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Abstract
Applications of Symbolic Computation to the Calculus of Moving Surfaces

Mark W. Boady

Advisors: Dr. Jeremy Johnson and Dr. Pavel Grinfeld

In the physical world, objects change shape over time. A soap bubble blowing in the wind

changes shape and density as it floats through the air. Red blood cells change shape to carry oxygen

through our veins. Modeling these problems requires deforming manifolds.

The Calculus of Moving Surfaces (CMS) is an analytical framework for studying deforming

manifolds. The CMS is an extension of tensor calculus. Both approach problems from a geometric

perspective, without reference to specific coordinate systems. To evaluate a specific realization of a

problem, a coordinate system is chosen and a CMS expression is converted to a series of n-dimensional

array calculations using standard calculus.

This generality has many costs. The length of expressions grows quickly, in many cases exponen-

tially. Although it is applicable to a wide range of problems, calculations quickly become intractable.

The expressions generated are not only long and difficult to work with, evaluating them on a specific

coordinate system introduces an entirely different set of challenges.

We present the first compute algebra system designed specifically for the CMS. Our system, the

Symbolic Computation of Moving Surfaces (SCMS) supports the derivation of CMS expressions and

the evaluation of expressions on specific coordinate systems. Although large expressions are inherent

in the framework, computer automation allows for the application of the CMS to significantly larger

problems then can be done by hand and allows the CMS to be applied in an error free way to

non-trivial problems.

We have developed two libraries making up the SCMS. The first is a term rewrite system, CM-

STRS, developed in Java. This library automates the analytic framework of the CMS. Expressions

are kept at a high level, retaining the generality of the CMS. The second, CMSTensor, is for evalua-

tion on specific coordinate systems. It is implemented using the Maple computer algebra system. It

leverages the power of this computer algebra system to evaluate CMS expressions as a combination

of n-dimensional array manipulations and standard calculus operations.

We have applied our system to a non-trivial boundary variation problem: the symbolic series

expansion of the Laplace Eigenvalues on the N -sided regular polygon under Dirichlet boundary
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conditions. This series is computed up to N−6, two orders higher then previous results. Our

calculations confirm previous hand calculations and extend the series beyond what was previously

known.
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1. Introduction

The Calculus of Moving Surfaces (CMS) is an analytic framework extending tensor calculus to

deforming manifolds. Deforming manifolds appear in a wide range of physical systems as well as

mathematical structures. The CMS gives a geometric representation of a surface, its properties,

and the forces acting on it. Tensor calculus and the CMS give expressions that can be evaluated in

any coordinate system. This approach leads to generalized expressions which can give insight into

the inherent geometric structure. This generality also leads to additional complexity. None of the

simplifications that may be present in specific coordinate spaces or on particular realizations of a

problem will be present. This leads to a trade-off between generality and expression complexity.

The tensor calculus was proposed in 1900 by Gregorio Ricci-Curbastro and Tullio Levi-Civita [93].

This famous paper laid the foundations of a general and compact notation for absolute differential

calculus. Tensor calculus has become a key tool in the study of Reimannian geometry, general

relativity, euclidean geometry, and Newtonian mechanics [104]. Albert Einstein’s classic works on

General Relativity depend on tensor calculus for their generality and beauty [29].

The tensor calculus was created for the study of stationary surfaces. Jacques Hadamard created

the CMS in 1903 to allow for the study of surfaces with evolving shapes [52]. Work to merge

Hadamard’s ideas with tensor calculus culminated in 1991 when the CMS was defined as an extension

of tensor calculus [37]. This greatly extended the reach of an already powerful calculus. An improved

version of the framework was presented in 2012 by Pavel Grinfeld [44].

Moving surfaces are an intrinsic part of the physical world, like stationary surfaces they require

a unique representation [45]. The CMS is applicable to a wide breadth problems from physical

simulations, fluid film dynamics and blood cell modeling, to shape optimization and boundary

variation problems. The power and generality inherent in the CMS comes at a cost. For many

problems, working with complex models can quickly lead to intractable problems. The cost of

generality is expression swell.

Expression swell is an important problem in using the CMS. Taking repeated derivatives in the

CMS can cause exponential expression swell. Simple expressions can reach thousands of terms after

only a few derivatives. Dealing with an expression this long by hand is error prone if not impossible.

Even the seemingly simple problem of understanding the change in surface area as a shape changes

runs 94 terms at the 4th derivative. Each of these terms is the product of 5-7 values. An additional
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problem is attempting to simplify these expressions by combining terms. Just comparing each of

these expressions by hand would be a long and arduous task.

Once the CMS expression has be generated, a different type of complexity is introduced. To

evaluate the expression, each term must be computed as an N-dimensional array on a particular

surface. With hundreds or thousands of terms, this may already be intractable. Even if the expres-

sions just need to be translated to a computer system, doing so without introducing error would

be difficult. Evaluation of these expressions would also be different for every surface. This means

restarting from the CMS expression for each new surface. Once these expressions are converted into

algebra using n-dimensional arrays, the value at each possible may still be an algebraic expression

running hundreds of terms.

Our system tackles all these problems, without giving up the generality of the CMS. Although

expressions can always grow past the limits of computer hardware, the system presented here reaches

far past existing methods. These are the same problems that have long motivated the automation

of mathematical calculations.

Computer Algebra Systems (CAS) have a long history of advancing analytic methods through

automation [34]. By automating the manipulation and derivation of large symbolic formulas, CAS

have allowed for numerous advancements. Specialized systems for tensor calculus [86], Groebner

basis [78], Fourier Transforms [33], and Quantum Mechanics [100] have all been successful. Com-

puters have long come to the rescue of mathematical problems that were outside the reach of human

abilities.

The tensor calculus contains all same problems as the CMS. Its importance in general relativity

has motivated a number of CASs [69, 98, 110, 75, 89, 81]. All these systems have advanced research

in their fields [102, 91, 63]. These systems continue to push the limits of physics research [111].

Without an automated system, all these problems would have become intractable long ago. Our

system provides the same advantages to a new class of problems.

The CMS has reached the limits of the tools currently available. The framework can be applied to

the problems it was built to model, but those computations fail due to human limitations. Although

computers can never erase the burden of complexity, they can exceed a human’s ability to work with

large expressions. The CMS has thus far lacked a specialized tool set. Piecemeal frameworks built

on existing systems have worked in some cases, but a general purpose system will greatly improve

the usability of the CMS. It does not require users to be able to develop or modify existing systems.

It is also designed to be used in the same way as a person doing pen and paper calculations. If a
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user is familiar with the CMS, our system replicates the experience they are used to.

We have provided a general purpose system called The Symbolic Computation of Moving Surfaces

(SCMS). It is a software system that fills this gap. The software contains two libraries which can be

used to create custom programs. Each of our libraries views the CMS from a different perspective.

When combined they allow for general symbolic computation within the CMS. Depending on the

type of work being done, each of the libraries may provide all the functionality needed on its own.

The Calculus of Moving Surfaces Term Rewriting System (CMSTRS) is a library developed for

the Java programming language. It treats the CMS as a purely analytical framework. Expressions

are written symbolically and computations replicate the algebraic manipulations performed during

pen and paper calculations. Expressions derived using this library retain the geometric generality

of the CMS. They are true for all coordinate systems. This library handles the expressions swell

caused by taking repeated derivatives. It also automates the process of determine if expressions

can be simplified using equivalence rules and provides automated export of expressions, eliminating

more potential errors and tedious work.

The CMSTensor library is developed for the Maple computer algebra system [78]. The second

perspective on the CMS is as a recipe book. CMS expressions can be evaluated in any coordinate

system, but how this evaluation takes place is dependent on the coordinate system. A tensor

represents a geometric property, such as curvature, but the actual value of the property is determined

by the surface coordinate system.

The CMSTensor library can evaluate CMS expressions once a coordinate system is selected.

The library transforms the expression into a coordinate specific set of algebraic computations. The

library is implemented in Maple to allow access to a plethora of existing computer algebra tools.

Specifically, we take advantage of its ability to take derivatives, integrate, and work with special

functions, such as the Bessel J functions and trigonometric functions.

This system can deal with the large expressions generated by the CMS. It can also handle the

complexity of correctly computing the values of the CMS objects in a specified coordinate system.

Finally, this library leverages the power of existing CASs to evaluate the CMS expressions on the

specified surface.

The SCMS was motivated by a question posed by Pavel Grinfeld and Gilbert Strang in 2004 [46].

What is the series in 1/N for the simple Laplace eigenvalues λN on a regular polygon with N sides

under Dirichlet boundary conditions? Initial results generated interest in many fields from quantum

mechanics to pattern recognition [4, 50, 64]. Investigation into the exact series was hindered by
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the lack of available tools. This problem embodies the flaws and triumphs of the CMS. General

expressions for how the Laplacian Eigenvalues change as the surface they are on deforms can be

found, but these expressions became so large and complex that they become nearly impossible to

work with.

We proposed the SCMS in 2011 [10]. It confirmed the results of the first partial series answer

to Grinfeld and Strang’s question in 2012 [46]. The first version of the system was presented in

2013 [11]. The version of the system presented here extends the series from [46] by two orders in N .

The size and complexity of the expressions required for these new terms had previously hindered

their computation.

The SCMS provides advantages over current state of the art systems. First and foremost, this

is the first symbolic computation system designed specifically for the CMS. Current tools are a

combination of extensions of software built for other purposes and custom development to fill gaps.

This system is designed with applied mathematics researchers in mind.

The CMSTRS gave the first rewrite rule set for the CMS and also showed the importance of

combining TRS with object oriented design [11]. Comparison of CMS expressions to determine

equivalence is closely related to some of the hardest problems in computer science.

The CMSTensor library translates the rules of the CMS into an algorithmic framework. This

library gives algorithms to redefine the expressions of the CMS into a collection of operations on

multi-dimensional arrays. This library supports spatial fields, static surfaces, and deforming surfaces.

Current Tensor libraries are designed to handle spatial calculations, with a few extended to static

surfaces. Support for deforming manifolds is at best partially implemented in existing libraries.

The SCMS also contributes to the study of Laplacian Eigenvalues with the results it has gener-

ated. The series for the Laplace-Dirichlet Eigenvalues on the regular polygon with N sides is the

most extensive series published to date. It has confirmed recent high accuracy numerical results [58].

The extended series also provides advances in the study of boundary variation problems and can be

applied to many fields.

We have used the SCMS to give the series for λN up to N−6. This is the first time the values for

N−5 and N−6 have been computed. We have collected supporting evidence for these calculations

using multiple methods. The CMS expressions have been evaluated on two other surfaces. One with

known answers and one that can be numerically approximated to very high accuracy. These two

alternative problems provide evidence for the correctness of the CMS expressions. The solution on

the polygon is computed both numerically and algebraically to provide strong evidence supporting
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the final results. This is the first time derivatives of these orders have been taken for this problem.

This thesis begins by laying out the historical and practical importance of the CMS. This builds

a foundation for the CMSTRS package where the mathematical description of the CMS is translated

into a collection of objects and rules. Next, the CMSTensor library describes how the CMS can be

translated into a series of algorithms. With this groundwork laid, an extended example is given.

The contour length (parameter) of a shape is studied with respect to its deformation.

The second half of the thesis looks at a class of problems related to the motivational question.

The Laplace-Dirichlet Eigenvalues are introduced and their computation on multiple surfaces is

described. This evaluation led to the need to extend the functionality of Maple by creating a new

library. A special framework for finding closed forms of convolutions is described, which is required

to deal with the eigenfunctions present on this surface.

Shapes with known solutions are used to test the correctness of the system. The N -sided polygon

is computed symbolically and numerically to provide evidence of correctness. The results of applying

the SCMS to these problems shows the power, accuracy, and importance of this system.
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2. The Calculus of Moving Surfaces

2.1 Introduction

The CMS finds its roots in tensor calculus. The roots of tensor calculus are found in geometry.

An understanding of the CMS must find its foundation in geometric reasoning. This chapter begins

by building up the CMS from its geometric roots. First ambient space and static surfaces are

examined. This leads the way for deforming surfaces. Some of the mechanics will be left for the

implementation of the SCMS in Chapters 3 and 4.

Euclid’s Elements, written in the 3rd century BCE, provides the basis for modern geometry [30].

In this work, geometry is studied from the perspective of the physical world. The axioms described

here are based the simple ideas of lines and measurements.

The introduction of algebra to geometry by Rene Descartes created the cartesian coordinate

system and lead the way for modern calculus [16]. Many coordinate systems have been used since

Descartes’ original work. Based on the problem to be tackled, some of these coordinate systems

work better than others. For example, polar coordinates simplify calculations on a circle. This

reliance on coordinate systems has allowed for pure algebraic computation, which may not reflect

the geometric underpinnings. This algebraic representation allows for geometrically meaningless

computations [74].

Tensor calculus returns to Euclid’s geometric foundations. It is a full calculus that frees itself

from specific coordinate systems by writing expressions that are true in any coordinate system [104].

This system returns to an abstraction of geometric concepts.

The CMS retains all the advantages of the tensor calculus, but adds additional properties nec-

essary to represent deforming manifolds. This allows for geometric axioms, but in a formal calculus

on a wide range of surfaces.

2.2 Elements of Tensor Calculus

Geometric features exist regardless of a coordinate system. The tensor calculus quantifies these

features. Given any coordinate system, the values of these features can be computed.

A Euclidean space is a space that is essentially flat [30]. This means that the space allows for

straight lines. This is the everyday experience of geometry. If a space allows for straight lines, then
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the notion of a vector can be defined. From some arbitrary position, a straight line can be draw of

a certain length at a certain angle. Selecting an arbitrary origin point, every position in space can

be defined by a vector starting at the origin point.

Given this general definition of a space, the elements of the tensor calculus can be defined.

The position vector R is a geometric object [45]. It represents the position of a point from an

arbitrarily selected origin. It can also be thought of as a function. Given some coordinate system

Zi = {z1, z2, · · · }, the function R(Zi) returns the position within the coordinate system Zi. An

example position vector for a cartesian space is shown in Figure 2.1.

Figure 2.1: Position Vector for (2,3) in 2D Cartesian Coordinates.

The superscript in the expression Zi is used to iterate through the coordinate system. For

example, Z2 = z2. Given two coordinate systems, a tensor can be described by how it changes

relative to them. The covariant or contravariant property of a tensor describes how it changes with

respect to two coordinate systems Zi and Zk [104].

A tensor is a geometric field defining a linear and homogeneous transformation [104]. A linear

transformation is a mapping that preserves addition and scalar multiplication [95]. All tensors

transform from a tensor to another tensor. They are homogeneous because the result of a transform

is always a tensor.

A simple linear transform is rotation. If a vector is rotated 90◦ and then doubled in size, its

length is the same as if it was doubled then rotated 90◦. Additionally, when the vector is rotated,
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it is still a vector. All operations on a tensor retain the tensor property. If the derivative is taken of

a tensor, the result is still a tensor. This means that it can be evaluated on any coordinate system.

The set of quantities T i is a contravariant vector. It is a vector with a position indexed by i. For

example, a vector with three positions T i has values T 1, T 2, and T 3. When the vector is transformed

to a new coordinate system, indexed by k, the relationship between the two vectors is given by

T k = T i
∂Zk

∂Zi
(2.1)

If it is a covariant vector then it transforms according to

Tk = Ti
∂Zi

∂Zk
(2.2)

.

The repeated index i denotes a contraction, a summation over the index.

These transforms give the tensor property and allow tensor expressions to be evaluated in any

coordinate system. Given any expression, in any coordinate system, these formula give a recipe to

transform it into any other coordinate system.

The position vector is used to create the covariant basis for the space. The partial derivative

of each element in R is taken with respect to each coordinate. This produces an n by n array, for

an n-dimensional coordinate space. The covariant basis Zi is a set of vectors that define the basis

imposed by the coordinate system.

Zi =
∂R

∂Zi
(2.3)

The covariant basis can be used to generate the covariant metric tensor using a pairwise dot

product [45].

Zij = Zi • Zj (2.4)

This is the first tensor created for the space. This tensor can be used to measure lengths, areas,

and volumes [45]. It contains all the information about the dot product. There is also a contravariant
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basis Zi. The contravariant metric tensor Zij is the inverse of the covariant metric tensor.

The two basis are orthonormal and their product is the Kronecker delta.

Zi • Zj = δij (2.5)

The Kronecker delta is an identity, it is 1 when i = j and zero otherwise [104].

Objects which can be obtained by the measurement of distances and derivatives of distances are

intrinsic [45]. The study of geometric properties using only intrinsic objects is called Riemannian

geometry.

The Christoffel Symbol, Γabc, defines parallel transportation. When taking a partial derivative,

the result may not retain the tensor property. When taking derivatives the Christoffel symbol is

combined with the partial derivative so that the result is a tensor. This will be used in Equation

2.31.

The Levi-Civita symbol, εij···, is the permutation tensor. It has the square root of the de-

terminant of the covariant metric times −1 for odd permutations of the indexes and 1 for even

permutations. All other spaces are 0. The covariant metric is a square matrix, so the determinant

uses the standard linear algebra formula. The contravariant version is 1 over the square root of

the determinant. Derivatives can be taken with respect to the space using the covariant derivative,

∇i, and contravariant derivative, ∇i. The metric tensor may also be used to switch a tensor index

between the covariant and contravariant property.

If a surface is embedded into an ambient space, it has its own metric tensors, Sαβ and Sαβ . To

differentiate the two spaces, greek letters are used for the indexes on the surface coordinates and

latin letters are used for those defined in the ambient space.

An object defined in the entire space also exists on the surface, since this is just a subset of space.

The shift tensor, Ziα, gives the relationship between the ambient space and the surface.

The shift tensor and surface metrics define the surface’s tangent plane. The normal is perpen-

dicular to the surface and of unit length. The tensor representing the surface normal is N i. Figure

2.2 shows a curved surface with a normal and tangent plane.

Figure 2.2 shows a curved plane. If a straight line is drawn on a sphere, two parallel lines may

intersect. This is not true on a flat plane. This curvature needs to be taken into account when

working on a surface. The curvature tensor Bαβ encapsulates the curvature of the manifold.

Forces on the surface have derivatives, just like those in the ambient space. The surface has its
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Figure 2.2: The surface normal and tangent plane at a point on a surface [3].

own versions of the covariant and contravariant derivatives ∇α and ∇α.

2.3 Example: Mean Curvature

The mean or average curvature of a surface captures geometrically the stretching of the plane [73].

In tensor calculus, the mean curvature is represented by Bαα .

The repeated index α is a contraction. A contraction is a summation over the repeated indexes.

In this case there are only two indexes, meaning it is the diagonal. The tensor Bαα can be treated

as a 2-dimensional array. The array is summed along matching indexes. The number of positions in

the two dimensions are the same, and determined by the number of dimensions on the space S.

Bαα =
∑
α∈S

B[α][α] (2.6)

A contraction can only take place between two indexes one contravariant and one covariant. The

indexes must both be spatial or surface indexes. The contraction is shorthand for a summation,

which means the letter representing the index can change without changing the expression. The

indexes can also be juggled, flipping the covariant and contravariant property of both.

The curvature tensor is given as

Bαβ = −1Ziα∇β(Ni) (2.7)

Bβα =BαγS
γβ (2.8)
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Computation of the mean curvature starts by defining the position vector. On a circle, the

position vector in polar coordinates is given by

R =

r cos θ

r sin θ

 (2.9)

The covariant basis is the partial derivative of the position vector.

Zi =
∂R

∂ {r, θ}
(2.10)

=

∂(r cos θ)
∂r

∂(r sin θ)
∂r

∂(r cos θ)
∂θ

∂(r sin θ)
∂θ

 (2.11)

=

 cos θ sin θ

−r sin θ r cos θ

 (2.12)

The covariant metric tensor is product of Zi with itself. Since the indexes are not being con-

tracted, each copy needs its own index letter.

Zij =Zi • Zj (2.13)

=

1 0

0 r2

 (2.14)

The restriction of this ambient space to the circle requires fixing the radius r. The shift tensor

for this surface restriction is created by taking the partial derivative with respect to the surface

coordinates of the restricted position vector.
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Ziα =

[∂r∂θ ]

[∂θ∂θ ]

 (2.15)

=

[0]

[1]

 (2.16)

Notice the double brackets in the shift tensor’s definition. The tensor has two indexes i and α.

The i index has 2 positions, because the space was 2D. The α index only has one space because the

radius has been fixed. The brackets are used to clarify nested arrays.

The surface normal is computed as

N i =εijεαZ
α
j (2.17)

Ni =ZijN
j (2.18)

On the circle, the Levi-Civita symbol is

εij =

 0 1
r

− 1
r 0

 (2.19)

εα = [r] (2.20)

The shift tensor has indexes in different locations then defined above. The metric tensors is used

to fix this.

Zαi = ZijZ
j
βS

βα (2.21)

The surface metric is

Sβα =

[[
1

r2

]]
(2.22)
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The tensor product multiplies every element by every other element. The number of dimensions

in the matrix is the sum of the original dimensions.

ZjβS
βα =

∑
β

[0]

[1]

[[ 1

r2

]]
(2.23)

=
∑
β

 [[[0]]][[[
1
r2

]]]
 (2.24)

=

 [0][
1
r2

]
 (2.25)

This is now plugged into Equation 2.21.

Zαi =ZijZ
j
βS

βα (2.26)

=
∑
j

1 0

0 r2


 [0][

1
r2

]
 (2.27)

=

[0]

[1]

 (2.28)

The surface normal is now evaluated.

Ni =

1

0

 (2.29)

N i =

1

0

 (2.30)

To complete the evaluation of the curvature tensor, the covariant derivative is needed. The

formula is given in [45] is
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∇αV i =
∂V i

∂Sα
+ ΓijmV

m (2.31)

The Γijm term is repeated for every index in the input tensor.

The curvature tensor is now given

Bαβ = −1Ziα∇β(Ni) (2.32)

=− 1

[0]

[1]



0

r


 (2.33)

= [[−r]] (2.34)

This is contracted with the surface metric to change the indexes to be non-matching.

Bαβ =

[[
−1

r

]]
(2.35)

The mean curvature is the trace of this array.

Bαα =

1∑
α=1

B[α][α] = −1

r
(2.36)

This is the mean curvature for a circle of radius r. The definition of the normal, positive or

negative, will determine the sign of this solution. The mean curvature of any surface is Bαα . Tensor

calculus allows this general formula to be written and evaluated for any surface.

2.4 The Calculus of Moving Surfaces

What happens if the coordinate system defining the surface changes over time? This is the

question that inspired the CMS.

A deforming manifold is a surface that has a coordinate system with a time parameter t. The

instantaneous velocity of the manifold in the direction of the normal is called the surface velocity
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C. This tensor encapsulated the transformation of the surface.

If the surface is changing over time, it is important to study this change. How does the defor-

mation of the surface effect those tensors defined on it? The invariant time derivative ∇̇ gives the

derivative with respect to change over time while keeping the tensor property for all objects [44].

The tensor property means that the expression can be evaluated on any coordinate system. Take the

derivative of a tensor will also produce a tensor and all tensors can be evaluated on any coordinate

system.

The invariant time derivative was originally conceived by Jacques Hadamard in 1903 while study-

ing discontinuities in continuous media [52]. The first attempt to apply this concept to tensors was

by T. Thomas in 1957 [105]. Another attempt was made in 1960 by C. Truesdell and R. Toupin

[108]. None of these attempts ensured that for any tensor, application of the derivative resulted in

a tensor. This meant that taking the derivative could potentially lead to expressions that could not

be transformed between coordinate systems.

It wasn’t until the work of M. Grinfeld in 1991 that a definition was given that preserved the tensor

property for all operands, finally making the CMS an algebraically complete calculus [37]. Although

the calculus was complete, it was hindered by a large rule set. The δ
δt derivative was dependent on

the covariant or contravariant position of indexes. This means that for every permutation of index

positions, it was possible a new rule was needed.

A revised invariant time derivative, ∇̇, was proposed by Pavel Grinfeld in 2012 [44]. This new

definition retains the tensor property but is independent of the covariant/contravariant property of

the input, drastically reducing the number and complexity of rules.

Figure 2.3: The invariant time derivative as time goes from t to t+ h [45].
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The CMS is described in more detail in [49, 41]. The roots of the CMS can be found in [71, 82,

106]. A historical review of the CMS can be found in [40].

2.5 Applications of the CMS

The foundation of tensor calculus is geometry, which makes its reach extremely broad. The most

popular application is the study of general relativity, where Einstein’s contributions to the field are

well known. The tensor calculus has been used in fields such as linear algebra, differential geometry,

the calculus of variations, and continuum mechanics [45].

The CMS takes this power and expands it to surfaces that change shape over time. Deforming

manifolds have applications in theoretical and physical modeling. The motivation for this symbolic

computation system lies in boundary variation problems, specifically the solution to partial differen-

tial equations on bounded surfaces. The CMS, and by extension the SCMS, is by no means limited

to only these fields.

Boundary variation problems examine fields defined on bounded surfaces and how those fields

change when the boundary is deformed. A problem of interest is, what is the series in 1/N for the

Laplace-Dirichlet Eigenvalues on a regular polygon with N -sides [46]? The solution can be found

by deforming a known value, the eigenvalues on the unit circle, and changing the boundary into an

N -sided regular polygon. The series has been shown up to 1/N4 in [47]. This was accomplished by

a combination of hand calculations and computer algebra. The current series has already proven

useful in applied mathematics, quantum physics, and pattern recognition [50, 4, 64]. This problem

is described in detail beginning Chapter 6. The series is computed up to 1/N6 using the SCSM.

A common theme in CMS problems is that higher order variations provide greater accuracy as well

as additional quantitative results. Computation of these variations is reliant on taking the invariant

time derivative, ∇̇. In shape optimization determining the stability of a stationary configuration

requires the second variation [40]. Even for some simple shape optimization problems, the second

variation can be to difficult to calculate. Calculation of the minimal surface with a cavity of a given

perimeter has only recently had any success due to the difficultly of determining variations [8]. A

simple minimal surface would be a soap film with a hole cut in it by a string. A more complex

minimal surface is shown in Figure 2.4.

Many problems require even higher order variations, the isoperimetric problem on surfaces of

revolution of decreasing gauss curvature requires calculation of the fourth order variation [55]. In
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Figure 2.4: A minimal surface with a spherical hole [96, 22].

this problem, the goal is to enclose a prescribed area with a plane while minimizing the perimeter.

The SCMS has determined that this variation contains 1380 terms and its computation requires a

symbolic tool.

A similar problem with a physical application is the wobble of a slightly ellipsoidal inner core

inside a slightly ellipsoidal outer core and mantle [48]. The planet Mercury has a large core, as seen

in Figure 2.5, which creates an interesting wobble.

The fourth variation is also crucial in some biological applications. The fourth variation of

Helfrich energy is essential to analysis of a red blood cell’s shape [72]. Even under simplifying

assumptions some of the expressions run longer then a page and remain largely intractable.

An even more general problem is the complete dynamics of a red blood cell. An exact nonlinear

model has been proposed [41]. The blood cell is only one application of the CMS to fluid film

dynamics. The CMS introduces a great deal of analytical order to these systems [39, 41, 43, 42]. One

specific example of fluid film dynamics is the surface tension of a soap bubble. Again, these problems

have remained largely intractable for hand calculations due to complexity and rapid expression swell.

The SCMS will advance these fields through automation.

In all these applications, the CMS presents an analytical method to study the deformation. In

each case, the computation of higher order variations limits research. By automating the CMS,

computations can be done with expressions that are larger than can be manipulated by hand.

Solutions to these problems are not limited by the theoretical foundations of the CMS, but by the

technology available to apply it.
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Figure 2.5: Mercury’s large core plays an important role when modeling its motion [84].

2.6 Previous Work Automating Tensor Calculus

No existing symbolic packages are designed specifically for the CMS. A number of systems exist

for applying the tensor calculus to stationary geometries. These packages have been successful in

their respective fields, although they cannot be easily extended to the CMS. The complexity and

breadth of applications is far greater when applying the CMS. The packages described below have

proven successful within their fields, primarily General Relativity. The SCMS will provide the same

advantages on an even wider range of problems. In these fields, calculations become intractable for

many of the same reasons as in the CMS. These problems can become intractable both because

of human limitations or computational ones. For example, computing derivatives in the CMS may

become intractable because of the limits of hand calculations. On the other hand, computing all

terms with a time parameter and taking the derivatives with a computer algebra system may be

computationally difficult using available software.

Symbolic packages have helped overcome these obstacles on stationary geometries [109, 98, 86].

The CMS is an extension of tensor calculus, it contains all its complexities and more. The

analysis of moving surfaces is a more complex analytical challenge then stationary geometries. These

manifolds are Riemannian surfaces with a time-dependent metric.
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General Purpose systems, such as Maple, Mathematica, and Sage are extremely successful, but

force a reduction to specific analytical problems and lack the kind of high level view given by

the CMS [101, 77, 112]. During the evaluation of CMS expressions, these general purpose tools

prove extremely important. For example, computing the fourth variation of the perimeter of a

circle stretching into an ellipse can be computed in polar coordinates with Maple. A more general

questions is, ”how does the curvature of a surface affect its perimeter during deformation?” This

question cannot be answered on specific coordinate system, but can be with the CMS.

Although many of these packages implement the tensor notation, none implement the CMS. The

majority of these packages originated in Relativity and lack even stationary embedded manifolds.

Some packages, such as Cadabra and MathTensor, perform symbolic index manipulations in the

tradition of classical tensor calculus, which is a challenging problem itself [79]. Other packages,

such as FTensor [69], GRTensorII [110], the Maple tensor package [75], focus on the translation of

expressions into literal multidimensional arrays and efficiently implementing contractions.

Cadabra [89, 88, 17, 18, 87] is closest to the system presented here. MathTensor [81, 86] is the

oldest and perhaps most advanced but also a commercial package. Other symbolic manipulation

packages focused on relativity include Ricci [70], Cartan [99], Maxima [27], RGCT [12], xAct [80],

and TeLa [1].

These packages have proven quite successful their fields.. MathTensor has supported research in

general relativity, such as [102], [91], and [63]. It has also been successful in statistical mechanics [7]

and quantum field theory [51]. Cadabra is used in general relativity [19, 28, 13, 17, 83]. The xAct

package has also been used in relativity [24, 25, 114]. In many of these works, the packages have

ensured the correctness of proofs by replicating the proof and proving a rule trace. These packages

were based in the theory of relativity and therefore closely match the research.

The SCMS handles both abstract formalism and symbolic evaluation. Although these systems

share some very high level similarities with the presented system, the underlying calculus is drasti-

cally different. Modifying one of these systems to handle the CMS would be as difficult, if not more

so, than building a new system.
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3. Term Rewriting Systems

3.1 Introduction

Term Rewriting Systems (TRSs) are a method of automating equational logic. Due to its direct

relation with equational reasoning, it has proven important in computer algebra, specifically algebraic

simplification [5]. Surveys of TRS can be found in [26], [57], and [65].

A TRS is a pair T = (Σ, R) where, Σ is signature defining the language, and R is the set of

reduction rules. The signature is a set of function symbols and their arity. Constants are function

symbols with arity zero. All valid terms in the language are produced through applying functions

in this signature to each other.

The set of reduction (or rewrite) rules R is a collection of expressions with the form l→ r. The

patterns l and r are terms made from the signature Σ∪V where V is a set of variables. The TRS is

applied to an input term generated from Σ. The term is matched on the l side of a rewrite rule by

matching variables to specific terms in the input. The term is rewritten to the expression defined

in r, replacing variables with their values. The TRS repeatedly applies the rules from R until the

there exist no matching patterns on the l side of any rules. The final value is called a normal form,

a term for which no rewrite rules can be applied. The TRS terminates when the input term has

been rewritten to a normal form.

One important application of TRSs is the uniform word problem. Given a set of equations, E,

and two valid expressions t and s, determine if t = s under E. Given two expressions s and t,

determine if there exists any path using the equations of E thats makes them equivalent. A TRS

can be created by giving a direction to each equation in E to produce rewrite rules R.

To solve the uniform word problem two important properties are required of the TRS. The first

is termination, for any input term the rewrite system will terminate and produce an expression in

normal form. A normal form is a term that does not match any rewrite rules. The TRS determines

that it is at a normal form when no rules match the current term.

The second property is confluence, if multiple rules match a term which rule is applied will

not change the final result. All paths will lead to the same normal form. If both these properties

hold, the uniform word problem is solved by reducing both t and s to their normal forms. If the

normal forms are exact matches, there exists a path to apply the equations which makes the original
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expressions equal.

This method is the basis for the Knuth-Bendix algorithm. The Knuth-Bendix algorithm shows

that the existence of a terminating and confluent TRS for an equational system is not guaranteed [66].

The algorithm is nonterminating, it will either find a TRS that solves the uniform word problem,

determine it is impossible and fail, or loop infinitely. Not all TRS are terminating [56]. It is possible

to create nonterminating TRS from equational specifications. It is also impossible in some cases to

determine if a TRS is terminating [56].

Although the general problem may be impossible, for many systems proving termination and

confluence is possible [66]. These properties may also be proven modulo an equational system,

such as associativity and commutativity [6, 61, 60]. This means that a single rule can match

multiple expressions because it takes into account how commutativity can reorder values around

operators. The normal forms of two equivalent terms may not be the same, but they will only differ

by parenthesis and term orders. These are both simple equivalences to deal with by sorting. The

CMSTRS presented here works modulo associativity and commutativity.

TRSs are popular for algebraic simplification. Maude, a standalone system for building TRS,

includes an implementation of the Knuth-Bendix algorithm [20]. Rewriting is also included in

computer algebra systems Maple and Mathematica [77, 112]. The TRS that can be built in many of

these systems are first-order TRS, meaning that there can be no bound variables. A bound variable

is when a variable appears multiple times in the same term and the relationship needs to be retained.

For example, in an integral
∫
f(x)dx we would need to track that the integration variable is x when

simplifying. The CMS requires bounded variables.

The full source code is open source and available for download from https://www.cs.drexel.

edu/SCMS.

3.2 A TRS for the Calculus of Moving Surfaces

The signature of the TRS is derived from the formalism of the CMS. This has already been

described in Chapter 2. This section will focus symbolic definitions of the rules and objects.

The basic object of the CMS is the tensor. In the CMSTRS library, a tensor is a named value

and has a set of properties. The tensor can exist in the ambient space or be restricted to a surface.

The tensor also has an ordered list of named indexes. Each index can also be defined in space or on

the surface. The index is either a contravariant or covariant index.

https://www.cs.drexel.edu/SCMS
https://www.cs.drexel.edu/SCMS
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Table 3.1: TRS Signature

Symbol Description
C Surface Velocity
N i Surface Normal
Bα.β Curvature

Zi.α Shift Tensor
Rγ.αβ Commutator

+ Addition
Juxtaposition Multiplication

Repeated Indexes Contraction
Integer Superscript Exponent

∇i Covariant Space Derivative
∇α Covariant Surface Derivative

∇̇ ∇̇-derivative
∂
∂t Partial Time Derivative

The primary objects of the CMS are described in Chapter 2. The set of objects implement as

part of the CMSTRS library are given in Table 3.1. Transformations of the objects by index juggling

are also implemented.

A special symbol, the commutator tensor, is created to simplify implementation of the CMS rule

set. The commutator tensor facilitates switching the order of ∇̇ and ∇α [40]. It is a shorthand for

the following:

Rγ.αβ = ∇γ(CBαβ)−∇α(CBγβ)−∇β(CBγα) (3.1)

The rewrite rules for the CMS require the introduction of variables for pattern matching. Index

names are always considered variables. Unless explicitly noted, all other properties of the index

must match exactly. F and G are variables for general tensors. In the CMS any valid expression is

a tensor. If no indexes are attached to the variables F and G, then any combination of indexes is

valid. Constant integers and rationals are given by c1, c2, · · · , cn.

The covariant and contravariant derivatives are defined by rules (3.2) to (3.5). These rules are

true for any index of the derivative. Only the rules for ∇α are shown, but these rules are repeated

for other indexes. The summation symbol is used explicitly when need to clarify contractions.
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∇α(FG)→ G∇α(F ) + F∇α(G) (3.2)

∇α(c1)→ 0 (3.3)

∇α(F +G)→ ∇α(F ) +∇α(G) (3.4)

∇α(
∑
i

F ···i······i··· )→
∑
i

∇α(F ···i······i··· ) (3.5)

The ∇̇-derivative is at the heart of the CMS. Calculating this derivative is the key to finding

higher order variations. The differentiation table for specific tensor objects is given. These rules are

independent of index juggling.

∇̇Ziα → N i∇αC (3.6)

∇̇N i → Ziα∇αC (3.7)

∇̇Bαβ → ∇α∇βC + CBαγB
γ
β (3.8)

∇̇Cc1 → c1C
c1−1∇̇C (3.9)

∇̇c1 → 0 (3.10)

∇̇f → ∂f

∂t
+ CN i∇if (3.11)

In the last rule 3.11, the value f is a scalar field defined in space.

The ∇̇-derivative commutes with contraction and satisfies the sum and the product rules.

∇̇
∑
i

F ···i······i··· →
∑
i

∇̇F ···i······i··· (3.12)

∇̇FG→ G∇̇F + F ∇̇G (3.13)

∇̇(F +G)→ ∇̇F + ∇̇G (3.14)

Reordering ∇̇ and surface derivative introduces a collection of rules. These rules are given for

the variable tensor with no indexes A. For each index in A, an additional term is added to the sum.

Examples for all variations of A with one index are shown.
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∇̇∇αA→ ∇α∇̇A+ CBγα∇γA (3.15)

∇̇∇αAβ → ∇α∇̇Aβ + CBγα∇γAβ + Ṙβ.γαA
γ (3.16)

∇̇∇αAβ → ∇α∇̇Aβ + CBγα∇γAβ − Ṙ
γ
.βαAγ (3.17)

(3.18)

For each index in the A tensor, a new R······A
···
··· term is added. All possible terms are shown, they

are just repeated as need for the indexes of A. Note that to add these values the tensors must be

permuted to align the index orders.

The partial derivative ∂
∂t is defined by the following rules.

∂FG

∂t
→ F

∂G

∂t
+G

∂F

∂t
(3.19)

∂c1
∂t
→ 0 (3.20)

∂(F +G)

∂t
→ ∂F

∂t
+
∂G

∂t
(3.21)

∂
∑
i F
···i···
···i···

∂t
→
∑
i

∂F ···i······i···
∂t

(3.22)

∂∇αF
∂t

→ ∇α
∂F

∂t
(3.23)

To complete the TRS, we add a few additional rules for simplification.

Ac1Ac2 → Ac1+c2 (3.24)

A+ 0→ A (3.25)

A(F +G)→ AF +AG (3.26)

0A→ 0 (3.27)

Expressions with rationals are calculated immediately. After reaching a normal form, like terms

are combined to decrease the size of the result term. This is handled by a separate routine.
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3.3 Implementation

The CMSTRS is implemented as a Java Library. The rules and objects of the CMS have proper-

ties that can be modeled using an object oriented language. One of our goals was to make a system

that replicated how the CMS is used by hand. There are many generalized rules, for example rules

that match on any derivative. These are naturally implemented using inheritance. The result of

performing operations on tensors always results in tensors, which is again easily replicated using

inheritance. Additionally, features outside of a TRS are important to make the system more func-

tional. Additional components for combining like terms and exporting to special file formats add to

the power of this library.

3.3.1 Signature

All objects in the signature are tensors. The top level interface object is Tensor. A tensor is an

object is an ordered list of free indexes. A tensor also has a boolean denoting if it is restricted to

spatial coordinates or not.

The Tensor object has a minimum set of methods all symbols in the signature must implement.

Each object has three closely related views. The first is a tensor. The second view is a collection

of functions. Each object represents a mathematical function that takes input, or a mathematical

function of arity zero. The arity of a function is the number of inputs, a function with arity zero

is a constant or variable. The last view is as an expression tree. In this view, functions have their

inputs as children.

The basic interface for the Tensor object has the following methods. These are implemented for

every object in Table 3.1.

toString: prints the tensor out as a latex expression.

numIndexes: returns the number of indexes of the tensor.

arity: return the arity of the function, this is equivalent to the number of children.

getInput: on input i, returns the i-th function input if it exists.

getIndex: on input i, returns the i-th index to the tensor.

replaceInput: replace input at position i with tensor T .

replaceIndex: replace index at position i with new index T .

copy: makes a copy of the tensor.

order: return the derivative order with respect to ∇̇.
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equals: check for exact equivalence. This means all attributes of the two objects being compared

match exactly.

The TensorAbstract class implements two methods for Tensor. The order function defaults

to returning zero. A helper method, printIndexList, is provided to display the latex code of an

index list. This class gives a general interface for working with all possible inputs and outputs of

the rewrite system.

Tensor objects, those objects with arity 0, generally have one protected property. If the object

can have indexes, then it has either an array or fixed number of index positions. The following

are the basic objects of the signature: CommuatorTensor, CurvatureTensor, Normal, ShiftTensor,

and SurfaceVelocity.

There are also two special objects. The ScalarRational object allows for multiplication by

a scalar and can perform basic rational arithmetic. The NamedTensor object allows the user to

create a generic name and define it on either the space or the surface. The TensorSpace enum gives

constants for Spacial and Surface.

The application of mathematical functions always results in a tensor, any tensor expression is

itself a tensor. The CDerivative object covers the four derivatives ∇i, ∇i, ∇α, and ∇α. The

constructor takes two inputs, the tensor to take the derivative of and an index denoting the type of

derivative.

The Contraction function takes a tensor and array indexes of the two tensor indexes to contract.

Addition and multiplication are handled by the TensorSum and TensorProduct classes respectively.

These are representations of mathematical functions with a fixed arity of two. When the construc-

tors are called with more then two inputs, a tree structure is built through recursive calls to the

constructor. The Exponent takes a tensor and raises it to a rational power.

Two types of integrals are supported, both are arity one. The IntegralSpace is for integration

in the ambient space and IntegralSurface is for integration on the surface.

The CMS introduces the InvariantTimeDerivative and PartialInvariantTimeDerivative.

The InvariantTimeDerivative provides the main function for the ruleset of the CMS.

Tensor indexes are supported by the TensorIndex object. It takes two inputs, an IndexFlavor

and TensorSpace. The IndexFlavor is an enum containing Covariant and Contravariant. When

new indexes are generated, they are automatically named. If the number of indexes generated

surpasses the default letters, spatial names ri and gk are used. The values of k and i are iterated as

needed to avoid name repetitions.
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This functionality allows for tensor expressions to be written using the library. To simplify an

expression, a set or rewrite rules and a strategy is needed.

3.3.2 Reduction

All reduction rules must implement the Rule interface. The two key methods are matches, which

takes a tensor and returns true if the rule can be applied to it, and reduce, which applies the rule.

The interface also includes example, toString, and name for debugging.

The RuleAbstract class provides helper methods for matching. This allows a general pattern

to be matched, for example matching index types but not positions.

The majority of rules are implemented in a straightforward manner. The matches function

checks against either exact values or a general pattern. The reduce method copies needed objects

and returns a new tensor expression with the reduced term. Inheritance is used to allow for general

rule creation. All the rules in Chapter 3.2 are implemented as their own classes. Rules 3.15 - 3.17

can be easily handled by a single rule that uses a while loop to iterate over all indexes.

The rules

∇̇N i → −Ziα∇αC (3.28)

∇̇Ni → −Ziα∇αC (3.29)

Are implemented with a match that checks for the invariant time derivative and normal.

pub l i c boolean matches ( Tensor T) throws Exception {

i f ( t h i s . className (T,

” d r exe l . c s . cmstrs . s i g n a t u r e . Invar iantTimeDer ivat ive ” ) )

{

i f ( t h i s . className (T. getInput ( 0 ) ,

” d r exe l . c s . cmstrs . s i g n a t u r e . Normal ” ) )

{

re turn true ;

}

}

re turn f a l s e ;
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}

If the input term matches, then the reduce command get the original index attached to the

normal and uses it in the new expression.

pub l i c Tensor reduce ( Tensor T) throws Exception {

TensorIndex i = T. getIndex ( 0 ) ;

TensorIndex alpha = new TensorIndex (

IndexFlavors . Covariant ,

TensorSpace . Sur face ) ;

TensorIndex Alpha = new TensorIndex (

IndexFlavors . Contravariant ,

TensorSpace . Sur face ) ;

Tensor answer= new Contract ion (

new TensorProduct (

new Sca la rRat i ona l (−1) ,

new Shi f tTensor ( i , alpha ) ,

new CDerivat ive (

new Sur f a c eVe l o c i t y ( )

, Alpha )

) , 1 , 2 ) ;

r e turn answer ;

}

New objects need to be created during the reduction because an attribute, like a free index,

might appear in another part of the expression where it is not affected by the current rule.

The reduction strategy is implemented in the class Reduction. To reduce a term, first a new

Reduction object is created. This object has an array with one copy of each reduction rule. New

rules can be added by implementing the interface and adding them to the array in Reduction. The

reduction class has a counter for how many rules have been applied in any one pass.

A reduction pass does an inorder tree walk of the entire input expression. The reduction pass

first looks at the current function symbol in the tree. If the expression matches a reduction pattern,

then the reduce function is called to return the new tensor. This new tensor is then placed into
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the tree at the correct node, replacing the old tree with a new one. Once this is completed, the

reduction pass is called recursively on each input to the function. This continues until all nodes have

been checked against all rules.

It is possible that multiple rules may need to be applied to each node, or that new rules will only

match after other reductions have taken place. After one full inorder reduction walk of the expression

tree, the count of rules that matched is checked. If no rules match, completeing another tree walk

will not change the result. If the number of matches was nonzero, then another inorder reduction

walk is performed. This process repeats until no more matches are found. When a complete tree

walk is performed with no matches found, the expression is in normal form and returned. The

normal form is a sum of products. The normal formal has one additional property, all values may

be evaluated at time t = 0. This will be the most important property in evaluation because it can

be used to ensure all values need to be computed on a simple surface.

3.3.3 Combining Like Terms

It is convenient to combine equivalent terms to decrease the size of the expression. The Combine-

LikeTerms object provides the method combine for this purpose. The goal is to simplify expressions

like

Bαβ∇βu+ 5Bβα∇αu = 6Bαβ∇βu (3.30)

The combine method only works on tensors in the sum of products form. This is the normal

form produced by reduce. The reduce command can always be applied first to put expressions in

the correct form.

Given an expression in sum of products form, the first task is to create an array of all the

products. Any two products in the sum may combine. The addition operator is only binary, but

this comparison is easier once flattened into a single array. Once the array is created, all unique pairs

of products are compared. If any two products are found to match under the following properties,

then they are combined and their constant multipliers are added. Before a comparison takes place,

the expressions will need to be sorted.

The rules used to match are communtativity, associativity, index juggling, and index renaming.

Index juggling means that the type of any two indexes can be switched if they are contracted. This

can be thought of as a seesaw motion between the two indexes. Associativity is handled for both
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products and sums but converting the binary functions into lists and allowing them to be reordered.

Ai..i = A.ii. (3.31)

Index juggling is handled by making all contracted indexes covariant for the comparison. If two

expressions have no contracted indexes, this action has no effect. If there is exactly one contracted

index, then the name must appear exact two times, one lower and once upper. Since the indexes

can be juggled indefinitely, the comparison test can be done with both indexes lowered. If the

comparison matches, then the original expressions can be made equivalent by index juggling. This

can be extended to an infinite number of indexes since each contraction only links two unique indexes.

All contracted indexes are lowered for the match. If a match is found, the indexes are arbitrarily

placed in upper and lower positions on the combined expression. If no match is found, the indexes

are returned to their original positions for the next compare.

Any two contracted indexes many be renamed as long as they remain spacial or surface indexes.

To handle this property, the lists of all names for both tensors being matches are created. All

possible permutations of the renaming are then generated. Each renaming is attempted. If any

one renaming provides a match, then that renaming is selected as the correct one. If no renamings

can lead to a match, then the two expression cannot be matched. Once a renaming is picked, the

expressions need to be sorted before matching.

The final property is commutativity. After lowering all indexes and picking a renaming, com-

muntative property is handled by sorting. The product is sorted by class name followed by index

names and any special properties. Any scalar multiples are removed. If the expressions match after

the sorting, then they are the same under commutativity. If they do not match then they cannot

be matched.

After two matching tensors are found, their scalar multiples are added together. Both expressions

are removed from the sum list and a new expression is added with the combined value. This process

repeated until no new combinations are found that can be combined. The order in which terms are

selected and compared in the addition does not matter. Within multiplications, sorting will remove

an ordering differences between two terms.

One additional property is not implemented because of the added complexity of comparison. In

tensor calculus it is legal to reorder derivatives.
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∇α∇βu = ∇β∇αu (3.32)

This complexity will be discussed in the Section 3.3.5.

3.3.4 Complexity of Reduction

It is important to understand the growth rate and complexity of expressions. The rapid increase

in the size of expressions causes many problems in the CMS to become intractable.

The largest growth comes from the chain rules, Equations 3.2 and 3.13. Given a product of n

tensors, the chain rule creates a sum with n terms. Each term in the sum contains an additional n

products. An asymptotic upper bound can be given on the size of the expression using O-notation.

The classic definition of O from [21] is given below.

O(g(n)) = {f(n) : there exists positive constants c and n0

such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0} (3.33)

Taking the k-th derivative of an expression with the product of n terms using only the chain

rules causes the number of terms to increase. A recursive formula for this growth is given.

T (n, k) =nT (n, k − 1) (3.34)

T (n, 1) =n2 (3.35)

The closed form for this recursion is

T (n, k) = nk+1 (3.36)

The chain rules cause the majority of the growth in expression size. The expression size can be

bounded by O
(
nk+1

)
. This means taking four derivatives of an expression with five terms leads to

3125∗c terms for some c. The growth rate for expressions is exponential in the number of derivatives.

The number of derivatives that need to be taken is problem dependent, so this will be an important
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limitation. For example, in our Laplace-Eigenvalue problem described in Chapter 6 the number of

terms that can be found is linearly related to the number of derivatives that can be taken.

To help with this exponential growth rate, terms can be combined to decrease the input size

before the next derivative is taken. Unfortunately, this also leads to an exponential problem. When

comparing possible index renamings, the worst case it to check all possible renamings. This is a less

critical problem because in practice the number of indexes is small and many permutations can be

easily eliminated by comparing the object types.

3.3.5 Relationship between Equivalence and Graph Isomorphism

There are two important groups of algorithms P and NP. Problems in P can be solved in poly-

nomial time, for an input size n there exists some constant c such that the problem can be solved

in O(nc) [21]. The group NP contains all problems that can be solved by a nondeterministic Turing

Machine in polynomial time [21]. A nondeterministic Turing Machine is an imaginary computer

that can run an infinite number of computations in parallel. For a problem in NP, at least one of

these infinite machines would find a solution in polynomial time and the rest can be stopped. All

problems in P are also in NP.

The hardest problems in NP are in a set called NP-complete. These problems are thought to be

hard, there exists no constant c such that the problem can always be solved in O(nc). The problem

of Graph Isomorphism is known to be in NP but has not be proven to be in either P or NP [97].

There exists no known polynomial time algorithm to decide Graph Isomorphism. Unfortunately,

Tensor equivalence is at least as hard as Graph Isomorphism.

The Graph Isomorphism problem asks, given two Graphs G and H, does a bijection exist between

the vertex sets. A bijection means there is a renaming that will make the two graphs exactly the

same. The graphs shown in Figure 3.1 and Figure 3.2 show the same graph with different labels

applied to the nodes. These two graphs are isomorphic.

For any graph, a tensor expression can be written. If the tensors are equivalent under associa-

tivity, commutativity, index renaming, index juggling and derivative reordering, then the graphs are

isomorphic.

To create a tensor expression for graph G in Figure 3.1, create a value u for each node. The u

values are temporarily given subscripts to make the connection to the graph more visible.

uaubucuduguhuiuj (3.37)
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Figure 3.1: Graph G, shown above, is isomorphic to Graph H [14].

Figure 3.2: Graph H, shown above, is isomorphic to Graph G [15].

For every edge, add a covariant derivative to one side and a contravariant derivative to the other.

The indexes are given with tuples to show the relationship to the edges.

∇(a,g)∇(a,h)∇(a,i)ua∇(b,g)∇(b,h)∇(b,j)ub∇(c,g)∇(c,i)∇(c,j)uc

∇(d,h)∇(d,i)∇(d,j)ud∇(a,g)∇(b,g)∇(c,g)ug∇(a,h)∇(b,h)∇(d,h)uh

∇(a,i)∇(c,i)∇(d,i)ui∇(b,j)∇(c,j)∇(d,j)uj (3.38)

To make this a legal tensor expression, the subscripts on u are dropped and the indexes are given

single variable names.
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G =∇a∇b∇cu∇d∇e∇fu∇g∇h∇iu∇j∇k∇mu

∇a∇d∇gu∇b∇e∇ju∇c∇h∇ku∇f∇i∇mu (3.39)

The same approach can be used on Graph H from Figure 3.2.

H =∇n∇o∇pu∇n∇q∇ru∇r∇s∇tu∇p∇t∇vu

∇o∇w∇xu∇q∇x∇yu∇s∇y∇zu∇v∇w∇zu (3.40)

The creation of these tensor expressions can be done in linear time, each edge must be examined

once. If H = G under tensor equivalence then the graphs are isomorphic. This shows that tensor

equivalence can be used to solve Graph Isomorphism. It is at least as hard as Graph Isomorphism.

The ability to reorder derivatives is not implemented to decrease the search space in the CMSTRS

library. This leads to a system that can only simplify equivalence with relation to index juggling,

index renaming, commutativity, and associativity, but not complete mathematical equivalence.

3.3.6 Output Methods

Output methods are provided to generate Maple worksheets and Maple scripts. These objects

are called MapleFileGenerator and MapleScriptGenerator. They generate code for the Maple

evaluation library described in Chapter 4. Both these objects take a tensor expression and perform

a tree walk. At each node, a definition for how to output the class needs to be given. A single inorder

walk can output the entire object structure. Additional methods are given to meet the formating

requirements of each type of file.

Additional output methods can be easily created by extending the OutputMethod interface. The

interface has four methods. The closeFile method closes any and all files opened by the constructor.

The addEquation method takes a tensor expression, title string, and comments string. It outputs

the tensor expression is the target language with a comment section starting with the title.

The appendRawCode command allows raw code in the target language to be written directly to

the file. The addCode command also writes raw code, but in a template section with a title and

comment area to match the one made by addEquation.
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3.4 Example: Contour Length

The contour length is the outer perimeter of a surface. In the case of a one dimensional surface

embedded in a two dimensional ambient space, this is the classic definition of perimeter. For a two

dimensional surface, it is the surface area.

The contour length can be described as the integral of 1 over the surface.

L =

∫
S

1dS (3.41)

If a surface is changing shape over time, then its contour length will also be changing in time.

Taking the ∇̇-derivative of this expression explores how this change affects the contour length. In

this section, only the CMS expressions for the first three variations will be given. In Chapter 5, a

specific deformation from unit circle to ellipse will be evaluated.

In Java, a new class is created that imports the TRS signature and reduction rules.

import d r exe l . c s . cmstrs . s i g n a t u r e . ∗ ;

import d r exe l . c s . cmstrs . s t r a t e g i e s . Reduction ;

pub l i c c l a s s Contour1 {

pub l i c s t a t i c void main ( St r ing [ ] a rgs )

{

The integral is created using the signature.

Tensor f i r s t v a r i a t i o n

= new I n t e g r a l S u r f a c e (new Sca la rRat i ona l ( 1 ) ) ;

The integral is printed out as latex code using System.out.println.

System . out . p r i n t l n (” Var ia t ion 1 ” ) ;

System . out . p r i n t l n ( f i r s t v a r i a t i o n ) ;

The exact output from the system is

\ i n t {S} \ l e f t ( 1 \ r i g h t ) dS

This renders as

∫
S

(1) dS (3.42)
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An unlimited number of derivatives can be taken. A for loop is used to generate the next

derivative from the simplified form of the previous derivative. This saves on recomputing the same

simplified expressions. A variable is created for the previous order found and a reduction object is

created to perform simplification.

Tensor l a s t v a r i a t i o n = f i r s t v a r i a t i o n ;

Reduction TRS = new Reduction ( ) ;

The for loop iterates i from 1 to 3. A try block is added to catch any exceptions thrown due

to malformed expressions. As long as only the reduction rules are used, no invalid expressions can

be created. Inside the loop, the ∇̇ operator is added one additional time to the previous result and

then printed.

Tensor n e x t v a r i a t i o n =

new Invar iantTimeDer ivat ive ( l a s t v a r i a t i o n ) ;

n e x t v a r i a t i o n = TRS. reduce ( n e x t v a r i a t i o n ) ;

System . out . p r i n t l n (” Var ia t ion ”+i ) ;

System . out . p r i n t l n ( n e x t v a r i a t i o n ) ;

l a s t v a r i a t i o n = n e x t v a r i a t i o n ;

The output of the next two variations are

∇̇L =

∫
S

(−1)CBγ··γdS (3.43)

and

∇̇2 = L

∫
S

(1)C2Bγ··γB
g93·
·g93dS +

∫
S

(−1) ∇̇ [C]Bγ··γdS (3.44)

+

∫
S

(−1)C2Bγ··g141B
·g141
γ· dS +

∫
S

(−1)C∇γ∇γCdS (3.45)

Notice that numerous new index names were automatically created during this process.

These give geometric expressions for how the contour length is changing with respect to time. In

the case of ∇̇L, it can be seen that the first derivative is the integral over the surface of C multiplied

by the mean curvature.
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These expressions give a high level geometric view on the deformation of an arbitrary surface. To

create a more real world example, a specific surface deformation must be selected and the expressions

must be evaluated. Evaluation is described in Chapter 4. After evaluation has been detailed, this

example will be discussed further in Chapter 5. At that point, all the tools needed to evaluate

these expressions will have been discussed. In Chapter 5, the change in contour length between the

unit circle and an ellipse with semi-axis A = 1 and B = 1 + ε will be examined. A series solution

describing the contour length on the ellipse in terms of ε will be found using the above expressions.
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4. Evaluation of CMS Expressions

4.1 Package Overview

The CMSTensor Library is a Maple Library that implements the CMS as a collection of algebraic

and array manipulations. The calculations required for any specific index in an array is performed by

Maple’s built-in symbolic computation algorithms. The primary functions define the basic manip-

ulation of arrays. These are used to build the objects and advanced functions. Global information

about the surface and space in which the calculations are being completed must be given before any

features can be used.

The full source code is available for download from https://www.cs.drexel.edu/SCMS

4.2 Global Settings

The ambient space is defined by three global variables.

ambient coordinates - A list with the variables used for the coordinate system.

time coordinate - A variable name representing the time depended coordinate.

ambient mapping - A list of functions mapping the coordinate system to the Cartesian plane.

The function initialize ambient space is used to set these globals. It takes values in the order

given above. To define an ambient space in polar coordinates, the code would be

initialize ambient space([r,theta],t,[r*cos(theta),r*sin(theta)]);

The second global setting is for a surface restriction. If no surface is being defined, this initial-

ization is not required. Likewise, if the time dependent coordinates are not being used, the variable

set for time is not required. The surface manifold must have exactly 1 fewer coordinates then the

ambient space. There are two globals set by this function.

surface coordinates - A list containing the variable names defining the surface.

ambient to surface - A list of mappings from the ambient space to the surface.

To define the unit circle in the above initialized ambient space, restrict r to a fixed value.

initialize surface(phi,[1,phi]);

Once the required globals have been initialized, the library is functional. The size of the arrays

needed to define the components of a tensor are depended on the number of coordinates. Addition-

ally, these globals are used to define the derivative operators.

https://www.cs.drexel.edu/SCMS
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4.3 CMS Object

There is only one object introduced by the library. CMSObject is an object that defines a tensor.

The object has four local variables.

indexes - A list of the indexes and their position.

coordinates - The coordinates used by this object, either the surface or ambient from the global

settings.

components - A multidimensional array of algebraic values.

is surface - A boolean defining if the object has been restricted to the surface.

When a new CMSObject is constructed, only two inputs are required. The constructor must be

given the indexes and components. The object is assumed to be in the ambient space unless the

third argument, restricted is set to true. This argument defaults to false if not set. A spatial

object can be restricted to the surface at any point.

The list of indexes is realized as a list of integer values. There are only four valid atoms that

can be in this list. They are given in Table 4.1. The components holds the values at each point in

the tensor as a multidimensional array. This array holds the actual values while the other variables

store ancillary information.

Table 4.1: Possible Atoms for Index List

Index Values
Integer Value Meaning

1 Ambient Space index in contravariant position
-1 Ambient Space index in covariant position
2 Surface Space index in contravariant position
-2 Surface Space index in covariant position

The CMSObject has a small set of public methods. This object is primarily designed to be

manipulated by the library functions and not directly accessed. The constructor is defined by

ModuleApply and ModuleCopy. The inputs are given in the order indexes, components, then surface

restriction, which defaults to false. Two other overloaded operators are ModulePrint, for displaying

the object, and *, which maps to the prod function.

There are four accessors, getCompts, getIndexes, isSurf, and getRank. The rank of a tensor

is the number of indexes, which is the length of the indexes list. The most interesting components
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of the CMSObject are its two mutators. Both are used to restrict the object. If the object is defined

in space it is possible to call restrictSurface. This function loops through each element in the

components and replaces the spacial coordinates with the surface coordinates using the functions

defined in the global ambient to surface. The restrictTime function preforms a similar action

on the components, but instead replaces the variable name set in time coordinate with a given

value. The default is to restrict the time to t = 0. Both these functions simplify the component

values after substitution.

4.4 Primary Functions

The following functions give the basic mathematical operations that can be performed on tensors.

These are independent of the deformation of the surfaces. The majority of this section is spent on

multiplication and contraction. Addition and exponents are also defined. These basic tools will then

be used to create objects and derivative functions.

4.4.1 Multiplication

The key component for multiplication is the TensorProduct function. This function defines what

is means to multiply the components of two tensors A and B. The components of these two tensors

are multi-dimensional arrays. Let A[i1, i2, · · · ] access an expression in the A tensor and B[j1, j2, · · · ]

access an expression in B. Then the value in the product C = AB is

C[i1, i2, · · · , j1, j2, · · · ] = A[i1, i2, · · · ] ∗B[j1, j2, · · · ] (4.1)

The following helper functions are needed to accomplish this task. First array sizes determines

the positions of the elements in each array. Next, create array creates a new array to store the

value of the product. To make implementation of the loops more straightforward, array pos creates

a list with all the access positions for a given array size. Once all the access positions are converted

into flat lists, the multiplications can be completed at all positions. It is important to note that

these are all intended as helper functions and do not do error checking. The user accessible function

is prod, which does error checking before the calculations.

The prod function multiplies two tensors. If both tensors are spatial or surface, then the mul-

tiplication can proceed. If the product is a mix, then any spacial tensors must first be restricted

to the surface. This is done using the restrictSurface method of CMSObject. The indexes of the
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new tensor are a concatenation of the indexes of the two input tensors. Finally, if either input is a

scalar, then ScalarProduct is used instead of TensorProduct.

When multiplying a scalar by a tensor, the size of the tensor does not change. The new tensor

has the same size as the old one and each component position is multiplied by the scalar. This is

done by ScalarProduct. A scalar appears as an array with a single element, but this dimension is

not added to the final tensor. The array storing the scalar value is an artifact of the implementation

and not the same as the meaningful dimensions for non-scalar tensors.

4.4.2 Contraction

The public interface to contraction is the contract function. This function takes a CMSObject

and a list of index positions. Each pair of index positions in the list will be contracted. The new

tensor’s index list will be the original list with all contracted indexes removed. The number of

indexes to be contracted must be even and cannot contain duplicates. This function takes each pair

of indexes to contract on and calls contractij. After the two indexes are contracted, any remaining

index positions are shifted to account for the newly removed indexes. Index positions are counted

starting at one.

The contractij function contracts two indexes of a tensor, at positions i and j. First, additional

error checking is performed. The indexes must be different values. One index must be covariant

and the other contravariant. The indexes must both be either spatial or surface. Lastly, the array

dimensions must match for both indexes.

When it is confirmed the contraction is possible, the array must be permuted. Let a = min(i, j)

and b = max(i, j), wherever the indexes appear in the original tensor, permute indices is used to

reorder the indexes so that a is first and b is second. Next, create a new zero-filled array that is two

less then the original. Let A be the tensor being contracted and B be the new tensor, then for all i

compute

B[k1, k2, · · · ] = B[k1, k2, · · · ] +A[i, i, k1, k2, · · · ] (4.2)

In the event that there are no free indexes remaining, the tensor’s components must be flattened

one additional time because the array will have an extra level. This happens because a tensor with

one index and a scalar appear the same using an array representation. The component attribute of

the object is always an array, this is allows for a consistent interface. A one-index, one-dimensional

array is an array with only one position. This is also how a constant is stored. Most scalar arithmetic
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works using this representation. In this case, it adds an extra dimension that appears is not be

present mathematically.

4.4.3 Addition

The lin com function adds two tensors. The indexes and array sizes on both tensors must match

exactly. Additionally, both tensors must be spatial or surface. If only one is on the surface, then

the spatial tensor is restricted to the surface before addition takes place. The array pos function is

again used to flatten the multi-dimensions array access into a single loop where

C[k1, k2, · · · ] = A[k1, k2, · · · ] +B[k1, k2, · · · ] (4.3)

The indexes of the sum are the same as the indexes of either input term. A local function,

permute indices may be used to permute the array to add non-matching index dimensions. This

is only used as a helper function in some methods. For standard addition using + or lin com it is

required that the indexes match.

4.4.4 Additional Methods

The exponent function takes a tensor and an integer. It repeatedly calls the prod function. The

inverse function is used to invert a Tensor. It is only possible to invert a scalar or 2 by 2 array.

Inverting a 2 by 2 array is exactly the same as the method for a matrix.

4.5 Object Constructors

Construction of the objects of the CMS starts with the covariant basis. First, a CMSObject R is

created with one contravariant surface index and the value of ambient mapping as its components.

Next, the partial derivative is computed with respect to the coordinate space.

Z℘i =
∂

∂Zi
R℘ (4.4)

This is done using the ddZiPartial. Note that this object has two indexes, but should really be

a vector. This is a artifact of the CMSObject structure. This is only required for handling the basis

vectors. This allows it to be used directly with the entire library. The special symbol ℘ is used to

show this is not truly a spacial or surface index. This value is not a tensor, the first two tensors are
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created next. The Z℘i object is just used to get from a vector to a tensor. It should not be used for

later calculations because it is not a tensor.

The covariant metric, Zij and contravariant metric, Zij can now be defined. Zij is the

inverse of Zij .

Zij =Z℘i Zj℘ (4.5)

In the library this math is defined as

c o n t r a v a r i a n t b a s i s := proc ( )

re turn cont rac t (

prod ( c o n t r a v a r i a n t m e t r i c ( ) ,

c o v a r i a n t b a s i s ( ) )

, [ 2 , 3 ] ) ;

end proc ;

New objects can continue to be built up from their definitions using these tools. The con-

travariant basis, Zi℘, is given as

Zi℘ = ZijZ℘j (4.6)

The metric tensors define the space, next the metrics for the surface are defined. To do this,

the shift tensor, Zαi must be created. The first index must be a space index and the second must

be a surface index, but a shift tensor is defined for each combination of positions. The function

shift tensor takes two inputs to denote the desired indexes and returns the appropriate object.

Creation of the first shift tensor, Ziα requires creating a new Ramb CMSObject using the global

ambient to surface. The function first creates Ziα using the code below

R cms := CMSObject ( [ 1 ] ,

Array ( amb i en t to su r f a c e ) , t rue ) ;

ZIa := permute ind i c e s ( ddSaPart ia l ( R cms ) , [ 2 , 1 ] ) ;
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The remaining three variations can be easily generated.

Ziα =ZijZ
i
α (4.7)

Ziα =ZiαS
αβ (4.8)

Zαi =ZiαS
αβ (4.9)

Sαβ is the contravariant surface metric, which is the inverse of Sαβ , the covariant surface metric.

The shift tensor is used to compute the covariant surface metric.

Sαβ = ZiαZiβ (4.10)

Taking the partial derivative of a Tensor does not always yield another tensor. The Christoffel

symbol is used to ensure that the covariant derivative produces a tensor. The Christoffel symbol

is defined both in space, christoffel space, and on the surface, christoffel surface. When

computing the value in space, the index of
∂Z℘i
∂Sα

must be pivoted with pivot index. This is not

a true index lowering since Z℘i is not a true index. This is a mechanical requirement to keep

these computations in line with library. Mathematically, there are no tensors until Zij created, but

building it requires all the same algorithms as tensor calculations.

c h r i s t o f f e l s p a c e := proc ( )

re turn cont rac t ( prod (

c o n t r a v a r i a n t b a s i s ( ) ,

p i vo t index ( ddZ iPar t i a l ( c o v a r i a n t b a s i s ( ) ) , 3 ) )

, [ 2 , 5 ] ) ;

end proc ;

The surface Christoffel is computed purely algebraically.

Γαβγ = Zαi
∂ZIβ
∂Sγ

+ ΓIjkZ
α
i Z

j
βZ

k
γ (4.11)

To create the Levi-Civita Tensor, first create a LeviCivitaMatrix. This function takes one input

with the target index position. All indexes will be of the same type. It then creates a square array

with the correct number of dimensions. For each position ε[i1, i2, · · · ] the value is either the sign of

the permutation of 1, 2, · · · , n related to i1, i2, · · · or zero. The LeviCivita tensor is computed by
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multiplying the array by the determinant.

Ei,j,··· =
1√

det(Zij)
εi,j,··· (4.12)

Ei,j,··· =
√

det(Zij)εi,j,··· (4.13)

Eα,β,··· =
1√

det(Sij)
εα,β,··· (4.14)

Eα,β,··· =
√

det(Sij)εα,β,··· (4.15)

The determinant of a tensor is found using determinant. This is only valid on 1x1 and 2x2

dimensional arrays.

The surface curvature is given by the curvature tensor Bαβ . It is created using the function

curvature tensor which takes two indexes determining the index positions. These must be surface

indexes.

Bαβ =− Ziα∇βNi (4.16)

Bαβ =SαγBγβ (4.17)

Bαβ =SαγBβγ (4.18)

Bβα =BαγS
γβ (4.19)

Creation of the surface normal depends on the number of dimensions. It is only defined for one

and two dimensions. The surface normals definition is dependent on the number of dimensions, for

higher orders it needs to be solved for. The general approach to finding the normal can be found in

[45]. For a one dimensional surface, it is defined as

N i =Ei,jEαZ
α
j (4.20)

Ni =Zi,jN
j (4.21)

For a two dimensional manifold, the definitions are
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Ni =
1

2
EijkE

αβZiαZ
j
β (4.22)

N i =ZijNj (4.23)

Scalars are created using the CMSScalar function. The remaining functions are related to de-

forming manifolds.

The contravariant space velocity is created by taking the ddtPartial derivative of am-

bient to surface. This is represented by vi. The related tensors covariant space velocity,

contravariant surface velocity, and covariant surface velocity are defined by application

of the shift or metric tensor.

vi =Zijv
j (4.24)

vα =Ziαv
i (4.25)

vα =Zαi v
i (4.26)

This leads to the definition of surface velocity.

C =viN
i (4.27)

The last object constructor function is the Grinfeld Commutor, which simplifies the relationship

between ∇̇ and ∇α. This function takes three surface index positions. Indexes are permuted using

permute indices to make both sides match. The left side is shown before permutation is used to

line the indexes up for addition.
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Rαβγ =∇α(CBβγ)−∇β(CBαγ ) (4.28)

Rαγβ =SγζRαβζ (4.29)

Rαβγ =SβζRαζγ (4.30)

Rγαβ =∇γ(CBβα)−∇β(CBγα) (4.31)

Rβαγ =∇β(CBαγ)−∇γ(CBβα) (4.32)

Index positions not defined above are not supported by the constructor. They can be created by

contraction with the surface metric.

The remaining functions define how derivatives and integrals are taken.

Permuations are done using permute indices. This function takes two inputs, a tensor and a

list of integers. The list of integers gives the reordering. This function is based on the Maple function

of the same name [76]. The n-th position of the original tensor is moved to position n in the input

list. For example, [2, 3, 1] means place old index 2 into new position 1, old index 3 into new position

2, and old index 1 into new position 3.

In the above equations, this is represented by SγζRαβζ having γ in a position that does not match

the right side of the equation. Note that contracted indexes are not accounted for, the contraction

will take place before the permutation.

4.6 Advanced Functions

Derivatives of elements in a tensor are taken with the ddZiPartial, ddSaPartial, and ddtPar-

tial functions. The ddZiPartial function adds a new dimension to the array, with a covariant

spacial index. For each dimension on the space, the derivative is take with respect to the dimension.

Given an array with two positions, the array looks like

 f(x, y)

g(x, y)

 (4.33)

Taking the derivative of this array with respect to a two dimensions space, {x, y}, results in the

array



48

 df(x,y)
dx

df(x,y)
dy

dg(x,y)
dx

dg(x,y)
dy

 (4.34)

The partial surface derivative, ddSaPartial, does the same thing but on the surface coordinates.

There is only one time coordinate, which means ddtPartial does not add a new index. For all these

functions, when applied to a scalar one extra array dimension is added and must be removed. This

is because scalars are stored as arrays with one element.

The covariant derivative, ∇i, is given by ddZi. If the tensor this function is applied to has no

indexes then

∇iT =
∂

∂Zi
T (4.35)

For every index, an adjustment must be made. This is shown by example for two indexes.

∇iT kj =
∂

∂Zi
T kj − ΓmijT

k
m + ΓkimT

m
j (4.36)

The ddZi function has a local helper function adj to handle creating this sum. Given a tensor T

with dim dimensions, it will give the adjustment on index n. The ddZi function loops through all

indexes. The adj function for ddZi is given below.

adj := proc (T, n , dim)

l o c a l tp , swap , ind char , C h r i s t o f f e l I j k ;

C h r i s t o f f e l I j k := c h r i s t o f f e l s p a c e ( ) ;

ind char := get Indexes (T) ;

i f i nd char [ n]=−1 then

return prod ( CMSScalar (−1) ,

pe rmute ind i c e s (

cont rac t ( prod (

C h r i s t o f f e l I j k ,T) ,

[ 1 , n+getRank ( C h r i s t o f f e l I j k ) ] ) ,

[ 1 , ‘ $ ‘ ( 3 . . n+1) ,2 , ‘ $ ‘ ( n+2 . . dim +1)])

) ;



49

e l i f i nd char [ n]=1 then

return permute ind i c e s (

cont rac t (

prod ( C h r i s t o f f e l I j k ,T)

, [ 3 , n+getRank ( C h r i s t o f f e l I j k ) ] )

,

[ 2 , ‘ $ ‘ ( 3 . . n+1) ,1 , ‘ $ ‘ ( n+2 . . dim + 1 ) ] ) ;

e l s e

e r r o r s p r i n t f (

”ddZi on index with charac t e r \%a”

, ind char [ n ] ) ;

end i f ;

end proc ;

The contravariant version ddZI is created using contraction with the metric.

∇iT ······ = Zji∇jT ······ (4.37)

The surface versions of both functions follow the same pattern. Their are now four possible index

types for the input.

∇αT βiγj =
∂T βiγj
∂Sα

+ ΓβαζT
ζi
γj − ΓζαγT

βi
ζj + ZnαΓinmT

βm
γj − Z

n
αΓmnjT

βi
γm (4.38)

∇αT ······ =Sαβ∇βT ······ (4.39)

The ddt function follows a similar pattern. Again, the index possibilities are shown by example.

∇̇Tαiβj =
∂Tαiβj
∂t

+
(
∇α(vζ)− CBζα

)
T ζiβj −

(
∇β(vζ)− CBζβ

)
Tαiζj

+ vnΓinmT
αm
βj − vnΓmnjT

αi
βm (4.40)

The integrate function is just a shell for Maple’s integrate command. The function accepts

scalars, tensors with no indexes, and a list of variables with ranges to integrate over. It calls the
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built-in integrate function with the input ranges as given. If the integral needs any special treatment,

for example multiplication by a variable, this will not be handled automatically. The integrate

function does not take the manifold into account.

4.7 Example: Poisson’s Equation

A brief example from [10] is now given. The key components of evaluation will be discussed. For

a more complete explanation see [10].

This example analyzes Poisson’s equation under arbitrary smooth deformations of the domain.

The function u where 4u = 1 on the regular N -sided polygon will be examined. The Poisson energy

EN will be computed as a partial series. This series explores the asymptotic behavior of EN as

N →∞.

To use the library, it must be included into the Maple worksheet. In this example, the library

is in a folder CMSTensors in the same directory as the Maple worksheet. The library functions are

imported to the namespace using with.

r e s t a r t ;

l ibname := ” ./ CMSTensors ” , l ibname ;

with ( CMSTensors ) ;

The surface deformation for this problem is from the unit circle to a regular N -sided polygon.

In this case it is easiest to use polar coordinates. The ambient space is defined as

i n i t i a l i z e a m b i e n t s p a c e (

[ r , theta ] , t ,

[ r ∗ cos ( theta ) , r ∗ s i n ( theta ) ] ) :

The surface restriction only has one variable, ψ, for the angle. The radius is computed based on

the angle and time, t.

i n i t i a l i z e s u r f a c e ( [ p s i ] , [

1−t∗(1− cos ( Pi/N)/ cos ( p s i ) )

, p s i ] ) :

The solution to 4u = 1 on the unit circle under Dirichlet boundary conditions is

u(r, θ) =
1

4

(
r2 − 1

)
(4.41)
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This is defined in the library as

u:=CMSObject ( [ ] , Array ( [ 1 / 4∗ ( r ˆ2 −1) ] ) ) ;

The first term in the series for EN , is the solution on the unit circle to

E0 =

∫
Ω

(
1

2
∇iu∇iu+ u

)
dΩ (4.42)

The integrand is computed as

E0 integrand := l in com (

cont rac t ( CMSScalar (1/2)∗ ddZi (u)∗ ddZI (u ) , [ 1 , 2 ] )

,u

) ;

To integrate f(r, θ) over Ω, the expression expands to

∫
Ω

f(r, θ)dΩ =

∫ 1

0

∫ π

−π
rf(r, θ)dθdr (4.43)

This is done in two steps, first multiplication by r then integration.

E0 integrand :=CMSScalar ( r )∗ E0 integrand ;

E0:= i n t e g r a t e ( E0 integrand , [ r =0 . .1 , theta=−Pi . . Pi ] ) ;

The value for the first term in the partial series is stored in a list.

energy [ 0 ] : = getCompts (E0 ) [ 1 ] ;

The next term is computed as

E1 = −1

2

∫
S

C∇iu∇iudS (4.44)

The surface velocity, C, is computed. The expression is evaluated at t = 0. The restrictTime

function is called to simplify C.

C0:= s u r f a c e v e l o c i t y ( ) ;

C0:= r e s t r i c t T i me (C0 ) ;

The integrand can be computed easily.
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E1 integrand := cont rac t (

CMSScalar (−1/2)∗C0∗ddZi (u)∗ ddZI (u)

, [ 1 , 2 ] ) ;

Integration becomes more difficult with this term. The value of C is defined from −Pi/N to

Pi/N and repeated N times. Integration of C = −1 + cos(π/N)/ cos θ is also difficult.

First, the integrand is evaluated at t = 0 and removed from the CMSObject structure.

E1 integrand :=getCompts ( r e s t r i c t T i me ( E1 integrand ) ) [ 1 ] ;

This sets E1 integrand to be

f(ψ) = −1

8

− cos(ψ) + cos
(
π
N

)
cos(ψ)

(4.45)

The target integral is

∫
S

f(ψ)dψ = N

∫ π/N

−π/N
f(ψ)dψ (4.46)

This is simplified with a change of variables.

E1 integrand := eva l ( E1 integrand , p s i=theta /N) ;

The expression is converted into a series at N =∞ for integration.

E1 integrand := convert ( expand (

s e r i e s ( E1 integrand ,N=i n f i n i t y )

) , ‘ polynom ‘ ) ;

A much simpler integral is now taken.

energy [ 1 ] : = expand (

i n t ( E1 integrand , theta=−Pi . . Pi )

) ;

This results in the second term in the series

1

12

π3

N2
(4.47)

Computing the second variation requires dealing with infinite series. This cannot be handled by
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Maple automatically. The CMSTensor library relies on Maple for algebraic simplification. Continu-

ing the series would require specialized simplification code for the algebraic expressions.

The first two terms in the series are

EN = − π

16
+
πζ(2)

2N2
+ · · · (4.48)

This shows how a general CMS expression can be evaluated on a specific coordinate system.

Maple is used to evaluate Poisson’s equation. The CMS expression are true any deforming surface,

but we evaluate a specific realization of the problem.
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5. Example: Contour Length

The SCMS combines both the CMSTRS and Maple CMSTensor library. A problem can be

simplified and evaluated by using both libraries together. This problem can also be easily calculated

using alternative means. This allows the answer to be easily confirmed.

Consider the contour length of an ellipse with semi-axis 1+ ε and 1. Find a series for the contour

length in terms of ε. The approach to this problem is to consider a smooth evolution of the boundary

from the unit circle at t = 0 to the ellipse at t = 1. The evolution is shown in Figure 5.1.

Figure 5.1: The unit circle being stretched into an ellipse.

The evolution is parameterized as

x(t, θ) = (1 + εt) cos θ (5.1)

y(t, θ) = sin θ (5.2)

The contour length at time t is denoted by

L(t) =

∫
S(t)

1dS (5.3)

To find the contour length at t = 1, use a Taylor series. The series is in terms of the derivatives

of L, Ln = ∇̇nL.
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L(1) = L(0) + L1(0) +
1

2!
L2(0) +

1

3!
L3(0) + · · · (5.4)

The first term in the series is trivial,

L(0) =

∫
S(t=0)

1dS =

∫ 2π

0

1dθ = 2π (5.5)

The first derivative is found by applying the ∇̇-derivative. This is simplified by the TRS.

L′(t) = ∇̇
∫
S

1dS (5.6)

=

∫
S

(
∇̇(1)− CBαα

)
dS (5.7)

= −
∫
S

CBααdS (5.8)

To evaluate this expression, the coordinate system is defined. The code below initializes the

coordinate system from equations 5.1 and 5.2.

i n i t i a l i z e a m b i e n t s p a c e ( [ x , y ] , t , [ x , y ] ) :

i n i t i a l i z e s u r f a c e ( [ theta ] , [ ( 1+ e p s i l o n ∗ t )∗ cos ( theta ) , s i n ( theta ) ] ) :

Next, the needed tensors are generated for the coordinate system.

C0:= s u r f a c e v e l o c i t y ( ) :

BAb:= c u r v a t u r e t e n s o r (2 ,−2) :

Expression 5.8 is evaluated.

S u r f I n t e g r a l ( cont rac t ( prod ( CMSScalar (−1) , prod (C0 ,BAb) ) , [ 1 , 2 ] ) ) :

This returns επ.

Since this is a simple expression, It can also be evaluated directly. The value of the tensors are

C|t=0 = ε cos2 θ (5.9)

Bαα |t=0 = −1 (5.10)

Plugging in this values computes the same answer.
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L′(t = 0) = −
∫
S

CBααdS|t=0 (5.11)

=

∫
S

CdS (5.12)

=

∫ 2π

0

ε cos2 θdθ (5.13)

= επ (5.14)

To find the next value, L2(t = 0), take an additional ∇̇-derivative. The general pattern for these

expressions is given. It is split up into the integrand and integral. The majority of the simplification

takes place in the integrand.

Mn = ∇̇ (Mn−1)− CBααMn−1 (5.15)

Ln(0) =

∫
S

Mn|t=0dS (5.16)

With M1 known, M2 and L2 can be determined.

M1 = −CBαα (5.17)

M2 = −∇̇ (CBαα) + C2BααB
β
β (5.18)

The TRS reduces this expression to a normal form. The total reduction takes 31 rewrites includ-

ing structure changes like rule (3.12) and simple reductions like rule (3.25). Some key reductions are

highlighted below. Subscripts are attached to the arrow symbol referencing the rule list in Section

3.2.

−∇̇ (CBαα) + C2BααB
β
β →3.13 −Bαα∇̇C − C∇̇Bαα + C2BααB

β
β

→3.8 −Bαα∇̇C − C(∇α∇αC + CBαγB
γ
α) + C2BααB

β
β

→3.26 −Bαα∇̇C − C∇α∇αC − C2BαγB
γ
α + C2BααB

β
β (5.19)
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The normal form for M2 is given by equation (5.19). This expression is true for the contour

length of any deforming manifold. Code is generated to evaluate the expression for this realization

of the problem.

tempsum:=CMSScalar ( 0 ) :

Term1 := S u r f I n t e g r a l ( cont rac t ( prod ( CMSScalar (1/1) ,

prod ( exponent (C0 , 2 ) , prod (BAb, BAb) ) ) , [ 1 , 2 , 3 , 4 ] ) ) :

Term1 := r e s t r i c tT ime (Term1 ) :

tempsum:= l in com (tempsum , Term1 ) :

Term2 := S u r f I n t e g r a l ( cont rac t ( prod ( CMSScalar (−1/1) ,

prod (C1 , BAb) ) , [ 1 , 2 ] ) ) :

Term2 := r e s t r i c tT ime (Term2 ) :

tempsum:= l in com (tempsum , Term2 ) :

Term3 := S u r f I n t e g r a l ( cont rac t ( prod ( CMSScalar (−1/1) ,

prod ( exponent (C0 , 2 ) , prod (BAb, BaB ) ) ) , [ 2 , 4 , 1 , 3 ] ) ) :

Term3 := r e s t r i c tT ime (Term3 ) :

tempsum:= l in com (tempsum , Term3 ) :

Term4 := S u r f I n t e g r a l ( cont rac t ( prod ( CMSScalar (−1/1) ,

prod (C0 , ddSA( ddSa (C0 ) ) ) ) , [ 1 , 2 ] ) ) :

Term4 := r e s t r i c tT ime (Term4 ) :

tempsum:= l in com (tempsum , Term4 ) :

The final value is determined to be 1
4ε

2π.

M2|t=0 = ε2(7 cos2 θ − 5) cos2 θ (5.20)

L2(0) =

∫ 2π

0

(M2|t=0) dθ =
1

4
ε2π (5.21)

The TRS repeats this process and determines the normal form of M3 which requires 118 rewrites.
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In addition, terms are combined to shorten the expression.

M3 =− C3BααB
β
βB

γ
γ + 3C3BαβB

β
αB

γ
γ − 2C3BαβB

γ
αB

β
γ

+ 3C2Bαα∇β∇βC − 4C2Bαβ∇β∇αC

+ 3C∇̇(C)BααB
β
β − 3C∇̇(C)BαβB

β
α − 2∇̇(C)∇α∇αC

− ∇̇2(C)Bαα − C∇α∇α∇̇(C) + CRαββ ∇αC (5.22)

Equation (5.22) already shows the rapid growth of expressions in the CMS. The challenge of

calculating M4 without an automated system is obvious. M4 is the sum of 94 products and requires

595 rewrites. An important feature of the CMS remains in M3, this expression is valid for any

surface deformation. The library can easily determine that L3(0) = −−3
8 ε

3π and L4(0) = 51
64πε

3.

The Taylor series is now created.

1

2!
L2(0) =

1

2

(
1

4
ε2π

)
=

1

8
ε2π (5.23)

1

3!
L3(0) =

1

6

(
−3

8
πε3
)

= − 1

16
ε3π (5.24)

1

4!
L4(0) =

1

24

(
51

64
πε3
)

=
17

512
ε4π (5.25)

This is compared with a series computed using an entirely different method. This is used to

verify the results.

L(1) =

∫ 2π

0

(√
(1 + ε)2 cos2(θ) + sin2(θ)

)
dθ

=

(
2 + ε+

1

8
ε2 − 1

16
ε3 +

17

512
ε4 − 19

1024
ε5 + · · ·

)
π (5.26)

The library has been verified and correctly generates the series up for L7.
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6. Laplace-Dirichlet Eigenvalues

6.1 Introduction

The study of eigenvalues touches a wide range of fields. Most people’s first interaction with the

eigenvalue comes from linear algebra. In this context, there exists some matrix A. When multiplying

a vector x by the matrix, some vectors will change direction but a rare few will not. These vectors

are eigenvectors. In these cases, there exists some number λ, called the eigenvalue such that

Ax = λx (6.1)

Although this is the first version of eigenvalues seen by many students, it is not the only version

of the concept. A more detailed examination of eigenvalues in linear algebra can be found in [103].

The foundations of eigenvalues can be found in the structural mechanics of the 18th century. One

key example is Euler’s 1751 work Du mouvement dun corps solide quelconque lorsquil tourne autour

dun axe mobile [31]. In this paper, Euler examines the problem of rotating a rigid structure. Any

rotation of a rigid body such that some point remains fixed is equivalent to a rotation around the

fixed point. This work would be continued by Joseph-Louis Lagrange and Augustin-Louis Cauchy

in their study of celestial bodies [54]. These works would move the study of eigenvalues toward

more traditional linear algebra concepts. This would lead to the field of spectral theory when David

Hilbert began his study of operators and spaces [53].

The Laplacian eigenvalue also came out of this work. In this case, there is an eigenvalue, λ, and

an eigenfunction, u, such that taking the Laplacian, 4, the function only changes by scalar multipli-

cation. The Laplacian operator is a second order differential operator defined on the manifold [85].

4u = λu (6.2)

This classical eigenvalue problem is still open on many bounded domains. In 1877, Lord Rayleigh

examined eigenvalues on a drum and their relationship to the sounds produced by the drum [92].

By minimization of this eigenvalue, Lord Rayleigh proposed that among all drums of a given area,

the circular drum is the one which produces the deepest bass note [2]. It would take almost 30 years

before this conjecture was proven [2]. This result is the basis for the solution on the unit circle.
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For these eigenvalues, the boundary of the domain is under the Dirichlet boundary condition.

This condition means that the eigenfunction u must be equal to zero on the boundary. This is one

of three common boundary conditions, along with Neumann and Robin conditions [36].

The Laplacian eigenvalues appear in numerous fields outside of acoustics including electron wave

functions, the theory of diffusion, and study of dynamic systems [36].

Eigenvalues are one of the most successful tools in applied mathematics [107]. A broad range of

topics where eigenvalues are used in presented in [107]. Some of the applications are

• acoustics

• ecology

• fluid mechanics

• Markov chains

• partial differential equations

• quantum mechanics

• structural analysis

• functional analysis

• physics of music

• vibration analysis

6.2 Eigenvalues on the Polygon

One question of current interest in the field of Laplacian eigenvalues was proposed in 2004, what

is the series in 1/N for the simple Laplace eigenvalues on the N sided regular polygon under Dirichlet

boundary conditions [46]?

In this paper, the spectrum analysis of a regular polygon is proposed. At the time, the closed form

was known for only the square and three special triangles [46]. This attempt uses two approaches,

the finite element method and a Taylor series approach. The Taylor series approach will be the one

implemented in the SCMS.

The finite element method is shown to have difficulties in this problem space. The size of mesh

needed to create an estimate grows quadratically with respect to the number of nodes and the

number of nodes is strictly defined in terms of the number of edges on the polygon. Additionally the

error grows rapidly and cannot be improved by series acceleration tools [46]. Finally, this approach

is applicable for fixed values of N and does not lead to a general solution. Recent work has been

done by Robert Jones improving these numerical approximations [58].

The Taylor series approach provides an algebraic solution that is shown to be more accurate

than the finite method approach. It has been used to find numerical estimates for the first 10 simple
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eigenvalues on the regular 128-sided polygon [46].

Although this question is interesting in and of itself, it has a number of applications. An algebraic

series in terms of the number of sides N gives all eigenvalues for all possible N > 2. These can be

used for both numerical and exact computations. The relationship between eigenvalues and shapes

is a rich and important field [36].

Many approaches to finite elements and the level set method approximate original domains by

replacing them with polygonal meshes. The error created by the replacement of smooth boundaries

with polygonal boundaries can be further examined through study of these eigenvalues [46].

The results of [46] drew interest in a number of fields. It provided new insight into the study of

eigenvalues on general 2 dimensional domains [50]. The study of quantum billiards investigates the

movement of particles bouncing in a bounded domain [36]. The eigenvalues on the polygon can be

applied to quantum systems with polygonal domains as well as their spectroscopy [4]. Returning to

the relationship between shapes and eigenvalues, knowledge of the eigenvalues on the polygon can

be used to improve shape recognition techniques [64].

The next significant advance was an exact series up to N−4 which was presented in [47]. This

solution no longer required numerical approximation. The truncated series is now given for the

general N and for any order eigenvalue. An early version of the CMSTRS presented here was used

to find and correct errors in these hand calculations. The results promoted more investigation [9, 68].

The results were immediately found useful in a variety of fields.

The approach presented in [47] is extended and generalized below. The methods described are

recursive and algorithmic. Given the starting cases, the series can be theoretically extended to

any number of terms. The approach shows both that the presented system works, but also that it

improves on previous research. This approach is only limited by the algebraic simplification tools

and computational resources.

In the remainder of this chapter, the mathematics of computing eigenvalues will be examined.

The solution on the unit circle is used as both the basis for boundary variation and an example

domain. The first term in the series on the regular N sided polygon is found. Additionally, the first

term on the ellipse with semi-axis A = 1 and B = 1 + ε is found. The second deformation uses the

same CMS expressions, since these expressions are true for all coordinate systems, but can be more

easily numerically approximated. This problem provides both interesting results and an additional

method of error checking.
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6.3 Solution on Unit Circle

The eigenvalues on the unit circle can be visualized using an ideal drum. A drum, such as the one

in Figure 6.1, is a circle with a rigid frame. When any point on the drum is hit, the drum vibrates.

These vibrations stop when they reach the edge of the drum. The different vibrations of the drum

are related to the sounds that can be produced. The eigenvalues of the surface will determine these

vibrations, and therefore sounds, that the drum can produce. More about the relationship between

eigenvalues and sounds produced by drums can be found in [62], [90], [113], and [35].

Figure 6.1: Drum used by 40th Regiment New York Veteran Volunteer Infantry Mozart Regiment

The idealized drum is a circle of radius 1 centered at (0, 0). The eigenfunction u(r, θ) and the

eigenvalues, λ, are defined by a system of three equations.

The Laplacian provides a relationship between the derivatives of u and the eigenvalues [32].

4u+ λu = 0 (6.3)

The Laplacian is defined as

4u =

n∑
i=1

∂2u

∂x2
i

(6.4)

When restricted to polar coordinates, this is

4u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
(6.5)

The Dirichlet boundary condition states that the eigenfunction is zero along the boundary of the
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surface [32]. This can be visualized as the rigid frame of the drum. S is the boundary restriction of

space Ω.

u|S = 0 (6.6)

The eigenfunction is normalized over the entire space Ω.

∫
Ω

u2dΩ = 1 (6.7)

To find the eigenvalues, the following system must be solved.

4u =− λu (6.8)

u|S =0 (6.9)∫
Ω

u2dΩ =1 (6.10)

The Bessel Function solves Equation 6.8 [2]. The Bessel function is related to the second deriva-

tive operations in cylindrical coordinates [67]. The Bessel function of the first kind is given in

[67].

Jv(z) =
(z

2

) ∞∑
m=0

(−1)m(z/2)2m

m!Γ(v +m+ 1)
(6.11)

A solution for the eigenfunction, u, is given with two unknowns, x and c.

u(r, θ) = cJ0(xr) (6.12)

The Laplacian of the zeroth Bessel function meets the requirements of Equation 6.8.

4cJ0(xr) =− x2cJ0(xρ) (6.13)

The eigenvalue is λ = x2. The Dirichlet boundary condition, Equation 6.9 determines the value

of x.
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u|S =u(r = 1, θ) (6.14)

=cJ0(x) (6.15)

=0 (6.16)

For c 6= 0, select x to be a zero of the Bessel function. Let x = ρ where ρ is the n-th zero of the

zeroth Bessel J function.

λ = ρ2 (6.17)

The normalization condition determines the value of the unknown c.

∫
Ω

u2dΩ =1 (6.18)∫ 1

0

r

∫ π

−π
(cJ0(ρr))

2
dθdr =1 (6.19)

c22π

∫ 1

0

rJ0(ρr)2dr =1 (6.20)

c2πJ1(ρ)2 =1 (6.21)

c2 =
1

πJ1(ρ)2
(6.22)

c =
1√

πJ1(ρ)
(6.23)

This gives a final solution for the system

λ =ρ2 (6.24)

u(r, θ) =
J0(ρr)√
πJ1(ρ)

(6.25)

There are infinitely many real zeros of the Bessel J function and no complex zeros [67]. The

pattern of zeros can be seen in Figure 6.2.

Each of the zeros of this function produces a different vibration on the drum. The zeros close to

the y-axis are very distinct. As the function approaches infinity, the difference between two zeros
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Figure 6.2: Plot of J0 from -30 to 30 showing multiple zeros.

becomes to small to produce distinct sounds.

6.4 Regular Polygon

The series in 1/N for the Laplace-eigenvalues on the regular N -sided polygon under Dirichlet

boundary conditions is now examined.

The approach presented here applies the CMS. A surface deformation is defined that starts with

the unit circle, at time t = 0, and ends with the regular N -sided polygon, at time t = 1 [47]. An

example deformation with N = 8 sides with shown in Figure 6.3.

Figure 6.3: Boundary deformation from circle to regular polygon.

The answer is a Taylor series
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λN =λ0 + λ1 +
1

2
λ2 + · · ·+ 1

k!
λk + · · · (6.26)

λN =λ(t = 1) (6.27)

λ0 =λ(t = 0) = ρ2 (6.28)

λk =
dkλ

dtk
|t=0 (6.29)

Calculation of the variations of λ will be dependent on the deformation. The first derivative is

given by Hadamard’s formula [40].

λ1 = −
∫
S

C∇iu∇iudS (6.30)

Evaluation of this expression requires the surface velocity C. The coordinate system is restricted

to a fixed r on the boundary.

r(φ) =1− t

(
1−

cos
(
π
N

)
cosφ

)
(6.31)

θ(φ) =φ (6.32)

The surface velocity, C, is fully derived in [47]

D(θ) = 1− cos(π/N)

cos θ
(6.33)

C(t, θ) =
D(θ) + tD2(θ)√

(1− t)2 + 2t(1− t)(1 +D(θ)) + t2(1 +D(θ))2 cos−2 θ
(6.34)

At the initial time, t = 0, this is equal to

Ct=0 =
cos(π/N)

cos θ
− 1 (6.35)

This expression holds for −π/N < θ < π/N and it extends around the circle in N periods [47].

The Fourier decomposition of Ct=0 is used as C.
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C =

∞∑
k=−∞

c0(k)eikNθ (6.36)

The coefficient c0 is defined as

c0(k) =


− 1

3
π2

N2 +O( 1
N6 ) k = 0

(−1)k

N2k2 + (−1)kπ2

3N4k2 −
5(−1)k

N4k4 +O( 1
N6 ) k 6= 0

(6.37)

Hadamard’s equation can now be evaluated

∇iu∇iu =

∂u
∂r

∂u
∂θ


i

∂u
∂r

∂u
∂θ


i

=

2∑
i=1

 ∂u
∂r

2 ∂u
∂r

∂u
∂θ

∂u
∂r

∂u
∂θ

∂u
∂θ

2


i

i

(6.38)

=
∂u

∂r

2

+
∂u

∂θ

2

=

(
∂

∂r

J0(ρr)√
πJ1(ρ)

)2

(6.39)

=

(
−J1(ρr)ρ√
πJ1(ρ)

)2

=
J1(ρr)2ρ2

πJ1(ρ)2
(6.40)

∇iu∇iu|r=1 =
ρ2

π
(6.41)

This leads to

λ1 =− ρ2

π

∫
S

CdS (6.42)

This integral is solved using a change of variables.

∫
S

CdS =

∫ π/N

−π/N

∞∑
k=−∞

c0(k)eikNθdθ (6.43)

=

∫ π

−π

∞∑
k=−∞

c0(k)eikφdφ (6.44)

=2πc0(0) (6.45)

The solution for λ1 can now be computed.
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λ1 =− 2ρ2c0 (6.46)

=
2

3

π2ρ2

N2
+

2

315

π2ρ2

N6
+O

(
1

N8

)
(6.47)

=
4ζ(2)λ

N2
+

6ζ(6)λ

N6
+O

(
1

N8

)
(6.48)

Only the value of C was dependent on the boundary deformation. The solution λ1 = −2λc0 is

general. By finding a different C, the respective λ can be found.

Deforming the unit circle into an ellipse with semi-axis, A = 1 and B = 1 + ε, gives a different

value. This deformation is shown for a fixed ε in Figure 6.4.

Figure 6.4: Boundary deformation from circle to ellipse.

The coefficient of the Fourier series for C, deforming to the ellipse is

c0,ellipse =



1
4 k = −2

1
2 k = 0

1
4 k = −2

0 otherwise

(6.49)

This gives the solution for λ1 on the ellipse.
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λ1,ellipse = −2ρ2c0,ellipse = −λ (6.50)

This is an important feature that will be applied to the remaining variations. Expressions can

be confirmed against the ellipse where numerical approximations can computed independently.

6.5 Second Variation of λ2

The second variation of λ is found by applying the ∇̇-derivative to the first variation.

λ2 =∇̇λ1(t) (6.51)

λ2 =∇̇
(
−
∫
S

C∇iu∇iudS
)

(6.52)

More generally, any variation can be found by

λk =∇̇k−1

(
−
∫
S

C∇iu∇iudS
)

(6.53)

The rules of the CMS allow for the expansion of λ2.

λ2 =∇̇
(
−
∫
S

C∇iu∇iudS
)

(6.54)

=−
∫
S

∇̇
(
C∇iu∇iu

)
− C2Bαα∇iu∇iudS (6.55)

=−
∫
S

C1∇iu∇iu+ 2C∇iu∇iu1 − C2Bαα∇iu∇iudS (6.56)

The surface integral is evaluated when t = 0 and r = 0. When t = 0, the first variation of C

vanishes.

C1 = ∇̇(C)|t=0 = 0 (6.57)

To continue with this computation the value of u1 is required. u1 is the first partial derivative
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of u evaluated at t = 1.

u1 =
∂u

∂t

∣∣∣∣
t=0

(6.58)

The next chapter will solve u1 and give a general method for solving uk as a recursive function

of u0 · · ·uk−1 and λ · · ·λk. After establishing u1, computation of the λ values will be revisited.
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7. Determining Partial Derivatives of u

7.1 Introduction

It has been shown that partial derivatives of the eigenfunction u are required to solve for the

variations of lambda. Computation of these derivatives begins with the eigenfunction on the unit

circle.

u(r, θ) =
J0(ρr)√
πJ1(ρ)

(7.1)

To evaluate the variations of λ, only the values of ∂iu
∂ti at t = 0 are needed. The method for

determining these values is given in this chapter. A general method for computing u1, will be given

where

ui =

(
∂iu

∂ti

)∣∣∣∣
t=0

(7.2)

The chapter begins with the solution for u1. Many simplifications appear in u1, which are not

true in the general case. Next, a general method will be given for any ui. A requirement to find ui

will be the values u0 · · ·ui−1 and λ · · ·λi. It is convenient to treat these as symbolic values whenever

possible.

7.2 Solving u1

The system of equations used to find u(r, θ) will also determine u1.

4u =− λu (7.3)

u|S =0 (7.4)∫
Ω

u2dΩ = 1 (7.5)

They are referred to as the boundary condition, equation 7.4, the kernel condition, equation 7.3,

and the normalization condition, equation 7.5.



72

7.2.1 Boundary Condition

The solution to u1 requires that all these conditions remain fulfilled. The boundary condition,

Equation 7.4, is the most straightforward to satisfy. By definition, the boundary condition is met

when r = 1. The ∇̇-operator is applied to both sides, then the expression is solved for u1.

∇̇ (u|S) =∇̇(0) (7.6)

∇̇ (u) |S =0 (7.7)(
∂u

∂t
+ CN i∇iu

)∣∣∣∣
S

=0 (7.8)

∂u

∂t

∣∣∣∣
S

+
(
CN i∇iu

)∣∣
S

=0 (7.9)

u1 +
(
CN i∇iu

)∣∣
S

=0 (7.10)

u1 =−
(
CN i∇iu

)∣∣
S

(7.11)

This is solved using the same method as algebraic manipulations for the variations of λ.

u1 = −

( ∞∑
k=−∞

c0(k)eikNθ

)
du

dr

∣∣∣∣∣
r=1

(7.12)

=−

( ∞∑
k=−∞

c0(k)eikNθ

) (
J ′0(rρ)ρ√
πJ1(ρ)

)∣∣∣∣
r=1

(7.13)

=−

( ∞∑
k=−∞

c0(k)eikNθ

)(
−J1(rρ)ρ√
πJ1(ρ)

∣∣∣∣
r=1

)
(7.14)

=
ρ√
π

∞∑
k=−∞

c0(k)eikNθ (7.15)

The final expression is a Fourier series. The coefficient of eikθ is the most important part. It is

given a name

f1,surface(k) =
ρ√
π
c0(k) (7.16)

This condition must be true when u1 is evaluated at t = 0. Without inserting the values of

c0, this expression cannot be simplified further. This final step is delayed to keep the expressions

general.
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7.2.2 Kernel Condition

Next, the ∇̇-operator is applied to Equation 7.3 to find the kernel condition for u1.

∇̇4u =∇̇ (−λu) (7.17)

4∇̇u =− λ1u− λu1 (7.18)

4u1 =− λ1u− λu1 (7.19)

(4+ λ)u1 = −λ1u (7.20)

(7.21)

The Helmholtz operator, (4+ λ), is applied to u1 [23]. An inverse operator is created to solve

for u1. There is only one specific pattern that this operator will be applied to.

B(x) = (4+ λ) (x) (7.22)

B−1(B(x)) =x (7.23)

The inverse of the Helmholtz operator will allow for a solution to this condition of u1.

u1 =B−1 (−λ1u) (7.24)

=− λ1√
πJ1(ρ)

B−1 (J0(ρr)) (7.25)

The general formula for the Helmholtz operator is

B

(
1

2np
rnJ|m|+n(ρr)eimθ

)
= rn−1J|m|+n−1(ρr)eimθ (7.26)

This is used to create an inverse pattern, raJb(ρr)e
imθ. This is the only pattern that will appear

as input to the inverse operator.
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raJb(ρr)e
imθ =rn−1J|m|+n−1(ρr)eimθ (7.27)

a =n− 1 (7.28)

b =|m|+ n− 1 = |m|+ a (7.29)

The general pattern for the inverse operator is given, this is only valid for positive subscripts of

of the Bessel J function.

B

(
1

2(a+ 1)ρ
ra+1J|m|+a+1(ρr)eimθ

)
=raJ|m|+a(ρr)eimθ (7.30)

B−1
(
raJ|m|+a(ρr)eimθ

)
=

1

2(a+ 1)ρ
ra+1J|m|+a+1(ρr)eimθ (7.31)

This is applied to the specific case for u1.

− λ1√
πJ1(ρ)

B−1 (J0(ρr)) =− λ1

2ρ
√
πJ1(ρ)

rJ1(ρr) (7.32)

For consistency with the general form, this is treated as a coefficient to a Fourier series.

f1,kernal(k, r) =


− λ1

2ρ
√
πJ1(ρ)

rJ1(ρr) k = 0

0 k 6= 0

(7.33)

The following expression will meet the kernel condition.

(4+ λ)

∞∑
k=−∞

f1,kernel(k, r)e
ikθ =− λ1u (7.34)

7.2.3 Partial Solution to u1

Before solving for the normalization, a partial solution for u1 is generated. This will be required

to work with the normalization condition. The expression must be equal to the surface condition
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when r = 1. Additionally, the expression must correctly evaluate under the Helmholtz operator.

The nullspace of B is used to add terms to the series without changing the outcome of the Helmholtz

operator.

B
(
J|m|(ρr)e

imθ
)

=0 (7.35)

To ensure these values act correctly under surface restriction, they are divided by their value at

r = 1.

B

(
J|m|(ρr)

J|m|(ρ)
eimθ

)
=0 (7.36)

The first part of u1 meets the boundary condition.

u1 =
∑
k 6=0

f1,surface(k)
J|kN |(ρr)

J|kN |(ρ)
eikNθ + · · · (7.37)

This works as long as k 6= 0. In that cases, J0(ρ) is 0 in the denominator of the fraction. This will

be handled by the normalization condition. For k 6= 0, this equation meets the boundary condition.

Any terms added to meet the kernel condition must therefore cancel out at r = 1.

Under the Helmholtz operator, all these terms will evaluate to 0. The coefficients needed to meet

the kernel condition are added next.

u1 =
∑
k 6=0

f1,surface(k)
J|kN |(ρr)

J|kN |(ρ)
eikNθ +

∞∑
k=−∞

f1,kernal(k, r)e
ikNθ + · · · (7.38)

This changes the value on the surface, but that change can be easily accounted for.

u1 =
∑
k 6=0

f1,surface(k)
J|kN |(ρr)

J|kN |(ρ)
eikNθ

+

∞∑
k=−∞

f1,bulk(k, r)eikNθ −
∑
k 6=0

f1,bulk(k, 1)
J|kN |(ρr)

J|kN |(ρ)
eikNθ + · · · (7.39)

There is still one unknown term, S1,0, at J0.
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u1 =
∑
k 6=0

f1,surface(k)
J|kN |(ρr)

J|kN |(ρ)
eikNθ + S1,0J0(ρr)

+

∞∑
k=−∞

f1,bulk(k, r)eikθ −
∑
k 6=0

f1,bulk(k, 1)
J|kN |(ρr)

J|kN |(ρ)
eikθ (7.40)

The normalization condition, Equation 7.5, will determine the final unknown. First, u1 is sim-

plified.

u1 =

∞∑
k=−∞

f1(r, k)eikNθ (7.41)

f1(k, r) =


S1,0J0(ρr)− λ1

2ρ
√
πJ1(ρ)

rJ1(ρr) k = 0

ρc0(k)√
π

J|kN|(ρr)

J|kN|(ρ)
k 6= 0

(7.42)

7.2.4 Normalization Condition

The final condition that needs to be solved is the normalization condition, given by Equation

7.5. The ∇̇-operator is used to find the condition for u1.

∇̇
(∫

Ω

u2dΩ

)
=∇̇(1) (7.43)∫

Ω

∂u2

∂t
dΩ +

∫
S

Cu2dS =0 (7.44)∫
Ω

u1 u+ uu1dΩ =−
∫
S

Cu2dS (7.45)

2

∫
Ω

uu1dΩ =0 (7.46)∫
Ω

uu1dΩ =0 (7.47)

The spatial integral on the circle is defined as

∫
Ω

f(r, θ)dΩ =

∫ 1

0

r

∫ π

−π
f(r, θ)dθdr (7.48)

The majority of terms immediately go to zero because of the following identity, which is true for

integer k and k 6= 0.
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∫ π

−π
eikθdθ = 0 (7.49)

This leaves only

∫ 1

0

r

(
J0(ρr)√
πJ1(ρ)

)(
S1,0J0(ρr)− λ1

2ρ
√
πJ1(ρ)

rJ1(ρr)

)
dr = 0 (7.50)

This is solved algebraically for S1,0.

0 =2π

(
S1,0√
πJ1(ρ)

∫ 1

0

rJ0(rρ)2dr − λ1

2ρπJ1(ρ)2

∫ 1

0

r2J0(ρr)J1(ρr)dr

)
(7.51)

0 =
S1,0√
πJ1(ρ)

(
1

2
J1(ρ)2

)
− λ1

2ρπJ1(ρ)2

(
1

2

J1(ρ)2

ρ

)
(7.52)

0 =
S1,0

2
√
π
J1(ρ)− λ1

4ρ2π
(7.53)

− S1,0

2
√
π
J1(ρ) =− λ1

4ρ2π
(7.54)

S1,0 =
2
√
π

J1(ρ)

λ1

4ρ2π
(7.55)

S1,0 =
λ1

2
√
πρ2J1(ρ)

(7.56)

The complete expression for u1 can now be given.

u1 =

∞∑
k=−∞

f1(r, k)eikNθ (7.57)

f1(k, r) =


1
2
λ1(J0(ρr)−rJ1(ρr)ρ)

ρ2
√
πJ1(ρ)

k = 0

c0(k)ρ√
π

J|kN|(ρr)

J|kN|(ρ)
k 6= 0

(7.58)

7.2.5 Justification of u1

To show that the value of u1 meets the boundary condition, we first evaluate f1 when r = 1.

f1(k, 1) =


− 1

2
λ1

ρ
√
π

k = 0

c0(k)ρ√
π

k 6= 0

(7.59)
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We next show this meets the boundary condition from Equation 7.15.

u1|S =
ρ√
π

∞∑
k=−∞

c0(k)eikNθ (7.60)

∞∑
k=−∞



− 1

2
λ1

ρ
√
π

k = 0

c0(k)ρ√
π

k 6= 0

 eikNθ =
ρ√
π

∞∑
k=−∞

c0(k)eikNθ (7.61)

This is true as long as

− 1

2

λ1

ρ
√
π

=
ρ√
π
c0(0) (7.62)

The value for λ1 was given in Chapter 6.4. After plugging this in, the two expressions are

equivalent.

−1

2

−2ρ2c0(0)

ρ
√
π

=
ρ√
π
c0(0) (7.63)

ρc0(0)√
π

=
ρc0(0)√

π
(7.64)

This shows that u1 meets the boundary condition. Next, the kernel condition is checked, Equation

7.34.

The majority of these calculation will come from evaluating the Laplacian on u1.

(4+ λ)u1 =− λ1u (7.65)

4u1 + λu1 =− λ1u (7.66)

4u1 =− λ1u− λu1 (7.67)

First, evaluate when k 6= 0 in the Fourier series.
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−λ1u− λu1 =− λu1 (7.68)

=4

∑
k 6=0

c0(k)ρ√
π

Jk(ρr)

Jk(ρ)
eikNθ

 (7.69)

=−
c0(k)ρ3J|kN (ρr)
√
πJ|kN |(ρ)

eikNθ (7.70)

=− λ
∑
k 6=0

ρc0(k)J|kN |(ρr)√
πJ|kN (ρ)

eikNθ (7.71)

=− λu1 (7.72)

Next, we see if the expression is true for the case k = 0.

−λ1u− λu1 =4
(

1

2

λ1 (J0(ρr)− rJ(1, ρr)ρ)

ρ2
√
πJ1(ρ)

)
(7.73)

=
1

2

λ1rJ1(ρr)ρ− 3λ1J0(ρr)√
πJ1(ρ)

(7.74)

=
1

2

λ1rJ1(ρr)ρ√
πJ1(ρ)

− 1

2

λ1J0(ρr)√
πJ1(ρ)

− λ1
J0(ρr)√
πJ1(ρ)

(7.75)

=− λ
(

1

2

λ1 (J0(ρr)− rJ1(ρr)ρ)

ρ2
√
πJ1(ρ)

)
− λ1u (7.76)

=− λu1 − λ1u (7.77)

These two cases combined prove that our expression for u1 meets the kernel condition. The final

condition is normalization.
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∫
Ω

uu1dΩ =0 (7.78)

2π

∫ 1

0

ruf1(0)dr =0 (7.79)

2π

∫ 1

0

r

(
J0(ρr)√
πJ1(ρ)

)(
1

2

λ1 (J0(ρr)− rJ(1, ρr)ρ)

ρ2
√
πJ1(ρ)

)
dr = 0 (7.80)∫ 1

0

(
λ1rJ0(ρr)2

ρ2J1(ρ)2
− λ1r

2J(1, ρr)J0(ρr)ρ

ρ2J1(ρ)2

)
dr =0 (7.81)

λ1

ρ2J1(ρ)2

∫ 1

0

(
rJ0(ρr)2 − r2J(1, ρr)J0(ρr)ρ

)
dr =0 (7.82)∫ 1

0

rJ0(ρr)2dr −
∫ 1

0

r2J(1, ρr)J0(ρr)ρdr =0 (7.83)

1

2
J1(ρ)2 − 1

2
J1(ρ)2 =0 (7.84)

This proves that u1 is a correct solution. In the next section, this method will generalize um.

7.3 General Solution for um

To solve for the general um, the same pattern is followed with repeated application of the ∇̇-

operator. All components will be solved as Fourier series. The boundary condition is straightforward

to define.

∇̇m (u|S) =0 (7.85)

∞∑
k=−∞

fm,surface(k)eikNθ =∇̇m (u|S) (7.86)

There is a closed form for finding the m-th application of the ∇̇-operator for the kernel condition.
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∇̇m4u =∇̇i (−λu) (7.87)

(4+ λ)um =−
m∑
j=1

(
m

j

)
λjum−j (7.88)

um =B−1

− m∑
j=1

(
m

j

)
λjum−j

 (7.89)

∞∑
k=−∞

fm,bulk(k, r)eikNθ =B−1

− m∑
j=1

(
m

j

)
λjum−j

 (7.90)

A general formula for the S0,m coefficient can be found using the normalization condition. A

partial solution to um is put into this equation with an unknown m,

∇̇i
(∫

Ω

u2dΩ

)
= 0 (7.91)

After taking repeated ∇̇-derivatives, the expression is solved for S0,m.

Combining all these parts gives a general solution um.

um =

∞∑
k=−∞

fm(k, r)eikNθ (7.92)

fm(k, r) =


S0,mJ0(ρr) + fm,bulk(0, r) k = 0

(fm,surface(k)−fm,bulk(k,1))J|kN|(ρr)

J|kN|(ρ)
+ fm,bulk(k, r) k 6= 0

(7.93)

The value of u1 can now be used to find λ2. Additional values of um can be derived when needed.

During computation of the Laplace eigenvalues, these partial derivatives will appear. The values

are needed to for evaluation. The process described above is implemented using the SCMS. This

allows for the automated computation of all partial derivatives need to our eigenvalue expressions.
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8. Second Variation of λ

An expression for λ2 has already been established. It has been shown that all um functions will

have the form of a Fourier Series. This expression can now be simplified into convolutions of these

coefficients.

λ2 =−
∫
S

C1∇iu∇iu+ 2C∇iu∇iu1 − C2Bαα∇iu∇iudS (8.1)

=2conv(c0, c0)(0)ρ2 + 4
√
πconv(c0,

df1

dr
|r=1)(0)ρ (8.2)

=2conv(c0, c0)(0)ρ2 + 4
√
πconv(c0, f1,dr)(0)ρ (8.3)

For convenience, a new subscript notation is introduced to denote the derivatives of the eigen-

function coefficients. This is for the reader’s convenience, it is implemented as explicit calls to inert

functions.

df(k)

dr
|r=1 =f1,dr (8.4)

=


c0(0)ρ√

π
k = 0

c0(k)ρ√
π

ρJ′|kN|(ρ)

J|kN|(ρ)
k 6= 0

(8.5)

A series is given for
ρJ′|kN|(ρ)

J|kN|(ρ)
. This comes from the continued fraction decomposition of the Bessel

Function.

ρJ ′|kN |(ρ)

J|kN |(ρ)
= |kN | − 1

2

ρ2

|kN |
+

1

2

ρ2

|kN |2
− ρ2

|kN |3

(
1

8
ρ2 +

1

2

)
+O

(
1

|kN |4

)
(8.6)

8.1 First Convolution

The first convolution in λ2 contains only c0.

2conv(c0, c0)(0)ρ2 (8.7)
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The convolution is defined as

T1 = 2ρ2
∞∑

k=−∞

c0(k)c0(−k) (8.8)

This can be solved as a sum with three parts, k = 0, k < 0, and k > 0.

When k 6= 0

c0(k)c0(−k) =
1

k4N4
+

2

3

π2

k4N6
− 10

k6N6
(8.9)

Since k is the only variable in the infinite sum, each part can be simplified individually.

1

N4

∞∑
k=1

1

k4
=

1

N4
ζ(4) (8.10)

2π2

3N6

∞∑
k=1

1

k4
=

2π2

3N6
ζ(4) =

4ζ(2)ζ(4)

N6
(8.11)

−10

N6

∞∑
k=1

1

k6
=
−10

N6
ζ(6) (8.12)

The same is result is derived for k = −∞· · · − 1 because multiplication is commutative.

These are combined to give the value of the summation with k 6= 0.

∑
k 6=0

c0(k)c0(−k) =2

(
ζ(4)

N4
+

4ζ(2)ζ(4)

N6
− 10ζ(6)

N6

)
(8.13)

=
2ζ(4)

N4
− 6ζ(6)

N6
(8.14)

The value when k = 0 is trivial to calculate.

c0(0)2 =
1

9

π4

N4
= 4

ζ(2)2

N4
= 10

ζ(4)

N4
(8.15)

This gives the total for the convolution
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conv(c0, c0)(0) =
2ζ(4)

N4
− 6

ζ(6)

N6
+ 10

ζ(4)

N4
(8.16)

= 12
ζ(4)

N4
− 6

ζ(6)

N6
(8.17)

It remains to multiply by 2ρ2.

T1 =2conv(c0, c0)(0)ρ2 (8.18)

=

(
24
ζ(4)

N4
− 12

ζ(6)

N6

)
ρ2 (8.19)

8.2 Second Convolution

The second convolution requires f1,dr, which is already known.

T2 = 4
√
πconv(c0, f1,dr)(0)ρ (8.20)

Again, the value when k = 0 is straightforward to compute.

c0(0)f1,dr(0) = c0(0)2 ρ√
π

(8.21)

= 4
ζ(2)2

N4

ρ√
π

= 10
ζ(4)

N4

ρ√
π

(8.22)

The nonzero part is more difficult.

=

∞∑
k=1

(c0(k)f1,dr(−k)) (8.23)

=

∞∑
k=1

c0(k)c0(−k)
ρJ ′|kN |(ρ)

J|kN |(ρ)
(8.24)

=
ρ√
π

∞∑
k=1

c0(k)c0(−k)
ρJ ′|kN |(ρ)

J|kN |(ρ)
(8.25)

The Bessel J function contains an absolute value, and all values in c0 are taken to even powers.

This means the positive and negative ranges will be the same. Only the positive range is shown.
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c0(k)c0(k)
ρJ ′|kN |(ρ)

J|kN |(ρ)
=

1

k3N3
− 10

k5N5
− 1

2

ρ2

k5N5
+

2

3

π2

k3N5
+

1

2

ρ2

N6k6
(8.26)

Each of these produces a ζ function when the sum is computed from k = 1 · · ·∞.

1

N3

∞∑
k=1

1

k3
=
ζ(3)

N3
(8.27)

−10

N5

∞∑
k=1

1

k5
=
−10ζ(5)

N5
(8.28)

−ρ2

2N5

∞∑
k=1

1

k5
=
−ρ2ζ(5)

2N5
(8.29)

2π2

3N5

∞∑
k=1

1

k3
=

2π2ζ(3)

3N5
(8.30)

ρ2

2N6

∞∑
k=1

1

k6
=
ρ2ζ(6)

2N6
(8.31)

These are combined to find the solution to the convolution.

∞∑
k=1

· · · = ζ(3)

N3
− 10ζ(5)

N5
− ρ2ζ(5)

2N5
+

2π2ζ(3)

3N5
+

1

2

ρ2ζ(6)

N6
(8.32)

The same thing happens for k < 0 giving a total of

∑
k 6=0

· · · = 2

(
ζ(3)

N3
− 10ζ(5)

N5
− ρ2ζ(5)

2N5
+

2π2ζ(3)

3N5
+

1

2

ρ2ζ(6)

N6

)
(8.33)

=
2ζ(3)

N3
− 20ζ(5)

N5
− ρ2ζ(5)

N5
+

8ζ(2)ζ(3)

N5
+
ρ2ζ(6)

N6
(8.34)

In the λ2 expression this sum is multiplied by 4
√
πρ. The contribution to λ2 from this convolution

is

T2 =4
√
πconv(c0, f1,dr)(0)ρ (8.35)

=ρ2

(
8ζ(3)

N3
+ 16

ζ(2)2

N4
− 80ζ(5)

N5
+

32ζ(2)ζ(3)

N5
− 4ρ2ζ(5)

N5
+

4ρ2ζ(6)

N6

)
(8.36)
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Table 8.1: Confirmation of λ2 by numerical approximation.

Approx Exact

x1ζ(3)ρ2/N3 7.999999999 8
x2ζ(2)2ρ2/N4 24.0000000000 24
x3ζ(4)ρ2/N4 3.9999999999 4

x4ζ(2)ζ(3)ρ2/N5 31.9999999979 32
x5ζ(5)ρ2/N5 -79.9999999999 -80
x6ζ(5)ρ4/N5 -3.9999999999 -4

x7ζ(2)ζ(4)ρ2/N6 15.9999999999 16
x8ζ(6)ρ2/N6 -39.9999999999 -40
x9ζ(6)ρ4/N6 3.9999999999 4

8.3 Final Value for λ2

All that remains to generate λ2 is to combine the two values computed above.

λ2

λ
=

8ζ(3)

N3
+

24ζ(2)2

N4
+

4ζ(4)

N4
− 80ζ(5)

N5
+

32ζ(2)ζ(3)

N5
− 4ρ2ζ(5)

N5

+
16ζ(2)ζ(4)

N6
− 40ζ(6)

N6
+

4ρ2ζ(6)

N6
(8.37)

=
8ζ(3)

N3
+

64ζ(4)

N4
+

32ζ(2)ζ(3)

N5
− (4λ+ 80)ζ(5)

N5
+

(4λ− 12)ζ(6)

N6
(8.38)

The convolutions can also be approximated numerically. The numerical computation involves

truncating the summations
∑∞
k=−∞ · · · =

∑R
k=−R. The exact results are compared to the approxi-

mate results in Table 8.1. The value of λ3 will be dependent on u2 and multiple derivatives of u1.

An automated method for dealing with Fourier series is now required. This library is described in

Chapter 9.
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9. Fourier Library for Maple

9.1 Introduction

The Fourier series library has two goals. The first is the symbolic manipulation of series. This is

handled by the Fourier series object. When performing manipulations with this object, the target

is a new Fourier series. The coefficients of this new series will be built from manipulations of the

original coefficients, for example convolutions and derivatives.

The second and more difficult goal, is to find a closed from for the new coefficient function.

No algorithm exists to determine if a closed form expression exists and find it in general. This

means that the second goal will not always be possible, but a set of rules is introduced that deals

with the type of series that appear in the Laplacian Eigenvalue problem on the N -sided polygon.

Although not all series can be solved exactly, they can always be approximated numerically through

truncation.

9.2 Fourier Series Manipulation

The foundation of the library is a Fourier Series object. This structure allows for the creation

of a new series object and its use with the standard Maple interface for multiplication, addition,

derivatives, etc. The object overloads the standard operations with the definitions provided below.

During these calculations, the series will be kept in the object framework. Attempts to approxi-

mate or simplify the coefficients of the series are delayed until requested. This allows for efficient

calculations by delaying the most time consuming parts until needed.

The series object is a tuple of two functions {f(k), g(k, θ)}. They form the series

∞∑
k=−∞

f(k)eg(k,θ) (9.1)

The primary motivation for this library is handling multiplication. When two series are multiplied

together a special convolution function is introduced. This function is completely inert until a value

is requested and an evaluation method is chosen.

Given two series objects A(θ) and B(θ), the coefficient is a function with one input, the iteration

index. For clarity, the exponent will be treated as a two input function, but in Maple it only has



88

one input. The second input, θ, is evaluated using the eval command. The value θ is required

to be symbolic in the return value of the function. This is enforced in the object constructor and

mutators.

A(r, θ) =

∞∑
k=−∞

f(k)eg(k,θ) (9.2)

B(r, θ) =

∞∑
j=−∞

x(j)ey(j,θ) (9.3)

When these series are multiplied together, the object must confirm if the exponent functions are

equivalent. If g(k, θ) = y(k, θ) then the series can be combined.

AB =C if g(k, θ) = y(k, θ) (9.4)

C =

∞∑
k=−∞

h(k)eg(k,θ) (9.5)

h(k) =conv (f, x) (k) (9.6)

The conv function is a symbolic representation of the sum

conv (f, x) (k) =

∞∑
j=−∞

f(k − j)x(j) (9.7)

The library will not attempt to evaluate this convolution until asked. It will store an infinite

series of inert conv function calls.

Multiplication by scalar, s, is also supported.

sA =

∞∑
k=−∞

h(k)eg(k,θ) (9.8)

h(k) =s h(k) (9.9)

The addition of two series objects is dependent on the equivalence of their exponent functions.
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A+B =C if g(k, θ) = y(k, θ) (9.10)

C =

∞∑
k=−∞

h(k)eg(k,θ) (9.11)

h(k) =f(k) + x(k) (9.12)

A piecewise function is used to add series to a scalar s.

A+ s =

∞∑
k=−∞

h(k)eg(k,θ) (9.13)

h(k) =


s+ f(0) k = 0

f(k) otherwise

(9.14)

Derivatives are also handled by a revision to the coefficient function. Taking the derivative with

respect to variable v is implemented as

d

dv
A =

∞∑
k=−∞

h(k)eg(k,θ) (9.15)

h(k) =
df(k)

dv
+ f(k)

dg(k, θ)

dv
(9.16)

One special case of integration is implemented.

∫ π

−π
Adθ = f(0) (9.17)

This is supported for any equivalent range, for example 0 · · · 2π.

This functionality provides the algebraic manipulation needed for series calculations in our eigen-

value problem.
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9.3 Numerical Evaluation

A method to approximate convolutions at specific points is given. First, the series is truncated.

For example, to simplify a convolution of three functions we truncate two infinite series to have finite

ranges.

a(n) = conv (f, g, h) (n) (9.18)

The series is truncated to run from −t · · · t, which means calculating

trun(a, n, t) =

t∑
k=−t

t∑
j=−t

f(n− k)g(−k − j)h(j) (9.19)

This is a double application of the formula from equation 9.7 with truncated ranges. Since these

are truncated ranges, an exact solution would only be found if the series has a finite number of

nonzero terms. If that were the case, selecting the correct t would complete the calculations. Since

this is the exception rather than the rule, truncation is expected to produce only a numerical result.

To improve the results, Richardson Extrapolation is applied [94]. The approximate value is

computed at multiple powers of two. These values are evaluated using Richardson Extrapolation

to improve the numerical accuracy. The series are calculated from largest to smallest ranges. This

allows the built in memoization features of Maple to quickly recompute repeated function calls.

A formula to cancel one order of error using Richardson with t = 4, 8, 16 is shown. This method

is dependent on calculating at powers of two. It can be used recursively to eliminate additional error

terms. Maple is used to determine the formula based on the number of powers of 2 available.

rich (a, n, 16) =
2ctrun(a, n, 8)− trun(a, n, 16)

2c − 1
(9.20)

c =
trun(a, n, 16)− trun(a, n, 8)

trun(a, n, 8)− trun(a, n, 4)
(9.21)

The value c is the rate of convergence. The larger |c| is, the more accurate the calculations will be.

A value |c| < 1 means a divergent series. The rate of convergence is also a numerical approximation.

The error in the truncated method is defined

trun(a, n, t) = a(n) + Etc + o
(
tc+1

)
(9.22)
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One application of equation 9.20 will cancel the leading error Etc, leaving an improved series.

rich (a, n, t) = a(n) + o
(
tc+1

)
(9.23)

Although the goal is to find an exact solution, it is not always possible. Numerical approximations

can give insight into the answer. These approximations are also crucial to testing the symbolic

evaluation methods. They are also used to quickly determine the order in N of an expression. This

is used to determine if expressions can be ignored because it does not contribute to the desired

orders of the solution.

9.4 Symbolic Evaluation

The approach to simplifying convolutions is to split the problem up into smaller components.

This reduces the expressions to a form that can be matched against a rule set. There are two main

motivations for the approach to simplification, zero elements may be special and sums starting at 1

and running over positive integers are more likely to have simplification rules.

The first point is motivated simply by the fact that Fourier series created for our motivating

problem tend to have special cases at zero. The implementation of scalar addition will introduce

special zero conditions. The second point is motivated by the set of rules described in Section 9.4.1.

In addition, Maple has more simplifications for positive ranges.

Convolutions are split into three ranges, zero, positive and negative. The original convolution

formula is broken up into k = 0, k < 0, and k > 0.

conv (f, g) (k) =

∞∑
j=−∞

f(k − j)g(j) (9.24)

Zero Case

When k is equal to 0 then the convolution simplifies to

conv (f, g) (0) =

∞∑
j=−∞

f(−j)g(j) (9.25)

This is split into into three distinct summations.
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z1 =

∞∑
j=1

f(j)g(−j) (9.26)

z2 =f(0)g(0) (9.27)

z3 =

∞∑
j=1

f(−j)g(j) (9.28)

Each of these summations is simplified using the strategy described in Section 9.4.1.

Positive Ranges

For positive ranges, assume that k > 0. The following sums can then be created

p1 =

∞∑
i=1

f(k + i)g(−i) (9.29)

p2 =f(k)g(0) (9.30)

p3 =

k∑
i=1

f(k − i)g(i) (9.31)

p4 =f(0)g(k) (9.32)

p5 =

∞∑
i=1

f(−i)g(k + x) (9.33)

There is one important note about how these sums are created. Function inputs with additions

are not calculated directly. For example, f(k+ i) will first be evaluated as f(m) and simplified using

any assumptions on m. In this case, assuming that m is a positive integer. After this simplification

is done the substitution m = k+ i is applied. Once the sums are created the rules from Section 9.4.1

are applied.

Negative Ranges

The approach behind negative k values mirrors that of the positive values. The ranges are

different, but the motivation is the same. To handle the negative value of the number, sums are

evaluated for −|k| which is equivalent to k when k < 0.
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n1 =

∞∑
i=1

f(i)g(i+ |k|) (9.34)

n2 =f(0)g(−|k|) (9.35)

n3 =

|k|∑
i=1

f(−|k|+ i)g(−i) (9.36)

n4 =f(−|k|)g(0) (9.37)

n5 =

∞∑
i=1

f(−|k| − i)g(i) (9.38)

The same process, used for positive ranges, of handling addition of function inputs using a two

step process followed by simplification is performed.

Combining Ranges

Once each of these components has been simplified individually, they can be combined to deter-

mine a closed form for the convolution.

conv (f, g) (k) =


p1 + · · ·+ p5 k > 0

z1 + z2 + z3 k = 0

n1 + · · ·+ n5 k < 0

(9.39)

9.4.1 Simplification Rules

To simplify one algebraic expression over a range, the following steps are taken.

1. The expression is expanded into a sum of products normal form.

2. The normal form is then converted into a list of pairs. Each pair has an expression in terms

of the summation variable as the first element and any constant multipliers as the second

elements.

3. The pairs are then matched on known patterns.

4. After all matching has been completed, the pairs can be evaluated.

5. Finally, the sum can be created as a piecewise function.
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9.4.2 Summation Patterns

The following patterns are matched to simplify series.

y∑
k=x

1

ka
=Z(a, x, y) (9.40)

y∑
k=x

ψ(a, k) =Psum(a, 0, x, y) (9.41)

y∑
k=x

ψ(a, k)

kb
|b>0 =Psum(a, b, x, y) (9.42)

y∑
k=x

1

(n− k)akb
=Pnmx(a, b, n, x, y) (9.43)

y∑
k=x

1

(n+ k)akb
=Pnpx(a, b, n, x, y) (9.44)

y∑
k=x

1

(k − n)akb
=Pxmn(a, b, n, x, y) (9.45)

y∑
k=x

ψa(k)ψb(k) =Psq0(a, b, x, y)

y∑
k=x

ψa(k)ψb(k)

kc
|c>0 = Psq1(a, b, c, x, y) (9.46)

y∑
k=x

ψa(k)

kb(n+ k)c
=Psump(a, b, c,m) (9.47)

y∑
k=x

ψa(k)

kb(n− k)c
=Psumn(a, b, c,m) (9.48)

∑
k+n 6=0

ψa(k)

(k + n)bkc
=Psum2(a, b, c, n) (9.49)

y∑
k=x

ψa(k)Psum2(b, c, d, k)kf =Pd3(a, b, c, d, f, x, y) (9.50)

y∑
k=x

Psumn(· · · )
ka

=Dxx(· · · , a) (9.51)

y∑
k=x

Psump(· · · )
ka

=Dxx(· · · , a) (9.52)

The functions Pnmx, Pnpx, and Pxmn can be solved by Maple’s sum and simplify commands. No

additional code is needed for these. The subscript of Dxx tells the range and type of Psum function.

The Z function has three outcomes. These are all only valid when a > 1. When a = 1, then

Z(1, 1,∞) =∞. For all functions, any case not caught returns the undefined function.
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Z(a, 1,∞) =ζ(a) (9.53)

Z(a, n+ 1,∞) =(−1)a
ψa−1(n)

(a− 1)!
− 1

na
(9.54)

Z(a, 1, n+ 1) =(−1)a+1ψa−1(n)

(a− 1)!
+ ζ(a) (9.55)

The Psum function uses a helper G.

G(a, b) =

∞∑
x=1

Hx,a

xb
(9.56)

G(a, b, c) =

∞∑
x=1

Hx,aHx,b

xc
(9.57)

G(1, 2) =2ζ(3) (9.58)

G(1,m)|m>2 =
1

2

(
(m+ 2)ζ(m+ 1)−

m−2∑
n=1

ζ(m− n)ζ(n+ 1)

)
(9.59)

G(m,m)|m>1 =
1

2

(
ζ(m)2ζ(2m)

)
(9.60)

G(2, 4) =ζ(3)2 − 1

3
ζ(6) (9.61)

G(4, 2) =
37

12
ζ(6)− ζ(3)2 (9.62)

G(2, 3) =3ζ(2)ζ(3)− 9

2
ζ(5) (9.63)

G(3, 2) =
11

2
ζ(5)− 2ζ(2)ζ(3) (9.64)

Also, note that

G(a, b) = ζ(a)ζ(b) + ζ(a+ b)−G(b, a) (9.65)

The Psum(a, b, x, y) function only simplifies when b ≥ 0, x = 1 and y =∞.
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Psum(a, b, 1,∞)|b>1,a>0 =(−1)a+1a! (ζ(a+ 1)ζ(b)

+ζ(a+ b+ 1)−G(a+ 1, b)) (9.66)

Psum(0, b, 1,∞)|b>1 =− γζ(b) +G(1, b)− ζ(b+ a+ 1) (9.67)

Psum(a, 1, 1,∞) =(−1)a+1a!G(m, a+ 1) (9.68)

Psum(a, 0, 1,∞)|a>1 =(−1)a−1a!ζ(a) (9.69)

There is only one solution known for Psq0(a, b, x, y). An approximate solution is also used, but

only when numerical computations are done.

Psq0(1, 3, 1,∞) =45ζ(5)− 18ζ(3)ζ(2) (9.70)

Psq0(3, 1, 1,∞) =Psq0(1, 3, 1,∞) (9.71)

Psq0(1, 1, 1,∞) =3.60617070947878285 (9.72)

(9.73)

The library also only has one known solution for Psq1(a, b, c, x, y).

Psq1(0, 3, 1, 1,∞) =− 18γζ(5) + 6γζ(3)ζ(2)

+
105

8
ζ(6)− 9ζ(3)2 (9.74)

Psq1(3, 0, 1, 1,∞) =Psq1(0, 3, 1, 1,∞) (9.75)

Psq1(0, 0, 3, 1,∞) =ζ(3)γ2 − 1

180
γπ4 − 3

2
ζ(5) +

1

6
π2ζ(3) (9.76)

Psq1(0, 1, 2, 1,∞) =− 7

360
γπ4 +

1

12
π2ζ(3)− 1

72
π4X(1) + ζ(5) +

1

2
G2(2, 2,−1) (9.77)

Psq1(1, 0, 2, 1,∞) =Psq1(0, 1, 2, 1,∞) (9.78)

Psq1(1, 1, 1, 1,∞) =
1

36
π4X(1)− 1

3
π2(

1

6
π2X(1)− ζ(3))

− 2

3
π2ζ(3) +G2(2, 2,−1) + 10ζ(5) (9.79)

(9.80)
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Some of the expression are not know exactly. They are evaluated using the below values if a

numerical answer is requested, but remain symbolic for exact calculations.

Psq1(0, 0, 2, 1,∞) =2.13675051746520680444799058 (9.81)

Psq1(0, 1, 3, 1,∞) =− .8894998046438163845241 (9.82)

Psq1(1, 1, 3, 1,∞) =2.8363779207509225623 (9.83)

Psq1(0, 0, 4, 1,∞) =0.37260761268079832138375 (9.84)

Psq1(1, 2, 1, 1,∞) =− 4.1154663361428132256642 (9.85)

Psq1(0, 2, 2, 1,∞) =1.3155159263314969068562 (9.86)

Psq1(1, 1, 2, 1,∞) =2.836377920750922562384 (9.87)

After all the replacements has been made, rebuilding the expression and simplifying it alge-

braically are handled by Maple’s built-in tools.

9.5 Order of Evaluation

The order of multiplication can lead to divergent subexpressions. This is an additional motivation

to delay evaluation of convolutions until all convolutions have been collected. A series can be

examined to make predictions about the best way to order convolutions. The below example comes

from evaluation of the eigenvalue problem. Only truncated functions are shown to highlight the

problem terms.

a(k) =


0 k = 0

i(−1)kρ√
π

+O
(

1
N

)
otherwise

(9.88)

b(k) =


0 k = 0

i(−1)kρ
Nk
√
π

+O
(

1
N2

)
otherwise

(9.89)

c(k) =


−2ζ(2)
N2 +O

(
1
N3

)
k = 0

(−1)k

N2k2 +O
(

1
N3

)
otherwise

(9.90)
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Our goal is to calculate the convolution

conv (a, b, c, c) (0) (9.91)

Since convolutions represent multiplications, the order in which the functions are multiplied will

not change the final answer. It can, however, affect the intermediate calculations. Solving the

convolution of a and b first leads to an infinity.

∞∑
k=−∞

a(n− k)b(k) =
∑
k 6=0

(−1)n+1ρ2

Nkπ
(9.92)

=
(−1)n+1ρ2

Nπ
ζ(1) =∞ (9.93)

At this point, symbolic and numerical results can have a problem. This problem is avoided by

reordering the inputs

conv (a, c, c, b) (0) =
−24ρ2ζ(2)ζ(3)

πN5
+

60ρ2ζ(5)

πN5
(9.94)

Determining the convolutions (a, c) and (b, c) avoids these problems. This is done by sorting the

functions in the convolution. Although every ordering is mathematically equivalent, some produce

intermediate infinities. The expressions are ordered to avoid this.

9.6 Example: Poisson’s Equation Revisited

The example from Chapter 4.7 gave the first two terms in the target series. The third term

required manipulation of infinite series. With the introduction of the Fourier library described in

this chapter, the next term can be found.

The second energy variation, E2 is given by the CMS expression.

E2 =− 1

2
− 2CN i∇1u1 − ∇̇CN i∇iu

+ CZiα∇αC∇iu− C2N iN j∇i∇ju (9.95)

New symbols are needed. All but u1 can easily be created.
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C1:=ddt ( s u r f a c e v e l o c i t y ( ) ) :

C1:= r e s t r i c t T i me (C1 ) :

NI:= sur face norma l ( 1 ) :

BAb:= c u r v a t u r e t e n s o r (2 ,−2) :

The three terms that do not depend on u1 can be generated and integrated using the same

methods as in Chapter 4.7. First, the terms are created.

Term2:= cont rac t ( CMSScalar (1/2)∗C1∗ddZi (u)∗ ddZI (u)

, [ 1 , 2 ] ) :

Term3:= cont rac t ( exponent (C0 , 2 )∗NI∗ddZi ( ddZi (u ) )

∗ddZI (u ) , [ 1 , 2 , 3 , 4 ] ) :

Term4:= cont rac t ( CMSScalar (−1/2)∗ exponent (C0 , 2 )∗BAb

∗ddZi ( ddZI (u ) ) , [ 1 , 2 , 3 , 4 ] ) :

Then they can be added and integrated.

p a r t i a l :=Term2+Term3+Term4 :

p a r t i a l :=getCompts ( r e s t r i c t T i me ( p a r t i a l ) ) [ 1 ] :

p a r t i a l := eva l ( p a r t i a l , p s i=theta /N) :

p a r t i a l := convert ( expand ( s e r i e s ( p a r t i a l ,N=i n f i n i t y ) ) , ‘ polynom ‘ ) :

p a r t i a l :=expand ( i n t ( p a r t i a l , theta=−Pi . . Pi ) ) ;

This gives a result of

1

5

π5

N4
(9.96)

For the final term in E2, two series representations are introduced.

C =

∞∑
k=−∞

c0e
ikNθ (9.97)

u1 =

∞∑
k=−∞

f1(k, r)ikNθ (9.98)

To define these the Fourier library must be included.
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libname :=

” ./ CMSTensors ” ,

” . / ExactConvolut ionSolver ” ,

” . / Four i e rCoe f f i c i en tMan ip ” ,

l ibname ;

with ( CMSTensors ) ;

with ( ExactConvolut ionSolver ) ;

with ( Four i e rCoe f f i c i en tMan ip ) ;

The library also needs to be initialized for derivatives and integration.

i n i t i a l i z e f o u r i e r ( [ r ] , [ theta , p s i ] ) ;

These are defined using the library as

c0 :=w−>eva l ( p i e c e w i s e (

k=0,

−2∗Zeta (2)/Nˆ2

,

(−1)ˆk /(Nˆ2∗k ˆ2)

) , k=w) ;

f 1 :=w−>eva l ( p i e c e w i s e (

k=0,

c0 ( 0 )∗ ( r ∗J (1 , r ∗ rho)−J (0 , r ∗ rho ) )/ (2∗ J ( 1 , 1 ) )

,

c0 ( k )∗J ( k∗N, r ∗ rho )/ ( J ( k∗N, rho )∗2)

) , k=w) ;

C0 compts :=FourierSum ( c0 , k−>I ∗k∗N∗ps i , c [ 0 ] ) :

C0:=CMSObject ( [ ] , Array ( [ C0 compts ] ) , t rue ) :

u1 compts := FourierSum ( f1 , k−>I ∗k∗N∗ theta , f [ 1 ] ) :

u1:=CMSObject ( [ ] , Array ( [ u1 compts ] ) ) :

The definition of u1 is determined from conditions detailed in [10]. The method for computing

these partial derivatives is explained, for different conditions, in Chapter 7.
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The library can be used in conjunction with the CMS library to compute the last integrand.

Term1:= cont rac t (C0∗ddZi ( u1 )∗ ddZI (u ) , [ 1 , 2 ] ) :

The integral is the coefficient at 0 times 2π.

Term1:=CMSScalar (2∗Pi )∗Term1 :

Term1:=getCompts ( r e s t r i c t T im e (Term1 ) ) [ 1 ] :

This can be approximated numerically.

EVAL METHOD:=EVAL COEFFICIENT NUMERICALLY:

Term1 approx := s o r t ( eva l ( getCoef fAt (Term1 , 0 ) , rho =1) ,N) ;

This gives a series that starts with the term

3.774886343

N3
+O

(
1

N4

)
(9.99)

It can also be solved exactly.

EVAL METHOD:=EVAL COEFFICIENT ALGEBRAICALLY:

Term1 exact := s o r t ( eva l ( getCoef fAt (Term1 , 0 ) , rho =1) ,N) ;

This gives a series that starts with

πζ(3)

N3
+O

(
1

N4

)
(9.100)

This also produces terms of higher order, but these will be affected by higher order variations.

Only the N−3 component is completely known at this point. The current series is computed as

energy [ 2 ] : = Term1 exact+p a r t i a l :

E [N]=sum(1/ i !∗ energy [ i ] , i = 0 . . 2 ) ;

This gives the same solution presented in [10].

EN = − 1

16
π +

1

12

π3

N2
+

1

2

πζ(3)

N3
+O

(
1

N4

)
(9.101)
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10. Level Set Surface

10.1 Introduction

In this chapter, we provide additional evidence to support the correctness of our calculations.

We introduce another deformation that uses the same expressions but has a predictable answer.

These calculations are an exact match for the other eigenvalue problems up until the convolutions

are evaluated. The values of the ck coefficients are computed differently. This leads to each variation

being equal to zero.

Two deforming manifolds have been defined so far for the same CMS expressions, an ellipse and a

polygon. When deforming the unit circle into the regular N -sided polygon, the CMS expressions are

evaluated two ways, numerically and symbolically. If these results match, it shows the expressions

were evaluated correctly. Independent numerical calculations for specific values of N are also used

to give support for the correctness of the expressions [58].

Numerical methods are more promising for the deformation of the unit circle into the ellipse with

semi-axis A = 1 and B = 1 + ε. Using entirely independent numerical calculations, this series can

be approximated to extremely high accuracy for different values of ε.

Both these problems use the same CMS expressions. In both cases, confirmation of the calcu-

lations is done through numerical means. In this Chapter, a third deformation is introduced where

the deformation itself is non-trivial, but the answer is predicable and trivial. This deformation will

lead to all eigenvalues except λ0 being 0.

10.2 Computation of Surface Velocity

The surface velocity C0 for the level set is

C0 =
(
∇iF∇iF

)−1/2
Ft (10.1)

The value of F is chosen to ensure that all eigenvalues after λ0 will be 0.
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ρ =
√
λ (10.2)

F =J0(ρr) + αtJ1(ρr) cos θ (10.3)

F |t=0 =J0(ρr) (10.4)

Ft =αJ1(ρr) cos θ (10.5)

The value of C0 is computed at t = 0.

C0 =
(
∇iF∇iF

)−1/2
Ft (10.6)

=


 dF

dr

dF
dθ


i

 1 0

0 1
r2


ij  dF

dr

dF
dθ


j


−1/2

Ft (10.7)

=


 dF

dr

2 dF
dr

dF
dθ

1
r2
dF
dθ

dF
dr

1
r2
dF
dθ

2


i

i


−1/2

Ft (10.8)

=

(
dF

dr

2

+
1

r2

dF

dθ

2)−1/2

Ft (10.9)

=

(
dF

dr

2)−1/2

Ft (10.10)

=
(

(−J1(ρr)ρ)
2
)−1/2

Ft (10.11)

=
(
J1(ρr)2ρ2

)−1/2
Ft (10.12)

=
Ft

J1(ρr)ρ
(10.13)

=
αJ1(ρr) cos θ

J1(ρr)ρ
(10.14)

=
α cos θ

ρ
(10.15)

Next, C0 is converted to a Fourier series.

C0 =

∞∑
k=−∞

c0e
ikθ (10.16)

An integral is taken to determine the Fourier coefficients.
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c0(k) =
1

2π

∫ π

π

−α cos θ

ρ
e−ikθ (10.17)

c0(1) =
1

2

α

ρ
(10.18)

c0(−1) =
1

2

α

ρ
(10.19)

c0(|k| 6= 1) =0 (10.20)

10.3 Derivatives of the Surface Velocity

The invariant time derivatives of the surface velocity must be computed using the CMS.

To compute C1 = ∇̇C0, the rules of the CMS are applied. This is automated through the use of

the CMSTRS.

∇̇C0 =∇̇
((
∇iF∇iF

)−1/2
Ft

)
(10.21)

C1 =∇̇Ft
(
∇iF∇iF

)−1/2
+ Ft∇̇

(
∇iF∇iF

)−1/2
(10.22)

=
(
∇iF∇iF

)−1/2 (
Ftt + CN j∇jFt

)
− 1

2
Ft
(
∇jF∇jF

)−3/2 ∇̇
(
∇iF∇iF

)
(10.23)

=Ftt
(
∇iF∇iF

)−1/2
+ CN j∇jFt

(
∇iF∇iF

)−1/2

− 1

2
Ft
(
∇kF∇kF

)−3/2 (
2∇iFt∇iF + 2CN j∇j∇iF∇iF

)
(10.24)

=Ftt
(
∇iF∇iF

)−1/2
+ CN j∇jFt

(
∇iF∇iF

)−1/2

− Ft∇iFt∇iF
(
∇kF∇kF

)−3/2 − FtCN j∇j∇iF∇iF
(
∇kF∇kF

)−3/2
(10.25)

These expressions can be evaluated automatically using the CMSTensor library. The calculations

are performed by hand here for C1, but the difficulty increases significantly with C2. Each term in

the sum can be evaluated independently. First, the subexpressions are simplified.
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(
∇iF∇iF

)−1/2
=

1

J1(ρr)ρ
(10.26)

(
∇iF∇iF

)−3/2
=

1

J1(ρr)3ρ3
(10.27)

Ftt =
d

dt
(αJ1(ρr) cos θ) = 0 (10.28)

∇iFt∇iF =
dFt
dr

dF

dr
+

1

r2

dFt
dθ

dF

dθ
(10.29)

=
dFt
dr

dF

dr
+ 0 (10.30)

=J1(ρ)2ρα cos θ (10.31)

The terms of the sum are now computed. C1 is a surface object, so the expressions are evaluated

at r = 1.

T1 =Ftt
(
∇iF∇iF

)−1/2
(10.32)

=0 (10.33)

T2 =CN j∇jFt
(
∇iF∇iF

)−1/2
(10.34)

=

(
α cos θ

ρ

)(
1

J1(ρ)ρ

)
N j∇jFt (10.35)

=
α cos θ

J1(ρ)ρ2

 1

0


j  dFt

dr

dFt
dθ


j

(10.36)

=
α cos θ

J1(ρ)ρ2

 dFt
dr 0

dFt
dθ 0


j

j

(10.37)

=
α cos θ

J1(ρ)ρ2

dFt
dr

(10.38)

=
α cos θ

J1(ρ)ρ2

(
αρ cos θJ0(ρ)− α cos θJ1(ρ)

1

)
(10.39)

=
α2 cos2 θ

ρ

J0(ρ)

J1(ρ)
− α2 cos2 θ

ρ2
(10.40)

=− α2 cos2 θ

ρ2
(10.41)
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T3 =− Ft∇iFt∇iF
(
∇kF∇kF

)−3/2
(10.42)

=− (αJ1(ρ) cos θ))
(
J1(ρ)2ρα cos θ

)( 1

J1(ρ)3ρ3

)
(10.43)

=− α2 cos2 θ

ρ2
(10.44)

T4 =− FtCN j∇j∇iF∇iF
(
∇kF∇kF

)−3/2
(10.45)

=−
(

1

J1(ρ)3ρ3

)
(αJ1(ρ) cos θ)CN j∇j∇iF∇iF (10.46)

=− α cos θ

J1(ρ)2ρ3

(
α cos θ

ρ

)
N j∇j∇iF∇iF (10.47)

=− α2 cos2 θ

J1(ρ)2ρ4
N j∇j∇iF∇iF (10.48)

=− α2 cos2 θ

J1(ρ)2ρ4

(
d2F

dr2

dF

dr

)
(10.49)

=− α2 cos2 θ

J1(ρ)2ρ4

(
−ρ2J1(ρ)2

)
(10.50)

=− α2 cos2 θ

ρ2
(10.51)

These combined to give the expression for C1.

C1 =0− α2 cos2 θ

ρ2
− α2 cos2 θ

ρ2
+
α2 cos2 θ

ρ2
(10.52)

=
−α2 cos2 θ

ρ2
(10.53)

The integral used to determine the Fourier coefficients is only nonzero at three points.

c1(k) =
1

2π

∫ π

−π

−α2 cos2 θ

ρ2
e−ikθ (10.54)

c1(2) =− 1

4

α2

ρ2
(10.55)

c1(0) =− 1

2

α2

ρ2
(10.56)

c1(−2) =− 1

4

α2

ρ2
(10.57)

c1(otherwise) =0 (10.58)
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10.4 Computation of λ

The first lambda value is trivially computed using the general solution to λ1.

λ1 = −2ρ2c0 = −2ρ20 = 0 (10.59)

The second lambda value requires expanding convolutions.

λ2 = 2ρ2conv(c0, c0)(0) + 4
√
πρconv(c0, f1,dr)(0)− 2ρ2c1(0) (10.60)

These convolutions each have a finite number of terms and can be computed directly.

−2ρ2c1(0) =− 2ρ2−1

2

α2

ρ2
= α2 (10.61)

2ρ2conv(c0, c0)(0) =2ρ2
∞∑

k=−∞

c0(k)c0(−k) (10.62)

=4ρ2(c0(1)c0(−1)) (10.63)

=4ρ2

(
1

2

α

ρ

)(
1

2

α

ρ

)
(10.64)

=α2 (10.65)

The last term requires the definition for f1,dr be evaluated on this deformation.

u1 =

∞∑
k=−∞

f1(k)eikθ (10.66)

f1 =


1
2
λ1(J0(ρr)−rJ(1,ρr)ρ)

ρ2
√
πJ1(ρ)

k = 0

c0(k)ρ√
π

J|k|(ρr)

J|k|(ρ)
k 6= 0

(10.67)

f1,dr =


c0(0)ρ√

π
k = 0

c0(k)ρ√
π

ρJ′|k|(ρ)

J|k|(ρ)
k 6= 0

(10.68)

Since c0 is only nonzero at two points, this function simplifies greatly.
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f1,dr =



c0(1)ρ√
π

ρJ ′|1|(ρ)

J|1|(ρ)
k = 1

c0(1)ρ√
π

ρJ ′|−1|(ρ)

J|−1|(ρ)
k = −1

0 |k| 6= 1

(10.69)

=



−c0(1)ρ√
π

k = 1

−c0(1)ρ√
π

k = −1

0 |k| 6= 1

(10.70)

=



−α
2
√
π

k = 1

−α
2
√
π

k = −1

0 |k| 6= 1

(10.71)

The last term is computed by expanding the convolutions.

4
√
πρconv(c0, f1,dr)(0) =4

√
πρ

∞∑
k=−∞

c0(k)f1,dr(−k) (10.72)

=4
√
πρ (c0(1)f1,dr(−1) + c0(−1)f1,dr(1)) (10.73)

=4
√
πρ

((
1

2

α

ρ

)(
− α

2
√
π

)
+

(
1

2

α

ρ

)(
− α

2
√
π

))
(10.74)

=4
√
πρ

(
− α2

4ρ
√
π
− α2

4ρ
√
π

)
(10.75)

=4
√
πρ

(
− α2

2ρ
√
π

)
(10.76)

=− 2α2 (10.77)

Adding these values together shows that they cancel out.

λ2 = α2 + α2 − 2α2 = 0 (10.78)

The first and second λ values are zeroed. By design all higher lambda values will also be zero.
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λ0 =ρ2 (10.79)

λ1 =0 (10.80)

λ2 =0 (10.81)

λ3 =0 (10.82)

λ4 =0 (10.83)

This deformation gives an additional justification for the accuracy of the eigenvalue computations.

On this boundary, the solution is known. The evaluation of this problem adds additional support

that the CMS expressions and the convolution expressions found for the Laplacian eigenvalues are

correct. This provides an additional method of testing for all our libraries.
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11. Results and Analysis

11.1 Introduction

This chapter examines the results of our experiments with the SCMS. The results of all the

problems described in earlier chapters are given. These results are analyzed to show that the SCMS

solved each problem.

The final series found for each problem is also given. Expression swell will be analyzed for each

problem. In all cases, the final answers are simple, but intermediate calculations are very large. The

contour length problem from Chapter 5 is examined first. This problem has a well known answer

that can be easily compared to.

Next, the level set problem is examined. This problem was shown in Chapter 10. This is the first

of three Laplace eigenvalue problems on Dirichlet boundary conditions. This problem has a trivial

solution and adds additional support to the correctness of our CMS expressions.

The two deformations described in Chapter 6 are examined last. First, the deformation of the

unit circle to the ellipse with semi-axis 1 and 1 + ε. This series can be numerically approximated to

high orders for verification. The series presented here has the most terms found to date.

The most difficult and interesting problem will be reviewed last, the deformation from the unit

circle to the N -sided regular polygon. In this series, we present two previously unknown terms and

confirm them using our own library for numerical aproximations. Full tables for all terms evaluated

in the N -sided regular polygon deformation can be found in Appendix A.

All computations in this section were completed in OS X Yosemite (10.10.5) with a dual-core

2.9 GHz Intel Core i7 and 8GB 1600 MHz DDR3 ram. The Java VM is Java(TM) SE Runtime

Environment (build 1.8.0 60-b27) and the compiler is javac version 1.8.0 60. The version of Maple

used in 17.00, Maple Build ID 813473.

11.2 Contour Length

The contour length problem was originally described in Chapter 5. In this problem, the unit

circle was deformed into a ellipse with semi-axis A = 1 + ε and B = 1. A series expansion of the

contour length of the surface was then given in terms of ε. This series has a know answer which can

be computed using alternative means.
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The contour length is the integral of 1 over the surface. The surface is depended on time t. It is

the unit circle at t = 0 and the ellipse at t = 1.

L(t) =

∫
1dS (11.1)

In Maple the below command can expand the series for any number of terms.

r e s t a r t ;

assume ( eps i l on >0);

max order :=9;

L:= i n t (

s q r t ( (1+ e p s i l o n )ˆ2∗ cos ( theta )ˆ2+ s i n ( theta )ˆ2)

, theta =0. .2∗Pi

) ;

expand ( s e r i e s (L/Pi , e p s i l o n =0, max order ) ) ;

The output of this command is the following series for the contour length L(t) at time t = 1.

Each term has a factor of π which is divided out for clarity.

L(1)

π
=2 + ε+

ε2

8
− ε3

16
+

17ε4

512
− 19ε5

1024
+

89ε6

8192
− 109ε7

16384
+O

(
ε8
)

(11.2)

The values computed using the SCMS give the same series. The variations are computed as

follows.
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L0 = L(0) =2π (11.3)

L1 = ∇̇L
∣∣∣
t=0

=πε (11.4)

L2 = ∇̇2L
∣∣∣
t=0

=
πε2

4
(11.5)

L3 = ∇̇3L
∣∣∣
t=0

=− 3πε3

8
(11.6)

L4 = ∇̇4L
∣∣∣
t=0

=
51πε4

64
(11.7)

L5 = ∇̇5L
∣∣∣
t=0

=− 285πε5

128
(11.8)

L6 = ∇̇6L
∣∣∣
t=0

=
4005πε6

512
(11.9)

L7 = ∇̇7L
∣∣∣
t=0

=− 34335πε7

1024
(11.10)

Creating the series expansion from these expressions gives Equation 11.2.

L(1)

π
=

7∑
k=0

Lk
k!π

= (Eq 11.2) (11.11)

Automation of these solutions begins with the CMSTRS library. Application of the CMSTRS

library is detailed in Table 11.1. The expression size shows the number of CMS products that are

added together to make the final expression. This number is growing roughly exponentially, Lk has

approximately 3k−1 terms. The number of rules applied is also growing roughly exponentially. The

CMSTRS library can apply over 100,000 rules in under 20 seconds. Combining equivalent terms to

simplify the expression does not contribute significantly to the computations. Only on the last two

orders L6 and L7 do these computations overtake reductions. In the last order computed, 19,265

terms are combined taking a total of 6 minutes.

The expressions are next output to Maple for evaluation in a polar coordinate system. The main

computational complexity in these expressions is the surface velocity C. Computation of ∇̇5C takes

2 minutes, 4 seconds, and 719 milliseconds in Maple. The next order, ∇̇6C, takes 47 minutes, 19

seconds, and 301 milliseconds. This is by far the most demanding part of the computations. The

time to evaluate the expressions in Maple once the C values have been computed is given in Table

11.2.



113

Table 11.1: This table shows the results of generating CMS expressions for the contour length
problem using the CMSTRS library.

Order Expr. Size Rules Time to Reduce Combined Comb. Time
L1 1 8 11ms 0 0ms
L2 2 36 11ms 1 4ms
L3 8 118 36ms 3 3ms
L4 27 946 204ms 75 36ms
L5 84 4, 765 738ms 627 372ms
L6 264 23, 418 3s 499ms 3, 354 11s 522ms
L7 827 105, 473 18 sec 851ms 19, 265 6m 29s

Table 11.2: This table shows time taken to evaluate the CMS expressions for the contour length on
the circle to ellipse deformation in Maple.

Order Time to Evaluate
L0 19ms
L1 63ms
L2 308ms
L3 213ms
L4 544ms
L5 1s 957ms
L6 5s 302ms
L7 18s 129ms

Computation of ∇̇kC is a purely algebraic problem. The value of C is derived in terms of t from

the coordinate deformation. The time to compute ∇̇5C is entirely devoted to allowing Maple to

determine the derivative with respect to t. Computing this value for higher orders is not relevant to

testing the SCMS. This time complexity is in Maple’s underlying libraries. This is the motivation

for stopping calculations at L7. Computing L8 would require ∇̇7C.

The contour length experiment uses the majority of rules in the CMSTRS libraries. Rules

related to spatial integration and the eigenfunction u are not applied in this problem. Since the

exact solution to this problem can be found using other automated means, confirming the series

presented against the exact series shows that the SCMS accurately replicates the calculations of the

CMS.

11.3 Level Set Problem

The level set problem described in Chapter 10 uses all the rules in the CMSTRS and also has a

known answer. This problem uses the same expressions as our other eigenvalue problems. Since CMS
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expressions are can be evaluated in any coordinate system, the same expressions can be evaluated

three different ways for three different problems. This deformation ends in the same state it started

at t = 1. This means all the variations will be equal to 0.

Computation of the surface velocity presents a problem here as well. The value of C is itself a

CMS expression. The SCMS must first be used to evaluate these values before they can be plugged

into the eigenvalue formulas.

Table 11.3 shows time and size complexity of the CMS expressions. In this problem, combining

equivalent terms becomes the bottleneck. If like terms are not combined, then C4 will have 11,506

terms. This will just move the bottleneck to the CMSTensor library.

Table 11.3: This table shows the growth in the expressions for the surface velocity and its derivatives
for the level set problem.

Order Expr. Size Rules Time to Reduce Combined Comb. Time
C1 4 206 145ms 2 12ms
C2 20 1, 985 567ms 23 50ms
C3 112 17, 582 2s 197ms 195 2s 834ms
C4 497 152, 083 18s 305ms 2, 766 1h 9m 46s

Once the C4 values are computed, the remaining expressions exactly match those of the ellipse

and polygon problem. The convolutions for the Laplacian Eigenvalues under Dirichlet boundary

conditions can be evaluated with the new ck Fourier coefficients. This surface deformation has a

finite number of terms in each convolution. They can be solved exactly by expanding the convolutions

far enough that all non-zero terms are included. The results are all zeros as expected. This adds

more justification that our expressions have be computed correctly.

λ(t = 1) =λ0 + λ1 +
λ2

2!
+
λ3

3!
+
λ4

4!
(11.12)

=ρ2 + 0 + 0 + 0 + 0 (11.13)

=ρ2 (11.14)
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11.4 Ellipse Eigenvalues

In the ellipse version of the problem, the surface velocity is computed using the same means

as the contour length problems. There are three different sets of CMS expressions that must be

derived to solve the problem. These are all also used for the level set problem and the regular

polygon problem.

To create eigenfunctions, the surface condition and normalization condition must be calculated.

These are needed to one order lower then the target. We have computed up to λ6, meaning only u5

is needed. The value of u1 is the starting point and requires no rule applications. The derivation of

surface conditions only contributes a small amount of complexity in the CMS. The growth is show

in Table 11.4. The normalization condition is also needed and is shown in Table 11.5.

Table 11.4: This table shows the growth in the expressions for the surface condition of uk using the
CMSTRS library.

Order Expr. Size Rules Time to Reduce Combined Comb. Time
u2 4 82 19ms 1 0ms
u3 15 540 61ms 7 4ms
u4 48 3,521 333ms 70 91 ms
u5 147 17,634 1s 718ms 437 1s 332ms

Table 11.5: This table shows the growth in the expressions for the normalization condition of uk
using the CMSTRS library.

Order Expr. Size Rules Time to Reduce Combined Comb. Time
u2 11 42 11ms 1 1ms
u3 40 648 101ms 32 4ms
u4 132 4,149 640ms 370 50ms
u5 439 21,268 3s 717ms 2,518 1s 58ms

The values of λk need to be computed to order k = 6. The growth in these expressions is shown in

Table 11.6. Combining equivalent terms to save computational complexity in the Maple evaluation

is the first bottleneck encountered here. Maple’s integration command could not fully simplify the

Bessel expressions that appear in the sixth normalization condition without using hypergeometric

functions. Maple considers these expression simple, but it is possible that integrals exist only it terms
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of other Bessel functions. For a general series to present itself here, all integrals of Bessel functions

must be expressions of Bessel Functions. Hypergeometric functions do not lead to a simple answer,

although it is an equivalent answer. We do not compute the next order because of this unexpected

computational problem not related to the CMS itself.

Table 11.6: This table shows the growth in the expressions for λk using the CMSTRS library.

Order Expr. Size Rules Time to Reduce Combined Comb. Time
λ2 4 155 43ms 2 3ms
λ3 17 973 154ms 17 13ms
λ4 57 6,595 679ms 143 124ms
λ5 205 33,004 3s 320ms 661 3s 832ms
λ6 726 179,921 20s 867ms 4,129 4m 40s 901ms

When evaluating in Maple, there are two steps to the process. First, the expressions are converted

into convolutions. Additional simplification takes place during the creation of these convolution

expressions, further decreasing the number of terms that need to be evaluated. The comparison

between the size of the CMS expressions and the convolution expressions is shown in three tables.

The λk expressions are in Table 11.7. The uk functions are in two tables, the surface condition in

Table 11.8 and the normalization condition in Table 11.9.

Table 11.7: The number of convolutions generated from the λk’s CMS expression.

Order CMS Expr. Conv. Expr
λ1 1 1
λ2 4 3
λ3 17 9
λ4 57 27
λ5 205 82
λ6 726 253

Evaluation of these convolution is straightforward. Every Fourier coefficient function has a finite

number of non-zero entries. The convolutions can be expanded far enough to include all non-zero

entries. Maple can then simply the expressions using its built in routines. The first seven values are

computed below both symbolically and numerically when ρ is the first zero of J0.
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Table 11.8: The number of convolutions generated from the uk surface condition’s CMS expression.

Order CMS Expr. Conv. Expr
u1 1 1
u2 4 3
u3 15 9
u4 48 23
u5 147 62

Table 11.9: The number of convolutions generated from the uk normalization condition’s CMS
expression.

Order CMS Expr. Conv. Expr
u1 1 1
u2 4 2
u3 15 5
u4 48 12
u5 147 36

λ0 =ρ2 (11.15)

≈5.783185962946785 (11.16)

λ1 =− ρ2 (11.17)

≈− 5.783185962946785 (11.18)

λ2 =
3

2
ρ2 +

1

4
ρ4 (11.19)

≈17.036088914926359 (11.20)

λ3 =− 3ρ2 − 3

2
ρ4 (11.21)

≈− 67.517417711877445 (11.22)

λ4 =
15

2
ρ2 +

15

2
ρ4 +

87

128
ρ6 − 21

256
ρ8 (11.23)

≈333.919528952098846 (11.24)

λ5 =− 45

2
ρ2 − 75

2
ρ4 − 1305

128
ρ6 +

315

256
ρ8 (11.25)

≈− 1979.913206464417536 (11.26)

λ6 =
315

4
ρ2 +

1575

8
ρ4 +

27405

256
ρ6 − 11155

1536
ρ8 − 2665

1536
ρ10 +

145

1024
ρ12 (11.27)

≈13695.804996358888013 (11.28)
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The values of λ0 to λ3 are well known [59]. The values of λ4 to λ6 were computed to high numerical

precision by Pavel Grinfeld [38]. Our results match these calculations giving further support that

the SCMS system works correctly and that these exact symbolic expressions are correct.

11.5 N-sided Regular Polygon

At this point, we have tested all the problems where outside methods can easily be used to

confirm our results. The final problem requires its own confirmation method. Recently, numerical

progress has been made by Robert Jones which will also be used to verify our results [58].

One of the most amazing features of the CMS again provides huge advantages in this problem.

CMS expressions can be evaluated in any coordinate system. All three of our eigenvalue problems

start with the same surface, the unit circle. Their unique deformations are encapsulated in the

surface velocity for each surface. Since all three start with the same coordinate system, a majority

of the computations overlap. From the previous two problems, it has been shown that the CMS

expressions generated are correct. Additionally, it has been shown that the evaluation of these CMS

expressions in terms of abstract Fourier coefficients is also correct. All that remains to solve this

version of the problem is to plug in the correct values for the Fourier coefficients of the surface

velocity and its derivatives c0, c1, · · · , c4.

The values needed are given below expanded up to N−6. The value of c5 is of order N−8 and

would appear in λ6 but it is not needed for our series

∇̇m =

∞∑
k=−∞

cm(k)eikNθ (11.29)

c0(k) =



−2 ζ(2)
N2 − 3 ζ(6)

N6 +O
(

1
N8

)
k = 0

(−1)k

k2N2 + 2 (−1)kζ(2)
k2N4 − 5 (−1)k

k4N4 + 12 (−1)kζ(4)
k2N6

−46 (−1)kζ(2)
k4N6 + 61 (−1)k

k6N6 +O
(

1
N8

)
k 6= 0

(11.30)

c1(k) =


0 k = 0

0 k 6= 0

(11.31)
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c2(k) =



12 ζ(4)
N4 − 24 ζ(6)

N6 +O
(

1
N8

)
k = 0

−12 (−1)kζ(2)
k2N4 + 24 (−1)k

k4N4 − 180 (−1)kζ(4)
k2N6

+1044 (−1)kζ(2)
k4N6 − 1500 (−1)k

k6N6 +O
(

1
N8

)
k 6= 0

(11.32)

c3(k) =


180 ζ(6)

N6 +O
(

1
N8

)
k = 0

−1080 (−1)kζ(2)
k4N6 + 1800 (−1)k

k6N6 +O
(

1
N8

)
k 6= 0

(11.33)

c4(k) =


−324 ζ(6)

N6 +O
(

1
N8

)
k = 0

2160 (−1)kζ(4)
k2N6 + 11880 (−1)k

k6N6 − 8856 (−1)kζ(2)
k4N6 +O

(
1
N8

)
k 6= 0

(11.34)

c5 =


O
(

1
N8

)
k = 0

O
(

1
N8

)
k 6= 0

(11.35)

To show how the computations are tested, one convolution from λ3 is examined. The expression

for λ3 contains 9 different convolution expressions. Tables like the ones below are given for all

convolutions in Chapter A.3.

The term evaluated here is the fourth convolution and first non-trivial convolution that appears

in λ3. The closed form for this expression is determined using the Fourier library from Chapter 9.

This library is also used to give numerical estimates for the convolutions using truncation.

The exact solution is

T4 =
(
4ρ4 − 4ρ2

)
conv(c0, c0, c0)(0) (11.36)

=
216ζ(6)ρ2

N6
− 216ζ(6)ρ4

N6
(11.37)

Table 11.10 shows the numerical results compared to the exact solution. Since this term is part

of λ3 when the Taylor series is formed, this value will be divided by 3!. This is accounted for in

the tables. This convolution contributes to both the ρ2 and ρ4 component of the final series. After

division by 3! the result should be 36ζ(6). Taking the best numerical result in the table and dividing

out the ζ(6) returns 35.9999999 · · · as expected.
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The approx range column gives the truncation range. When this is set to 4 then the series is

computed from −4 to 4, a total of 9 terms. This convolution contains three functions, the convolution

of the first two is found exactly and tested. It is then combined with the third function. Table 11.10

only shows this final convolution of two functions.

The result column contains the numerical approximations. The relative and absolute error be-

tween this numerical result and the exact result is given. The convergence towards the exact answer

is also shown in Figure 11.1.

The convergence rate is used to determine how fast the numerical computations are approaching

some fixed value. There is not enough information to estimate a convergence rate until the third

approximation. This approximates the error as O (rx) where r is the range used and x is the

convergence rate. The final column shows the time it took to approximate each summation.

The table also shows the results of applying Richardson extrapolation, described in Chapter 9.

Calculations are done with 64 digits of accuracy. Richardson extrapolation is used to take the list of

numerical results and eliminate error terms. In this case, Richardson Extrapolation works extremely

well. The extrapolated result is accurate to 60 digits. Table 11.11 repeats these calculations on the

ρ4 term, but the results are the same.

Figure 11.1: Convergence of numerical truncation to the exact answer for the fourth convolution of
λ3.
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Table 11.10: Order ρ2/N6 contribution from convolution 4 of λ3

T4/3! = vρ2

N6 , v = (216 ζ (6)) /3!
v = 36.62435023144016902972264547247313900446542964118272822632671189

Approx Range Result Abs. Error Rel. Error Conv. Time
2 36.610605735565 1.37445e− 02 3.75283e− 04 n/a 0.003 sec.
4 36.623532797464 8.17434e− 04 2.23194e− 05 n/a 0.002 sec.
8 36.624314781685 3.54498e− 05 9.67929e− 07 −4.047 0.004 sec.
16 36.624348929133 1.30231e− 06 3.55585e− 08 −4.517 0.008 sec.
32 36.624350187365 4.40747e− 08 1.20343e− 09 −4.762 0.014 sec.
64 36.624350230007 1.43282e− 09 3.91220e− 11 −4.883 0.030 sec.
128 36.624350231395 4.56637e− 11 1.24681e− 12 −4.942 0.064 sec.
256 36.624350231439 1.44104e− 12 3.93464e− 14 −4.971 0.143 sec.
512 36.624350231440 4.52531e− 14 1.23560e− 15 −4.986 0.310 sec.
1024 36.624350231440 1.41762e− 15 3.87070e− 17 −4.993 0.726 sec.
2048 36.624350231440 4.43547e− 17 1.21107e− 18 −4.996 1.922 sec.
4096 36.624350231440 1.38693e− 18 3.78691e− 20 −4.998 6.105 sec.
8192 36.624350231440 4.33549e− 20 1.18377e− 21 −4.999 25.695 sec.
16384 36.624350231440 1.35505e− 21 3.69985e− 23 −5.000 92.262 sec.
32768 36.624350231440 4.23484e− 23 1.15629e− 24 −5.000 420.616 sec.

Richardson 36.624350231440 8.38800e− 59 2.29028e− 60 n/a n/a
Error: O

(
range−5.000

)

Table 11.11: Order ρ4/N6 contribution from convolution 4 of λ3

T4/3! = vρ4

N6 , v = (−216 ζ (6)) /3!
v = −36.62435023144016902972264547247313900446542964118272822632671189

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −36.610605735565 1.37445e− 02 3.75283e− 04 n/a 0.003 sec.
4 −36.623532797464 8.17434e− 04 2.23194e− 05 n/a 0.002 sec.
8 −36.624314781685 3.54498e− 05 9.67929e− 07 −4.047 0.004 sec.
16 −36.624348929133 1.30231e− 06 3.55585e− 08 −4.517 0.008 sec.
32 −36.624350187365 4.40747e− 08 1.20343e− 09 −4.762 0.014 sec.
64 −36.624350230007 1.43282e− 09 3.91220e− 11 −4.883 0.030 sec.
128 −36.624350231395 4.56637e− 11 1.24681e− 12 −4.942 0.064 sec.
256 −36.624350231439 1.44104e− 12 3.93464e− 14 −4.971 0.143 sec.
512 −36.624350231440 4.52531e− 14 1.23560e− 15 −4.986 0.310 sec.
1024 −36.624350231440 1.41762e− 15 3.87070e− 17 −4.993 0.726 sec.
2048 −36.624350231440 4.43547e− 17 1.21107e− 18 −4.996 1.922 sec.
4096 −36.624350231440 1.38693e− 18 3.78691e− 20 −4.998 6.105 sec.
8192 −36.624350231440 4.33549e− 20 1.18377e− 21 −4.999 25.695 sec.
16384 −36.624350231440 1.35505e− 21 3.69985e− 23 −5.000 92.262 sec.
32768 −36.624350231440 4.23484e− 23 1.15629e− 24 −5.000 420.616 sec.

Richardson −36.624350231440 8.38800e− 59 2.29028e− 60 n/a n/a

Error: O
(
range−5.000

)
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Table 11.12 shows a term from λ3 that has a slower convergence rate. The convolution expression

and exact answer are

T7 =− 4πconv(c0, f1,dr, f1,dr)(0) (11.38)

=
16ρ2ζ(4)

N4
+

32ρ2ζ(2)ζ(3)

N5
+

8ρ4ζ(3)2

N6
+

224

3

ζ(6)ρ2

N6
− 88

3

ρ4ζ(6)

N6
(11.39)

Table 11.12 only looks at the ρ2/N5 contribution from this convolution. The convergence rate

here is only −2 instead of −5. A larger exponent means a faster convergence. In this case, Richardson

only gets 48 digits correct instead of 60 digits. Figure 11.2 shows that this is still clearly converging

towards the exact answer.

Table 11.12: Order ρ2/N5 contribution from convolution 7 of λ3

T7/3! = vρ2

N5 , v = (32 ζ (2) ζ (3)) /3!
v = 10.54562320158557929705112235458733638443814115552071577971105214

Approx Range Result Abs. Error Rel. Error Conv. Time
2 10.207613801337 3.38009e− 01 3.20521e− 02 n/a 0.017 sec.
4 10.438615344676 1.07008e− 01 1.01471e− 02 n/a 0.023 sec.
8 10.515371067399 3.02521e− 02 2.86869e− 03 −1.590 0.036 sec.
16 10.537574585531 8.04862e− 03 7.63219e− 04 −1.789 0.070 sec.
32 10.543547247410 2.07595e− 03 1.96855e− 04 −1.894 0.152 sec.
64 10.545096042486 5.27159e− 04 4.99884e− 05 −1.947 0.301 sec.
128 10.545490378244 1.32823e− 04 1.25951e− 05 −1.974 0.689 sec.
256 10.545589865789 3.33358e− 05 3.16110e− 06 −1.987 2.214 sec.
512 10.545614851343 8.35024e− 06 7.91821e− 07 −1.993 2.971 sec.
1024 10.545621111985 2.08960e− 06 1.98149e− 07 −1.997 8.499 sec.
2048 10.545622678930 5.22655e− 07 4.95613e− 08 −1.998 18.389 sec.
4096 10.545623070890 1.30696e− 07 1.23934e− 08 −1.999 37.881 sec.
8192 10.545623168908 3.26779e− 08 3.09872e− 09 −2.000 96.229 sec.
16384 10.545623193416 8.16998e− 09 7.74727e− 10 −2.000 279.892 sec.
32768 10.545623199543 2.04256e− 09 1.93688e− 10 −2.000 1005.533 sec.

Richardson 10.545623201586 4.51200e− 47 4.27856e− 48 n/a n/a

Error: O
(
range−2.000

)

Tables for every convolution are given in the appendix, Chapter A. The final values computed

for each λ are below. The details of each convolution and its answer are also given in the appendix.

For some convolutions in λ5, only numerical approximations were possible. We have a hypothesis

for some properties of this series based on our results.
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Figure 11.2: Convergence of numerical truncation to the exact answer for the seventh convolution
of λ3.

1. Each term in the series has the form a1ρ
a3

Na2

∏
(z(bi)).

2. The inputs to the ζ function are related to the order of Na2 by
∑

(bi) = a2. They may not

include ζ(1) because it is ∞.

3. The coefficient a1 is always a small integer.

4. The order of ρa3 is related to the order of Na2 . At a2 = 3 there is just ρ2. At a2 = 5, we have

ρ2 and ρ4. The next order, a2 = 7 has three ρ components for ρ2, ρ4, and ρ6. The powers of

ρ take the even values from 2 to a2 − 1.

5. When the series is scaled to a polygon of area π, all ζ(bi) where bi is even cancel.

Given the numerical results, only one answer was possible that would match all our computations

and all these hypothesis. Specifically, the small number of terms that could only be approximated

converged towards the ζ(6) value needed to meet the 5th point. If ζ(6) cancels out when the surface

area is scaled to size π, then the value of λ5 we compute must be correct. All our evidence supports

this hypothesis and the final value we have computed.
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λ0 =ρ2 (11.40)

λ1 =
4ζ(2)ρ2

N2
+

6ζ(6)ρ2

N6
+O

(
1

N7

)
(11.41)

λ2 =
8ζ(3)ρ2

N3
+

64ζ(4)ρ2

N4
+

(
32ζ(2)ζ(3)− 80ζ(5)− 4ζ(5)ρ2

)
ρ2

N5

+

(
−12ζ(6) + 4ζ(6)ρ2

)
ρ2

N6
+O

(
1

N7

)
(11.42)

λ3 =− 24ζ(4)ρ2

N4
+

(96ζ(2)ζ(3) + 144ζ(5)) ρ2

N5

+
948ζ(6)ρ2 +

(
24ζ(3)2 − 12ζ(6)

)
ρ4

N6
+O

(
1

N7

)
(11.43)

λ4 =
(672ζ(5)− 384ζ(2)ζ(3)) ρ2

N5

+

(
192ζ(3)2 − 1152ζ(6)

)
ρ2

N6
+O

(
1

N7

)
(11.44)

λ5 =
1680ζ(6)ρ2

N6
+O

(
1

N7

)
(11.45)

This forms the Taylor series

λN
λ

= 1 +
4ζ(2)

N2
+

4ζ(3)

N3
+

28ζ(4)

N4

+
12ζ(5) + 16ζ(2)ζ(3)− 2λζ(5)

N5

+
8ζ(3)2 + 124ζ(6) + 4ζ(3)2λ

N6
+O

(
1

N7

)
(11.46)

Robert Jones of HBE Labs recently used numerical methods to approximate the answer to 100

digits on the regular polygons for fixed N [58].

The series in Equation 11.46 is for a polygon with surface area 2π area. The numerical results

in [58] are for a polygon with surface area π. This is only a difference in the scale of the shape,

Equation 11.46 can be scaled to have area π.

The scaling factor is

N sin
(
π
N

)
cos
(
π
N

)
π

= 1− 4ζ(2)

N2
+

12ζ(4)

N4
− 12ζ(6)

N6
+O

(
N−8

)
(11.47)
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The scaled version of Equation 11.46 has the very interesting effect of canceling all even ζ(a)

terms. Leaving only the Equation 11.48.

LN,π
λ

= 1 +
4ζ(3)

N3
− 2λζ(5)

N5
+

12ζ(5)

N5
+

4λζ(3)2

N6
+

8ζ(3)2

N6
+O

(
1

N7

)
(11.48)

The rescaled series is compared to the numerical results in Table 11.13. This gives an outside

confirmation of our series.

Table 11.13: Comparison of Equation 11.48 to numerical approximations [58].

Comparison to Numerical Approximations
N Exact Result Approx. Result Difference
4 6.28372254763131031000 6.28318530717958647693 5.3724045172e-04
8 5.83856803931689371583 5.83849143359244285052 7.6605724451e-05
16 5.78999273707821970544 5.78999189999020853435 8.3708801117e-07
32 5.78403488119607130392 5.78403487370244431833 7.4936269856e-09
64 5.78329204396220764314 5.78329204389978502746 6.2422615677e-11
128 5.78319922243260221656 5.78319922243209895699 5.0325957804e-13
256 5.78318762036894686933 5.78318762036894287572 3.993610474e-15

The series for the Laplace eigenvalues on the regular N -sided polygon under Dirichlet boundary

conditions have been verified in multiple ways. The series up to 1
N4 was computed by Pavel Grin-

feld [47]. His calculations were checked using an early version of the CMSTRS library and an error

was found. The full SCMS system confirmed these results up to 1
N4 . Application of our system has

also provided more terms in the series, up to 1
N6 .

These results are confirmed using numerical approximations. Each convolution is computed

exactly and numerically and the results are compared. For a small number of series, only numerical

approximations were available. These series appear in Chapter A.5. An alternative numerical

method was developed independently [58]. Our series is evaluated at specific values of N and

compared against these results. All of these methods agree, showing that the expressions presented

here are correct.
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12. Conclusions

In this thesis, we have shown that a symbolic implementation of the CMS can provide advantages

over the current state of the art methods. The CMS is an analytical framework for dealing for

deforming manifolds. The CMS itself was presented in Chapter 2. The CMS can be applied to a

wide range of problems.

The applications of the CMS are vast, some examples were given in Chapter 2.5. One of the

most prominent applications of the CMS is in the study of fluid films. An example from this space

is the deformation of a soap bubble or film. Imagine a soap bubble blowing in the wind. As time

passes, the shape of the bubble is constantly deformed. The bubble itself has a surface tension,

which is also changing as the bubble deforms. This real world event is what the CMS is designed to

model. The expressions that appear in the soap bubble problem are far more complex then those

that appear in our problems.

The CMS is an extension of tensor calculus. Symbolic computation has a long history of advanc-

ing research by automating tensor calculus. Chapter 2.6 examined the previous work done in this

field. Many CASs have been developed, but the focus has been on General Relativity and stationary

surfaces. The introduction of deforming manifolds significantly broadens the scope of problems that

can be examined, but also increases the complexity of calculations.

We have designed and implemented SCMS, a symbolic computation system for the CMS. The

first part of the SCMS system is a Java library for working in the CMS. We have built this library

based on a TRS we developed. The CMSTRS library was first proposed in 2011 and the first full

version was presented in 2013 [10, 11]. This library implements the high level symbolic framework

of the CMS.

The CMSTRS library is not just for algebraic simplification using rewrite rules. It also performs

equivalence testing. Chapter 3.3.3 looked at the types of equivalence that could be used to combine

terms. This was itself a difficult task. The CMSTRS library also allowed expressions to be exported

to a Maple program for evaluation.

One of the most important features of the CMS is that any expression derived using it can be

evaluated on any coordinate system. Our second library, the CMSTensor library for Maple was

described in Chapter 4. Evaluation of a CMS expression for a particular realization of a problem

requires working in a coordinate system. The CMSTensor library allows CMS expressions to be
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evaluated on a coordinate system. This library was first presented in 2013 and a more comprehensive

version is presented in this thesis [11].

By combining these two libraries together, problems in the CMS can be automated from start to

finish. Chapter 5 showed how these libraries can be used in practice. In this chapter, the perimeter

of the unit circle was stretched into an ellipse. A Taylor series for the contour length was given in

terms of how far the semi-axis was stretched. This series can be easily computed outside the CMS

and was used to verify the correctness of our system.

The SCMS was then applied to a series of non-trivial problems. These problems all came from

boundary variations of the Laplacian eigenvalues under Dirichlet boundary condition. Chapter 6

explained this basic problem. The eigenvalues are know on the unit circle. There are many other

shapes where the eigenvalues are not known. The CMS can be used to deform the unit circle into

these shapes. An alternative to finding the solution directly on the new shape is to change a shape

with a known solution into a shape with an unknown solution. This method creates a Taylor series

for the eigenvalues on the new surface.

Three surface deformations were examined. The deformation from the unit circle in Chapter

10 does not change the final shape. All variations in this deformation are equal to zero. This

deformation was used to further confirm the accuracy of our expressions.

The second deformation was from the unit circle into an ellipse. These eigenvalues could be

computed numerically to high orders. Our system replicated the known exact expressions and found

new terms in the series. The series presented here has more terms then previously known. The

series is confirmed using numerical approximations.

Since expressions in the CMS can be evaluated in any coordinate system, both these eigenvalue

problems use the same CMS expressions. At this point, we were confident that our system worked

correctly.

The most important boundary variation problem we approached was the eigenvalues on the

regular N -sided polygon. At the start of this project, the exact series was only know for a few

specific values of N and numerically approximated on others [46]. Our system helped with the first

exact series presented in 2012 [47].

The series is found in terms of 1
N . The series given in [47] went up to 1

N4 . The series presented

in this thesis adds another two terms, taking the series up to 1
N6 . Computation of these final two

terms was beyond the scope of all previous attempts.

Evaluation of these new terms required the creation and manipulation of Fourier series. Chapter
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7 and Chapter 8 showed why these series appear when solving the problem. Chapter 9 showed how

we implemented an additional Maple library to automate this process. The new library could be

combined with the SCMS to seamlessly compute the desired eigenvalues.

Chapter 11 showed the results of applying our system to these problems. In each case, our system

computed values beyond the scope of existing systems. The SCMS can deal with expression growth

that was previously intractable. This allows advances in research beyond previous limitations.

Analysis of the series found for the Laplace-Dirichlet eigenvalues on the regular polygon have

lead to some hypothesis about the series.

1. Each term in the series has the form a1ρ
a3

Na2

∏
(z(bi)).

2. The inputs to the ζ function are related to the order of Na2 by
∑

(bi) = a2. They may not

include ζ(1) because it is ∞.

3. The coefficient a1 is always a small integer.

4. The order of ρa3 is related to the order of Na2 . At a2 = 3 there is just ρ2. At a2 = 5, we have

ρ2 and ρ4. The next order, a2 = 7 has three ρ components for ρ2, ρ4, and ρ6. The powers of

ρ take the even values from 2 to a2 − 1.

5. When the series is scaled to a polygon of area π, all ζ(bi) where bi is even cancel.

The fourth point in this list is not obvious from the series shown in the results section. Chapter

A.6 shows λ1 and λ2 computed to N−11. We have verified this pattern appears in these two terms

up to order N−20.

We can also propose a hypothesis about the evolution of the λ orders. From order analysis of

the CMS rules, it can be seen that λa will contribute to order Na+1 and higher. Finding the N−7

term would require λ6.

The main computational complexity that we have run into is related to the eigenfunction. Gener-

ating partial derivatives of the eigenfunction as described in Chapter 7 creates algebraically complex

functions. Even in λ5, convolutions involving surface velocity and u1 can be easily simplified. Ex-

pressions with u2 become more difficult and the expression containing u4 pushed the limits of our

design.

One area for future work to extend this series is to revise the generation and simplification of

uk values. The requirements presented in Chapter 7 can be met in multiple ways. The null space

of the Helmholtz operators gives a significant amount of freedom in construction. If equivalent but
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algebraically simpler solutions can be found, then it will be easy to extend the series. It is unknown

if this can be done, because computation of these series currently rely on the Helmholtz null space.

A new simpliciation approach would be required, if not an entirely new approach to computing the

values.

A second area for future work is in numerical approximations. We have used Richardson extrap-

olation exclusively to extend numerical results. For some series, this was clearly not the optimal

acceleration method. Some experimentation has shown that other acceleration methods will produce

more digits of accuracy from less data. Continued optimization of the numerical methods used to

approximate convolutions can lead to more accurate results. The current results are of practical use,

but we believe a pattern may appear in this series. Finding this pattern will require more accuracy.

In conclusion, we have shown that the CMS is in desperate need of more automated computation

methods. Rapid expression swell has caused many problems, which seem to be perfect fits for the

CMS, to become intractable. These problems have either been abandoned or left to alternative

methods. Our symbolic implementation of the CMS gives a new foundation to fill this gap.

We have shown that the CMS can be implemented as both an evaluation method and a symbolic

framework. We have used this system to solve a set of non-trivial problems. Our results have shown

that automation can extend the reach of the CMS.

Our most important contribution to an open research problem is the series expansion for the

Laplace eigenvalues on the N -sided regular polygon under Dirichlet boundary conditions. This

expansion goes further then all previous attempts. In addition, it gives new insight into potential

patterns that arise in this series.

We have successfully designed, implemented, and verified a symbolic computation system, the

SCMS. We have released this software as a open source package. We have applied this system to

open problems and shown that it can advance these problems beyond previous limitations. These

results show that automated computation within the CMS is possible and that it is necessary to

advance research in a wide range of fields.
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Appendix A. Full Numerical Results

A.1 Introduction

This appendix contains the full numerical results for every convolution that is used to determine

the series for λN . Each variation of λ starting with λ2 has its own section. The values of λ0 and λ1

are derived in Chapter 6. These results are analyzed in Chapter 11

The CMS expressions for each λk value are written as a summation of convolutions of basic

functions. Each convolution is seperated into a set of Tj values for each λk.

The exact values for each convolution are presented. A table with the numerical approximations

is given for each convolution. Some convolutions require multiple tables. Each constant A for orders

x and y in Aρx

Ny is given its own table. Although these are all computed from the same convolution,

they are seperated algebraically in the computation. Each may also have a different convergence

rate.

The convergence rate of a function determines how fast it approaches the exact answer. For each

convolution, there is an exact answer F . This is approximated by a function f(r). The convergence

rate approximates the error introducted by the approximation.

|F − f(r)| = O (rc) (A.1)

This formula states that the error is a polynomial function in r where the highest order is c.

For each numerical approximation, the absolute and exact error is calculated. The exact error

is |F − f(r)| and the relative error is |F−f(r)|
|F | . The approximated convergence rate and time to

compute are also given for each range r. The convergence rate cannot be approximated until three

values have been computed. A relative error rate of 1e− 8 or smaller is considered strong evidence

for the correctness of the exact formula. Richardson Extrapolation is applied to the entire table to

produce an improved numerical estimate.

Each convolution is truncated at range r

conv(f, g)(0) =

j=r∑
j=−r

f(j)g(−j) (A.2)
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This means that at r = 32 there are actually 65 multiplications needed.

When the Taylor series is computed for λN the factors used are

λn =

5∑
k=0

λk
k!

(A.3)

The k! is factored out in the numerical evaluations. This helps keep the size of the values down.

For example, each term in λ5 is divided by 120.

The value of each λk is given divided by k! and ρ2. These factors always appear. Removing them

improves the clarity of the expressions.

The surface velocity’s Fourier coefficient and its derivatives are given by cm.

C =

∞∑
k=−∞

c0(k)eikNθ (A.4)

∇̇xC =

∞∑
k=−∞

cx(k)eikNθ (A.5)

The coefficients of the eigenfunctions uz = ∂zu
∂tz |t=0,r=1 are given by fz. If a derivative is taken

before evaluation it is given in the subscript. For example, f1,drdθ is the coefficient of u1 with a

derivative taken with respect to r and θ before evaluating at r = 1.

Additional commentary is given for λ2. For λ3 through λ5 only minimal commentary is given.

Each λ follows the pattern established in λ2. Expressions that contribute to order O
(
N−7

)
are not

shown in tables.

A.2 λ2 Detailed Results

The second variation of lambda, λ2, is determined by the following expressions.

λ2 =T1 + T2 + T3 (A.6)

T1 =2ρ2conv(c0, c0)(0) (A.7)

T2 =4ρ
√
πconv(c0, f1,dr)(0) (A.8)

T3 =− 2ρ2c1(0) (A.9)
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Equation A.9 contains no convolutions and is known exactly.

T3 =− 2ρ2c1(0) (A.10)

=− 2ρ20 (A.11)

=0 (A.12)

A.2.1 First Convolution of λ2

T1 =2ρ2conv(c0, c0)(0) (A.13)

=
24ρ2ζ(4)

N4
− 12ρ2ζ(6)

N6
+O

(
1

N7

)
(A.14)

Table A.1 and Table A.2 show that numerical approximation by truncation has an error of

O
(
R−3

)
where R is the truncated range

∑R
k=−R c0(−k)c0(k). These numerical results confirm the

exact solutions computed by the system.

A.2.2 Second Convolution of λ2

T2 =4ρ
√
πconv(c0, f1,dr)(0) (A.15)

=
8ζ(3)ρ2

N3
+

40ζ(4)ρ2

N4
− 80ζ(5)ρ2

N5
+

32ζ(2)ζ(3)ρ2

N5

− 4ρ4ζ(5)

N5
+

4ρ4ζ(6)

N6
+O

(
1

N7

)
(A.16)

Each combinations of orders for N and ρ is given a table. Tables A.3 to Table A.7 show the

convergence and error for each term. These numerical results give clear evidence that the exact

calculations are correct.

A.2.3 Complete λ2

Combining these results give a final answer.
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λ2 =T1 + T + 2 + T3 (A.17)

=
8ζ(3)ρ2

N3
+

64ζ(4)ρ2

N4
− 80ζ(5)ρ2

N5
+

32ζ(2)ζ(3)ρ2

N5
− 4ζ(5)ρ4

N5

− 12ζ(6)ρ2

N6
+

4ζ(6)ρ4

N6
+O

(
1

N7

)
(A.18)

In the Taylor series, these will be divided by 2!. All terms contain a ρ2. These are both divided

out in the next set of equations.

T1

2!ρ2
=

12ζ(4)

N4
− 6ζ(6)

N6
(A.19)

T2

2!ρ2
=

4ζ(3)

N3
+

20ζ(4)

N4
− 40ζ(5)

N5
+

16ζ(2)ζ(3)

N5
− 2ρ2ζ(5)

N5
+

3ρ2ζ(6)

N6
(A.20)

T3

2!ρ2
=0 (A.21)

λ2

2!ρ2
=

4ζ(3)

N3
+

32ζ(4)

N4
− 40ζ(5)

N5
+

16ζ(2)ζ(3)

N5
− 2ζ(5)ρ2

N5

− 6ζ(6)

N6
+

2ζ(6)ρ2

N6
(A.22)
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Table A.1: Order ρ2/N4 contribution from convolution 1 of λ2

T1/2! = vρ2

N4 , v = (24 ζ (4)) /2!
v = 12.98787880453365829819204435849401483329701142302472289219571458

Approx Range Result Abs. Error Rel. Error Conv. Time
2 12.948232337111 3.96465e− 02 3.05257e− 03 n/a 0.004 sec.
4 12.980736195136 7.14261e− 03 5.49944e− 04 n/a 0.004 sec.
8 12.986800672518 1.07813e− 03 8.30106e− 05 −2.422 0.007 sec.
16 12.987730668359 1.48136e− 04 1.14057e− 05 −2.705 0.010 sec.
32 12.987859393297 1.94112e− 05 1.49457e− 06 −2.853 0.024 sec.
64 12.987876320386 2.48415e− 06 1.91267e− 07 −2.927 0.041 sec.
128 12.987878490348 3.14186e− 07 2.41907e− 08 −2.964 0.102 sec.
256 12.987878765029 3.95042e− 08 3.04162e− 09 −2.982 0.178 sec.
512 12.987878799581 4.95252e− 09 3.81319e− 10 −2.991 0.410 sec.
1024 12.987878803914 6.19973e− 10 4.77347e− 11 −2.995 0.933 sec.
2048 12.987878804456 7.75534e− 11 5.97121e− 12 −2.998 2.149 sec.
4096 12.987878804524 9.69772e− 12 7.46675e− 13 −2.999 5.899 sec.
8192 12.987878804532 1.21244e− 12 9.33515e− 14 −2.999 19.186 sec.
16384 12.987878804534 1.51569e− 13 1.16700e− 14 −3.000 77.627 sec.
32768 12.987878804534 1.89469e− 14 1.45882e− 15 −3.000 393.877 sec.

Richardson 12.987878804534 3.18845e− 47 2.45494e− 48 n/a n/a
Error: O

(
range−3.000

)

Table A.2: Order ρ2/N6 contribution from convolution 1 of λ2

T1/2! = vρ2

N6 , v = (−12 ζ (6)) /2!
v = −6.104058371906694838287107578745523167410904940197121371054451980

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −6.330560431790 2.26502e− 01 3.71068e− 02 n/a 0.004 sec.
4 −6.149011273064 4.49529e− 02 7.36443e− 03 n/a 0.004 sec.
8 −6.111063571840 7.00520e− 03 1.14763e− 03 −2.258 0.007 sec.
16 −6.105029813102 9.71441e− 04 1.59147e− 04 −2.653 0.010 sec.
32 −6.104185982535 1.27611e− 04 2.09059e− 05 −2.838 0.024 sec.
64 −6.104074713361 1.63415e− 05 2.67715e− 06 −2.923 0.041 sec.
128 −6.104060439051 2.06714e− 06 3.38651e− 07 −2.963 0.102 sec.
256 −6.104058631830 2.59924e− 07 4.25821e− 08 −2.982 0.178 sec.
512 −6.104058404493 3.25862e− 08 5.33844e− 09 −2.991 0.410 sec.
1024 −6.104058375986 4.07925e− 09 6.68286e− 10 −2.995 0.933 sec.
2048 −6.104058372417 5.10281e− 10 8.35970e− 11 −2.998 2.149 sec.
4096 −6.104058371971 6.38085e− 11 1.04534e− 11 −2.999 5.899 sec.
8192 −6.104058371915 7.97752e− 12 1.30692e− 12 −2.999 19.186 sec.
16384 −6.104058371908 9.97281e− 13 1.63380e− 13 −3.000 77.627 sec.
32768 −6.104058371907 1.24666e− 13 2.04234e− 14 −3.000 393.877 sec.

Richardson −6.104058371907 2.08787e− 39 3.42046e− 40 n/a n/a

Error: O
(
range−3.000

)
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Table A.3: Order ρ2/N3 contribution from convolution 2 of λ2

T2/2! = vρ2

N3 , v = (8 ζ (3)) /2!
v = 4.808227612638377141598952646045799963059945169361995527169086220

Approx Range Result Abs. Error Rel. Error Conv. Time
2 4.500000000000 3.08228e− 01 6.41042e− 02 n/a 0.007 sec.
4 4.710648148148 9.75795e− 02 2.02943e− 02 n/a 0.008 sec.
8 4.780640974247 2.75866e− 02 5.73738e− 03 −1.590 0.015 sec.
16 4.800888154890 7.33946e− 03 1.52644e− 03 −1.789 0.026 sec.
32 4.806334569430 1.89304e− 03 3.93709e− 04 −1.894 0.054 sec.
64 4.807746901183 4.80711e− 04 9.99769e− 05 −1.947 0.106 sec.
128 4.808106492275 1.21120e− 04 2.51902e− 05 −1.974 0.228 sec.
256 4.808197214037 3.03986e− 05 6.32221e− 06 −1.987 0.417 sec.
512 4.808219998130 7.61451e− 06 1.58364e− 06 −1.993 0.848 sec.
1024 4.808225707151 1.90549e− 06 3.96297e− 07 −1.997 1.953 sec.
2048 4.808227136034 4.76604e− 07 9.91227e− 08 −1.998 3.964 sec.
4096 4.808227493458 1.19180e− 07 2.47867e− 08 −1.999 11.556 sec.
8192 4.808227582840 2.97987e− 08 6.19744e− 09 −2.000 37.241 sec.
16384 4.808227605188 7.45013e− 09 1.54945e− 09 −2.000 134.642 sec.
32768 4.808227610776 1.86259e− 09 3.87375e− 10 −2.000 540.517 sec.

Richardson 4.808227612638 4.11445e− 47 8.55711e− 48 n/a n/a
Error: O

(
range−2.000

)
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Table A.4: Order ρ2/N4 contribution from convolution 2 of λ2

T2/2! = vρ2

N4 , v = (40 ζ (4)) /2!
v = 21.64646467422276383032007393082335805549501903837453815365952430

Approx Range Result Abs. Error Rel. Error Conv. Time
2 21.646464674223 0.00000e+ 00 0.00000e+ 00 n/a 0.007 sec.
4 21.646464674223 0.00000e+ 00 0.00000e+ 00 n/a 0.008 sec.
8 21.646464674223 0.00000e+ 00 0.00000e+ 00 n/a 0.015 sec.
16 21.646464674223 0.00000e+ 00 0.00000e+ 00 n/a 0.026 sec.
32 21.646464674223 0.00000e+ 00 0.00000e+ 00 n/a 0.054 sec.
64 21.646464674223 0.00000e+ 00 0.00000e+ 00 n/a 0.106 sec.
128 21.646464674223 0.00000e+ 00 0.00000e+ 00 n/a 0.228 sec.
256 21.646464674223 0.00000e+ 00 0.00000e+ 00 n/a 0.417 sec.
512 21.646464674223 0.00000e+ 00 0.00000e+ 00 n/a 0.848 sec.
1024 21.646464674223 0.00000e+ 00 0.00000e+ 00 n/a 1.953 sec.
2048 21.646464674223 0.00000e+ 00 0.00000e+ 00 n/a 3.964 sec.
4096 21.646464674223 0.00000e+ 00 0.00000e+ 00 n/a 11.556 sec.
8192 21.646464674223 0.00000e+ 00 0.00000e+ 00 n/a 37.241 sec.
16384 21.646464674223 0.00000e+ 00 0.00000e+ 00 n/a 134.642 sec.
32768 21.646464674223 0.00000e+ 00 0.00000e+ 00 n/a 540.517 sec.

Richardson 21.646464674223 0.00000e+ 00 0.00000e+ 00 n/a n/a
No Error Detected

Table A.5: Order ρ2/N5 contribution from convolution 2 of λ2

T2/2! = vρ2

N5 , v = (−80 ζ (5) + 32 ζ (2) ζ (3)) /2!
v = −9.84024060097805916210125239451935756896881331351436513983455069

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −11.641186796732 1.80095e+ 00 1.83019e− 01 n/a 0.007 sec.
4 −10.458849090200 6.18608e− 01 6.28652e− 02 n/a 0.008 sec.
8 −10.019859450639 1.79619e− 01 1.82535e− 02 −1.429 0.015 sec.
16 −9.888397792188 4.81572e− 02 4.89390e− 03 −1.740 0.026 sec.
32 −9.852687369821 1.24468e− 02 1.26488e− 03 −1.880 0.054 sec.
64 −9.843402977912 3.16238e− 03 3.21372e− 04 −1.943 0.106 sec.
128 −9.841037504351 7.96903e− 04 8.09841e− 05 −1.973 0.228 sec.
256 −9.840440613450 2.00012e− 04 2.03260e− 05 −1.987 0.417 sec.
512 −9.840290702287 5.01013e− 05 5.09147e− 06 −1.993 0.848 sec.
1024 −9.840253138570 1.25376e− 05 1.27411e− 06 −1.997 1.953 sec.
2048 −9.840243736909 3.13593e− 06 3.18684e− 07 −1.998 3.964 sec.
4096 −9.840241385152 7.84174e− 07 7.96905e− 08 −1.999 11.556 sec.
8192 −9.840240797046 1.96067e− 07 1.99251e− 08 −2.000 37.241 sec.
16384 −9.840240649998 4.90199e− 08 4.98157e− 09 −2.000 134.642 sec.
32768 −9.840240613233 1.22553e− 08 1.24543e− 09 −2.000 540.517 sec.

Richardson −9.840240600978 2.58726e− 33 2.62926e− 34 n/a n/a

Error: O
(
range−2.000

)
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Table A.6: Order ρ4/N5 contribution from convolution 2 of λ2

T2/2! = vρ4

N5 , v = (−4 ζ (5)) /2!
v = −2.073855510286739852662730972914068336114161839003825623948385356

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −2.062500000000 1.13555e− 02 5.47556e− 03 n/a 0.007 sec.
4 −2.072683577675 1.17193e− 03 5.65098e− 04 n/a 0.008 sec.
8 −2.073760812514 9.46978e− 05 4.56627e− 05 −3.241 0.015 sec.
16 −2.073848785031 6.72526e− 06 3.24288e− 06 −3.614 0.026 sec.
32 −2.073855062476 4.47810e− 07 2.15931e− 07 −3.809 0.054 sec.
64 −2.073855481404 2.88831e− 08 1.39273e− 08 −3.905 0.106 sec.
128 −2.073855508453 1.83373e− 09 8.84213e− 10 −3.953 0.228 sec.
256 −2.073855510171 1.15509e− 10 5.56976e− 11 −3.977 0.417 sec.
512 −2.073855510279 7.24758e− 12 3.49474e− 12 −3.988 0.848 sec.
1024 −2.073855510286 4.53860e− 13 2.18848e− 13 −3.994 1.953 sec.
2048 −2.073855510287 2.83940e− 14 1.36914e− 14 −3.997 3.964 sec.
4096 −2.073855510287 1.77549e− 15 8.56130e− 16 −3.999 11.556 sec.
8192 −2.073855510287 1.10995e− 16 5.35212e− 17 −3.999 37.241 sec.
16384 −2.073855510287 6.93805e− 18 3.34548e− 18 −4.000 134.642 sec.
32768 −2.073855510287 4.33654e− 19 2.09105e− 19 −4.000 540.517 sec.

Richardson −2.073855510287 2.79654e− 51 1.34848e− 51 n/a n/a
Error: O

(
range−4.000

)

Table A.7: Order ρ4/N6 contribution from convolution 2 of λ2

T2/2! = vρ4

N6 , v = (4 ζ (6)) /2!
v = 2.034686123968898279429035859581841055803634980065707123684817326

Approx Range Result Abs. Error Rel. Error Conv. Time
2 2.031250000000 3.43612e− 03 1.68877e− 03 n/a 0.007 sec.
4 2.034481765475 2.04358e− 04 1.00437e− 04 n/a 0.008 sec.
8 2.034677261530 8.86244e− 06 4.35568e− 06 −4.047 0.015 sec.
16 2.034685798392 3.25577e− 07 1.60013e− 07 −4.517 0.026 sec.
32 2.034686112950 1.10187e− 08 5.41542e− 09 −4.762 0.054 sec.
64 2.034686123611 3.58204e− 10 1.76049e− 10 −4.883 0.106 sec.
128 2.034686123957 1.14159e− 11 5.61066e− 12 −4.942 0.228 sec.
256 2.034686123969 3.60259e− 13 1.77059e− 13 −4.971 0.417 sec.
512 2.034686123969 1.13133e− 14 5.56021e− 15 −4.986 0.848 sec.
1024 2.034686123969 3.54405e− 16 1.74182e− 16 −4.993 1.953 sec.
2048 2.034686123969 1.10887e− 17 5.44983e− 18 −4.996 3.964 sec.
4096 2.034686123969 3.46733e− 19 1.70411e− 19 −4.998 11.556 sec.
8192 2.034686123969 1.08387e− 20 5.32697e− 21 −4.999 37.241 sec.
16384 2.034686123969 3.38761e− 22 1.66493e− 22 −5.000 134.642 sec.
32768 2.034686123969 1.05871e− 23 5.20331e− 24 −5.000 540.517 sec.

Richardson 2.034686123969 2.09590e− 59 1.03009e− 59 n/a n/a

Error: O
(
range−5.000

)
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A.3 λ3 Detailed Results

The third variation of lambda, λ3, is determined by nine convolutions.

λ3 =

9∑
k=1

Tk (A.23)

T1 =6ρ2conv(c0, c1)(0) = 0 (A.24)

T2 =8ρ
√
πconv(c1, f1,dr)(0) = 0 (A.25)

T3 =− 2ρ2c2(0) (A.26)

T4 =
(
4ρ4 − 4ρ2

)
conv(c0, c0, c0)(0) (A.27)

T5 =2ρ2conv(c0, c0, c0,dθ2)(0) (A.28)

T6 =8ρ
√
πconv(c0, c0, f1,dr2)(0) (A.29)

T7 =− 4πconv(c0, f1,dr, f1,dr)(0) (A.30)

T8 =− 4πconv(c0, f1,dθ, f1,dθ)(0) (A.31)

T9 =4ρ
√
πconv(c0, f2,dr)(0) (A.32)

Expressions containing c1 = 0 are trivially zero. Term T3 contains no convolutions and is also

known.

T3 =− 2ρ2c2(0) (A.33)

=
24ρ2ζ(4)

N4
+

48ρ2ζ(6)

N6
(A.34)

The nontrivial convolutions will be given in the next section.
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A.3.1 Convolutions of Interest in λ3

T4 =
(
4ρ4 − 4ρ2

)
conv(c0, c0, c0)(0) (A.35)

=
216ζ(6)ρ2

N6
− 216ζ(6)ρ4

N6
(A.36)

T5 =2ρ2conv(c0, c0, c0,dθ2)(0) (A.37)

=
24ρ2ζ(4)

N4
− 48ρ2ζ(6)

N6
(A.38)

T6 =8ρ
√
πconv(c0, c0, f1,dr2)(0) (A.39)

=− 96ζ(4)ρ2

N4
+

96ζ(5)ρ2

N5
+

528ζ(6)ρ2

N6
+

432ζ(6)ρ4

N6
(A.40)

T7 =− 4πconv(c0, f1,dr, f1,dr)(0) (A.41)

=
16ρ2ζ(4)

N4
+

32ρ2ζ(2)ζ(3)

N5
+

8ρ4ζ(3)2

N6
+

224

3

ζ(6)ρ2

N6
− 88

3

ρ4ζ(6)

N6
(A.42)

T8 =− 4πconv(c0, f1,dθ, f1,dθ)(0) (A.43)

=
24ρ2ζ(4)

N4
− 48ρ2ζ(6)

N6
(A.44)

T9 =4ρ
√
πconv(c0, f2,dr)(0) (A.45)

=
32ζ(4)ρ2

N4
+

48ρ2ζ(5)

N5
+

64ζ(2)ζ(3)ρ2

N5

+
532

3

ζ(6)ρ2

N6
+

16ρ4ζ(3)2

N6
− 596

3

ζ(6)ρ4

N6
(A.46)

The values divided by 3!ρ2 are given below.

T3

3!ρ2
=− 4ζ(4)

N4
+

8ζ(6)

N6
(A.47)

T4

3!ρ2
=

36ζ(6)(1− ρ2)

N6
(A.48)

T5

3!ρ2
=

4ζ(4)

N4
− 8ζ(6)

N6
(A.49)

T6

3!ρ2
=− 16ζ(4)

N4
+

16ζ(5)

N5
+

88ζ(6)

N6
+

72ζ(6)ρ2

N6
(A.50)



149

T7

3!ρ2
=

8ζ(4)

3N4
+

16ζ(2)ζ(3)

3N5
+

112ζ(6)

9N6
+

4ζ(3)2ρ2

3N6
− 44ζ(6)ρ2

9N6
(A.51)

T8

3!ρ2
=

4ζ(4)

N4
− 8ζ(6)

N6
(A.52)

T9

3!ρ2
=

16ζ(4)

3N4
+

8ζ(5)

N5
+

32ζ(2)ζ(3)

3N5
+

266ζ(6)

9N6
+

8ζ(3)2ρ2

3N6
− 298ζ(6)ρ2

9N6
(A.53)

A.3.2 Complete λ3

λ3 =− 24ζ(2)ρ2

N4
+

144ζ(5)ρ2

N5
+

96ζ(2)ζ(3)ρ2

N5

+
948ζ(6)ρ2

N6
− 12ρ4ζ(6)

N6
+

24ρ4ζ(3)2

N6
(A.54)

λ3

3!ρ2
=− 4ζ(4)

N4
+

24ζ(5)

N5
+

16ζ(2)ζ(3)

N5
+

158ζ(6)

N6
− 2ζ(6)ρ2

N6
+

4ζ(3)2ρ2

N6
(A.55)

Table A.8: Order ρ2/N6 contribution from convolution 4 of λ3

T4/3! = vρ2

N6 , v = (216 ζ (6)) /3!
v = 36.62435023144016902972264547247313900446542964118272822632671189

Approx Range Result Abs. Error Rel. Error Conv. Time
2 36.610605735565 1.37445e− 02 3.75283e− 04 n/a 0.003 sec.
4 36.623532797464 8.17434e− 04 2.23194e− 05 n/a 0.002 sec.
8 36.624314781685 3.54498e− 05 9.67929e− 07 −4.047 0.004 sec.
16 36.624348929133 1.30231e− 06 3.55585e− 08 −4.517 0.008 sec.
32 36.624350187365 4.40747e− 08 1.20343e− 09 −4.762 0.014 sec.
64 36.624350230007 1.43282e− 09 3.91220e− 11 −4.883 0.030 sec.
128 36.624350231395 4.56637e− 11 1.24681e− 12 −4.942 0.064 sec.
256 36.624350231439 1.44104e− 12 3.93464e− 14 −4.971 0.143 sec.
512 36.624350231440 4.52531e− 14 1.23560e− 15 −4.986 0.310 sec.
1024 36.624350231440 1.41762e− 15 3.87070e− 17 −4.993 0.726 sec.
2048 36.624350231440 4.43547e− 17 1.21107e− 18 −4.996 1.922 sec.
4096 36.624350231440 1.38693e− 18 3.78691e− 20 −4.998 6.105 sec.
8192 36.624350231440 4.33549e− 20 1.18377e− 21 −4.999 25.695 sec.
16384 36.624350231440 1.35505e− 21 3.69985e− 23 −5.000 92.262 sec.
32768 36.624350231440 4.23484e− 23 1.15629e− 24 −5.000 420.616 sec.

Richardson 36.624350231440 8.38800e− 59 2.29028e− 60 n/a n/a

Error: O
(
range−5.000

)
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Table A.9: Order ρ4/N6 contribution from convolution 4 of λ3

T4/3! = vρ4

N6 , v = (−216 ζ (6)) /3!
v = −36.62435023144016902972264547247313900446542964118272822632671189

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −36.610605735565 1.37445e− 02 3.75283e− 04 n/a 0.003 sec.
4 −36.623532797464 8.17434e− 04 2.23194e− 05 n/a 0.002 sec.
8 −36.624314781685 3.54498e− 05 9.67929e− 07 −4.047 0.004 sec.
16 −36.624348929133 1.30231e− 06 3.55585e− 08 −4.517 0.008 sec.
32 −36.624350187365 4.40747e− 08 1.20343e− 09 −4.762 0.014 sec.
64 −36.624350230007 1.43282e− 09 3.91220e− 11 −4.883 0.030 sec.
128 −36.624350231395 4.56637e− 11 1.24681e− 12 −4.942 0.064 sec.
256 −36.624350231439 1.44104e− 12 3.93464e− 14 −4.971 0.143 sec.
512 −36.624350231440 4.52531e− 14 1.23560e− 15 −4.986 0.310 sec.
1024 −36.624350231440 1.41762e− 15 3.87070e− 17 −4.993 0.726 sec.
2048 −36.624350231440 4.43547e− 17 1.21107e− 18 −4.996 1.922 sec.
4096 −36.624350231440 1.38693e− 18 3.78691e− 20 −4.998 6.105 sec.
8192 −36.624350231440 4.33549e− 20 1.18377e− 21 −4.999 25.695 sec.
16384 −36.624350231440 1.35505e− 21 3.69985e− 23 −5.000 92.262 sec.
32768 −36.624350231440 4.23484e− 23 1.15629e− 24 −5.000 420.616 sec.

Richardson −36.624350231440 8.38800e− 59 2.29028e− 60 n/a n/a
Error: O

(
range−5.000

)

Table A.10: Order ρ2/N4 contribution from convolution 5 of λ3

T5/3! = vρ2

N4 , v = (24 ζ (4)) /3!
v = 4.329292934844552766064014786164671611099003807674907630731904860

Approx Range Result Abs. Error Rel. Error Conv. Time
2 4.250000000000 7.92929e− 02 1.83154e− 02 n/a 0.002 sec.
4 4.315007716049 1.42852e− 02 3.29967e− 03 n/a 0.002 sec.
8 4.327136670814 2.15626e− 03 4.98064e− 04 −2.422 0.003 sec.
16 4.328996662494 2.96272e− 04 6.84344e− 05 −2.705 0.006 sec.
32 4.329254112372 3.88225e− 05 8.96739e− 06 −2.853 0.013 sec.
64 4.329287966549 4.96830e− 06 1.14760e− 06 −2.927 0.032 sec.
128 4.329292306473 6.28371e− 07 1.45144e− 07 −2.964 0.064 sec.
256 4.329292855836 7.90084e− 08 1.82497e− 08 −2.982 0.141 sec.
512 4.329292924940 9.90504e− 09 2.28791e− 09 −2.991 0.313 sec.
1024 4.329292933605 1.23995e− 09 2.86408e− 10 −2.995 0.674 sec.
2048 4.329292934689 1.55107e− 10 3.58273e− 11 −2.998 1.893 sec.
4096 4.329292934825 1.93954e− 11 4.48005e− 12 −2.999 5.251 sec.
8192 4.329292934842 2.42488e− 12 5.60109e− 13 −2.999 20.531 sec.
16384 4.329292934844 3.03137e− 13 7.00200e− 14 −3.000 93.700 sec.
32768 4.329292934845 3.78939e− 14 8.75290e− 15 −3.000 399.164 sec.

Richardson 4.329292934845 6.37690e− 47 1.47297e− 47 n/a n/a

Error: O
(
range−3.000

)
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Table A.11: Order ρ2/N6 contribution from convolution 5 of λ3

T5/3! = vρ2

N6 , v = (−48 ζ (6)) /3!
v = −8.138744495875593117716143438327364223214539920262828494739269307

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −10.019483454321 1.88074e+ 00 2.31085e− 01 n/a 0.002 sec.
4 −8.502454875017 3.63710e− 01 4.46888e− 02 n/a 0.002 sec.
8 −8.194963344120 5.62188e− 02 6.90756e− 03 −2.303 0.003 sec.
16 −8.146522536974 7.77804e− 03 9.55681e− 04 −2.666 0.006 sec.
32 −8.139765601278 1.02111e− 03 1.25462e− 04 −2.842 0.013 sec.
64 −8.138875234676 1.30739e− 04 1.60638e− 05 −2.924 0.032 sec.
128 −8.138761033255 1.65374e− 05 2.03193e− 06 −2.963 0.064 sec.
256 −8.138746575272 2.07940e− 06 2.55494e− 07 −2.982 0.141 sec.
512 −8.138744756565 2.60690e− 07 3.20307e− 08 −2.991 0.313 sec.
1024 −8.138744528510 3.26340e− 08 4.00971e− 09 −2.995 0.674 sec.
2048 −8.138744499958 4.08225e− 09 5.01582e− 10 −2.998 1.893 sec.
4096 −8.138744496386 5.10468e− 10 6.27207e− 11 −2.999 5.251 sec.
8192 −8.138744495939 6.38202e− 11 7.84152e− 12 −2.999 20.531 sec.
16384 −8.138744495884 7.97825e− 12 9.80280e− 13 −3.000 93.700 sec.
32768 −8.138744495877 9.97327e− 13 1.22541e− 13 −3.000 399.164 sec.

Richardson −8.138744495876 1.35609e− 38 1.66622e− 39 n/a n/a
Error: O

(
range−3.000

)

Table A.12: Order ρ2/N4 contribution from convolution 6 of λ3

T6/3! = vρ2

N4 , v = (−96 ζ (4)) /3!
v = −17.31717173937821106425605914465868644439601523069963052292761944

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −17.000000000000 3.17172e− 01 1.83154e− 02 n/a 0.009 sec.
4 −17.260030864198 5.71409e− 02 3.29967e− 03 n/a 0.015 sec.
8 −17.308546683256 8.62506e− 03 4.98064e− 04 −2.422 0.023 sec.
16 −17.315986649977 1.18509e− 03 6.84344e− 05 −2.705 0.040 sec.
32 −17.317016449488 1.55290e− 04 8.96739e− 06 −2.853 0.079 sec.
64 −17.317151866197 1.98732e− 05 1.14760e− 06 −2.927 0.166 sec.
128 −17.317169225894 2.51348e− 06 1.45144e− 07 −2.964 0.325 sec.
256 −17.317171423345 3.16034e− 07 1.82497e− 08 −2.982 0.845 sec.
512 −17.317171699758 3.96202e− 08 2.28791e− 09 −2.991 1.369 sec.
1024 −17.317171734418 4.95978e− 09 2.86408e− 10 −2.995 3.015 sec.
2048 −17.317171738758 6.20427e− 10 3.58273e− 11 −2.998 6.620 sec.
4096 −17.317171739301 7.75818e− 11 4.48005e− 12 −2.999 16.881 sec.
8192 −17.317171739369 9.69950e− 12 5.60109e− 13 −2.999 48.551 sec.
16384 −17.317171739377 1.21255e− 12 7.00200e− 14 −3.000 153.422 sec.
32768 −17.317171739378 1.51576e− 13 8.75290e− 15 −3.000 622.884 sec.

Richardson −17.317171739378 2.55076e− 46 1.47297e− 47 n/a n/a

Error: O
(
range−3.000

)
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Table A.13: Order ρ2/N5 contribution from convolution 6 of λ3

T6/3! = vρ2

N5 , v = (96 ζ (5)) /3!
v = 16.59084408229391882130184778331254668891329471203060499158708285

Approx Range Result Abs. Error Rel. Error Conv. Time
2 16.500000000000 9.08441e− 02 5.47556e− 03 n/a 0.009 sec.
4 16.581468621399 9.37546e− 03 5.65098e− 04 n/a 0.015 sec.
8 16.590086500110 7.57582e− 04 4.56627e− 05 −3.241 0.023 sec.
16 16.590790280247 5.38020e− 05 3.24288e− 06 −3.614 0.040 sec.
32 16.590840499811 3.58248e− 06 2.15931e− 07 −3.809 0.079 sec.
64 16.590843851229 2.31065e− 07 1.39273e− 08 −3.905 0.166 sec.
128 16.590844067624 1.46698e− 08 8.84213e− 10 −3.953 0.325 sec.
256 16.590844081370 9.24070e− 10 5.56976e− 11 −3.977 0.845 sec.
512 16.590844082236 5.79807e− 11 3.49474e− 12 −3.988 1.369 sec.
1024 16.590844082290 3.63088e− 12 2.18848e− 13 −3.994 3.015 sec.
2048 16.590844082294 2.27152e− 13 1.36914e− 14 −3.997 6.620 sec.
4096 16.590844082294 1.42039e− 14 8.56130e− 16 −3.999 16.881 sec.
8192 16.590844082294 8.87962e− 16 5.35212e− 17 −3.999 48.551 sec.
16384 16.590844082294 5.55044e− 17 3.34548e− 18 −4.000 153.422 sec.
32768 16.590844082294 3.46924e− 18 2.09105e− 19 −4.000 622.884 sec.

Richardson 16.590844082294 2.23723e− 50 1.34848e− 51 n/a n/a
Error: O

(
range−4.000

)

Table A.14: Order ρ2/N6 contribution from convolution 6 of λ3

T6/3! = vρ2

N6 , v = (528 ζ (6)) /3!
v = 89.52618945463152429487757782160100645535993912289111344213196238

Approx Range Result Abs. Error Rel. Error Conv. Time
2 97.049145288412 7.52296e+ 00 8.40308e− 02 n/a 0.009 sec.
4 90.981030971195 1.45484e+ 00 1.62505e− 02 n/a 0.015 sec.
8 89.751064847611 2.24875e− 01 2.51184e− 03 −2.303 0.023 sec.
16 89.557301619023 3.11122e− 02 3.47520e− 04 −2.666 0.040 sec.
32 89.530273876241 4.08442e− 03 4.56226e− 05 −2.842 0.079 sec.
64 89.526712409831 5.22955e− 04 5.84137e− 06 −2.924 0.166 sec.
128 89.526255604150 6.61495e− 05 7.38885e− 07 −2.963 0.325 sec.
256 89.526197772217 8.31759e− 06 9.29067e− 08 −2.982 0.845 sec.
512 89.526190497390 1.04276e− 06 1.16475e− 08 −2.991 1.369 sec.
1024 89.526189585168 1.30536e− 07 1.45808e− 09 −2.995 3.015 sec.
2048 89.526189470961 1.63290e− 08 1.82393e− 10 −2.998 6.620 sec.
4096 89.526189456673 2.04187e− 09 2.28075e− 11 −2.999 16.881 sec.
8192 89.526189454887 2.55281e− 10 2.85146e− 12 −2.999 48.551 sec.
16384 89.526189454663 3.19130e− 11 3.56466e− 13 −3.000 153.422 sec.
32768 89.526189454636 3.98931e− 12 4.45602e− 14 −3.000 622.884 sec.

Richardson 89.526189454632 5.42436e− 38 6.05897e− 40 n/a n/a

Error: O
(
range−3.000

)
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Table A.15: Order ρ4/N6 contribution from convolution 6 of λ3

T6/3! = vρ4

N6 , v = (432 ζ (6)) /3!
v = 73.24870046288033805944529094494627800893085928236545645265342376

Approx Range Result Abs. Error Rel. Error Conv. Time
2 73.221211471129 2.74890e− 02 3.75283e− 04 n/a 0.009 sec.
4 73.247065594929 1.63487e− 03 2.23194e− 05 n/a 0.015 sec.
8 73.248629563369 7.08995e− 05 9.67929e− 07 −4.047 0.023 sec.
16 73.248697858265 2.60462e− 06 3.55585e− 08 −4.517 0.040 sec.
32 73.248700374731 8.81495e− 08 1.20343e− 09 −4.762 0.079 sec.
64 73.248700460015 2.86564e− 09 3.91220e− 11 −4.883 0.166 sec.
128 73.248700462789 9.13275e− 11 1.24681e− 12 −4.942 0.325 sec.
256 73.248700462877 2.88207e− 12 3.93464e− 14 −4.971 0.845 sec.
512 73.248700462880 9.05062e− 14 1.23560e− 15 −4.986 1.369 sec.
1024 73.248700462880 2.83524e− 15 3.87070e− 17 −4.993 3.015 sec.
2048 73.248700462880 8.87095e− 17 1.21107e− 18 −4.996 6.620 sec.
4096 73.248700462880 2.77386e− 18 3.78691e− 20 −4.998 16.881 sec.
8192 73.248700462880 8.67097e− 20 1.18377e− 21 −4.999 48.551 sec.
16384 73.248700462880 2.71009e− 21 3.69985e− 23 −5.000 153.422 sec.
32768 73.248700462880 8.46968e− 23 1.15629e− 24 −5.000 622.884 sec.

Richardson 73.248700462880 1.67010e− 58 2.28004e− 60 n/a n/a
Error: O

(
range−5.000

)

Table A.16: Order ρ2/N4 contribution from convolution 7 of λ3

T7/3! = vρ2

N4 , v = (16 ζ (4)) /3!
v = 2.886195289896368510709343190776447740732669205116605087154603240

Approx Range Result Abs. Error Rel. Error Conv. Time
2 3.066446889494 1.80252e− 01 6.24530e− 02 n/a 0.017 sec.
4 2.984561941018 9.83667e− 02 3.40818e− 02 n/a 0.023 sec.
8 2.926275815681 4.00805e− 02 1.38870e− 02 −0.490 0.036 sec.
16 2.900192604426 1.39973e− 02 4.84975e− 03 −1.160 0.070 sec.
32 2.890673322250 4.47803e− 03 1.55153e− 03 −1.454 0.152 sec.
64 2.887553694988 1.35841e− 03 4.70656e− 04 −1.609 0.301 sec.
128 2.886593417022 3.98127e− 04 1.37942e− 04 −1.700 0.689 sec.
256 2.886309245054 1.13955e− 04 3.94828e− 05 −1.757 2.214 sec.
512 2.886227351372 3.20615e− 05 1.11086e− 05 −1.795 2.971 sec.
1024 2.886204193411 8.90352e− 06 3.08486e− 06 −1.822 8.499 sec.
2048 2.886197737074 2.44718e− 06 8.47891e− 07 −1.843 18.389 sec.
4096 2.886195956910 6.67014e− 07 2.31105e− 07 −1.859 37.881 sec.
8192 2.886195470440 1.80543e− 07 6.25541e− 08 −1.872 96.229 sec.
16384 2.886195338478 4.85812e− 08 1.68323e− 08 −1.882 279.892 sec.
32768 2.886195302903 1.30064e− 08 4.50641e− 09 −1.891 1005.533 sec.

Richardson 2.886195289896 7.87774e− 18 2.72945e− 18 n/a n/a

Error: O
(
range−1.891

)



154

Table A.17: Order ρ2/N5 contribution from convolution 7 of λ3

T7/3! = vρ2

N5 , v = (32 ζ (2) ζ (3)) /3!
v = 10.54562320158557929705112235458733638443814115552071577971105214

Approx Range Result Abs. Error Rel. Error Conv. Time
2 10.207613801337 3.38009e− 01 3.20521e− 02 n/a 0.017 sec.
4 10.438615344676 1.07008e− 01 1.01471e− 02 n/a 0.023 sec.
8 10.515371067399 3.02521e− 02 2.86869e− 03 −1.590 0.036 sec.
16 10.537574585531 8.04862e− 03 7.63219e− 04 −1.789 0.070 sec.
32 10.543547247410 2.07595e− 03 1.96855e− 04 −1.894 0.152 sec.
64 10.545096042486 5.27159e− 04 4.99884e− 05 −1.947 0.301 sec.
128 10.545490378244 1.32823e− 04 1.25951e− 05 −1.974 0.689 sec.
256 10.545589865789 3.33358e− 05 3.16110e− 06 −1.987 2.214 sec.
512 10.545614851343 8.35024e− 06 7.91821e− 07 −1.993 2.971 sec.
1024 10.545621111985 2.08960e− 06 1.98149e− 07 −1.997 8.499 sec.
2048 10.545622678930 5.22655e− 07 4.95613e− 08 −1.998 18.389 sec.
4096 10.545623070890 1.30696e− 07 1.23934e− 08 −1.999 37.881 sec.
8192 10.545623168908 3.26779e− 08 3.09872e− 09 −2.000 96.229 sec.
16384 10.545623193416 8.16998e− 09 7.74727e− 10 −2.000 279.892 sec.
32768 10.545623199543 2.04256e− 09 1.93688e− 10 −2.000 1005.533 sec.

Richardson 10.545623201586 4.51200e− 47 4.27856e− 48 n/a n/a
Error: O

(
range−2.000

)

Table A.18: Order ρ2/N6 contribution from convolution 7 of λ3

T7/3! = vρ2

N6 , v =
(

224
3 ζ (6)

)
/3!

v = 12.66026921580647818311400090406478879166706209818662210292775226
Approx Range Result Abs. Error Rel. Error Conv. Time

2 12.482436706676 1.77833e− 01 1.40465e− 02 n/a 0.017 sec.
4 13.105805773806 4.45537e− 01 3.51917e− 02 n/a 0.023 sec.
8 12.926771792767 2.66503e− 01 2.10503e− 02 −1.800 0.036 sec.
16 12.766751046340 1.06482e− 01 8.41071e− 03 −0.162 0.070 sec.
32 12.696615026449 3.63458e− 02 2.87086e− 03 −1.190 0.152 sec.
64 12.671718692883 1.14495e− 02 9.04363e− 04 −1.494 0.301 sec.
128 12.663709515500 3.44030e− 03 2.71740e− 04 −1.636 0.689 sec.
256 12.661271650513 1.00243e− 03 7.91796e− 05 −1.716 2.214 sec.
512 12.660555083819 2.85868e− 04 2.25799e− 05 −1.766 2.971 sec.
1024 12.660349448061 8.02323e− 05 6.33733e− 06 −1.801 8.499 sec.
2048 12.660291457942 2.22421e− 05 1.75685e− 06 −1.826 18.389 sec.
4096 12.660275321322 6.10552e− 06 4.82258e− 07 −1.845 37.881 sec.
8192 12.660270878285 1.66248e− 06 1.31315e− 07 −1.861 96.229 sec.
16384 12.660269665431 4.49624e− 07 3.55146e− 08 −1.873 279.892 sec.
32768 12.660269336711 1.20904e− 07 9.54990e− 09 −1.883 1005.533 sec.

Richardson 12.660269215808 1.75428e− 12 1.38566e− 13 n/a n/a

Error: O
(
range−1.883

)
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Table A.19: Order ρ4/N6 contribution from convolution 7 of λ3

T7/3! = vρ4

N6 , v =
(

8 (ζ (3))
2 − 88

3 ζ (6)
)
/3!

v = −3.047089460679127926719396440568516589052793854697654736832085696
Approx Range Result Abs. Error Rel. Error Conv. Time

2 −3.201311167997 1.54222e− 01 5.06128e− 02 n/a 0.017 sec.
4 −3.091472748182 4.43833e− 02 1.45658e− 02 n/a 0.023 sec.
8 −3.058746313678 1.16569e− 02 3.82557e− 03 −1.747 0.036 sec.
16 −3.050085677383 2.99622e− 03 9.83304e− 04 −1.918 0.070 sec.
32 −3.047852498395 7.63038e− 04 2.50415e− 04 −1.955 0.152 sec.
64 −3.047282420149 1.92959e− 04 6.33258e− 05 −1.970 0.301 sec.
128 −3.047138017188 4.85565e− 05 1.59354e− 05 −1.981 0.689 sec.
256 −3.047101642771 1.21821e− 05 3.99794e− 06 −1.989 2.214 sec.
512 −3.047092511830 3.05115e− 06 1.00133e− 06 −1.994 2.971 sec.
1024 −3.047090224189 7.63510e− 07 2.50570e− 07 −1.997 8.499 sec.
2048 −3.047089651648 1.90969e− 07 6.26726e− 08 −1.998 18.389 sec.
4096 −3.047089508433 4.77538e− 08 1.56719e− 08 −1.999 37.881 sec.
8192 −3.047089472619 1.19399e− 08 3.91846e− 09 −2.000 96.229 sec.
16384 −3.047089463664 2.98516e− 09 9.79675e− 10 −2.000 279.892 sec.
32768 −3.047089461425 7.46312e− 10 2.44926e− 10 −2.000 1005.533 sec.

Richardson −3.047089460679 3.02411e− 21 9.92460e− 22 n/a n/a

Error: O
(
range−2.000

)

Table A.20: Order ρ2/N4 contribution from convolution 8 of λ3

T8/3! = vρ2

N4 , v = (24 ζ (4)) /3!
v = 4.329292934844552766064014786164671611099003807674907630731904860

Approx Range Result Abs. Error Rel. Error Conv. Time
2 4.250000000000 7.92929e− 02 1.83154e− 02 n/a 0.004 sec.
4 4.315007716049 1.42852e− 02 3.29967e− 03 n/a 0.006 sec.
8 4.327136670814 2.15626e− 03 4.98064e− 04 −2.422 0.012 sec.
16 4.328996662494 2.96272e− 04 6.84344e− 05 −2.705 0.025 sec.
32 4.329254112372 3.88225e− 05 8.96739e− 06 −2.853 0.049 sec.
64 4.329287966549 4.96830e− 06 1.14760e− 06 −2.927 0.099 sec.
128 4.329292306473 6.28371e− 07 1.45144e− 07 −2.964 0.205 sec.
256 4.329292855836 7.90084e− 08 1.82497e− 08 −2.982 0.443 sec.
512 4.329292924940 9.90504e− 09 2.28791e− 09 −2.991 0.884 sec.
1024 4.329292933605 1.23995e− 09 2.86408e− 10 −2.995 3.358 sec.
2048 4.329292934689 1.55107e− 10 3.58273e− 11 −2.998 4.546 sec.
4096 4.329292934825 1.93954e− 11 4.48005e− 12 −2.999 15.526 sec.
8192 4.329292934842 2.42488e− 12 5.60109e− 13 −2.999 52.412 sec.
16384 4.329292934844 3.03137e− 13 7.00200e− 14 −3.000 210.710 sec.
32768 4.329292934845 3.78939e− 14 8.75290e− 15 −3.000 899.548 sec.

Richardson 4.329292934845 6.37690e− 47 1.47297e− 47 n/a n/a

Error: O
(
range−3.000

)
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Table A.21: Order ρ2/N6 contribution from convolution 8 of λ3

T8/3! = vρ2

N6 , v = (−48 ζ (6)) /3!
v = −8.138744495875593117716143438327364223214539920262828494739269307

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −10.019483454321 1.88074e+ 00 2.31085e− 01 n/a 0.004 sec.
4 −8.502454875017 3.63710e− 01 4.46888e− 02 n/a 0.006 sec.
8 −8.194963344120 5.62188e− 02 6.90756e− 03 −2.303 0.012 sec.
16 −8.146522536974 7.77804e− 03 9.55681e− 04 −2.666 0.025 sec.
32 −8.139765601278 1.02111e− 03 1.25462e− 04 −2.842 0.049 sec.
64 −8.138875234676 1.30739e− 04 1.60638e− 05 −2.924 0.099 sec.
128 −8.138761033255 1.65374e− 05 2.03193e− 06 −2.963 0.205 sec.
256 −8.138746575272 2.07940e− 06 2.55494e− 07 −2.982 0.443 sec.
512 −8.138744756565 2.60690e− 07 3.20307e− 08 −2.991 0.884 sec.
1024 −8.138744528510 3.26340e− 08 4.00971e− 09 −2.995 3.358 sec.
2048 −8.138744499958 4.08225e− 09 5.01582e− 10 −2.998 4.546 sec.
4096 −8.138744496386 5.10468e− 10 6.27207e− 11 −2.999 15.526 sec.
8192 −8.138744495939 6.38202e− 11 7.84152e− 12 −2.999 52.412 sec.
16384 −8.138744495884 7.97825e− 12 9.80280e− 13 −3.000 210.710 sec.
32768 −8.138744495877 9.97327e− 13 1.22541e− 13 −3.000 899.548 sec.

Richardson −8.138744495876 1.35609e− 38 1.66622e− 39 n/a n/a
Error: O

(
range−3.000

)

Table A.22: Order ρ2/N4 contribution from convolution 9 of λ3

T9/3! = vρ2

N4 , v = (32 ζ (4)) /3!
v = 5.772390579792737021418686381552895481465338410233210174309206480

Approx Range Result Abs. Error Rel. Error Conv. Time
2 6.132893778988 3.60503e− 01 6.24530e− 02 n/a 0.021 sec.
4 5.969123882037 1.96733e− 01 3.40818e− 02 n/a 0.028 sec.
8 5.852551631362 8.01611e− 02 1.38870e− 02 −0.490 0.055 sec.
16 5.800385208851 2.79946e− 02 4.84975e− 03 −1.160 0.098 sec.
32 5.781346644500 8.95606e− 03 1.55153e− 03 −1.454 0.203 sec.
64 5.775107389977 2.71681e− 03 4.70656e− 04 −1.609 0.439 sec.
128 5.773186834044 7.96254e− 04 1.37942e− 04 −1.700 1.007 sec.
256 5.772618490109 2.27910e− 04 3.94828e− 05 −1.757 3.282 sec.
512 5.772454702745 6.41230e− 05 1.11086e− 05 −1.795 4.295 sec.
1024 5.772408386823 1.78070e− 05 3.08486e− 06 −1.822 10.684 sec.
2048 5.772395474149 4.89436e− 06 8.47891e− 07 −1.843 23.074 sec.
4096 5.772391913820 1.33403e− 06 2.31105e− 07 −1.859 49.618 sec.
8192 5.772390940879 3.61087e− 07 6.25541e− 08 −1.872 122.442 sec.
16384 5.772390676955 9.71624e− 08 1.68323e− 08 −1.882 367.899 sec.
32768 5.772390605805 2.60127e− 08 4.50641e− 09 −1.891 1250.308 sec.

Richardson 5.772390579793 1.57555e− 17 2.72945e− 18 n/a n/a

Error: O
(
range−1.891

)
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Table A.23: Order ρ2/N5 contribution from convolution 9 of λ3

T9/3! = vρ2

N5 , v = (48 ζ (5) + 64 ζ (2) ζ (3)) /3!
v = 29.38666844431811800475316860083094611333292966705673405521564571

Approx Range Result Abs. Error Rel. Error Conv. Time
2 28.665227602675 7.21441e− 01 2.45499e− 02 n/a 0.021 sec.
4 29.167965000051 2.18703e− 01 7.44227e− 03 n/a 0.028 sec.
8 29.325785384853 6.08831e− 02 2.07179e− 03 −1.672 0.055 sec.
16 29.370544311186 1.61241e− 02 5.48689e− 04 −1.818 0.098 sec.
32 29.382514744726 4.15370e− 03 1.41346e− 04 −1.903 0.203 sec.
64 29.385614010587 1.05443e− 03 3.58814e− 05 −1.949 0.439 sec.
128 29.386402790301 2.65654e− 04 9.03995e− 06 −1.974 1.007 sec.
256 29.386601772262 6.66721e− 05 2.26879e− 06 −1.987 3.282 sec.
512 29.386651743804 1.67005e− 05 5.68302e− 07 −1.993 4.295 sec.
1024 29.386664265116 4.17920e− 06 1.42214e− 07 −1.997 10.684 sec.
2048 29.386667399008 1.04531e− 06 3.55709e− 08 −1.998 23.074 sec.
4096 29.386668182927 2.61391e− 07 8.89490e− 09 −1.999 49.618 sec.
8192 29.386668378962 6.53558e− 08 2.22400e− 09 −2.000 122.442 sec.
16384 29.386668427978 1.63400e− 08 5.56033e− 10 −2.000 367.899 sec.
32768 29.386668440233 4.08511e− 09 1.39012e− 10 −2.000 1250.308 sec.

Richardson 29.386668444318 3.93947e− 40 1.34056e− 41 n/a n/a
Error: O

(
range−2.000

)

Table A.24: Order ρ2/N6 contribution from convolution 9 of λ3

T9/3! = vρ2

N6 , v =
(

532
3 ζ (6)

)
/3!

v = 30.06813938754038568489575214715387338020927248319322749445341160
Approx Range Result Abs. Error Rel. Error Conv. Time

2 29.712474369280 3.55665e− 01 1.18286e− 02 n/a 0.021 sec.
4 30.959212503539 8.91073e− 01 2.96351e− 02 n/a 0.028 sec.
8 30.601144541462 5.33005e− 01 1.77266e− 02 −1.800 0.055 sec.
16 30.281103048608 2.12964e− 01 7.08270e− 03 −0.162 0.098 sec.
32 30.140831008826 7.26916e− 02 2.41756e− 03 −1.190 0.203 sec.
64 30.091038341693 2.28990e− 02 7.61569e− 04 −1.494 0.439 sec.
128 30.075019986927 6.88060e− 03 2.28834e− 04 −1.636 1.007 sec.
256 30.070144256954 2.00487e− 03 6.66775e− 05 −1.716 3.282 sec.
512 30.068711123565 5.71736e− 04 1.90147e− 05 −1.766 4.295 sec.
1024 30.068299852049 1.60465e− 04 5.33670e− 06 −1.801 10.684 sec.
2048 30.068183871811 4.44843e− 05 1.47945e− 06 −1.826 23.074 sec.
4096 30.068151598571 1.22110e− 05 4.06112e− 07 −1.845 49.618 sec.
8192 30.068142712497 3.32496e− 06 1.10581e− 07 −1.861 122.442 sec.
16384 30.068140286789 8.99248e− 07 2.99070e− 08 −1.873 367.899 sec.
32768 30.068139629349 2.41809e− 07 8.04202e− 09 −1.883 1250.308 sec.

Richardson 30.068139387544 3.50857e− 12 1.16687e− 13 n/a n/a

Error: O
(
range−1.883

)
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Table A.25: Order ρ4/N6 contribution from convolution 9 of λ3

T9/3! = vρ4

N6 , v =
(

16 (ζ (3))
2 − 596

3 ζ (6)
)
/3!

v = −29.83218370099540244677754457625851216248132914349522591665370687
Approx Range Result Abs. Error Rel. Error Conv. Time

2 −30.140627115632 3.08443e− 01 1.03393e− 02 n/a 0.021 sec.
4 −29.920950276000 8.87666e− 02 2.97553e− 03 n/a 0.028 sec.
8 −29.855497406992 2.33137e− 02 7.81495e− 04 −1.747 0.055 sec.
16 −29.838176134403 5.99243e− 03 2.00871e− 04 −1.918 0.098 sec.
32 −29.833709776428 1.52608e− 03 5.11553e− 05 −1.955 0.203 sec.
64 −29.832569619935 3.85919e− 04 1.29363e− 05 −1.970 0.439 sec.
128 −29.832280814012 9.71130e− 05 3.25531e− 06 −1.981 1.007 sec.
256 −29.832208065179 2.43642e− 05 8.16708e− 07 −1.989 3.282 sec.
512 −29.832189803297 6.10230e− 06 2.04554e− 07 −1.994 4.295 sec.
1024 −29.832185228015 1.52702e− 06 5.11870e− 08 −1.997 10.684 sec.
2048 −29.832184082934 3.81938e− 07 1.28029e− 08 −1.998 23.074 sec.
4096 −29.832183796503 9.55077e− 08 3.20150e− 09 −1.999 49.618 sec.
8192 −29.832183724875 2.38798e− 08 8.00472e− 10 −2.000 122.442 sec.
16384 −29.832183706966 5.97032e− 09 2.00130e− 10 −2.000 367.899 sec.
32768 −29.832183702488 1.49262e− 09 5.00340e− 11 −2.000 1250.308 sec.

Richardson −29.832183700995 6.04823e− 21 2.02742e− 22 n/a n/a

Error: O
(
range−2.000

)
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A.4 λ4 Detailed Results

The third variation, λ4, is determined by 27 expressions. The list of convolutions starts with the

simplest expressions.

λ4 =

27∑
k=1

Tk (A.56)

T1 =− 2ρ2c3(0) (A.57)

T2 =(24ρ4 − 24ρ2)conv (c0, c0, c1) (0) = 0 (A.58)

T3 =12ρ
√
πconv (c1f2,dr) (0) = 0 (A.59)

T4 =36ρ
√
πconv

(
c0, c1, f1,dr2

)
(0) = 0 (A.60)

T5 =6ρ2conv (c1, c1) (0) = 0 (A.61)

T6 =− 12πconv (c1, f1,dr, f1,dr) (0) = 0 (A.62)

T7 =− 12πconv (c1, f1,dθ, f1,dθ) (0) = 0 (A.63)

T8 =− 2ρ2conv (RAbC , c0, c0, c0,dθ) (0) = 0 (A.64)

T9 =2ρ2conv
(
c0, c0, c1,dθ2

)
(0) = 0 (A.65)

T10 =10ρ2conv
(
c0, c0,dθ2 , c1

)
(0) = 0 (A.66)

T11 =(−8ρ4 + 12ρ2)conv (c0, c0, c0, c0) (0) (A.67)

T12 =− 14ρ2conv
(
c0, c0, c0, c0,dθ2

)
(0) (A.68)

T13 =− 6ρ2conv (c0, c0, c0,dθ, c0,dθ) (0) (A.69)

T14 =8ρ2conv (c0, c2) (0) (A.70)

The next set of terms depends on f1 and its derivatives.
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T15 =12ρ
√
πconv (c2, f1,dr) (0) (A.71)

T16 =− 12ρ
√
πconv (c0, c0, c0,dθ, f1,drdθ) (0) (A.72)

T17 =− 12ρ2
√
πconv (c0, c0, c0, f1,dr) (0) (A.73)

T18 =− 12ρ
√
πconvconv

(
c0, c0, c0,dθ2 , f1,dr

)
(0) (A.74)

T19 =12ρ
√
πconv

(
c0, c0, c0, f1,dr3

)
(0) (A.75)

T20 =− 12πconv (c0, c0, f1,dr, f1,dr) (0) (A.76)

T21 =12πconv (c0, c0, f1,dθ, f1,dθ) (0) (A.77)

T22 =− 24πconv
(
c0, c0, f1,dr, f1,dr2

)
(0) (A.78)

T23 =− 24πconv (c0, c0, f1,dθ, f1,drdθ) (0) (A.79)

(A.80)

The most difficult convolutions to work with contain higher partial derivatives of u.

T24 =12ρ
√
πconv

(
c0, c0, f2,dr2

)
(0) (A.81)

T25 =− 12πconv (c0, f1,dθ, f2,dθ) (0) (A.82)

T26 =− 12πconv (c0, f1,drf2,dr) (0) (A.83)

T27 =4ρ
√
πconv (c0, f3,dr) (0) (A.84)

Expressions containing c1 = 0 or RAbC are trivially zero. This eliminates T2 throught T10. Term

T1 contains no convolutions and is also known.

T1 =− 2ρ2c2(0) (A.85)

=− 360ρ2ζ(6)

N6
(A.86)
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A.4.1 Convolutions of Interest in λ4

T11 =− 1920ζ(8)ρ4

N8
+

2880ζ(8)ρ2

N8
(A.87)

T12 =
756ρ2ζ(6)

N6
− 1680ρ2ζ(8)

N8
(A.88)

T13 =− 108ρ2ζ(6)

N6
+

240ρ2ζ(8)

N8
(A.89)

T14 =− 288ρ2ζ(6)

N6
+

960ρ2ζ(8)

N8
(A.90)

T15 =− 288ρ2ζ(2)ζ(3)

N5
+

576ρ2ζ(5)

N5
− 504ζ(6)ρ2

N6
(A.91)

T16 =− 720ρ2ζ(5)

N5
+

288ρ2ζ(2)ζ(3)

N5
(A.92)

T17 =
864ρ4ζ(2)ζ(5)

N7
− 2160ρ4ζ(7)

N7
(A.93)

T18 =
144ρ2ζ(5)

N5
+

504ρ2ζ(6)

N6
(A.94)

T19 =
2160ρ2ζ(5)

N5
− 864ρ2ζ(2)ζ(3)

N5
− 1944ρ2ζ(6)

N6
(A.95)

T20 =
216ρ2ζ(6)

N6
− 288ρ2ζ(3)2

N6
(A.96)

T21 =
216ρ2ζ(6)

N6
− 480ρ2ζ(8)

N8
(A.97)

T22 =− 288ρ2ζ(5)

N5
− 1440ρ2ζ(6)

N6
+

576ρ2ζ(3)2

N6
(A.98)

T23 =
576ρ2ζ(2)ζ(3)

N5
− 1440ρ2ζ(5)

N5
(A.99)

T24 =
576ρ2ζ(2)ζ(3)

N5
− 1728ρ2ζ(5)

N5
− 816ρ2ζ(6)

N6
− 288ρ2ζ(3)2

N6
(A.100)

T25 =− 288ρ2ζ(2)ζ(3)

N5
+

864ρ2ζ(5)

N5
+

936ρ2ζ(6)

N6
(A.101)

T26 =− 192ρ2ζ(2)ζ(3)

N5
+

624ρ2ζ(5)

N5
− 48ρ2ζ(3)2

N6
+

1200ζ(6)ρ2

N6
(A.102)

T27 =− 192ρ2ζ(2)ζ(3)

N5
+

480ρ2ζ(5)

N5
+

240ρ2ζ(3)2

N6
+

480ρ2ζ(6)

N6
(A.103)

The values divided by 3!ρ2 are given below.
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T1

4!ρ2
=− 15ζ(6)

N6
(A.104)

T12

4!ρ2
=

63

2

ζ(6)

N6
(A.105)

T13

4!ρ2
=− 9

2

ζ(6)

N6
(A.106)

T14

4!ρ2
=− 12ζ(6)

N6
(A.107)

T15

4!ρ2
=− 12ζ(2)ζ(3)

N5
+

24ζ(5)

N5
− 21ζ(6)

N6
(A.108)

T16

4!ρ2
=− 30ζ(5)

N5
+

12ζ(2)ζ(3)

N5
(A.109)

T18

4!ρ2
=

6ζ(5)

N5
+

21ζ(6)

N6
(A.110)

T19

4!ρ2
=

90ζ(5)

N5
− 36ζ(2)ζ(3)

N5
− 81ζ(6)

N6
(A.111)

T20

4!ρ2
=

9ζ(6)

N6
− 12ζ(3)2

N6
(A.112)

T21

4!ρ2
=

9ζ(6)

N6
(A.113)

T22

4!ρ2
=− 12ζ(5)

N5
− 60ζ(6)

N6
+

24ζ(3)2

N6
(A.114)

T23

4!ρ2
=

24ζ(2)ζ(3)

N5
− 60ζ(5)

N5
(A.115)

T24

4!ρ2
=

24ζ(2)ζ(3)

N5
− 72ζ(5)

N5
− 34ζ(6)

N6
− 12ζ(3)2

N6
(A.116)

T25

4!ρ2
=− 12ζ(2)ζ(3)

N5
+

36ζ(5)

N5
+

39ζ(6)

N6
(A.117)

T26

4!ρ2
=− 8ζ(2)ζ(3)

N5
+

26ζ(5)

N5
− 2ζ(3)2

N6
+

50ζ(6)

N6
(A.118)

T27

4!ρ2
=− 8ζ(2)ζ(3)

N5
+

20ζ(5)

N5
+

10ζ(3)2

N6
+

20ζ(6)

N6
(A.119)

A.4.2 Complete λ4

λ4 =− 384ζ(2)ζ(3)ρ2

N5
+

672ζ(5)ρ2

N5
+

192ζ(3)2ρ2

N6
− 1152ζ(6)ρ2

N6
(A.120)

λ4

4!ρ2
=− 16ζ(2)ζ(3)

N5
+

28ζ(5)

N5
+

8ζ(3)2

N6
− 48ζ(6)

N6
(A.121)
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Table A.26: Order ρ2/N6 contribution from convolution 12 of λ4

T12/4! = vρ2

N6 , v = (756 ζ (6)) /4!
v = 32.04630645251014790100731478841399662890725093603488719803587289

Approx Range Result Abs. Error Rel. Error Conv. Time
2 33.235442266898 1.18914e+ 00 3.71068e− 02 n/a 0.003 sec.
4 32.282309183589 2.36003e− 01 7.36443e− 03 n/a 0.002 sec.
8 32.083083752160 3.67773e− 02 1.14763e− 03 −2.258 0.004 sec.
16 32.051406518784 5.10007e− 03 1.59147e− 04 −2.653 0.009 sec.
32 32.046976408310 6.69956e− 04 2.09059e− 05 −2.838 0.015 sec.
64 32.046392245146 8.57926e− 05 2.67715e− 06 −2.923 0.031 sec.
128 32.046317305016 1.08525e− 05 3.38651e− 07 −2.963 0.066 sec.
256 32.046307817109 1.36460e− 06 4.25821e− 08 −2.982 0.145 sec.
512 32.046306623588 1.71077e− 07 5.33844e− 09 −2.991 0.307 sec.
1024 32.046306473926 2.14161e− 08 6.68286e− 10 −2.995 0.718 sec.
2048 32.046306455189 2.67897e− 09 8.35970e− 11 −2.998 2.100 sec.
4096 32.046306452845 3.34994e− 10 1.04534e− 11 −2.999 7.915 sec.
8192 32.046306452552 4.18820e− 11 1.30692e− 12 −2.999 23.870 sec.
16384 32.046306452515 5.23573e− 12 1.63380e− 13 −3.000 106.785 sec.
32768 32.046306452511 6.54496e− 13 2.04234e− 14 −3.000 469.569 sec.

Richardson 32.046306452510 1.09613e− 38 3.42046e− 40 n/a n/a
Error: O

(
range−3.000

)

Table A.27: Order ρ2/N6 contribution from convolution 13 of λ4

T13/4! = vρ2

N6 , v = (−108 ζ (6)) /4!
v = −4.578043778930021128715330684059142375558178705147841028290838985

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −4.747920323843 1.69877e− 01 3.71068e− 02 n/a 0.003 sec.
4 −4.611758454798 3.37147e− 02 7.36443e− 03 n/a 0.002 sec.
8 −4.583297678880 5.25390e− 03 1.14763e− 03 −2.258 0.002 sec.
16 −4.578772359826 7.28581e− 04 1.59147e− 04 −2.653 0.006 sec.
32 −4.578139486901 9.57080e− 05 2.09059e− 05 −2.838 0.010 sec.
64 −4.578056035021 1.22561e− 05 2.67715e− 06 −2.923 0.020 sec.
128 −4.578045329288 1.55036e− 06 3.38651e− 07 −2.963 0.042 sec.
256 −4.578043973873 1.94943e− 07 4.25821e− 08 −2.982 0.093 sec.
512 −4.578043803370 2.44396e− 08 5.33844e− 09 −2.991 0.194 sec.
1024 −4.578043781989 3.05944e− 09 6.68286e− 10 −2.995 0.378 sec.
2048 −4.578043779313 3.82711e− 10 8.35970e− 11 −2.998 0.798 sec.
4096 −4.578043778978 4.78564e− 11 1.04534e− 11 −2.999 1.809 sec.
8192 −4.578043778936 5.98314e− 12 1.30692e− 12 −2.999 4.580 sec.
16384 −4.578043778931 7.47961e− 13 1.63380e− 13 −3.000 6.490 sec.
32768 −4.578043778930 9.34994e− 14 2.04234e− 14 −3.000 13.078 sec.

Richardson −4.578043778930 1.56590e− 39 3.42046e− 40 n/a n/a

Error: O
(
range−3.000

)
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Table A.28: Order ρ2/N6 contribution from convolution 14 of λ4

T14/4! = vρ2

N6 , v = (−288 ζ (6)) /4!
v = −12.20811674381338967657421515749104633482180988039424274210890396

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −11.974742435992 2.33374e− 01 1.91163e− 02 n/a 0.005 sec.
4 −12.162755125668 4.53616e− 02 3.71569e− 03 n/a 0.005 sec.
8 −12.201093819002 7.02292e− 03 5.75267e− 04 −2.294 0.008 sec.
16 −12.207144651465 9.72092e− 04 7.96267e− 05 −2.664 0.012 sec.
32 −12.207989111147 1.27633e− 04 1.04547e− 05 −2.841 0.025 sec.
64 −12.208100401642 1.63422e− 05 1.33863e− 06 −2.924 0.058 sec.
128 −12.208114676647 2.06717e− 06 1.69327e− 07 −2.963 0.103 sec.
256 −12.208116483889 2.59924e− 07 2.12911e− 08 −2.982 0.189 sec.
512 −12.208116711227 3.25862e− 08 2.66922e− 09 −2.991 0.413 sec.
1024 −12.208116739734 4.07925e− 09 3.34143e− 10 −2.995 0.989 sec.
2048 −12.208116743303 5.10281e− 10 4.17985e− 11 −2.998 2.265 sec.
4096 −12.208116743750 6.38085e− 11 5.22672e− 12 −2.999 6.886 sec.
8192 −12.208116743805 7.97752e− 12 6.53460e− 13 −2.999 33.431 sec.
16384 −12.208116743812 9.97281e− 13 8.16900e− 14 −3.000 109.439 sec.
32768 −12.208116743813 1.24666e− 13 1.02117e− 14 −3.000 444.328 sec.

Richardson −12.208116743813 1.77366e− 39 1.45286e− 40 n/a n/a
Error: O

(
range−3.000

)

Table A.29: Order ρ2/N5 contribution from convolution 15 of λ4

T15/4! = vρ2

N5 , v = (−288 ζ (2) ζ (3) + 576 ζ (5)) /4!
v = 1.15861391987332481358774637714731316838412446812429698303075695

Approx Range Result Abs. Error Rel. Error Conv. Time
2 2.543390097549 1.38478e+ 00 1.19520e+ 00 n/a 0.002 sec.
4 1.626086084626 4.67472e− 01 4.03475e− 01 n/a 0.001 sec.
8 1.293612150438 1.34998e− 01 1.16517e− 01 −1.464 0.003 sec.
16 1.194751989049 3.61381e− 02 3.11908e− 02 −1.750 0.004 sec.
32 1.167950339937 9.33642e− 03 8.05827e− 03 −1.883 0.007 sec.
64 1.160985789223 2.37187e− 03 2.04716e− 03 −1.944 0.019 sec.
128 1.159211602904 5.97683e− 04 5.15860e− 04 −1.973 0.032 sec.
256 1.158763929574 1.50010e− 04 1.29473e− 04 −1.987 0.066 sec.
512 1.158651495877 3.75760e− 05 3.24319e− 05 −1.993 0.155 sec.
1024 1.158623323069 9.40320e− 06 8.11590e− 06 −1.997 0.278 sec.
2048 1.158616271821 2.35195e− 06 2.02997e− 06 −1.998 0.596 sec.
4096 1.158614508004 5.88131e− 07 5.07616e− 07 −1.999 1.218 sec.
8192 1.158614066924 1.47051e− 07 1.26919e− 07 −2.000 2.495 sec.
16384 1.158613956638 3.67649e− 08 3.17318e− 08 −2.000 4.846 sec.
32768 1.158613929065 9.19150e− 09 7.93319e− 09 −2.000 9.693 sec.

Richardson 1.158613919873 2.10269e− 23 1.81483e− 23 n/a n/a

Error: O
(
range−2.000

)
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Table A.30: Order ρ2/N6 contribution from convolution 15 of λ4

T15/4! = vρ2

N6 , v = (−504 ζ (6)) /4!
v = −21.36420430167343193400487652560933108593816729068992479869058193

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.002 sec.
4 −21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.001 sec.
8 −21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.003 sec.
16 −21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.004 sec.
32 −21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.007 sec.
64 −21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.019 sec.
128 −21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.032 sec.
256 −21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.066 sec.
512 −21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.155 sec.
1024 −21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.278 sec.
2048 −21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.596 sec.
4096 −21.364204301673 1.00000e− 62 4.68073e− 64 n/a 1.218 sec.
8192 −21.364204301673 1.00000e− 62 4.68073e− 64 n/a 2.495 sec.
16384 −21.364204301673 1.00000e− 62 4.68073e− 64 n/a 4.846 sec.
32768 −21.364204301673 1.00000e− 62 4.68073e− 64 n/a 9.693 sec.

Richardson −21.364204301673 1.00000e− 62 4.68073e− 64 n/a n/a
No Error Detected

Table A.31: Order ρ2/N5 contribution from convolution 16 of λ4

T16/4! = vρ2

N5 , v = (−720 ζ (5) + 288 ζ (2) ζ (3)) /4!
v = −7.38018045073354437157593929588951817672660998513577385487591302

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −8.730890097549 1.35071e+ 00 1.83019e− 01 n/a 0.003 sec.
4 −7.844136817650 4.63956e− 01 6.28652e− 02 n/a 0.002 sec.
8 −7.514894587979 1.34714e− 01 1.82535e− 02 −1.429 0.003 sec.
16 −7.416298344141 3.61179e− 02 4.89390e− 03 −1.740 0.006 sec.
32 −7.389515527366 9.33508e− 03 1.26488e− 03 −1.880 0.011 sec.
64 −7.382552233434 2.37178e− 03 3.21372e− 04 −1.943 0.026 sec.
128 −7.380778128263 5.97678e− 04 8.09841e− 05 −1.973 0.045 sec.
256 −7.380330460087 1.50009e− 04 2.03260e− 05 −1.987 0.097 sec.
512 −7.380218026715 3.75760e− 05 5.09147e− 06 −1.993 0.219 sec.
1024 −7.380189853928 9.40319e− 06 1.27411e− 06 −1.997 0.445 sec.
2048 −7.380182802681 2.35195e− 06 3.18684e− 07 −1.998 0.952 sec.
4096 −7.380181038864 5.88131e− 07 7.96905e− 08 −1.999 1.773 sec.
8192 −7.380180597784 1.47051e− 07 1.99251e− 08 −2.000 3.517 sec.
16384 −7.380180487498 3.67649e− 08 4.98157e− 09 −2.000 7.094 sec.
32768 −7.380180459925 9.19150e− 09 1.24543e− 09 −2.000 14.271 sec.

Richardson −7.380180450734 1.94044e− 33 2.62926e− 34 n/a n/a

Error: O
(
range−2.000

)
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Table A.32: Order ρ2/N5 contribution from convolution 18 of λ4

T18/4! = vρ2

N5 , v = (144 ζ (5)) /4!
v = 6.221566530860219557988192918742205008342485517011476871845156068

Approx Range Result Abs. Error Rel. Error Conv. Time
2 6.187500000000 3.40665e− 02 5.47556e− 03 n/a 0.002 sec.
4 6.218050733025 3.51580e− 03 5.65098e− 04 n/a 0.001 sec.
8 6.221282437541 2.84093e− 04 4.56627e− 05 −3.241 0.003 sec.
16 6.221546355093 2.01758e− 05 3.24288e− 06 −3.614 0.005 sec.
32 6.221565187429 1.34343e− 06 2.15931e− 07 −3.809 0.010 sec.
64 6.221566444211 8.66494e− 08 1.39273e− 08 −3.905 0.020 sec.
128 6.221566525359 5.50119e− 09 8.84213e− 10 −3.953 0.040 sec.
256 6.221566530514 3.46526e− 10 5.56976e− 11 −3.977 0.085 sec.
512 6.221566530838 2.17427e− 11 3.49474e− 12 −3.988 0.223 sec.
1024 6.221566530859 1.36158e− 12 2.18848e− 13 −3.994 0.339 sec.
2048 6.221566530860 8.51819e− 14 1.36914e− 14 −3.997 0.700 sec.
4096 6.221566530860 5.32647e− 15 8.56130e− 16 −3.999 1.537 sec.
8192 6.221566530860 3.32986e− 16 5.35212e− 17 −3.999 3.163 sec.
16384 6.221566530860 2.08141e− 17 3.34548e− 18 −4.000 6.098 sec.
32768 6.221566530860 1.30096e− 18 2.09105e− 19 −4.000 13.442 sec.

Richardson 6.221566530860 8.38963e− 51 1.34848e− 51 n/a n/a
Error: O

(
range−4.000

)

Table A.33: Order ρ2/N6 contribution from convolution 18 of λ4

T18/4! = vρ2

N6 , v = (504 ζ (6)) /4!
v = 21.36420430167343193400487652560933108593816729068992479869058193

Approx Range Result Abs. Error Rel. Error Conv. Time
2 21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.002 sec.
4 21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.001 sec.
8 21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.003 sec.
16 21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.005 sec.
32 21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.010 sec.
64 21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.020 sec.
128 21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.040 sec.
256 21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.085 sec.
512 21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.223 sec.
1024 21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.339 sec.
2048 21.364204301673 1.00000e− 62 4.68073e− 64 n/a 0.700 sec.
4096 21.364204301673 1.00000e− 62 4.68073e− 64 n/a 1.537 sec.
8192 21.364204301673 1.00000e− 62 4.68073e− 64 n/a 3.163 sec.
16384 21.364204301673 1.00000e− 62 4.68073e− 64 n/a 6.098 sec.
32768 21.364204301673 1.00000e− 62 4.68073e− 64 n/a 13.442 sec.

Richardson 21.364204301673 1.00000e− 62 4.68073e− 64 n/a n/a
No Error Detected
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Table A.34: Order ρ2/N5 contribution from convolution 19 of λ4

T19/4! = vρ2

N5 , v = (2160 ζ (5)− 864 ζ (2) ζ (3)) /4!
v = 22.14054135220063311472781788766855453017982995540732156462773906

Approx Range Result Abs. Error Rel. Error Conv. Time
2 26.192670292647 4.05213e+ 00 1.83019e− 01 n/a 0.003 sec.
4 23.532410452951 1.39187e+ 00 6.28652e− 02 n/a 0.002 sec.
8 22.544683763938 4.04142e− 01 1.82535e− 02 −1.429 0.003 sec.
16 22.248895032424 1.08354e− 01 4.89390e− 03 −1.740 0.006 sec.
32 22.168546582097 2.80052e− 02 1.26488e− 03 −1.880 0.013 sec.
64 22.147656700302 7.11535e− 03 3.21372e− 04 −1.943 0.031 sec.
128 22.142334384790 1.79303e− 03 8.09841e− 05 −1.973 0.058 sec.
256 22.140991380262 4.50028e− 04 2.03260e− 05 −1.987 0.129 sec.
512 22.140654080146 1.12728e− 04 5.09147e− 06 −1.993 0.292 sec.
1024 22.140569561783 2.82096e− 05 1.27411e− 06 −1.997 0.681 sec.
2048 22.140548408044 7.05584e− 06 3.18684e− 07 −1.998 1.791 sec.
4096 22.140543116593 1.76439e− 06 7.96905e− 08 −1.999 6.303 sec.
8192 22.140541793352 4.41152e− 07 1.99251e− 08 −2.000 29.894 sec.
16384 22.140541462495 1.10295e− 07 4.98157e− 09 −2.000 86.969 sec.
32768 22.140541379775 2.75745e− 08 1.24543e− 09 −2.000 421.251 sec.

Richardson 22.140541352201 5.82133e− 33 2.62926e− 34 n/a n/a
Error: O

(
range−2.000

)
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Table A.35: Order ρ2/N6 contribution from convolution 19 of λ4

T19/4! = vρ2

N6 , v = (−1944 ζ (6)) /4!
v = −82.40478802074038031687595231306456276004721669266113850923510173

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −85.462565829166 3.05778e+ 00 3.71068e− 02 n/a 0.003 sec.
4 −83.011652186370 6.06864e− 01 7.36443e− 03 n/a 0.002 sec.
8 −82.499358219841 9.45702e− 02 1.14763e− 03 −2.258 0.003 sec.
16 −82.417902476873 1.31145e− 02 1.59147e− 04 −2.653 0.006 sec.
32 −82.406510764226 1.72274e− 03 2.09059e− 05 −2.838 0.013 sec.
64 −82.405008630376 2.20610e− 04 2.67715e− 06 −2.923 0.031 sec.
128 −82.404815927183 2.79064e− 05 3.38651e− 07 −2.963 0.058 sec.
256 −82.404791529710 3.50897e− 06 4.25821e− 08 −2.982 0.129 sec.
512 −82.404788460654 4.39913e− 07 5.33844e− 09 −2.991 0.292 sec.
1024 −82.404788075810 5.50699e− 08 6.68286e− 10 −2.995 0.681 sec.
2048 −82.404788027629 6.88879e− 09 8.35970e− 11 −2.998 1.791 sec.
4096 −82.404788021602 8.61414e− 10 1.04534e− 11 −2.999 6.303 sec.
8192 −82.404788020848 1.07697e− 10 1.30692e− 12 −2.999 29.894 sec.
16384 −82.404788020754 1.34633e− 11 1.63380e− 13 −3.000 86.969 sec.
32768 −82.404788020742 1.68299e− 12 2.04234e− 14 −3.000 421.251 sec.

Richardson −82.404788020740 2.81862e− 38 3.42046e− 40 n/a n/a
Error: O

(
range−3.000

)

Table A.36: Order ρ2/N6 contribution from convolution 20 of λ4

T20/4! = vρ2

N6 , v =
(

216 ζ (6)− 288 (ζ (3))
2
)
/4!

v = −8.183202023343568549533559577565569175088467458870982032995531959
Approx Range Result Abs. Error Rel. Error Conv. Time

2 −8.556366698322 3.73165e− 01 4.56013e− 02 n/a 0.021 sec.
4 −8.256525473173 7.33234e− 02 8.96024e− 03 n/a 0.005 sec.
8 −8.194459067404 1.12570e− 02 1.37563e− 03 −2.272 0.012 sec.
16 −8.184735586904 1.53356e− 03 1.87404e− 04 −2.674 0.022 sec.
32 −8.183400221365 1.98198e− 04 2.42201e− 05 −2.864 0.058 sec.
64 −8.183227087535 2.50642e− 05 3.06288e− 06 −2.947 0.104 sec.
128 −8.183205166553 3.14321e− 06 3.84105e− 07 −2.982 0.402 sec.
256 −8.183202416381 3.93037e− 07 4.80297e− 08 −2.995 1.154 sec.
512 −8.183202072451 4.91070e− 08 6.00095e− 09 −2.999 2.465 sec.
1024 −8.183202029479 6.13502e− 09 7.49709e− 10 −3.001 5.160 sec.
2048 −8.183202024110 7.66549e− 10 9.36735e− 11 −3.001 9.132 sec.
4096 −8.183202023439 9.57906e− 11 1.17058e− 11 −3.001 17.731 sec.
8192 −8.183202023356 1.19716e− 11 1.46295e− 12 −3.000 34.980 sec.
16384 −8.183202023345 1.49628e− 12 1.82848e− 13 −3.000 72.249 sec.
32768 −8.183202023344 1.87023e− 13 2.28545e− 14 −3.000 141.755 sec.

Richardson −8.183202023344 6.42631e− 15 7.85304e− 16 n/a n/a

Error: O
(
range−3.000

)
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Table A.37: Order ρ2/N6 contribution from convolution 21 of λ4

T21/4! = vρ2

N6 , v = (216 ζ (6)) /4!
v = 9.156087557860042257430661368118284751116357410295682056581677971

Approx Range Result Abs. Error Rel. Error Conv. Time
2 9.495840647685 3.39753e− 01 3.71068e− 02 n/a 0.005 sec.
4 9.223516909597 6.74294e− 02 7.36443e− 03 n/a 0.002 sec.
8 9.166595357760 1.05078e− 02 1.14763e− 03 −2.258 0.004 sec.
16 9.157544719653 1.45716e− 03 1.59147e− 04 −2.653 0.008 sec.
32 9.156278973803 1.91416e− 04 2.09059e− 05 −2.838 0.016 sec.
64 9.156112070042 2.45122e− 05 2.67715e− 06 −2.923 0.033 sec.
128 9.156090658576 3.10072e− 06 3.38651e− 07 −2.963 0.070 sec.
256 9.156087947746 3.89885e− 07 4.25821e− 08 −2.982 0.174 sec.
512 9.156087606739 4.88793e− 08 5.33844e− 09 −2.991 0.297 sec.
1024 9.156087563979 6.11888e− 09 6.68286e− 10 −2.995 0.626 sec.
2048 9.156087558625 7.65421e− 10 8.35970e− 11 −2.998 1.261 sec.
4096 9.156087557956 9.57127e− 11 1.04534e− 11 −2.999 2.593 sec.
8192 9.156087557872 1.19663e− 11 1.30692e− 12 −2.999 5.050 sec.
16384 9.156087557862 1.49592e− 12 1.63380e− 13 −3.000 10.459 sec.
32768 9.156087557860 1.86999e− 13 2.04234e− 14 −3.000 20.602 sec.

Richardson 9.156087557860 3.13180e− 39 3.42046e− 40 n/a n/a

Error: O
(
range−3.000

)
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Table A.38: Order ρ2/N5 contribution from convolution 22 of λ4

T22/4! = vρ2

N5 , v = (−288 ζ (5)) /4!
v = −12.44313306172043911597638583748441001668497103402295374369031214

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −15.400343508389 2.95721e+ 00 2.37658e− 01 n/a 0.019 sec.
4 −13.448157960176 1.00502e+ 00 8.07694e− 02 n/a 0.006 sec.
8 −12.730546019612 2.87413e− 01 2.30981e− 02 −1.444 0.013 sec.
16 −12.518871875974 7.57388e− 02 6.08680e− 03 −1.761 0.025 sec.
32 −12.462409870009 1.92768e− 02 1.54919e− 03 −1.906 0.052 sec.
64 −12.447974018174 4.84096e− 03 3.89046e− 04 −1.968 0.114 sec.
128 −12.444343289588 1.21023e− 03 9.72607e− 05 −1.991 0.525 sec.
256 −12.443435275371 3.02214e− 04 2.42876e− 05 −1.999 1.292 sec.
512 −12.443208529820 7.54681e− 05 6.06504e− 06 −2.002 2.577 sec.
1024 −12.443151912826 1.88511e− 05 1.51498e− 06 −2.002 4.985 sec.
2048 −12.443137771854 4.71013e− 06 3.78533e− 07 −2.001 10.349 sec.
4096 −12.443134238842 1.17712e− 06 9.46001e− 08 −2.001 22.157 sec.
8192 −12.443133355939 2.94219e− 07 2.36451e− 08 −2.001 58.426 sec.
16384 −12.443133135266 7.35458e− 08 5.91055e− 09 −2.000 162.609 sec.

Richardson −12.443133059765 1.95579e− 09 1.57178e− 10 n/a n/a

Error: O
(
range−2.000

)

Table A.39: Order ρ2/N6 contribution from convolution 22 of λ4

T22/4! = vρ2

N6 , v =
(
−1440 ζ (6) + 576 (ζ (3))

2
)
/4!

v = −26.36200455665972676894263389608752382169939966363788553139009994
Approx Range Result Abs. Error Rel. Error Conv. Time

2 −24.833085307987 1.52892e+ 00 5.79971e− 02 n/a 0.019 sec.
4 −26.074368198709 2.87636e− 01 1.09110e− 02 n/a 0.006 sec.
8 −26.318208995571 4.37956e− 02 1.66131e− 03 −2.348 0.013 sec.
16 −26.356013338647 5.99122e− 03 2.27267e− 04 −2.689 0.025 sec.
32 −26.361224998170 7.79558e− 04 2.95713e− 05 −2.859 0.052 sec.
64 −26.361905393167 9.91635e− 05 3.76161e− 06 −2.937 0.114 sec.
128 −26.361992068466 1.24882e− 05 4.73719e− 07 −2.973 0.525 sec.
256 −26.362002990804 1.56586e− 06 5.93982e− 08 −2.988 1.292 sec.
512 −26.362004360687 1.95973e− 07 7.43391e− 09 −2.995 2.577 sec.
1024 −26.362004532152 2.45078e− 08 9.29664e− 10 −2.998 4.985 sec.
2048 −26.362004553596 3.06394e− 09 1.16226e− 10 −2.999 10.349 sec.
4096 −26.362004556277 3.83007e− 10 1.45287e− 11 −3.000 22.157 sec.
8192 −26.362004556612 4.78758e− 11 1.81609e− 12 −3.000 58.426 sec.
16384 −26.362004556654 5.98441e− 12 2.27009e− 13 −3.000 162.609 sec.

Richardson −26.362004556660 7.52251e− 16 2.85354e− 17 n/a n/a

Error: O
(
range−3.000

)
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Table A.40: Order ρ2/N5 contribution from convolution 23 of λ4

T23/4! = vρ2

N5 , v = (576 ζ (2) ζ (3)− 1440 ζ (5)) /4!
v = −14.76036090146708874315187859177903635345321997027154770975182604

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −17.461780195098 2.70142e+ 00 1.83019e− 01 n/a 0.003 sec.
4 −15.688273635301 9.27913e− 01 6.28652e− 02 n/a 0.002 sec.
8 −15.029789175958 2.69428e− 01 1.82535e− 02 −1.429 0.004 sec.
16 −14.832596688283 7.22358e− 02 4.89390e− 03 −1.740 0.008 sec.
32 −14.779031054731 1.86702e− 02 1.26488e− 03 −1.880 0.015 sec.
64 −14.765104466868 4.74357e− 03 3.21372e− 04 −1.943 0.031 sec.
128 −14.761556256527 1.19536e− 03 8.09841e− 05 −1.973 0.065 sec.
256 −14.760660920175 3.00019e− 04 2.03260e− 05 −1.987 0.176 sec.
512 −14.760436053431 7.51520e− 05 5.09147e− 06 −1.993 0.281 sec.
1024 −14.760379707855 1.88064e− 05 1.27411e− 06 −1.997 0.596 sec.
2048 −14.760365605363 4.70390e− 06 3.18684e− 07 −1.998 1.207 sec.
4096 −14.760362077728 1.17626e− 06 7.96905e− 08 −1.999 2.489 sec.
8192 −14.760361195568 2.94101e− 07 1.99251e− 08 −2.000 4.909 sec.
16384 −14.760360974997 7.35298e− 08 4.98157e− 09 −2.000 10.693 sec.
32768 −14.760360919850 1.83830e− 08 1.24543e− 09 −2.000 20.367 sec.

Richardson −14.760360901467 3.88089e− 33 2.62926e− 34 n/a n/a
Error: O

(
range−2.000

)
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Table A.41: Order ρ2/N5 contribution from convolution 24 of λ4

T24/4! = vρ2

N5 , v = (576 ζ (2) ζ (3)− 1728 ζ (5)) /4!
v = −27.20349396318752785912826442926344637013819100429450145344213818

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −27.538219804902 3.34726e− 01 1.23045e− 02 n/a 0.007 sec.
4 −27.318285006675 1.14791e− 01 4.21972e− 03 n/a 0.006 sec.
8 −27.229480814853 2.59869e− 02 9.55276e− 04 −1.308 0.015 sec.
16 −27.208278871196 4.78491e− 03 1.75893e− 04 −2.066 0.023 sec.
32 −27.204281373371 7.87410e− 04 2.89452e− 05 −2.407 0.039 sec.
64 −27.203615331730 1.21369e− 04 4.46151e− 06 −2.585 0.087 sec.
128 −27.203511922919 1.79597e− 05 6.60199e− 07 −2.687 0.306 sec.
256 −27.203496549710 2.58652e− 06 9.50805e− 08 −2.750 0.795 sec.
512 −27.203494328631 3.65444e− 07 1.34337e− 08 −2.791 1.489 sec.
1024 −27.203494014091 5.09033e− 08 1.87120e− 09 −2.820 3.141 sec.
2048 −27.203493970200 7.01259e− 09 2.57783e− 10 −2.841 7.542 sec.
4096 −27.203493964145 9.57555e− 10 3.51997e− 11 −2.858 18.243 sec.
8192 −27.203493963317 1.29801e− 10 4.77148e− 12 −2.871 53.565 sec.
16384 −27.203493963205 1.74873e− 11 6.42832e− 13 −2.882 176.472 sec.
32768 −27.203493963190 2.34361e− 12 8.61509e− 14 −2.891 690.478 sec.

Richardson −27.203493963188 1.25361e− 20 4.60827e− 22 n/a n/a
Error: O

(
range−2.891

)

Table A.42: Order ρ2/N6 contribution from convolution 24 of λ4

T24/4! = vρ2

N6 , v =
(
−816 ζ (6)− 288 (ζ (3))

2
)
/4!

v = −51.92895368867488155725783055857515187486661953028368519221910449
Approx Range Result Abs. Error Rel. Error Conv. Time

2 −51.000000000000 9.28954e− 01 1.78889e− 02 n/a 0.007 sec.
4 −51.766653806584 1.62300e− 01 3.12542e− 03 n/a 0.006 sec.
8 −51.905327083914 2.36266e− 02 4.54979e− 04 −2.467 0.015 sec.
16 −51.925813333853 3.14035e− 03 6.04741e− 05 −2.759 0.023 sec.
32 −51.928552614215 4.01074e− 04 7.72352e− 06 −2.903 0.039 sec.
64 −51.928903264980 5.04237e− 05 9.71013e− 07 −2.966 0.087 sec.
128 −51.928947383712 6.30496e− 06 1.21415e− 07 −2.991 0.306 sec.
256 −51.928952901439 7.87235e− 07 1.51599e− 08 −2.999 0.795 sec.
512 −51.928953590388 9.82866e− 08 1.89271e− 09 −3.002 1.489 sec.
1024 −51.928953676400 1.22746e− 08 2.36373e− 10 −3.002 3.141 sec.
2048 −51.928953687141 1.53338e− 09 2.95285e− 11 −3.001 7.542 sec.
4096 −51.928953688483 1.91599e− 10 3.68964e− 12 −3.001 18.243 sec.
8192 −51.928953688651 2.39443e− 11 4.61098e− 13 −3.001 53.565 sec.
16384 −51.928953688672 2.99264e− 12 5.76295e− 14 −3.000 176.472 sec.
32768 −51.928953688675 3.74051e− 13 7.20313e− 15 −3.000 690.478 sec.

Richardson −51.928953688675 3.81171e− 14 7.34024e− 16 n/a n/a

Error: O
(
range−3.000

)
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Table A.43: Order ρ2/N5 contribution from convolution 25 of λ4

T25/4! = vρ2

N5 , v = (−288 ζ (2) ζ (3) + 864 ζ (5)) /4!
v = 13.60174698159376392956413221463172318506909550214725072672106909

Approx Range Result Abs. Error Rel. Error Conv. Time
2 13.769109902451 1.67363e− 01 1.23045e− 02 n/a 0.008 sec.
4 13.659142503337 5.73955e− 02 4.21972e− 03 n/a 0.004 sec.
8 13.614740407427 1.29934e− 02 9.55276e− 04 −1.308 0.009 sec.
16 13.604139435598 2.39245e− 03 1.75893e− 04 −2.066 0.016 sec.
32 13.602140686686 3.93705e− 04 2.89452e− 05 −2.407 0.034 sec.
64 13.601807665865 6.06843e− 05 4.46151e− 06 −2.585 0.078 sec.
128 13.601755961460 8.97987e− 06 6.60199e− 07 −2.687 0.275 sec.
256 13.601748274855 1.29326e− 06 9.50805e− 08 −2.750 0.927 sec.
512 13.601747164316 1.82722e− 07 1.34337e− 08 −2.791 1.770 sec.
1024 13.601747007045 2.54517e− 08 1.87120e− 09 −2.820 4.319 sec.
2048 13.601746985100 3.50630e− 09 2.57783e− 10 −2.841 12.974 sec.
4096 13.601746982073 4.78777e− 10 3.51997e− 11 −2.858 44.837 sec.
8192 13.601746981659 6.49004e− 11 4.77148e− 12 −2.871 165.731 sec.
16384 13.601746981603 8.74364e− 12 6.42832e− 13 −2.882 692.501 sec.

Richardson 13.601746981594 1.65815e− 19 1.21907e− 20 n/a n/a

Error: O
(
range−2.882

)
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Table A.44: Order ρ2/N6 contribution from convolution 25 of λ4

T25/4! = vρ2

N6 , v = (936 ζ (6)) /4!
v = 39.67637941739351644886619926184590058817088211128128891185393787

Approx Range Result Abs. Error Rel. Error Conv. Time
2 39.254159352315 4.22220e− 01 1.06416e− 02 n/a 0.008 sec.
4 39.604045461802 7.23340e− 02 1.82310e− 03 n/a 0.004 sec.
8 39.665658918960 1.07205e− 02 2.70199e− 04 −2.506 0.009 sec.
16 39.674914441755 1.46498e− 03 3.69231e− 05 −2.735 0.016 sec.
32 39.676187737002 1.91680e− 04 4.83110e− 06 −2.862 0.034 sec.
64 39.676354896615 2.45208e− 05 6.18020e− 07 −2.929 0.078 sec.
128 39.676376316404 3.10099e− 06 7.81571e− 08 −2.964 0.275 sec.
256 39.676379027499 3.89894e− 07 9.82686e− 09 −2.982 0.927 sec.
512 39.676379368514 4.88795e− 08 1.23196e− 09 −2.991 1.770 sec.
1024 39.676379411275 6.11889e− 09 1.54220e− 10 −2.995 4.319 sec.
2048 39.676379416628 7.65421e− 10 1.92916e− 11 −2.998 12.974 sec.
4096 39.676379417298 9.57127e− 11 2.41233e− 12 −2.999 44.837 sec.
8192 39.676379417382 1.19663e− 11 3.01597e− 13 −2.999 165.731 sec.
16384 39.676379417392 1.49592e− 12 3.77031e− 14 −3.000 692.501 sec.

Richardson 39.676379417394 1.30805e− 36 3.29680e− 38 n/a n/a

Error: O
(
range−3.000

)
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Table A.45: Order ρ2/N5 contribution from convolution 26 of λ4

T26/4! = vρ2

N5 , v = (−192 ζ (2) ζ (3) + 624 ζ (5)) /4!
v = 11.14168683134924913903881911600188379282689217376865944176243142

Approx Range Result Abs. Error Rel. Error Conv. Time
2 10.488581607521 6.53105e− 01 5.86182e− 02 n/a 0.015 sec.
4 10.642054307191 4.99633e− 01 4.48435e− 02 n/a 0.010 sec.
8 10.865135559246 2.76551e− 01 2.48213e− 02 0.540 0.010 sec.
16 11.017792576679 1.23894e− 01 1.11199e− 02 −0.547 0.026 sec.
32 11.093059451792 4.86274e− 02 4.36445e− 03 −1.020 0.042 sec.
64 11.124171070700 1.75158e− 02 1.57209e− 03 −1.275 0.105 sec.
128 11.135737098003 5.94973e− 03 5.34007e− 04 −1.428 0.283 sec.
256 11.139749280411 1.93755e− 03 1.73901e− 04 −1.527 0.675 sec.
512 11.141075532809 6.11299e− 04 5.48659e− 05 −1.597 1.419 sec.
1024 11.141498667980 1.88163e− 04 1.68882e− 05 −1.648 3.190 sec.
2048 11.141630049117 5.67822e− 05 5.09638e− 06 −1.687 6.681 sec.
4096 11.141669972971 1.68584e− 05 1.51309e− 06 −1.718 15.765 sec.
8192 11.141681894037 4.93731e− 06 4.43139e− 07 −1.744 41.602 sec.
16384 11.141685402064 1.42929e− 06 1.28283e− 07 −1.765 152.240 sec.

Richardson 11.141686831389 3.95959e− 11 3.55385e− 12 n/a n/a

Error: O
(
range−1.765

)

Table A.46: Order ρ2/N6 contribution from convolution 26 of λ4

T26/4! = vρ2

N6 , v =
(
−48 (ζ (3))

2
+ 1200 ζ (6)

)
/4!

v = 47.97727150235518851789852633193205074072340369011490074385756485
Approx Range Result Abs. Error Rel. Error Conv. Time

2 49.798540262307 1.82127e+ 00 3.79611e− 02 n/a 0.015 sec.
4 48.956927420645 9.79656e− 01 2.04192e− 02 n/a 0.010 sec.
8 48.373943239983 3.96672e− 01 8.26791e− 03 −0.530 0.010 sec.
16 48.115524661209 1.38253e− 01 2.88164e− 03 −1.174 0.026 sec.
32 48.021476767021 4.42053e− 02 9.21379e− 04 −1.458 0.042 sec.
64 47.990679114298 1.34076e− 02 2.79458e− 04 −1.611 0.105 sec.
128 47.981200911079 3.92941e− 03 8.19015e− 05 −1.700 0.283 sec.
256 47.978396198409 1.12470e− 03 2.34423e− 05 −1.757 0.675 sec.
512 47.977587936703 3.16434e− 04 6.59551e− 06 −1.795 1.419 sec.
1024 47.977359376544 8.78742e− 05 1.83158e− 06 −1.822 3.190 sec.
2048 47.977295655035 2.41527e− 05 5.03419e− 07 −1.843 6.681 sec.
4096 47.977278085515 6.58316e− 06 1.37214e− 07 −1.859 15.765 sec.
8192 47.977273284246 1.78189e− 06 3.71403e− 08 −1.872 41.602 sec.
16384 47.977271981833 4.79477e− 07 9.99384e− 09 −1.882 152.240 sec.

Richardson 47.977271502355 1.90022e− 15 3.96068e− 17 n/a n/a

Error: O
(
range−1.882

)
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Table A.47: Order ρ2/N5 contribution from convolution 27 of λ4

T27/4! = vρ2

N5 , v = (−192 ζ (2) ζ (3) + 480 ζ (5)) /4!
v = 4.92012030048902958105062619725967878448440665675718256991727535

Approx Range Result Abs. Error Rel. Error Conv. Time
2 6.483303611663 1.56318e+ 00 3.17712e− 01 n/a 0.023 sec.
4 4.873805980320 4.63143e− 02 9.41325e− 03 n/a 0.022 sec.
8 4.629176920551 2.90943e− 01 5.91334e− 02 −2.718 0.052 sec.
16 4.734138733374 1.85982e− 01 3.78002e− 02 −1.221 0.126 sec.
32 4.835090289306 8.50300e− 02 1.72821e− 02 −0.056 0.360 sec.
64 4.886808129022 3.33122e− 02 6.77060e− 03 −0.965 1.043 sec.
128 4.908191537590 1.19288e− 02 2.42449e− 03 −1.274 3.172 sec.
256 4.916092939031 4.02736e− 03 8.18549e− 04 −1.436 14.975 sec.
512 4.918816000929 1.30430e− 03 2.65095e− 04 −1.537 155.602 sec.
1024 4.919710802577 4.09498e− 04 8.32292e− 05 −1.606 425.495 sec.

Richardson 4.920144146884 2.38464e− 05 4.84671e− 06 n/a n/a

Error: O
(
range−1.606

)
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Table A.48: Order ρ2/N6 contribution from convolution 27 of λ4

T27/4! = vρ2

N6 , v =
(

240 (ζ (3))
2

+ 480 ζ (6)
)
/4!

v = 34.79626922402532513342720938388828882987370385829595797816251487
Approx Range Result Abs. Error Rel. Error Conv. Time

2 37.034171346438 2.23790e+ 00 6.43144e− 02 n/a 0.023 sec.
4 35.628350173444 8.32081e− 01 2.39129e− 02 n/a 0.022 sec.
8 35.075973898852 2.79705e− 01 8.03835e− 03 −1.348 0.052 sec.
16 34.884915068834 8.86458e− 02 2.54757e− 03 −1.532 0.126 sec.
32 34.823148562911 2.68793e− 02 7.72478e− 04 −1.629 0.360 sec.
64 34.804155850289 7.88663e− 03 2.26651e− 04 −1.701 1.043 sec.
128 34.798528409366 2.25919e− 03 6.49261e− 05 −1.755 3.172 sec.
256 34.796905057479 6.35833e− 04 1.82730e− 05 −1.794 14.975 sec.
512 34.796445797196 1.76573e− 04 5.07449e− 06 −1.822 155.602 sec.
1024 34.796317748314 4.85243e− 05 1.39453e− 06 −1.843 425.495 sec.

Richardson 34.796269209172 1.48535e− 08 4.26870e− 10 n/a n/a

Error: O
(
range−1.843

)
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A.5 λ5 Detailed Results

Due to the number of convolutions that appear in λ5, they are organized into groups.

A.5.1 Trivial Zeros

The following convolutions are trivially zero because they contain c1 = 0.

T1 =− 96ρ3
√
πconv (c0, c0, c1, f1,dr) (0) (A.122)

T2 =− 80ρ
√
πconv

(
c0, c0,dθ2 , c1, f1,dr

)
(0) (A.123)

T3 =− 16ρ
√
πconv

(
c0, c0, c1,dθ2 , f1,dr

)
(0) (A.124)

T4 = + 96ρ
√
πconv

(
c0, c0, c1, f1,dr3

)
(0) (A.125)

T5 = + 72ρ
√
πconv

(
c0, c1, f2,dr2

)
(0) (A.126)

T6 =− 16ρ
√
πconv (c0, c0, c1,dθf1,drdθ) (0) (A.127)

T7 =− 80ρ
√
πconv (c0, c0,dθ, c1, f1,drdθ) (0) (A.128)

T8 = + 16ρ
√
πconv (c1, f3,dr) (0) (A.129)

T9 = + 48ρ
√
πconv

(
c1, c1, f1,dr2

)
(0) (A.130)

T10 =− 144πconv
(
c0, c1, f1,dr, f1,dr2

)
(0) (A.131)

T11 =− 144πconv (c0, c1, f1,dθ, f1,drdθ) (0) (A.132)

T12 = + 72πconv (c0, c1, f1,dθ, f1,dθ) (0) (A.133)

T13 = + 14ρ2conv
(
c0, c1, c1,dθ2

)
(0) (A.134)

T14 =− 42ρ2conv (c0, c0,dθ, c0,dθc1) (0) (A.135)

T15 =− 20ρ2conv
(
c0, c0, c0, c1,dθ2

)
(0) (A.136)

T16 =− 120ρ2conv
(
c0, c0, c0,dθ2 , c1

)
(0) (A.137)

T17 =− 4ρ2conv (rAbC , c0, c0, c1,dθ) (0) (A.138)

T18 = + 16ρ2conv
(
c0,dθ2 , c1, c1

)
(0) (A.139)

T19 = + 20ρ2conv (c1, c2) (0) (A.140)

T20 =− 18ρ2conv (c0, c0, c0,dθ, c1,dθ) (0) (A.141)
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T21 =− 14ρ2conv (rAbC , c0, c0,dθ, c1) (0) (A.142)

T22 =− 72πconv (c0, c1, f1,dr, f1,dr) (0) (A.143)

T23 =− 48πconv (c1, f1,dr, f2,dr) (0) (A.144)

T24 =− 48πconv (c1, f1,dθ, f2,dθ) (0) (A.145)

T25 =
(
−80ρ4 + 120ρ2

)
conv (c0, c0, c0, c1) (0) (A.146)

T26 =
(
60ρ4 − 60ρ2

)
conv (c0, c1, c1) (0) (A.147)

The following terms are zero because of the communtator R.

T27 = + 16ρ
√
πconv (rAbC , c0, c0, c0,dθ, f1,dr) (0) (A.148)

T28 = + 2ρ2conv (rABC , c0, c0, c0, c0,dθ) (0) (A.149)

T29 = + 16ρ2conv (rAbC , c0, c0, c0, c0,dθ) (0) (A.150)

A.5.2 Convolutions Involving Only Velocity

The following convolutions only have coefficients related to the surface velocity.

T30 = + 2ρ2conv
(
c0, c0, c0,dθ, c0,dθ, c0,dθ2

)
(0) (A.151)

=
36ρ2ζ(6)

N6
(A.152)

T31 = + 2ρ2conv
(
c0, c0, c0, c0,dθ, c0,dθ3

)
(0) (A.153)

=
−600ζ(8)ρ2

N8
= O

(
1

N7

)
(A.154)

T32 = + 2ρ2conv
(
c0, c0, c0, c0,dθ2 , c0,dθ2

)
(0) (A.155)

=− 108ρ2ζ(6)

N6
(A.156)



180

T33 =
(
−16ρ4 + 80ρ2

)
conv (c0, c0, c0, c0,dθ, c0,dθ) (0) (A.157)

=
960ζ(8)ρ4

N8
− 4800ζ(8)ρ2

N8
= O

(
1

N7

)
(A.158)

T34 =
(
−16ρ6 + 28ρ4 − 48ρ2

)
conv (c0, c0, c0, c0, c0) (0) (A.159)

=
17280ζ(10)ρ6

N10
− 30240ζ(10)ρ4

N10
+

51840ζ(10)ρ2

N10
= O

(
1

N7

)
(A.160)

T35 =
(
−24ρ4 + 92ρ2

)
conv

(
c0, c0, c0, c0, c0,dθ2

)
(0) (A.161)

=− 5760ζ(8)ρ4

N8
+

22080ζ(8)ρ2

N8
= O

(
1

N7

)
(A.162)

T36 = + 18ρ2conv
(
c0, c0,dθ2 , c2

)
(0) (A.163)

=− 648ρ2ζ(6)

N6
(A.164)

T37 = + 2ρ2conv
(
c0, c0, c2,dθ2

)
(0) (A.165)

=
72ρ2ζ(6)

N6
(A.166)

T38 =
(
40ρ4 − 40ρ2

)
conv (c0, c0, c2) (0) (A.167)

=
4800ζ(8)ρ2(ρ2 − 1)

N8
= O

(
1

N7

)
(A.168)

T39 = + 10ρ2conv (c0, c3) (0) (A.169)

=− 6000ρ2ζ(8)

N8
= O

(
1

N7

)
(A.170)

T40 =− 2ρ2c4(0) (A.171)

=
648ρ2ζ(6)

N6
(A.172)
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A.5.3 Convolutions Involving the First Eigenfunction

T41 =16ρ
√
πconv (c3, f1,dr) (A.173)

=
57600ρ2ζ(7)

N7
− 34560ζ(2)ζ(5)ρ2

N7
= O

(
1

N7

)
(A.174)

T42 =64ρ
√
πconv (c0, c0, c0, c0,dθ, f1,drdθ) (0) (A.175)

=− 80640ρ2ζ(7)

N7
+

46080ζ(2)ζ(5)ρ2

N7
= O

(
1

N7

)
(A.176)

T43 =32ρ
√
πconv (c0, c0, c0,dθ, c0,dθ, f1,dr) (0) (A.177)

=
11520ρ2ζ(7)

N7
− 6912ρ2ζ(2)ζ(5)

N7
= O

(
1

N7

)
(A.178)

T44 =− 48ρ3
√
πconv

(
c0, c0, c0, c0, f1,dr2

)
(0) (A.179)

=
11520ρ4ζ(8)

N8
= O

(
1

N7

)
(A.180)

T45 =− 16ρ3
√
πconv (c0, c0, c0, c0, f1,dr) (0) (A.181)

=
80640ρ4ζ(9)

N9
− 46080ρ4ζ(2)ζ(7)

N9
= O

(
1

N7

)
(A.182)

T46 =− 48ρ
√
πconv

(
c0, c0, c0, c0,dθ2 , f1,dr2

)
(0) (A.183)

=− 2592ζ(6)ρ2

N6
(A.184)

T47 =16ρ
√
πconv

(
c0, c0, c0, c0, f1,dr4

)
(0) (A.185)

=
483840ρ2ζ(7)

N7
− 276480ρ2ζ(2)ζ(5)

N7
= O

(
1

N7

)
(A.186)

T48 =− 16ρ
√
πconv

(
c0, c0, c0,dθ, c0,dθ, f1,dr2

)
(0) (A.187)

=
288ζ(6)ρ2

N6
(A.188)

T49 =− 48ρ
√
πconv

(
c0, c0, c0, c0,dθ, f1,dr2dθ

)
(0) (A.189)

=
34560ρ2ζ(2)ζ(5)

N7
− 60480ρ2ζ(7)

N7
= O

(
1

N7

)
(A.190)
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T50 =64ρ
√
πconv (c0, c0, c0, c0,dθ, f1,dr) (0) (A.191)

=O

(
1

N7

)
(A.192)

T51 =64ρ
√
πconv

(
c0, c2, f1,dr2

)
(0) (A.193)

=
2304ζ(6)ρ2

N6
(A.194)

T52 =48πconv
(
c0, c0, c0,dθ, f1,dθ, f1,dθ2

)
(0) (A.195)

=
864ζ(6)ρ2

N6
(A.196)

T53 =− 48πconv
(
c0, c0, c0, f1,dr, f1,dr3

)
(0) (A.197)

=
8640ρ2ζ(3)2

N6
− 6912ρ2ζ(2)ζ(3)

N6
− 15120ρ2ζ(6)

N6
+

17280ρ2ζ(5)

N6
(A.198)

T54 =− 48πconv
(
c0, c0, c0, f1,dθ, f1,dr2dθ

)
(0) (A.199)

=
34560ρ2ζ(2)ζ(5)

N7
− 60480ρ2ζ(7)

N7
= O

(
1

N7

)
(A.200)

T55 =48πconv (c0, c0, c0, f1,dθ, f1,drdθ) (0) (A.201)

=− 60480ρ2ζ(7)

N7
+

34560ρ2ζ(2)ζ(5)

N7
= O

(
1

N7

)
(A.202)

T56 =24πconv
(
c0, c0, c0,dθ2 , f1,dr, f1,dr

)
(0) (A.203)

=
576ρ2ζ(3)2

N6
− 432ρ2ζ(6)

N6
(A.204)

T57 =24πconv
(
c0, c0, c0,dθ2 , f1,dθ, f1,dθ

)
(0) (A.205)

=
432ρ2ζ(6)

N6
(A.206)

T58 =− 48πconv
(
c0, c0, c0, f1,dr2 , f1,dr2

)
(0) (A.207)

=
2592ρ2ζ(6)

N6
(A.208)

T59 =− 48πconv (c0, c0, c0, f1,drdθ, f1,drdθ) (0) (A.209)

=− 6912ρ2ζ(2)ζ(3)

N6
− 2592ζ(6)ρ2

N6
+

17280ρ2ζ(5)

N6
(A.210)

T60 =− 96πconv
(
c0, c0, c0, f1,dr, f1,dr2

)
(0) (A.211)

=O

(
1

N7

)
(A.212)

T61 =48πconv (c0, c0, c0, f1,dθ, f1,drdθ) (0) (A.213)

=
34560ρ2ζ(2)ζ(5)

N7
− 60480ρ2ζ(7)

N7
= O

(
1

N7

)
(A.214)
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T62 =− 48πconv (c0, c0, c0, f1,dθf1,dθ) (0) (A.215)

=
2880ρ2ζ(8)

N8
= O

(
1

N7

)
(A.216)

T63 =− 24πconv (c2, f1,dr, f1,dr) (0) (A.217)

=− 3744ρ2ζ(6)

N6
+

2304ρ2ζ(3)2

N6
(A.218)

T64 =− 24πconv (c2, f1,dθ, f1,dθ) (0) (A.219)

=− 1296ρ2ζ(6)

N6
(A.220)

T65 =48πconv (c0, c0, c0,dθ, f1,dr, f1,drdθ) (0) (A.221)

=− 2880ρ2ζ(3)2

N6
+

4176ρ2ζ(6)

N6
(A.222)

A.5.4 Convolutions Involving the Second Eigenfunction

T66 =− 24ρ3
√
πconv (c0, c0, c0, f2,dr) (0) (A.223)

=O

(
1

N7

)
(A.224)

T67 =− 24ρ
√
πconv

(
c0, c0, c0,dθ2 , f2,dr

)
(0) (A.225)

=− 576ρ2ζ(3)2

N6
+

2112ζ(6)ρ2

N6
(A.226)

T68 =24ρ
√
πconv (c2, f2,dr) (0) (A.227)

=
4416ρ2ζ(6)

N6
− 2304ρ2ζ(3)2

N6
(A.228)

T69 =24ρ
√
πconv

(
c0, c0, c0, f2,dr3

)
(0) (A.229)

=
19584ζ(6)ρ2

N6
− 8640ρ2ζ(3)2

N6
(A.230)

T70 =− 24ρ
√
πconv (c0, c0, c0,dθ, f2,drdθ) (0) (A.231)

=− 6528ζ(6)ρ2

N6
+

2880ρ2ζ(3)2

N6
(A.232)
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T71 =− 48πconv (c0, c0, f1,dr, f2,dr) (0) (A.233)

=O

(
1

N7

)
(A.234)

T72 =− 12πconv (c0, f2,dr, f2,dr) (0) (A.235)

=
1919.8217678467ρ2

N6
(A.236)

T73 =− 12πconv (c0, f2,dθ, f2,dθ) (0) (A.237)

=
1708.980680ρ2

N6
(A.238)

T74 =− 48πconv
(
c0, c0, f1,dr2 , f2,dr

)
(0) (A.239)

=
1152ζ(3)2ρ2

N6
− 4224ζ(6)ρ2

N6
(A.240)

T75 =− 48πconv (c0, c0, f1,drdθ, f2,dθ) (0) (A.241)

=
13536ζ(6)ρ2

N6
+

13824ζ(2)ζ(3)ρ2

N6
− 34560ζ(5)ρ2

N6
− 5760ζ(3)2ρ2

N6
(A.242)

T76 =48πconv (c0, c0, f1,dθ, f2,dθ) (0) (A.243)

=O

(
1

N7

)
(A.244)

T77 =− 48πconv
(
c0, c0, f1,dr, f2,dr2

)
(0) (A.245)

=− 4625.2459797ρ2

N6
(A.246)

T78 =− 48πconv (c0, c0, f1,dθ, f2,drdθ) (0) (A.247)

=− 13056ρ2ζ(6)

N6
+

5760ρ2ζ(3)2

N6
(A.248)

A.5.5 Convolutions Involving the Third Eigenfunction

T79 =16ρ
√
πconv

(
c0, c0, f3,dr2

)
(0) (A.249)

=
−4076.319ρ2

N6
(A.250)

T80 =− 16πconv (c0, f1,dr, f3,dr) (0) (A.251)

=
2065 ζ (6) ρ2

N6
(A.252)

T81 =− 16πconv (c0, f1,dθ, f3,dθ) (0) (A.253)

=
2038.159818ρ2

N6
(A.254)
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A.5.6 Convolution Involving the Fourth Eigenfunction

T82 =4ρ
√
πconv (c0, f4,dr) (0) (A.255)

=
240.4192524ρ2

N6
(A.256)

A.5.7 Complete λ5

This number is not determined exactly, but looking that the remaining numerical results and

using a hypothesis about the final series gives an answer. The hypothesis used is given in Chapter

11.5.

λ5 =
1680ζ(6)ρ2

N6
(A.257)

=
1709.136346ρ2

N6
(A.258)

λ5

5!ρ2
=

14ζ(6)

N6
(A.259)

A.5.8 Numerical Results

Some of the results in this section could not be approximated only at the topmost convolution.

Tables that have smaller maximum ranges required multiple nested convolutions.
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Table A.49: Order ρ6/N2 contribution from convolution 30 of λ5

T30/5! = vρ2

N6 , v = (36 ζ (6)) /5!
v = 0.3052029185953347419143553789372761583705452470098560685527225991

Approx Range Result Abs. Error Rel. Error Conv. Time
2 0.198122805694 1.07080e− 01 3.50849e− 01 n/a 0.004 sec.
4 0.284667575333 2.05353e− 02 6.72842e− 02 n/a 0.002 sec.
8 0.302037284967 3.16563e− 03 1.03722e− 02 −2.317 0.004 sec.
16 0.304765281692 4.37637e− 04 1.43392e− 03 −2.671 0.006 sec.
32 0.305145477284 5.74413e− 05 1.88207e− 04 −2.843 0.013 sec.
64 0.305195564404 7.35419e− 06 2.40961e− 05 −2.924 0.040 sec.
128 0.305201988363 9.30232e− 07 3.04791e− 06 −2.963 0.064 sec.
256 0.305202801629 1.16966e− 07 3.83241e− 07 −2.982 0.118 sec.
512 0.305202903932 1.46638e− 08 4.80460e− 08 −2.991 0.290 sec.
1024 0.305202916760 1.83566e− 09 6.01457e− 09 −2.995 0.641 sec.
2048 0.305202918366 2.29626e− 10 7.52373e− 10 −2.998 1.572 sec.
4096 0.305202918567 2.87138e− 11 9.40810e− 11 −2.999 4.597 sec.
8192 0.305202918592 3.58988e− 12 1.17623e− 11 −2.999 15.237 sec.
16384 0.305202918595 4.48777e− 13 1.47042e− 12 −3.000 74.366 sec.
32768 0.305202918595 5.60996e− 14 1.83811e− 13 −3.000 256.377 sec.

Richardson 0.305202918595 2.93496e− 18 9.61644e− 18 n/a n/a
Error: O

(
range−3.000

)

Table A.50: Order ρ6/N2 contribution from convolution 31 of λ5

T31/5! = vρ2

N6 , v = (0) /5!
v = 0.0

Approx Range Result Abs. Error Rel. Error Conv. Time
2 0.355215647685 3.55216e− 01 Inf n/a 0.005 sec.
4 0.068348964959 6.83490e− 02 Inf n/a 0.007 sec.
8 0.010547680875 1.05477e− 02 Inf −2.311 0.006 sec.
16 0.001458626889 1.45863e− 03 Inf −2.669 0.011 sec.
32 0.000191465527 1.91466e− 04 Inf −2.843 0.022 sec.
64 0.000024513794 2.45138e− 05 Inf −2.924 0.047 sec.
128 0.000003100767 3.10077e− 06 Inf −2.963 0.094 sec.
256 0.000000389887 3.89887e− 07 Inf −2.982 0.224 sec.
512 0.000000048879 4.88793e− 08 Inf −2.991 0.479 sec.
1024 0.000000006119 6.11888e− 09 Inf −2.995 1.097 sec.
2048 0.000000000765 7.65421e− 10 Inf −2.998 2.874 sec.
4096 0.000000000096 9.57127e− 11 Inf −2.999 7.900 sec.
8192 0.000000000012 1.19663e− 11 Inf −2.999 28.429 sec.
16384 0.000000000001 1.49592e− 12 Inf −3.000 141.946 sec.
32768 0.000000000000 1.86999e− 13 Inf −3.000 626.996 sec.

Richardson 0.000000000000 9.78323e− 18 Inf n/a n/a

Error: O
(
range−3.000

)
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Table A.51: Order ρ6/N2 contribution from convolution 32 of λ5

T32/5! = vρ2

N6 , v = (−108 ζ(6) (6)) /5!
v = −0.9156087557860042257430661368118284751116357410295682056581677971

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −0.949584064769 3.39753e− 02 3.71068e− 02 n/a 0.003 sec.
4 −0.922351690960 6.74294e− 03 7.36443e− 03 n/a 0.002 sec.
8 −0.916659535776 1.05078e− 03 1.14763e− 03 −2.258 0.004 sec.
16 −0.915754471965 1.45716e− 04 1.59147e− 04 −2.653 0.009 sec.
32 −0.915627897380 1.91416e− 05 2.09059e− 05 −2.838 0.017 sec.
64 −0.915611207004 2.45122e− 06 2.67715e− 06 −2.923 0.033 sec.
128 −0.915609065858 3.10072e− 07 3.38651e− 07 −2.963 0.075 sec.
256 −0.915608794775 3.89885e− 08 4.25821e− 08 −2.982 0.168 sec.
512 −0.915608760674 4.88793e− 09 5.33844e− 09 −2.991 0.348 sec.
1024 −0.915608756398 6.11888e− 10 6.68286e− 10 −2.995 0.757 sec.
2048 −0.915608755863 7.65421e− 11 8.35970e− 11 −2.998 1.879 sec.
4096 −0.915608755796 9.57127e− 12 1.04534e− 11 −2.999 5.328 sec.
8192 −0.915608755787 1.19663e− 12 1.30692e− 12 −2.999 19.694 sec.
16384 −0.915608755786 1.49592e− 13 1.63380e− 13 −3.000 119.563 sec.
32768 −0.915608755786 1.86999e− 14 2.04234e− 14 −3.000 331.078 sec.

Richardson −0.915608755786 9.78340e− 19 1.06851e− 18 n/a n/a
Error: O

(
range−3.000

)

Table A.52: Order ρ6/N2 contribution from convolution 36 of λ5

T36/5! = vρ2

N6 , v = (−648 ζ (6)) /5!
v = −5.493652534716025354458396820870970850669814446177409233949006782

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −5.388634096196 1.05018e− 01 1.91163e− 02 n/a 0.004 sec.
4 −5.473239806550 2.04127e− 02 3.71569e− 03 n/a 0.004 sec.
8 −5.490492218551 3.16032e− 03 5.75267e− 04 −2.294 0.010 sec.
16 −5.493215093159 4.37442e− 04 7.96267e− 05 −2.664 0.014 sec.
32 −5.493595100016 5.74347e− 05 1.04547e− 05 −2.841 0.032 sec.
64 −5.493645180739 7.35398e− 06 1.33863e− 06 −2.924 0.064 sec.
128 −5.493651604491 9.30225e− 07 1.69327e− 07 −2.963 0.133 sec.
256 −5.493652417750 1.16966e− 07 2.12911e− 08 −2.982 0.249 sec.
512 −5.493652520052 1.46638e− 08 2.66922e− 09 −2.991 0.557 sec.
1024 −5.493652532880 1.83566e− 09 3.34143e− 10 −2.995 1.210 sec.
2048 −5.493652534486 2.29626e− 10 4.17985e− 11 −2.998 2.775 sec.
4096 −5.493652534687 2.87138e− 11 5.22672e− 12 −2.999 7.522 sec.
8192 −5.493652534712 3.58988e− 12 6.53460e− 13 −2.999 21.566 sec.
16384 −5.493652534716 4.48777e− 13 8.16900e− 14 −3.000 89.189 sec.
32768 −5.493652534716 5.60996e− 14 1.02117e− 14 −3.000 406.313 sec.

Richardson −5.493652534716 2.93499e− 18 5.34250e− 19 n/a n/a

Error: O
(
range−3.000

)
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Table A.53: Order ρ6/N2 contribution from convolution 37 of λ5

T37/5! = vρ2

N6 , v = (72 ζ (6)) /5!
v = 0.6104058371906694838287107578745523167410904940197121371054451980

Approx Range Result Abs. Error Rel. Error Conv. Time
2 0.680418129537 7.00123e− 02 1.14698e− 01 n/a 0.003 sec.
4 0.624014322634 1.36085e− 02 2.22942e− 02 n/a 0.002 sec.
8 0.612512714634 2.10688e− 03 3.45160e− 03 −2.294 0.004 sec.
16 0.610697464895 2.91628e− 04 4.77760e− 04 −2.664 0.007 sec.
32 0.610444126990 3.82898e− 05 6.27284e− 05 −2.841 0.011 sec.
64 0.610410739842 4.90265e− 06 8.03179e− 06 −2.924 0.027 sec.
128 0.610406457341 6.20150e− 07 1.01596e− 06 −2.963 0.046 sec.
256 0.610405915168 7.79773e− 08 1.27747e− 07 −2.982 0.104 sec.
512 0.610405846967 9.77586e− 09 1.60153e− 08 −2.991 0.245 sec.
1024 0.610405838414 1.22378e− 09 2.00486e− 09 −2.995 0.555 sec.
2048 0.610405837344 1.53084e− 10 2.50791e− 10 −2.998 1.465 sec.
4096 0.610405837210 1.91425e− 11 3.13603e− 11 −2.999 4.450 sec.
8192 0.610405837193 2.39326e− 12 3.92076e− 12 −2.999 17.862 sec.
16384 0.610405837191 2.99184e− 13 4.90140e− 13 −3.000 75.223 sec.
32768 0.610405837191 3.73998e− 14 6.12703e− 14 −3.000 318.219 sec.

Richardson 0.610405837191 1.95666e− 18 3.20550e− 18 n/a n/a
Error: O

(
range−3.000

)

Table A.54: Order ρ6/N2 contribution from convolution 46 of λ5

T46/5! = vρ2

N6 , v = (−2592 ζ (6)) /5!
v = −21.97461013886410141783358728348388340267925778470963693579602713

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −22.790017554444 8.15407e− 01 3.71068e− 02 n/a 0.007 sec.
4 −22.136440583032 1.61830e− 01 7.36443e− 03 n/a 0.010 sec.
8 −21.999828858624 2.52187e− 02 1.14763e− 03 −2.258 0.018 sec.
16 −21.978107327166 3.49719e− 03 1.59147e− 04 −2.653 0.029 sec.
32 −21.975069537127 4.59398e− 04 2.09059e− 05 −2.838 0.062 sec.
64 −21.974668968100 5.88292e− 05 2.67715e− 06 −2.923 0.127 sec.
128 −21.974617580582 7.44172e− 06 3.38651e− 07 −2.963 0.241 sec.
256 −21.974611074589 9.35725e− 07 4.25821e− 08 −2.982 0.499 sec.
512 −21.974610256174 1.17310e− 07 5.33844e− 09 −2.991 1.064 sec.
1024 −21.974610153549 1.46853e− 08 6.68286e− 10 −2.995 2.296 sec.
2048 −21.974610140701 1.83701e− 09 8.35970e− 11 −2.998 4.912 sec.
4096 −21.974610139094 2.29710e− 10 1.04534e− 11 −2.999 12.483 sec.
8192 −21.974610138893 2.87191e− 11 1.30692e− 12 −2.999 36.028 sec.
16384 −21.974610138868 3.59021e− 12 1.63380e− 13 −3.000 163.035 sec.
32768 −21.974610138865 4.48797e− 13 2.04234e− 14 −3.000 555.420 sec.

Richardson −21.974610138864 2.34801e− 17 1.06851e− 18 n/a n/a

Error: O
(
range−3.000

)
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Table A.55: Order ρ6/N2 contribution from convolution 47 of λ5

T47/5! = vρ2

N6 , v = (0) /5!
v = 0.0

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −11.366900725924 1.13669e+ 01 Inf n/a 0.020 sec.
4 −2.187166878700 2.18717e+ 00 Inf n/a 0.028 sec.
8 −0.337525788002 3.37526e− 01 Inf −2.311 0.048 sec.
16 −0.046676060433 4.66761e− 02 Inf −2.669 0.121 sec.
32 −0.006126896863 6.12690e− 03 Inf −2.843 0.196 sec.
64 −0.000784441397 7.84441e− 04 Inf −2.924 0.432 sec.
128 −0.000099224551 9.92246e− 05 Inf −2.963 1.102 sec.
256 −0.000012476387 1.24764e− 05 Inf −2.982 1.922 sec.
512 −0.000001564138 1.56414e− 06 Inf −2.991 3.612 sec.
1024 −0.000000195804 1.95804e− 07 Inf −2.995 7.669 sec.
2048 −0.000000024493 2.44935e− 08 Inf −2.998 16.289 sec.
4096 −0.000000003063 3.06281e− 09 Inf −2.999 37.832 sec.
8192 −0.000000000383 3.82921e− 10 Inf −2.999 92.810 sec.
16384 −0.000000000048 4.78695e− 11 Inf −3.000 293.204 sec.
32768 −0.000000000006 5.98396e− 12 Inf −3.000 1001.152 sec.

Richardson −0.000000000000 3.13063e− 16 Inf n/a n/a
Error: O

(
range−3.000

)

Table A.56: Order ρ6/N2 contribution from convolution 48 of λ5

T48/5! = vρ2

N6 , v = (288 ζ (6)) /5!
v = 2.441623348762677935314843031498209266964361976078848548421780792

Approx Range Result Abs. Error Rel. Error Conv. Time
2 1.584982445556 8.56641e− 01 3.50849e− 01 n/a 0.008 sec.
4 2.277340602667 1.64283e− 01 6.72842e− 02 n/a 0.007 sec.
8 2.416298279736 2.53251e− 02 1.03722e− 02 −2.317 0.014 sec.
16 2.438122253538 3.50110e− 03 1.43392e− 03 −2.671 0.027 sec.
32 2.441163818276 4.59530e− 04 1.88207e− 04 −2.843 0.065 sec.
64 2.441564515228 5.88335e− 05 2.40961e− 05 −2.924 0.119 sec.
128 2.441615906908 7.44186e− 06 3.04791e− 06 −2.963 0.228 sec.
256 2.441622413033 9.35729e− 07 3.83241e− 07 −2.982 0.447 sec.
512 2.441623231452 1.17310e− 07 4.80460e− 08 −2.991 0.977 sec.
1024 2.441623334077 1.46853e− 08 6.01457e− 09 −2.995 1.985 sec.
2048 2.441623346926 1.83701e− 09 7.52373e− 10 −2.998 4.419 sec.
4096 2.441623348533 2.29710e− 10 9.40810e− 11 −2.999 11.499 sec.
8192 2.441623348734 2.87191e− 11 1.17623e− 11 −2.999 34.070 sec.
16384 2.441623348759 3.59021e− 12 1.47042e− 12 −3.000 120.347 sec.
32768 2.441623348762 4.48797e− 13 1.83811e− 13 −3.000 491.473 sec.

Richardson 2.441623348763 2.34797e− 17 9.61644e− 18 n/a n/a

Error: O
(
range−3.000

)
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Table A.57: Order ρ6/N2 contribution from convolution 51 of λ5

T51/5! = vρ2

N6 , v = (2304 ζ (6)) /5!
v = 19.53298679010142348251874425198567413571489580863078838737424634

Approx Range Result Abs. Error Rel. Error Conv. Time
2 12.679859564446 6.85313e+ 00 3.50849e− 01 n/a 0.007 sec.
4 18.218724821340 1.31426e+ 00 6.72842e− 02 n/a 0.009 sec.
8 19.330386237887 2.02601e− 01 1.03722e− 02 −2.317 0.019 sec.
16 19.504978028303 2.80088e− 02 1.43392e− 03 −2.671 0.042 sec.
32 19.529310546204 3.67624e− 03 1.88207e− 04 −2.843 0.062 sec.
64 19.532516121825 4.70668e− 04 2.40961e− 05 −2.924 0.139 sec.
128 19.532927255261 5.95348e− 05 3.04791e− 06 −2.963 0.280 sec.
256 19.532979304266 7.48584e− 06 3.83241e− 07 −2.982 0.650 sec.
512 19.532985851619 9.38483e− 07 4.80460e− 08 −2.991 1.288 sec.
1024 19.532986672619 1.17483e− 07 6.01457e− 09 −2.995 2.397 sec.
2048 19.532986775405 1.46961e− 08 7.52373e− 10 −2.998 5.627 sec.
4096 19.532986788264 1.83768e− 09 9.40810e− 11 −2.999 13.288 sec.
8192 19.532986789872 2.29753e− 10 1.17623e− 11 −2.999 38.629 sec.
16384 19.532986790073 2.87217e− 11 1.47042e− 12 −3.000 136.818 sec.
32768 19.532986790098 3.59038e− 12 1.83811e− 13 −3.000 584.589 sec.

Richardson 19.532986790101 1.87838e− 16 9.61644e− 18 n/a n/a
Error: O

(
range−3.000

)

Table A.58: Order ρ6/N2 contribution from convolution 52 of λ5

T52/5! = vρ2

N6 , v = (864 ζ (6)) /5!
v = 7.324870046288033805944529094494627800893085928236545645265342376

Approx Range Result Abs. Error Rel. Error Conv. Time
2 4.754947336667 2.56992e+ 00 3.50849e− 01 n/a 0.005 sec.
4 6.832021808002 4.92848e− 01 6.72842e− 02 n/a 0.003 sec.
8 7.248894839208 7.59752e− 02 1.03722e− 02 −2.317 0.005 sec.
16 7.314366760614 1.05033e− 02 1.43392e− 03 −2.671 0.010 sec.
32 7.323491454827 1.37859e− 03 1.88207e− 04 −2.843 0.020 sec.
64 7.324693545684 1.76501e− 04 2.40961e− 05 −2.924 0.038 sec.
128 7.324847720723 2.23256e− 05 3.04791e− 06 −2.963 0.107 sec.
256 7.324867239100 2.80719e− 06 3.83241e− 07 −2.982 0.185 sec.
512 7.324869694357 3.51931e− 07 4.80460e− 08 −2.991 0.397 sec.
1024 7.324870002232 4.40560e− 08 6.01457e− 09 −2.995 0.886 sec.
2048 7.324870040777 5.51103e− 09 7.52373e− 10 −2.998 2.021 sec.
4096 7.324870045599 6.89131e− 10 9.40810e− 11 −2.999 5.489 sec.
8192 7.324870046202 8.61572e− 11 1.17623e− 11 −2.999 17.697 sec.
16384 7.324870046277 1.07706e− 11 1.47042e− 12 −3.000 77.522 sec.
32768 7.324870046287 1.34639e− 12 1.83811e− 13 −3.000 290.302 sec.

Richardson 7.324870046288 7.04391e− 17 9.61644e− 18 n/a n/a

Error: O
(
range−3.000

)
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Table A.59: Order ρ6/N2 contribution from convolution 53 of λ5

T53/5! = vρ2

N6 , v =
(

8640 (ζ (3))
2 − 6912 ζ (2) ζ (3)− 15120 ζ (6) + 17280 ζ (5)

)
/5!

v = 11.2753778407020862213205751407168242898876733995121502487241505
Approx Range Result Abs. Error Rel. Error Conv. Time

2 15.301784668868 4.02641e+ 00 3.57097e− 01 n/a 0.025 sec.
4 10.577996657418 6.97381e− 01 6.18499e− 02 n/a 0.009 sec.
8 10.530398794140 7.44979e− 01 6.60713e− 02 −6.633 0.021 sec.
16 10.941289725770 3.34088e− 01 2.96299e− 02 3.110 0.044 sec.
32 11.156014168103 1.19364e− 01 1.05862e− 02 −0.936 0.081 sec.
64 11.236902421650 3.84754e− 02 3.41234e− 03 −1.408 0.231 sec.
128 11.263660684583 1.17172e− 02 1.03918e− 03 −1.596 0.862 sec.
256 11.271933708552 3.44413e− 03 3.05456e− 04 −1.693 1.959 sec.
512 11.274389571611 9.88269e− 04 8.76484e− 05 −1.752 4.101 sec.
1024 11.275099180109 2.78661e− 04 2.47141e− 05 −1.791 8.286 sec.
2048 11.275300308051 7.75327e− 05 6.87628e− 06 −1.819 14.910 sec.
4096 11.275356494998 2.13457e− 05 1.89313e− 06 −1.840 28.204 sec.
8192 11.275372014242 5.82646e− 06 5.16742e− 07 −1.856 52.668 sec.
16384 11.275376261661 1.57904e− 06 1.40043e− 07 −1.869 111.265 sec.
32768 11.275377415347 4.25355e− 07 3.77243e− 08 −1.880 243.915 sec.

Richardson 11.275377799909 4.07936e− 08 3.61793e− 09 n/a n/a

Error: O
(
range−1.880

)

Table A.60: Order ρ6/N2 contribution from convolution 56 of λ5

T56/5! = vρ2

N6 , v =
(

576 (ζ (3))
2 − 432 ζ (6)

)
/5!

v = 3.273280809337427419813423831026227670035386983548392813198212784
Approx Range Result Abs. Error Rel. Error Conv. Time

2 3.422546679329 1.49266e− 01 4.56013e− 02 n/a 0.029 sec.
4 3.302610189269 2.93294e− 02 8.96024e− 03 n/a 0.017 sec.
8 3.277783626962 4.50282e− 03 1.37563e− 03 −2.272 0.040 sec.
16 3.273894234762 6.13425e− 04 1.87404e− 04 −2.674 0.062 sec.
32 3.273360088546 7.92792e− 05 2.42201e− 05 −2.864 0.142 sec.
64 3.273290835014 1.00257e− 05 3.06288e− 06 −2.947 0.291 sec.
128 3.273282066621 1.25728e− 06 3.84105e− 07 −2.982 0.793 sec.
256 3.273280966552 1.57215e− 07 4.80297e− 08 −2.995 1.667 sec.
512 3.273280828980 1.96428e− 08 6.00095e− 09 −2.999 3.472 sec.
1024 3.273280811791 2.45401e− 09 7.49709e− 10 −3.001 6.878 sec.
2048 3.273280809644 3.06620e− 10 9.36735e− 11 −3.001 14.629 sec.
4096 3.273280809376 3.83162e− 11 1.17058e− 11 −3.001 33.454 sec.
8192 3.273280809342 4.78864e− 12 1.46295e− 12 −3.000 78.456 sec.
16384 3.273280809338 5.98514e− 13 1.82848e− 13 −3.000 220.941 sec.
32768 3.273280809338 7.48093e− 14 2.28545e− 14 −3.000 881.211 sec.

Richardson 3.273280809337 5.60693e− 18 1.71294e− 18 n/a n/a

Error: O
(
range−3.000

)
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Table A.61: Order ρ6/N2 contribution from convolution 57 of λ5

T57/5! = vρ2

N6 , v = (432 ζ (6)) /5!
v = 3.662435023144016902972264547247313900446542964118272822632671189

Approx Range Result Abs. Error Rel. Error Conv. Time
2 3.798336259074 1.35901e− 01 3.71068e− 02 n/a 0.005 sec.
4 3.689406763839 2.69717e− 02 7.36443e− 03 n/a 0.006 sec.
8 3.666638143104 4.20312e− 03 1.14763e− 03 −2.258 0.011 sec.
16 3.663017887861 5.82865e− 04 1.59147e− 04 −2.653 0.021 sec.
32 3.662511589521 7.65664e− 05 2.09059e− 05 −2.838 0.043 sec.
64 3.662444828017 9.80487e− 06 2.67715e− 06 −2.923 0.084 sec.
128 3.662436263430 1.24029e− 06 3.38651e− 07 −2.963 0.181 sec.
256 3.662435179098 1.55954e− 07 4.25821e− 08 −2.982 0.395 sec.
512 3.662435042696 1.95517e− 08 5.33844e− 09 −2.991 0.786 sec.
1024 3.662435025592 2.44755e− 09 6.68286e− 10 −2.995 1.845 sec.
2048 3.662435023450 3.06168e− 10 8.35970e− 11 −2.998 4.481 sec.
4096 3.662435023182 3.82851e− 11 1.04534e− 11 −2.999 11.229 sec.
8192 3.662435023149 4.78651e− 12 1.30692e− 12 −2.999 38.797 sec.
16384 3.662435023145 5.98369e− 13 1.63380e− 13 −3.000 178.178 sec.
32768 3.662435023144 7.47995e− 14 2.04234e− 14 −3.000 781.390 sec.

Richardson 3.662435023144 3.91336e− 18 1.06851e− 18 n/a n/a

Error: O
(
range−3.000

)
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Table A.62: Order ρ6/N2 contribution from convolution 58 of λ5

T58/5! = vρ2

N6 , v = (2592 ζ (6)) /5!
v = 21.97461013886410141783358728348388340267925778470963693579602713

Approx Range Result Abs. Error Rel. Error Conv. Time
2 22.790017554444 8.15407e− 01 3.71068e− 02 n/a 0.029 sec.
4 22.136440583032 1.61830e− 01 7.36443e− 03 n/a 0.019 sec.
8 21.999828858624 2.52187e− 02 1.14763e− 03 −2.258 0.036 sec.
16 21.978107327166 3.49719e− 03 1.59147e− 04 −2.653 0.063 sec.
32 21.975069537127 4.59398e− 04 2.09059e− 05 −2.838 0.153 sec.
64 21.974668968100 5.88292e− 05 2.67715e− 06 −2.923 0.297 sec.
128 21.974617580582 7.44172e− 06 3.38651e− 07 −2.963 0.788 sec.
256 21.974611074589 9.35725e− 07 4.25821e− 08 −2.982 1.730 sec.
512 21.974610256174 1.17310e− 07 5.33844e− 09 −2.991 3.591 sec.
1024 21.974610153549 1.46853e− 08 6.68286e− 10 −2.995 7.481 sec.
2048 21.974610140701 1.83701e− 09 8.35970e− 11 −2.998 14.755 sec.
4096 21.974610139094 2.29710e− 10 1.04534e− 11 −2.999 35.104 sec.
8192 21.974610138893 2.87191e− 11 1.30692e− 12 −2.999 81.651 sec.
16384 21.974610138868 3.59021e− 12 1.63380e− 13 −3.000 234.566 sec.
32768 21.974610138865 4.48797e− 13 2.04234e− 14 −3.000 885.615 sec.

Richardson 21.974610138864 2.34801e− 17 1.06851e− 18 n/a n/a
Error: O

(
range−3.000

)
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Table A.63: Order ρ6/N2 contribution from convolution 59 of λ5

T59/5! = vρ2

N6 , v = (−6912 ζ (2) ζ (3)− 2592 ζ (6) + 17280 ζ (5)) /5!
v = 13.4502560246569115657309213367858038456084701439420775676083554

Approx Range Result Abs. Error Rel. Error Conv. Time
2 15.856625251470 2.40637e+ 00 1.78909e− 01 n/a 0.021 sec.
4 14.220772588345 7.70517e− 01 5.72864e− 02 n/a 0.012 sec.
8 13.668165647513 2.17910e− 01 1.62012e− 02 −1.566 0.022 sec.
16 13.508214699049 5.79587e− 02 4.30911e− 03 −1.789 0.047 sec.
32 13.465203505400 1.49475e− 02 1.11132e− 03 −1.895 0.123 sec.
64 13.454051610156 3.79559e− 03 2.82194e− 04 −1.947 0.205 sec.
128 13.451212355262 9.56331e− 04 7.11013e− 05 −1.974 0.861 sec.
256 13.450496042556 2.40018e− 04 1.78449e− 05 −1.987 2.089 sec.
512 13.450316146412 6.01218e− 05 4.46993e− 06 −1.993 4.233 sec.
1024 13.450271069779 1.50451e− 05 1.11858e− 06 −1.997 9.086 sec.
2048 13.450259787774 3.76312e− 06 2.79780e− 07 −1.998 21.254 sec.
4096 13.450256965666 9.41009e− 07 6.99622e− 08 −1.999 72.065 sec.
8192 13.450256259938 2.35281e− 07 1.74927e− 08 −2.000 198.401 sec.
16384 13.450256083481 5.88238e− 08 4.37344e− 09 −2.000 676.692 sec.
32768 13.450256039363 1.47064e− 08 1.09339e− 09 −2.000 2681.493 sec.

Richardson 13.450256024658 5.98394e− 13 4.44894e− 14 n/a n/a
Error: O

(
range−2.000

)

Table A.64: Order ρ6/N2 contribution from convolution 63 of λ5

T63/5! = vρ2

N6 , v =
(
−3744 ζ (6) + 2304 (ζ (3))

2
)
/5!

v = −3.99824020398903586795020589638255418860898589835836858615961441
Approx Range Result Abs. Error Rel. Error Conv. Time

2 −4.468583912440 4.70344e− 01 1.17638e− 01 n/a 0.032 sec.
4 −4.463426643963 4.65186e− 01 1.16348e− 01 n/a 0.022 sec.
8 −4.217576293700 2.19336e− 01 5.48582e− 02 5.575 0.050 sec.
16 −4.078675276541 8.04351e− 02 2.01176e− 02 −0.824 0.081 sec.
32 −4.024440931851 2.62007e− 02 6.55306e− 03 −1.357 0.184 sec.
64 −4.006244253807 8.00405e− 03 2.00189e− 03 −1.576 0.397 sec.
128 −4.000592789193 2.35259e− 03 5.88405e− 04 −1.687 0.961 sec.
256 −3.998914390528 6.74187e− 04 1.68621e− 04 −1.752 2.157 sec.
512 −3.998429985868 1.89782e− 04 4.74664e− 05 −1.793 4.360 sec.
1024 −3.998292918676 5.27147e− 05 1.31845e− 05 −1.821 8.948 sec.
2048 −3.998254694370 1.44904e− 05 3.62419e− 06 −1.842 18.522 sec.
4096 −3.998244153732 3.94974e− 06 9.87870e− 07 −1.859 42.377 sec.
8192 −3.998241273104 1.06912e− 06 2.67396e− 07 −1.872 104.026 sec.
16384 −3.998240491673 2.87684e− 07 7.19527e− 08 −1.882 292.722 sec.
32768 −3.998240281009 7.70203e− 08 1.92636e− 08 −1.891 1192.477 sec.

Richardson −3.998240210788 6.79908e− 09 1.70052e− 09 n/a n/a

Error: O
(
range−1.891

)
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Table A.65: Order ρ6/N2 contribution from convolution 64 of λ5

T64/5! = vρ2

N6 , v = (−1296 ζ (6)) /5!
v = −10.98730506943205070891679364174194170133962889235481846789801357

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −9.974146186482 1.01316e+ 00 9.22118e− 02 n/a 0.006 sec.
4 −10.794824431679 1.92481e− 01 1.75185e− 02 n/a 0.005 sec.
8 −10.957723705812 2.95814e− 02 2.69232e− 03 −2.333 0.010 sec.
16 −10.983219156029 4.08591e− 03 3.71876e− 04 −2.676 0.020 sec.
32 −10.986768906456 5.36163e− 04 4.87984e− 05 −2.844 0.042 sec.
64 −10.987236428876 6.86406e− 05 6.24726e− 06 −2.925 0.110 sec.
128 −10.987296387222 8.68221e− 06 7.90204e− 07 −2.963 0.167 sec.
256 −10.987303977746 1.09169e− 06 9.93588e− 08 −2.982 0.433 sec.
512 −10.987304932570 1.36862e− 07 1.24564e− 08 −2.991 0.817 sec.
1024 −10.987305052299 1.71329e− 08 1.55933e− 09 −2.995 1.914 sec.
2048 −10.987305067289 2.14318e− 09 1.95060e− 10 −2.998 4.996 sec.
4096 −10.987305069164 2.67996e− 10 2.43914e− 11 −2.999 10.162 sec.
8192 −10.987305069399 3.35056e− 11 3.04948e− 12 −2.999 33.412 sec.
16384 −10.987305069428 4.18858e− 12 3.81220e− 13 −3.000 155.095 sec.
32768 −10.987305069432 5.23597e− 13 4.76547e− 14 −3.000 689.000 sec.

Richardson −10.987305069432 2.73929e− 17 2.49314e− 18 n/a n/a
Error: O

(
range−3.000

)

Table A.66: Order ρ6/N2 contribution from convolution 65 of λ5

T65/5! = vρ2

N6 , v =
(
−2880 (ζ (3))

2
+ 4176 ζ (6)

)
/5!

v = 0.72495939465160844813678206535632651857359891480997577296140163
Approx Range Result Abs. Error Rel. Error Conv. Time

2 0.184946860867 5.40013e− 01 7.44887e− 01 n/a 0.020 sec.
4 1.214258643642 4.89299e− 01 6.74933e− 01 n/a 0.007 sec.
8 1.045922284458 3.20963e− 01 4.42732e− 01 −2.612 0.020 sec.
16 0.855641657760 1.30682e− 01 1.80261e− 01 0.177 0.034 sec.
32 0.769729779099 4.47704e− 02 6.17557e− 02 −1.147 0.064 sec.
64 0.739049729502 1.40903e− 02 1.94360e− 02 −1.486 0.179 sec.
128 0.729183890226 4.22450e− 03 5.82722e− 03 −1.637 0.626 sec.
256 0.726187444668 1.22805e− 03 1.69396e− 03 −1.719 1.507 sec.
512 0.725308858267 3.49464e− 04 4.82046e− 04 −1.770 2.988 sec.
1024 0.725057296557 9.79019e− 05 1.35045e− 04 −1.804 5.818 sec.
2048 0.724986493241 2.70986e− 05 3.73795e− 05 −1.829 11.348 sec.
4096 0.724966823556 7.42890e− 06 1.02473e− 05 −1.848 22.074 sec.
8192 0.724961415232 2.02058e− 06 2.78716e− 06 −1.863 43.482 sec.
16384 0.724959940606 5.45955e− 07 7.53083e− 07 −1.875 90.180 sec.
32768 0.724959541339 1.46687e− 07 2.02339e− 07 −1.885 179.394 sec.

Richardson 0.724959408250 1.35981e− 08 1.87570e− 08 n/a n/a

Error: O
(
range−1.885

)
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Table A.67: Order ρ6/N2 contribution from convolution 67 of λ5

T67/5! = vρ2

N6 , v =
(
−576 (ζ (3))

2
+ 2112 ζ (6)

)
/5!

v = 10.96952205844486053618982718604665972059005787691155705259550850
Approx Range Result Abs. Error Rel. Error Conv. Time

2 11.003327481852 3.38054e− 02 3.08176e− 03 n/a 0.028 sec.
4 10.976574846808 7.05279e− 03 6.42944e− 04 n/a 0.025 sec.
8 10.970396301603 8.74243e− 04 7.96975e− 05 −2.114 0.050 sec.
16 10.969606219863 8.41614e− 05 7.67230e− 06 −2.967 0.110 sec.
32 10.969529143916 7.08547e− 06 6.45923e− 07 −3.358 0.177 sec.
64 10.969522611300 5.52855e− 07 5.03992e− 08 −3.561 0.428 sec.
128 10.969522099638 4.11933e− 08 3.75525e− 09 −3.674 1.045 sec.
256 10.969522061424 2.97890e− 09 2.71562e− 10 −3.743 2.312 sec.
512 10.969522058656 2.11017e− 10 1.92367e− 11 −3.787 4.615 sec.
1024 10.969522058460 1.47242e− 11 1.34228e− 12 −3.818 10.283 sec.
2048 10.969522058446 1.01562e− 12 9.25861e− 14 −3.840 24.473 sec.
4096 10.969522058445 6.94146e− 14 6.32795e− 15 −3.857 45.449 sec.
8192 10.969522058445 4.70876e− 15 4.29258e− 16 −3.870 105.166 sec.
16384 10.969522058445 3.17417e− 16 2.89362e− 17 −3.881 292.875 sec.
32768 10.969522058445 2.12826e− 17 1.94015e− 18 −3.890 1033.326 sec.

Richardson 10.969522058445 1.54029e− 18 1.40415e− 19 n/a n/a

Error: O
(
range−3.890

)

Table A.68: Order ρ6/N2 contribution from convolution 68 of λ5

T68/5! = vρ2

N6 , v =
(

4416 ζ(6) (6)− 2304 (ζ (3))
2
)
/5!

v = 9.69536135110195105035150630321170914485916384254234853247710292
Approx Range Result Abs. Error Rel. Error Conv. Time

2 7.695768667898 1.99959e+ 00 2.06242e− 01 n/a 0.031 sec.
4 8.558564585153 1.13680e+ 00 1.17252e− 01 n/a 0.027 sec.
8 9.224163603317 4.71198e− 01 4.86003e− 02 −0.374 0.045 sec.
16 9.529920448278 1.65441e− 01 1.70639e− 02 −1.122 0.113 sec.
32 9.642354003593 5.30073e− 02 5.46729e− 03 −1.443 0.183 sec.
64 9.679275257472 1.60861e− 02 1.65915e− 03 −1.607 0.412 sec.
128 9.690646287196 4.71506e− 03 4.86322e− 04 −1.699 1.045 sec.
256 9.694011732221 1.34962e− 03 1.39203e− 04 −1.756 2.299 sec.
512 9.694981631045 3.79720e− 04 3.91651e− 05 −1.795 4.637 sec.
1024 9.695255902156 1.05449e− 04 1.08762e− 05 −1.822 9.418 sec.
2048 9.695332367892 2.89832e− 05 2.98939e− 06 −1.843 19.472 sec.
4096 9.695353451310 7.89979e− 06 8.14801e− 07 −1.859 41.865 sec.
8192 9.695359212833 2.13827e− 06 2.20546e− 07 −1.872 100.420 sec.
16384 9.695360775729 5.75373e− 07 5.93452e− 08 −1.882 298.913 sec.
32768 9.695361197061 1.54041e− 07 1.58881e− 08 −1.891 1058.892 sec.

Richardson 9.695361337505 1.35974e− 08 1.40246e− 09 n/a n/a

Error: O
(
range−1.891

)
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Table A.69: Order ρ6/N2 contribution from convolution 69 of λ5

T69/5! = vρ2

N6 , v =
(

19584 ζ (6)− 8640 (ζ (3))
2
)
/5!

v = 61.9946502286404347596240004677751065963476651583617167552178343
Approx Range Result Abs. Error Rel. Error Conv. Time

2 56.097288449251 5.89736e+ 00 9.51269e− 02 n/a 0.058 sec.
4 58.605418295884 3.38923e+ 00 5.46697e− 02 n/a 0.081 sec.
8 60.583679714760 1.41097e+ 00 2.27596e− 02 −0.342 0.188 sec.
16 61.498580004423 4.96070e− 01 8.00182e− 03 −1.113 0.356 sec.
32 61.835649442526 1.59001e− 01 2.56475e− 03 −1.441 0.705 sec.
64 61.946393606315 4.82566e− 02 7.78400e− 04 −1.606 1.424 sec.
128 61.980505160503 1.41451e− 02 2.28166e− 04 −1.699 3.080 sec.
256 61.990601380935 4.04885e− 03 6.53096e− 05 −1.756 6.281 sec.
512 61.993511069104 1.13916e− 03 1.83751e− 05 −1.795 12.479 sec.
1024 61.994333881846 3.16347e− 04 5.10281e− 06 −1.822 27.159 sec.
2048 61.994563279013 8.69496e− 05 1.40253e− 06 −1.843 55.556 sec.
4096 61.994626529265 2.36994e− 05 3.82281e− 07 −1.859 112.126 sec.
8192 61.994643813834 6.41481e− 06 1.03474e− 07 −1.872 263.502 sec.
16384 61.994648502522 1.72612e− 06 2.78430e− 08 −1.882 670.459 sec.
32768 61.994649766517 4.62124e− 07 7.45425e− 09 −1.891 2116.209 sec.

Richardson 61.994650187848 4.07921e− 08 6.57994e− 10 n/a n/a

Error: O
(
range−1.891

)

Table A.70: Order ρ6/N2 contribution from convolution 70 of λ5

T70/5! = vρ2

N6 , v =
(
−6528 ζ (6) + 2880 (ζ (3))

2
)
/5!

v = −20.66488340954681158654133348925836886544922171945390558507261143
Approx Range Result Abs. Error Rel. Error Conv. Time

2 −18.699096149750 1.96579e+ 00 9.51269e− 02 n/a 0.027 sec.
4 −19.535139431961 1.12974e+ 00 5.46697e− 02 n/a 0.030 sec.
8 −20.194559904920 4.70324e− 01 2.27596e− 02 −0.342 0.060 sec.
16 −20.499526668141 1.65357e− 01 8.00182e− 03 −1.113 0.141 sec.
32 −20.611883147509 5.30003e− 02 2.56475e− 03 −1.441 0.252 sec.
64 −20.648797868772 1.60855e− 02 7.78400e− 04 −1.606 0.538 sec.
128 −20.660168386834 4.71502e− 03 2.28166e− 04 −1.699 1.306 sec.
256 −20.663533793645 1.34962e− 03 6.53096e− 05 −1.756 2.858 sec.
512 −20.664503689701 3.79720e− 04 1.83751e− 05 −1.795 8.152 sec.
1024 −20.664777960615 1.05449e− 04 5.10281e− 06 −1.822 12.261 sec.
2048 −20.664854426338 2.89832e− 05 1.40253e− 06 −1.843 25.070 sec.
4096 −20.664875509755 7.89979e− 06 3.82281e− 07 −1.859 58.707 sec.
8192 −20.664881271278 2.13827e− 06 1.03474e− 07 −1.872 133.628 sec.
16384 −20.664882834174 5.75373e− 07 2.78430e− 08 −1.882 367.183 sec.
32768 −20.664883255506 1.54041e− 07 7.45425e− 09 −1.891 1403.477 sec.

Richardson −20.664883395949 1.35974e− 08 6.57994e− 10 n/a n/a

Error: O
(
range−1.891

)
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Table A.71: Order ρ2/N6 contribution from convolution 72 of λ5

T72/5! = vρ2

N6 , v = (1708.9) /5!
v = 14.24083333

Approx Range Result Abs. Error Rel. Error Conv. Time
4 13.678465164908 5.62368e− 01 3.94898e− 02 n/a 2.017 sec.
8 14.263397472244 2.25641e− 02 1.58447e− 03 n/a 4.123 sec.
16 14.410544881832 1.69712e− 01 1.19172e− 02 −1.991 8.963 sec.
32 14.372601509840 1.31768e− 01 9.25284e− 03 −1.955 19.173 sec.
64 14.315144889039 7.43116e− 02 5.21820e− 03 0.599 41.382 sec.
128 14.279098561857 3.82652e− 02 2.68701e− 03 −0.673 98.126 sec.
256 14.261677036172 2.08437e− 02 1.46366e− 03 −1.049 220.044 sec.
512 14.254330401915 1.34971e− 02 9.47772e− 04 −1.246 546.546 sec.

Richardson 14.241505696376 6.72363e− 04 4.72137e− 05 n/a n/a

Error: O
(
range−1.246

)

Table A.72: Order ρ2/N6 contribution from convolution 73 of λ5

T73/5! = vρ2

N6 , v = (1919.8217678467) /5!
v = 15.9985147320558

Approx Range Result Abs. Error Rel. Error Conv. Time
4 15.449544134647 5.48971e− 01 3.43138e− 02 n/a 0.816 sec.
8 15.751538329719 2.46976e− 01 1.54375e− 02 n/a 1.661 sec.
16 15.897387257881 1.01127e− 01 6.32105e− 03 −1.050 4.099 sec.
32 15.960391647095 3.81231e− 02 2.38291e− 03 −1.211 9.621 sec.
64 15.985059805826 1.34549e− 02 8.41011e− 04 −1.353 28.648 sec.
128 15.994019632050 4.49510e− 03 2.80970e− 04 −1.461 92.939 sec.
256 15.997097118442 1.41761e− 03 8.86091e− 05 −1.542 423.810 sec.
512 15.998110561338 4.04171e− 04 2.52630e− 05 −1.602 2442.930 sec.

Richardson 15.998585778738 7.10467e− 05 4.44083e− 06 n/a n/a

Error: O
(
range−1.602

)
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Table A.73: Order ρ2/N6 contribution from convolution 74 of λ5

T74/5! = vρ2

N6 , v =
(

1152 (ζ (3))
2 − 4224 ζ (6)

)
/5!

v = −21.93904411688972107237965437209331944118011575382311410519101700
Approx Range Result Abs. Error Rel. Error Conv. Time

2 −22.006654963704 6.76108e− 02 3.08176e− 03 n/a 0.006 sec.
4 −21.953149693616 1.41056e− 02 6.42944e− 04 n/a 0.004 sec.
8 −21.940792603206 1.74849e− 03 7.96975e− 05 −2.114 0.007 sec.
16 −21.939212439726 1.68323e− 04 7.67230e− 06 −2.967 0.013 sec.
32 −21.939058287832 1.41709e− 05 6.45923e− 07 −3.358 0.027 sec.
64 −21.939045222600 1.10571e− 06 5.03992e− 08 −3.561 0.057 sec.
128 −21.939044199276 8.23866e− 08 3.75525e− 09 −3.674 0.232 sec.
256 −21.939044122848 5.95780e− 09 2.71562e− 10 −3.743 0.465 sec.
512 −21.939044117312 4.22034e− 10 1.92367e− 11 −3.787 1.116 sec.
1024 −21.939044116919 2.94484e− 11 1.34228e− 12 −3.818 2.466 sec.
2048 −21.939044116892 2.03125e− 12 9.25861e− 14 −3.840 4.700 sec.
4096 −21.939044116890 1.38829e− 13 6.32795e− 15 −3.857 9.341 sec.
8192 −21.939044116890 9.41752e− 15 4.29258e− 16 −3.870 18.733 sec.
16384 −21.939044116890 6.34833e− 16 2.89362e− 17 −3.881 42.047 sec.
32768 −21.939044116890 4.25651e− 17 1.94015e− 18 −3.890 79.015 sec.

Richardson −21.939044116890 4.35113e− 26 1.98328e− 27 n/a n/a

Error: O
(
range−3.890

)

Table A.74: Order ρ2/N6 contribution from convolution 75 of λ5

T75/5! = vρ2

N6 , v =
(

13536 ζ (6) + 13824 ζ (2) ζ (3)− 34560 ζ (5)− 5760 (ζ (3))
2
)
/5!

v = −25.45059326001060623518827854285895465406974245826420358929390743
Approx Range Result Abs. Error Rel. Error Conv. Time

2 −25.641208529205 1.90615e− 01 7.48962e− 03 n/a 0.006 sec.
4 −25.513365122634 6.27719e− 02 2.46642e− 03 n/a 0.003 sec.
8 −25.464558619743 1.39654e− 02 5.48724e− 04 −1.389 0.007 sec.
16 −25.453150530902 2.55727e− 03 1.00480e− 04 −2.097 0.019 sec.
32 −25.451013440932 4.20181e− 04 1.65097e− 05 −2.416 0.033 sec.
64 −25.450657998926 6.47389e− 05 2.54371e− 06 −2.588 0.072 sec.
128 −25.450602838872 9.57886e− 06 3.76371e− 07 −2.688 0.290 sec.
256 −25.450594639502 1.37949e− 06 5.42027e− 08 −2.750 0.760 sec.
512 −25.450593454914 1.94904e− 07 7.65812e− 09 −2.791 1.720 sec.
1024 −25.450593287159 2.71484e− 08 1.06671e− 09 −2.820 3.360 sec.
2048 −25.450593263751 3.74005e− 09 1.46953e− 10 −2.841 6.512 sec.
4096 −25.450593260521 5.10696e− 10 2.00662e− 11 −2.858 13.268 sec.
8192 −25.450593260080 6.92271e− 11 2.72006e− 12 −2.871 25.750 sec.
16384 −25.450593260020 9.32655e− 12 3.66457e− 13 −2.882 53.523 sec.
32768 −25.450593260012 1.24992e− 12 4.91118e− 14 −2.891 105.205 sec.

Richardson −25.450593260011 1.03266e− 20 4.05752e− 22 n/a n/a

Error: O
(
range−2.891

)
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Table A.75: Order ρ2/N6 contribution from convolution 77 of λ5

T77/5! = vρ2

N6 , v = (−4625.2459797399881985791341932018) /5!
v = −38.543716497833234988159451610015

Approx Range Result Abs. Error Rel. Error Conv. Time
2 −34.267176613578 4.27654e+ 00 1.10953e− 01 n/a 0.018 sec.
4 −36.106661088883 2.43706e+ 00 6.32283e− 02 n/a 0.006 sec.
8 −37.543204037088 1.00051e+ 00 2.59579e− 02 −0.357 0.015 sec.
16 −38.197616713233 3.46100e− 01 8.97941e− 03 −1.134 0.028 sec.
32 −38.434394481224 1.09322e− 01 2.83631e− 03 −1.467 0.056 sec.
64 −38.510905751881 3.28107e− 02 8.51261e− 04 −1.630 0.154 sec.
128 −38.534172429867 9.54407e− 03 2.47617e− 04 −1.717 0.551 sec.
256 −38.540998019817 2.71848e− 03 7.05297e− 05 −1.769 1.195 sec.
512 −38.542953936791 7.62561e− 04 1.97843e− 05 −1.803 2.562 sec.
1024 −38.543505108638 2.11389e− 04 5.48440e− 06 −1.827 5.233 sec.
2048 −38.543658455570 5.80423e− 05 1.50588e− 06 −1.846 11.958 sec.
4096 −38.543700686425 1.58114e− 05 4.10220e− 07 −1.860 21.551 sec.
8192 −38.543712219141 4.27869e− 06 1.11009e− 07 −1.873 42.333 sec.
16384 −38.543715346369 1.15146e− 06 2.98742e− 08 −1.883 80.331 sec.
32768 −38.543716189242 3.08591e− 07 8.00626e− 09 −1.891 158.802 sec.

Richardson −38.543716517185 1.93518e− 08 5.02074e− 10 n/a n/a
Error: O

(
range−1.891

)

Table A.76: Order ρ6/N2 contribution from convolution 78 of λ5

T78/5! = vρ2

N6 , v =
(
−13056 ζ (6) + 5760 (ζ (3))

2
)
/5!

v = −41.32976681909362317308266697851673773089844343890781117014522277
Approx Range Result Abs. Error Rel. Error Conv. Time

2 −37.398192299501 3.93157e+ 00 9.51269e− 02 n/a 0.026 sec.
4 −39.070278863923 2.25949e+ 00 5.46697e− 02 n/a 0.026 sec.
8 −40.389119809840 9.40647e− 01 2.27596e− 02 −0.342 0.059 sec.
16 −40.999053336282 3.30713e− 01 8.00182e− 03 −1.113 0.128 sec.
32 −41.223766295018 1.06001e− 01 2.56475e− 03 −1.441 0.245 sec.
64 −41.297595737543 3.21711e− 02 7.78400e− 04 −1.606 0.512 sec.
128 −41.320336773669 9.43005e− 03 2.28166e− 04 −1.699 1.378 sec.
256 −41.327067587290 2.69923e− 03 6.53096e− 05 −1.756 2.828 sec.
512 −41.329007379403 7.59440e− 04 1.83751e− 05 −1.795 5.855 sec.
1024 −41.329555921231 2.10898e− 04 5.10281e− 06 −1.822 12.845 sec.
2048 −41.329708852675 5.79664e− 05 1.40253e− 06 −1.843 29.555 sec.
4096 −41.329751019510 1.57996e− 05 3.82281e− 07 −1.859 80.991 sec.
8192 −41.329762542556 4.27654e− 06 1.03474e− 07 −1.872 255.302 sec.
16384 −41.329765668348 1.15075e− 06 2.78430e− 08 −1.882 913.390 sec.

Richardson −41.329766710279 1.08815e− 07 2.63285e− 09 n/a n/a

Error: O
(
range−1.882

)
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Table A.77: Order ρ2/N6 contribution from convolution 79 of λ5

T79/5! = vρ2

N6 , v = (−4076.319) /5!
v = −33.969325

Approx Range Result Abs. Error Rel. Error Conv. Time
4 −32.888292404058 1.08103e+ 00 3.18238e− 02 n/a 1.109 sec.
8 −33.251967030482 7.17358e− 01 2.11178e− 02 n/a 2.106 sec.
16 −33.686326268748 2.82999e− 01 8.33101e− 03 0.256 4.379 sec.
32 −33.875343403167 9.39816e− 02 2.76666e− 03 −1.200 9.228 sec.
64 −33.940429373732 2.88956e− 02 8.50639e− 04 −1.538 18.511 sec.
128 −33.960796647701 8.52835e− 03 2.51060e− 04 −1.676 37.543 sec.
256 −33.966872500990 2.45250e− 03 7.21975e− 05 −1.745 81.189 sec.
512 −33.968634762391 6.90238e− 04 2.03194e− 05 −1.786 209.694 sec.

Richardson −33.969330296440 5.29644e− 06 1.55918e− 07 n/a n/a

Error: O
(
range−1.786

)

Table A.78: Order ρ2/N6 contribution from convolution 80 of λ5

T80/5! = vρ2

N6 , v = (2065 ζ (6)) /5!
v = 17.50677852498239561258732937515209075097710930764868837670478241

Approx Range Result Abs. Error Rel. Error Conv. Time
2 15.241004034565 2.26577e+ 00 1.29423e− 01 n/a 0.017 sec.
4 16.380355483006 1.12642e+ 00 6.43421e− 02 n/a 0.015 sec.
8 17.556398642886 4.96201e− 02 2.83434e− 03 0.046 0.030 sec.
16 17.851483543801 3.44705e− 01 1.96898e− 02 −1.995 0.084 sec.
32 17.775673875765 2.68895e− 01 1.53595e− 02 −1.961 0.223 sec.
64 17.660767166779 1.53989e− 01 8.79594e− 03 0.600 0.666 sec.
128 17.588675024075 8.18965e− 02 4.67799e− 03 −0.673 2.481 sec.
256 17.553832010921 4.70535e− 02 2.68773e− 03 −1.049 11.780 sec.
512 17.539138745173 3.23602e− 02 1.84844e− 03 −1.246 86.972 sec.
1024 17.533453940184 2.66754e− 02 1.52372e− 03 −1.370 378.795 sec.

Richardson 17.507633340670 8.54816e− 04 4.88277e− 05 n/a n/a

Error: O
(
range−1.370

)
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Table A.79: Order ρ2/N6 contribution from convolution 81 of λ5

T81/5! = vρ2

N6 , v = (2038.159818) /5!
v = 16.98466515

Approx Range Result Abs. Error Rel. Error Conv. Time
4 16.444146202028 5.40519e− 01 3.18239e− 02 n/a 0.341 sec.
8 16.625983515241 3.58682e− 01 2.11180e− 02 n/a 0.623 sec.
16 16.843163134374 1.41502e− 01 8.33116e− 03 0.256 1.215 sec.
32 16.937671701587 4.69934e− 02 2.76682e− 03 −1.200 2.576 sec.
64 16.970214686866 1.44505e− 02 8.50795e− 04 −1.538 4.974 sec.
128 16.980398323850 4.26683e− 03 2.51216e− 04 −1.676 10.522 sec.
256 16.983436250495 1.22890e− 03 7.23535e− 05 −1.745 25.510 sec.
512 16.984317381196 3.47769e− 04 2.04755e− 05 −1.786 74.386 sec.

Richardson 16.984665148220 1.77953e− 09 1.04773e− 10 n/a n/a

Error: O
(
range−1.786

)

Table A.80: Order ρ2/N6 contribution from convolution 82 of λ5

T82/5! = vρ2

N6 , v = (240.42) /5!
v = 2.0035

Approx Range Result Abs. Error Rel. Error Conv. Time
4 0.268236236742 1.73526e+ 00 8.66116e− 01 n/a 0.000 sec.
8 1.808406665877 1.95093e− 01 9.73763e− 02 n/a 0.000 sec.
16 2.255171714306 2.51672e− 01 1.25616e− 01 −1.786 0.000 sec.
32 2.235317867984 2.31818e− 01 1.15706e− 01 −4.492 0.000 sec.
64 2.139102761494 1.35603e− 01 6.76829e− 02 2.277 0.000 sec.
128 2.071781601308 6.82816e− 02 3.40812e− 02 −0.515 0.000 sec.
256 2.038380249006 3.48802e− 02 1.74097e− 02 −1.011 0.000 sec.
512 2.024109313127 2.06093e− 02 1.02867e− 02 −1.227 0.000 sec.
1024 2.018545574235 1.50456e− 02 7.50965e− 03 −1.359 0.000 sec.

Richardson 2.003493769215 6.23079e− 06 3.10995e− 06 n/a n/a

Error: O
(
range−1.359

)

A.5.9 Lambda 5 Term 82 by Element

By order analysis it can be determined that only the surf4 component of f4 contributes to term

T82 of λ5. The surface can be broken up into multiple parts. The only components that need to be

evaluated are
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T82 = 4ρ
√
πconv (c0, f4,dr) (0) (A.260)

=4ρ
√
π

∞∑
k=−∞

c0(k)surf4(−k)
J ′|kN |(ρ)ρ

J|kN |(ρ)
(A.261)

Each term in surf4(k) can be evaluated individually. The sub convolutions are given below. Each

table shows the result of computing

4ρ
√
π

∞∑
k=−∞

c0(k)Qi(−k)
J ′|kN |(ρ)ρ

J|kN |(ρ)
(A.262)

Q1|surf4(k) =4conv (c0, c0, c0,dθ, f1,drdθ) (k) (A.263)

Q2|surf4(k) =4conv (c0, c0, c0,dθ, f1,drdθ) (k) (A.264)

Q3|surf4(k) =− 4conv
(
c0, c0, c0, f1,dr3

)
(k) (A.265)

Q4|surf4(k) =− 6conv
(
c0, c0, f2,dr2

)
(k) (A.266)

Q5|surf4(k) =− 4conv (c0, f3,dr) (k) (A.267)

Q6|surf4(k) =6conv (c0, c0,dθ, f2,dθ) (k) (A.268)

Q7|surf4(k) =8conv (c0, c0, c0,dθ, f1,drdθ) (k) (A.269)

Q8|surf4(k) =4conv (c0, c0,dθ, c0,dθ, f1,dr) (k) (A.270)
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Table A.81: Order ρ2/N6 contribution from convolution Q1 of T82 of λ5

TQ1
/5! = vρ2

N6 , v =
(
−960 (ζ (3))

2
+ 1392 ζ (6)

)
/5!

v = 0.24165315
Approx Range Result Abs. Error Rel. Error Conv. Time

4 0.369124755200 1.27472e− 01 5.27498e− 01 n/a 0.436 sec.
8 0.277887683000 3.62345e− 02 1.49944e− 01 n/a 0.706 sec.
16 0.251306808600 9.65366e− 03 3.99484e− 02 −1.779 1.247 sec.
32 0.244143969200 2.49082e− 03 1.03074e− 02 −1.892 2.524 sec.
64 0.242285702700 6.32553e− 04 2.61761e− 03 −1.947 6.007 sec.
128 0.241812518300 1.59368e− 04 6.59492e− 04 −1.973 11.445 sec.
256 0.241693134400 3.99844e− 05 1.65462e− 04 −1.987 26.365 sec.
512 0.241663151800 1.00018e− 05 4.13891e− 05 −1.993 52.259 sec.
1024 0.241655639100 2.48910e− 06 1.03003e− 05 −1.997 82.802 sec.

Richardson 0.241653131300 1.87000e− 08 7.73836e− 08 n/a n/a

Error: O
(
range−1.997

)

Table A.82: Order ρ2/N6 contribution from convolution Q2 of T82 of λ5

TQ2
/5! = vρ2

N6 , v =
(

2880 (ζ (3))
2 − 2304 ζ (2) ζ (3)− 5040 ζ (6) + 5760 ζ (5)

)
/5!

v = 3.75845924
Approx Range Result Abs. Error Rel. Error Conv. Time

4 3.632883263000 1.25576e− 01 3.34116e− 02 n/a 0.487 sec.
8 3.722392167000 3.60671e− 02 9.59624e− 03 n/a 0.723 sec.
16 3.748817808000 9.64143e− 03 2.56526e− 03 −1.760 1.356 sec.
32 3.755969261000 2.48998e− 03 6.62500e− 04 −1.886 2.775 sec.
64 3.757826762000 6.32478e− 04 1.68281e− 04 −1.945 5.325 sec.
128 3.758299897000 1.59343e− 04 4.23958e− 05 −1.973 10.606 sec.
256 3.758419278000 3.99620e− 05 1.06325e− 05 −1.987 22.078 sec.
512 3.758449260000 9.98000e− 06 2.65534e− 06 −1.993 47.574 sec.
1024 3.758456772000 2.46800e− 06 6.56652e− 07 −1.997 105.261 sec.

Richardson 3.758459280000 4.00000e− 08 1.06427e− 08 n/a n/a

Error: O
(
range−1.997

)

Table A.83: Order ρ2/N6 contribution from convolution Q3 of T82 of λ5

TQ3
/5! = vρ2

N6 , v = (−2312.622989828127694479048424344) /5!
v = −19.27185825

Approx Range Result Abs. Error Rel. Error Conv. Time
4 −19.544160820000 2.72303e− 01 1.41295e− 02 n/a 2.289 sec.
8 −19.335929820000 6.40716e− 02 3.32462e− 03 n/a 6.294 sec.
16 −19.289446870000 1.75886e− 02 9.12658e− 04 −2.163 22.680 sec.
32 −19.276973710000 5.11546e− 03 2.65437e− 04 −1.898 92.272 sec.
64 −19.273320390000 1.46214e− 03 7.58692e− 05 −1.772 332.928 sec.

Richardson −19.271389230000 4.69020e− 04 2.43370e− 05 n/a n/a

Error: O
(
range−1.772

)
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Table A.84: Order ρ2/N6 contribution from convolution Q4 of T82 of λ5

TQ4
/5! = vρ2

N6 , v = (2065 ζ (6)) /5!
v = 17.50677854

Approx Range Result Abs. Error Rel. Error Conv. Time
4 16.380355480000 1.12642e+ 00 6.43421e− 02 n/a 0.046 sec.
8 17.556398640000 4.96201e− 02 2.83434e− 03 n/a 0.102 sec.
16 17.851483540000 3.44705e− 01 1.96898e− 02 −1.995 0.080 sec.
32 17.775673880000 2.68895e− 01 1.53595e− 02 −1.961 0.175 sec.
64 17.660767170000 1.53989e− 01 8.79594e− 03 0.600 0.518 sec.
128 17.588675020000 8.18965e− 02 4.67799e− 03 −0.673 1.473 sec.
256 17.553832010000 4.70535e− 02 2.68773e− 03 −1.049 7.170 sec.
512 17.539138740000 3.23602e− 02 1.84844e− 03 −1.246 67.915 sec.
1024 17.533453940000 2.66754e− 02 1.52372e− 03 −1.370 251.376 sec.

Richardson 17.507633340000 8.54800e− 04 4.88268e− 05 n/a n/a

Error: O
(
range−1.370

)
Table A.85: Order ρ2/N6 contribution from convolution Q5 of T82 of λ5

TQ5
/5! = vρ2

N6 , v = (392.7936970747033426463316979430) /5!
v = 3.273280809

Approx Range Result Abs. Error Rel. Error Conv. Time
4 3.155210682000 1.18070e− 01 3.60709e− 02 n/a 0.805 sec.
8 3.249458923000 2.38219e− 02 7.27768e− 03 n/a 1.108 sec.
16 3.269072077000 4.20873e− 03 1.28578e− 03 −2.265 1.950 sec.
32 3.272657467000 6.23342e− 04 1.90433e− 04 −2.452 4.152 sec.
64 3.273216367000 6.44420e− 05 1.96873e− 05 −2.681 8.354 sec.
128 3.273282303000 1.49400e− 06 4.56423e− 07 −3.083 18.181 sec.
256 3.273284336000 3.52700e− 06 1.07751e− 06 −5.019 40.246 sec.
512 3.273282227000 1.41800e− 06 4.33205e− 07 0.053 112.137 sec.
1024 3.273281251000 4.42000e− 07 1.35033e− 07 −1.112 590.358 sec.

Richardson 3.273352974000 7.21650e− 05 2.20467e− 05 n/a n/a

Error: O
(
range−1.112

)
Table A.86: Order ρ2/N6 contribution from convolution Q6 of T82 of λ5

TQ6/5! = vρ2

N6 , v =
(
−1920 (ζ (3))

2
+ 2784 ζ (6)

)
/5!

v = 0.48330629
Approx Range Result Abs. Error Rel. Error Conv. Time

4 0.738249510500 2.54943e− 01 5.27498e− 01 n/a 0.408 sec.
8 0.555775366000 7.24691e− 02 1.49944e− 01 n/a 0.660 sec.
16 0.502613617200 1.93073e− 02 3.99484e− 02 −1.779 1.169 sec.
32 0.488287938300 4.98165e− 03 1.03074e− 02 −1.892 2.374 sec.
64 0.484571405400 1.26512e− 03 2.61763e− 03 −1.947 4.787 sec.
128 0.483625036600 3.18747e− 04 6.59513e− 04 −1.973 9.258 sec.
256 0.483386268800 7.99788e− 05 1.65483e− 04 −1.987 22.321 sec.
512 0.483326303700 2.00137e− 05 4.14100e− 05 −1.993 47.486 sec.
1024 0.483311278200 4.98820e− 06 1.03210e− 05 −1.997 90.698 sec.

Richardson 0.483306263200 2.68000e− 08 5.54514e− 08 n/a n/a

Error: O
(
range−1.997

)
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Table A.87: Order ρ2/N6 contribution from convolution Q7 of T82 of λ5

TQ7
/5! = vρ2

N6 , v =
(

768 (ζ (3))
2 − 1248 ζ (6)

)
/5!

v = −1.332746753
Approx Range Result Abs. Error Rel. Error Conv. Time

4 −1.487808882000 1.55062e− 01 1.16348e− 01 n/a 0.583 sec.
8 −1.405858764000 7.31120e− 02 5.48581e− 02 n/a 0.833 sec.
16 −1.359558426000 2.68117e− 02 2.01176e− 02 −0.824 1.492 sec.
32 −1.341480311000 8.73356e− 03 6.55305e− 03 −1.357 3.114 sec.
64 −1.335414752000 2.66800e− 03 2.00188e− 03 −1.576 6.292 sec.
128 −1.333530930000 7.84177e− 04 5.88392e− 04 −1.687 12.575 sec.
256 −1.332971463000 2.24710e− 04 1.68607e− 04 −1.752 24.422 sec.
512 −1.332809995000 6.32420e− 05 4.74524e− 05 −1.793 56.691 sec.
1024 −1.332764306000 1.75530e− 05 1.31705e− 05 −1.821 99.592 sec.

Richardson −1.332746732000 2.10000e− 08 1.57569e− 08 n/a n/a
Error: O

(
range−1.821

)

Table A.88: Order ρ2/N6 contribution from convolution Q8 of T82 of λ5

TQ8/5! = vρ2

N6 , v =
(

1536 (ζ (3))
2 − 2496 ζ (6)

)
/5!

v = −2.66549349
Approx Range Result Abs. Error Rel. Error Conv. Time

4 −2.975617762000 3.10124e− 01 1.16348e− 01 n/a 0.508 sec.
8 −2.811717529000 1.46224e− 01 5.48581e− 02 n/a 0.768 sec.
16 −2.719116851000 5.36234e− 02 2.01176e− 02 −0.824 1.406 sec.
32 −2.682960621000 1.74671e− 02 6.55306e− 03 −1.357 2.941 sec.
64 −2.670829502000 5.33601e− 03 2.00189e− 03 −1.576 5.677 sec.
128 −2.667061859000 1.56837e− 03 5.88397e− 04 −1.687 10.865 sec.
256 −2.665942927000 4.49437e− 04 1.68613e− 04 −1.752 24.667 sec.
512 −2.665619991000 1.26501e− 04 4.74588e− 05 −1.793 47.677 sec.
1024 −2.665528612000 3.51220e− 05 1.31765e− 05 −1.821 99.352 sec.

Richardson −2.665493462000 2.80000e− 08 1.05046e− 08 n/a n/a

Error: O
(
range−1.821

)
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A.6 High Order N Values

The values of λ1 and λ2 can be computed exactly up to arbitrary orders of N . This is used to

look for a pattern in the ρ components. It can be seen from these expansions that a new ρ order is

added for every odd N order starting with 3.

λ1

ρ2
=

4ζ(2)

N2
+

6ζ(6)

N6
+

40

2

ζ(8)

N8
+

36ζ(10)

N10

+
70980

691

ζ(12)

N12
+

107533

35

ζ(14)

N14
+

3445560

3617

ζ(16)

N16

+
133290276

43867

ζ(18)

N18
+

12118908560

1222277

ζ(20)

N20
+O

(
1

N21

)
(A.271)

λ2

ρ2
=8

ζ (3)

N3
+ 64

ζ (4)

N4
+ 32

ζ (2) ζ (3)

N5
− 80

ζ (5)

N5
− 4

ρ2ζ (5)

N5

− 12
ζ (6)

N6
+ 4

ρ2ζ (6)

N6
+ 1176

ζ (7)

N7
− 896

ζ (2) ζ (5)

N7

+ 272
ζ (4) ζ (3)

N7
− 16

ρ2ζ (2) ζ (5)

N7
+ 36

ρ2ζ (7)

N7
− ρ4ζ (7)

N7

+ 120
ζ (8)

N8
− 28

3

ρ2ζ (8)

N8
+ 4

ρ4ζ (8)

N8
+ 1488

ζ (6) ζ (3)

N9

− 14240
ζ (4) ζ (5)

N9
+ 24864

ζ (2) ζ (7)

N9
− 27040

ζ (9)

N9

+ 432
ρ2ζ (2) ζ (7)

N9
− 552

ρ2ζ (9)

N9
− 136

ρ2ζ (4) ζ (5)

N9

− ρ4ζ (9)

N9
− 4

ρ4ζ (2) ζ (7)

N9
− 1/2

ρ6ζ (9)

N9
+

1216

5

ζ (10)

N10

− 56

5

ρ2ζ (10)

N10
+

62

5

ρ4ζ (10)

N10
+ 4

ρ6ζ (10)

N10
+ 948904

ζ (11)

N11

+
22112

3

ζ (8) ζ (3)

N11
+ 641904

ζ (4) ζ (7)

N11
− 123744

ζ (6) ζ (5)

N11

− 927232
ζ (2) ζ (9)

N11
+ 6984

ρ2ζ (4) ζ (7)

N11
+ 12968

ρ2ζ (11)

N11

− 12000
ρ2ζ (2) ζ (9)

N11
− 744

ρ2ζ (6) ζ (5)

N11
− 94

ρ4ζ (11)

N11

− 34
ρ4ζ (4) ζ (7)

N11
+ 68

ρ4ζ (2) ζ (9)

N11
− 15

ρ6ζ (11)

N11

− 2
ρ6ζ (2) ζ (9)

N11
− 1/4

ρ8ζ (11)

N11
+O

(
1

N12

)
(A.272)
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