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Abstract
Distance Measures in Bioinformatics

Feiyu Xiong

Advisor: Drs. Moshe Kam and Leonid Hrebien, Ph.D.

Many bioinformatics applications rely on the computation of similarities between

objects. Distance and similarity measures applied to vectors of characteristics are

essential to problems such as classification, clustering and information retrieval.

This study explores the usefulness of distance and similarity measures in several

bioinformatics applications. These applications are in two categories.

(1) Estimation of the adverse reaction severity of unknown pharmaceutical treat-

ments, based on the severity of known treatments, in order to provide guidance for

testing of the unknown treatments in clinical trials.

(2) Classification of cancer tissue types and estimation of cancer stages, based on

high-dimensional microarray data, in order to support clinical decisions making.

To address the first category, we studied several clustering and classification ap-

proaches for binary severity estimation of Cytokine Release Syndrome (CRS). We

developed a Severity Estimation using Distance Metric Learning (SE-DML) approach

to get graded severity estimation. With binary estimation we were able to identify

treatments that caused the most severe response and then built prediction models for

CRS. Using the SE-DML approach, we evaluated four known data sets and showed

that SE-DML outperformed other widely used methods on these data sets.

For the second category, we presented Kernelized Information-Theoretic Metric

Learning (KITML) algorithms that optimize distance metrics and effectively handle

high-dimensional data. This learned metric by KITML is used to improve the per-

formance of k-nearest neighbor classification for cancer tissue microarray data. We
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evaluated our approach on fourteen (14) cancer microarray data sets and compared

our results with other state-of-the-art approaches. We achieved the best overall per-

formance for the classification task. In addition we tested the KITML algorithm in

estimating the severity stages of cancer samples, with accurate results.
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1. Introduction

1.1 Motivation and Overview

Machine learning tasks involve the comparison of data samples in term of some

distance/similarity measures. These measures are essential to classification, clustering

and information retrieval tasks [4]. In bioinformatics, the concept of similarity is

fundamental to the study of macromolecular structures, genomes, proteomes and

metabolic pathways. For example, to determine whether a test treatment will have

similar adverse reaction as a known treatment, it is common to measure the similarity

between vectors of characteristics of samples of both treatments.

Let X be a set of data points. A distance/similarity measure on X is a function

d : X×X→ R. For all x, y, z in X, this function is required to satisfy the following

conditions [5]:

• d(x, y) ≥ 0 (non-negativity)

• d(x, y) = 0, if and only if x = y (coincidence)

• d(x, y) = d(y, x) (symmetry)

• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

There are many distance/similarity measures in use, including the Euclidean dis-

tance, Mahalanobis distance and Pearson correlation. How to choose and use these

measures is important in practical applications. For example, studies show that

simple nearest neighbor methods work if an appropriate distance measure is cho-

sen [6, 7, 8, 9]. Clustering algorithms such as K-means clustering also rely on the

pairwise distance measurements between samples [10] and the right choice of metric

makes significant difference in the accuracy of the analyses.
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In this study, we develop distance/similarity measures to address two kinds of

problems. The first problem type is severity estimation, the estimation of disease

states or adverse-reactions to a treatment (drug, regiment, behavior modification,

etc.). There are many reasons to study severity estimation including the need to

understand the stage of a condition/disease; to match a treatment to the severity at

which a condition is manifested; and to track the progression of a condition/disease.

Although researchers have developed diagnostic scores for predicting disease states

and clinical outcomes [11, 12], the process of determining the scores is time consum-

ing and expensive [13, 14]. To address this issue, we first perform binary severity

estimation, e.g., determining whether or not a treatment will have a similar adverse-

reaction severity to that of a known treatment. Next we apply a Severity Estimation

using Distance Metric Learning approach (SE-DML). This is a generalized approach

that provides quantitative severity determination that is applicable for several areas

in bioinformatics. Our binary severity estimation is evaluated on Cytokine Release

Syndrome (CRS) data. The SE-DML approach is evaluated on several data sets,

including CRS data, Cardiotocography (CTG) data, and two Quantitative Structure

Activity Relationship (QSAR) data sets.

The second problem we studied is cancer tissue classification using high-dimensional

molecular profiling data. Recent advances in molecular profiling technologies have en-

abled researchers to query the expression values of thousands of genes simultaneously.

Information derived from such genome-wide molecular profiling is important in the

diagnosis and identification of cancer tissue types in patient samples [15, 16]. An im-

portant emerging medical application domain for microarray technologies is clinical

decision support in the form of diagnosis of disease as well as the prediction of clinical

outcomes in response to treatments [16]. When mining molecular signature data, the

process of comparing samples through an adaptive distance function is fundamental
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but difficult, as such data sets are normally heterogeneous and high dimensional. In

this thesis, we present Kernelized Information-Theoretic Metric Learning (KITML)

algorithms that optimize a distance function to tackle the cancer tissue classifica-

tion problem. We study two applications of KITML using high-dimensional cancer

molecular profiling data. (1) for sample-level cancer tissue classification, the learned

metric is used to improve the performance of k-nearest neighbor classification. (2) for

estimating the severity level or stage of a group of samples, we propose a set-based

ranking approach to extend KITML.

1.2 Cytokine Release Syndrome (CRS)

1.2.1 Overview

Monoclonal antibodies (mAbs) are widely used in anti-inflammatory and tumor

therapy, but can cause a variety of adverse side effects [17]. One of these is Cytokine

Release Syndrome (CRS), which is characterized by the systemic release of several

inflammatory mediators which set off a cascade release of cytokines [18]. Symptoms

of CRS can include fatigue, headache, urticaria, pruritus, bronchospasm, dyspnea,

sensation of tongue or throat swelling, rhinitis, nausea, vomiting, flushing, fever,

chills, hypotension, tachycardia and asthenia [19]. Some CRS reactions are mild to

moderate in severity and can be controlled by slowing the infusion rate of the mAb

or by administering anti-inflammatory drugs [18]. However in a 2006 phase I clinical

trial using Anti-CD28 SA mAb (TGN 1412), the reactions were much more severe

and six healthy volunteers developed severe CRS within 90 minutes of receiving a

dose of Anti-CD28 SA [20].

Prior to the 2006 trial, Anti-CD28 SA was tested on non-human primates and

rodents to determine the potential for CRS [21]. Although release of cytokines has

been observed in animal models, rarely has it progressed to clinically relevant lev-
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els [22, 23, 24]. Differences in expression of target molecules, regulatory T cells,

cytokines required for inflammatory response, and cell surface receptors among hu-

mans, rodents and non-human primates [25, 26, 27, 28] all indicate that it may not

be appropriate to use animal models to predict CRS in humans.

As a result of this, to further understand CRS in humans, an in vitro assay using

human whole blood was developed and tested by Walker et al. [18]. This assay

was designed to support First-In-Human readiness of mAb treatments assessing the

potential for mAbs to release of cytokines similar to Anti-CD28 SA reaction. The

studies reported in this thesis use results from this assay for further analysis of CRS

using several machine learning approaches.

1.2.2 CRS Problem Definition

The onset of CRS is an important consideration in drug development. Researchers

have applied different machine learning approaches to CRS data from different as-

says [29, 30, 31]. However, the analysis of data has been limited to 1-3 cytokines at

a time and simultaneous multi-dimensional comparisons across a greater number of

cytokines is not common [18]. In this thesis, we apply three (3) machine learning

approaches in combination to multi-dimensional data (12 cytokines) obtained from

Walker’s in vitro assay [18]. These machine learning approaches are (i) Hierarchi-

cal Cluster Analysis (HCA); (ii) Principal Component Analysis (PCA) followed by

K-means clustering; and (iii) Decision Tree Classification (DTC). We try to assess

the potential of mAb-based therapeutics to produce cytokine release similar to that

induced by Anti-CD28 SA. In addition, we apply distance metric learning algorithms

to develop a severity estimation approach that is used to give a more graded severity

levels for different mAb treatments.
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1.3 Cardiotocography

1.3.1 Overview

Cardiotocography (CTG), also known as electronic fetal monitoring, is the most

widely used tool for fetal surveillance during pregnancy. CTG monitors changes in

fetal heart rate (FHR) and uterine contractions (UC) during pregnancy [32], and

identifies the occur of fetal hypoxia (short of oxygen). Fetal hypoxia may result

in long term disability or even death during delivery [33]. Therefore, efficient and

effective diagnosis on fetal hypoxia is an important issue.

In obstetrics, CTG provides measurements through either external or internal

methods. In the external method, the FHR and UC are detected by two transducers

placed on the mother’s abdomen. A Doppler ultrasound traducer provides FHR

information and a pressure transducer provides UC data which is recorded on a paper

strip [32]. In the internal method, a catheter is placed in the uterus after a specific

amount of dilation has taken place and provides a more accurate and consistent

transmission of the FHR and UC than external monitoring because factors such as

movement do not affect measurement [34]. CTG shows fetal development and health

information, especially the maturation status of autonomous nervous system [34].

1.3.2 Cardiotocography Problem Definition

Cardiotocography (CTG) is used to evaluate fetal well-being during delivery. In

general, average of FHR, change of FHR, acceleration and deceleration of FHR and

fetal movement are essential parameters on medical diagnosis of fetal hypoxia [35].

Many researchers have been working on different methods to interpret the CTG data

for fetal hypoxia in order to help physicians make clinical decisions [36]. Our problem

here is to analyze a CTG data set consisting of 2126 samples from University of

California-Irvine (UCI) machine learning repository [37]. The data set was classified
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by three expert obstetricians and consensus classification label was assigned to each

sample indicating the status of fetal hypoxia. The goal is to use distance metric

learning approach to build estimation models and to determine the severity of fetal

hypoxia based on the features of the samples.

1.4 Quantitative Structure Activity Relationship (QSAR)

1.4.1 Overview

Quantitative Structure Activity Relationships (QSAR) describe the interaction of

chemical compounds with biological systems making it possible to predict the ac-

tivities/properties of a given compound as a function of its molecular descriptors.

These relationships are essential to toxicological investigations in the development of

pharmaceutical compounds. Biological reactions to new compounds are often inferred

from properties of similar materials whose hazards are already known [38]. During

the development of new pharmaceutical compounds, such chemicals need to be eval-

uated in different biological media where both in vitro and in vivo testing is very

costly and time consuming [39]. In addition, current trends are toward improved un-

derstanding of the chemical mechanisms of toxicological endpoints and consolidation

of toxicological data into databases [38].

1.4.2 Quantitative Structure Activity Relationship (QSAR) Model De-

velopment

The construction of QSAR models is a two step process. The first step is gen-

erating the description of the molecular structure. The second step is multivariate

analysis for correlating molecular descriptors with observed activities/properties. The

model development process is shown in the Figure 1.1, as described by Nantasenamat

et al. [2]. The process starts with observation of the molecular descriptors of the
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data, which are its physiochemical properties. These include electronic, geometrical,

hydrophobic, lipophilicity, solubility, steric, quantum chemical, and topological prop-

erties [2]. Multivariate analysis in this modeling process is the application of machine

learning techniques to discover the relationships between molecular descriptors and

the biological/chemical properties of interest.

Figure 1.1: Schematic overview of the quantitative structure activity relationship
model development process [2]

1.4.3 QSAR Problem Definition

Quantitative structure activity relationships are widely used in drug development.

The molecular descriptors of compounds are from experimental results such as bioac-

tivity assays. A computational QSAR model is built from such compounds so that the

model learns/captures the structural properties of the compounds that are causally

related to their bioactivity [40]. Therefore, QSAR models are commonly formulated

as supervised machine learning problems and researchers have applied different super-

vised classification approaches such as support vector machine [41, 42] and artificial

neural network [43, 44] to analyze QSAR data. In this thesis, we try to determine the

severity of the two families of chemical compounds –Pyrimidines and Triazines [3]–

based on their structural properties. We proposed our distance metric learning ap-

proach for severity estimation which uses a numerical value (between 0 to 1) to

represent the level of severity for the chemical compounds.



8

1.5 Applications of High-dimensional Molecular Profiling Data to Cancer

Tissue Classification

1.5.1 Overview

With the advancement of genome-wide monitoring technologies, molecular ex-

pression data have become widely used for diagnosing cancer using tumor or blood

samples. When mining molecular signature data, the process of comparing samples

through an adaptive distance function is fundamental but difficult, as such data sets

are normally heterogeneous and high dimensional. In this thesis, we focus on applying

distance metric learning algorithms on the molecular signatures of patient samples

from microarray analysis as well as reducing the computational load when dealing

with high dimensional molecular expression data.

1.5.2 High-dimensional Molecular Profiling Data Problem Definition

Machine learning techniques such as classification and clustering are used for anal-

ysis and interpretation of data obtained from molecular profiling measurements [16,

45]. These data are characterized by a high number of measured variables (m genes)

over a relatively small number of observations (n samples). The number of genes in a

single sample is typically in the thousands and the number of samples is typically in

the hundreds, so the number of feature variables (genes) greatly exceeds the number

of samples. This situation (m >> n) has “high dimensionality” [46] and makes the

application of machine learning techniques challenging. For example, recent studies

have tried to tackle the “high-dimensionality” issue when predicting the existence

of cancer using molecular expressions through sparse-learning based approaches [47].

As molecular signature data become available for more and more patient samples

(e.g. from the national project The Cancer Genome Atlas (TCGA) [48]), measur-

ing the similarity among patient samples becomes critical for mining such signature
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data. Such similarity measures can be used for molecular signature-based retrieval of

similar cancer patient cases when treating a target patient.

In this thesis, we have designed an accurate cancer classification algorithm based

on an extension of “Information-Theoretic Metric learning (ITML)” techniques [49,

50] that is able to provide good assessments of patient similarity, where previous at-

tempts [45, 47] did not fully succeed due to the “curse-of-dimensionality” [46]. Hav-

ing been studied over the past few years [10, 10, 49, 51, 52], distance metric learning

has been applied to practical areas like image recognition [51] and information re-

trieval [53]. This thesis presents two novel extensions of metric learning for the tasks

of sample-level tissue classification and group-level cancer stage determination. The

issue of “small sample, large feature” is addressed through “kernelizing” the learned

metric from ITML or Kernelized Information-Theoretic Metric Learning (KITML).

By learning a nonlinear transformation in the input space implicitly through kernel-

ization, KITML permits efficient optimization and improved learning of a distance

metric. Our two applications of KITML using high-dimensional molecular profiling

data are (1) improving the performance of K-Nearest Neighbor (KNN) classification

for cancer tissue classification and (2) estimating the severity level or stage of a group

of samples.

1.6 Thesis Structure

In Chapter 2, we introduce binary severity estimation for CRS using 1)Hierar-

chical Clustering Analysis (HCA); 2) Principal Component Analysis (PCA) followed

by K-means clustering [54]; and 3) Decision Tree Classification (DTC) [55] to deter-

mine whether a test treatment will have a similar adverse-reaction severity to that of

Anti-CD28 SA. In Chapter 3 we go beyond binary severity estimation using distance

metric learning algorithms which allow us to determine the range of the response



10

severities. Here we studied CRS, CTG and two QSAR data sets whose dimensional-

ity was relatively low. The specific algorithm used in Chapter 2 is ITML. In order

to apply the approach to high dimensional data, which would require high computa-

tional cost, we used, instead, a kernel function to make the distance metric learning

more computationally efficient. In Chapter 4, we apply this Kernelized Information-

Theoretic metric Learning (KITML) algorithm to high dimensional microarray data

sets for cancer issue classification. The results for each analysis are given, and the

advantages and drawbacks for each approach are discussed in Chapter 5. The last

chapter presents the conclusion and future work of this thesis.
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2. Binary Severity Estimation for Cytokine Release Syndrome

Binary severity estimation, applied to data of the in vitro assay developed by

Walker et al. [18], determines whether or not the severity of CRS due to a test

treatment is similar to that of Anti-CD28 SA. Walker’s in vitro assay is described first.

Several machine learning algorithms were used here for binary severity estimation of

the assay data. They are: 1)Hierarchical Clustering Analysis (HCA); 2) Principal

Component Analysis (PCA) followed by K-means clustering [54]; and 3) Decision

Tree Classification (DTC) [55]. A comparison of the utility of these approaches for

the analysis of the assay is also presented.

2.1 In Vitro Assay Description and Data Set

For Walker’s assay, blood was drawn aseptically under informed consent1 by

venipuncture using a 21-gauge needle from 44 normal human volunteers into BD

Heparin Vacutainer (San Jose, CA) tubes. Cultures were set up within two (2) hours

of blood collection. Previous reports on these types of assays suggest the need to

immobilize Anti-CD28 for maximal cytokine production [21]. For this purpose, Pro-

tein A coated polystyrene beads were selected. Beads were coated with a saturating

amount of mAb and then distributed to a 96-well culture dish. Each well contained

1×107 beads/well along with 200µl of 1:10 diluted whole blood in RPMI 1640 media.

The cultures were incubated at 37 ◦C for 48 hours. Following incubation, wells

were resuspended and centrifuges at 2500 rpm for 5 min. Supernatant was removed,

transferred to shipping plates, and supernatant plates were frozen at −80 ◦C. Plates

were shipped on dry ice for multiplex analysis.

We used the assay to test the stimulation of human blood from different donors

1Quorum Review IRB approved protocol #NOCOMPOUNDNAP1001
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Table 2.1: List of cytokines release measured in the assay for binary severity estima-
tion

Cytokine Mean (pg/ml) Median(pg/ml) Maximum (pg/ml)

IL-1β 240.8 140.4 1932.3
IL-2 12.0 2.3 406.2
IL-4 2.2 0.5 45.2
IL-6 4897.6 1620.7 39195.5
IL-10 6.3 2.7 100.8
IL-12(p70) 8.3 5.4 55.5
IL-17 22.1 0.1 263.2
IL-18 13.0 10.6 71.1
IFN-γ 4661.2 10.4 90400.57
TNF-α(monometric) 433.8 178.1 3729.62
TNF-α(trimetric) 294.4 131.8 1809.5

where the application of a given treatment (monoclonal antibody (mAb)) on blood

from a particular donor constituted a sample. The concentrations of the 11 cytokines

shown in Table 2.1 were measured for each sample. These concentrations were mea-

sured in triplicate by multiplex enzyme-linked immunosorbent assay (ELISA) using

SearchLightTM technology from Aushon Biosystems (Billerica, MA). Data were re-

ported in pg/ml for each sample and each cytokine. To allow calculation of mean

values and graphic analysis, all concentrations below the level of quantitation were

set to 0.1 [18]. The mean, median, and maximum values of each cytokine for all the

samples are also shown in Table 2.1.

The 7 mAbs and 2 controls used in our study are described in Table 2.2, which

shows the target, manufacturer, number of samples, expected results and class for each

mAb. The “Expected Results” column in Table 2 is based on the clinical literature

(Tocilizumab and Palivizumab) and on the mechanism of action of the research grade

mAb being similar to a compound that has clinical results (for Anti-CD28 SA, Anti-

CD80, Anti-CD22, Anti-IL-1, or Anti-IL-5) [56]. The “class” column is based on the

expected reaction where severe CRS is caused by Anti-CD28 SA; no infusion reactions
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have been reported for the remaining treatments. The data were thus grouped into

two categories, “CD28” and “Safe.” The “CD28” class contained samples only from

cultures treated with Anti-CD28 SA. The “Safe” class contained mAbs that are not

likely to cause CRS or an infusion reaction, and controls.

Table 2.2: List of mAbs and controls used in our CRS detection study

mAb/clone no. Target Manufacturer Samples Expected Results Class
Anti-CD28 SA /
ANC28.1/5D10

CD28 Ancell 152 Severe CRS CD28

Anti-CD80 /
2D10

CD80 Abcam 8 No CRS or Infusion
Reactions

Safe

Anti-CD22 /
LT22

CD22 Abcam 8 No CRS or Infusion
reactions

Safe

Anti-IL-1β /
2805

IL-1β R&D Systems 8 No CRS or Infusion
reactions

Safe

Anti-IL-5 / QS-
5

IL-5 Abcam 8 No CRS or Infusion
reactions

Safe

Tocilizumab IL-6 Re-
ceptor

Roche 8 No CRS or Infusion
Reactions

Safe

Palivizumab RSV Fu-
sion

Medimmune 8 No CRS or Infusion
Reactions

Safe

PBS (Control) - 80 No CRS or Infusion
reactions

Safe

AutoPlasma (Control) - 152 No CRS or Infusion
reactions

Safe

The dataset analyzed in this thesis contains a total of 432 samples that were

measured through 11 runs of the assay. The information for each run is shown in

Table 2.3, including donors in each run, treatments used in each run, number of

samples per treatment, and total number of samples for each run. The sizes of

sample sets corresponding to different treatments are uneven, an observation that

would affect the performance of subsequent analyses.



14

Table 2.3: Donor information for 11 runs in the data set

Run ID Donor IDs Treatments
Used

Sample
number per
Treatment

Total
Samples

Run 1

donor #5, donor #9, PBS 4

20
donor #30, donor #36 AutoPlasma 4

Anti-CD28 SA 4
CD80 4
CD22 4

Run 2

donor #1, donor #4, PBS 4

20
donor #27, donor #29 AutoPlasma 4

Anti-CD28 SA 4
CD80 4
CD22 4

Run 3

donor #2, donor #8, donor #10, PBS 8

40
donor #21, donor #22, donor #23, AutoPlasma 8
donor #25, donor #40 Anti-CD28 SA 8

IL-1β 8
IL-5 8

Run 4
donor #1, donor #5, donor #7, PBS 8

24donor #9, donor #10, donor #12, AutoPlasma 8
donor #19, donor #25 Anti-CD28 SA 8

Run 5
donor #1, donor #5, donor #10, PBS 8

40donor #25, donor #36, donor #37, AutoPlasma 16
donor #39, donor #40 Anti-CD28 SA 16

Run 6
donor #1, donor #7, donor #10, PBS 8

56donor #13, donor #19, donor #25, AutoPlasma 24
donor #37, donor #39 Anti-CD28 SA 24

Run 7
donor #6, donor #12, donor #20, PBS 8

24donor #21, donor #28, donor #34, AutoPlasma 8
donor #37, donor #38 Anti-CD28 SA 8

Run 8

donor #13, donor #14 donor #17, PBS 8

40
donor #19, donor #20, donor #24, AutoPlasma 8
donor #26, donor #41 Anti-CD28 SA 8

Tocilizumab 8
Palivizumab 8

Run 9
donor #11, donor #19, donor #15, PBS 8

56donor #31, donor #32, donor #33, AutoPlasma 24
donor #41, donor #43 Anti-CD28 SA 24

Run 10
donor #11, donor #19, donor #15, PBS 8

56donor #31, donor #32, donor #33, AutoPlasma 24
donor #41, donor #43 Anti-CD28 SA 24

Run 11
donor #3, donor #16, donor #17, PBS 8

56donor #18, donor #35, donor #41, AutoPlasma 24
donor #42, donor #44 Anti-CD28 SA 24
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2.2 Hierarchical Clustering Analysis

The first algorithm we used to analyze the treatments of the in vitro assay is ag-

glomerative HCA, implemented in Matlab R© 2012a software (The Mathworks, Natick,

MA). Agglomerative HCA was applied to means of the cytokine samples from each one

of the Table 2.2 treatments. It is a “bottom up” approach which first considers each

treatment as being in its own cluster and then merges pairs of clusters by their dis-

tances from each other. The process repeats until all treatments are within one cluster.

Each treatment was evaluated by using an unweighted group mean with Euclidean

distance as the similarity measurement. The Euclidean distance, dab, between two

means, ma and mb of treatments a and b is defined as dab =
√

(ma −mb)(mb −ma).

2.3 Principal Component Analysis

Principal Component Analysis (PCA) is an algorithm commonly used to reduce

the number of attributes used to represent a set of data. PCA transforms the original

data (which may be given as a function of correlated variables) into linearly uncor-

related attributes, by projecting the original data onto orthogonal components such

that the variance of the projected data is maximized [54]. These orthogonal compo-

nents are obtained by using singular value decomposition of the covariance matrix Σ

associated with the data [57]. The covariance matrix of a vector of random variables

X, is defined as [57]:

Cov(X) = E[(X − E[X])(X − E[X])T ]. (2.1)

We can consider the samples for each attribute as a column vector of random

variables. Hence, we can assemble a matrix M where each row represents one sample

and each column is the difference between one of the attributes and its expected
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value. For our data, there are 11 columns representing 11 cytokine attributes, so M

is of the form

M = [(X1 − E[X1])
... (X2 − E[X2])

... · · · · · · ... (X11 − E[X11])]. (2.2)

The covariance matrix can be estimated from the matrix M as the sample covari-

ance matrix Σ,

Σ =
1

n
MTM. (2.3)

The eigenvectors of the covariance matrix Σ are known to characterize the or-

thogonal components (Principal Components). The eigenvalues of Σ are equal to the

variances associated with each Principal Component [54]. PCA was applied to re-

duce the number of attributes used to represent the data. We calculated the variance

associated with each of the Principal Components and chose the components with

the largest variances. We ignored the Principal Components that accounted for small

amount of variance.

The best results from PCA are obtained for datasets whose attributes have similar

dynamic ranges [54]. In our case, the data vary greatly, as seen in column 4 of

Table 2.1, so we applied a logarithmic transformation on the data before proceeding

with the analysis. This transformation may be used when the attributes show a linear

or nearly-linear relationship between the standard deviation and the mean for each

treatment [58][59], which our data do exhibit (as shown in Chapter 5).

2.4 K-means Clustering

K-means clustering, which we applied to the data after PCA, assigns the n ob-

servations in a dataset into k clusters. Each observation is assigned to the cluster
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whose mean is the nearest to that observation. The standard K-means clustering

algorithm is based on alternating two procedures [60]. The first procedure is the

assignment step, which assigns each observation to the cluster whose mean yields the

least within-cluster sum of distances. The second procedure is the calculation of new

cluster means based on the assignments. The process stops when no reassignment

of an observation to a cluster would minimize the within-cluster sum of distances

between samples and the mean of each cluster. The Euclidean measure was used here

to calculate the distance between observations.

2.5 Decision Tree Classification (DTC)

The C4.5 DTC algorithm [55] implemented in the Weka 3.6.6 software [61] (Uni-

versity of Waikato, Hamilton, New Zealand) was also used to analyze the dataset.

This is a supervised machine learning algorithm, meaning that a correctly-labeled

data set is required to “train” the algorithm before the algorithm can be applied to

unknown data. Each observation in the dataset is defined by a collection of measured

attributes (in our case cytokine levels) and a corresponding group or class label. The

algorithm defines a set of rules that assign each observation to a corresponding class.

The input to the algorithm is the collection of attributes for a given observation, and

the output is the assigned class for that observation.

The DTC algorithm uses training data to infer rules that describe the correspon-

dence between input attributes and the classes into which they are associated. The

algorithm applies a “divide and conquer” approach, resulting in an iterative process

that starts by analyzing each attribute from the training data separately from the

others. It calculates the information gain for each attribute with respect to the pos-

sible class outcomes present in the training data [55]. The attribute with the highest

information gain is denoted as the “root node.” This attribute is used to make the
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first separation of the data samples in a process called “branching” that assigns a

“branch” to each sample according to the attribute value present in the sample.

After the first branching operation, the samples belonging to a specific branch

may be associated with a class if all the samples in the branch have the same class

label. In this case, the algorithm is said to have researched a “leaf node” denoted

by the label associated with the corresponding class. If the samples in the branch

have different class labels, the sample are analyzed further to find the attribute with

the highest information gain. This process is repeated until all observations in the

dataset are assigned a class.

Since the attributes in our dataset have continuous values, it was necessary for the

algorithm to define thresholds that separate the possible attribute values into discrete

groups which can then be associated with a corresponding class. Each threshold is

chosen by iteratively calculating information gains for certain threshold candidates in

the data from the attribute being analyzed (the method for generating threshold can-

didates is described in [62], Section 6.1). The candidate with the highest information

gain is used to split the values of the attributes and build the Decision Tree.

The rules created by the algorithm are displayed using a tree structure consisting

of test nodes and branches. Each node represents the testing of a rule applied to a

certain attribute. The branches represent the possible outcomes from the test, and

point to either a class label or to another node for further testing. The top node in

the tree is the “root node,” which represents the testing of the most relevant attribute

obtained by the algorithm. The class assigned for a given sample is denoted by a “leaf

node,” which is located at the bottom of the tree and contains the label assigned to

a given sample.

The DTC algorithm analyzes all the attributes in the training set and selects the

best attribute that maximizes the information gain as the root node. This attribute
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is considered the most relevant for classification among all attributes [55]. The sec-

ond most relevant attribute is found by removing the attribute in the root node and

applying the algorithm to the remaining attributes [63]. The new root node is consid-

ered the second most relevant attribute for classification. This process is continued

until all attributes were considered.

2.6 The DTC Model Construction (Definition of Training Data Sets and

Test Data Set)

The DTC model is constructed using the data set shown in Table 2.3. In order to

build and validate the model, we divided the data into training data and test data.

We defined two training data sets using some or all of the 264 samples from 32 donors

in runs 1-8 shown in Table 2.3. The remaining 168 samples from 15 donors in runs

9-11, were reserved as test data set. Before applying the test data from runs 9-11 we

ran cross validations with the two training data sets to determine the accuracy of our

models.

Training data set 1, consisting of 216 samples shown in Table 2.4, was assembled

using only the control samples for the “Safe” class and the Anti-CD28 SA samples for

the “CD28” class. The use of these data for the training set is expected to maximize

the difference between samples from the two classes. For training data set 2, consisting

of the 264 samples shown in Table 2.4, we used additional mAbs in the “Safe” class.

The “Safe” class included Tocilizumab [64] and Palivizumab [65], two mAbs that

were tested clinically and have shown no CRS reactions, and four (4) research-grade

compounds that were not tested clinically but have the same target as mAbs that were

tested clinically. The four research-grade compounds are assumed - like their clinical

counterparts - not to cause CRS reactions. They were: 1) CD80 which may be similar

to Galiximab [66]; 2) CD22 which is similar to Epratuzumab [66]; 3) IL-1β which is
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similar to Canakinumab [67]; and 4) IL-5 which is similar to Mepolizumab [68]. The

controls, PBS and AutoPlasma, were also included in the “Safe” class. The test data

set was selected from the 168 samples in runs 9-11 shown in Table 2.3. Since there

are 3 common donors (donor #17, donor #19 and donor #41) between runs 1-8 and

runs 9-11, the 42 samples of these three donors were removed from the test data set,

leaving 126 samples in the test data set, as shown in Table 2.6. The test data samples

therefore came from different donors than those used in training data sets 1 and 2,

and could be used to assess the ability of the DTC models to classify new data.

Table 2.4: Training data set 1 for DTC

Class MAbs and controls # samples
Safe PBS(56) 136

AutoPlasma(80)
CD28 Anti-CD28 SA(80) 80

Table 2.5: Training data set 2 for DTC

Class MAbs and controls # samples

Safe

PBS(56)

184

AutoPlasma(80)
Tocilizumab (8)
Palivizumab(8)
CD80(8)
CD22(8)
IL-1β(8)
IL-5(8)

CD28 Anti-CD28 SA(80) 80
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Table 2.6: Test data set for DTC

Class MAbs and controls # samples
Safe PBS(18) 72

AutoPlasma(54)
CD28 Anti-CD28 SA(54) 54

2.7 Cross Validation Method for Estimating DTC Accuracy

In order to estimate the classification accuracy of the DTC model on new data

with unknown class labels, the following cross validation methodology was used: the

entire training data set was split randomly into two sets: one set was used for train-

ing (2/3 of the data) and one set was used for cross validation (1/3 of the data). To

prevent samples from the same donor from appearing in both sets, we grouped the

samples by donor, and then randomly selected donors whose samples numbers added

up to one third of the total number of samples. The samples from the rest of the

donors were used for training the DTC model. This process was repeated multiple

times until samples from all the donors were considered equally often for both train-

ing and validation. The classification accuracy estimate was defined as the average

classification accuracy for all the training/testing set partitions.
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3. Severity Estimation using Distance Metric Learning

In many circumstances, the binary determination of severity may be of limited

value, and we may be interested in a multi-class and more graded determination of

the level of severity. For such determination we propose the Severity Estimation

using Distance Metric Learning (SE-DML) approach. SE-DML uses distance metric

learning algorithms to develop multi-level of severity assessment. The four data sets

used in the evaluation are Cytokine Release Syndrome (CRS), Cardiotocography

(CTG), Pyrimidines and Triazines data sets.

3.1 Problem Formulation

The problem of estimating the disease’s severity can be divided into two stages:

(1) choosing the most medically relevant set of features describing the disease of

interest and (2) combining these variables in a functional form (model) which is able

to provide the most accurate severity estimation for the disease [12]. Focusing on the

stage (2), here we proposes to tackle SE-DML. More specifically, we have observed

that in most cases of biomedical severity estimation in practice, the reference data

(i.e. the sample groups with known severity) normally include only positive (e.g.

least severe disease state) and negative controls (e.g. most severe disease state). The

reason is that in biomedical experiments such as blood assay, clinical trials and animal

testing, many researchers utilize and label positive and negative controls to verify the

success of their experiments. Thus SE-DML aims to solve the following problem.

• We are given a data set with multiple samples groups associated with different

severity levels of a disease. Some sample group severity levels are known (posi-

tive and negative control groups) and some are unknown. The main goal is to
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estimate the severity of unknown sample groups based on their relationship to

the known ones.

Samples in the same group should match to the same level of severity. For example,

a “group” could describe a certain disease state.

Figure 3.1: Problem formulation: the severity levels of positive control E+ and neg-
ative control E− are known. The severity level y?

i of an unknown sample group E?
i is

estimated based on its distances to the two controls.

Our setup includes a data set of m-dimensional samples about a certain biomed-

ical condition. These samples belong to n sample groups {E1, . . . ,En}, where each

sample group E ∈ RpE×m contains pE samples {x1, . . . ,xpE} and corresponds to a

severity level yi of this biomedical condition. We assume that the severity levels yi

are numerical values between 0 and 1, with 0 being the least severe and 1 being the

most severe. Among these n sample groups, some have known severity levels. As we

mentioned above, in most cases, the sample groups with known severity are positive

and negative controls. Here we define y+ = 1 for positive control E+, whereas y− = 0

for negative control E−. The objective is to estimate the severity level y?
i of an un-

known sample group E?
i based on its distances to E+ and E−. The problem definition

of SE-DML is illustrated in Figure 3.1.
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3.2 Basic Distance Metric Learning

Metric learning methods try to learn a Mahalanobis distance defined in expression

(3.1), where A is a positive semi-definite m by m matrix of parameters learned from

data. The learning process usually relies on pairwise constraints between sample

points as training signals: (1) equivalent constraints (equation 3.2), which state that

a given pair of data points are semantically similar and should be close together in

the learned metric; and (2) inequivalent constraints (equation 3.3), which indicate

that the given pairs of samples are semantically dissimilar and should not be close

together in the learned metric [69].

dA(xi,xj) =
√

(xi − xj)TA(xi − xj) (3.1)

S = {(xi,xj)|xi and xj are similar} (3.2)

D = {(xi,xj)|xi and xj are dissimilar} (3.3)

A commonly used formulation of distance metric learning [10] converts the above

constraints to a convex programming task to learn the parameter matrix A:

min
A∈Rm×m

∑
xi,xj∈S

dA(xi,xj) (3.4)

s.t.
∑

xi,xj∈D

dA(xi,xj) ≥ 1, and A � 0.

The positive semi-definite constraint A � 0 is required to guarantee the learned

distance between any two points (parameterized by A) cannot be negative and satisfies

the triangle inequality.

For our targeted task handling a set of sample groups mapping to a range of sever-

ity levels, it is natural to think that one can calculate the distances between samples
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with unknown severity to samples with known severity, in order to estimate the un-

known severity. But the commonly used Euclidean distance metric may not capture

the fact that samples from the positive control E+ should be far from samples from

the negative control E−. The basic idea of distance metric learning is maximizing the

distances between dissimilar sample groups, and minimizing the distances between

samples in the same group or among similar groups. Specifically, the learned met-

ric based on positive control and negative control should give a maximum distance

d(E+, E−) between these two controls. The distances between a sample group E?
i

with unknown severity level and two controls can then be measured based on this

learned metric. These distances should be proportional to d(E+, E−) and can be

combined to locate the position of this unknown group between the two controls,

where the position indicates the severity level.

3.3 Overall Framework

The objective of SE-DML approach is to estimate the severity levels of n unknown

sample groups {E?
1, . . . ,E

?
n} based on positive control E+ and negative control E−,

which are known beforehand. The set of equivalence constrains S (equation 3.2)

consists of pairs of samples within E+ or E−. The set of inequivalent constrains D

(equation 3.3) consists of pairs of samples from different controls – one sample from

E+ and one sample from E−. A Mahalanobis distance metric is then learned based on

these constrains using the distance metric learning method described in Chapter 3.4.

Based on the learned metric, the distances of the unknown groups to the controls are

calculated and will be transformed to severity levels y as described in Chapter 3.5.
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3.4 Information-Theoretic Metric Learning (ITML)

Given a distance metric parameterized by A, a corresponding multivariate Gaus-

sian distribution could be expressed for describing samples where A−1 is the covariance

matrix of the distribution, i.e.,

Pr(x|A) =
1

(2π)m/2|A|1/2
exp(−1

2
xTA−1x). (3.5)

Considering the Euclidean distance (i.e., distance metric with identity matrix A0 =

I) works well as a baseline empirically, we regularize the learned metric matrix A

with A0. Probabilistically, this equals to minimize the distance between the two

corresponding Gaussian distributions, denoted by Pr(x|A) and Pr(x|A0). Typically,

Kullback-Leibler (KL) divergence [70] is used to measure the distance between two

distributions, thus the distance between Pr(x|A) and Pr(x|A0) is given by,

d(A0||A) = KL(Pr(x|A0)||Pr(x|A))

=

∫
Pr(x|A0) log

Pr(x|A0)

Pr(x|A)
dx. (3.6)

Then the log determinate (LogDet) formulation is used to simplify the d(A0||A) in a

closed form:

d(A0||A) =
1

2
(tr(A−1A0) + log|A| − log|A0| −m), (3.7)

where m is the dimensionality of the data. Suppose the means of the Gaussian

distribution is 0, the proof for equation 3.7 is as follow,
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d(A0||A) (3.8)

= KL(Pr(x|A0)||Pr(x|A))

=

∫
Pr(x|A0) log

Pr(x|A0)

Pr(x|A)
dx

=

∫
[log(Pr(x|A0))− log(Pr(x|A))]Pr(x|A0)dx

=

∫
[
1

2
log
|A|
|A0|

+
1

2
xTA−1

0 x+
1

2
xTA−1x]Pr(x|A0)dx

=
1

2
log
|A|
|A0|

− 1

2
tr{E(xTx)A−1

0 +
1

2
E(xTx)A−1}

=
1

2
log
|A|
|A0|

− 1

2
tr{Im}+

1

2
tr{A−1A0}

=
1

2
(tr(A−1A0) + log|A| − log|A0| −m)

Based on the above formulation, Davis et al. proposed ITML [49][50] to tackle

metric learning by minimizing the LogDet divergence (equation 3.7) plus side con-

straints (equivalent or inequivalent). The constraints used in ITML are similar to

those described in Chapter 3.2, in which for two similar samples, their learned dis-

tance is constrained to be smaller than a given upper bound, i.e., dA(xi,xj) ≤ u for a

parameter u, and, for two samples that are known to be dissimilar, dA(xi,xj) ≥ l for

a parameter l. The objective is to learn a distance metric parameterized by parameter

matrix A. To solve this optimization, ITML uses the so-called Bregman projections

for solving a strictly convex optimization with respect to multiple linear inequality

constraints. Using this simple first-order technique developed in [71], ITML repeat-

edly computes Bregman projections of the current solution onto a single constraint

via the following update

At+1 = At + βAt(xi − xj)(xi − xj)
TAt, (3.9)
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where β is the projection parameter (Lagrange multiplier) corresponding to the cur-

rent constraint. It is positive for similar pairs and negative for dissimilar pairs.

3.5 Severity Estimation for a Sample Group

After learning a distance metric, we can calculate the distances between a sample

x?
i (with an unknown severity level y?

xi
) to the positive control E+ and negative control

E−. Thus the distance between x?
i and E+ is defined as :

dA(x?
i ,E

+) = (

∑
xk∈E+

x+
k

|E+|
− x?

i )
TA(

∑
xk∈E+

x+
k

|E+|
− x?

i ). (3.10)

Similarly, the distance between x?
i and E− is defined as :

dA(x?
i ,E

−) = (

∑
xk∈E−

x−k

|E−|
− x?

i )
TA(

∑
xk∈E−

x−k

|E−|
− x?

i ). (3.11)

These two distances are used together to determine the severity level y?
xi

(equa-

tion 3.12) for a sample x?
i . If y?

xi
is closer to 0, the severity level of x?

i is more

similar to that of the negative control. If y?
xi

is close to 1, the severity level of x?
i is

more similar to that of the positive control.

y?
xi

=
dA(x?

i ,E
−)

(dA(x?
i ,E

+) + dA(x?
i ,E

−))
. (3.12)

The severity y?
i of E?

i is then defined as

y?
i =

∑
x?
i∈E?

i

y?
xi

|E?
i |

. (3.13)
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Table 3.1: List of cytokines release measured in the assay for SE-DML

Cytokine Mean (pg/ml) Median(pg/ml) Maximum (pg/ml)

IL-1β 457.68 222.37 4550.80
IL-2 27.07 2.34 2636.76
IL-4 1.69 0.38 45.20
IL-6 7875.14 2591.21 88002.05
IL-8 24106.95 13859.18 427144.20
IL-10 15.09 3.50 636.68
IL-12(p70) 8.57 5.88 91.37
IL-17 25.11 0.10 2410.40
IL-18 14.36 11.42 131.41
IFN-γ 3222.47 36.68 90400.57
TNF-α(monometric) 455.00 267.08 3729.62
TNF-α(trimetric) 306.93 173.67 1819.08

3.6 Cytokine Release Syndrome Data Set

This CRS data set used here is generated by the same in intro assay as described in

Chapter 2.1 with more treatments. The assay measured the concentrations of the 12

cytokines shown in Table 3.1. Data were reported in pg/ml for each sample and each

cytokine. To allow calculation of mean values and graphic analysis, all concentrations

below the level of quantitation were set to 0.1 [18].

The data set from the in vitro assay contains a total of 30 treatments listed

in Table 3.2. Each treatment has a different number of samples indicated in the

parenthesis. There are a total of 711 samples in the data set. For each sample, the 12

cytokines described in Table 3.1 are measured as features. The 30 treatments have

been roughly classified into 5 groups based on the severity descriptions of CRS found

in clinical literature, which ranges from the most severe CRS caused by anti-CD28

SA to no reaction at all [56][72]. The 5 groups are negative control(E−), safe(E?
1),

middle(E?
2), severe(E?

3) and positive control(E+). The negative control group has no

CRS reaction at all. The safe group contains treatments not likely to cause CRS or

an infusion reaction. The middle group contains treatments that could potentially
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Table 3.2: List of treatments (mAbs) used in the CRS data set for SE-DML. Each
treatment has a different number of samples indicated in the parenthesis

Negative Control(E−) Safe(E?
1) Middle(E?

2) Severe(E?
3) Positive Control(E+)

AutoPlasma (152) Adalimumab (16) Anti-VEGF (8) CD2 (16) Anti-CD28 SA (152)
PBS (80) Alemtuzumab (8) Basiliximab (8) CD28-Biol (8) LPS (80)

CD11a (8) IL-12 (8) CD28-SB (8)
CD22 (8) KV1D261-1.003 (8) CD20 (23)
CD80 (8) KV1D261-20.001 (8) CD3 (16)
Cetuximab (8) Panitumumab (8) CD3/CD28 (8)
IL-1b (8) CD4(8)
IL-5 (8) CD40 (8)
IL-6 (8)
IL-6-B-E8 (8)
Palivizumab (8)
Tocilizumab (8)

cause infusion reactions, but milder than the reactions caused by the treatments in

severe-CRS class. The severe-CRS group contains treatments that will cause severe

CRS. The positive control group will cause the most severe CRS.

3.6.1 Evaluation Setup

To reduce the differences in the dynamic ranges of the 12 features, the data are

z-score transformed first. The z-score transformation is defined as z = x−µ
σ

, where

x is a raw data sample, µ is the means of the sample population and σ is the stan-

dard deviation of the sample population. The distance metric parameterized by A is

learned based on the positive controls (E+) and negative controls (E−) in Table 3.2.

The constrained sample pairs are formulated by the samples within the two control

groups. The lower and upper bounds of the right hand side of the constraint (l and u)

described in Chapter 3.4 are the 5th and 95th percentiles of the observed distribution

of distances between pair of points within two control groups, respectively.

3.7 Cardiotocography Data Set

Cardiotocography (CTG) is the most widely used tool for fetal surveillance. The

data set contains 2126 fetal CTG samples that were classified by three expert obste-
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Table 3.3: Number of samples in each class of CTG data set

Class Number of Samples
Normal 1655
Suspect 295
Pathologic 176

tricians and a consensus classification label assigned to each of them [37][73]. The

classification labels are based on the severity of fetal abnormal states: normal, suspect

and pathologic. The number of samples for each class are shown in Table 3.3. The

21 diagnostic features for each sample are shown in Table 3.4.

3.7.1 Evaluation Setup

The CTG data set is normalized through each feature by z-score transformation.

The z-score transformation is defined as z = x−µ
σ

, where x is a raw data sample, µ is

the means of the sample population and σ is the standard deviation of the sample pop-

ulation. To evaluate proposed SE-DML approach, a 10-fold cross validation strategy

was used. Since there are only 3 classes in the data set, in each iteration of the 10-fold

cross validation, 90% of the normal class samples and pathologic samples were used

to formulate negative controls E− and positive controls E+ which were used to learn

distance metric parameterized by A. The constrained sample pairs are formulated by

the samples within E− and E+. The lower and upper bounds of the right hand side

of the constraint (l and u) described in Section 3.4 are the 5th and 95th percentiles

of the observed distribution of distances between pair of points within positive and

negative controls data, respectively. The remaining 10% samples of these two classes

and the entire suspect class samples {E?
1,E

?
2,E

?
3} are used to test the performance.

The average results of the 10 iterations are used as the final evaluation results.
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Table 3.4: The 21 diagnostic features of CTG data set

Index Feature
1 LB - FHR baseline (beats per minute)
2 AC - number of accelerations per second
3 FM - number of fetal movements per second
4 UC - number of uterine contractions per second
5 DL - number of light decelerations per second
6 DS - number of severe decelerations per second
7 DP - number of prolongued decelerations per second
8 ASTV - percentage of time with abnormal short term variability
9 MSTV - mean value of short term variability
10 ALTV - percentage of time with abnormal long variability
11 MLTV - mean value of long term variability
12 Width - width of FHR histogram
13 Min - minimum of FHR histogram
14 Max - Maximum of FHR histogram
15 Nmax - number of histogram peaks
16 Nzeros - number of histogram zeros
17 Mode - histogram mode
18 Mean - histogram mean
19 Median - histogram median
20 Variance - histogram variance
21 Tendency - histogram tendency

3.8 Quantitative Structure Activity Relationship Data Sets

Quantitative Structure Activity Relationships (QSAR) relate to the interaction

of chemical compounds with biological systems. These relationships are essential

to toxicological investigation in the development of pharmaceutical compounds. Our

severity estimation approach is used to predict the toxicity of two families of chemical

compounds, Pyrimidines and Triazines, based on their QSAR data sets [3], where each

compound has 5 levels of severity as class labels.

In forming a QSAR for a series of chemical compounds, we consider the com-

pounds to have a common structure onto which substituent groups are added [1].
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Table 3.5: Physico-chemical attributes of substituent in Pyrimidines and Triazines [1]

Attribute name Notation
Polarity PL
Size SZ
Flexibility FL
Hydrogen-bond donor HD
Hydrogen-bond acceptor HA
π bond acceptor ΠA
π bond donor ΠD
Polarizability PO
δ effect δ
Branching BR

Substituent groups are groups of atoms substituted in place of a hydrogen atom on

the parent chain of a hydrocarbon and represent physico-chemical attributes. The

physico-chemical attributes of the substituent in Pyrimidines and Triazines are shown

in Table 3.5. These physico-chemical attributes in the Table 3.5 are considered as

features that related to the two compounds’ toxicity. The SE-DML approach devel-

oped here was used to capture the relationships between features and compounds’

toxicity. In Pyrimidines there are three possible regions for a substituent as shown

in Figure 3.2, and with nine features for each region (Branching was not used), each

sample in the Pyrimidines data set has an feature vector of 27 elements. In ad-

ditional, each sample has a real value activity class label denoted as the severity

level. For example, a sample in the Pyrimidines set with a CI substituted at po-

sition R3, OCH3 group substituted at position R4, and a CI group substituted at

position R5, is represented by the feature vector shown in Figure 3.3. The first 9

features are the physico-chemical attributes of CI substituent at position R3 (The

attributes in Table 3.5 excluding the last attribute Branching). The second 9 features

are the physico-chemical attributes of OCH3 position R4. The third 9 features are

the physico-chemical attributes of CI position R5. The last number, 2, indicates the
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severity level [3]. For the Triazines data set, compounds have six possible regions for

a substituent and there are 10 features for each regions. So each sample has a total

of 60 features.

Figure 3.2: Structure of the Pyrimidines where substitutions can occur at positions
R3, R4 and R5 [1].

3.8.1 Evaluation Setup

The activity values that indicate the toxicity levels for both Pyrimidines and

Triazines data sets were discretized into five intervals [3]. These five intervals are

denoted as five sample groups: {E−,E?
1,E

?
2,E

?
3,E

+}, with severity levels y− < y?
1 <

y?
2 < y?

3 < y+. Each data set has been randomly separated into control and test

partitions. The control partition is used to learn a distance metric, where, E− is

negative control and E+ is positive control. In the test partition, the E?
1, E?

2 and

E?
3 sample groups are used for severity estimation in order to evaluate our SE-DML
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Figure 3.3: Feature vector for a sample in Pyrimidines data set. The first 9 features
are the physico-chemical attributes of CI substituent at position R3 (The attributes
in Table 3.5 excluding the last attribute Branching). The second 9 features are
the physico-chemical attributes of OCH3 position R4. The third 9 features are the
physico-chemical attributes of CI position R5. The last number, 2, indicates the
severity level [3].

approach. The partitioning was repeated 20 times with replacement1 and the number

of samples for both control and test partitions are shown in Table 3.6. The average

severity levels of E?
1,E

?
2,E

?
3 are used as the final results.

Table 3.6: Characteristic of the two QSARs data sets: the number of features and
number of samples for the two partitions

Data Sets Number of
Samples
in Control
Partition

Number of Sam-
ples in Test Parti-
tion

Number of features

Pyrimidines
(74)

50 24 27

Triazines
(186)

100 86 60

1The data sets and the partitions generated are available to download at
http://www.gatsby.ucl.ac.uk/ chuwei/ordinalregression.html
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3.9 Algorithm Comparison

The evaluation setup for all four datasets (Cytokine Release Syndrome (CRS),

Cardiotocography (CTG), Pyrimidines and Triazines data sets) are shown in Ta-

ble 3.7. We implement the following five approaches to compare their ability to

estimate the severity on these four data sets:

1. Severity Estimation using Distance Metric Learning (SE-DML) where we use

Information-Theoretic Metric Learning (ITML) as the metric learning algo-

rithm;

2. Euclidean distance under the same framework of SE-DML; we use this approach

to compare how learned distance metric improve the performance of severity

estimation over commonly used distance metric;

3. Large Margin Nearest Neighbors (LMNN), another state-of-the-art metric learn-

ing algorithm [52]. We use LMNN under the same framework of SE-DML;

4. Linear Regression where we use E+ and E− with severity level 1 and 0, re-

spectively, to build the regression model to predict severity levels of individual

samples in each test class {E?
1, E?

2 and E?
3};

5. Support Vector Regression, using the same setup as linear regression, imple-

mented by libsvm v3.18 with radial basis function kernel function [74] on Matlab R© 2012a

software (The Mathworks, Natick, MA).

3.10 Evaluation Criteria

We use two evaluation criteria for comparing the five approaches described above.

The first is the order of severity levels of each test group. Second, in order to mea-

sure how well each sample’s estimated severity level lies within its group, we use a
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Table 3.7: Evaluation setup of four data sets. The positive control E+ and negative
control E− are used to learn distance metric. The three middle groups E?

1, E?
2 and

E?
3 are used as test data.

Levels of Severity
Data Sets E− E?

1 E?
2 E?

3 E+

CRS AutoPlasma
& PBS

Safe
treatments

Middle
treatments

Severe-CRS
treatments

Anti-CD28
SA & LPS

CTG 90%
Normal

10%
Normal

100%
Suspect

10%
Pathologic

90%
Pathologic

Pyrimidines Level 1 Level 2 Level 3 Level 4 Level 5
Triazines Level 1 Level 2 Level 3 Level 4 Level 5

silhouette coefficient [75], which contrasts the average distance of a sample to other

samples in the same cluster with the average distance to samples in other clusters.

The silhouette coefficient is defined in equation 3.14, where ai is the average distance

from the ith sample to the other samples in the same cluster and bi is the minimum

average distance of the ith sample to samples in a different cluster which is the closest

to the cluster of ith sample. This coefficient has a value between -1 and +1 where a

higher value, closer to +1, indicates that the sample is well-matched to its own group,

and poorly-matched to other groups.

si =
bi − ai

max(ai, bi)
(3.14)
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4. Application of High-dimensional Molecular Profiling Data to Cancer

Tissue Classification

Cancer molecular profiling data are typically high-dimensional and make machine

metric learning quite challenging. When given a data set X = [x1,x2, . . . ,xn], where

each xi ∈ Rm,Information-Theoretic Metric Learning (ITML) introduced in previous

chapter will learn a distance metric parameterized by a m × m matrix A. If the

dataset is high-dimensional, where the feature number m is relatively large in gene

microarray data set, ITML needs to estimate m2 parameters in A which is certainly

not ideal considering the computational load.

4.1 Kernelized Information-Theoretic Metric Learning (KITML) for High-

Dimensional Data

The commonly formulation of distance metric learning [10] is a convex program-

ming task that tries to learn the parameter matrix A:

min
A∈Rm×m

∑
xi,xj∈S

dA(xi,xj) (4.1)

s.t.
∑

xi,xj∈D

dA(xi,xj) ≥ 1, and A � 0.

The positive semi-definite constraint A � 0 is required to guarantee the learned

distance between any two points (parameterized by A) cannot be negative and satisfies

the triangle inequality.

ITML solves the metric learning problem as minimizing the relative entropy be-

tween two multivariate Gaussians distribution under side constraints. Two samples

are similar if the Mahalanobis distance between them is smaller than a given upper
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bound, i.e., dA(xi,xj) ≤ u for a relatively small value of u. Similarly, two samples

are dissimilar if dA(xi,xj) ≥ l for a relatively large l. The objective is to learn a

Mahalanobis distance parameterized by A which should be as close as possible to a

prior distance function A0, e.g. Euclidean distance. The closeness of the solution to

the prior is measured by the Kullback-Leibler (KL) divergence [70]:

d(A0||A) =

∫
Pr(x|A0) log

Pr(x|A0)

Pr(x|A)
dx. (4.2)

The optimization problem for ITML can be solved by the connection between

KL-divergence and the LogDet divergence. Therefore, the optimization problem can

be expressed as following [49, 50],

min
A

d(A||A0) (4.3)

s.t. tr(A(xi − xj)(xi − xj)
T ) ≤ u, (i, j) ∈ S,

tr(A(xi − xj)(xi − xj)
T ) ≥ l, (i, j) ∈ D,

A � 0.

Given a microarray data set X = [x1,x2, . . . ,xn], each xi ∈ Rm is a data vector

with m features. ITML will try to learn a distance metric parameterized by m ×m

matrix A. Since m is relatively large in microarray data set, ITML will be slow

under this situation. To adapt ITML for datasets with n � m, we employ the

kernel function and present the Kernelized Information-Theoretic Metric Learning

(KITML) for learning a kernel matrix K = XTAX. Under this formulation, we only

need to estimate n×n parameters in the matrix K which is much smaller than m×m

parameters in the original A matrix. The distance between two points based on K
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can be denoted as

dA(xi,xj) = (ei − ej)
TK(ei − ej), (4.4)

where ei and ej are the unit basis vectors in which only the entry i or j is 1 and the

rest are 0.

The optimization problem is to search for K that satisfies the similar/dissimilar

side constraints as well as minimizing the KL divergence. Similarly, A0 is transformed

to kernelized K0 = XTA0X for the regularization distribution.

min
A

d(K0||K) (4.5)

s.t. (ei − ej)
TK(ei − ej) ≤ u, (i, j) ∈ S,

(ei − ej)
TK(ei − ej) ≥ l, (i, j) ∈ D,

K � 0.

The parameters, upper bound u and lower bound l are determined by the distribution

of the data. The optimization is performed through Bregman projections [71], where

in each iteration, a constraint (i, j) ∈ S or (i, j) ∈ D is picked to update the matrix

K. The Bregman projection update is similar to equation 3.9 and could be denoted

as,

Kt+1 = Kt + βKt(ei − ej)(ei − ej)
TKt, (4.6)

where β is the same as that in equation 3.9.
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4.2 Calculating Distance in KITML for High-dimensional Microarray

Data

When using KITML to improve the classification cancer microarray data, the

distance metric parameterized by kernel matrix K is learned by certain samples that

are considered as training data. During the testing phase, we need to calculate

distances among samples that might not be covered by the kernel K, thus, we could

not use equation 4.4 directly. Through a few steps of derivation and a theorem

from [51], we can construct A in a closed-form from K in the following manner.

A = αI +XTXT , (4.7)

where T = K−1
0 (K − αK0)K−1

0 , (4.8)

Here α is suggested to be 1 [51]. We can calculate the distance between any two

“high-dimensional” sample points using an implicit representation of A through kernel

evaluation as, namely

dA(xi,xj)
2 = (xi − xj)

T (I +XTXT )(xi − xj) (4.9)

= (xi − xj)
T (xi − xj) + (xi − xj)

TXTXT (xi − xj).

Instead of learning m2 parameters in A (m is the number of features), only n2 pa-

rameters (n is the number of samples) need to be learned by using the above kernel

formulation. KITML thus permits efficient optimization and low storage through

equation 4.6. At the same time, equations 4.8 and 4.9 make the evaluation of the

learned distance metric (i.e. calculating distances) efficient as well.
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4.3 Sample-level Tissue Classification with K-Nearest Neighbor (KNN)

KITML

K-Nearest Neighbor (KNN) classification is a commonly used classification al-

gorithm for cancer data. For high-dimensional molecular signature data, when us-

ing metrics like Euclidean distance, KNN is often inferior to more sophisticated ap-

proaches such as Support Vector Machines [16]. In this thesis, we use KITML to

actively learn a distance metric to improve the performance of KNN-driven cancer

classification. KITML also reduce the heavy computation burden of distance metric

learning through kernelization. The process works as following:

1. Compute the distances of a test sample xi to the labeled training samples yi

using equation 4.9.

2. Order the training samples by increasing distances from the test sample.

3. Use cross validation to find the optimal number of nearest neighbors, k, based

on training samples.

4. Use majority vote (or inverse distance weighted average based on k nearest

neighbors) to determine the class of the test sample xi.

4.3.1 Other Algorithms compared with KITML

We compared KITML performance with several state-of-the-art algorithms.

1. KNN Classification with distance metric learned by ITML* Directly

learning distance metric from high-dimensional data set by ITML is quite slow.

Our data sets originally contain between 1000 and 4000 features so we first

use a variance feature selection process to obtain a reduced feature set of size

100. The metric learning process and KNN classification are based on these 100
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features with the highest variance. We denote this ITML algorithm using the

100 selected features as ITML*.

2. K-Nearest Neighbor (KNN) Classification with Euclidean Distance

Here we use Euclidean distance as a baseline to illustrate that KITML can

improve KNN classification.

3. Multi-class Support Vector Machine (SVM) with Linear Kernel SVM

often achieves superior classification performance compared to other learning

algorithms across most domains and tasks [16]. SVM maps data to a higher

dimensional space via a kernel function and then solves an optimization problem

to find the maximum-margin hyperplane that separates training samples. The

test samples are classified based on their separation by hyperplane. In this

thesis, we compare SVMs implemented by libsvm v3.18 [74] using a linear kernel

K(x, y) = xTy, where x and y are samples with gene expression values.

4. Multi-class Support Vector Machine (SVM) with Radial Basis Func-

tion Kernel We compare SVM using a radial basis function (RBF) kernel

K(x, y) = exp(−γ|x − y|2), where x and y are samples with gene expression

values and γ is kernel parameter. It was also implemented by libsvm v3.18 [74].

5. Large Margin Nearest Neighbor Classification Large Margin Nearest

Neighbor (LMNN) [52] is a popular metric learning algorithm that learns a

Mahalanobis distance metric for KNN classification from labeled examples. It

aims at improving KNN classification by exploiting the local structure of the

data. In this algorithm, the distance metric is trained with the goal that k

nearest neighbors always belong to the same class while examples from differ-

ent classes are separated by a large margin. The algorithm attempts to increase

the number of training examples with this property by learning a linear trans-
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formation of the input space that precedes KNN classification using Euclidean

distances [52]. The loss function minimized by the linear transformation consists

of two terms. The first term penalizes large distances between examples in the

same class, while the second term penalizes small distances between examples

with different class labels.

6. Decision Tree Classification (DTC) The DTC algorithm applies a divide

and conquer approach, resulting in an iterative process that starts by analyzing

each feature from the training data. It calculates the information gain for

each feature with respect to the possible class outcomes present in the training

data [55]. The C4.5 DTC algorithm implemented in the Weka 3.6.6 software [61]

(University of Waikato, Hamilton, New Zealand) was used here to analyze the

data.

7. Random Forest Random forest is an ensemble learning method for classifica-

tion and regression using multiple decision tree models. Each model is built with

a different subset of the same training data, with replacement. The remaining

training data are used to estimate error and to determine the importance of

each variable. We used the Random Forest algorithm implemented in the Weka

3.6.6 software [61] (University of Waikato, Hamilton, New Zealand) to classify

the data.

4.3.2 High-dimensional Microarray Data Sets

Fourteen publicly available microarray data sets in Table 4.1 were used to evaluate

our KITML approach. These data sets were obtained using two microarray technolo-

gies: single-channel Affymetric chips (6 sets) and double-channel cDNA chips (8 sets).

For each data set, the total number of samples, number of features, number of classes,

number of samples in each class, type of microarray chip, and tissue type are pro-
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Table 4.1: Sample-level cancer tissue classification data set description

Dataset Total Num of Num of Num of Samples Tissue
Name Samples Features Classes in Each Class
Alizadeh [78] 42 1095 2 21, 21 Blood
Bittner [79] 38 2201 2 19, 19 Skin
Bredel [80] 50 1739 3 31, 14, 5 Brain
Garber [81] 66 4553 4 17, 40,4, 5 Lung
Golub-v1 [82] 72 1877 2 47, 25 Bone marrow
Golub-v2 [82] 72 1877 3 38, 9, 25 Bone marrow
Gordon [83] 181 1626 2 31, 150 Lung
Nutt [84] 28 1070 2 14,14 Brain
Pomeroy [85] 42 1379 5 10, 10, 10, 4, 8 Brain
Su [86] 174 1571 10 26, 8, 26, 23,12, 11, 7, 27, 6, 28 Multi-tissue
Tomlins-v1 [87] 104 2315 5 27, 20, 32, 13, 12 Prostate
Tomlins-v2 [87] 92 1288 4 27, 20, 32, 13 Prostate
Yeoh-v1 [88] 248 2526 2 43, 205 Bone marrow
Yeoh-v2 [88] 248 2526 6 15, 27, 64, 20, 79, 43 Bone marrow

vided in Table 4.1. The 14 data sets had 2-10 distinct classes, 28-248 samples, and

1095-4553 features. These data sets have been used for clustering analysis in previous

studies [76, 77]. The clustering algorithms that have been applied to these data sets

are k-means clustering, mixture model clustering, spectral clustering, etc.. Most of

these data sets have not been explored for classification purposes, so we applied differ-

ent classification algorithms to these 14 data sets. The results presented in this thesis

are not comparable with analyses provides in the past studies since their analyses

used clustering algorithms and our’s used supervised classification algorithms.

4.3.3 Evaluation Setup

The experimental setup was designed to obtain reliable performance estimates

and avoid over-fitting, we used two loops. The inner loop was used to determine

the best parameters of the classifier using cross-validation sets. The outer loop was

used to estimate the performance of the classifiers built using the parameters found

by the inner loop. The test data sets used in the outer loop were independent from

the cross-validation sets. The outer loop uses a 10-fold cross-validation and the inner

loop uses a 4-fold cross-validation. We ran each of the 14 data sets through both

our KITML and the six test algorithms five(5) times and averaged the classification

results.
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4.3.4 KITML Setting

To construct constrained pairs, we consider the pairs of samples in the same class

to be similar and pairs of samples in different classes to be dissimilar. A total of

20C2 constrained pairs were randomly chosen in the learning process, where C is the

number of classes in each data set. The lower and upper bounds of the right hand

side of the constraints (l and u) in equation 4.5 are the 5th and 95th percentiles of the

observed distribution of distances between pairs of samples within each data set.

4.3.5 Performance Metrics

We used two classification performance metrics. The first is accuracy, which is

easy to interpret and simplifies statistical testing. Accuracy is defined as Acc =

TP+TN
TP+TN+FP+FN

, where TP is the total number of true positives, TN is the total num-

ber of true negatives, FP is the total number of false positives, and FN is the total

number of false negatives. Accuracy is sensitive to the prior class probabilities but

does not fully describe the actual difficulty of the decision problem for highly unbal-

anced distributions [16]. The second metric is macro-averaged F1 (F-measure). The

F-measure is a weighted combination of precision and recall. Precision is defined as

the ratio of the number of relevant records retrieved to the total number of irrelevant

and relevant records retrieved [89]. Recall is defined as the ratio of the number of

relevant records retrieved to the total number of relevant records in the data set [89].

F-measure is defined as:

F =
(β2 + 1)PmacroRmacro

β2Pmacro +Rmacro

, (4.10)

where β is typically set to 1. The multi-class precision and recall is define as:

Pmacro =
1

|C|

|C|∑
i=1

TPi
TPi + FPi

, (4.11)
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Rmacro =
1

|C|

|C|∑
i=1

TPi
TPi + FNi

, (4.12)

where TPi is the number of true positives for class i, FPi is the number of false

positives for class i, FNi is the number of false negatives for class i, and C is the

class.

4.3.6 Statistical Comparison among Classifiers

Statistical comparison is used to verify that the differences in accuracy between

algorithms are non-random. Since we have only 14 datasets we cannot assume that

the difference between results are normally distributed [90]. For this reason, we have

used the Wilcoxon signed-ranks test [91], which is a non-parametric alternative to

paired t-test. The Wilcoxon signed-ranks test ranks the difference in performance

of two classifiers for each data set, ignoring the signs, and compares the ranks for

positive and negative differences.

Let N be the number of pairs, x1,i and x2,i are the pairs of observation where

i = 1, 2, . . . , N . The Wilcoxon signed-ranks test works as follows.

1. The null hypothesis H0 is that the median difference between pairs of observa-

tion is zero. The alternative hypothesis H1 is that the median difference is not

zero.

2. The absolute values of the differences between pairs of observations |x1,i − x2,i|

and |sgn(x1,i − x2,i)| are calculated, where sgn is the sign function.

3. The smallest absolute difference pair gets a rank of 1, then next larger difference

pair gets a rank of 2, etc. The pairs with zero difference are excluded from the

test. The pairs with the same difference receive a rank as the average of the

ranks they span.
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4. The test statistic W is denoted as

W = |
Nr∑
i=1

sgn(x1,i − x2,i)Ri|, (4.13)

where Nr is the remaining pairs excludes zero difference pairs, and Ri is the

rank.

5. For Nr ≥ 10, since the sampling distribution of W coverages to a normal dis-

tribution, a z-score can be calculated as z = W−0.5
δw

, δw =
√

Nr(Nr+1)(2Nr+1)
6

. If

z > zcritical, we reject H0.

6. For Nr < 10, W is compared to a critical value from a reference table, if

W > Wcritical, we reject H0.

4.4 Group-level Severity/Stage Estimation with Set-ranking KITML

Another important task for molecular profiling based cancer diagnosis is the abil-

ity to further quantify/classify samples like blood or tumor samples into subtypes

which have distinct biomedical properties and result in varied prognoses. For in-

stance, samples of “blood cancers” –Diffuse Large B-Cell Lymphomas (DLBCLs)–

are indistinguishable based on histological methods yet are clinically heterogeneous.

Some patients respond well and exhibit prolonged survival while some do not [92].

It has been shown that using expression profiling techniques to stratify DLBCLs to

two subtypes is necessary for better classification [92]. For most cases of disease

severity/stage estimation in practice, the reference data normally include only posi-

tive (e.g., most severe disease state) and negative controls (e.g., least severe disease

state). The reason is that in many experiments using a blood assay or in clinical trials

only positive and negative controls were labeled to verify the success of the studied

techniques.
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It may be advantageous to design more advanced computational methods for cate-

gorizing the subtypes of cancer samples through molecular expression representation.

Here we propose a set-based ranking method using metrics learned from KITML for

severity estimation. Normally given a data set with multiple sample groups associated

with different severity levels of a type of cancer, we assume that the severity levels of

the control groups are known; the severity levels of the remaining sample groups are

unknown. The goal is to estimate the severity levels of these unknown sample groups

based on their relationship to the known control groups.

The basic idea of set-based KITML is to maximize the distances between dissim-

ilar sample groups, and minimize the distances between samples in the same group

or among similar groups. Specifically, the learned metric based on positive control

and negative control should give a maximum distance d(E+, E−) between these two

controls. The distances, between a sample group E? with unknown severity level

and two controls, can then be measured using this learned distance. These distances

should be proportional to d(E+, E−) and can be combined to locate the position of

the unknown sample group between the two controls, where the position indicates

the severity level.

Under the high-dimensional setting, using the parameter T learned through equa-

tion 4.8, we can calculate the distance measure between any data samples. Therefore,

we define and calculate distances between an unknown severity sample x?
i (within E?)

to E+, and to E−. The distance between x?
i and E+ is defined as

dA(x?
i ,E

+) = (

∑
xk∈E+

x+
k

|E+|
− x?

i )
T (I +XTXT )(

∑
xk∈E+

x+
k

|E+|
− x?

i ). (4.14)
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Similarly, the distance between x?
i and E− is defined as

dA(x?
i ,E

−) = (

∑
xk∈E−

x−k

|E−|
− x?

i )
T (I +XTXT )(

∑
xk∈E−

x−k

|E−|
− x?

i ). (4.15)

These two distances are then used to determine the predicted severity level y?
xi

of

x?
i (equation 4.16), which indicate the predicted severity level is the ratio between the

distance of x?
i to negative control and the distance of x?

i to positive control. When

y?
xi

is close to 0, the severity of x?
i is similar to that of the negative controls. On the

other hand, if y?
xi

is close to 1, the severity of x?
i is similar to that of the positive

controls.

y?
xi

=
dA(x?

i ,E
−)

(dA(x?
i ,E

+) + dA(x?
i ,E

−))
. (4.16)

The severity y? of E? is then defined as

y? =

∑
x?
i∈E?

y?
xi

|E?|
. (4.17)

4.4.1 High-dimensional Molecular Profiling Data Data Sets

We used three microarray datasets from bladder, prostate and ovarian multi-

stage cancer patient studies (Table 4.2) [93]. (1) The bladder dataset contains gene

expression data of human bladder tumor samples from a clinical specimen bank.

There are 20 Ta (stage 1) samples, 11 T1 (stage 2) samples and 9 T2+ (stage 3)

samples, which contain a total of 7129 genes. After pre-processing according to [93],

we removed genes having missing data, leaving 3036 genes for our analysis. (2) The

prostate cancer data set was created in an attempt to characterize gene expression

profiles of specific Gleason patterns. The dataset contains gene expression data of 11

Gleason pattern three (stage 1) samples, 12 Gleason pattern four (stage 2) samples

and 8 Gleason pattern five (stage 3) samples. After removing the data with missing
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Table 4.2: Estimating severity of sample subgroups data set description

Dataset Total Num of Num of Features Staging Num of Sample
Name Samples Features after Pre-processing in Each Stage
Bjladder [95] 40 7129 3036 Ta, T1, T2+ 20, 11, 9
Prostate [96] 31 15488 9491 Gleason patterns 3,4,5 11, 12, 9
Ovary [94] 37 22283 18091 T1, T2, T3 18,5,14

values, 9491 genes were left for analysis. (3) The ovary data set is from genetically

engineered mouse models which are used to demonstrate the mutations of certain

signaling pathways in woman and mouse ovarian endometriod adenocarcinomas [94].

There are 18 T1 (stage 1) samples, 5 T2 (stage 2) samples and 14 T3 (stage 3)

samples. After pre-processing, 18091 genes were left for our analysis.

4.4.2 KITML Setting

Since there are 3 stages in each data set, around 75% of the stage 1 samples

are used as negative control E− and around 75% of the stage 3 samples are used as

positive control E+. These controls are used to learn distance metric. The remaining

25% of both stage 1 samples E?
1 and stage 3 samples E?

3, and all of the stage 2

samples E?
2, are then used as test groups to evaluate the learned metric. This process

was repeated 4 times and averaged. For all three data sets, the constrained sample

pairs used were formulated by the samples within negative controls E− and positive

controls E+. The lower and upper bounds of the right hand side of the constraint (l

and u) in equation 4.5 are the 5th and 95th percentiles of the observed distribution of

distances between pairs of samples within each data set.
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5. Distance Measures Application Results and Discussion

5.1 Binary Severity Detection Results

The results obtained using three binary severity estimation approaches we have

studied(Chapter 2) – Hierarchical Clustering Analysis (HCA), Principal Component

Analysis (PCA) followed by K-means clustering and Decision Tree Classification

(DTC) – are consistent in distinguishing the severity of CRS between Anti-CD28

SA from that of other mAbs.

5.1.1 Hierarchical Clustering Analysis

Hierarchical Cluster Analysis was applied to the data shown in Table 2.4 and

Table 2.5. The resulting dendrograms are shown in Figure 5.1 and Figure 5.2. The

dendrograms represent the cluster hierarchy of the dataset; the horizontal axis is the

standardized Euclidean distance between pairs of clusters. Both dengrograms show

that the distances between the Anti-CD28 SA cluster and all other mAbs clusters are

quite large, indicating that the average response for Anti-CD28 SA is very different

from that of the other mAbs. Figure 5.1 shows the HCA for Anti-CD28 SA and

controls only, indicating clear separation between the means of both sets of data.

Figure 5.2 shows the HCA for Anti-CD28 SA, the controls, and the 6 mAbs from

the “Safe” class. Again, we see clear separation between Anti-CD28 SA and the

other treatments. In addition, the dendrogram in Figure 5.2 appears to separate the

controls and mAbs in the “Safe” class into two separate clusters with Tocilizumab,

IL-5, Palivizumab, CD22, and CD80 in one cluster and PBS, AutoPlasma and IL-1β

in the other cluster. However, the method does not provide direct explanation as to

why these treatments from the “Safe” class form two separate clusters and how the
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treatments within each cluster are related.

Figure 5.1: HCA dendrogram for Anti-CD28 SA, AutoPlasma and PBS

5.1.2 Principal Components Analysis (PCA) with K-means Clustering

Principal Components Analysis (PCA) was applied in order to reveal the internal

structure of the data in a way that best explains the variance in the data. It is well

documented that in order to be successful, the attributes subject to PCA need to have

similar dynamic ranges [54, 58]. However, the attributes from our dataset have a large

variation in their dynamic ranges, as shown in column 4 of Table 2.1. As shown in

Figure 5.3, our attributes also exhibit a nearly linear relationship between the mean

and the standard deviation for samples of different treatments. This property allows

us to reduce the differences in the dynamic ranges of the attributes by using the

logarithmic transformation [58, 59, 60]. This transformation replaces each sample
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Figure 5.2: HCA dendrogram for all the treatments

data value by its logarithm (base 10) before applying PCA.

We applied PCA to the samples from Anti-CD28 SA and the controls in Table 2.4

and sorted the Principal Components in descending order by the amount of variance

associated with them. The variances associated with each of the Principal Compo-

nents are listed in Table 5.1, where we see that the first three Principal Components

account for more than 90% of the variance of the data. This observation suggests that

we can possibly ignore the rest of the principal components, with little impact on the

underlying structure of the data. We then represented the data graphically using a

three-dimensional scatter plot against the three principle components (Figure 5.4(a)).

Principal Components Analysis (PCA) helps with visualizing but does not cluster

the data points in the new coordinate system. In order to identify sample populations

in the new attribute space, we used K-means clustering. The technique requires that

we specify the number of clusters into which observations will be assigned before the

clustering process starts. We used the previous HCA to determine the number of
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Figure 5.3: Standard deviation vs. means for all cytokines showing the least squares
linear approximation for all points (IFN-γ, IL-4 and IL-17 were plotted with and
without Anti-CD28 SA to confirm the linear relationships)
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Figure 5.4: (a) Graphical representation of the data using the first three principal
components of PCA (b) K-means clustering results based on the first three principal
components (c) Visual representation of the data using the known labels to identify
populations after applying PCA (d) K-means clustering showing misclassified samples
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clusters, which in this case is 3. Figure 5.4(b) shows the samples corresponding to

each cluster in different colors, and Table 5.2 shows the number of samples in each

cluster and the label associated with them. It is notable that Cluster 1 consists mostly

of Anti-CD28 SA samples. Clusters 2 and 3 are dominated by AutoPlasma and PBS

samples, respectively. These results confirm that samples from Anti-CD28 SA and

the two controls can be separated from each other using this method.

Table 5.1: Variance associated with principal components for Anti-CD28 SA, PBS
and AutoPlasma

Variance included in 11 Principal Components (PC)
PC 1 PC 2 PC 3 PC 4-11
77.60% 10.90% 3.10% 8.40%

91.60% 8.40%

Table 5.2: The number of samples for each treatment in each cluster found by K-
means clustering on the data using the first three principal components

CD28 AutoPlasma PBS
Cluster 1 132 10 0
Cluster 2 20 142 5
Cluster 3 0 0 75

Applying the known class labels of the samples to visualize the data as shown

in Figure 5.4(c), we see that each sample population, Anti-CD28 SA and the two

controls, is located in a different region within the three-dimensional space. Using

PCA we are thus able to graphically represent the differences in the cytokine responses

for each sample, and can observe how samples from a given population are grouped
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in a specific region. These observations are consistent with the dendrogram from

Figure 5.1 in which the differences between the mean response of Anti-CD28 SA and

the controls are highlighted. Using PCA we can not only corroborate this separation,

but also see the differences between samples. Finally, using the information from the

labels associated with each sample and the results obtained from K-means clustering,

we can identify and visualize the misclassified samples. Figure 5.4(d) shows the

misclassified samples. Not surprisingly, they are located on the boundaries of the

established cluster.

Next, we repeated the analysis (PCA with K-means clustering) using the samples

from all treatments shown in Table 2.5. This analysis would attempt to classify all

treatment samples, not just the Anti-CD28 SA, AutoPlasma, PBS sample set. The

variances associated with each of the Principal Components are listed in Table 5.3.

Again, the first three principal components accounted for more than 90% of the

variance of the data; we used these three principal components to create a three-

dimensional scatter plot of the samples from Anti-CD28 SA, “Safe” treatments, and

controls (Figure 5.5(a)).

Table 5.3: Variance associated with principal components for all treatments

Variance included in 11 Principal Components (PC)
PC 1 PC 2 PC 3 PC 4-11
75.20% 11.90% 3.20% 9.70%

90.30% 9.70%

After applying PCA, we applied K-means clustering to the results of PCA, con-

sidering the first three Principal Components. As before, we used HCA to guide us as

to the number of clusters. The dendrogram in Figure 5.2 suggested 3 clusters, which
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we have used to run K-means clustering on the transformed data. The clustering re-

sults are shown in Figure 5.5(b) and are detailed further in the Table 5.4. The table

shows the three clusters and their constituents. The first cluster consists mostly of

Anti-CD28 samples; the second cluster consists mostly of samples from AutoPlasma,

and the third cluster consists mostly of samples from PBS.

Table 5.4: The number of samples for each treatment in each cluster found by K-
means on the data using the first three principal components

CD28 AutoPlasma PBS CD80 CD22 IL-1 IL-5 Tocilizumab Palivizumab
Cluster 1 132 12 0 2 2 2 4 0 0
Cluster 2 20 140 4 6 6 0 4 8 8
Cluster 3 0 0 76 0 0 6 0 0 0

The samples from CD28 and the two controls (AutoPlasma and PBS) can again be

distinguished from one another using this technique. Most samples from the “Safe”

treatments are clustered with the controls, indicating the relative similarity of re-

sponse between the controls and the safe treatments. The small number of the “Safe”

and control samples makes it impractical to cluster these samples separately. The

results of this analysis are consistent with the results from HCA and the observations

made on PCA with labeled data. When we use the known labels of the samples

to visualize the data after PCA is applied (as shown in Figure 5.5(c)), we see that

most of the samples from the “Safe” treatments were placed closer to the control

samples than to the Anti-CD28 SA samples. This observation is consistent with the

dendrogram obtained from the HCA analysis in Figure 5.2.

5.1.3 Decision Tree Classification (DTC)

Using HCA and PCA with K-means clustering we can automatically separate

samples from Anti-CD28 SA and other treatments, and visualize the data in a three-
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Figure 5.5: (a) Data (all treatments) representation based on principal components
after selecting the three first Principal Components (b) K-means clustering results
based on the first three principal components (c) Representation of the data based
on the labels known for each sample
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dimensional space. However we still have not determined how the different cytokine

releases led to this separation. To add this dimension to the study, we have employed

Decision Tree Classification (DTC). The two training data sets described in Tables 2.4

and 2.5 were used to train the DTC algorithm. Training data set 1 included 136

samples in the “Safe” class and 80 samples in the “CD28” class, for a total of 216

samples (Table 2.4). The cytokine that best separated the two classes among the 11

measured cytokines was selected first by the DTC, and the selection process was then

repeated with the next best cytokine, etc. The tree model shown in Figure 5.6(a) was

built using training data set 1. As can be seen from the root node, the cytokine which

produced the first split of data was IFN-γ. The 131 samples in this data set with

values of IFN-γ ≤ 31.5pg/ml were classified into the “Safe” class while the 66 samples

in this data set with values of IFN-γ greater than 136.9pg/ml were classified into the

“CD28” class. Samples with values of IFN-γ between 31.5pg/ml and 136.9pg/ml

required further analysis using the IL-2 node to identify the corresponding classes.

Values of IL-2 ≤ 28.1pg/ml were in the “CD28” class, and values of IL-2 greater than

28.1pg/ml were in the “Safe” class. On the left branch of IL-2 node, the notation

“(15/1)” indicates that of the 15 samples assigned to the “CD28” class, one (1) sample

was misclassified. The accuracy of this tree model in classifying new data correctly

is estimated by the cross validation procedure described in Chapter 2.7 (In addition,

10-fold cross validation was also used, and the results are discussed in Appendix A).

A square Confusion Matrix (CM) is used here to record the performance of the DTC

model. Each column of the CM represents the instances of the predicted class. Each

row represents the instances of the actual class. CMijis the number of samples in

the true class i which were assigned to predicted class j. Ideally CM is a diagonal

matrix.

Cross validation was performed 100 times. The average accuracy after 100 times
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was 95.5%; the corresponding Confusion matrix is shown in Figure 5.6(b). The false

alarm or false positive rate of the DTC model was 5.1% and the misdetection or false

negative rate was 3.8%. The classification accuracy obtained from the cross validation

method is high, indicating that the developed model was reliable in this case in terms

of its ability to classify samples from unknown donors.

Figure 5.6: (a) Decision Tree model using training data set 1 with 11 cytokines (b)
The confusion matrix shows the performance of the cross validation
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Training data set 2 included 184 samples from the “Safe” class and 80 samples

from the “CD28” class, for a total of 264 samples (Table 2.5). The tree model and its

Confusion Matrix are shown in Figure 5.7. The average accuracy of the classification

for this tree model was 93.1% for 100 iterations of the random donor splitting method.

The Confusion Matrix is shown in Figure 5.7 (b). The classification rules can be

inferred from the model in the same manner as for training data set 1. Here we see

that IL-17, IL-10 and TNF-α (monomeric) are used in addition to IFN-γ and IL-2 to

classify the samples.

The DTC model generated using training data set 2 is shown in Figure 5.7(a),

where we observe that the root node was IFN-γ. It produced the first data split

identifying 164 samples in the “Safe” class with values of IFN-γ ≤34.1pg/ml and 100

samples with values of IFN-γ ≤34.1pg/ml that required further classification. The

cytokine IL-17 was used as the second cytokine for separation, suggesting that it is

relevant for classification, although IL-17 release is not commonly measured in CRS

assays (e.g., [56][72]).

Both DTC models identified IFN-γ as the most relevant cytokine for classification.

Next, we have removed IFN-γ samples from the dataset, and ran our models with

the remaining 10 cytokines. The results are shown in Figure 5.8, where both models

identify IL-17 as the root node. The resulting tree structures are more complex

than the previous analysis with IFN-γ as the root node; however, the classification

accuracies are still relatively high at 90.7% and 95.1% for training datasets 1 and 2,

respectively. These results indicate that IL-17 may also be relevant for classification

of these cytokine data.

In order to assess the ability of the DTC models (shown in Figure 5.6(a) and

Figure 5.7(a)) to analyze new data, we used test sets for the models that did not in-

cluded any of the data in the training set. Specifically, we used the (hitherto unseen)
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Figure 5.7: (a) Decision Tree model using training data set 2 with 11 cytokines (b)The
confusion matrix shows the performance of the cross validation
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Figure 5.8: In order to verify the importance of IL-17, IFN-γ has been removed from
training data set 1 and 2. DTC was applied to the remaining 10 cytokines and the
two tree models are: (a) Tree model corresponding to training data set 1 (b) Tree
model corresponding to training data set 2. Both two tree models show IL-17 as the
root node.
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test data described in Table 2.6. The accuracy of the two models in Figure 5.6(a)

and Figure 5.7(a) are provided in Table 5.5 and Table 5.6, respectively. The accu-

racy percentages are 92.9% for the DTC in Figure 5.6(a) and 93.7% for the DTC in

Figure 5.7(a).

Table 5.5: Test results for the tree model in Figure 5.6(a)

Classifier Outcome Test accuracy (92.9%)
Safe CD28

Known Safe 63 9 False alarm/False positive 12.5%
CD28 0 54 Misdetection/False negative 0%

Table 5.6: Test results for the tree model in Figure 5.7(a)

Classifier Outcome Test accuracy (92.9%)
Safe CD28

Known Safe 72 0 False alarm/False positive 12.5%
CD28 8 46 Misdetection/False negative 0%

5.1.4 Discussion

The results obtained from the analysis of our dataset, using the three machine

learning approaches, are consistent in discriminating between Anti-CD28 SA and

other mAbs with respect to CRS. However, each approach provides different infor-

mation about the studied data set.

HCA highlights the differences between the treatments using the means of their

cytokine response. It also provides a simple cluster hierarchy of the treatments, e.g.,
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in Figure 5.2 we identified three clusters corresponding to Anti-CD28 SA, controls,

and the other treatments in the “Safe” class. These findings are consistent with the

results from Walker et al. [18] and give guidance on how many clusters may exist in

the data. On the other hand, HCA does not allow classification of individual samples

from the dataset since it uses the average response for each mAb as the basis for the

measure of “distance” in order to find the cluster hierarchy. Using HCA it is not clear

whether some cytokines have more discriminatory relevance than others.

PCA was used in this study to build scatter plots to visualize the data sample-by-

sample. The first three principal components that account for most of the variance

were used to visualize the data, showing where each sample is located in the suggested

principal components space. We used K-means clustering to further analyze the PCA

results1 seeking three clusters, which was suggested by HCA. Samples from Anti-CD28

SA were placed far away from the other samples, and samples from the treatments in

the “Safe” class were closer to PBS and AutoPlasma than they were to Anti-CD28

SA. However, PCA and K-means clustering provided, in addition to the information

provided by HCA, a method of clustering actual samples rather than clustering the

means of samples. The resulting classification can also be used to assign unlabeled

samples to a particular cluster, based on the distance of the sample from the centroid

of the cluster. The principal components used in this approach do not have a direct

biological interpretation.

DTC fills this biological interpretation gap. As with HCA and PCA, DTC can

also distinguish Anti-CD28 SA from all other treatments and controls, but in addition

it provides information about which cytokines are most relevant to the separating of

1We applied K-means clustering to both raw data and the outcomes of PCA on the raw data.
The clustering error rates were comparable (8%-10% on average in both cases). However, using
PCA gave a clear low-dimensional representation of the data. Furthermore, we could visualize the
results of K-means clustering using the 3 principal components from PCA, which could not be done
directly using the 11-dimensional raw data.
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Anti-CD28 SA. The rules created by DTC specified thresholds that separated cytokine

release levels into groups. These groups can then be associated with the “Safe” and

the “CD28” classes. For example, in the DTC model in Figure 5.6(a), when the

value of IFN-γ is greater than 136.9pg/ml, the model classifies 66 samples into the

“CD28” class. The value “136.9pg/ml” is a threshold chosen by iteratively calculating

information gains for threshold candidates associated with each cytokine and using

the value with the highest information gain (in [62], Section 6.1).

In addition to ease of interpretation, DTC shows other advantages in analyzing bi-

ological data. First, once the tree model is constructed from a training data set, it can

easily be used to classify unknown samples as we demonstrated using the test data set

in Table 2.6. Our results also show that DTC provided high classification accuracy,

and required relatively little effort from users for data preparation. Similarity conclu-

sions were reported in [97], which compared several machine learning algorithms in

cancer tissue classification , and in [98], which studied the use of Decision Tree based

classification of uncertain data.

Our study needs to be viewed in the context of several other investigations of

cytokine release through machine learning approaches [29, 99, 100, 101, 102, 103,

104, 105]. Collectively these studies point to the usefulness of applying the three ma-

chine learning approaches studied here (HCA, PCA, K-means clustering and DTC)

to mAb induced cytokine release data from a variety of assays and conditions. In

order to apply these approaches to a new assay, the following requirements should

be met. First, there should be some labeled reference data from mAbs with known

CRS potential. In some cases we may know the CRS potential of all the mAb and

controls. In other cases, when new mAbs with unknown CRS potential are studied,

we could measure their similarity to the known mAbs or controls to infer the CRS

potential of the new mAbs. Second, enough samples should be collected to get useful
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and consistent results. This has been done, in our case, by starting with a “reason-

able” number of samples (5-10), categorizing the samples using the machine learning

approaches, then repeating with about ten more samples each time. Once the results

started stabilizing (which in our case was at about 120 samples), we concluded that

enough samples have been used (see Appendix D).

Prior studies have shown that CRS is mainly related to high levels of IFN-γ, TNF-

α, IL-6, IL-2, IL-8, and IL-10 [56][72]. The analysis of TGN 1412 treated patients

shows that TNF-α was increased at 1 hour after infusion and IFN-γ, IL-2, IL-6 and

IL-10 were increased after 4 hours [106]. In addition, recent work using mathematical

modeling suggests that there is a cause and effect relationship among some of the

cytokines [107]. Serum collected from the TGN 1412 trial showed that INF-γ and

TNF-α are the first cytokines to be produced and from the mathematical modeling

INF-γ is thought to subsequently induce IL-10 and IL-6, whereas, TNF-γ is thought

to induce IL-8 and IL-10. In fact, our DTC models identified IFN-γ, TNF–α and

IL-10 as important cytokines in CRS, corroborating these findings.

Our DTC analysis suggested IL-17 as a potentially important cytokine in classi-

fying treatments as “Safe” class or “CD28” class. IL-17 has not been identified so far

in the literature as an important cytokine in the context of CRS. Literature reports

of cytokine analysis of the TGN 1412 trial did not measure IL-17. In the published

literature, this cytokine has not been measured in assays developed for detecting

mAb-induced CRS. Since IL-17 is a pro-inflammatory cytokine, it should contribute

to CRS since it has been shown to stimulate a highly pro-inflammatory gene signa-

ture [108]. It induces NF-Kβ [109], a transcription factor historically known for fast-

acting pro-inflammatory cellular responses [110]. IL-17 is also known to induce IL-6,

IL-8, G-CSF, and prostaglandin E2 production by mesenchymal cells and cause accu-

mulation of neutrophils in the blood and tissues [111]. This IL-6 production could act
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on acute phase proteins and lead to inflammation. Moreover, IL-17 has been shown

to increase the effects of TNF-α partially by increasing Tumor Necrosis Factor Re-

ceptor 2 (TNFR2) or Lipopolysaccharide-Induced CXC Chemokine (LIX) [111, 112],

possibly contributing to the CRS cascade, which is thought to start with TNF-α and

IFN-γ. IL-17 is thought to be important in chronic inflammatory conditions such as

autoimmune diseases, transplantation, and infections [113, 114]. In addition to IL-

17 being pro-inflammatory in nature, IL-17 has been shown to be involved in other

forms of cytokine storm including those induced by bacteria and transplant [115, 116].

Therefore, it is not surprising that our DTC model was able to identify IL-17 as an

important cytokine in detecting CRS even though this correlation has not been noted

so far in the literature.

To conclude, we used different approaches to analyze data from an in vitro assay

that uses human blood to assess the potential of CRS from different mAbs. All of the

approaches were able to identify the treatment that caused the most severe cytokine

response. Additionally, PCA and K-means clustering allowed classifying treatments

sample by sample and visualizing them in a low dimensional space. DTC models

showed the relative importance of various cytokines such as IFN-γ, TNF-α and IL-10

to CRS. The combined use of the techniques provided a more comprehensive view of

the data and better-informed processes for selection of parameters and thresholds.

5.2 Severity Estimation using Distance Metric Learning Results

5.2.1 Cytokine Release Syndrome Data Set Results

The analyses of Cytokine Release Syndrome (CRS) data set by Severity Estima-

tion using Distance Metric Learning (SE-DML) have two steps: (1) group severity

level estimation; (2) individual severity level estimation.

The three groups – safe(E?
1), middle(E?

2) and severe(E?
3) listed in Table 3.2 – are
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tested using the distance metric learned from positive controls (E+: Anti-CD28 SA

and LPS) and negative controls (E−: PBS and AutoPlasma). The severity level of

each group estimated by SE-DML is a normalized value between 0 and 1 showing in

Table 5.7. These levels have an order of y1 < y2 < y3, indicating that these levels

matched their group labels. These results illustrate that the SE-DML approach can

correctly estimate the severity of the treatment groups.

Table 5.7: Severity levels for three treatment groups in CRS data set

Class Severity level yi
Safe (E?

1) 0.081±0.0143
Middle (E?

2) 0.121±0.0257
Severe (E?

3) 0.482± 0.1106

The 26 treatments listed in Table 3.2 are also estimated using the distance metric

learned from positive controls (E+: Anti-CD28 SA and LPS) and negative controls

(E−: PBS and AutoPlasma). The ideal results would be the 8 treatments in the

severe group have higher values than that of the treatments in the other two groups.

All the 6 treatments in the middle group have severity levels right in between that

of the treatments in the other two treatments. The 11 treatments in the safe group

have the lowest severity levels. But the real results are much more complex than the

ideal condition. Several treatments have severity levels mixed with treatments within

other groups. The severity levels of the 26 treatments shown in Figure 5.9 are sorted

in a descending order from the top to the bottom, with higher treatments indicating

more severe CRS reactions. Almost all the treatments in the severe group have a

higher severity level than treatments in the other two groups except CD40, which

stays in the middle of Figure 5.9. Two safe treatments, IL-6, and CD80 and one from
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the middle class (Anti-VEGF) are mixed with treatments in the severe group. The

middle group treatments are mostly mixed with safe treatments but have relative

higher severity levels than safe treatments.

Figure 5.9: Severity levels of 26 test treatments in CRS data set. The standard
deviation of the estimation is shown as error bar in the figure. Red treatments are in
severe-CRS group, green treatments are in middle group and blue treatments are in
safe class.

5.2.2 Cardiotocography Data Results

Based on the data set described in Chapter 3.7, the learned A matrix is a 21

by 21 positive definite matrix. The severity levels over 10 iterations are shown in

Table 5.8. They indicate that the severity level of E?
1 is almost the same as the
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negative control E− and the severity level of E?
3 is very close to the positive control

E+. The severity levels of E?
1 and E?

3 illustrate that the proposed approach works

here because E?
1 and E− are from the same class in the CTG data set, as well as E?

3

and E+. Moreover, without any prior information about E?
2, the proposed approach

still ranked the severity of E?
2 to the right position – between E?

1 and E?
3.

Table 5.8: Average severity levels of three classes in test data and their standard
deviations over 10 fold cross validation

Class Severity levels yi
Normal (E?

1) 0.003±0.002
Suspect (E?

2) 0.251±0.058
Pathologic (E?

3) 0.905±0.070

5.2.3 Quantitative Structure Activity Relationship (QSAR) Results

Based on the data set described in Chapter 3.8, the learned A matrices are (1) a 27

by 27 positive definite matrix and (2) a 60 by 60 positive definite matrix respectively

according to the different number of attributes. The average severity levels of the two

data sets over 20 times are shown in Table 5.9. In both data sets, E?
1 is the closest to

E− and it has the lowest severity level among the three sample groups; E?
3 is the closest

to E+ and it has the highest severity level among the sample groups; The severity

levels of E− falls right in between the other two sample groups. These severity levels

indicate that with only two extreme sample groups, the SE-DML approach was able

to rank the severity of three middle sample groups correctly in this case.
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Table 5.9: Average severity levels of test data in the two QSARs data sets and their
standard deviations

Sample Group Severity levels yi of Pyrimidines Severity levels yi of Triazines
E?

1 0.134± 0.063 0.720±0.123
E?

2 0.437± 0.193 0.755±0.096
E?

3 0.659± 0.220 0.902±0.044

5.2.4 Algorithm Comparison

The estimated severity levels of the four data sets by the 5 approaches are shown

in Figure 5.10. The four bar charts (row-wise) represent results of the four data sets.

In each chart, there are five sets of bars representing the severity levels (y1, y2 and

y3) of the three test groups E?
1, E?

2 and E?
3 estimated by the 5 approaches. The blue

bar is the severity level y1 of E?
1, the green bar is the severity levels y2 of E?

2, and the

red bar is the severity levels y3 of E?
3. Each yi is the mean of sample severity levels

within E?
i . The standard deviation is shown as the error bar in the figure.

For each set of bars, we ignore the absolute difference between y1, y2 and y3 but

only evaluate relative order of these three severity levels. We consider the relative

order of y1 < y2 < y3 as the correct severity estimation since it matches the true

group label. For CRS data set, only SE-DML can correctly estimate the relative

order among the severity levels of the three test groups. For CTG data set, all the 5

approaches correctly estimate the relative ordering. For Pyrimidines data set, linear

regression fails to distinguish the severity levels of E?
1 and E?

2 and the results show a

large standard deviation, indicating it can not estimate the severity of Pyrimidines

data set robustly. For Triazines data set, the SE-DML approach is the only one that

can identify correctly the relative order of y1 < y2 < y3.

According to the relative orders among the predicted group-level severity levels,

our SE-DML approach has achieved the best performance among all the 5 approaches.
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Figure 5.10: Severity estimation results of the 5 approaches on four data sets. Each
bar chart presents the estimated severity levels of one data set.

However, this approach could not capture the sample-level severity estimation since

only using average severity level representing a group of samples may not be suffi-

cient enough to illustrate the effectiveness of SE-DML approach. We need to evaluate

how well the individual sample’s severity level matches to other samples within this

sample’s group. Silhouette coefficients provide a numerical measure about this evalu-

ation. For each data set, there are three test groups giving three clusters of individual

sample’s severity levels. Higher silhouette coefficient of a sample indicates its severity

level is well-matched to its own group, when compared to severity levels of samples in

other groups. The average silhouette coefficient of the 5 approaches for four data sets

are listed in Table 5.10. The bold number in each row indicates the best silhouette
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coefficient of each data set. The SE-DML approach has the best silhouette coefficient

in 3 out of the 4 data sets.

Table 5.10: Silhouette coefficients of the 5 approaches

SE-DML SE-DML with
Euclidean
Distance

SE-DML
with
LMNN

Linear Re-
gression

Support
Vector
Regression

CRS -0.1114 -0.0821 -0.1376 -0.3654 -0.1015
CTG 0.7362 -0.0271 0.2987 0.2905 0.6657
Pyrimidines 0.1293 0.0063 0.0905 -0.0753 0.0116
Triazines 0.1186 -0.0135 0.0302 -0.2814 0.1128

5.3 High-dimensional Cancer Tissue Data Classification Results

5.3.1 Sample-level Cancer Tissue Classification Results

Cross Validation Accuracy of Variations of Neighbor Sizes in K-nearest

Neighbor (KNN) Classification

In KNN classification, nearest neighbor size k is a user-defined parameter and

the choice of k is very critical to the classification performance. The optimal value

of k is based on the cross validation accuracy of training samples. Generally, the

larger values of k reduce the effect of noise on the classification, but make boundaries

between classes less distinct [117]. Figure 5.11 shows the cross validation accuracy of

KNN KITML and KNN with Euclidean distance as a function of different neighbor

sizes (from k = 1 to 11) for all 14 data sets listed in Table 4.1. The purpose of this

analysis is finding the k value that leads to the highest classification accuracy for

training data. Then when testing KNN KITML and KNN with Euclidean distance,

this optimal value of k will be used in the classification. For example, for Alizadeh



77

Figure 5.11: Comparing cross validation classification accuracy when varying neighbor
size k

data set, when k = 7 KNN KITML has the highest cross validation accuracy and

when k = 5 KNN with Euclidean distance has the highest cross validation accuracy.

Moreover, from Figure 5.11, we can see that the cross validation accuracy of KNN

KITML does not have an obvious trend when k is getting larger. For KNN with

Euclidean Distance, it can be seen that except Alizadel, Bitterner and Bredel data

sets, the cross validation accuracy decreases when k is getting larger. From all these,

we can see the importance of k in the performance of KNN algorithm.
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Overall Accuracy and Macro-average F1

The results of the algorithm comparison with accuracy and macro-average F1 as

the performance metrics are shown in Table 5.11 and Table 5.12, respectively. For

Bredel data set, the best accuracy is obtained by KNN KITML, which is 0.8760. In

contrast, the Macro-averaged F1 obtained by KNN KITML is 0.7707 where there is

an obvious performance decrease. This decrease can be explained by the difficulties

of this classification task – the Bredel data set has unbalanced classes. It has three

classes with the smallest class having a prior probability of only 10% (5 out of 50

samples). Similarity, Garber data set also has unbalance class distribution. The

KNN KITML results on Garber data set are 0.8121 for accuracy and 0.6118 for

macro-averaged F1. The reason is that Garber data set has an unbalanced class

distribution of {17, 40, 4, 5}.

Overall, the KNN KITML has the best average performance among all 8 clas-

sification algorithms for both accuracy and Macro-averaged F1. Specifically, KNN

KITML achieved best performance in accuracy in 9 out of 14 data sets (Table 5.11).

LMNN has better classification in Golub-v1, Nutt, Tomlins-v2 and Yeoh-v1 data sets.

For Golub-v2 data set, KNN KITML and LMNN achieved the same accuracy. KNN

ITML* achieve the best accuracy for Bittner data set. For Golub-v1 data set, KNN

ITML* and LMNN have the same best accuracy. KNN KITML also generated best

macro-average F1 in 9 out of 14 data sets (Table 5.12). For Nutt, Tomlins-v2 and

Yeoh-v1 data sets, LMNN outperformed KNN KITML in terms of Macro-averaged

F1. For Garber data set, Random Forest outperformed KNN KITML in terms of

Macro-averaged F1. KNN ITML* has the best Macro-averaged F1 for Bittner data

set.
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Wilcoxon Signed-Ranks Test Results

Wilcoxon signed-ranks test is used to verify that the differences in accuracy be-

tween algorithms are non-random. The Wilcoxon signed-ranks test ranks the dif-

ference in performance of two classifiers for each data set, ignoring the signs and

compares the ranks for positive and negative differences. The results of right-sided

Wilcoxon signed-ranks test are shown in Table 5.15. The p-values of the tests be-

tween KITML and the other 6 classification algorithms indicate that KNN KITML

achieved better performance than all the other algorithms in terms of accuracy and

macro-average F1 at 5% significance level.

Table 5.15: p-values of right-sided Wilcoxon signed-ranks test between KNN KITML
and the other 7 classification algorithms

KNN
ITML*

KNN Eu-
clidean

SVM Lin-
ear

SVM
RBF

DTC Random
Forest

LMNN

p-values for
accuracies

0.0012 6.1e-05 6.1e-05 6.1e-05 6.1e-05 6.1e-05 0.03

p-values
for macro-
averaged
F1

6.1e-04 6.1e-05 6.1e-05 6.1e-05 6.1e-05 1.8e-04 0.02

Time Complexity Analysis

The objective of the learning process in KITML is to learn the n by n parameter

matrix in the distance metric, where n is the number of samples. Therefore, for each

constraint (l or u) defined in equation 4.5, the time complexity is O(n2). For the entire

learning process looping through all the constraints, the time complexity is O(cn2),

where c is the number of constraints defined in Chapter 4.3.4. We further analyzed the

execution times for the two best classification algorithms – KNN KITML and LMNN.

Our experimental setup was designed to obtain reliable performance estimates and



82

avoid over-fitting using two loops. The inner loop is used to determine the best

parameters of the classifier using cross-validation sets. The outer loop is used to

estimate the performance of the classifiers built using the parameters found by the

inner loop. In the execution time analysis, we only ran outer loop for each algorithms.

For the inner loop we usde default parameters for each algorithms. Figure 5.12 shows

the execution time analysis. KNN KITML requires much less time, taking 2-519

seconds to run each data set, while for LMNN this typically exceeded 24 hours to

finish calculation. All experiments were executed in Matlab R© 2012a software (The

Mathworks, Natick, MA) on a Quad core Intel 3.5GHz PC.

5.3.2 Estimating Severity of Sample Subgroups

The estimated severity levels as determined by KITML on the three microarray

datasets from bladder, prostate and ovarian multi-stage cancer patient studies (Ta-

ble 4.2) are shown in Figure 5.13. Each data set contains samples from 3 different

cancer stages, indicating 3 different severity levels. Each yi is the mean of sample

severity levels within E?
i . The standard deviation is shown as the error bar in the fig-

ure. We consider the relative order of y1 < y2 < y3 as the correct severity estimation

since it matches the true group labels and our KITML approach correctly estimated

the relative ordering among the severity levels of the three test groups. Notably,

without any prior information about E?
2 in each data set, the proposed approach still

can estimate the severity level y2 of E?
2 in the right order – between y1 and y3.
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Figure 5.12: Comparing execution time between KNN KITML and LMNN for all 14
data sets. Since Garber, Golub-v1, Golub-v2, Gordon, Su, Tomlins-v1, Yeoh-v1 and
Yeoh-v2 need more than 24 hours execution time, we draw their bars using the same
longest length in the figure.
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Figure 5.13: Severity estimation results of three high-dimensional data sets. The blue
bar is the severity level y1 of test group E?

1, the green bar is the severity levels y2 of
test group E?

2, and the red bar is the severity levels y3 of test group E?
3.
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6. Conclusions and Future Work

This thesis describes distance measures used to address two kinds of problems:

severity estimation and cancer tissue classification. For severity estimation, we first

applied several binary severity estimation approaches to Cytokine Release Syndrome

(CRS) data. These approaches were (i) Hierarchical Cluster Analysis (HCA); (ii)

Principal Component Analysis (PCA) followed by K-means clustering; and (iii) Deci-

sion Tree Classification (DTC). All three approaches were able to identify the treat-

ment that caused the most severe cytokine response. HCA was able to provide in-

formation about the expected number of clusters in the data. PCA coupled with

K-means clustering allowed classification of treatments sample by sample, and visu-

alizing clusters of treatments. DTC models showed the relative importance of various

cytokines such as IFN-γ, TNF-α and IL-10 to CRS. The use of these approaches in

tandem provided better selection of parameters for one method based on outcomes

from another, and an overall improved analysis of the data through complementary

approaches. Moreover, the DTC analysis showed in addition that IL-17 may be cor-

related with CRS reactions. This correlation has not yet been corroborated in the

literature.

Next we went beyond binary severity estimation using distance metric learning

algorithms which allowed us to determine a more graded severity level for different

bioinformatics areas. We use the known severity of both negative controls (least se-

vere) and positive controls (most severe) to define the range of possible severity, and

used this information to learn a distance metric from data. This learned metric is used

to measure the distances of an unknown disease or reaction from both the negative

controls and positive controls and thus to estimate its severity. We evaluated four

known data sets which studied the severity of CRS, the severity of fetal hypoxia, and
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toxic reactions of chemical compounds. We compared our approach to four public

methods from the literature. The results showed that our approach was able to esti-

mate correctly the severity of the disease/reaction better than the other approaches.

Regression based approaches and approaches that use other distance metrics were less

stable in estimating the corrected results. In the future, we would like to generalize

our severity estimation approaches to more data sets and test their ability to estimate

the severity in different bioinformatics areas. Currently, the learning distance metric

is based on positive and negative controls, however, it is possible that some samples of

middle severity are also known beforehand, we would like to incorporate these known

samples to improve our learned metric. How to revise the current severity estimation

framework to adapt this scenario is left for future work.

The second problem we addressed in this thesis is cancer tissue classification. We

used a Kernelized Information-Theoretic Metric Learning (KITML) approach that

optimizes a distance function to improve the classification of cancer microarray data

and scale to high dimensionality. By learning a nonlinear transformation in the input

space implicitly through kernelization, KITML permits efficient optimization, low

storage, and improved learning of distance metric. We proposed two applications of

KITML using high-dimensional microarray data. (1) For sample-level tissue classifi-

cation, the learned metric is used to improve the performance of k-nearest neighbor

classification. (2) For estimating the severity level or stage of a group of samples, we

propose a set-based scheme to identify the stage/severity of different cancer. For the

sample-level cancer classification task, we evaluated fourteen cancer gene microarray

data sets and compared with six other state-of-the-art approaches. The results show

that our approach achieves the best overall performance for the task of molecular

expression driven cancer tissue classification. For the group-level cancer stage es-

timation, we test the proposed set-KITML approach using three multi-stage cancer
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microarray data sets, and correctly estimated the stages of sample groups for all three

studies.

Currently we use the learned distance metric to estimate severity levels of differ-

ent biomedical conditions and to classify cancer tissue microarray data. However, the

use of learned distance metrics may not be limited to just these applications, e.g., in

cancer diagnosis, the learned metric may be used to find similar patient cases to a

target patient case using a nearest neighbor search. This may provide a great tool

for physicians when determining relevant prognoses or treatment plans. In addition,

there are many other possible distance metric learning algorithms, but we only com-

pared some of them. Future work may include a comprehensive comparison with

more distance metric learning algorithms to determine the best approach for a given

bioinformatics scenario.
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L. Pereira-Leite, “Sisporto 2.0: A program for automated analysis of car-
diotocograms,” The Journal of Maternal-Fetal Medicine, vol. 9, no. 5, pp. 311–
318, 2000.

[74] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,”
ACM Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–
27:27, 2011.

[75] P. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis,” J. Comput. Appl. Math., vol. 20, pp. 53–65, Nov. 1987.

[76] M. de Souto, I. Costa, D. de Araujo, T. Ludermir, and A. Schliep, “Clustering
cancer gene expression data: a comparative study,” BMC Bioinformatics, vol. 9,
no. 1, p. 497, 2008.

[77] M. C. P. de Souto, R. B. C. Prudencio, R. G. F. Soares, D. A. S. Araujo,
I. G. Costa, T. B. Ludermir, and A. Schliep, “Ranking and selecting clustering
algorithms using a meta-learning approach,” 2008.

[78] A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosen-
wald, J. C. Boldrick, H. Sabet, T. Tran, X. Yu, J. I. Powell, L. Yang, G. E.



95

Marti, T. Moore, J. Hudson, L. Lu, D. B. Lewis, R. Tibshirani, G. Sherlock,
W. C. Chan, T. C. Greiner, D. D. Weisenburger, J. O. Armitage, R. Warnke,
R. Levy, W. Wilson, M. R. Grever, J. C. Byrd, D. Botstein, P. O. Brown,
and L. M. Staudt, “Distinct types of diffuse large b-cell lymphoma identified
by gene expression profiling,” Nature, vol. 403, no. 6769, pp. 503–511, 2000.
10.1038/35000501.

[79] M. Bittner, P. Meltzer, Y. Chen, Y. Jiang, E. Seftor, M. Hendrix, M. Rad-
macher, R. Simon, Z. Yakhini, A. Ben-Dor, N. Sampas, E. Dougherty, E. Wang,
F. Marincola, C. Gooden, J. Lueders, A. Glatfelter, P. Pollock, J. Carpten,
E. Gillanders, D. Leja, K. Dietrich, C. Beaudry, M. Berens, D. Alberts, V. Son-
dak, N. Hayward, and J. Trent, “Molecular classification of cutaneous malignant
melanoma by gene expression profiling,” Nature, vol. 406, no. 6795, pp. 536–540,
2000. 10.1038/35020115.

[80] M. Bredel, C. Bredel, D. Juric, G. R. Harsh, H. Vogel, L. D. Recht, and B. I.
Sikic, “Functional network analysis reveals extended gliomagenesis pathway
maps and three novel myc-interacting genes in human gliomas,” Cancer Res,
vol. 65, no. 19, pp. 8679–89, 2005. Bredel, Markus Bredel, Claudia Juric,
Dejan Harsh, Griffith R Vogel, Hannes Recht, Lawrence D Sikic, Branimir I
CA92474/CA/NCI NIH HHS/United States Research Support, N.I.H., Extra-
mural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.
United States Cancer Res. 2005 Oct 1;65(19):8679-89.

[81] M. E. Garber, O. G. Troyanskaya, K. Schluens, S. Petersen, Z. Thaesler,
M. Pacyna-Gengelbach, M. van de Rijn, G. D. Rosen, C. M. Perou, R. I. Whyte,
R. B. Altman, P. O. Brown, D. Botstein, and I. Petersen, “Diversity of gene ex-
pression in adenocarcinoma of the lung,” Proceedings of the National Academy
of Sciences, vol. 98, no. 24, pp. 13784–13789, 2001.

[82] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov,
H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S.
Lander, “Molecular classification of cancer: class discovery and class prediction
by gene expression monitoring,” Science, vol. 286, no. 5439, pp. 531–7, 1999.
Golub, T R Slonim, D K Tamayo, P Huard, C Gaasenbeek, M Mesirov, J P
Coller, H Loh, M L Downing, J R Caligiuri, M A Bloomfield, C D Lander,
E S Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.
United states Science. 1999 Oct 15;286(5439):531-7.

[83] G. J. Gordon, R. V. Jensen, L.-L. Hsiao, S. R. Gullans, J. E. Blumenstock,
S. Ramaswamy, W. G. Richards, D. J. Sugarbaker, and R. Bueno, “Translation
of microarray data into clinically relevant cancer diagnostic tests using gene
expression ratios in lung cancer and mesothelioma,” Cancer Research, vol. 62,
no. 17, pp. 4963–4967, 2002.



96

[84] C. L. Nutt, D. R. Mani, R. A. Betensky, P. Tamayo, J. G. Cairncross, C. Ladd,
U. Pohl, C. Hartmann, M. E. McLaughlin, T. T. Batchelor, P. M. Black, A. von
Deimling, S. L. Pomeroy, T. R. Golub, and D. N. Louis, “Gene expression-
based classification of malignant gliomas correlates better with survival than
histological classification,” Cancer Research, vol. 63, no. 7, pp. 1602–1607, 2003.

[85] S. L. Pomeroy, P. Tamayo, M. Gaasenbeek, L. M. Sturla, M. Angelo, M. E.
McLaughlin, J. Y. H. Kim, L. C. Goumnerova, P. M. Black, C. Lau, J. C.
Allen, D. Zagzag, J. M. Olson, T. Curran, C. Wetmore, J. A. Biegel, T. Poggio,
S. Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D. N. Louis, J. P. Mesirov,
E. S. Lander, and T. R. Golub, “Prediction of central nervous system embryonal
tumour outcome based on gene expression,” Nature, vol. 415, no. 6870, pp. 436–
442, 2002. 10.1038/415436a.

[86] A. I. Su, J. B. Welsh, L. M. Sapinoso, S. G. Kern, P. Dimitrov, H. Lapp, P. G.
Schultz, S. M. Powell, C. A. Moskaluk, H. F. Frierson, and G. M. Hampton,
“Molecular classification of human carcinomas by use of gene expression signa-
tures,” Cancer Research, vol. 61, no. 20, pp. 7388–7393, 2001.

[87] S. A. Tomlins, R. Mehra, D. R. Rhodes, X. Cao, L. Wang, S. M. Dhanasekaran,
S. Kalyana-Sundaram, J. T. Wei, M. A. Rubin, K. J. Pienta, R. B. Shah, and
A. M. Chinnaiyan, “Integrative molecular concept modeling of prostate cancer
progression,” Nat Genet, vol. 39, no. 1, pp. 41–51, 2007. 10.1038/ng1935.

[88] E.-J. Yeoh, M. E. Ross, S. A. Shurtleff, W. K. Williams, D. Patel, R. Mahfouz,
F. G. Behm, S. C. Raimondi, M. V. Relling, A. Patel, C. Cheng, D. Campana,
D. Wilkins, X. Zhou, J. Li, H. Liu, C.-H. Pui, W. E. Evans, C. Naeve, L. Wong,
and J. R. Downing, “Classification, subtype discovery, and prediction of out-
come in pediatric acute lymphoblastic leukemia by gene expression profiling,”
Cancer Cell, vol. 1, no. 2, pp. 133–143, 2002.

[89] R. Jizba, “Measuring search effectiveness,” 2007.
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Appendix A. List of Abbreviations

Abbreviations Definition
CM Confusion Matrix
CRS Cytokine Release Syndrome
CTG Cardiotocography
DLBCLs Diffuse Large B-Cell Lymphomas
DTC Decision Tree Classification
ELISA Enzyme-linked Immunosorbent Assay
FHR Fetal Heart Rate
HCA Hierarchical Clustering Analysis
ITML Information-Theoretic Metric Learning
KITML Kernelized Information-Theoretic Metric Learning
KNN k-Nearest Neighbor
LMNN Large Margin Nearest Neighbors
mAbs Monoclonal Antibodies
PCA Principal Component Analysis
QSAR Quantitative Structure Activity Relationship
RBF Radial Basis Function
SE-DML Severity Estimation using Distance Metric Learning
SVM Support Vector Machine
TCGA The Cancer Genome Atlas
UC Uterine Contraction
UCI University of California-Irvine
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Appendix B. List of Symbols

Symbol Definition
A learned positive semi-definite m by m parameter matrix in a Mahalanobis dis-

tance metric
A0 prior positive semi-definitem bym parameter matrix in a Mahalanobis distance

metric
β projection parameter (Lagrange multiplier) corresponding to the current con-

straint
C number of classes in a data set
D inequivalent constraint set
d(x,y) distance between x and y
d(A0||A) distance between Pr(x|A) and Pr(x|A0)
ei unit basis vectors in which only the entry i is 1 and the rest are 0
E+ positive control
E− negative control
E?

i group i with unknown severity level
γ kernel parameter in radial basis function kernel
FN number of false negatives
FP number of false positives
K learned positive semi-definite n by n kernel matrix in a distance metric
K0 prior positive semi-definite n by n kernel matrix in a distance metric
l lower bound of the constraints
m number of features in a sample
n number of samples in a data set
Pmacro precision in macro-averaged F1
Rmacro recall in macro-averaged F1
Pr(x|A) multivariate Gaussian distribution where A−1 is the covariance matrix
Σ Covariance Matrix
si silhouette coefficient for ith sample
S equivalent constraint set
TN number of true negatives
TP number of true positives
u upper bound of the constraints
W test statistic in Wilcoxon signed-ranks test
X a set of data points
yi severity level for group i
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Appendix C. 10-Fold Cross Validation for Decision Tree Classification

A 10-fold cross validation [118] was used here to estimate the DTC models clas-

sification accuracy on new data with unknown class labels. This method consists of

splitting known data into 10 equal parts, about 90% of the data were used to train

the algorithm and the classification accuracy was tested with the remaining 10% of

the data (cross validation). This process was repeated 10 times using different parts

of the data for training and cross validation. The classification accuracy estimate was

defined as the average classification accuracy for the 10 iterations. The classification

accuracy estimate of our DTC model built using training data set 1 was 98.1%; the

corresponding Confusion Matrix is shown in Table C.1. For training data set 2, the

average classification accuracy for the DTC model was 96.2%. The Confusion Matrix

is shown in Table C.2.

Table C.1: Confusion Matrix of DTC model in Figure 5.6(a) for 10-fold cross valida-
tion

Classifier Outcome Test accuracy (98.1%)
Safe CD28

Known Safe 132 4 False alarm/False positive 2.9%
CD28 0 80 Misdetection/False negative 0%
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Table C.2: Confusion Matrix of DTC model in Figure 5.7(a) for 10-fold cross valida-
tion

Classifier Outcome Test accuracy (96.2%)
Safe CD28

Known Safe 179 5 False alarm/False positive 2.7%
CD28 5 75 Misdetection/False negative 6.25%
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Appendix D. Sample Size Requirement Assessment for Binary Severity

Estimation

In order to perform clustering (by PCA followed by K-means clustering) or clas-

sification (by DTC), we need to estimate sample size. There exist several approaches

that could be used to perform this estimation, depending on the data set and focus of

study [75, 119, 120, 121]. We present in this appendix several approaches that proved

useful for our datasets.

D.1 PCA Followed by K-means Clustering

First we estimate sample size for PCA followed by K-means clustering. We select

80 samples at random from each of the negative control sets (PBS and AutoPlasma)

and the Anti-CD28 SA set for a total of 240 samples. This subset of data was used

to estimate sample size.

Before we estimate sample size for unlabeled data, it is instructive to use labeled

sets for reference. In our case we had a labeled set of PBS, AutoPlasma and Anti-

CD28 SA. We performed PCA followed by K-means clustering, specifying 3 clusters.

First we used only 6 samples from the dataset, and applied PCA followed by K-

means clustering 10 times. We then computed the average error rate by comparing

the clustering results to the labels of the data. Next, we included three more samples

(selected at random) in the dataset and applied the algorithm again. We repeated

this procedure until we reached all 240 samples available for analysis. The results are

illustrated in Figure D.1(a). It shows that the error rates stabilized after about 100

samples, indicating that this is approximately the lower bound on sample size.

When labels are not available, we can generate artificial data with the same dis-
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tribution as the data we need to process, and employ a similar process. In our case,

we generated three groups of artificial data using the statistics from the samples of

PBS, AutoPlasma and Anti-CD28 SA. We generated 240 samples of artificial data in

total. The sample size estimation was performed through the same procedure as with

assay data, and the results of this assessment are illustrated in Figure D.1(b). Here

the error rates seem to stabilize after about 80 samples, a result sufficiently close to

the values found with the real data (which was 100). The use of artificial data would

probably require the use of a guard band, adopting a somewhat higher sample size in

practice than the one that was estimated in simulations.

Figure D.1: Percentage error as function of the number of samples used: (a) Measured
data; (b) Artificially generated data

When the labels for the handled data are unknown, there are several other valid

approaches. As an example, we used the silhouette metric [75] to estimate the ad-

equate number of samples necessary to get consistent results with PCA followed by

K-means clustering. The silhouette metric provides an assessment of how good the
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clustering results are, irrespective of the clustering method. It measures how close

data samples are placed together within defined clusters, and how far away the clus-

ters are from each other. This metric is commonly used to assess the optimal number

of clusters k in K-means clustering [75]. The value provided by the silhouette metric

is calculated for different values of k (i.e. k = 2, 3, 4, . . . , 9), and the value of k that

maximizes the metric is chosen.

We used the silhouette metric to obtain optimal values of k for different sample

sizes out of our 240-sample set. We started by choosing 12 samples at random to

develop the estimate. We repeated the estimation by increasing the sample set by 12

samples at a time, until all 240 samples were included. The process was repeated 10

times. The average optimal values for k for each sample size are plotted in Figure D.2.

The number of clusters stabilized at k = 3 after 120 samples. The approach could be

used for other data sets in a similar manner.

D.2 Decision Tree Classification

We applied DTC on a training data set with samples from the ”CD28” class and

samples from the AutoPlasma and PBS classes. We started with five (5) samples

in each class, and increased the sample set of each class by 1 sample each time,

till there were 80 samples in each class. We built the DTC model for each sample

set. The accuracy of the models is shown in Figure D.3(a). We observed that the

accuracy levels were inconsistent for small sample sizes. The accuracy level stabilized

for sample sizes that exceed 20. Moreover, when the sample size of each class was

below 20, the root nodes of the DTC models appeared to be picked randomly from

all 11 cytokines. When the sample size of each class was above 20, almost all the root

nodes of the DTC models were IFN-γ.

Next we performed the process of estimating sample size by using synthetic data.
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Figure D.2: Optimal number of clusters for different sample sizes, based on the
silhouette metric

Synthetic data were generated based on the statistics of two classes: CD28 class (class

1) and samples from PBS and AutoPlasma (class 2). DTC was applied on these two

classes. The accuracies for different sample sizes are shown in Figure D.3(b). The

accuracy stabilizes after 50-60 samples. Since we have two classes, the total number

of required samples is 100 -120.



108

Figure D.3: Optimal number of clusters for different sample sizes, based on the
silhouette metric
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