().

uls =0 (6.6)

The eigenfunction is normalized over the entire space ).

/Q w?dQ =1 (6.7)

To find the eigenvalues, the following system must be solved.

Au=—du (6.8)
/quQ =1 (6.10)
Q

The Bessel Function solves Equation [2]. The Bessel function is related to the second deriva-
tive operations in cylindrical coordinates [67]. The Bessel function of the first kind is given in

671.

2\ = (=1)™(z/2)2m
720 =(5) X e @1

m=0

A solution for the eigenfunction, u, is given with two unknowns, x and c.

u(r, 0) = cJo(zr) (6.12)

The Laplacian of the zeroth Bessel function meets the requirements of Equation [6.8]

Acdy(xr) = — x2edo(zp) (6.13)

The eigenvalue is A = 2. The Dirichlet boundary condition, Equation determines the value

of x.
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u|s =u(r =1,0) (6.14)
=cJy(z) (6.15)
-0 (6.16)

For ¢ # 0, select = to be a zero of the Bessel function. Let z = p where p is the n-th zero of the

zeroth Bessel J function.

A= p? (6.17)

The normalization condition determines the value of the unknown c.

/u2dQ =1 (6.18)
Q
/0 17" /_ ! (cJo(pr))? dodr =1 (6.19)

0227r/0 rJo(pr)?dr =1 (6.20)
ArJi(p)? =1 (6.21)
1
fe—— (6.22)
mJ1(p)?
c S (6.23)

VT Ji(p)

This gives a final solution for the system

A =p? (6.24)

u(r, 0) _Joler) (6.25)

VT Ji(p)

There are infinitely many real zeros of the Bessel J function and no complex zeros [67]. The
pattern of zeros can be seen in Figure [6.2
Each of the zeros of this function produces a different vibration on the drum. The zeros close to

the y-axis are very distinct. As the function approaches infinity, the difference between two zeros
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Zero-th Bessel Function
1

Figure 6.2: Plot of Jy from -30 to 30 showing multiple zeros.

becomes to small to produce distinct sounds.

6.4 Regular Polygon

The series in 1/N for the Laplace-eigenvalues on the regular N-sided polygon under Dirichlet
boundary conditions is now examined.

The approach presented here applies the CMS. A surface deformation is defined that starts with
the unit circle, at time ¢t = 0, and ends with the regular N-sided polygon, at time ¢ = 1 [47]. An

example deformation with N = 8 sides with shown in Figure [6.3]

Deforming Unit Circle to Regular Polygon with N=8 Sides

05

— Time t=0 — Time t=1

Figure 6.3: Boundary deformation from circle to regular polygon.

The answer is a Taylor series
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1 1

)\NZ/\0+)\1+§)\2+"'+E/\I¢+"' (6.26)

An =A(t=1) (6.27)

Ao =A(t =0) = p? (6.28)
dk )

Ak :tho (629)

Calculation of the variations of A\ will be dependent on the deformation. The first derivative is

given by Hadamard’s formula [40].

A = — / CVuV'iudS (6.30)
S

Evaluation of this expression requires the surface velocity C'. The coordinate system is restricted

to a fixed r on the boundary.

r(6) =1 —t (1 _ o (Z&)) (6.31)

6(¢) = (6.32)

The surface velocity, C, is fully derived in [47]

_ cos(m/N)

D) =1
©) cos

(6.33)
Cit.8) = D(6) + tD?() (634
T A=t +2t(1—t)(1+ D(0)) + £2(1 + D(0))2cos 20 '

At the initial time, ¢t = 0, this is equal to

Chog = — (6.35)

This expression holds for —n/N < 6 < n/N and it extends around the circle in N periods [47].

The Fourier decomposition of Cy—q is used as C.



C= Z co(k)e*N?
k=—o0
The coeflicient ¢q is defined as
=57+ Olg)
CO(k) - k k__2 k
e + S — e+ O(w)

Hadamard’s equation can now be evaluate

d

Bu

=2
ou ° Ou du

=1\ 5, 90

ou du
Viuviu = or
ou du
06 ) . 06
K3
ou?  ou?

0

o (;ﬂ%)

Viuviu|,«:1 =

This leads to

or
() -
s

This integral is solved using a change of variables.

Ji(pr)?p?
mJi(p)?
2
-7 / cds
T Js
/N OO
/ CcdsS = / (k)e*N0dg
w/N k——
_ / Z co(k)e*de
T k=—00
:27TCO(O)

The solution for A\; can now be computed.

k=0

k£ 0

du du

or 06

@2

a0

i
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(6.36)

(6.37)

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)
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A\ = —2p%c (6.46)
2 2 p? 2 72p? 1
_Z il — 4
3 N2 +315 N6 +O(N8> (6.:47)
4¢C(2)\  6¢(6)A 1
Only the value of C' was dependent on the boundary deformation. The solution A\ = —2\¢g is

general. By finding a different C, the respective A can be found.
Deforming the unit circle into an ellipse with semi-axis, A = 1 and B = 1 + ¢, gives a different

value. This deformation is shown for a fixed € in Figure [6.4]

Surface Deformation for Ellipse

Figure 6.4: Boundary deformation from circle to ellipse.

The coefficient of the Fourier series for C, deforming to the ellipse is

T k=-2
% k=0
Co,ellipse = (649)
T k=-2
0 otherwise

This gives the solution for A; on the ellipse.
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Al,ellipse = *2p2CO,ellipse =-A (650)

This is an important feature that will be applied to the remaining variations. Expressions can

be confirmed against the ellipse where numerical approximations can computed independently.

6.5 Second Variation of )\

The second variation of X is found by applying the V-derivative to the first variation.

A2 =VAi(t) (6.51)

Ao =V (— / CViuViudS> (6.52)
S

More generally, any variation can be found by

A =VF1 (— / C’VmV%dS) (6.53)
S

The rules of the CMS allow for the expansion of As.

Ao =V (— / cviuviuds> (6.54)
S
_ / ¥ (OVuViu) — C2BEVuViudS (6.55)
S
= - / C1ViuViu + 20V uViu, — C?*BEVuViudS (6.56)
S

The surface integral is evaluated when t = 0 and » = 0. When ¢ = 0, the first variation of C'

vanishes.

C1 = V(O)limo = 0 (6.57)

To continue with this computation the value of uy is required. wu is the first partial derivative
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of u evaluated at ¢t = 1.

ou

- a —o (658)

U1

The next chapter will solve u; and give a general method for solving uy as a recursive function

of ug---uk_1 and \--- Ag. After establishing u;, computation of the A\ values will be revisited.
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7. Determining Partial Derivatives of u

7.1 Introduction

It has been shown that partial derivatives of the eigenfunction u are required to solve for the
variations of lambda. Computation of these derivatives begins with the eigenfunction on the unit

circle.

u(r, 0) :M (7.1)

VT Ji(p)

To evaluate the variations of A, only the values of ‘Z,;? at t = 0 are needed. The method for

determining these values is given in this chapter. A general method for computing w1, will be given

where

(7.2)

w — Oty
to\ o

The chapter begins with the solution for u;. Many simplifications appear in w1, which are not

t=0

true in the general case. Next, a general method will be given for any u;. A requirement to find u;
will be the values ug---u;—1 and A--- A;. It is convenient to treat these as symbolic values whenever

possible.

7.2 Solving u,

The system of equations used to find u(r, §) will also determine w;.

Au=—du (7.3)
uls =0 (7.4)

/Q u?dQ =1 (7.5)

They are referred to as the boundary condition, equation the kernel condition, equation [7.3

and the normalization condition, equation |7.5
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7.2.1 Boundary Condition

The solution to u; requires that all these conditions remain fulfilled. The boundary condition,
Equation [7.4] is the most straightforward to satisfy. By definition, the boundary condition is met

when r = 1. The V—operator is applied to both sides, then the expression is solved for u;.

V (uls) =V(0) (7.6)

V (u) |s =0 (7.7)

(?,;t‘ + CNiViu> ) =0 (7.8)
du i —

), + (CN'Vu) |4 =0 (7.9)

uy + (CN'Viu)| 4 =0 (7.10)

Uy = — (CNlVZU) ’S (7.11)

This is solved using the same method as algebraic manipulations for the variations of A.

— 3 du
up = — (k_zoo co(k)e kNe) dr . (7.12)
_ (¥ o (l) e+ NO Jolrp)p.
B <k_zoo o ) (ﬁJl(p)> . (7.13)

- <k; co(k)eikw) (m r_l) (7.14)

:% k;m co(k)eFN (7.15)

ik6

The final expression is a Fourier series. The coefficient of €**” is the most important part. It is

given a name

fl,surface(k) = %COUf) (716)

This condition must be true when w; is evaluated at ¢t = 0. Without inserting the values of

o, this expression cannot be simplified further. This final step is delayed to keep the expressions

general.



7.2.2 Kernel Condition

Next, the V—operator is applied to Equation to find the kernel condition for wu;.

VAu =V (—\u)
AVu = — Au — Auq
Aul = — )\1’UJ — )\u1

(A + /\) UL = —A\u
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(7.17)
(7.18)
(7.19)
(7.20)

(7.21)

The Helmholtz operator, (A + A), is applied to u; [23]. An inverse operator is created to solve

for uy. There is only one specific pattern that this operator will be applied to.

The inverse of the Helmholtz operator will allow for a solution to this condition of wu;.

U7 :B_1 (—Alu)
A

= ﬁJl(p)Bil (Jo(pr))

The general formula for the Helmholtz operator is

1 - .
B (2npr”]|m+n(pr)e m‘9> =" T gn_1(pr)e™?

(7.22)

(7.23)

(7.24)

(7.25)

(7.26)

This is used to create an inverse pattern, 7%.J,(pr)e’™?. This is the only pattern that will appear

as input to the inverse operator.
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Ty (pr)e’™ =1 Ty (pr)e™ (7.27)
a=n-1 (7.28)
b=|m|+n—-1=|m|+a (7.29)

The general pattern for the inverse operator is given, this is only valid for positive subscripts of

of the Bessel J function.

1 a im a im
B (2(a—|— l)pr +1J‘m|+a+1(pr)e 9) =1"Jim|+a(pr)e 0 (7.30)
— a m 1 a im
B! (r" Ty ya(pr)e™?) :mr T T at (pr)e™® (7.31)

This is applied to the specific case for u;.

a -1 =— 7)\1 r T
—WB (Jo(pr)) = SYNCIAD) Ji(pr) (7.32)

For consistency with the general form, this is treated as a coefficient to a Fourier series.

A _
_27pﬁ}]1(p) rdi(pr) k=0

fl,kernal(ky T) = (733)
0 k#0
The following expression will meet the kernel condition.
(A+X) D frkeme(k,r)e* == \u (7.34)

k=—o
7.2.3 Partial Solution to wu;

Before solving for the normalization, a partial solution for u; is generated. This will be required

to work with the normalization condition. The expression must be equal to the surface condition
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when r = 1. Additionally, the expression must correctly evaluate under the Helmholtz operator.
The nullspace of B is used to add terms to the series without changing the outcome of the Helmholtz

operator.

B (Jjm (pr)e™?) =0 (7.35)

To ensure these values act correctly under surface restriction, they are divided by their value at

r=1.

J‘m‘(pr) eim@ _
b ( Jim(p) ) ! (7:36)

The first part of u; meets the boundary condition.

J| pr
Z fl Surface }kNl( )BMNG + (737)
= kv (P)

This works as long as k # 0. In that cases, Jy(p) is 0 in the denominator of the fraction. This will
be handled by the normalization condition. For k # 0, this equation meets the boundary condition.
Any terms added to meet the kernel condition must therefore cancel out at r = 1.

Under the Helmholtz operator, all these terms will evaluate to 0. The coefficients needed to meet

the kernel condition are added next.

J pr > ,
Z fl surfacc lkN‘( ) zk:NO + Z fl,kcrnal(ka T)elkNe +-- (738)
pard J|kN\( )

k=—oc0

This changes the value on the surface, but that change can be easily accounted for.

J (pr) ,
Z fl 5urface }kN' ( )) e kNG
k20 kNP

J T
4 Z Fru(k, e otk NO Zfl putic(k, 1) IkN\(P )esze 4. (7.39)
= Pwrrd Jieni(p)

There is still one unknown term, Si o, at Jo.
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J (pr) g
Z fl Surface }kNI kNG + 51 OJO (,07")
= w1 (P)

J| pr
+ Z Fipuie (b, 7)e™? Zﬁ buik (k, 1) e )elke (7.40)
k=——oo 20 T (p)

The normalization condition, Equation will determine the final unknown. First, u; is sim-

plified.

up = i fl(r,k)eikNe (7.41)

k=—o0

S1.0do(pr) — 2pr1( )rJl(pr) k=0

fr(k,r) = (7.42)

pco(k) Jien (o)
\O/? Jieni(p) k#0

7.2.4 Normalization Condition

The final condition that needs to be solved is the normalization condition, given by Equation

The V—operator is used to find the condition for u;.

v ( / ude) =V(1) (7.43)

Q
/ —dﬂ+ / Cu*dS =0 (7.44)
/u1u+uu1dQ:—/Cu2dS (7.45)

Q s

2/ wupd) =0 (7.46)

Q
/uuldﬂ =0 (7.47)

Q

The spatial integral on the circle is defined as

1 T
/ flr,0)dQ = / r f(r,0)dodr (7.48)
Q 0 -7

The majority of terms immediately go to zero because of the following identity, which is true for

integer k and k # 0.



This leaves only

Jo(pr)

/o1 ' (\/M(p)) (Sl’o‘]‘)(m - 2/,\/;31(/,)“1(/»“0 dr =0

This is solved algebraically for S .

0 =27 (S“) /0 o) — Al(p)z /O 1 T2J0(p7“).]1(p7“)d7">

VT Ji(p) 2pmJy
Sl 0 <1 2) /\1 (1 Jl(p)Q)
0=—210 (27 _ :
Vi) o) g ey
S A
0_2ﬁjl(p) 4p27T
S1,0 S
_2ﬁJ1(p) - 4,027T
N
YT N (p) 4w
N -
RCNCTENAPY

The complete expression for u; can now be given.

Uy = Z fl(T7 k)eikNO

k=—oc0

%Al(Jo(QPT)*TJl(PT)P) k=0
J
fl(k‘ﬂ"): p2V/mJ1(p)

co(k)p Jikn|(pr)
Oﬁ Jieni(p) k#0

7.2.5 Justification of u;

7

(7.49)

(7.50)

(7.51)
(7.52)
(7.53)
(7.54)
(7.55)

(7.56)

(7.57)

(7.58)

To show that the value of u; meets the boundary condition, we first evaluate f; when r = 1.

1
filk,1) = 20T
] P

(7.59)
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We next show this meets the boundary condition from Equation

uils :% 3 co(k)eN? (7.60)

oo 1M L_y )
Z 2 py/m oikNO __P Z CO(k_)eikNe (7.61)
k=—o0 co(k)p k0 VT k=—o00
v
This is true as long as
I\ p

PV - ﬁco(()) (7.62)

The value for A\; was given in Chapter After plugging this in, the two expressions are

equivalent.

12%Pa(0) _

s om0 (7.63)
pco(0) — pco(0)

o JE (7.64)

This shows that u; meets the boundary condition. Next, the kernel condition is checked, Equation

(L34

The majority of these calculation will come from evaluating the Laplacian on u;.

Auy + Aup = — \u (766)
Aul = — )\1'LL - )\ul (767)

First, evaluate when k # 0 in the Fourier series.
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—)\1u - /\U1 = — )\u1 (768)
_ co(k)p Jk(m*) ik NO
=A (;; NI ) (7.69)
=—“<?p5i;rz<f”ew @
_ pco(k J|kN| (pr) ikNO
A kzﬂ) T (7.71)

Next, we see if the expression is true for the case k = 0.

A — g =A (; A1 (‘]0(5;\)/;;{;)1’ pr)p)) (7.73)
:% Mrdy (p%i(i;”‘)(’”") (7.74)
SV 3R A o
=— Auy — \u (7.77)

These two cases combined prove that our expression for u; meets the kernel condition. The final

condition is normalization.
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/Q i d =0 (7.78)

o /0 oy (0)dr =0 (7.79)

o
[ 2eyoe o
. J1 — / (rdopr)? — r2J (1, pr) Jo(pr)p) dr =0 (7.82)

/O 17‘J0(p7“)2dr - /O 2 (1L pr) oo pdr 0 (7.83)

ST — 5 () =0 (7.84)

This proves that w; is a correct solution. In the next section, this method will generalize u,,.

7.3 General Solution for u,,

To solve for the general u,,, the same pattern is followed with repeated application of the V-
operator. All components will be solved as Fourier series. The boundary condition is straightforward

to define.

V™ (uls) =0 (7.85)

Z fm,surface(k')eikNe :vm (U|S) (786)

k=—o00

There is a closed form for finding the m-th application of the V-operator for the kernel condition.
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V™ Au =V (= Au) (7.87)

(D4 A) U = — zm: (T) Ajtim— (7.88)

=B [ = (T]”) Al (7.89)

j=1
oo ) B m m
7 frpu(k, )N =g~ —Z( j)Ajumj (7.90)
k=—o00 j=1

A general formula for the Sy ., coefficient can be found using the normalization condition. A

partial solution to u,, is put into this equation with an unknown m,

v ( /Q u%m) =0 (7.91)

After taking repeated V-derivatives, the expression is solved for So,m.-

Combining all these parts gives a general solution .

Um = Z fm(ka T)eikNo (792)
k=—oc0
So,mJo(pr) + fm puk(0,7) k=0
fm(k,r) = (7.93)
(.fm,surface(k)ilf(:;vb‘u(ﬁ)(k’l))J\kN\ (PT) + fm,bulk(k7 ,r,) k # 0

The value of u; can now be used to find Ay. Additional values of u,,, can be derived when needed.
During computation of the Laplace eigenvalues, these partial derivatives will appear. The values
are needed to for evaluation. The process described above is implemented using the SCMS. This

allows for the automated computation of all partial derivatives need to our eigenvalue expressions.
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8. Second Variation of \

An expression for Ay has already been established. It has been shown that all u,, functions will
have the form of a Fourier Series. This expression can now be simplified into convolutions of these

coefficients.

Ao = — / O ViuViu+ 20V,;uViu; — Cng‘ViuViudS (8.1)
S
d
=2conv(co, co)(0)p? + 4v/mconv(c, £|r:1)(0)p (8.2)
=2conv(cg, co)(0)p* + 4y/mconv(co, f1.ar)(0)p (8.3)

For convenience, a new subscript notation is introduced to denote the derivatives of the eigen-
function coefficients. This is for the reader’s convenience, it is implemented as explicit calls to inert

functions.

df (k)
r=1 = r 8.4
g =1 =/1.a (8.4)
co(0)p E=0
=V (8.5)
co(k)p PI1kn| ()
VT Jieni(p) k 7& 0
A series is given for %. This comes from the continued fraction decomposition of the Bessel
Function.
PJ\/kN|(P) 1 p? 1 p? p? 1 1 1
——— = |kN| - = = — —p* 4= O —— 8.6
ey == ik i e (04 2) O () 69

8.1 First Convolution

The first convolution in s contains only cg.

2conv(cg, ¢p)(0)p? (8.7)
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The convolution is defined as

Ti=2p" Y co(k)eo(—k) (8:8)

k=—o00

This can be solved as a sum with three parts, kK =0, k < 0, and k£ > 0.

When &k #£ 0
(eo(—k) = g + 2 s — 10 (89)
OV = JaNe T 33ANS ~ jSN© '
Since k is the only variable in the infinite sum, each part can be simplified individually.
1 1 1
T2 = i@ (8.10)
k=1
22 1 27 4¢(2)¢(4)
NG = 73N6<(4) == (8.11)
k=1
10> 1 —10
N6 6 WC(Q (8.12)
The same is result is derived for k = —oo - -+ — 1 because multiplication is commutative.
These are combined to give the value of the summation with k # 0.
¢(4) | 4¢(2)¢(4)  10¢(6)
> co(k)eo(—k) =2 < St e T e (8.13)
k#0
2¢(4)  6¢(6)
=Ni ~ NG (8.14)
The value when k£ = 0 is trivial to calculate.
Lot ¢(2)? ¢(4)
2 _ _ _

This gives the total for the convolution



COHV(C(), CO)(O) - 25\;3) _ 665766) +10 Q;E/i)
@) _ (<)
— 1220 - 6o

It remains to multiply by 2p2.

T) =2conv(co, o) (0)p?

(24%4) —12 65766)) P>

8.2 Second Convolution

The second convolution requires f; g, which is already known.

Ty = 4y/mconv(co, f1.a-)(0)p

Again, the value when k = 0 is straightforward to compute.

o(0)frar(0) = e0(0)* 7
_ 822 p L C4) p
=N == 0N
The nonzero part is more difficult.
= (co(k) fr,ar(—F))
k=1
B > . ool PJ\/M\”(:D)
__p > PJUCN\()
f,; J\kNl()
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(8.16)

(8.17)

(8.18)

(8.19)

(8.20)

(8.21)

(8.22)

(8.23)

(8.24)

(8.25)

The Bessel J function contains an absolute value, and all values in ¢y are taken to even powers.

This means the positive and negative ranges will be the same. Only the positive range is shown.



pJ ] n (P) 1 10 1 p2 272 1 p?

Jin1(p)  K3N? KNS 2k5NG | 3E3NG | 2 NOKS

co(k)co(k)

Each of these produces a ¢ function when the sum is computed from £k =1---cc.

N3 k3 N3
k=1

~10 1 —10¢(5)

N5 Z B N©
k=1

= 1 —p%(5)

2N Zﬁ ~ 2N°
k=1

212 o 1 27%((3)

3N ZE ~ T 3N©b
k=1

p* i 1 p(6)

2N £« k6~ 2NS

These are combined to find the solution to the convolution.

N3 N5 2N5 3N5 2 N6

i _B) 10¢)  pA(5) | 2m(3) | 1pPC(6)
k=1

The same thing happens for k£ < 0 giving a total of

_ o (SB) 10¢(5)  p*(5) | 2m%¢(3) | 1p*¢(6)
Z"'2<N3 TTNS 2N T 3NS5 2 Ae )

k0

_20(3) 206(5) _ p%C(5) | 8(2)C3) | p*C(6)
TN NG E N5 E
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(8.26)

(8.27)

(8.28)

(8.29)

(8.30)

(8.31)

(8.32)

(8.33)

(8.34)

In the A9 expression this sum is multiplied by 41/7p. The contribution to As from this convolution

is

Ty =4+/mconv(co, f1,4r)(0)p

8¢(3 C(2)2 80C(5)  32¢(2)C(3)  4p%C(5)  4p%(C(6
7 (30 4 1060 B0 | Y _ 40, 4740

(8.35)

(8.36)



Table 8.1: Confirmation of A\ by numerical approximation.

’ Approx \ Exact ‘
z1((3)p? /N3 7.999999999 8
72((2)%p?/N* | 24.0000000000 | 24
r3((4)p? /N1 3.9999999999 4

24C(2)¢(3)p?/N° | 31.9999999979 | 32
z5¢(5)p?/N° | -79.9999999999 | -80
r6((5)p*/N® -3.9999999999 -4

27¢(2)¢(4)p?/N® | 15.9999999999 16
15((6)p?/N° -39.9999999999 | -40
19((6)p* /N 3.9999999999 4

8.3 Final Value for )\,

All that remains to generate Ao is to combine the two values computed above.

do _ 8((3) | 24C(2)*  AC(4) 80C(5) | B2C(2)C(3)  4p%((5)
A N3 N4 N4 N5 N5 N5
s 16C§i)6<(4) - 4%6) 4p N<6<6> (8.37)
_80(3) , 646(4) | B20(2)C(3) (4N +80)C(5) | (41— 12)C(6) (5.38)
N3 N4 N5 N5 N6 :

The convolutions can also be approximated numerically. The numerical computation involves
truncating the summations 35> - =% . The exact results are compared to the approxi-
mate results in Table The value of A3 will be dependent on uy and multiple derivatives of u;.

An automated method for dealing with Fourier series is now required. This library is described in

Chapter [0
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9. Fourier Library for Maple

9.1 Introduction

The Fourier series library has two goals. The first is the symbolic manipulation of series. This is
handled by the Fourier series object. When performing manipulations with this object, the target
is a new Fourier series. The coefficients of this new series will be built from manipulations of the
original coefficients, for example convolutions and derivatives.

The second and more difficult goal, is to find a closed from for the new coefficient function.
No algorithm exists to determine if a closed form expression exists and find it in general. This
means that the second goal will not always be possible, but a set of rules is introduced that deals
with the type of series that appear in the Laplacian Eigenvalue problem on the N-sided polygon.
Although not all series can be solved exactly, they can always be approximated numerically through

truncation.

9.2 Fourier Series Manipulation

The foundation of the library is a Fourier Series object. This structure allows for the creation
of a new series object and its use with the standard Maple interface for multiplication, addition,
derivatives, etc. The object overloads the standard operations with the definitions provided below.
During these calculations, the series will be kept in the object framework. Attempts to approxi-
mate or simplify the coefficients of the series are delayed until requested. This allows for efficient
calculations by delaying the most time consuming parts until needed.

The series object is a tuple of two functions {f(k), g(k,6)}. They form the series

i f(k)es 9 (9.1)

k=—o0

The primary motivation for this library is handling multiplication. When two series are multiplied
together a special convolution function is introduced. This function is completely inert until a value
is requested and an evaluation method is chosen.

Given two series objects A(6) and B(#), the coefficient is a function with one input, the iteration

index. For clarity, the exponent will be treated as a two input function, but in Maple it only has
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one input. The second input, 6, is evaluated using the eval command. The value 6 is required
to be symbolic in the return value of the function. This is enforced in the object constructor and

mutators.

A(r,0) = i f(k)eI*:0) (9.2)
k=—oc0
B(r,0)= > #(j)er? (9:3)

When these series are multiplied together, the object must confirm if the exponent functions are

equivalent. If g(k,0) = y(k, ) then the series can be combined.

AB =C'if g(k,0) = y(k,0) (9.4)

C= i h(k)edk:0) (9.5)
k=—oc0

h(k) =conv (f,z) (k) (9.6)

The conv function is a symbolic representation of the sum

conv (f,z) (k) = Z f(k—=35)x(5) (9.7)

The library will not attempt to evaluate this convolution until asked. It will store an infinite
series of inert conv function calls.

Multiplication by scalar, s, is also supported.

sA = i h(k)ed*-9) (9.8)
k=—o00
h(k) =s h(k) (9.9)

The addition of two series objects is dependent on the equivalence of their exponent functions.
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A+ B =Cif g(k,0) = y(k,0) (9.10)

C = i h(k)edk:0) (9.11)
k=—oc0

h(k) =f (k) + z(k) (9.12)

A piecewise function is used to add series to a scalar s.

A+ts= i h(k)edk:0) (9.13)
k=—oc0
s+ f(0) k=0
h(k) = (9.14)
f(k) otherwise

Derivatives are also handled by a revision to the coefficient function. Taking the derivative with

respect to variable v is implemented as

d o0
Z A= h(k)ed(k:0) 1
o k;w (k)e (9.15)
df (k) dg(k, 0)
= .1
nk) =T g (T (9.16)
One special case of integration is implemented.
Adf = f(0) (9.17)

—T

This is supported for any equivalent range, for example 0 - - - 27.
This functionality provides the algebraic manipulation needed for series calculations in our eigen-

value problem.
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9.3 Numerical Evaluation

A method to approximate convolutions at specific points is given. First, the series is truncated.
For example, to simplify a convolution of three functions we truncate two infinite series to have finite

ranges.

a(n) = conv (f,g,h) (n) (9.18)

The series is truncated to run from —t¢- - - ¢, which means calculating

trun(a,n,t) = Y Y f(n—k)g(—k — )h(j) (9.19)

k=—tj=—t

This is a double application of the formula from equation [9.7] with truncated ranges. Since these
are truncated ranges, an exact solution would only be found if the series has a finite number of
nonzero terms. If that were the case, selecting the correct ¢ would complete the calculations. Since
this is the exception rather than the rule, truncation is expected to produce only a numerical result.

To improve the results, Richardson Extrapolation is applied [94]. The approximate value is
computed at multiple powers of two. These values are evaluated using Richardson Extrapolation
to improve the numerical accuracy. The series are calculated from largest to smallest ranges. This
allows the built in memoization features of Maple to quickly recompute repeated function calls.

A formula to cancel one order of error using Richardson with ¢ = 4, 8,16 is shown. This method
is dependent on calculating at powers of two. It can be used recursively to eliminate additional error

terms. Maple is used to determine the formula based on the number of powers of 2 available.

2¢trun(a,n,8) — trun(a, n, 16)
2¢ — 1
__trun(a,n, 16) — trun(a, n, 8)

rich (a,n, 16) = (9.20)

(9.21)

~ trun(a, n,8) — trun(a, n,4)

The value c is the rate of convergence. The larger |c| is, the more accurate the calculations will be.
A value |¢| < 1 means a divergent series. The rate of convergence is also a numerical approximation.

The error in the truncated method is defined

trun(a, n,t) = a(n) + Bt + o (t7") (9.22)
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One application of equation will cancel the leading error Et¢, leaving an improved series.

rich (a,n,t) = a(n) + o (t“t1) (9.23)

Although the goal is to find an exact solution, it is not always possible. Numerical approximations
can give insight into the answer. These approximations are also crucial to testing the symbolic
evaluation methods. They are also used to quickly determine the order in N of an expression. This
is used to determine if expressions can be ignored because it does not contribute to the desired

orders of the solution.

9.4 Symbolic Evaluation

The approach to simplifying convolutions is to split the problem up into smaller components.
This reduces the expressions to a form that can be matched against a rule set. There are two main
motivations for the approach to simplification, zero elements may be special and sums starting at 1
and running over positive integers are more likely to have simplification rules.

The first point is motivated simply by the fact that Fourier series created for our motivating
problem tend to have special cases at zero. The implementation of scalar addition will introduce
special zero conditions. The second point is motivated by the set of rules described in Section [9.4.1
In addition, Maple has more simplifications for positive ranges.

Convolutions are split into three ranges, zero, positive and negative. The original convolution

formula is broken up into £k =0, k < 0, and k& > 0.
conv (f,g) Z fk=5)g9(4) (9.24)
j=—00
Zero Case
When £k is equal to 0 then the convolution simplifies to

conv (f,g) Z f(—= (9.25)

j=—00

This is split into into three distinct summations.
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2 = _Z F)g(=4) (9.26)

z2 =£(0)g(0) (9.27)

= f(=i)g(i) (9-28)
j=1

Each of these summations is simplified using the strategy described in Section [9.4.1

Positive Ranges

For positive ranges, assume that k£ > 0. The following sums can then be created

pr = Sk + (=) (929)
P2 = (K)g(0) (9:30)

k
pa = £k = Dg(0) (9:31)

P = (O)g(k) (932
ps = F(=i)g(k + 1) (9.33)

There is one important note about how these sums are created. Function inputs with additions
are not calculated directly. For example, f(k+ i) will first be evaluated as f(m) and simplified using
any assumptions on m. In this case, assuming that m is a positive integer. After this simplification
is done the substitution m = k41 is applied. Once the sums are created the rules from Section[9.4.1

are applied.

Negative Ranges

The approach behind negative k values mirrors that of the positive values. The ranges are
different, but the motivation is the same. To handle the negative value of the number, sums are

evaluated for —|k| which is equivalent to k when k& < 0.



7u=§:ﬂUMVHH)
ng =f(0)g(—|k[)

Ll
nszi:fﬁﬂk%%ﬂﬂfﬂ
ng = f(=[k[)g(0)

ns =S f(=lkl - i)g(i)
=1
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(9.34)

(9.35)

(9.36)

(9.37)

(9.38)

The same process, used for positive ranges, of handling addition of function inputs using a two

step process followed by simplification is performed.

Combining Ranges

Once each of these components has been simplified individually, they can be combined to deter-

mine a closed form for the convolution.

pr+-tps k>0
CODV(f,g)(k): 21+ 29 + 23 k=0

n+---+ns k<0
9.4.1 Simplification Rules
To simplify one algebraic expression over a range, the following steps are taken.

1. The expression is expanded into a sum of products normal form.

(9.39)

2. The normal form is then converted into a list of pairs. Each pair has an expression in terms

of the summation variable as the first element and any constant multipliers as the second

elements.
3. The pairs are then matched on known patterns.
4. After all matching has been completed, the pairs can be evaluated.

5. Finally, the sum can be created as a piecewise function.



9.4.2 Summation Patterns

The following patterns are matched to simplify series.

Zw(a k) =Psum(a,0,2,y)

k=x
y
Y(a, k
Z (kb )‘b>0 :Psum(a'7 bamay)
k=x
Y 1
Z m :anx(%bﬂ%xa y)
k=x
Y 1
Z m :Pnpx(aa bv n,zx, y)
k=x
Y 1
Z m :men(a7b7naxa y)
k=x

> a (ko (k) =Pap(a,b,,) 30 LB

k=zx 2
z—: Eb :-)k) =Psump(a, b,c,m)
Z E/J ( ) ) Psumn(a, b7 c, m)
Galk)
k‘-%éo m — - sum2 (a’7 b, C, n)

Zwa Pomz (b, ¢, d, k)k? =Paz(a, b, ¢, d, f, z,y)

ZPSUL() —Daul--- ,a)

k.a
k=x
Y
Psump("')
e < :Dzz SN
k; i (- .a)

Psql (a7 ba T, y)
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(9.40)

(9.41)

(9.42)

(9.43)

(9.44)

(9.45)

(9.46)

(9.47)

(9.48)

(9.49)

(9.50)

(9.51)

(9.52)

The functions Pymyx, Papx, and Pemn can be solved by Maple’s sum and simplify commands. No

additional code is needed for these. The subscript of D,, tells the range and type of Py, function.

The Z function has three outcomes. These are all only valid when ¢ > 1. When a = 1, then

Z(1,1,00) = co. For all functions, any case not caught returns the undefined function.
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Z(a’ L, OO) ZC((I) (953)
Z(a,n +1,00) —(1)“?’;_1%? - ni (9.54)
Z(a,1,n+1) :(—1)““% + ((a) (9.55)

The Psum function uses a helper G.
Gla,b) = i Iﬁcbv“ (9.56)
G(a,b,c) = i % (9.57)
G(1,2) =2¢(3) (9.58)

m—2
GLm)|nss = ((m £2)¢0m+1) = Y ¢lm —n)¢(n + 1)) (9:59)
Glom,m) s =3 (C(m)?¢(2m) (9.60)
G(2,4) =¢(3)* - 36(6) (9.61)
G(4,2) =22(6) ~ (3 (9.62)
G(2,3) =3(2)¢(3) - 5¢0) (9.63)
G(3,2) =5¢(5) - 20(2)¢(3) (9.64)
Also, note that

Gla,b) = C(a)C(6) +C(a+b) ~ Glba) (9.65)

The Psuym(a, b, z,y) function only simplifies when b > 0, x = 1 and y = occ.



Paum(a,b,1,00)[p>1,a>0 =(=1)**1al (((a + 1)¢ (D)
+¢(a+b+1) - Gla+1,b))
Poum (0,0, 1,00)[p>1 = = 7¢(b) + G(1,b) = ((b+a +1)
Poum(a,1,1,00) =(=1)*"alG(m,a + 1)

Poum(a,0,1,00)|as1 =(=1)"ta!¢(a)
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(9.66)
(9.67)
(9.68)

(9.69)

There is only one solution known for Piyo(a,b, z,y). An approximate solution is also used, but

only when numerical computations are done.

Paqo(1,3,1,00) =45¢(5) — 18¢(3)¢(2)
Pyo(3,1,1,00) =Psqo(1,3,1,0)

Piqo(1,1,1,00) =3.60617070947878285

The library also only has one known solution for Pyy1(a,b, ¢, z,y).

+1220(6) -~ 9¢(3)?

Psql(3707 17 1a OO) :Psql (07 37 17 17 OO)

1 3 1
Pequ(0,0,3,1,00) =((3)7* = 75577 = 5¢(6) + 57¢(3)

1

1 1
Paai(0,1,2,1,00) = = zsym’ + =n%0(3) = 2 X (1) + ((5) + 5Ga(2,2,-1)

360 12 72
Psq1(1707 27 1a OO) :Psql (07 1a 2a 1) OO)
1 1 1
Py1(1,1,1,1,00) =%W4X(1) - §7r2(67r2X(1) —((3))

_ gﬂzg(g) + (2,2, 1) + 10((5)

(9.70)
(9.71)
(9.72)

(9.73)

(9.74)

(9.75)

(9.76)
(9.77)

(9.78)

(9.79)

(9.80)
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Some of the expression are not know exactly. They are evaluated using the below values if a

numerical answer is requested, but remain symbolic for exact calculations.

Pa1(0,0,2, 1, 00) =2.13675051746520680444799058
Pa1 (0,1,3,1,00) = — .8894998046438163845241
Pai(1,1,3,1,00) =2.8363779207509225623
Piq1(0,0,4,1,00) =0.37260761268079832138375
Pa1(1,2,1,1,00) = — 4.1154663361428132256642
Piq1(0,2,2,1, 00) =1.3155159263314969068562

Pai(1,1,2, 1, 00) =2.836377920750922562384

(9.81)
(9.82)
(9.83)
(9.84)
(9.85)
(9.86)

(9.87)

After all the replacements has been made, rebuilding the expression and simplifying it alge-

braically are handled by Maple’s built-in tools.

9.5 Order of Evaluation

The order of multiplication can lead to divergent subexpressions. This is an additional motivation

to delay evaluation of convolutions until all convolutions have been collected. A series can be

examined to make predictions about the best way to order convolutions. The below example comes

from evaluation of the eigenvalue problem. Only truncated functions are shown to highlight the

problem terms.

0 k=0
a(k) =

) k

% +0 (%) otherwise

0 k=0
b(k) =

. k

ZE\;;\)/; +0 (#) otherwise

—2¢(2) 1 _

XK@ L o(L) k=0
[P0

k
(]\?21,22 + O (ﬁ) otherwise

(9.88)

(9.89)

(9.90)
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Our goal is to calculate the convolution

conv (a,b, ¢, c) (0) (9.91)

Since convolutions represent multiplications, the order in which the functions are multiplied will
not change the final answer. It can, however, affect the intermediate calculations. Solving the

convolution of a and b first leads to an infinity.

0 _1\n+1,2
3 aln—kbk) =Y % (9.92)

k=—00 k#0

= P r1)=o (9.93)

At this point, symbolic and numerical results can have a problem. This problem is avoided by
reordering the inputs
_ —24p°C(2)¢(3) | 60p%¢(5)

= .94
conv (a, ¢, ¢, b) (0) N5 + N5 (9.94)

Determining the convolutions (a,c) and (b, ¢) avoids these problems. This is done by sorting the
functions in the convolution. Although every ordering is mathematically equivalent, some produce

intermediate infinities. The expressions are ordered to avoid this.

9.6 Example: Poisson’s Equation Revisited

The example from Chapter [4.7] gave the first two terms in the target series. The third term
required manipulation of infinite series. With the introduction of the Fourier library described in
this chapter, the next term can be found.

The second energy variation, Fs is given by the CMS expression.

1 . . .
E2 = — 5 — 20N1V1u1 - VCNZVZU

+CZIV*CVu— C*N'NIV,V,u (9.95)

New symbols are needed. All but u; can easily be created.



Cl:=ddt(surface_velocity ()):
Cl:=restrictTime (Cl):
NI:=surface_normal (1):

BAb:=curvature_tensor (2, —2):

99

The three terms that do not depend on u; can be generated and integrated using the same

methods as in Chapter First, the terms are created.

Term2:=contract (CMSScalar (1/2)+ClxddZi(u)*ddZI(u)
[1,2]):

Term3:=contract (exponent (C0,2)*NIxddZi(ddZi(u))
xddZI(u),[1,2,3,4]):

Term4:=contract (CMSScalar(—1/2)*exponent (C0,2)*BAb
«ddZi(ddZI(u)) ,[1,2,3 ,4]):

Then they can be added and integrated.

partial:=Term2+Term3+Term4:
partial:=getCompts(restrictTime (partial ))[1]:
partial:=eval(partial , psi=theta/N):

partial:=convert (expand(series (partial N=infinity)), ‘polynom ‘):

partial:=expand(int (partial ,theta=—Pi..Pi));

This gives a result of

For the final term in F5, two series representations are introduced.

[e%S)
C = Z CoeikNG
k=—o00
[e'S)
Uy = Z fl(k,r)szO
k=—oc0

To define these the Fourier library must be included.

(9.96)

(9.97)

(9.98)
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libname :=
7./ CMSTensors” ,
7./ ExactConvolutionSolver”,
7./ FourierCoefficientManip”,
libname ;

with (CMSTensors ) ;

with (ExactConvolutionSolver );

with (FourierCoefficientManip );

The library also needs to be initialized for derivatives and integration.
initialize_fourier ([r],[theta,psi]);

These are defined using the library as

c0:=w—>eval (piecewise (
k=0,
—2«Zeta (2)/N"2
(=1)"k/(N"2xk"2)
) k=w);
fl:=w—>eval(piecewise (
k=0,
c0(0)*(r*J(1,r*rho)—J(0,r*rho))/(2%xJ(1,1))
c0 (k) *J (k*N, r+rho )/ (J (k+N, rho)#2)
) k=w);

CO_compts:=FourierSum (c0 ,k—>T*k«Nxpsi,c[0]):
C0:=CMSObject ([] , Array ([ CO_compts]) , true):
ul_compts:= FourierSum (f1 ,k—>I«k«Nx«theta ,f[1]):

ul:=CMSObject ([] , Array ([ul_compts])):

The definition of w; is determined from conditions detailed in [I0]. The method for computing

these partial derivatives is explained, for different conditions, in Chapter [7]
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The library can be used in conjunction with the CMS library to compute the last integrand.
Terml:=contract (COxddZi(ul)*ddZI(u) ,[1,2]):
The integral is the coefficient at 0 times 2.

Terml:=CMSScalar (2% Pi)*Terml:

Terml:=getCompts (restrict Time (Terml))[1]:
This can be approximated numerically.

EVAL METHOD: =EVAL_COEFFICIENT NUMERICALLY :

Terml_approx:=sort (eval (getCoeffAt (Terml,0),rho=1),N);

This gives a series that starts with the term

3.774886343 1
— +0 (]\74> (9.99)
It can also be solved exactly.
EVALMETHOD: =EVAL_COEFFICIENT_ALGEBRAICALLY :
Terml_exact:=sort (eval (getCoeffAt (Terml,0),rho=1),N);
This gives a series that starts with
m¢(3) 1
N3 + 0 <N4> (9.100)

This also produces terms of higher order, but these will be affected by higher order variations.

Only the N3 component is completely known at this point. The current series is computed as

energy [2]:=Terml _exact+partial:
E[N]=sum(1/i!*energy[i],i=0..2);

This gives the same solution presented in [10].

1 1 7 17m¢(3) 1
Exv — — Z — .101
N=" TNz T s O\ (9.101)
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10. Level Set Surface

10.1 Introduction

In this chapter, we provide additional evidence to support the correctness of our calculations.
We introduce another deformation that uses the same expressions but has a predictable answer.
These calculations are an exact match for the other eigenvalue problems up until the convolutions
are evaluated. The values of the ¢ coefficients are computed differently. This leads to each variation
being equal to zero.

Two deforming manifolds have been defined so far for the same CMS expressions, an ellipse and a
polygon. When deforming the unit circle into the regular N-sided polygon, the CMS expressions are
evaluated two ways, numerically and symbolically. If these results match, it shows the expressions
were evaluated correctly. Independent numerical calculations for specific values of N are also used
to give support for the correctness of the expressions [5§].

Numerical methods are more promising for the deformation of the unit circle into the ellipse with
semi-axis A = 1 and B = 1 4 €. Using entirely independent numerical calculations, this series can
be approximated to extremely high accuracy for different values of e.

Both these problems use the same CMS expressions. In both cases, confirmation of the calcu-
lations is done through numerical means. In this Chapter, a third deformation is introduced where
the deformation itself is non-trivial, but the answer is predicable and trivial. This deformation will

lead to all eigenvalues except \g being 0.
10.2 Computation of Surface Velocity

The surface velocity Cy for the level set is

Co=(ViFViF) *F, (10.1)

The value of F is chosen to ensure that all eigenvalues after A\g will be 0.



b=V

F =Jy(pr) + atJi(pr) cosb

Fli=o =Jo(pr)

Ft =

The value of Cy is computed at ¢t = 0.

J1(pr) cos 6

1/2

Co = (V;FV'F) F,
— ij —-1/2
dF dF
| @ 10 dr P
dF dF
@10 = 9 |
L [3 J
_ i —1/2
dF? dF dF
_ dr dr do Ft
1 dFdF 1 dF?
L r2 df dr r2 do i
dF? 1 dFp?\ 2
= e —|— —_—— Ft
dr r2 do
—1/2
dF?
(%) #
T

_aJi(pr)cosf

Ji(pr)p
_acosf

p

Next, Cy is converted to a Fourier series.

Co

0o
_ § coesz

k=—oc0

An integral is taken to determine the Fourier coefficients.

103

(10.2)
(10.3)
(10.4)

(10.5)

(10.6)

(10.7)

(10.8)

(10.9)

(10.10)

(10.11)
(10.12)

(10.13)
(10.14)

(10.15)

(10.16)
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co(k) :% /: %Osae*“@@ (10.17)
co(1) :%% (10.18)
co(—1) :%% (10.19)
collk] # 1) =0 (10.20)

10.3 Derivatives of the Surface Velocity

The invariant time derivatives of the surface velocity must be computed using the CMS.

To compute C; = VCy, the rules of the CMS are applied. This is automated through the use of

the CMSTRS.
VCo =V ((ViFV'F) ' F) (10.21)
Oy =VFE (V;FViF) " 4 BV (v, FViF) 2 (10.22)
= (V;iFViF) " (Fy + CNIV,F)

- %Ft (V,FVIF) 2V (V,FVF) (10.23)

—Fy (ViFViF) " 4 ONIV,F, (Vi FViF)
- %Ft (ViEVER) % (2V, V' F 4 2CNIV,V,FV'F) (10.24)

=Fy (ViFViF) 2 4 ONIV,F, (Vi FVIF) P
— BV ENF (Vi FVEF) 2~ RONIV,V,FVF (Vi FVRR) (10.25)

These expressions can be evaluated automatically using the CMSTensor library. The calculations
are performed by hand here for C7, but the difficulty increases significantly with Cs. Each term in

the sum can be evaluated independently. First, the subexpressions are simplified.
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(V. FviF) 2 :m (10.26)
(V.FviF)~? :W (10.27)
Fy :% (aJ1(pr)cosf) =0 (10.28)

V.F,V'F :%% %%% (10.29)
:%%1: 4o (10.30)
=J1(p)*pacos b (10.31)

The terms of the sum are now computed. C] is a surface object, so the expressions are evaluated

at r=1.

Ty =F, (V;FV'F) "/? (10.32)
-0 (10.33)
Ty =CN'V,F, (V,FViF) /? 10.34
J
0 1 .
- <O‘C;’S ) (Jl(p)p> NIV, F, (10.35)
- ] d
«cosf 1 %
- 10.36
Jilp)r* | dr; (10.36)
do .
= J
[ dF; g
acosd | Gt O
_ 10.37
Ji(p)p? | dr 0 ( )
L dé j
acosb dF;
= Tt 10.38
T (o) dr (10.38)
acosf acosfJ1(p)
=" ~ e 10.39
o (apcost(p) - 2 (10.30)
a?cos? 0 Jo(p) a?cos?O
A (10-40)
2 2
= L(;SH (10.41)

p



Ty = — BV;EV'F (V FVhF)
1
=—(aJ 56)) (J1(p)” 50) | ——5—
(o)) (00 o00) (75
a?cos?f
= — T

Ty =— FCNIV,V,FV'F (V FVEF)

1 . .
S 0) OCNIV .V, FV'F
(Jl(p)sps) (a1 (p) cos ) CNIV,V,FV

acosf [«cosf , .
=— N'V.V;FV'F
Ji(p)?p? ( p ) !
a?cos?6 . ,
=— —— NIV, V,FV'F
AP
_ a?cos? 6 dQlﬂ
Ji(p)2p* \ dr? dr
a?cos? 6 9
=— ——  (—p2J1(p)?
Jl(P)2p4 ( P l(p) )
a?cos? 6
= — T

These combined to give the expression for Cj.

a?cos?f  a’cos?f  a®cos?l
2 o 2 2
p p p
—a?cos?d
= 2
p

Cy =0 —

The integral used to determine the Fourier coefficients is only nonzero at three points.

2 J_, p?
a(2)=- ijj
c1(0) =— ;(zj
a(=2)=- ijjj

1 (otherwise) =0
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(10.42)

(10.43)

(10.44)

(10.45)

(10.46)
(10.47)
(10.48)
(10.49)
(10.50)

(10.51)

(10.52)

(10.53)

(10.54)
(10.55)
(10.56)
(10.57)

(10.58)



10.4 Computation of A\

The first lambda value is trivially computed using the general solution to A;.

A = —2p%co = —2p*0=0

The second lambda value requires expanding convolutions.

A2 = 2p*conv(cy, ¢p)(0) + 4v/mpconv(co, f1.ar)(0) — 2p%c1(0)

These convolutions each have a finite number of terms and can be computed directly.

—1a?
2 _ 2 _ 2
—2p%c1(0) = —2p EW !
2p%conv(cy, cp)(0) =2p? Z co(k)eo(—k)
k=—oc0

=4p*(co(1)co(—1))

The last term requires the definition for f; 4 be evaluated on this deformation.

up = Z fl(k)eikﬁ

k=—o00

10 (Jolpr)—rJ(Lpr)p) I _
f 2 P27 J1(p)

co(k)p ik (pr)
Oﬁ Jix) (p) k#0

co(0)p k=0
fl,dr = VT

co(k)p /)J\/k\(ﬂ)
N O] k#0

Since ¢ is only nonzero at two points, this function simplifies greatly.
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(10.59)

(10.60)

(10.61)

(10.62)

(10.63)

(10.64)

(10.65)

(10.66)

(10.67)

(10.68)
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co(1)p PJ\IM(I’) _
7 amw k=1

—J co(m)p PI|_1(p) _
Fuar =] @etln@ gy (10.69)

={ —alp L (10.70)

e}
=
e

—_

Il

=
ond
Il
0

e (10.71)

0 |k #£1

The last term is computed by expanding the convolutions.

oo

4v/mpeonv(co, f1,a,)(0) =4/7p kZOO co(k) fr,ar(—k) (10.72)
=4y/7p (co(1) frar(~1) + co(=1) frar(1)) (10.73)
n(32) () () () o
e(5)
= —2a? (10.77)

Adding these values together shows that they cancel out.

N=a’+a*—-2a>=0 (10.78)

The first and second A values are zeroed. By design all higher lambda values will also be zero.



Ao =p
A1 =0
Ao =0
A3 =0
Mg =0
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(10.79)
(10.80)
(10.81)
(10.82)

(10.83)

This deformation gives an additional justification for the accuracy of the eigenvalue computations.

On this boundary, the solution is known. The evaluation of this problem adds additional support

that the CMS expressions and the convolution expressions found for the Laplacian eigenvalues are

correct. This provides an additional method of testing for all our libraries.
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11. Results and Analysis

11.1 Introduction

This chapter examines the results of our experiments with the SCMS. The results of all the
problems described in earlier chapters are given. These results are analyzed to show that the SCMS
solved each problem.

The final series found for each problem is also given. Expression swell will be analyzed for each
problem. In all cases, the final answers are simple, but intermediate calculations are very large. The
contour length problem from Chapter [5]is examined first. This problem has a well known answer
that can be easily compared to.

Next, the level set problem is examined. This problem was shown in Chapter This is the first
of three Laplace eigenvalue problems on Dirichlet boundary conditions. This problem has a trivial
solution and adds additional support to the correctness of our CMS expressions.

The two deformations described in Chapter [6] are examined last. First, the deformation of the
unit circle to the ellipse with semi-axis 1 and 1+ €. This series can be numerically approximated to
high orders for verification. The series presented here has the most terms found to date.

The most difficult and interesting problem will be reviewed last, the deformation from the unit
circle to the N-sided regular polygon. In this series, we present two previously unknown terms and
confirm them using our own library for numerical aproximations. Full tables for all terms evaluated
in the N-sided regular polygon deformation can be found in Appendix [A]

All computations in this section were completed in OS X Yosemite (10.10.5) with a dual-core
2.9 GHz Intel Core i7 and 8GB 1600 MHz DDR3 ram. The Java VM is Java(TM) SE Runtime
Environment (build 1.8.0-60-b27) and the compiler is javac version 1.8.0.60. The version of Maple
used in 17.00, Maple Build ID 813473.

11.2 Contour Length

The contour length problem was originally described in Chapter In this problem, the unit
circle was deformed into a ellipse with semi-axis A = 1+ ¢ and B = 1. A series expansion of the
contour length of the surface was then given in terms of €. This series has a know answer which can

be computed using alternative means.
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The contour length is the integral of 1 over the surface. The surface is depended on time ¢. It is

the unit circle at t = 0 and the ellipse at ¢t = 1.

L(t) :/ms (11.1)

In Maple the below command can expand the series for any number of terms.

restart ;
assume (epsilon >0);
max_order:=9;
L:=int (
sqrt ( (1+epsilon)”"2xcos(theta) 2+sin (theta)"2)
,theta=0..2xPi
);
expand (series (L/Pi,epsilon=0,max_order));
The output of this command is the following series for the contour length L(t) at time ¢ = 1.

Each term has a factor of m which is divided out for clarity.

L(1) e & 17et 1965 8965 109€7 5
9 €_€ _ _ 11.2
p tet g -1 Bz " 1024 Taioe  1esaa T O () (11.2)

The values computed using the SCMS give the same series. The variations are computed as

follows.
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Lo = L(0) =2r (11.3)
L= VL =T (11.4)
Ly = V2L o :%62 (11.5)
Ly=V'L| =~ 37;63 (11.6)
Li=V'L| :516164 (11.7)
Ly=V°L| =~ 281527;65 (11.8)
L¢ = VL o :%?;6 (11.9)
L;=V'L = Mi’g’%ﬁ (11.10)

Creating the series expansion from these expressions gives Equation [T1.2]

L(1) <= Ly
2 N 2R (Eq T2 11.11
- kZ:Ok!W (Eq[I1.2) (11.11)

Automation of these solutions begins with the CMSTRS library. Application of the CMSTRS
library is detailed in Table The expression size shows the number of CMS products that are
added together to make the final expression. This number is growing roughly exponentially, L; has
approximately 3*~! terms. The number of rules applied is also growing roughly exponentially. The
CMSTRS library can apply over 100,000 rules in under 20 seconds. Combining equivalent terms to
simplify the expression does not contribute significantly to the computations. Only on the last two
orders Lg and L7 do these computations overtake reductions. In the last order computed, 19,265
terms are combined taking a total of 6 minutes.

The expressions are next output to Maple for evaluation in a polar coordinate system. The main
computational complexity in these expressions is the surface velocity C'. Computation of V°C' takes
2 minutes, 4 seconds, and 719 milliseconds in Maple. The next order, VOC, takes 47 minutes, 19
seconds, and 301 milliseconds. This is by far the most demanding part of the computations. The

time to evaluate the expressions in Maple once the C values have been computed is given in Table

L1.2
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Table 11.1: This table shows the results of generating CMS expressions for the contour length
problem using the CMSTRS library.

Order | Expr. Size | Rules | Time to Reduce | Combined | Comb. Time

Ly 1 8 11ms 0 Oms

Ly 2 36 11ms 1 4ms

L3 8 118 36ms 3 3ms

Ly 27 946 204ms 75 36ms

Ly 84 4,765 738ms 627 372ms

Lg 264 23,418 3s 499ms 3,354 11s 522ms
Ly 827 105,473 18 sec 851ms 19,265 6m 29s

Table 11.2: This table shows time taken to evaluate the CMS expressions for the contour length on
the circle to ellipse deformation in Maple.

Order | Time to Evaluate
Ly 19ms
Ly 63ms
Lo 308ms
L3 213ms
Ly 544ms
Ls 1s 957ms
Lg 5s 302ms
L~ 18s 129ms

Computation of VFC' is a purely algebraic problem. The value of C' is derived in terms of ¢ from
the coordinate deformation. The time to compute V°C' is entirely devoted to allowing Maple to
determine the derivative with respect to ¢t. Computing this value for higher orders is not relevant to
testing the SCMS. This time complexity is in Maple’s underlying libraries. This is the motivation
for stopping calculations at L. Computing Ls would require V7C.

The contour length experiment uses the majority of rules in the CMSTRS libraries. Rules
related to spatial integration and the eigenfunction u are not applied in this problem. Since the
exact solution to this problem can be found using other automated means, confirming the series

presented against the exact series shows that the SCMS accurately replicates the calculations of the

CMS.

11.3 Level Set Problem

The level set problem described in Chapter [10] uses all the rules in the CMSTRS and also has a

known answer. This problem uses the same expressions as our other eigenvalue problems. Since CMS
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expressions are can be evaluated in any coordinate system, the same expressions can be evaluated
three different ways for three different problems. This deformation ends in the same state it started
at t = 1. This means all the variations will be equal to 0.

Computation of the surface velocity presents a problem here as well. The value of C' is itself a
CMS expression. The SCMS must first be used to evaluate these values before they can be plugged
into the eigenvalue formulas.

Table [I1.3] shows time and size complexity of the CMS expressions. In this problem, combining
equivalent terms becomes the bottleneck. If like terms are not combined, then C4 will have 11,506

terms. This will just move the bottleneck to the CMSTensor library.

Table 11.3: This table shows the growth in the expressions for the surface velocity and its derivatives
for the level set problem.

Order | Expr. Size | Rules | Time to Reduce | Combined | Comb. Time
Ch 4 206 145ms 2 12ms
Cs 20 1,985 567ms 23 50ms
Cs 112 17,582 2s 197ms 195 2s 834ms
Cy 497 152,083 18s 305ms 2,766 1h 9m 46s

Once the Cy values are computed, the remaining expressions exactly match those of the ellipse
and polygon problem. The convolutions for the Laplacian Eigenvalues under Dirichlet boundary
conditions can be evaluated with the new ¢, Fourier coefficients. This surface deformation has a
finite number of terms in each convolution. They can be solved exactly by expanding the convolutions
far enough that all non-zero terms are included. The results are all zeros as expected. This adds

more justification that our expressions have be computed correctly.

Ao Az Mg
At=1)=do+ M+ 55+ 50+ 77 (11.12)
=p>+0+0+0+0 (11.13)

=p? (11.14)
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11.4 Ellipse Eigenvalues

In the ellipse version of the problem, the surface velocity is computed using the same means
as the contour length problems. There are three different sets of CMS expressions that must be
derived to solve the problem. These are all also used for the level set problem and the regular
polygon problem.

To create eigenfunctions, the surface condition and normalization condition must be calculated.
These are needed to one order lower then the target. We have computed up to g, meaning only us
is needed. The value of u; is the starting point and requires no rule applications. The derivation of
surface conditions only contributes a small amount of complexity in the CMS. The growth is show

in Table[I1.4l The normalization condition is also needed and is shown in Table [[1.5

Table 11.4: This table shows the growth in the expressions for the surface condition of uj using the
CMSTRS library.

Order | Expr. Size | Rules | Time to Reduce | Combined | Comb. Time
U 4 82 19ms 1 Oms
Uus 15 540 61ms 7 4ms
Uy 48 3,521 333ms 70 91 ms
us 147 17,634 1s 718ms 437 1s 332ms

Table 11.5: This table shows the growth in the expressions for the normalization condition of wuy
using the CMSTRS library.

Order | Expr. Size | Rules | Time to Reduce | Combined | Comb. Time
Uo 11 42 11ms 1 1lms
Uug 40 648 101ms 32 4ms
Uy 132 4,149 640ms 370 50ms
Uus 439 21,268 3s T17ms 2,518 1s 58ms

The values of A need to be computed to order k£ = 6. The growth in these expressions is shown in
Table Combining equivalent terms to save computational complexity in the Maple evaluation
is the first bottleneck encountered here. Maple’s integration command could not fully simplify the
Bessel expressions that appear in the sixth normalization condition without using hypergeometric

functions. Maple considers these expression simple, but it is possible that integrals exist only it terms
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of other Bessel functions. For a general series to present itself here, all integrals of Bessel functions
must be expressions of Bessel Functions. Hypergeometric functions do not lead to a simple answer,
although it is an equivalent answer. We do not compute the next order because of this unexpected

computational problem not related to the CMS itself.

Table 11.6: This table shows the growth in the expressions for A using the CMSTRS library.

Order | Expr. Size | Rules | Time to Reduce | Combined | Comb. Time
Ao 4 155 43ms 2 3ms
A3 17 973 154ms 17 13ms
A4 57 6,595 679ms 143 124ms
As 205 33,004 3s 320ms 661 3s 832ms
A6 726 179,921 20s 867ms 4,129 4m 40s 901ms

When evaluating in Maple, there are two steps to the process. First, the expressions are converted
into convolutions. Additional simplification takes place during the creation of these convolution
expressions, further decreasing the number of terms that need to be evaluated. The comparison
between the size of the CMS expressions and the convolution expressions is shown in three tables.
The A\, expressions are in Table The uy functions are in two tables, the surface condition in

Table [[1.8] and the normalization condition in Table [[1.01

Table 11.7: The number of convolutions generated from the A;’s CMS expression.

Order | CMS Expr. | Conv. Expr
A1 1 1
A2 4 3
A3 17 9
A4 57 27
As 205 82
A6 726 253

Evaluation of these convolution is straightforward. Every Fourier coefficient function has a finite
number of non-zero entries. The convolutions can be expanded far enough to include all non-zero
entries. Maple can then simply the expressions using its built in routines. The first seven values are

computed below both symbolically and numerically when p is the first zero of Jj.
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Table 11.8: The number of convolutions generated from the u surface condition’s CMS expression.

Order | CMS Expr. | Conv. Expr
Ul 1 1
(5] 4 3
us 15 9
Ug 48 23
Us 147 62

Table 11.9: The number of convolutions generated from the wuj normalization condition’s CMS

expression.

Ao

A

A2

A3

A4

As

:p2

Order

CMS Expr.

Conv. Expr

Uy

1

U2

4

u3

15

Y DN —

Uy

48

[t
[N

Us

147

~25.783185962946785

==

~ — 5.783185962946785

32

L 4
ZP

~17.036088914926359

_3
5P

~ — 67.517417711877445

15

15 4
?,0

87 & 21 4
128" 256"

~333.919528952098846

315
=1’

(0] 1305
2—?p4—7 6

1575 4,

315 s

128 7 " 256"
~ — 1979.913206464417536

27405 5 11155 ¢ 2665

8

256 "

~13695.804996358888013

1536 © 1536

145
1024

12

(11.15)
(11.16)
(11.17)
(11.18)
(11.19)
(11.20)
(11.21)
(11.22)
(11.23)
(11.24)
(11.25)
(11.26)

(11.27)

(11.28)
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The values of Ay to A3 are well known [59]. The values of A4 to Ag were computed to high numerical
precision by Pavel Grinfeld [38]. Our results match these calculations giving further support that

the SCMS system works correctly and that these exact symbolic expressions are correct.

11.5 N-sided Regular Polygon

At this point, we have tested all the problems where outside methods can easily be used to
confirm our results. The final problem requires its own confirmation method. Recently, numerical
progress has been made by Robert Jones which will also be used to verify our results [5§].

One of the most amazing features of the CMS again provides huge advantages in this problem.
CMS expressions can be evaluated in any coordinate system. All three of our eigenvalue problems
start with the same surface, the unit circle. Their unique deformations are encapsulated in the
surface velocity for each surface. Since all three start with the same coordinate system, a majority
of the computations overlap. From the previous two problems, it has been shown that the CMS
expressions generated are correct. Additionally, it has been shown that the evaluation of these CMS
expressions in terms of abstract Fourier coefficients is also correct. All that remains to solve this
version of the problem is to plug in the correct values for the Fourier coefficients of the surface
velocity and its derivatives cg, c1, -+ , 4.

The values needed are given below expanded up to N~6. The value of ¢ is of order N—8 and

would appear in Ag but it is not needed for our series

V=3 cm(k)eN? (11.29)
k=—oc0

248 -348 0 () k=0

co(k) = (11.30)
_1\k _1\k _1\k _1\k
G +2 S0 5 (el + 10 g

_1\k _1\k

—46 5242 161 SH0 4 0 () k#0
0 k=0

c1(k) = (11.31)
0 k#0
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1258 249 1 0 (k) k=0
ea(k) = ) ) ) (11.32)
—12 L@ 4 04 CLT 180 S4E)
+1044 EEED 1500 UL 4 0 (%) k#0
180 49 + O (& k=0
es(k) = v 0 (3) (11.33)

~1080 S5 41800 US40 () K #0

~324 58 +0 () k=0

N6 N

calk) = (11.34)
k k k
2160 164 111880 LSU- — 8856 S 62 L 0 (L) k£0
k2N kSN k4N N

0(3) k=0

Cy; = (1135)

O(3) k#0

To show how the computations are tested, one convolution from A3 is examined. The expression
for A3 contains 9 different convolution expressions. Tables like the ones below are given for all
convolutions in Chapter

The term evaluated here is the fourth convolution and first non-trivial convolution that appears
in A3. The closed form for this expression is determined using the Fourier library from Chapter [0}
This library is also used to give numerical estimates for the convolutions using truncation.

The exact solution is

Ty = (4p* — 4p*) conv(co, co, ¢o)(0) (11.36)
216¢(6)p*>  216¢(6)p*
- %G)p - ]C\;G)p (11.37)

Table shows the numerical results compared to the exact solution. Since this term is part
of A3 when the Taylor series is formed, this value will be divided by 3!. This is accounted for in
the tables. This convolution contributes to both the p? and p* component of the final series. After
division by 3! the result should be 36¢(6). Taking the best numerical result in the table and dividing

out the {(6) returns 35.9999999 - - - as expected.
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The approx range column gives the truncation range. When this is set to 4 then the series is
computed from —4 to 4, a total of 9 terms. This convolution contains three functions, the convolution

of the first two is found exactly and tested. It is then combined with the third function. Table [11.10

only shows this final convolution of two functions.

The result column contains the numerical approximations. The relative and absolute error be-
tween this numerical result and the exact result is given. The convergence towards the exact answer
is also shown in Figure [[1.1]

The convergence rate is used to determine how fast the numerical computations are approaching
some fixed value. There is not enough information to estimate a convergence rate until the third
approximation. This approximates the error as O (r*) where r is the range used and z is the
convergence rate. The final column shows the time it took to approximate each summation.

The table also shows the results of applying Richardson extrapolation, described in Chapter [0
Calculations are done with 64 digits of accuracy. Richardson extrapolation is used to take the list of
numerical results and eliminate error terms. In this case, Richardson Extrapolation works extremely

well. The extrapolated result is accurate to 60 digits. Table [11.11| repeats these calculations on the

p* term, but the results are the same.

36.6244 ,
|
366221 |
|
36.6204 |
I
|
3366181 |
=
3 |
366164 |
|
36.6144 i
|
I
36.612-r
i T T T T T T T
2 4 6 8 10 12 14
log[2](Range)
|— Exact — — Truncated |

Figure 11.1: Convergence of numerical truncation to the exact answer for the fourth convolution of

As.



Table 11.10: Order p?/N°® contribution from convolution 4 of 3
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T,/3! = %, v = (216 (6)) /3!
v = 36.62435023144016902972264547247313900446542964118272822632671189
Approx Range Result Abs. Error Rel. Error Conv. Time
2 36.610605735565 | 1.37445e — 02 | 3.75283e — 04 n/a 0.003 sec.
4 36.623532797464 | 8.17434e — 04 | 2.23194e — 05 n/a 0.002 sec.
8 36.624314781685 | 3.54498¢ — 05 | 9.67929e — 07 | —4.047 | 0.004 sec.
16 36.624348929133 | 1.30231e — 06 | 3.55585e — 08 | —4.517 | 0.008 sec.
32 36.624350187365 | 4.40747e — 08 | 1.20343e¢ — 09 | —4.762 | 0.014 sec.
64 36.624350230007 | 1.43282¢ — 09 | 3.91220e — 11 | —4.883 | 0.030 sec.
128 36.624350231395 | 4.56637¢ — 11 | 1.24681e — 12 | —4.942 | 0.064 sec.
256 36.624350231439 | 1.44104e — 12 | 3.93464e — 14 | —4.971 0.143 sec.
512 36.624350231440 | 4.52531e — 14 | 1.23560e — 15 | —4.986 | 0.310 sec.
1024 36.624350231440 | 1.41762e — 15 | 3.87070e — 17 | —4.993 | 0.726 sec.
2048 36.624350231440 | 4.43547e — 17 | 1.21107e — 18 | —4.996 | 1.922 sec.
4096 36.624350231440 | 1.38693e — 18 | 3.78691e — 20 | —4.998 | 6.105 sec.
8192 36.624350231440 | 4.33549¢ — 20 | 1.18377e¢ — 21 | —4.999 | 25.695 sec.
16384 36.624350231440 | 1.35505e — 21 | 3.69985e¢ — 23 | —5.000 | 92.262 sec.
32768 36.624350231440 | 4.23484e — 23 | 1.15629e — 24 | —5.000 | 420.616 sec.
Richardson 36.624350231440 | 8.38800e — 59 | 2.29028e — 60 n/a n/a
Error: O (range°-%)

Table 11.11: Order p*/N® contribution from convolution 4 of A3

7,/3!

vp

v v =(=216¢(6)) /3!

v = —36.62435023144016902972264547247313900446542964118272822632671189

Approx Range Result Abs. Error Rel. Error Conv. Time
2 —36.610605735565 | 1.37445e — 02 | 3.75283e — 04 n/a 0.003 sec.
4 —36.623532797464 | 8.17434e — 04 | 2.23194e — 05 n/a 0.002 sec.
8 —36.624314781685 | 3.54498e — 05 | 9.67929¢ — 07 | —4.047 | 0.004 sec.
16 —36.624348929133 | 1.30231e — 06 | 3.55585e — 08 | —4.517 | 0.008 sec.
32 —36.624350187365 | 4.40747e — 08 | 1.20343e — 09 | —4.762 | 0.014 sec.
64 —36.624350230007 | 1.43282¢ — 09 | 3.91220e — 11 | —4.883 | 0.030 sec.
128 —36.624350231395 | 4.56637e — 11 | 1.24681e — 12 | —4.942 | 0.064 sec.
256 —36.624350231439 | 1.44104e — 12 | 3.93464e — 14 | —4.971 | 0.143 sec.
512 —36.624350231440 | 4.52531e — 14 | 1.23560e — 15 | —4.986 | 0.310 sec.
1024 —36.624350231440 | 1.41762e — 15 | 3.87070e — 17 | —4.993 | 0.726 sec.
2048 —36.624350231440 | 4.43547e¢ — 17 | 1.21107e — 18 | —4.996 | 1.922 sec.
4096 —36.624350231440 | 1.38693e — 18 | 3.78691e — 20 | —4.998 | 6.105 sec.
8192 —36.624350231440 | 4.33549e — 20 | 1.18377¢ — 21 | —4.999 | 25.695 sec.
16384 —36.624350231440 | 1.35505e¢ — 21 | 3.69985e — 23 | —5.000 | 92.262 sec.
32768 —36.624350231440 | 4.23484e — 23 | 1.15629¢ — 24 | —5.000 | 420.616 sec.
Richardson —36.624350231440 | 8.38800e — 59 | 2.29028e — 60 n/a n/a
Error: O (range°0%)
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Table[11.12|shows a term from A3 that has a slower convergence rate. The convolution expression

and exact answer are

T7 = — 4mwconv(co, fi,ar, f1,4r)(0) (11.38)
C160%(4) | 320C2)C(3) | 803 | 2240(6)0° 88 5C(0)
R + NG + N + 3 N6 3 NG (11.39)

Table [11.12] only looks at the p?/N® contribution from this convolution. The convergence rate

here is only —2 instead of —5. A larger exponent means a faster convergence. In this case, Richardson
only gets 48 digits correct instead of 60 digits. Figure shows that this is still clearly converging

towards the exact answer.

Table 11.12: Order p?/N°® contribution from convolution 7 of A3

Ty/3! = 5,0 = (32¢ (2)¢(3)) /3!
v = 10.54562320158557929705112235458733638443814115552071577971105214
Approx Range Result Abs. Error Rel. Error Conv. Time
2 10.207613801337 | 3.38009e — 01 | 3.20521e — 02 n/a 0.017 sec.
4 10.438615344676 | 1.07008¢ — 01 | 1.01471e — 02 n/a 0.023 sec.
8 10.515371067399 | 3.02521e — 02 | 2.86869¢ — 03 | —1.590 0.036 sec.
16 10.537574585531 | 8.04862¢ — 03 | 7.63219¢ — 04 | —1.789 0.070 sec.
32 10.543547247410 | 2.07595e¢ — 03 | 1.96855¢ — 04 | —1.894 0.152 sec.
64 10.545096042486 | 5.27159¢ — 04 | 4.99884e — 05 | —1.947 0.301 sec.
128 10.545490378244 | 1.32823e — 04 | 1.25951e — 05 | —1.974 0.689 sec.
256 10.545589865789 | 3.33358¢ — 05 | 3.16110e — 06 | —1.987 2.214 sec.
512 10.545614851343 | 8.35024e — 06 | 7.91821e — 07 | —1.993 2.971 sec.
1024 10.545621111985 | 2.08960e — 06 | 1.98149¢ — 07 | —1.997 8.499 sec.
2048 10.545622678930 | 5.22655e¢ — 07 | 4.95613e — 08 | —1.998 | 18.389 sec.
4096 10.545623070890 | 1.30696e — 07 | 1.23934e — 08 | —1.999 37.881 sec.
8192 10.545623168908 | 3.26779e — 08 | 3.09872¢ — 09 | —2.000 | 96.229 sec.
16384 10.545623193416 | 8.16998¢ — 09 | 7.74727e — 10 | —2.000 | 279.892 sec.
32768 10.545623199543 | 2.04256e — 09 | 1.93688¢ — 10 | —2.000 | 1005.533 sec.
Richardson 10.545623201586 | 4.51200e — 47 | 4.27856e — 48 n/a n/a
Error: O (range™20%)

Tables for every convolution are given in the appendix, Chapter [A] The final values computed
for each A are below. The details of each convolution and its answer are also given in the appendix.
For some convolutions in A5, only numerical approximations were possible. We have a hypothesis

for some properties of this series based on our results.
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Figure 11.2: Convergence of numerical truncation to the exact answer for the seventh convolution

of )\3.

1. Each term in the series has the form aﬁ,’;zg [1(z(8:)).

2. The inputs to the ¢ function are related to the order of N2 by Y (b;) = as. They may not
include {(1) because it is co.

3. The coeflicient a; is always a small integer.

4. The order of p is related to the order of N®. At as = 3 there is just p2. At as = 5, we have

p? and p*. The next order, as = 7 has three p components for p?, p*, and pb. The powers of
p take the even values from 2 to as — 1.
5. When the series is scaled to a polygon of area m, all (b;) where b; is even cancel.
Given the numerical results, only one answer was possible that would match all our computations
and all these hypothesis. Specifically, the small number of terms that could only be approximated

converged towards the ((6) value needed to meet the 5th point. If (6) cancels out when the surface

area is scaled to size 7, then the value of A5 we compute must be correct. All our evidence supports

this hypothesis and the final value we have computed.
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Ao =p? (11.40)
N :4C](52p2 N 66](5202 Lo (J\;) (11.41)
L 8637 | 640 | (32(2)C(3) — 80C(5) — 4¢(5)p?) p
2TTNs TN T N®
L (12() ;34(6#2) ” o (]\i?) (11.42)
N _ 24P (96¢(2)C(3) + 144¢(5)) p?
3 — N4 N°
2 2 _ 4
| 948C(6)° + (24]i(63) 120(6) p* (;J (11.43)
\, - (672¢(5) — 384¢(2)¢(3)) p?
4 N5
2 2
| (192¢3) N16152<(6)) o (zé?) (11.44)
s :% +0 (;7) (11.45)

This forms the Taylor series

Av _ o K(©2) 4CB) | 28¢(4)
TN_H Nz NS TN
L 126(5) +16¢(2)¢(3) — 2X¢(5)
N5
N 8¢(3) HMJf;(sG) + 4¢(3)%A Lo (A;) (11.46)

Robert Jones of HBE Labs recently used numerical methods to approximate the answer to 100
digits on the regular polygons for fixed N [58].

The series in Equation [11.46|is for a polygon with surface area 27 area. The numerical results
in [58] are for a polygon with surface area w. This is only a difference in the scale of the shape,
Equation [11.46[ can be scaled to have area .

The scaling factor is

Nsin () cos (§) _ L K@) 120(4)  12((6)

- 3 i ~o TO(NT) (11.47)
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The scaled version of Equation [11.46| has the very interesting effect of canceling all even ((a)

terms. Leaving only the Equation [11.48

€@ 20)

LN,Tr
=1+ N

11.4

u«m+4M®2+%@V+O<1>

N5 N6 NG N7

The rescaled series is compared to the numerical results in Table [11.13] This gives an outside

confirmation of our series.

Table 11.13: Comparison of Equation [11.48|to numerical approximations [58].

Comparison to Numerical Approximations

N Exact Result Approx. Result Difference

4 | 6.28372254763131031000 | 6.28318530717958647693 | 5.3724045172e-04
8 | 5.83856803931689371583 | 5.83849143359244285052 | 7.6605724451e-05
16 | 5.78999273707821970544 | 5.78999189999020853435 | 8.3708801117e-07
32 | 5.78403488119607130392 | 5.78403487370244431833 | 7.4936269856e-09
64 | 5.78329204396220764314 | 5.78329204389978502746 | 6.2422615677e-11
128 | 5.78319922243260221656 | 5.78319922243209895699 | 5.0325957804e-13
256 | 5.78318762036894686933 | 5.78318762036894287572 | 3.993610474e-15

The series for the Laplace eigenvalues on the regular N-sided polygon under Dirichlet boundary
conditions have been verified in multiple ways. The series up to ﬁ was computed by Pavel Grin-
feld [47]. His calculations were checked using an early version of the CMSTRS library and an error
was found. The full SCMS system confirmed these results up to ﬁ Application of our system has
also provided more terms in the series, up to %

These results are confirmed using numerical approximations. Each convolution is computed
exactly and numerically and the results are compared. For a small number of series, only numerical
approximations were available. These series appear in Chapter An alternative numerical
method was developed independently [58]. Our series is evaluated at specific values of N and

compared against these results. All of these methods agree, showing that the expressions presented

here are correct.
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12. Conclusions

In this thesis, we have shown that a symbolic implementation of the CMS can provide advantages
over the current state of the art methods. The CMS is an analytical framework for dealing for
deforming manifolds. The CMS itself was presented in Chapter 2] The CMS can be applied to a
wide range of problems.

The applications of the CMS are vast, some examples were given in Chapter 2.5 One of the
most prominent applications of the CMS is in the study of fluid films. An example from this space
is the deformation of a soap bubble or film. Imagine a soap bubble blowing in the wind. As time
passes, the shape of the bubble is constantly deformed. The bubble itself has a surface tension,
which is also changing as the bubble deforms. This real world event is what the CMS is designed to
model. The expressions that appear in the soap bubble problem are far more complex then those
that appear in our problems.

The CMS is an extension of tensor calculus. Symbolic computation has a long history of advanc-
ing research by automating tensor calculus. Chapter examined the previous work done in this
field. Many CASs have been developed, but the focus has been on General Relativity and stationary
surfaces. The introduction of deforming manifolds significantly broadens the scope of problems that
can be examined, but also increases the complexity of calculations.

We have designed and implemented SCMS, a symbolic computation system for the CMS. The
first part of the SCMS system is a Java library for working in the CMS. We have built this library
based on a TRS we developed. The CMSTRS library was first proposed in 2011 and the first full
version was presented in 2013 [I0} [T1]. This library implements the high level symbolic framework
of the CMS.

The CMSTRS library is not just for algebraic simplification using rewrite rules. It also performs
equivalence testing. Chapter looked at the types of equivalence that could be used to combine
terms. This was itself a difficult task. The CMSTRS library also allowed expressions to be exported
to a Maple program for evaluation.

One of the most important features of the CMS is that any expression derived using it can be
evaluated on any coordinate system. Our second library, the CMSTensor library for Maple was
described in Chapter @] Evaluation of a CMS expression for a particular realization of a problem

requires working in a coordinate system. The CMSTensor library allows CMS expressions to be
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evaluated on a coordinate system. This library was first presented in 2013 and a more comprehensive
version is presented in this thesis [IT].

By combining these two libraries together, problems in the CMS can be automated from start to
finish. Chapter [f] showed how these libraries can be used in practice. In this chapter, the perimeter
of the unit circle was stretched into an ellipse. A Taylor series for the contour length was given in
terms of how far the semi-axis was stretched. This series can be easily computed outside the CMS
and was used to verify the correctness of our system.

The SCMS was then applied to a series of non-trivial problems. These problems all came from
boundary variations of the Laplacian eigenvalues under Dirichlet boundary condition. Chapter [6]
explained this basic problem. The eigenvalues are know on the unit circle. There are many other
shapes where the eigenvalues are not known. The CMS can be used to deform the unit circle into
these shapes. An alternative to finding the solution directly on the new shape is to change a shape
with a known solution into a shape with an unknown solution. This method creates a Taylor series
for the eigenvalues on the new surface.

Three surface deformations were examined. The deformation from the unit circle in Chapter
does not change the final shape. All variations in this deformation are equal to zero. This
deformation was used to further confirm the accuracy of our expressions.

The second deformation was from the unit circle into an ellipse. These eigenvalues could be
computed numerically to high orders. Our system replicated the known exact expressions and found
new terms in the series. The series presented here has more terms then previously known. The
series is confirmed using numerical approximations.

Since expressions in the CMS can be evaluated in any coordinate system, both these eigenvalue
problems use the same CMS expressions. At this point, we were confident that our system worked
correctly.

The most important boundary variation problem we approached was the eigenvalues on the
regular N-sided polygon. At the start of this project, the exact series was only know for a few
specific values of N and numerically approximated on others [46]. Our system helped with the first
exact series presented in 2012 [47].

The series is found in terms of % The series given in [47] went up to ﬁ The series presented
in this thesis adds another two terms, taking the series up to ﬁ Computation of these final two
terms was beyond the scope of all previous attempts.

Evaluation of these new terms required the creation and manipulation of Fourier series. Chapter
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[ and Chapter [§ showed why these series appear when solving the problem. Chapter [J] showed how
we implemented an additional Maple library to automate this process. The new library could be
combined with the SCMS to seamlessly compute the desired eigenvalues.

Chapter [TI]showed the results of applying our system to these problems. In each case, our system
computed values beyond the scope of existing systems. The SCMS can deal with expression growth
that was previously intractable. This allows advances in research beyond previous limitations.

Analysis of the series found for the Laplace-Dirichlet eigenvalues on the regular polygon have

lead to some hypothesis about the series.

1. Each term in the series has the form aﬁ,’f [1(z(5:)).

2. The inputs to the ¢ function are related to the order of N by > (b;) = as. They may not

include ¢(1) because it is co.
3. The coefficient a; is always a small integer.

4. The order of p® is related to the order of N®. At ay = 3 there is just p2. At ay = 5, we have
p? and p*. The next order, as = 7 has three p components for p?, p*, and p. The powers of

p take the even values from 2 to as — 1.
5. When the series is scaled to a polygon of area m, all (b;) where b; is even cancel.

The fourth point in this list is not obvious from the series shown in the results section. Chapter
shows A; and Ao computed to N~!!. We have verified this pattern appears in these two terms
up to order N 20,

We can also propose a hypothesis about the evolution of the A orders. From order analysis of
the CMS rules, it can be seen that A, will contribute to order N®*! and higher. Finding the N~
term would require Ag.

The main computational complexity that we have run into is related to the eigenfunction. Gener-
ating partial derivatives of the eigenfunction as described in Chapter [7] creates algebraically complex
functions. Even in A5, convolutions involving surface velocity and w; can be easily simplified. Ex-
pressions with us become more difficult and the expression containing u4 pushed the limits of our
design.

One area for future work to extend this series is to revise the generation and simplification of
uy, values. The requirements presented in Chapter [7] can be met in multiple ways. The null space

of the Helmholtz operators gives a significant amount of freedom in construction. If equivalent but
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algebraically simpler solutions can be found, then it will be easy to extend the series. It is unknown
if this can be done, because computation of these series currently rely on the Helmholtz null space.
A new simpliciation approach would be required, if not an entirely new approach to computing the
values.

A second area for future work is in numerical approximations. We have used Richardson extrap-
olation exclusively to extend numerical results. For some series, this was clearly not the optimal
acceleration method. Some experimentation has shown that other acceleration methods will produce
more digits of accuracy from less data. Continued optimization of the numerical methods used to
approximate convolutions can lead to more accurate results. The current results are of practical use,
but we believe a pattern may appear in this series. Finding this pattern will require more accuracy.

In conclusion, we have shown that the CMS is in desperate need of more automated computation
methods. Rapid expression swell has caused many problems, which seem to be perfect fits for the
CMS, to become intractable. These problems have either been abandoned or left to alternative
methods. Our symbolic implementation of the CMS gives a new foundation to fill this gap.

We have shown that the CMS can be implemented as both an evaluation method and a symbolic
framework. We have used this system to solve a set of non-trivial problems. Our results have shown
that automation can extend the reach of the CMS.

Our most important contribution to an open research problem is the series expansion for the
Laplace eigenvalues on the N-sided regular polygon under Dirichlet boundary conditions. This
expansion goes further then all previous attempts. In addition, it gives new insight into potential
patterns that arise in this series.

We have successfully designed, implemented, and verified a symbolic computation system, the
SCMS. We have released this software as a open source package. We have applied this system to
open problems and shown that it can advance these problems beyond previous limitations. These
results show that automated computation within the CMS is possible and that it is necessary to

advance research in a wide range of fields.
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