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ABSTRACT 
 

The Effect of Morphological Variations at the Human Ankle and Hip Joints on their 

Biomechanical Function 

Ramya Namani 

Sorin Siegler, Ph.D. 

 

 

The morphology of the articular surfaces of bones and the insertion sites of 

ligaments crossing anatomical human joints were reported to vary greatly amongst 

individuals. These morphological variations could be the main cause for the 

observed large variations in the joint mechanical function. The goal of this study is 

to explore the causal relationship between the joint morphology and mechanics in 

two specific joints- ankle and hip joint. To achieve this goal, six experimentally 

validated numerical models of the ankle joint complex, were developed from 

morphological data, obtained from magnetic resonance images of six cadaveric 

lower limbs and six numerical models of hip joints were developed from 

morphological data obtained from computer tomographic scans of six healthy hip 

joints. The morphology of the bone is systematically varied and the resulting 

mechanical function such as range of motion of the joint, flexibility of the joint and 

forces in the ligaments are compared with the change in morphology. Since all 

models used identical material properties and were subjected to identical loads and 

boundary conditions, it was concluded that the observed variations in mechanical 

behavior of the joint were due to variations in morphology. The results suggested 

that the morphological variations could be the main cause for the large variations 

observed in joint mechanics and could influence the mechanical consequences of 

ligament injuries and surgical procedures such as joint fusion and joint replacement.
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CHAPTER 1: INTRODUCTION 

 

The morphology of the articular surfaces of bones and the insertion sites of ligaments 

crossing anatomical human joints were reported to vary greatly amongst individuals. 

Similar high inter-subject variability has been reported for the passive mechanical 

characteristics of human joints. However, very few studies explored the causal relations 

between joint morphology and joint mechanical behavior. Preliminary studies from our 

laboratory provided early evidence for an existence of such causal relationship. In those 

studies image-based, subject specific, three dimensional models of the ankle were used to 

explore the causal relationship between various morphological parameters and 

mechanical behavior of the ankle joint. Identifying these causal relationships may have 

significant impact on clinical management of various musculoskeletal disorders and may 

guide the development of individualized, subject specific treatment procedures.  

 

Main Goal 

To explore the causal relationship between the variations in joint morphology and the 

variations in joint mechanics in two specific joints. 

1. Ankle Joint Complex– irregular joint 

2. Hip Joint- close to spherical joint 

These two joints represent two extremes of joint complexity with the hip being adequately 

represented by a simple ball-and-socket, three degrees of freedom joint and the ankle as a 

complex and irregular six-degrees-of-freedom joint. 
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Specific Aims  

1. To study the effect of change in orientation of Calcaneofibular ligament (CFL) on 

Range of Motion( ROM), flexibility and force in CFL 

Hypothesis: The Orientation of the CFL effects ankle kinematics and flexibility and 

force in CFL. 

 

2. To study the effect of change in morphology of sustentaculum tali on ROM, 

flexibility and force in CFL.   

Hypothesis: Shape of sustentaculum tali effects ankle kinematics and flexibility and 

force in CFL. 

 

3. The effect of variations in the geometry of the femur on interference pattern. 

Hypothesis: 

1. Change in femoral neck orientation effects patterns of interference 

2. The shape of proximal femur effects patterns of interference 
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CHAPTER 2: BACKGROUND 

 

Variations in Morphology 

Anatomical studies [1-3] on the human joints reported large inter-subject variations in 

morphology of bones and soft tissue attachment sites. Examples of the former include 

variations in the shape and inclination of the sustentaculum tali of the calcaneus [1, 3, 4], 

abnormal shape of femur and acetabulum leading to femoroacetabular impingement [2] 

while examples of the later include variations in size of the Anterior Tibiotalar Ligament 

and variations in orientation of the Calcaneo-Fibular Ligament (CFL) [3, 5]. 

 

Variations in Mechanics 

Experimental in vitro and in vivo biomechanical studies [6-9]  on the human ankle, hip 

and knee joints reported large variations in the mechanical behavior. Such variations 

were reported in range of motion [8-10], kinematic coupling [8],  orientation of an 

assumed fixed axis of rotation [6, 7] and variations in stiffness and flexibility 

characteristics [11]. Some studies [12, 13] reported that there is a restricted ROM in hips 

with femoroacetabular impingement compared to normal subjects. These variations 

were primarily attributed to variations in experimental techniques but no systematic 

studies into the nature and source of these inter-subject variations were reported. 

 

Morphology-Mechanics Relationship 

There were few studies in which the researchers have studied the relation between 

morphology and mechanical behavior in various human joints. Anderson et al [14] 
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studied that the effect of articular surface geometry of hip joint on cartilage stress. 

Eckhoff et.al, [15] studied the effect of variations in the knee joint axis of rotation on 

knee joint kinematics. Researchers have studied the relationship between the articular 

facets and range of motion of hand joints in the evolution of hand joint [16, 17] and found 

that the larger the difference in the curvature of the mutual facets, the greater the degree 

of movement. A previously developed image-based, subject-specific, numerical model of 

the ankle joint [18, 19], demonstrated that the large inter-subject variability in the 

stiffness characteristics of the ankle joint can be explained by the morphological 

variations in the shape of the sustentaculum tali. This provided an early indication 

suggesting the validity of the assumption that the inter-subject variability in the 

mechanical function of the ankle is causally related to inter-subject variability in the 

underlying bone and soft-tissue morphology.  

 

 

In the following section the variations in morphology, variations in mechanics and 

morphology-mechanics relationship in Ankle and hip joints will be discussed in detail 

specific to the specific aims of the study. 

 

Ankle Joint 

The ankle joint complex is a complex joint composed of four bones-tibia, talus, fibula and 

calcaneus, stabilized by several ligaments and traversed by a number of tendons. The 

unique design of the ankle makes it a very stable joint. This joint has to be stable in order 

to withstand 1.5 times your body weight when you walk and up to eight times your body 
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weight when you run. The muscles, tendons, and ligaments that support the ankle joint 

work together to propel the body. The articular surfaces of each bone are covered by 

cartilage which acts as cushion between the bones. Ankle joint complex is divided into 

two joints- ankle joint (talocrural joint) and subtalar joint (talocalcaneal joint) ( 

Figure 1). 

The ankle joint is a hinge joint. This joint plays a major role in dorsiflexion and plantar 

flexion. The ankle joint is composed of the three bones: fibula (calf bone), tibia (shin 

bone), and talus (ankle bone). The tibia and fibula form the ankle mortise which consists 

of the medial and lateral malleoli [20] . In the distal end of the ankle mortise sits the 

trochlea tali, the upper surface of the talus. This allows the articular surfaces to glide upon 

each other and assures the cartilage surfaces to move freely. The ankle joint is bound by 

the strong deltoid ligament and three lateral ligaments: the anterior talofibular ligament, 

the posterior talofibular ligament, and the calcaneofibular ligament. 

The bony anatomy of the subtalar joint (SJ) is less complex as it basically consists of two 

bones-talus and calcaneus. This joint plays major role in the inversion and eversion 

motion. The main ligament of the joint is interosseous ligament between talus and 

calcaneus.  It runs through the sinus tarsi, a canal between the articulations of the two 

bones. The other ligaments that form weaker connections between talus and calcaneus are 

anterior talocalcaneal, posterior talocalcaneal, medial and lateral talocalcaneal ligaments.   

http://en.wikipedia.org/w/index.php?title=Sinus_tarsi&action=edit&redlink=1
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a) Ankle and Subtalar joints (Ankle Anatomy [21]) 

 

b) Sagittal cross-section of Ankle (1, tibia; 2, talus; 3, calcaneus; 4, navicular; 5, deep 

component of tibiofibular ligament forming a labrum; 6, anterior adipose body with large 

anterior joint cavity) (Sarrafian, 1993 [3]) 

 

Figure 1. Ankle joint anatomy 
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Variations in Morphology of Bones in Ankle Joint 

Distal Tibia 

The lower end of the tibia is formed by five surfaces: inferior, anterior, posterior, lateral 

and medial surface (Figure 2). The inferior surface articulates with the trochlear surface 

of the talus.  The lateral border of the tibia  is  larger  than  the  medial  and  the  

anterior  border  is  longer  that  the  posterior. Geometrically, this surface is a section 

of a frustum of a cone with an average medial conical angle of 22o±4o ranging from 0o to 

35o [3]. 
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Figure 2. Tibia-General features 

A) Anterior aspect of left distal tibia.  (B) Posterior aspect of distal tibia.  (C) Lateral aspect of distal 

tibia. (D) Medial aspect of distal tibia.  (E) Lateral aspect of medial malleolus.  (F) Inferior view of 

distal tibia. 1, medial malleolus; 2, sulcus for tibialis posterior tendon; 3, anterior colliculus; 4, 

intercolliculus groove; 5, posterior colliculus; 6, anterior tibial tubercle; 7, posterior tibial tubercle 

(Sarrafian, 1993 [3]). 
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 In any position of talus, the tibial plafound covers only two-thirds of the talar surface. 

With the long axis of tibia, the tibial plafound makes an angle of 93.3 degrees ±3.2 

degrees. 

 

Talus  

Talus is the intercalated bone located between the ankle bimalleolar fork and the tarsus. 

The superior face forms the ankle joint, or tibiotalar joint, with the tibia plafond and 

lateral mallelous of the fibula. The inferior face forms the subtalar joint with the 

calcaneus. The talus is divided into three distinct regions: the body, the neck, and the 

head [3]  (Figure 3). 

The body of the talus has five surfaces: superior, lateral, medial, posterior, and inferior. 

The superior or trochlear surface of the talus is pulley shaped and articulates with distal 

surface of tibia. The lateral segment of the surface is wider than the medial. The medial 

border is straight and the lateral border is oblique, so the trochlear surface is wedge 

shaped and narrower posteriorly. 

The length and width of the talus was measured for 100 dry tali. The average length (L) 

was 48mm, with a maximum of 60mm and a minimum of 40mm. The average width (W) 

was 37mm with a maximum of 45mm and a minimum of 30 mm [3] (Figure 4).  

 

The body and the neck of the talus are not coaxial. In the horizontal plane, the neck shifts 

medially and makes an angle of declination with the long axis of the trochlea tali.  In 

sagittal plane, the neck is deviated downward relative to the talar body and makes an 

angle of inclination (Figure 5). 
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Figure 3. Talus- General features. 

A) Lateral aspect.  (B) Medial aspect.  (C) Superior aspect.  (D) Inferior aspect.  (E) Anterior aspect. 

(F) Posterior aspect. (1, articular surface - facies malleolus lateralis; 2, cervical collar; 3, articular 

surface - facies  articularis  navicularis;  4,  5,  tubercles  for  insertions  of  anterior  talofibular  

ligaments;  6,  lateral process; 7, posterolateral tubercle; 8, oval surface for insertion of talotibial 

component of deltoid ligament; 9, articular surface - facies malleolaris medialis; 10, talar neck; 11, 

posteromedial tubercle; 12, tubercle of insertion of deltoid ligament; 13, segment of talar neck 

located within talonavicular joint; 14, segment of talar neck located within talotibial joint; 15, 

extra-articular segment of talar neck where a bursa may be found against which glides medial root 

of inferior extensor retinaculum; 16, sinus tarsi; 17, canalis tarsi; 18, anterior calcaneal articular 

surface of the talar head; 19, articular segment of talar head corresponding to superomedial and inferior 

calcaneonavicular ligaments; 20, middle calcaneal articular surface of talar neck; 21, posterior 

calcaneal articular surface of the talar body; 22, canal of the flexor hallucis longus tendon; 23, 

trochlear surface; 24, anteromedial extension of trochlear)(Sarrafian, 1993[3]). 
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Figure 4. Length and Width of talus (Sarrafian, 1993 [3], modified). 

 

 

 

Figure 5. Angle of Declination (c) and Angle of Inclination (e) Angle of Talar neck relative to the 

body. (Sarrafian, 1993 [3], modified) 

 

 

 

The morphology of the trochlear surface resembles to a frustum of a cone whose apex 

is directed medially and whose apical angle varies considerably from individual to 
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individual, 24 degrees ± 6 degrees with a range of 0 degrees to 38 degrees [22] (Figure 

6). According to Inman’s assumption the axis of rotation of talus within the mortise is a 

fixed axis, which is the intermalleolar axis. Later, It has been shown by many researchers 

[8, 10, 23-25] that the axis of rotation of the talus within the mortise is not about a fixed 

axis, rather it rotates about a variable axis in all three planes (dorsi-plantar flexion, 

inversion-eversion, and internal-external rotation) (Figure 7). 

 

 

 

Figure 6. Trochlea of talus-variations in apical angles of conical surfaces (Inman, 1991[22]) 
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Figure 7. Variable axis of rotation of Ankle joint. 

Coronal and Sagittal projections of Plantar-Dorsiflexion, Pronation-Supination, and Medial-Lateral rotation 

axes (Lundberg, 1989[10]) 

 

 

 

 

The inferior surface of the talus generally has three articular facets: anterior, medial, and 

posterior. However, many variations of the articular facets have been observed         

Figure 8). The common configuration of articular surface is having four distinct surfaces 

as shown in Figure 8A. In other instances, two surfaces fuse through a direct anterior 

extension from the posterior calcaneal surface. 
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         Figure 8. Talus- Variations of the inferior articular surfaces 

(A) Common configuration of the articular surfaces.   (B) Posterior extension of the middle 

calcaneal surface.  (C) (I) moderate posterior extension of middle calcaneal surface.  (II) Marked 

posterior extension of middle calcaneal surface.   (III) Fusion (5) of all articular surfaces, 

obliterating the tarsal canal and a segment of the sinus tarsi.  (D) Fusion (5) of the middle and 

posterior calcaneal surfaces on the medial aspect of the tarsal canal, which is still maintained.  (1, 

anterior calcaneal articular surface of the talar head; 2, middle calcaneal articular surface of talar 

neck; 3, articular segment of talar head corresponding to superomedial  and  inferior 

calcaneonavicular  ligament;  4,  posterior  calcaneal  articular  surface  of  talar body) (Sarrafian, 

1993[3]). 

 

 

Calcaneous 

The calcaneus, also called the heel bone, is a large bone that forms the foundation of the 

rear part of the foot. The calcaneus connects with the talus and cuboid bones. The 

connection between the talus and calcaneus forms the subtalar joint. Figure 9 shows that 

the lateral, medial, superior, inferior and anterior surfaces of calcaneous.  
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The calcaneus has several functional morphological features that vary from subject to 

subject such as: configuration of the anterior, middle, and posterior articulating facets, 

inclination of the posterior articular surface, and inclination and size of the 

sustentaculum tali. 

The length, width, height and inclination angle of the calcaneus vary between subjects 

(Figure 10 and Figure 11).  In a study with 50 calcanei, the average length (L) is 75 mm 

with a minimum of 48 mm and a maximum of 98 mm. The average width (W) is 40 

mm with a minimum of 26 mm and a maximum of 53 mm. The average height (H), 

approximately 50% of the length, is 40 mm with a minimum of 33 mm and a maximum 

of 47 mm [3]. The average value of inclination angle of the posterior calcaneal surface is 65 

degrees (min=55 degrees, max=75 degrees). 
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       Figure 9. Calcaneus-General features 

(A) Lateral surface.  (B) Medial Surface.  (C) Superior surface.  (D) Inferior surface.  (E) Anterior 

surface. (F) Posterior surface. (1, great apophysis; 2, trochlear process; 3, eminentia 

retrotrochlearis; 4, lateral tuberosity;  5,  medial  tuberosity;  6,  canal  for  flexor  hallucis  longus  

tendon;  7,  medial  surface  of sustentaculum tali; 8, posterior border of sustentaculum tali; 9, fused 

anterior and middle talar articular surfaces; 10, posterior talar articular surface; 11, canalis tarsi; 12, 

sinus tarsi - bony eminence; 13, sinus tarsi - fossa calcanei; 14, sinus tarsi - insertion surface of 

bifurcate ligament; 15, posterior third of superior surface; 16, anterior tuberosity of inferior surface; 

17, longitudinally striated inferior surface; 18, coronoid fossa; 19, cuboidal articular surface; 20, 

medial calcaneal canal; 21, upper third of posterior surface, corresponding to pre-Achilles bursa; 22, 

23, middle and lower thirds of posterior surface, corresponding to insertion of Achilles tendon) 

(Sarrafian, 1993[3]). 
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         Figure 10. Length and Width of calcaneus 

(A) Superior View.  (B) Lateral View. (L, length; W, width; H, height) (Sarrafian, 1993[3]) 

 

 

 

 

 
           Figure 11. Inclination angle of the posterior calcaneal surface (Sarrafian, 1993[3]). 

 

 

Variations in the articular facets of the calcaneus have been described by many authors 

[1, 26-28]. Bunning and Barnett [26] concluded that the Calcanei are classifiable into 

three types according to the number of superior articular facets present. In type A, the 

anterior and middle surfaces are separate, in type B the anterior and middle facets are 
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confluent and in type C calcanei the anterior, middle and posterior facets are united into a 

single facet (Figure 12). 

This morphological variability of the calcaneal facets could result from differences in gait 

or other habit influencing these articular areas post-natally or it could be indicative of 

genetically determined variations. Sarrafian divided these into few more categories          

Figure 13). 

 

 

Figure 12. The three types of calcaneus (Bunning, 1965[26]). 
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         Figure 13. Variations of the articular surface of calcaneus 
1, anterior talar articular surface; 2, middle talar articular surface; 3, posterior talar articular 

surface; 4, fused anterior and middle talar articular surfaces; 5, fused anterior, middle, and 

posterior talar articular surfaces (Sarrafian, 1993[3]). 

 

 

The frequencies of occurrence of variations in Calcanei by various authors into these 

three classes are shown in the Figure 14. 
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Figure 14. Frequency of occurrence of variations in calcanei (Sarrafian, 1993[3]). 

 

 

Sustentaculum Tali 

The Sustentaculum tali is a bracket like projection, triangular with a posterior base and 

an anterior apex. This surface projects anteromedially and is inclined downward and 

anteriorly at an average angle of 46o (maximum 60o, minimum 30o) (Figure 15) [3].  
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Figure 15. Variable inclination of sustentaculum tali (AOB) (Sarrafian, 1993[3]). 

 

The width and length of sustentaculum tali are variable. The width of the sustentaculum 

tali was on an average of 13mm (maximum 18mm, minimum 8mm).  The ratio of the 

sustentacular width to total width of os calcis at the same level is on average 0.33 

(maximum 0.47, minimum 0.23) [3]. These values may be correlated with the supportive 

function of the sustentaculum tali relative to the talar head. Incompetent sustentaculum 

tali may fall into a group with minimum value or lower. The sustentaculum tali can also 

be classified as long or short. A long sustentaculum is continuous through its border with 

the processus anterior, which is then in association with a fusion of the facies articularis 

media and anterior. A short sustentaculum ends suddenly anteriorly and a notch separates 

the two articular surfaces (Figure 13). 
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Variations in Orientation of Ligaments 

 

The ankle joint complex is stabilized by various ligaments. The ankle joint, is composed 

of the tibio-talar articulation. It is stabilized laterally by the anterior talo-fibular ligament 

(ATFL) and the calcaneofibular ligament (CFL) medially by the deltoid ligament, and 

posteriorly by the robust posterior talofibular ligament (PTFL). The ATFL lies within the 

capsular layers but is a distinct structure. The CFL crosses both ankle and subtalar joints.  

All of the ligaments of the ankle joint complex vary in structure, insertion, orientation, 

and size from subject to subject.  Of particular interest to this study is the calcaneofibular 

ligament of the lateral collateral ligament and their susceptibility to inversion injuries. 

Inversion injuries to the ankle are among the most common problems in musculoskeletal 

care, representing 10% of all visits to the emergency room [29, 30].  The incidence of 

inversion ankle injuries is reported as one in 10,000 people per day. Up to 20% of 

patients sustaining an inversion injury to the ankle will experience persistent symptoms 

such as functional instability, recurrent sprains or chronic pain [31]. 

 

Calcaneofibular Ligament 

The calcaneofibular ligament (CFL) is a cordlike oval ligament 20 mm to 30 mm in 

length and 3 mm to 8 mm in diameter [3, 32] (Figure 16). 
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Figure 16. Calcaneofibular ligament 

 (A) Plantarflexion; (B) Neutral; (C) Dorsiflexion. (a, calcaneofibular ligament; b, anterior talofibular 

ligament.) (Inman, 1991[22]). 
 

 

CFL runs from the tip of the lateral malleolus of the fibula downward and slightly 

backward to a tubercle on the lateral surface of the calcaneus. The location of the 

calcaneal insertion is variable.  In a study of 750 calcanei, the typical location in neutral 

position (Figure 16) occurs in 64.5%; anterior location, 25.5%; posterior location, 5.5%; 

downward location, 4.5% [33]. The variable insertions result in variable obliquity of the 

ligament orientation relative to the long axis of the fibula [3]. In a study based on 30 

dissected specimens and observing 55 ankles during surgery, the angle between the CFL 

and the long axis of fibula varied in different subjects-74.66% has orientation of 10o to 

45o; 18.66% has orientation of 0o; 45 subjects has 80o to 90o orientation; 2.66% are 

fanshaped [5] (Figure 17).   

 

http://en.wikipedia.org/wiki/Fibula
http://en.wikipedia.org/wiki/Calcaneus
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Figure 17. Calcaneofibular ligament - variable orientation (Sarrafian, 1993[3]). 

 

Variations in Mechanics 

 

The passive kinematic properties of the ankle are the result of a complex interaction 

between bony articular morphology and ligament constraints. These properties are 

reported to be variable among individuals. The basic patterns of motion however, are 

primarily determined by the geometric features of the articulating surfaces of the talus, 

and of the tibia and fibula, i.e. the trochlear surface and the tibial/fibular mortise. 

 

Terminology of the Motion 

The main motions at ankle joint complex are Dorsiflexion-Plantarflexion, Inversion-

Eversion, Internal-External rotations. The motion about intermalleolar axis (Z axis)is the 

Dorsi-Plantar flexion, the motion about long axis of tibia ( Y axis) is the Internal-External 

Rotations, the motion perpendicular to the Z and Y axis is Inversion-Eversion motion 

about X axis (Figure 18). 
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Figure 18. Axes of motion of the Ankle joint (Sarrafian, 1993[3],modified)  

 

 

Table 1 Range of Motion – Dorsi / Plantarflexion 

Dorsiflexion (deg) Plantarflexion (deg) References 

20-25 35-40 [34] 

21.9-27.9 21-36 [7] 

20.75-27.25 36.6-45.24 [8] 

 

 

Table 2. Range of Motion – Internal / External 

In ternal (deg)  External (deg)  References 

22-36 16-28 [8]  
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Table 3. Range of Motion - Inversion / Eversion 

Inversion (deg) Eversion (deg) References 

12.5-19.5 11.42-20.32 [8] 

18-20 10-14 [34] 

30 20 [3] 

 

 

Ankle joint Motion 

Dorsiflexion and plantar flexion are the major components of the motion at the talocrural 

joint. The ROM of normal ankle joint  is 10.2 degrees dorsiflexion (min=6 degrees to 

max=16 degrees) and 14.2 degrees plantarflexion (min=13 degrees, max=17 degrees) 

[35], 5-6 degrees external rotation [36, 37], 8.2 degrees (standard deviation =0.5 degree), 

13.8 degrees inversion (standard deviation=1 degree), 5 degrees inversion (standard 

deviation = 0.6 degrees) [37].   

 

The ankle joint is considered initially as a one-degrees of freedom joint with a fixed axis 

of rotation [38]. Later several studies [8, 39] concluded that the axis of rotation of the 

talus within the mortise is not about a fixed axis, rather, it rotates about a variable axis in 

all three planes (dorsi-plantar flexion, inversion-eversion and internal–external rotation) 

(Figure 19). 
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Figure 19. Ankle joint- multiple axis of rotation (Sarrafian, 1993[3]). 

 

Subtalar joint Motion 

The axis of subtalar joint is oblique, oriented upward, anteriorly and medially [40, 41]. 

The motion of subtalar joint can be studied by vectorising the motion into three 

components: longitudinal, vertical and transverse. Later the motion at subtalar joint is 

studied by describing the motion as that of a screw [41]. The subtalar motion is variable. 

In inversion motion the ROM is 25 degrees to 30 degrees and in eversion the ROM in 5 

to 10 degrees [3]. 

 

Ankle Joint Coordinate System 

 

Ankle joint complex is composed of talocrural and the subtalar joints. The coordinate 

system for these joined is defined considering the motions of the respective bones.  

Ankle Joint (Talocrural Joint): The articulation formed between the talus and the 

tibia/fibula. 

Subtalar Joint (Talocalcaneal Joint): The articulation between the talus and the calcaneus. 

Ankle Joint Complex: The combination of ankle joint and subtalar joint. 
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The major motions about an anatomical joint coordinate system are rotations; 

plantarflexion / dorsiflexion, inversion / eversion, and internal / external rotation. 

Plantar/Dorsiflexion is about the Intermalleolar axis (Z), internal/external motion is about 

the line coincident with the long axis of tibia-fibula (Y) and the inversion/eversion is 

about the common perpendicular to Z and Y axis [42]. 

 

Figure 20. Joint Coordinate System of Ankle Joint Complex 

α–dorsiflexion/plantarflexion, β-inversion/eversion, γ-internal/external, q1-medial/lateralshift, q2-

anterior/posterior drawer, q3-compression/distraction (Wu, 2002[42]). 

 

 

Effect of morphology on Ankle Joint motion  

Initially the motion of the ankle joint is studied by approximating the surface of talus to 

cylinder. Later Inman [22] proposed that the trochlea of the talus is rarely a section of 

cylinder but is a section of a frustum of a cone whose apex is directed medially whose 
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apical angle varies from individual to individual. This concept is relied on assumption 

that the talocrural joint as a one-degree freedom joint with a fixed axis of rotation. Later 

several studies concluded that the axis of rotation of the talus within the mortise is not 

about a fixed axis, rather, it rotates about a variable axis in all three planes (dorsi-plantar 

flexion, inversion-eversion and internal–external rotation). 

              The motion of ankle joint depends mainly on the surface of talus.  From 

dorsiflexion to plantarflexion at the ankle joint, the articulating surfaces of the talus and 

malleoli remain in contact. Due to the conical contour of trochlea as defined by 

Inman[22], Plantar flexion of the talus induces a functional varus or supination [43]. 

Barnett and Napier [23] correlated the wedge contour of the talus to internal rotation. 

During plantar flexion the medial surface of talus has tendency to separate from medial 

malleolar surface which is neutralized by the internal rotation produced due to the wedge 

surface of talus trochlea. 

 

Effect of Morphology on Subtalar Joint motion  

The axis of subtalar joint is oblique, oriented upward, anteriorly and medially.[22, 41]. 

The motion components at the subtalar joint can be determined from a simple vectorial 

analysis of the subtalar joint axis components, which are longitudinal, vertical and 

transverse. The greater longitudinal component generates supination-pronation motion, 

the vertical component generates abduction-adduction, and the lesser transverse 

component generates flexion-extension. Later, Manter [41] described the motion a the 

subtalar joint as screw motion. The motion at the subtalar joint is guided by the contour 

of the articular surfaces, their orientation, and the intrinsic and extrinsic ligaments.  The 
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posterior calcaneal surface may be considered as a male ovoid surface and the posterior 

talar articular surface as female ovoid. A male ovoid surface moving on a female ovoid 

surface slides, rolls and spins (Figure 21). The rolling is in a direction opposite to sliding. 

A female ovoid surface moving on a male ovoid surface slide rolls and spins (Figure 22). 

The rolling is in the motion of sliding. A convex male surface oriented transversely will 

generate only the motion of flexion-extension, where as a surface oriented longitudinally 

will generate only the motion of supination-pronation. The degree of orientation of the 

articular surfaces affects the amplitude of the motion components. The posterior 

calcaneal surface has an inclination angle with an average of 65 degrees (min=55 

degrees, max=75 degrees). A larger inclination angle provides more flexion component 

to the motion. The posterior talar articulating surface has declination angle with average 

37 degrees (min=26 degrees, max=50 degrees). A greater declination angle orients the 

surface in a longitudinal direction that will increase the flexion-extension component, 

whereas a smaller declination angle orients the surface more transversely and increases 

the supination-pronation component.  

 

                                                   Slide                                      Roll                                Spin 

Figure 21.  Subtalar joint motion- A male ovoid surface moving on a female ovoid surface (Sarrafian, 

1993[3]). 
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                                                                     Slide                                     Roll                                 Spin 

Figure 22. Subtalar joint motion - A female ovoid surface moving on a male ovoid surface (Sarrafian, 

1993[3]). 

 

Effect of Ligament Orientation on Mechanics:  

The tension in CFL ligament is reported to be variable. In some subjects this ligament is 

tensed in dorsiflexion and relaxed in plantarflexion. However, in other subjects the effect 

is reversed or no change in tension [3]. This variability in tension in CFL may be 

explained due to the variability in the insertion sites of the ligament [3, 5].  

 

Hip Joint Morphology 

Hip joint is a ball and socket joint at the junction of pelvis and leg. The rounded head of 

femur forms the ball which fits in the cup shaped socket called acetabulum (Figure 23).  

The joint is stabilized due to the ball and socket joint fit, strong ligaments gives 

additional stability for the joint. The femoral head comprises nearly two-thirds of a 

sphere, whereas the mating acetabulum forms a hemisphere of the same diameter. The 

cartilaginous surfaces of the femur and the acetabulum are not perfectly conforming, in 

that the femoral head corresponds more to a conchoids than a sphere. This permits the hip 
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joint to undergo movement in an assortment of motion axes that allow flexion-extension, 

abduction-adduction, and internal-external rotation [44]. The femoral head and 

acetabulum are covered by a cartilage. The thickness of cartilage varies between 1.15 mm 

and 1.46 mm [45]. The acetabular rim is covered by labrum with variable thickness from 

2-3 mm [46]. The labrum is wider and thinner in the anterior region and thicker in the 

posterior region. The hip labrum has many functions, including shock absorption, joint 

lubrication, pressure distribution, and aiding in stability, with damage to the labrum 

associated with osteoarthritis.  

 

Figure 23. Hip joint anatomy (Hip Anatomy[47]). 
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Variations in Morphology of Hip Joint- Effect on Joint function  

 

Ideal hip joint is a ball and socket joint. Any changes in the morphology affecting the 

sphericity of joint may limit the range of motion causing cartilage wear and tear and 

leading to osteoarthritis of the joint. Dysplasia and Femoroacetabular impingement are 

two pathological conditions that are caused due to abnormal morphology of hip joint. In 

this study the effect of variations in the morphology of the hip joint on Femoroacetabular 

interference pattern is being studied. 

 

Femoroacetabular Impingement (FAI)  

Femoro-Acetabular Impingement (FAI) is defined as the interference between the 

femoral head-neck junction and the acetabular rim often leading to osteoarthritis [48-50]. 

Previous studies [48, 49, 51] have suggested that the early interference at the hip joint 

and FAI are due to abnormal morphology of hip joint having non-spherical femur and or 

excessive acetabular coverage can restrict range of motion and leading to pathological 

conditions such as Femoroacetabular Impingement (FAI), dysplasia etc. In a study with 

more than 600 surgical dislocations and after damage pattern inspection, Ganz et al [48] 

proposed that FAI as a mechanism for the development of early osteoarthritis for most 

non dysplastic hip joints. Surgical treatment of the femoroacetabular impingement 

focuses on improving the clearance for hip motion.  

 

 

 



34 
 

  

Physical Examination 

 

Examination of the hip often reveals limitation of motion particularly the internal rotation 

and adduction in flexion. This test is done with the patient supine, the hip is rotated 

internally as it is flexed passively to approximately 90 degree and adducted (Figure 24) 

[48]. Forceful additional internal rotation induces shearing forces at the labrum and 

creating a sharp pain when there is a chondral lesion, a labral lesion, or both [48].  

 

 

Figure 24. Femoro Acetabular Impingement-Clinical assessment.  

90 degrees flexion with adduction and internal rotation (Tannast, 2007[2]). 
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Radiographic Assessment  

 

The next step in FAI assessment is taking an orthograde AP radiographs with patient in 

standing position. Careful observation of these radiographs reveal bony prominence in 

the anterolateral head and neck junction, reduced offset of the femoral head-neck junction 

and changes on the acetabular rim such as double line that is seen with rim ossification.  

Magnetic Resonance Image data are very sensitive and specific for detecting non 

spherical femoral head, labral and chondral lesions. 

 

Types of FAI 

 

Depending on the pattern and various stages of chondral and labral injuries FAI is 

distinguished into three types (Figure 25). 

1. CAM FAI: Cam FAI is caused by abnormal femoral head with increasing radius 

against the acetabular rim during hip flexion leading to chondral abrasion and 

labral detachment. 

2. Pincer FAI: This type of impingement occurs because extra bone extends out over 

the normal rim of the acetabulum. The labrum can be crushed under the 

prominent rim of the acetabulum. 

3. Mixed type: Most patients (86%) have a combination of both forms of 

impingement, which is called “mixed pincer and cam impingement,” with only a 

minority (14%) having the pure femoroacetabular impingement forms of either 

cam or pincer impingement [49].  
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Figure 25. Types of Femoroacetabular Impingement. 

 a) Normal hip joint with sufficient joint clearance for unrestricted range of motion. b) Pincer impingement, 

with excessive acetabular over coverage. c) CAM impingement, with aspherical femoral head near femoral 

head-neck junction (Tannast, 2007[2]). 

  

FAI Surgery 

Surgical treatment for treating CAM impingement comprise of mainly removing any 

non-spherical portion of the head, thereby improving the neck offset and subsequent 

clearance. This process is called femoral neck osteoplasty. Pincer impingement is treated 

by reducing the anterior over coverage bony prominence at the acetabular rim [48]. 
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Post-surgical results    

In both open and arthroscopic surgical techniques FAI surgery success depends on 

complete restoration of head-neck offset and elimination of pain in the joint in extreme 

range of motion. Failure to completely address the bony impingement lesions of the hip is 

the most common reason for unsuccessful hip arthroscopy and subsequent revision 

surgery [52-54]. On the other hand, over resection may lead to hip instability, dysplasia, 

and dislocation [54, 55]. Phillip et al, [52] studied hip revisions on 37 hips. In this study, 

36 of 37 patients had radiographic evidence of impingement that was either unaddressed 

or inadequately addressed at the time of index procedure and concluded that 13% of hip 

arthroscopies performed at this major referral center were revision arthroscopies for 

persistent impingement. In another study, Heyworth et al, [53] reviewed 24 revision hip 

arthroscopy cases performed in 23 patients. In 13 of 24 cases (54%), patients had no 

significant improvement at any point after the primary hip arthroscopy. Unaddressed or 

undertreated bony impingement lesions were found in 19 of 24 cases (79%) and 

concluded that Failure to address bony impingement lesions of the hip and a tight psoas 

tendon are key factors in unsuccessful hip arthroscopy and may require revision surgery 

and failure of labral repairs may be the result of unrecognized bony impingement at the 

time of initial surgery. 

The post-surgical revisions suggests that there might be other parameters that other 

morphological abnormalities, in addition to the ones addressed by the surgery may be 

contributing to the early interference conditions.  

Previous studies [12, 56] used computer 3D models of hip to study the kinematics of hip 

joint in presence of FAI. Similar approach is followed in this model based study to 
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evaluate the effect of variations in a number of morphological parameters of the proximal 

femur and the acetabulum on patterns of interference at the hip are investigated using a 

computerized 3D model of hip joint. 

 

Hip Joint Mechanics 

The major motions about hip joint anatomical joint coordinate system are rotations 

flexion/extension, abduction/adduction and internal/external rotations. Flexion/extension 

is about the line joining Anterior superior iliac spine (ASIS) points (Z), internal/external 

motion is about the line coincident with the long axis of tibia-fibula (Y) and the 

abduction/adduction is about the common perpendicular to Z and Y axis ( Figure 26) 

[42]. 

Hip joint flexion varied from 90 to 150 degrees (mean 120 degrees), extension from 0 to 

35 degrees (mean 9.5 degrees), abduction from 15 to 55 degrees (mean 38.5 degrees), 

adduction from 15 to 45 degrees (mean 30.5 degrees), internal rotation from 20 to 50 

degrees (mean 32.5 degrees), and external rotation from 10 to 55 degrees (mean 33.6 

degrees) [9, 57]. 

 The hip joint plays a significant role in the human osteoarticular system, both in terms of 

locomotion and as a load-bearing joint for the torso by transmitting weight to different 

areas of the pelvis. During normal activities, the peak value of the joint force averages 2.1 

to 5.5 body weight (BW), and they may reach values in excess of 8 BW during accidental 

stumbling [58]. 

There were studies in the past which describes the relation between the change in the 

morphology on interference pattern showing that the joints with FAI have restricted range 
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of motion [12, 49]. In a computer model based study Bedi et al[12], described that the 

surgical treatment improves hip joint kinematics. Similar technique is used in this model 

based study to find the relationship between the morphological parameters of the hip joint 

such as femoral neck-shaft angle, alpha angle, femoral anteversion and pistol grip 

deformity on the interference pattern of hip joint. 

 

 

Figure 26. Joint Coordinate System of hip joint (Wu, 2002[42]). 

 

Determining Center of hip Joint:  

The normal human hip joint is treated as a ball and socket joint, with the center of 

rotation defined as the center of hip joint. The location of the hip center of rotation has 

been estimated using either a ‘‘functional’’ approach [59, 60] or a ‘‘prediction’’ approach 
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[61-63]. The prediction approach uses regression equations (REs) with the independent 

variables describing the geometry of the pelvis. This approach uses external bone 

reference according to which they determine the position of the center of rotation, using a 

series of empirical equations. 

 In the functional approach the hip joint center is calculated as the  center of the best 

sphere described by the trajectory of markers placed on the thigh during several trials of 

hip rotations.[64]. 

In this study, the center of rotation hip joint is determined as the average of the centers of 

spheres fitting the femur and acetabulum. 

 

Hip Morphological Parameters 

The morphological parameters such as femoral neck-shaft angle, CEA angle, extrusion 

index, femoral anteversion/retroversion, alpha angle, neck offset angle, pistol grip 

deformity are considered as crucial parameters for femoroacetabular impingement [49, 

51]. 

 

Femoral neck-shaft angle  

The angle between femoral neck and femoral shaft in the sagittal plane is Femoral-neck-

shaft angle. The normal range of femoral neck-shaft angle is 126o-139o [65, 66]. Femoral 

neck-shaft angle less than 125o is defined as coxavara [51] and neck-shaft angle greater 

than 140o is defined as coxavalga [66, 67] (Figure 27). It was found that coxavara has 

been recognized as a cause of cam impingement [51]. The normal neck-neck-shaft angle 

produces the lowest stress on the femoral neck and acetabulum because of the orientation 
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of an optimal lever arm that produces a mechanical advantage for biomechanical function 

[66]. 

 

a) Coxavara (<125o)                          b) Normal (126o-139o)                     c) Coxavalga (>140o) 

Figure 27. Variations in femoral Neck-Shaft angle (Hammer, 2007[68]). 

 

Through years the conditions coxavara and coxavalga have been corrected surgically by 

following intertrochanteric osteotomy [69, 70].  In this procedure a wedge is cut near the 

femoral neck region and the femoral head is aligned on the cut plane of femoral shaft 

(Figure 28). 
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Figure 28 Intertrochanteric Osteotomy of femur (Cordes, 1991[70]). 

Pre-operative planning to correct coxavara (a) tracing of the pre-operative radiograph, P represents the 

plane of the growth plate, H is a horizontal line drawn several centimeters below the lesser trochanter. A 

44o closing wedge osteotomy is required to correct the inclination of the growth plate to 16o b) after the 

osteotomy the triangular metaphyseal fragment and the displaced femoral head are supported by the calcar 

femorale. 

 

Femoral Anteversion or Angle of Torsion  

Femoral neck anteversion is defined as the angle between an imaginary transverse line 

that runs medially to laterally through the knee joint and an imaginary transverse line 

passing through the center of the femoral head and neck. The normal value of femoral 

anteversion is 15 degrees-20 degrees (Cibulka, 2004). 

 

Femur is said to have excessive or increased femoral anterversion if angle of anteversion 

is greater than 20 degrees and if the anteversion angle is less than 15 degrees the 
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condition is femoral retroversion (Figure 29). The condition femoral retroversion has 

been recognized as a cause for cam impingement.   

  

 

Figure 29. A) Normal hip B) Excessive Femoral Anteversion C) Femoral Retroversion (Clippinger, 

2007[71]). 

 

 

In order to correct femoral  retroversion  and excessive anteversion the surgical process 

derotational osteotomy is followed in which the femoral shaft is cut and rotated till the 

anteversion angle falls to normal range and fixed at that position with plates and screws 

(Figure 30)[72]. 

a) After performing the osteotomy, the femur is rotated to achieve the desired 

correction. 

b) The osteotomy is then stabilized with an intramedullary nail to maintain the 

correction while the bone heals. 
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a)              b) 

Figure 30. Femoral Derotation Osteotomy-technique to correct femoral retroversion (Osteotomy [73]). 

 

Pistol Grip deformity 

The pistol grip deformity is considered as a radiographic sign of cam impingement [48, 

51, 74]. In this deformity the shape of proximal femur resembles a flintlock pistol (Figure 

31).  The femoral head neck off set is decreased in the superior femoral neck at the head-

neck junction.  



45 
 

  

 

Figure 31. Pistol Grip Deformity of hip joint (Reid, 2010[75]). 
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CHAPTER 3: METHODOLOGY 

 

The following two methods are followed to discuss the morphology–mechanics 

relationship in ankle and hip joints. 

1. Model Development: Develop image-based, subject-specific, three-dimensional 

numerical models of the ankle and of the hip joints to provide the means of 

exploring the causal relationship between morphology and mechanical behavior. 

2. Effect of Morphology on Passive Mechanical Properties: Using the numerical 

models, perform dynamic simulations following systematic  variations in 

morphology 

 

METHODOLOGY PART 1: MODEL DEVELOPMENT 

 

Image-based, subject-specific, three-dimensional numerical models of the ankle and the 

hip joints are developed to explore the relationship between morphology and mechanical 

behavior. Specifically, such models will provide the means to explore the effect of bone 

morphology and location of insertion sites of ligaments on the kinematics and passive 

structural characteristics of the ankle and hip joints.  

 

Ankle Joint 

 

Step 1: Image Processing 

Six models of the ankle joint complex are developed from magnetic resonance image 

data obtained with a 1.5 Tesla commercial General Electric Signa magnetic resonance 
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image scanner from six non-pathological un-embalmed cadaveric legs (average age 71.5 

years, 2 males and 4 females) with a spatial resolution of the spatial resolution is 0.35mm 

x 0.7mm x 2.1mm. These MR images are then processed using ANALYZETM software 

to produce 3D numerical models of the articulating bones and the regions of insertion of 

surrounding ligaments. The process involves segmenting the bones of interest (tibia, 

fibula, talus, and calcaneus) in each MR slice (Figure 32a) followed by 3D spatial 

filtering, 3D interpolation and rendering to create .stl files representing the 3D geometry 

of each bone (Figure 32b). In addition, the regions of insertion of ligaments are 

identified, marked and exported from the image processing software. 

 

 

Figure 32. Image processing of ankle MRI 
a) Example of the segmentation process used to obtain the contours of the bones in each 2-D slice(left), b) 

3D model of bones after rending process(right) 
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Step 2: Post Processing  

The rendered data obtained from AnalyzeTM is processed using Geomagic Studio 12TM to 

filter scanned artifacts, to fit the surface with polygons, to remove rough contours using a 

3D smoothing algorithm (Figure 33). Decimate polygons option is used to reduce model 

size so that the resulting geometry can be efficiently handled by the dynamic simulation 

program (Figure 33). In addition, various morphological parameters of the bones and 

ligament insertion sites are measured at this stage and this information is later used in the 

development of the subject-specific dynamic simulation model. 

 

Before                                                                                 After  

Figure 33. CAD surface before and after smoothing the surface 

 

Step 3: Rigid Body Dynamic Model 

 

Three dimensional bone morphology and ligament insertion sites are imported into a 

dynamic simulation software environment ADAMSTM (Figure 34). All the simulations 

were solved with ADAMS default integrator, GSTIFF [76] with step size of 0.01 and an 

integrator error 0.001. ADAMS uses a Newton-Raphson predictor-corrector numerical 
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algorithm to solve the dynamic equations based on the motion time history and current 

motion trajectory. The dynamic analysis involves developing and then integrating the 

non-linear ordinary differential equations [76, 77] (equation 1). Equation 2 describes the 

boindary conditions. 

 

                         𝑴𝒒̈ + 𝝓𝒒
𝑻𝝀 − 𝑨𝑻𝑭(𝒒, 𝒒̇) = 𝟎                                        Equation 1 

                                               𝝓(𝒒, 𝒕) = 𝟎                                          Equation 2 

 

M is the mass matrix of the system, q is the set of coordinates representing displacements, 

ϕq is the gradient of the constraints at any given state, F is the set of applied forces and 

gyroscopic terms of the inertia forces, and AT is the matrix that projects the applied forces 

in the direction of q. ϕ is the set of configuration and applied motion constraints.  

 

Equation 1 is a second order ordinary differential equation and equation 2 is an algebraic 

equation. The solution algorithm converts equation 1 and equation 2 to first order 

differential algebraic equations and then uses previously developed integrators, including 

the GSTIFF, I3, and S12 formulations, to solve the system of equations[76, 77]. 

 

 

Contact Properties 

An Interference Detection Algorithm (RAPIDTM) [78] is used to establish contact 

between the bones where the properties of the contact are defined by the material 

properties of cartilage. The contact force between articular surfaces is defined as a non-

linear function of penetration depth, x and penetration velocity, 𝑥̇. 
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                                                 𝑭𝒐𝒓𝒄𝒆 = 𝒌𝒙𝒆 + 𝒄𝟐𝒙̇                               Equation 3 

 

The values of k, e and c2 in equation 3 are considered from the properties of articular 

cartilage [79-81]. These contact properties are explained in detail in Appendix A. 

 

Ligament Properties 

The material properties of each ligament element were described using a tension-only, 

non-linear load (T)–strain (ɛ) relationship:  

 

                                                𝑻(𝜺) = 𝑨(𝒆𝑩𝜺 − 𝟏) + 𝒄𝟏𝜺̇                         Equation 4 

 

The constants A, B and damping coefficient c1=1 N*s/mm, are obtained from literature 

[82] and detailed description is given in Appendix A.  Table 4 shows the list of ligaments 

with nonlinear load-strain constants used in equation 4. 

 

The ligaments of the AJC were represented with single or multiple line elements 

depending on their geometries (Figure 35). Cylindrical ligaments with relatively small 

diameter-to-length ratio such as the CFL were represented by a single element. 

Ligaments with relatively large diameter-to-length ratio, such as the PTTL were 

represented by multiple elements. This multi-element representation enabled the 

simulation of recruitment of different ligament fibers under different loading conditions. 
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Figure 34. Procedure for identifying the ligaments from the MR images 

  

 

 

Figure 35. 3D rendering in ADAMS showing the representation of the ligaments used in the model. 

The lateral collateral group consisting of three ligaments: the anterior talofibular ligament—ATFL, the 

calcaneofibular ligament—CFL, and the posterior talofibular ligament—PTFL (two elements). The medial 

collateral ligament group consists of three ligaments: the anterior tibio-talar ligament—ATTL, the tibio-

calcaneal ligament—TCL (two elements), and the deep posterior tibio-talar ligament—PTTL (four 

elements). The subtalar group consists of two ligaments: the cervical ligament—CL (four elements), and 

the interosseos ligament—ITCL (10 elements). 

 

 

Table 4. Ligament nonlinear load-strain properties 

Group Name of Ligament Number of 

Elements 

A B 

Lateral Collateral 

Ligament group 

anterior talofibular 

ligament—ATFL 

1 7.18 12.5 

 calcaneofibular 1 0.20 49.63 
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ligament—CFL 

 posterior talofibular 

ligament—PTFL 

2 0.14 44.35 

The medial 

collateral 

ligament group 

the anterior tibio-

talar ligament—

ATTL 

1 2.06 20.11 

 the tibio-calcaneal 

ligament—TCL 

2 0.51 45.99 

 the deep posterior 

tibio-talar 

ligament—PTTL 

4 1.34 28.65 

Subtalar group the cervical 

ligament—CL 

4 0.0609 28.65 

 the interosseos 

ligament—ITCL 

10 0.261 28.65 

 

 

Based on Grood and Suntay measures [83] calculated for the ankle joint coordinate 

system [8, 42]. Boundary conditions consisting of a fixed tibia-fibula and free calcaneus 

and talus are provided. The model is then loaded through cyclic moments corresponding 

to dorsiflexion/plantarflexion; inversion/eversion; internal rotation/external rotation. The 

output measures provide detailed description of the range of motion of ankle joint 

complex, kinematic coupling, and flexibility of the joint, the joint contact forces and their 
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locations on the bones and the forces and deformation of the surrounding ligaments. 

Figure 36 shows the dynamic model created in ADAMS-VIEWTM software. Figure 37 

shows the flexibility characteristics of ankle joint complex. 

 

Figure 36. Dynamic model of ankle joint in ADAMSTM environment 

 

 

 
a) Dorsiflexion/Platarflexiononon b) Inversion/Eversion 
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Figure 37. Flexibility characteristics of Ankle Joint Complex in a) Dorsiflexion / Plantarflexion, b) 

Inversion / Eversion, c) Internal / External rotations 

 

 

 

Hip Joint 

 

Step 1: Image Processing 

Computer Tomography (CT) images of hips with resolution of 0.8 mm*0.8 mm*2 mm 

are obtained from six non-pathalogical non-symptomatic subjects and ten of those 

diagnosed with a condition referred to as Femoro Acetabular Impingement (FAI) are 

acquired. These CT images are then processed using ANALYZETM software to produce 

3D numerical models of the two articulating bones, the femur and the acetabulum. 

Similar to the procedure described earlier for the ankle, this process involves segmenting 

the bones of interest (Figure 38) followed by 3D spatial filtering and interpolation to 

create .stl files representing the 3D geometry.  

c) Internal/External rotation 
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a) Example of the segmentation process used to obtain the contours of the bones in each 2-D slice 

 

b) 3D model of bones after rending process 

Figure 38. Image processing of hip joint CT image 

 

 

Step 2: Post Processing 

The rendered data obtained from AnalyzeTM is processed using Geomagic StudioTM to 

filter scanned artifacts, to fit the surface with polygons, to remove rough contours using a 

3D smoothing algorithm, and to reduce model size so that the resulting geometry can be 



56 
 

  

efficiently handled by the dynamic simulation program (Figure 39). The center of 

rotation of the hip joint, assumed to be fixed, is then identified using the following 

procedure. First, a spatial least square error optimization algorithm is used to optimally fit 

a sphere to the femoral head and to the acetabulum (Figure 40). The center of rotation is 

assumed to be half-way between the centers of the two spheres.  

One communally used algorithm to fit 3D sets of points to a sphere is the least squares 

minimization [84]. 

                                            𝑬(𝒂, 𝒃, 𝒄, 𝒓) = ∑ (𝑳𝒊 − 𝒓)𝟐𝒎
𝒊=𝟏                                Equation 5 

 

(𝑥 − 𝑎)2+(𝑥 − 𝑏)2+(𝑥 − 𝑐)2 = 𝑟2 is the sphere to be fitted by the 

points  {(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖)}𝑖=1
𝑚 , m>4 and 𝐿𝑖 = √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2+(𝑧 − 𝑐)2 

 

 

                            Before After 

                               Figure 39. CAD model before and after smoothing and filling holes. 
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Figure 40. Hip joint center calculation 

Fitting spheres to acetabulum and femoral head of hip joint to calculate the center of rotation of the hip 

joint. 

 

 A labrum is modeled in this stage by offsetting the rim of acetabulum by 2mm. 

 

 

Step 3: Rigid Body Dynamic Model 

The three dimensional morphology of the bones and the labrum is imported into a 

dynamic simulation software environment ADAMSTM (Figure 41). A spherical joint with 

its center coincident with the previously identified center of rotation is established. 

Labrum is fixed to acetabulum. Boundary conditions consisting of a fixed acetabulum 

and a free femur are specified and moments are applied across the hip joint in various 

anatomical directions.  
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Contact Properties 

An Interference Detection Algorithm (RAPIDTM) [78] is used to establish contact 

between the bones where the properties of the contact are defined by the material 

properties of cartilage. The contact force between articular surfaces is defined in equation 

6 as a non-linear function of penetration depth, x, and penetration velocity,𝑥̇ 

 

                                                    𝑭𝒐𝒓𝒄𝒆 = 𝒌𝒙𝒆 + 𝒄𝟐𝒙̇                                    Equation 6 

 

The values of k, e and c2 are considered as contact between rigid bodies. The stiffness 

parameter, 𝑘=105 N/mm2, the exponent 𝑒=10 and penetration depth, 𝑥=0.1mm. 

 

 In addition to the bone interference patterns identified through the contact algorithm, 

distance maps were established for various hip positions. Distance maps are color coded 

maps drawn on top of either of the two articulating bones which show the distance 

between the two articulating surfaces (Figure 42). 

 



59 
 

  

 

Figure 41. Rigid body dynamic model of hip joint in ADAMSTM 

 

 

Figure 42.  Distance map of hip joint obtained for one simulation position.  

Blue region indicates the region of contact between femur and acetabulum. 
 

 

Zone Method to Quantify Interference 

In order to compare the patterns of interference acetabulum and femoral head are divided 

into several zones following similar but slightly modified procedure as in literature [85]. 

The acetabulum was divided into 6 different zones by use of the acetabular fossa as the 
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principal landmark. Two vertical lines are drawn by the use of the anterior and posterior 

notch walls as a reference. A horizontal line is drawn at the top of the acetabular notch. 

Numbers are assigned to each zone starting with number 1 at the anterior-inferior zone 

and ending with the number 6 at the acetabular notch (Figure 43). 

 

The femoral head has been divided into 6 zones around the projection of the acetabular 

fossa. The area that corresponds to the acetabular fossa is positioned on the femoral head 

around the ligamentum teres, and the same imaginary lines are then positioned on the 

femoral head following the same pattern that was used for the acetabulum. Zone 1 is the 

anterior-inferior femoral head; zone 2, anterior-superior femoral head; zone 3, central 

superior femoral head; zone 4, posterior superior femoral head; zone 5, posterior-inferior 

femoral head; and zone 6, area around ligamentum teres . Further the zones are 

subdivided divided into Medial (M), Superior(S) and Lateral (L) from proximal to distal 

direction on femoral head.  Anterior-inferior is always zone 1 for both right and left hips 

(Figure 44).  The zone method was more reproducible than the clock-face method in the 

geographic description of intra-articular injuries on the acetabulum and the femoral head 

[85]. By using this zone method it is easy to compare the change in impingement at each 

simulation stage of hip joint (Figure 45). 
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Figure 43.  Zone Method - Divisions on acetabulum 

 

Figure 44. Zone Method - Divisions on femur.   
(A) Front view of right proximal femur model.  (B) Superior view of right proximal femur model. 
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Figure 45. Distance map showing interference on femoral zones obtained at one simulated position 
Interference is observed in zones 1S, 2S. 

 

 

METHODOLOGY PART 2: EFFECT OF CHANGE IN MORPHOLOGY ON 

JOINT MECHANICAL BEHAVIOR  

 

Using the numerical models developed in aim 1, the relationship between the morphology 

and the mechanical behavior of ankle and hip joints will be investigated. This will be 

achieved by systematically varying selected morphological parameters such as bone 

surface geometry and insertion sites of ligaments in the models. The effect of these 

variations on mechanical characteristics will then be identified through numerical 

simulations. 

 

To achieve this goal the following steps are followed for the ankle and the hip joint 

separately. 
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Ankle Joint 

 

Step 1: Selecting and Measuring the Morphological Parameters:  

This step is divided into two steps first selecting the morphology (region of interest) and 

second measuring the morphological parameters of the selected morphology 

 

1 a) Selecting the Parameters 

To investigate the effect of change in morphology of the ankle joint complex on the 

mechanics the following parts of ankle are selected. 

1. CFL ligament 

2. Sustentaculum tali 

The CFL ligament is selected because this ligament plays a major role in stability of 

ankle in inversion and the injury of this ligament may lead to chronic lateral ankle pain, 

chronic instability, and osteoarthritis. Sustentaculum tali is selected because it acts as a 

support relative to the talar facet. 

1 b) Measuring the Morphological Parameters  

The original orientation of CFL (Figure 46), Sustentaculum tali width, calcaneus width, 

ratio of Sustentaculum tali width to calcaneus width, Sustentaculum tali length, calcaneus 

length, ratio of Sustentaculum tali length to calcaneus length for six subjects are measured  

(Figure 47). 
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Figure 46. Orientation of calcaneofibular ligament in all the six subjects 
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Figure 47. Width of Sustentaculum tali (SW), Width of Calcaneus (CW), Length of Sustentaculum 

Tali (SL) and Length of Calcaneus (CL) 

 

 

Step 2: Changing Morphology of Bone and Ligament Insertion Sites and Comparing 

the Mechanical Behavior 

 

2a) Changing the Orientation of CFL Ligament  

The orientation of the ligament is measured in the sagittal plane with respect to the tibial 

axis for all the six subjects. The orientation of the ligament is altered by changing 

ligament insertion sites on the calcaneous such that the orientation of the ligament is 0 

degrees, 30 degrees, 60 degrees and 90 degrees with respect to tibial axis (Figure 48). 

Passive mechanical properties such as range of motion, force in the CFL are calculated 

during plantar/dorsiflexion, inversion/eversion and internal/external motions at each 

orientation of the CFL. 
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Figure 48. Change in orientation of calcaneofibular ligament from vertical to horizontal with respect 

to tibial axis 
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Figure 49. Morphology of the sustentaculum tali of the six subjects in neutral position. 
In subjects 3R, 5L, 5R and 6R anterior and medial facets are separate. In subjects 7R and 4L anterior and 

medial facets are fused. 

 

 

 

2b) Changing the Morphology Sustentaculum tali 

 

Figure 49 shows the original morphology of sustentaculum tali of the 6 subjects. Subjects 

3R, 5L, 5R, 6R have separate anterior and medial facets where are in subjects 7R and 4L 

the anterior and medial facets are fused (Figure 49). The effect of morphology of 
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sustentaculum tali on the passive mechanical properties of the ankle joint complex is 

studied by removing the sustentaculum tali in four stages.  

 

Figure 50. Calcaneus-Features. 

1. Anterior talar articulating surface; 2. Middle talar articulating surface; 3. Fused anterior and middle talar 

articulating surface; 4. Posterior talar articulating surface; 5. Canalis tarsi. 

 

 

 

In order to study the effect of morphology change of the sustentaculum tali on joint 

mechanics of the six subjects the morphology  of sustentaculum tali is changed by 

following  Alterations #1 through #4 of the sustentaculum tali by successively altering 

the supportive function of the middle articular facet on the talus (Figure 50).  

Alteration 1: The fused anterior and middle facet supporting structure is removed. The 

talus remains supported deep in the canalis tarsi, posterior end of the middle articulating 

facet and on the medial side of the posterior articulating facet extension (Figure 50 and 

Figure 51).  

Alteration 2: In this stage the elevation of sustentaculum tali is lowered by lowering the 

elevation of middle articulating facet (Figure 50 and Figure 51). 
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Through this process there is a loss of support in the canalis tarsi. The talus is supported 

mostly on the medial-side posterior articular facet extension (Figure 50 and Figure 51). 

Alteration 3: The medial-side posterior articulating facet extension is removed by 

lowering its articulating surface elevation (Figure 50 and Figure 51). 

 Alteration 4: Sustentaculum tali is completely removed. After this alteration, the 

posterior articular facet is the primary supporting facet (Figure 50 and Figure 51). 

 

 
                Original Alteration 1                     Alteration 2 

 
Alteration 3                        Alteration 4 

a) Sustentaculum tali after removing the bone in each alteration in top view. The transparent blue region 

shows original morphology and dark blue region shows the altered morphology. 
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b) Sustentaculum tali after removing the bone in each alteration in bottom view. The transparent blue 

region shows original morphology and green region shows the altered morphology 

 

b) Sustentaculum tali in the ankle joint after each alteration 

Figure 51. Process of removing the volume of sustentaculum tali 
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The morphology of sustentaculum tali is altered as discussed in Figure 51 and the effect 

of these changes on passive mechanical properties of ankle joint such as the range of 

motion and forces in CFL ligament are measured. Further, distance maps are calculated 

between talus and calcaneus after each morphological change in sustentaculum tali in 

order to evaluate the loss of contact support at each stage (Figure 52). 

 

 

Figure 52. Distance map showing the distance between original calcaneus and talus.  

Blue regions show contact regions. 
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Table 5. Percentage volume of bone retained after changing morphology of sustentaculum tali of all 

six subjects 

SUBJECTS ORIGINAL ALTER1 ALTER2 ALTER3 ALTER4 

CAD 3R 100 97.07875 96.79182 96.19357 95.12927 

CAD 4L 100 96.94226 96.46665 94.82877 93.0333 

CAD 5L 100 98.03287 97.73657 96.44864 95.26753 

CAD 5R 100 98.00588 97.46217 96.28232 95.06531 

CAD 6R 100 98.38405 97.93748 97.00045 96.00537 

CAD 7R 100 96.93309 96.48294 95.49769 94.16573 

 

 

Measuring Mechanical Properties 

Flexibility of AJC 

 Early Flexibility of AJC is calculated by fitting a line on the load-displacement curve in 

the region of initial motion. The slope of the line gives the flexibility of the curve (Figure 

53). 

Range of Motion of AJC 

 Range of motion of AJC is the Maximum angle rotated by applying moment about each 

coordinate of AJC (Figure 54). 

Force in CFL 

 The force in CFL is defined as the force measured in CFL at Maximum ROM (Figure 

55). 
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Figure 53. Calculating flexibility of AJC from load-displacement plot 

 

 

Figure 54. Calculating range of motion of AJC from load-displacement plot. 



74 
 

  

 

 

Figure 55. Calculating force in CFL from ligament Force versus Motion plot 

 

STATISTICAL ANALYSIS 

 

In this study the morphology of bone is changed following four alterations and the 

oriantations of CFL is changed to four different orintations and the effect of these 

changes on mechanical behaviour of the ankle joint is calculated using dynamic 

simulations. To findout if there is any significant change in the mechanical behavior of 

the joint after changing the morphology of the bone and orientation of CFL, one-way 

repeated measures ANOVA is used using the software SPSSTM by IBM. This particular 

statistical method is chosen because the same entities take part in all the simulations [86].  

A significance value p=0.05 is chosen for the statistical analysis. Greenhouse and Geisser 

method is used to calculate the signicance of the changes in the values and to test the 
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violation of the assumption of sphericity. Inorder to determine particularly between 

which changes in morphology there is a significant change in mechanical behavior of 

joint a post-hoc procedure known as Fishers Least Square Difference (LSD) method is 

followed. 

 

Repeated measures ANOVA is a powerful tool and provides significance for smaller 

subjects than population based analysis. Each subject is model based, all the properties 

are identical and this decreases variability. Further, changes are done in a very controlled 

manner. Loading conditions are same after each change unlike experimental studies. 

 

 

Hip Joint 

Step 1: Selecting and Measuring Morphological Parameters 

The morphological parameters such as femoral neck-shaft angle, femoral 

anteversion/retroversion, alpha angle, neck offset angle, pistol grip deformity are 

considered as crucial parameters for femoroacetabular impingement [51] (Figure 56). 

These parameters are measured for all the subjects and are compared. 
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a) Alpha angle and head neck offset                                  b) Pistol grip deformity [51] 

 

c) Femoral neck-shaft angle CC’D [87]                         d) Femoral neck anteversion [88] 

Figure 56. Morphological parameters of hip joint that are crucial for Femoroacetabular 

Impingement. 

 

 

 

Step 2: Changing Morphology of Normal Hips and Comparing the Joint Mechanical 

behavior 

 

The morphology of normal hip joints is changed to abnormal morphology by changing 

each clinical parameter in step 1 from normal range to abnormal range. Then the 

simulation is performed with 100 degrees flexion followed by 20 degree adduction and 

40 degree internal rotation so as to imitate the physical FAI test and the impingement is 

plotted and compared to that of normal hip 
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2a) Changing Femoral Neck-shaft angle: The normal range of femoral neck-shaft angle 

is 126 degrees-139 degrees [65, 66]. The condition with neck-shaft angle greater than 140 

degrees is called as Coxavalga and less than 125 degrees is called as Coxavara. The 

morphology of the femur is changed so as to decrease the neck-shaft angle less than 125 

degrees. This is done by following the procedure of intertrochanteric osteotomy [69, 70] 

where a wedge is cut in the femoral shaf. This process of osteotomy is discussed in 

Appendix B. Figure 57 shows the femur after changing the neck-shaft angle. The 

simulation is performed with 100 degrees flexion followed by 20 degree adduction and 

40 degree internal rotation and so as to imitate the physical FAI test and the interference 

at hip joint is calculated through distance maps and compared to that of normal hip 

(Figure 58).  

 

 

a) Normal, angle= 130o                   b) Coxavara , angle = 110o               c) Coxavalga, angle = 150o 

Figure 57. Morphology of femur after decreasing and increasing the neck-shaft angle by 20 degrees 
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a) Normal, no interference                               b) Coxavalga, interference in zone 6L 

 

c) Coxavara, interference in zone 1S 

Figure 58. Interference pattern observed on femur by changing femoral neck-shaft sngle. 

At simulation position 100 degree flexion, 20 degree adduction and 40 degree internal rotation, interference 

is observed on a) Normal hip joint b) Increasing neck-shaft angle by 20 degrees (Coxavalga) c) Decreasing 

the neck-shaft angle by 20 degrees (Coxavara).  

 

 

2b) Anteversion/Retroversion  

The normal value of femoral anteversion is 15o-20o [72].  The morphology of femoral 

anteversion angle is increased by 20 degrees to create excessive anteversion and 

retroversion is created by decreasing anteversion angle by 20 degrees (Figure 59). The 

simulation is performed with 100 degrees flexion followed by 20 degree adduction and 
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40 degree internal rotation and so as to imitate the physical FAI test and the interference 

at hip joint is calculated through distance maps and compared to that of normal hip 

(Figure 60). This morphology change of changing anteversion angle is performed 

imitating surgical procedure derotational osteotomy [72] where the femoral shaft is cut 

and rotated. This process of osteotomy on the femur model is discussed in Appendix B. 

  

               a) Normal, angle = 15o-20o                     b) Retroversion, angle < 15o 

 

c) Excessive Anteversion, angle >20o 

Figure 59. Morphology of femur after changing anteversion angle 
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b) Normal, no interference                     b) Retroversion,  Interference in zones 1L, 2L 

 

c) Excessive Anteversion, no interference  

Figure 60. Interference pattern observed on femur by changing angle of anteversion. 

At simulation position 100 degree flexion, 20 degree adduction and 40 degree internal rotaion interference 

is observed on a) Normal hip joint b) Decreasing anteversion angle by 20 degrees (Retroversion) c) 

Increasing the anteversion angle by 20 degrees (Excessive Anteversion).  
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2c) Alpha Angle  

Alpha angle is normal if it is less than 55 degrees. Morphology of Alpha angle is 

increased to greater than 55 degrees. This process of increasing alpha angle is performed 

by adding material around the femoral head neck junction so that alpha angle is greater 

than 75 degrees (Figure 61). Interference pattern at simulated position 100 degree flexion 

combined with adduction and internal rotation is calculated after changing alpha angle 

and compared to normal hip (Figure 62). 

 

  

a) Alpha angle of normal hip      b) After increasing alpha angle to 83.7 degrees 

Figure 61. Before and after increasing the alpha angle of normal hip 
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a) Normal, alpha =46 degrees, no interference. b) Alpha =86 degrees, interference in zones 1s, 2s                                                                                                           

Figure 62. Interference pattern observed by increasing alpha angle to 86 degrees at position 100 

degree flexion, 20 degree adduction and 40 degree internal rotation 

 

 

 

2d) Pistol Grip Deformity  

Pistol grip deformity is induced in the femur by adding material on the superior femoral 

neck at the head-neck junction (Figure 63). Interference pattern at simulated position 20 

degree adduction is calculated after inducing pistol grip deformity and compared to 

normal hip (Figure 64). 



83 
 

  

 

Figure 63. Changing the morphology of normal femur (solid blue) to femur with pistol grip 

deformity (transparent blue). 

 

 

 

 

 
a) Normal femur                                      b) Femur with pistol grip deformity. 

Figure 64. Interference pattern observed at the stance of 100 degrees flexion and 20 degrees 

adduction before (left) and after (right) introducing the pistol grip deformity. 
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This process of changing the morphology of femur and inducing several deformities will 

help to identify if there are any other morphological parameters leading to pathological 

condition FAI and the surgeon should correct these parameters before performing the 

native surgical process. 
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CHAPTER 4: RESULTS 

 

The results demonstrate the effects of change in morphology of the ankle and the hip 

joints on their corresponding joint mechanics. 

MODEL DEVELOPMENT 

Ankle Joint  

Step 1: Image Processing 

Magnetic Resonance (MR) images are obtained from six non-pathological cadaveric feet. 

These MR images are then processed using ANALYZETM software to produce 3D 

numerical models of the articulating bones and the regions of insertion of surrounding 

ligaments.  

 

Step 2: Post Processing 

The surfaces of 3D models of the ankle joints are smoothened and the number of 

polygons are reduced to be compatible with the dynamic analysis software. 

 

Step 3: Rigid Body Dynamic Model 

Rigid Body dynamic models of the six ankle joints are developed using the three 

dimensional bone morphology and ligament insertion sites measured in the post 

processing step. The model is then loaded through cyclic three dimensional moments and 

forces which are applied across the ankle joint complex in various anatomically 

significant directions (dorsiflexion/plantarflexion; inversion/eversion; internal 
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rotation/external rotation). Average model predictions of ROM were found to be in close 

agreement with values reported previously (20o–50o plantarflexion; 13o–33o dorsiflexion; 

15o–20o inversion; 10o–17o eversion; and 24o external rotation).Range of motion of AJC 

are compared between all the subjects (Figure 65) and it is observed that subjects 4L and 

7R with fused medial and anterior facets on calcaneus have less Range of motion in 

Inversion and internal rotations compared to other subjects with distinct facets. Subject 

4L has less ROM in other motions too. 



87 
 

  

 

Figure 65. Comparing the motion of AJC of the six subjects by applying torque about the three axis 

dorsiflexion / plantarflexion, inversion / eversion, internal / external rotation. 
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MODEL DEVELOPMENT 

 

Hip Joint 

 

Step 1: Image Processing 

Computer Tomography (CT) images obtained from seven healthy asymptomatic subjects 

and ten patients diagnosed with a condition referred to as Femoro Acetabular 

Impingement (FAI) are acquired. These CT images are then processed using 

ANALYZETM software to produce 3D numerical models of the two articulating bones, 

the femur and the acetabulum. 

 

Step 2: Post Processing 

The surface of 3D models of the hip joints is smoothened and the number of polygons is 

reduced to be compatible with the dynamic analysis software. The center of rotation of 

the hip joints is calculated as the average of the centers of the spheres fitted to the 

femoral head and acetabulum. 

 

Step3: Rigid Body Dynamic Model of Hip Joint 

Rigid body dynamic models of 4 normal and 4 FAI hips are developed and the 

interference patters are identified through distance maps. The interference patterns 

between FAI and healthy subjects are compared (Figure 66). The results indicated early 

interference in the hip models obtained from the FAI subjects as compared to healthy 

ones. 
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 a) FAI hip                                                       b) Normal hip 

Figure 66. Comparing distance maps between FAI and normal hips 

 

 

EFFECT OF CHANGE IN MORPHOLOGY ON JOINT MECHANICAL 

BEHAVIOR 

 

Ankle Joint 

 

Step 1: Selecting and Measuring Morphological parameters 

Orientation of CFL, width of sustentaculum tali and calcaneus, length of sustentaculum 

tali and calcaneus are measured in the six ankle joints as shown in Table 6. 

 

Table 6. CFL orientation, Sustentaculum tali Width (SW), Calcaneus Width (CW), ratio of 

Sustentaculum tali Width to Calcaneus Width (SW/CW) , Sustentaculum tali Length (SL), Calcaneus 

Length (CL), ratio of Sustentaculum tali Length to Calcaneus Length (SL/CL) 

Subject Age Sex CFL 

orientation 

in degrees 

SW 

in 

mm 

CW 

in 

mm 

SW/C

W 

SL in 

mm 

CL in 

mm 

SL/C

L 

3R 67 F 42.06 17.12 42.6 0.40 27.67 82.9 0.33 
4L 86 M 48.48 17.61 42.98 0.41 39.6 80.39 0.492 
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5L 89 M 46.69 15.85 40.50 0.39 29.7 74.3 0.39 
5R 72 M 40.871 15.33 43.65 0.35 28.8 75.78 0.38 
6R 72 F 35.66 13.47 37.54 0.36 25.5 83.1 0.30 
7R 47 M 6.85 14.5 41.83 0.35 41.67 83.97 0.496 

 

It is observed that orientation of CFL in subject 7R is almost closer to tibial shaft axis 

which may make the joint stiffer in inversion motion. Ratio of Sustentaculum length to 

Calcaneus length for subjects 4L and 7R are higher than other subjects and this is due to 

the fused anterior and medial facets of calcaneus. 

 

Step 2: Changing the Morphological Parameters  

Effect of change in orientation of CFL on mechanical behavior 

Effect of change in orientation of CFL from vertical to horizontal on mechanical function 

such as Range of motion of AJC, flexibility of AJC and force in CFL are measured. A 

moment of 3400N-mm is applied in cycles to produce dorsiflexion/ plantarflexion, 

inversion/eversion and internal/external rotations one after the other. The statistical 

analysis to find the significance in the chaNges in mechanical behavior of AJC by 

changing orientation of CFL is calculated using Repeated measures ANOVA as 

described earlier under methodology section. All the data from the simulations is found to 

be normally distributed using Shapiro-Wilk test using SPSSTM software. 

 

Inversion/Eversion motion 

Flexibility of AJC increased in inversion when the orientation of CFL is changed from 

vertical to horizontal (Figure 67). Using repeated measures ANOVA, flexibility of AJC 
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in all the subjects of AJC increased significantly with p=0.009 (p<0.05) by changing the 

orientation of CFL from vertical to horizontal with average value 0.0101 deg/N-mm (min 

0.0055, max 0.0156) to 0.0187 deg/N-mm (min 0.0095, max 0.0279) (Figure 70).  There 

is a significant change in flexibility between these orientations-vertical and original 

(p=0.034), vertical and 60 degrees (p=0.003), vertical and horizontal (p=0.034) and 

between 30 degrees and 60 degrees (p=0.002). 

Inversion Range of motion increased gradually by changing the orientation of CFL from 

vertical to horizontal (Figure 67). Using repeated measures ANOVA, inversion ROM in 

all the subjects of AJC increased significantly with p=0.002(p<0.05) by changing the 

orientation of CFL from vertical to horizontal (Figure 73) with a mean difference of 9.16o 

(min 4.05o, max 14.27o). Statistically except between orientations-original and 60o and 

between orientations 60o and horizontal, there is statistical significance in change in 

inversion ROM between all other orientations. There is significance between-vertical and 

30 degrees (p=0.036), vertical and original (p=0.012), vertical and 60 degrees (p=0.015), 

vertical and horizontal (p=0.006), 30 degrees and original (p=0.032), 30 degrees and 60 

degrees (p=0.019), 30 degrees and horizontal (p=0.013) and between original and 

horizontal (p=0.044).   

By applying inversion motion force in the CFL decreased significantly with p=0.04 

(p<0.05) as the orientation of ligament changed from vertical to horizontal (Figure 76) 

with a mean difference of 27.2 N (min 5.7N, max 48.7N) (Figure 79). Statistically there 

is a significant change in force between orientations-vertical and horizontal (p=0.023), 

vertical and 60 degrees (p=0.035), 30 degrees and original (p=0.036) and 30 degrees and 

horizontal (p=0.036).   
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By applying eversion motion there is no significant change in Eversion ROM, flexibility 

or force in CFL with change in orientation of CFL (Figure 67, Figure 70, Figure 73, 

Figure 76 and Figure 79). 

 

Internal Rotation 

In all the six subjects there is a slight increase in ROM of AJC with p=0.04 in internal 

rotation by changing the orientation of CFL from vertical to horizontal  by a mean 

difference of 3.6o (min 0.32o, max 6.93o) (Figure 68). Statistically there is significance in 

the change in ROM between vertical and horizontal orientations (p=0.037) and between 

vertical and 60o orientation (p=0.043) (Figure 74).  

By applying internal motion Forces in the CFL decreased significantly with p=0.011 

(p<0.05) as the orientation of ligament changed from vertical to horizontal with a mean 

difference of 32 N and standard error (min 8.7N, max 55.5N) (Figure 76). Statistically 

there is a significant change in force between the following orientation of CFL-vertical 

and 30 degrees (p=0.035), vertical and original (p=0.027), vertical and 60 degrees 

(p=0.023) and vertical and horizontal (p=0.017) (Figure 80). There is no significant 

change in flexibility of AJC with change in orientation of CFL in internal rotation (Figure 

68 and Figure 71). 

 

External Rotation 

In all the subjects there is a slight decrease in ROM of AJC with p=0.023 in external 

rotation by changing the orientation of CFL from vertical to horizontal by a mean 

difference of 5.8o (min 0.483N, max 11.19N) (Figure 68). Statistically there is 
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significance in the change in ROM between the following orientations- vertical and 

original (p=0.044), vertical and 60 degrees (p=0.037), vertical and horizontal (p=0.038), 

30 degrees and 60 degrees p=p=0.037), 30 degrees and horizontal (p=0.046) and original 

and 60 degrees (p=0.035) (Figure 74). 

By applying external motion forces in the CFL increased as the orientation of ligament 

changed from vertical to horizontal with a mean difference of 39.8 N (min 20.22N, max 

59.44N) (Figure 77) with p=0.011. Statistically there is a significant change in force 

between orientations vertical and 60 degrees (p=0.01) and vertical and horizontal 

(p=0.003) (Figure 80). There is no significant change in flexibility of AJC with change in 

orientation of CFL in External rotation. 

 

Dorsiflexion/Plantarflexion 

Statistically there are no significant difference in ROM of AJC, Flexibility of AJC and 

force in CFL ligament in Dorsiflexion or Plantarflexion with change in the orientation of 

CFL from vertical to horizontal (Figure 69, Figure 72, Figure 75, Figure 78 and Figure 

81).  
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Figure 67. Change in load-displacement characteristics of AJC in inversion / eversion with change in 

orientation of CFL for subject 5L 

 

 

 

 

 

Figure 68. Change in load-displacement characteristics of AJC in internal / external rotation with 

change in orientation of CFL for subject 5L 
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Figure 69. Change in load-displacement characteristics of AJC in dorsiflexion / plantarflexion with 

change in orientation of CFL for subject 5L 

 

 

 

Figure 70. Change in load-displacement characteristics of AJC in inversion / eversion in all subjects 
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Figure 71. Average change in flexibility of AJC in internal / external rotation in all subjects 

 

 

 

Figure 72. Average change in flexibility of AJC in dorsiflexion / plantarflexion in all subjects 
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Figure 73. Average change in ROM of AJC with change in orientation of CFL in inversion / eversion 

in all subjects. 

 

 

 

Figure 74.  Average change in ROM of AJC in internal / external rotation in all subjects. 

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

vertical 30 deg original 60 deg horizontal

In
v

er
si

o
n

R
O

M
  
  

  
 E

v
er

si
o

n
 R

O
M

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

(d
eg

re
es

)

Orientation of CFL with respect to tibial axis (degrees)

Inversion/Eversion

Inversion Eversion

-30

-20

-10

0

10

20

30

40

vertical 30 deg original 60 deg horizontal

In
te

rn
a

l 
R

O
M

  
  
  

  
 E

x
te

r
n

a
l 

R
O

M

(d
eg

re
es

)

Orientation of CFL with respect to tibial axis (degrees)

Internal/External rotation 

Internal External



98 
 

  

 

Figure 75. Average change in ROM of AJC in dorsiflexion / plantarflexion in all subjects. 
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Figure 76. Change in force in CFL in inversion / eversion motion with change in orientation of CFL 

for subject 5L 

 

 

 

 

 
 

Figure 77. Change in force in CFL in inversion / eversion motion with change in orientation of CFL 

for subject 5L 
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Figure 78. Change in force in CFL in inversion / eversion motion with change in orientation of CFL 

for subject 5L 
 

 

 

 
 
Figure 79. Average change in force in CFL with change in orientation of CFL at ROM in inversion / 

eversion in all subjects 
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Figure 80. Average change in force in CFL with change in orientation of CFL at ROM in internal / 

external rotation in all subjects 

 

 

 

 

 

Figure 81. Average change in force in CFL with change in orientation of CFL at ROM in dorsiflexion 

/ plantarflexion in all subjects 
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Effect of Change in Morphology of Sustentaculum Tali on Joint Mechanical Behavior 

 

The morphology of sustentaculum tali is changed by reducing volume in 4 stages as 

described in Chapter 3. The effect of this change on mechanical function such as 

flexibility of AJC, ROM of AJC and force in ligament is calculated by applying moment 

of 3400 N-mm in inversion/eversion, internal/external and dorsiflexion/plantarflexion. 

The statistical analysis to find the significance in the chnages in mechanical behavior of 

AJC by changing morphology of sustentaculum tali is calculated using Repeated 

measures ANOVA as described earlier under methodology section. All the data from the 

simulations is found to be normally distributed using Shapiro-Wilk test using SPSSTM 

software. 

 

 

Inversion/Eversion Motion  

By applying inversion motion there is decrease in average flexibility of AJC for all the 

subjects after the sustentaculum tali is removed but this is not a statistically significant 

change (Figure 82 and Figure 85). The inversion ROM is increased at AJC by removing 

the sustentaculum tali (Figure 82). In subject 7R, alteration 1 has approximately 1 degree 

increase in inversion ROM. There is a rise in inversion ROM from alteration 1 to 2 by 5 

degrees. Alteration 3 has 2 degrees increase in inversion ROM after alteration 2. 

Alteration 4 has no more effect than alteration 3. Statistically, in all the six subjects 

inversion ROM of AJC increased significantly with p=0.002 (p<0.05) by removing the 

sustentaculum tali (Figure 88) with a mean difference of 4.5o (min 2.84o, max 6.3o). There 

is no significant change in inversion ROM by following alterations 1 and 2. There is a 
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significant increase by following alteration 3 (p=0.004) by removing the medial-side 

posterior articulating facet extension. There is no further change by alteration 4 where 

sustentaculum tali is fully removed. 

 

There is increase in force in CFL at ROM in some subjects and decrease in others but on 

overall there is decrease in average force in CFL for all the subjects by removing the 

sustentaculum tali but it is not statistically significant (Figure 91 and Figure 94). There is 

no significant change in eversion ROM, flexibility of AJC or the forces in CFL by 

removing sustentaculum tali during eversion (Figure 82, Figure 85, Figure 88, Figure 91 

and Figure 94). 

 

Dorsiflexion/Plantarflexion Motion 

In dorsiflexion, there is increase in average flexibility of AJC of all the subjects by 

removing sustentaculum tali but this change is not statistically significant (Figure 87). 

In dorsiflexion there is a significant increase in ROM by removing sustentaculum tali. 

Figure 85 shows the change in ROM of AJC in dorsiflexion for subject 7R. Statistically, 

in all six subjects average ROM during Dorsiflexion increased significantly (p=0.006) by 

removing the sustentaculum tali with a mean difference of 11o (min 3.33o, max 18.8o). 

There is a significant change in dorsiflexion ROM by following alterations 1 where the 

ROM increased by mean value of 8.12o (min 1.82o, max 14.41o). The significant change 

(p<0.05) is seen between original and all other alterations but not between each alteration 

(Figure 90). Also it is observed that there is a significant change in forces of CFL by 

removing sustentaculum tali (p=0.047) (Figure 94). Forces in CFL increased during 
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dorsiflexion by removing sustentaculum tali with a mean value of 79.8N (min 9N, max 

150.7N). The significance is only between original and final alteration of removing 

sustentaculum tali completely (p=0.034) (Figure 96). There is no significant change in 

plantarflexion ROM of AJC, flexibility of AJC or Force in CFL by removing 

sustentaculum tali (Figure 84, Figure 87, Figure 90, Figure 93 and Figure 96). 

 

Internal/External Motion 

 

There are no statistically significant changes in ROM of AJC, flexibility of AJC or Force 

in CFL during internal and external motions by removing the sustentaculum tali (Figure 

83, Figure 86, Figure 89, Figure 92, Figure 95). 

 

 

Figure 82. Change in load-displacement characteristics of AJC in inversion / eversion with change in 

morphology of sustentaculum tali for subject 7R. 
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Figure 83. Change in load-displacement characteristics of AJC in internal / external rotation with 

change in morphology of sustentaculum tali for subject 7R 

 

 

 

Figure 84. Change in load-displacement characteristics of AJC in dorsiflexion / plantarflexion by 

changing the morphology of sustentaculum tali for subject 7R 
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Figure 85. Average change in flexibility of AJC with change in morphology of sustentaculum tali in 

inversion / eversion in all the subjects 

 

 

 

 

 

 
 

Figure 86. Average change in flexibility of AJC with change in morphology of sustentaculum tali in 

internal / external rotation in all the subjects 
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Figure 87. Average change in flexibility of AJC with change in morphology of sustentaculum tali in 

dorsiflexion / plantarflexion in all the subjects 

 

 

 

 

 

 

Figure 88. Average change in ROM of AJC with change in morphology of sustentaculum tali in 

inversion / eversion in all the subjects 

 

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

original alter1 alter2 alter3 alter4
F

le
x
ib

il
it

y
 o

f 
A

J
C

  
(d

eg
/N

-m
m

)

Change in morphology of sustentaculumtali

Dorsiflexion/Plantarflexion

dorsiflexion platarflexion

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

original alter1 alter2 alter3 alter4

In
v

er
si

o
n

 R
O

M
  
  

  
  

  
  
  

E
v

er
si

o
n

 R
O

M

(d
eg

re
es

)

Change in morphology of Sustentaculam tali

Inversion/Eversion

Inversion Eversion



108 
 

  

 

Figure 89. Average change in ROM of AJC with change in morphology of sustentaculum tali in 

internal / external rotation in all the subjects. 

 

 

 

 

 

 

Figure 90. Average change in ROM of AJC with change in morphology of sustentaculum tali in 

dorsiflexion / plantarflexion in all the subjects 
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Figure 91. Change in force in CFL in inversion / eversion by changing the morphology of 

sustentaculum tali for subject 7R 

 

 

 
 

Figure 92. Change in force in CFL in internal / external rotation by changing the morphology of 

sustentaculum tali for subject 7R 
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Figure 93. Change in force in CFL in dorsiflexion / plantarflexion by changing the morphology of 

sustentaculum tali for subject 7R 
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Figure 94. Average change in force in CFL with change in morphology of sustentaculum tali in 

inversion / eversion in all the subjects 

 

 

 

 

 

 

Figure 95. Average change in force in CFL with change in morphology of sustentaculum tali in 

internal / external rotation in all the subjects 
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Figure 96. Average change in force in CFL with change in morphology of sustentaculum tali in 

dorsiflexion / plantarflexion in all the subjects 
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Alteration 3: There is a loss of support at the medial side of posterior articulating facet. 

The talus is completely supported by the posterior articulating facet. 

Alteration 4: There is no much change with this alteration. 

 

 
    Original                                               Alteration1 

 

 
       Alteration 2                                                Alteration 3 
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Alteration4 

 
Figure 97. Variations in regions of contact between talus and calcaneus after change in morphology 

of sustentaculum tali. Blue regions indicate the regions of contact between talus and calcaneus. 
 

 

Hip Joint 

 

Step 1: Comparing Morphological Parameters between FAI and Normal hips 

 

Twenty seven morphological parameters representing common clinical 

parameters for the acetabulum, femur, and acetabulum-femur relations were measured 

from the 3D bone models. These parameters are compared using statistical analysis as 

described below. 
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Statistical Analysis 

 

A correlation analysis is used to find if any of these parameters are correlated and it is 

found that acetabular depth and acetabular index, acetabular diameter and femoral head 

diameter, spherical index of femur and femoral head neck offset, extrusion index and 

index of femoral head coverage, femoral neck width and femoral head diameter the 

correlation is significant at 0.01 level, between alpha angle and femoral head diameter, 

alpha angle and femoral head neck offset, peak edge distance and acetabular diameter the 

correlation is significant at 0.05 level (<0.02). A one way ANOVA is performed to 

determine which clinical parameters are significantly different between normal and FAI 

hips (Table 7). 

 

Table 7. Variations in morphological parameters between FAI and normal subjects 

Table:   Mean Std. 

Deviation 

Sig. 

Acetabulum Apparent acetabular 

depth 

FAI 19.4296 5.02468 0.073 

  NORMAL 23.5633 3.06703  

  Total 21.1317 4.7039  

 Ace Width FAI 53.8806 5.24483 0.032 

  NORMAL 47.4309 5.96774  

  Total 51.2248 6.28763  

 Acetabular index FAI 0.3634 0.09835 0.006 

  NORMAL 0.5006 0.06639  

  Total 0.4199 0.10924  

 ACM angle FAI 50.9839 4.14272 0.355 

  NORMAL 48.1556 8.04219  

  Total 49.8193 5.99718  

 Acetabular roof angle FAI 14.1925 3.03868 0.995 

  NORMAL 14.1824 2.85052  

  Total 14.1884 2.87071  

 Sharp angle FAI 41.889 3.42979 0.547 
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  NORMAL 40.5593 5.50861  

  Total 41.3415 4.29549  

 Peak to edge distance FAI 18.8493 4.31084 0.029 

  NORMAL 14.5456 2.22876  

  Total 17.0772 4.13311  

 Femur neck length FAI 105.5074 6.00844 0 

Femur  NORMAL 67.5284 21.43228  

  Total 89.869 23.74378  

 Femur neck width FAI 35.8887 5.05409 0.004 

  NORMAL 28.4977 3.45029  

  Total 32.8454 5.73506  

 Trochanteroarticular 

distance 

FAI 19.3888 9.68724 0.786 

  NORMAL 18.1987 7.10071  

  Total 18.8988 8.48873  

 Neck neck-shaft angle FAI 125.8877 3.5087 0.539 

  NORMAL 127.1051 4.4952  

  Total 126.389 3.85797  

 Spherical index of head 

of femur 

FAI 0.4716 0.0387 0.185 

  NORMAL 0.5113 0.07844  

  Total 0.4879 0.05963  

 Alpha angle FAI 65.6048 14.68423 0.006 

  NORMAL 39.9873 18.70105  

  Total 55.0564 20.52628  

 Beta angle FAI 50.9819 14.51004 0.236 

  NORMAL 43.9029 4.77781  

  Total 48.067 11.82736  

Pelvis Distance between two 

teardrops 

FAI 112.5986 7.16922 0.036 

  NORMAL 128.558 4.52265  

  Total 117.1584 9.91553  

 Distance between two 

head centers 

FAI 179.9646 16.31918 0.652 

  NORMAL 175.3565 11.82535  

  Total 177.9166 13.83821  

 Distance between 

ischialtuberosites 

FAI 137.119 9.04015 0.454 

  NORMAL 131.467 4.42225  

  Total 135.5041 8.08383  

 Pelvic height FAI 205.7928 21.28005 0.407 

  NORMAL 196.061 14.18464  
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  Total 201.3693 18.24093  

Relation 

between 

acetabulum 

and femur 

Lateral subluxation FAI 6.2359 1.73984 0.78 

  NORMAL 6.0096 1.39841  

  Total 6.1427 1.565  

 Superior subluxation FAI -6.5904 2.98028 0.526 

  NORMAL -5.3024 5.21253  

  Total -6.0601 3.9512  

 Center edge angle FAI 38.1658 5.56474 0.877 

  NORMAL 38.5747 4.79162  

  Total 38.3342 5.10602  

 MZ distance FAI 4.6826 1.77278 0.99 

  NORMAL 4.6961 2.82364  

  Total 4.6882 2.18121  

 Articulotrochanteric 

distance 

FAI 19.3888 9.68724 0.786 

  NORMAL 18.1987 7.10071  

  Total 18.8988 8.48873  

 Extrusion index FAI 31.2744 11.07502 0.242 

  NORMAL 25.6602 5.92688  

  Total 28.9627 9.50151  

All distances are in mm and angles are in degrees. 

 

Morphological parameters such as acetabular index, acetabular head diameter, 

femoral head diameter, femoral neck width, femoral neck length and alpha angle have 

significant differences between normal and FAI hips with significance p(<0.05). 

 

Comparing Interference Pattern between FAI and Normal  

 

Distance maps are calculated for all FAI and normal subjects and are compared (Figure 

98). The average distances are measured in zones that have contact throughout the 

simulation using distance maps and are plotted to compare the values (Figure 99 and 
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Figure 100). Further, percentage area of impingement is calculated and compared in each 

zone between FAI and normal subjects (Figure 101 and  

Figure 102). 

The FAI subjects had interference as early as 80o flexion in some subjects and going 

through 100o flexion combined with 20o adduction and 40o internal rotation (Figure 99). 

For the normal subjects, out of 7, 3 subjects did not have impingement throughout the 

simulation. 2 subjects have impingement at extreme range of motion i.e., at 100 degree 

flexion, 20 degree adduction and 40 degree internal rotation and 2 subjects has 

impingement starting with 100 degree flexion with 10 degree adduction (Figure 100). 

Also plotting the frequency of subjects that has impingement in each zone (Figure 103) 

shows that for FAI subjects the contact is in zones 6L, 1L and 2L which shows the 

impingement occurred in anterior inferior region of femur. For normal subjects, the 

contact is in zones 6L, 1L and 2L which shows the impingement occurred in anterior 

inferior region of femur (Figure 104). 

On an average FAI subjects have higher values of percentage area of impingement than 

the normal subjects (Figure 103 and Figure 104). 
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Figure 98. Interference in FAI hip (left) and normal hip (right) at the simulated position of 100o 

flexion combined with 20o adduction and 30o internal rotation. Blue region on FAI joint shows the 

region of contact. 

 

 

 

Figure 99. Average distance in the zones having contact during motion of femur in FAI subjects. 

f-flexion. ad-adduction, ir-internal rotation. 
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Figure 100. Average distance in the zones having contact during motion of femur in normal subjects 
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Figure 101. Percentage area of impingement in each zone on femoral head in FAI subjects 
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Figure 102. Percentage area of impingement in each zone on femoral head in normal subjects 

 

 

 

Figure 103. Number of FAI subjects that has contact in femoral head zones during simulation from 

neutral to 100o flexion, 20o adduction and 40o internal rotation. 
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Figure 104. Number of normal subjects that has contact in femoral head zones during simulation 

from neutral to 100o flexion, 20o adduction and 40o internal rotation 
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1 22 F 129 14.5 49 
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5 27 F 119.3 16 39.4 
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gives the values of the morphological parameters after changing the morphology of 

normal hip subjects. Distance maps are calculated after changing femoral morphology 

throughout the simulation starting from neutral position to 100 degree flexion 20 degree 

adduction and 40 degree internal rotation. Figure 105 shows the number of subjects with 

each pathological condition that has impingement in each zone on femoral head during the 

entire simulation. Further, percentage area of impingement is calculated and compared in 

each zone between each morphological change and normal femur.  Figure 106 shows the 

percentage area of contact on zones with impingement with each change in morphology 

and it is observed that by inducing conditions such as coxavara, coxavalga, retroversion 

and increasing alpha angle the % area of impingement increased to that of original femur. 

 

Table 9. Morphological parameters after changing morphology of normal femurs. All angles are in 

degrees 
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Figure 105. Number of subjects that has impingement in each zone during the entire simulation 
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Figure 106. Percentage area of impingement in the zones of contact for subjects 1 to 6. 
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as the simulation increased from 100 degree flexion to 100 degree flexion combined with 

20 degree adduction and 40 degree internal rotation (Figure 107). Percentage area of 

impingement increased in all the six subjects compared to that of their normal morphology 

(Figure 106) and the contact is in zones 6L, 1S, 1L, 2L for most of the subjects which 

shows the impingement occurred in anterior inferior region of femur (Figure 105).  

 

Figure 107. Average distance measured in the impingement zones during the entire simulation after 

increasing the femoral neck-shaft angle by 20 degrees 
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average values of contact calculated by distance map at extreme ranges of motion (Figure 
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subjects, no change in one subject and percentage area of impingement decreased in one 

subject compared to that of their normal morphology (Figure 106). The contact is in zones 

6L, 1S, 1L, 2L for most of the subjects which shows the impingement occurred in anterior 

inferior region of femur (Figure 105). 

 

 

Figure 108. Average distance measured in the impingement zones during the entire simulation after 

decreasing femoral neck-shaft angle by 20 degrees 
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impingement increased in all the six subjects compared to that of their normal morphology 

(Figure 106). The contact is in zones 1S, 1L, 2L for most of the subjects which shows the 

impingement occurred in anterior inferior region of femur (Figure 105). 

 

 

Figure 109. Average distance measured in the impingement zones during the entire simulation after 

decreasing the anteversion angle by 20 degrees 
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Alpha Angle 

 

After increasing the alpha angle greater than 70 degrees all the normal hips, it is observed 

that impingement increased as the simulation increased from 100 degree flexion to 100 

degree flexion combined with 20 degree adduction and 40 degree internal rotation 

(Figure 110). Percentage area of impingement increased in all the six subjects compared 

to that of their normal morphology (Figure 106). The contact is in zones 1L, 2L for most 

of the subjects which shows the impingement occurred in anterior inferior region of femur 

(Figure 105). 

 

 

Figure 110. Average distance measured in the impingement zones during the entire simulation after 

increasing the alpha angle greater than 70 degrees 
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Pistol Grip Deformity 

By inducing the pistol grip deformity, all the subjects has impingement with 100 degree 

flexion and 10 degrees adduction motion in zones 3M and 3S. 
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CHAPTER 5: DISCUSSION 

 

This chapter discusses the results obtained in the process of model development and the 

variations in the mechanical behavior observed by changing the morphology of the ankle 

and hip joints.  

 

MODEL DEVELOPMENT 

Image Processing 

Morphology of bones and ligament insertion sites of ankle joints are extracted from 

Magnetic Resonance Data. Morphology of bones of hip joints are extracted from 

Computer Tomographic images.  MR data is used as it is possible to see the ligament 

insertion sites clearly in MR images and it is easier to extract bones with high quality 

using CT images. 

 

Developing Dynamic Model 

Previously developed models of ankle joint complex are used to simulate the motion of 

ankle joint complex [18] . Dynamic models are developed using the bones developed in 

previous step. These bones are stabilized by constructing ligaments from the ligament 

insertion sites coordinates from the previous step. The visco-elastic properties of 

ligaments are found in the literature [82]. The torque is applied about each axis 

dorsiflexion/plantar flexion, inversion/ eversion and internal/ external rotations of the 

anatomical coordinate system [42] and the output parameters such as joint flexibility, 
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ROM, kinematic coupling and the forces in ligaments are measured. In the case of hip 

joint, a simple spherical joint is established between the femur and acetabulum and 

motion is applied about the joint to produce motions such as flexion/extension, 

abduction/adduction and internal/external rotations.  

 

EFFECT OF CHANGE IN MORPHOLOGY ON JOINT MECHANICAL 

BEHAVIOR 

 

In order to study the effect of morphology on passive mechanical properties of ankle and 

hip joints the morphology of 3D models of bones are changed and the effect of this 

change in mechanics is measured and compared with that of normal subjects. 

The initial Range of motion of AJC models vary between 5 to 22 degrees in inversion, 

11to 18 degrees in eversion, 26 to 44 degrees in dorsiflexion, 19 to 45 in plantar flexion, 

5 to 23 degrees in internal rotation and 6 to 18 degrees in external rotation. The lower 

values are subjected to subjects 4L and 7R in all the motions. 

 

Changing the Orientation of Calcaneofibular Ligament 

The initial orientation of CFL ligament varies between 35 to 49 degrees with respect to 

tibial axis except for subject 7R for which the orientation of CFL  is 6.8 degrees. The 

orientation of CFL ligament is varied between horizontal to vertical with respect to tibial 

shaft axis with increments as 0 degrees, 30 degrees, 45 degrees, 60 degrees and 90 
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degrees and ROM, flexibility of AJC and forces in CFL ligament is calculated at each 

orientation of CFL. With the change in orientation of CFL from vertical to horizontal 

there is a significant increase in inversion an average of 9.1 degrees (min 4, max 14.2), a 

95 % increase on an average and internal ROM an average of 3.62 degrees (min 0.32, 

max 6.9), a 17% increase and decrease in external ROM an average of 5.84 degrees (min 

0.48, max 11.12), a 33 % decrease. There is significant increase in AJC flexibility in 

inversion an average of 0.09 degree/N-mm (min 0.001, max 0.016), a 90% increase. 

Also, with the change in orientation of CFL from vertical to horizontal there is a 

significant decrease in forces in CFL in inversion an average of 27.21 N (min 5.7, max 

48.7), a 32.8% decrease and internal rotation an average of 32.15 N (min 8.72, max 

55.59), a 63.4% decrease and increase in external rotation an average of 39.83N (min 

20.22, max 59.44), a 61% increase. These results conclude that the joint is more stable 

when the ligament is vertical than it is horizontal. The inversion range of motion pattern 

is consistent with literature [3], a vertically oriented ligament is more restrictive because 

its tension is largest. 

 

Changing the Morphology of Sustentaculum Tali 

Morphology of sustentaculum tali is changed by removing sustentaculum tali in 4 stages 

as discussed in chapter 3. In alteration 1, the fused anterior and middle facet supporting 

structure is removed; in alteration 2, the elevation of sustentaculum tali is lowered by 

lowering the elevation of middle articulating facet; in alteration 3, The medial-side 

posterior articulating facet extension is removed by lowering its articulating surface 

elevation; in alteration 4, Sustentaculum tali is completely removed.  
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Mechanical function such as ROM, flexibility of joint and forces in CFL are measured 

after each alteration and compared to that of original morphology. Removing the 

sustentaculum tali shows a significant increase in inversion ROM a mean value of 4.757 

degrees (min 2.84, max 6.3), a 31% increase and on an average major increase in ROM is 

noticed by alteration 3 in which the medial-side posterior articular facet extension is 

removed and shifts the contacting areas to the posterior articular facet and the 

sustentaculum tali no longer supports the talus. Also removing the sustentaculum tali 

shows that’s there is a significant increase in dorsiflexion ROM a mean value of 11.08 

degrees (min 3.33, max 18.84), a 35% increase.  There is a 121% increase in force in 

CFL in dorsiflxion by removing volume of sustentaculum tali. There is an increase in 

flexibility of joint in inversion and dorsiflexion though statistically not significant. This 

shows that joint is more stable with sustentaculum tali and fused calcaneus joints have 

more stability than non-fused.  

 

Changing the Morphology of Femur  

The morphology of normal femur is changed by changing femoral neck-shaft angle, 

femoral anteversion angle, increasing alpha angle and inducing pistol grip deformity. The 

effect of this change in morphology is observed on interference at hip joint by simulating 

femur from neutral position to 100 degree flexion combined with 20 degree adduction 

and 40 degree internal rotation. The results show that by increase and decrease in neck-

shaft angle to induce deformities such as coxavalga and coxavara increased impingement 

at anterior-inferior region of hip joint as the femur is simulated to 100 degree flexion 

combined with 20 degree adduction and 40 degree internal rotation. By inducing 
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coxavalga there is increase in early interference at hip joint in all six subjects mostly in 

the zones 1L, 2L, 6L on femoral head and in zones 1, 2, 3 on acetabulum. By inducing 

coxavara there is increase in impingement in four of six total subjects mostly in the zones 

1L, 2L, 1S on femoral head and in zones 2, 3 on acetabulum, the impingement decreased 

in one subject and there is no change in one subject. Increase in femoral anteversion 

angle to induce excessive anteversion decreased impingement at hip joint and decrease in 

femoral anteversion angle to induce retroversion increased impingement at anterior-

inferior region of hip joint as the femur is simulated to 100 degree flexion combined with 

20 degree adduction and 40 degree internal rotation. The impingement is observed in 

zones 1L, 2L, 6L and 1S on femoral head and in zones 1, 2, 3 on acetabulum. With the 

increase in alpha angle impingement increased at anterior-inferior region of hip joint as 

the femur is simulated to 100 degree flexion combined with 20 degree adduction and 40 

degree internal rotation. The impingement is observed in zones 1L, 2L on femoral head 

and in zones 1, 2, 3 on acetabulum. Inducing pistol grip deformity increased impingement 

on the top head of femur with adduction motion. This shows that other clinical 

parameters have effect on FAI and other parameters should be considered before 

performing the traditional surgery of removing the bone near the impingement area. 

Failure to correct these parameters to normal range might lead to post-surgical 

complications such as recurring FAI after the surgery. 
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

 

Main Goal 

The goal of this study is to explore the casual relationship between the morphology and 

mechanics in two specific joints. 

1. Ankle joint – irregular joint 

2. Hip Joint- close to spherical joint 

 

Model Development 

Subject specific models are used to find the relation between the morphology and 

mechanics. Since all models used identical material properties and were subjected to 

identical loads and boundary conditions, it can be concluded that the observed variations 

in passive mechanical characteristics were due to variations in morphology. The three 

dimensional bones and ligament insertion sites are extracted from MRI data in case of 

Ankle joints. Previously developed dynamic model is used to study the mechanical 

function of the joints [18]. The three dimensional bones are extracted from CT data in 

case of hip joint. A spherical joint is used in the dynamic analysis software to produce 

ball and socket joint motion. 

 

Effect of Morphology on Mechanical Behavior 

Using computer models of bones it is feasible to change the morphology of bones and 

study the effect of the change in morphology on mechanical behavior. 
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Changing the Orientation of Calcaneofibular Ligament 

Except for subject 7R, the initial orientation of CFL with respect to tibial axis lies 

between 35 to 50 degrees. For subject 7R the orientation is 6.85 degrees. By changing the 

orientation of CFL from vertical to horizontal with respect to tibial axis and measuring its 

effect of this change in mechanical function such as flexibility, ROM and force in CFL. 

The results show that with change in orientation of CFL from vertical to horizontal there 

is increase in flexibility of AJC in inversion, increase in ROM of joint in inversion and 

internal rotation and decrease in force in CFL in inversion and internal rotation which 

show that the joint is stiffer if the ligament is in vertical alignment. The effect of CFL on 

AJC is more in vertical direction than horizontal. This study shows AJC of subjects like 

7R are stiffer than others whose ligaments are close to vertical. 

 

Changing Morphology of Sustentaculum Tali 

By observing the sustentaculum tali of all six subjects, subjects 4L and 7R as having long 

sustentaculum tali as the volume is continuous between medial and anterior facets of 

calcaneus. By changing the morphology of sustentaculum tali i.e., by removing the 

surface area of sustentaculum tali, it is observed that ROM of AJC increased in 

dorsiflexion and inversion. By following alteration 1, i.e., by removing the fused part 

between anterior and medial sides of calcaneus there is increase in dorsiflexion ROM. 

This shows that the fused part provides extra support in dorsiflexion motion. For subject 

7R and 4L there is significant increase in inversion ROM by following alteration 2 i.e., 

by removing the middle talar articulating surface. On an average for all the subjects there 

is an increase in inversion ROM by removing posterior side of middle talar articulating 
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surface. This shows that the fused region acts as an extra support restricting additional 

dorsiflexion and inversion motion. 

 

Changing the Morphology of Hip Joint 

The morphological parameters of hip play a significant role in the interference of bones at 

the hip joints. Changing femoral neck-shaft angle by inducing both coxavara and 

coxavalga, decrease in anteversion angle i.e., retroversion, increase in alpha angle and 

pistol grip deformity increases early interference at the hip joint which shows that these 

parameters have to be considered while performing FAI surgery rather than just removing 

the bony bump on femoral head or acetabular rim. 

 

 

SIGNIFICANCE  

 

There is a strong relationship between the morphology and mechanical behavior of 

human joints. The outcome of the surgery and other treatments may vary. This results in 

success in some subjects and failure in others.  It is possible that one clinical intervention 

which may succeed on one patient may fail on another patient with different morphology. 

Individualized subject-specific treatment procedures for ankle complex disorders may 

improve the clinical outcome. 

In this study the results show that the ankle joint with fused medial-anterior facets in 

calcaneus morphologhas restricted motion than the calcaneus with two separate facets. 

Proceeding with surgical procedure of ankle fusion might make such ankles stiffer and 

may cause arthritis in the adjacent joints subtalar joint in the future. Patients with large 
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area of sustentaculum tali should be prioritized with TAR while those with smaller area 

may be good candidates for ankle fusion.  

This study also shows that variations in the rientation of CFL produces variations in 

mechanical function of AJC. Therefore, the point of insertion during Ligament 

reconstruction surgeries should be optimized to produce normal jont motion, as the 

output mechanical function of the joint depends on the orientation of the ligament. The 

believed concept of CFL guided motion using as 4-bar mechanism in the literature may 

not be valid based on the finding that joint mechanics depend on the orientation of 

ligament.  

This study also shows that the specific vartiations in femoral neck orientation produce 

early interference. Therefore, the orientation of femoral neck should be considered in the 

diagnosis and treatment of femoroacetabular impingement. For example, in this study the 

results show that femoral retroversion causes early interference at the hip joint. The 

surgeons should correct femoral retroversion before performing the Femoroacetabular 

impingement surgery of removing the excess bone. Correcting such parameters might 

help to solve the cause of the impingement rather than just correcting the problem and 

help to stop the problem to reoccur in the future. This may lead to the better diagnosis 

and treatment of this pathological condition. 
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ASSUMPTIONS AND LIMITATIONS 

 

Exclusion of Cartilage Geometry 

The geometry of cartilage is not physically present in the dynamic models of AJC. 

However the gaps between the bones are closed in the neutral position by translating 

bones by the sum of thickness of articular cartilage which introduces the assumption that 

the bone surfaces are articulating surfaces. The increased space between bones may cause 

small increases in joint rotations and translations. 

 

Uniform Cartilage Thickness in AJC 

Cartilage between all the joints of the AJC is assumed to be uniform. This assumption 

leads to constant contact stiffness across the articular surfaces, which is not physiological 

as the contact stiffness is a function of cartilage thickness and should vary across the 

articular surfaces [89]. 

 

Constant Contact Stiffness 

The contact stiffness in AJC is derived by using the formula K= E*A/t, as defined in 

methodology and is a function of the modulus of elasticity of cartilage (E), an average 

surface polygon area (A) and the average tibiotalar cartilage thickness (t) [18]. The 

contact stiffness varies spatially as a function of cartilage thickness [89]. The contact 

areas and cartilage mechanical properties vary when moving the hind foot [90]. 

Therefore, the stiffness term should vary throughout the simulation. This feature is not 

available in the software and the cartilage stiffness only varies exponentially to report 

nonlinear viscoelastic behavior [18] . 
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Same Ligament Mechanical Properties 

The mechanical properties of lateral collateral ligaments vary significantly from subject 

to subject in AJC [91]. Using the same load-displacement properties for the ligaments 

may be in adequate to use for all subjects. For example, the anterior talofibular ligament 

and calcaneofibular ligament elastic modulus may vary as 255.5 ±181.3MPa and 512.0 ± 

333.5 MPa, respectively. Also the mechanical properties of some of the subtalar 

ligaments such as interosseous and cervical ligaments are undocumented and the 

properties of these ligaments are estimated by scaling the mechanical properties of ATFL 

ligament’s since ATFL have the broad insertion areas as ITCL and CL. The experimental 

comparison indicated that the model over-estimated motion at the subtalar joint [18], 

therefore this assumption may be inappropriate. To develop the model further, mechanical 

testing of the subtalar ligaments is necessary.  

 

Constant Labrum Thickens  

The literature shows that the thickness of labrum in hip joint is variable between 2mm-

3mm Hip joint of the model uses the constant labral thickness as 2mm [46]. The 

assumption of a uniform labral thickness will force the contact stiffness to be uniform 

across the articular surface. This may not be physiological because the contact stiffness 

may be a function of the thickness of the labrum and therefore may spatially vary. 

 

Elimination of Cartilage in the Hip Model  

The cartilage is not used in the dynamic model of hip joint as the interference between 

cartilage to cartilage is not considered as FAI as defined previously and further load 
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transmission characteristics are not the point of interest in this study, in which case the 

cartilage plays a vital role. 

 

Spherical Joint of Hip Joint 

The motion of the hip joint is approximated to ball and socket joint by using a Spherical 

joint between femur and acetabulum in the dynamic model. Using this joint would depict 

the early interference produced by any aspherical nature of femoral head or acetabular 

rim. Future development of model should include ligament constraints to produce the 

motion. 
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CHAPTER 7 FUTURE WORK 

 

 

Long term goals of the study include 

 

1. Studying the variations in forces generated in other ligaments by changing the 

orientation of CFL. 

2. Improving the dynamic model by introducing cartilage geometry and loading the 

joint using tendons. 

3. Finding the mechanical properties such as elastic modulus of ligaments such as 

ITCL and CL and using those values in the model. 

4. Developing the hip model by using ligament constraints and variable thickness 

labrum. 

5. In order to solve the surgical failures of Femoroacetabular Impingement at the hip 

joint. Subjects with failed FAI surgeries will be considered and to find if any of 

the morphological parameters that are proposed to affect FAI are a cause for the 

surgical failures. 
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APPENDIX A 

 

RIGID BODY DYNAM IC MODEL DEVELOPMENT 

Contact Mechanics 

The force developed between contacting articular surfaces is defined as a non-linear 

function of penetration depth, 𝑥  and the penetration velocity, 𝑥̇ 

 

                   𝑭𝒐𝒓𝒄𝒆 =  𝒌 (𝒙)𝒆 + 𝒔𝒕𝒆𝒑(𝒙, 𝟎, 𝟎, 𝒅𝒎𝒂𝒙, 𝒄)𝒙̇                              Equation 7 

 

The penetration depth 𝑥 is scaled by stiffness term 𝑘. The stiffness term 𝑘 is calculated 

using the following equation, 

                                                        𝒌 = 𝑬 ∗
𝑨

𝒕
                                                   Equation 8 

Where E is the experimental compressive modulus of cartilage at the distal tibia and talar 

dome (E = 0.374MPa) [80]. The modulus is scaled by the local average area, A , of the 

polygons comprising each bone surface mesh at the articulating surfaces, and thickness, t, 

of the articular cartilage at each joint as shown in equation 8.   

 

 The exponent, e is chosen based on cartilage’s non-linear behavior under axial loading 

[79]. The cartilage cannot exceed a compressive axial strain of 100% as the cartilage 

cannot compress greater than its original thickness. Therefore, an exponent was chosen 

that would generate very high compressive forces so that bone penetration would not be 

greater than the average cartilage thickness at the hind foot. In this case e=9 is chosen, 
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assuming 3mm cartilage thickness allowing no greater than 86% of compressive strain 

(2.6mm penetration). The step function increases till the penetration value reaches 𝑑𝑚𝑎𝑥 

and the damping coefficient reaches c. The damping coefficient c is chosen to be 

2Nmm/s from the literature [81].  

 

Ligament Mechanics 

Each ligament is modeled as a tension only non-linear viso-elastic material with stress 

(T)-strain (ɛ) relation using quasi-linear viscoelastic theory [92] using the following 

equation, 

𝑇(ɛ) = (𝐴(𝑒𝐵ɛ − 1) + 0.1 ∗ 𝑉𝑅(𝑀1, 𝑀2)) ∗ 𝑠𝑡𝑒𝑝(DM(M1,M2),𝐿𝑜,0,𝐿𝑜+0.1,1)  

Equation 9 

The constants A and B are obtained from previous experimental studies [81] by fitting the 

equation to experimental load-displacement tests for individual lateral-collateral bone-

ligament-bone preparations. The term VR monitors the magnitude of the first time 

derivative of the displacement vector between the ligament insertion points M1 and M2. 

The step function as described in equation 10 monitors independent time variable A. The 

function starts when A=x0 and activates initial value h0, this function continues cubically 

till the final value reaches h1 when A=x0 and stops when A=x1. 

                                              STEP(A,x0,h0,x1,h)                                  Equation 10 

 

The subtalar ligament’s structural properties have not been characterized; therefore their 

load-strain properties were represented as a function of their calcaneal insertion areas. Since 
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the ITCL and CL appear to have similar physical structures than the ATFL [3] this ligament 

was scaled by a factor of the ratio: AreaITCL/AreaATFL. AreaATFL was calculated in the 

previous experimental studies [91]. 
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APPENDIX B 

 

Changing the Neck-Shaft Angle of Femur 

The neck-shaft angle of the femur is changed in the computer model using the software 

GeomagicTM by following the intertrochanteric osteotomy which is successfully used by 

surgeons [68, 69]. 

A wedge is cut near the femoral neck region and the femoral head is aligned on the cut 

plane of femoral shaft and fused. Figure 111 shows the wedge cut performed on femoral 

shaft to increase the neck-shaft angle and Figure 112 shows the wedge cut performed on 

femoral shaft to decrease the neck-shaft angle. 

 

 

Figure 111. Wedge cut to increase the femoral neck-shaft angle. 
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Figure 112. Wedge cut to decrease the femoral neck-shaft angle 

 

Changing the Anteversion Angle 

The femoral  anteversion angle is changed by following  derotational osteotomy, a 

procedure used by surgeons [72].   

 

       

a) Normal anteversion angle   b) Process of osteotomy        c) Reduced anteversion angle 

Figure 113. Process of Derotational Osteotomy (b) to reduce the femoral anteversion angle by 20 

degrees to induce retroversion 
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The shaft of the femur is cut by plane (Figure 113b) and now the femur is divided into 

two parts-proximal and distal, the proximal part is rotated anticlockwise in right hip to 

decrease the anteversion angle and the proximal part is rotated clockwise to increase 

anteversion angle. Then the distal part and proximal part are fused together in the end.  
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