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Figure 15: Cell Viability of HOS CD4+ve CCR5+ve cells in the presence of HNG156, 

KR13, KR13b and KR13s. The samples were tested using the WST-1 assay following 

manufacturer’s protocol. The viability of HOS CD4+ve CCR5+ve cells in the absence of 

inhibitor was the 100% control. ........................................................................................ 58 

Figure 16: Scheme depicting method of purification of intact virus and peptide-triazole 

derived virus breakdown products by gradient centrifugation. (A) Scheme of location of 

sample loading and the positions of the 20% and the 6% optiprep fractions after 

centrifugation.  (B) Plot of the virus infection, gp120 release and p24 release activities for 

the iodixanol fractions collected from the gradient post  KR13 (1 µM) treatment. The 

soluble protein fraction corresponded to 6-8% iodixanol, and the treated virus fraction to 

the 16-18% fraction, based on the presence respectively of freely soluble p24 and gp120 

in the former and viral infection activity in the latter.  The controls include virus treated 

with PBS (intact virus) and virus treated with 1% triton X and boiled for 5 min at 95°C 

before gradient purification (solubilized proteins). .......................................................... 63 

Figure 17: Dose response of the effects of peptide triazoles on HIV-1 BaL pseudovirus.  (A) 

Inhibition of cell infection was measured using a single round infection assay.  The EC50 

values are reported in Table 1. (B) Relative gp120 shedding was determined for the peptides 

KR13, KR13b, HNG156 and KR13s using western blot analysis. Electrophoretic bands of 

gp120 in soluble protein and residual virus fractions were quantified using Image J analysis; 

IC50 values obtained are in Table 1. A low level of gp120 shedding (<5%) was observed with 

the intact virus used as the negative control.   Data were normalized to 100% gp120 shedding 

observed with 1% triton X treated lysed virus. (C) Relative p24 release induced by peptides 

was measured using ELISA.  The data were normalized using untreated virus as negative 

control (<5% p24 release), and p24 release observed with 1% triton X treated virus was taken 

as 100% p24 content.  The p24 release IC50 value for KR13 was 500 ± 80 nM, while the 

other peptide triazoles exhibited no significant p24 leakage. Sigmoidal curve fits of data were 

obtained using Origin Pro.8 (Origin Lab). Error bars represent the standard deviation of the 

mean, n > 3. ....................................................................................................................... 71 

Figure 18: Inactivation (A) and virion breakdown (B and C) of HIV-1 BaL fully 

infectious virus by KR13 and HNG156. The EC50 values for inhibition of infection by 

KR13 and HNG156 were 639 ± 68.9 nM and 5.5 ± 0.9 µM, respectively. Gp120 

Retention (B) was tested by western blot analysis using D7324 anti-gp120 on the residual 

gp120 on the virions treated with KR13.  The IC50 of KR13 gp120 shedding was 1.2± 

0.93 µM. Release of p24 by KR13 and HNG156 (C) was tested with a p24 leakage assay 
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using ELISA as explained in the Materials and Methods section.  The IC50 value for 

KR13 induced virolysis was 4.4 ± 0.7 µM.  No p24 release was observed by HNG156 

upto at 200 µM.  All of the above EC50 and IC50 values were obtained using the Origin 

Pro. 8 software with sigmoidal fits. Error bars represent the standard deviation of the 

mean, n = 3. ....................................................................................................................... 74 

Figure 19: Antiviral breadth of KR13 induced virolysis. Dose responses, shown by 

sigmoidal curve fits, were obtained using Origin Pro. 8 (explained in Materials and 

Methods section) for p24 release induced by KR13 ranging from 1 nM to 50 µM from 

several clades of HIV-1 pseudoviruses (A) and transmitted founder viruses (B). (C) Table 

of the IC50 values obtained from (A) and (B). Error bars represent the standard deviation 

of the mean, n = 3. ............................................................................................................ 75 

Figure 20: Time-dependence of viral breakdown by HNG156 (a) and KR13 (b) 

treatments of HIV-1 BaL pseudovirus. The % of cell infection retained after peptide 

treatment is shown on the left y-axes, and the viral protein gp120 and p24 retained in the 

virus fraction is shown on the right y-axes. All samples were adjusted to the untreated 

virus as 100% infection and 100% viral protein retention. Each time point had a control 

of untreated virus, and this was used to normalize each time point of peptide treatment.  

The concentrations of KR13 and HNG156 were kept constant for each time point at 1 µM 

and 100 µM, respectively. Untreated controls showed <5% p24 release and gp120 

shedding, and <2% loss of cell infection activity.  Error bars represent the standard 

deviation of the mean, n = 3. ............................................................................................ 78 

Figure 21: The gp41 content and morphology of residual virions derived from peptide 

triazole treatments of HIV-1 BaL pseudovirus.  (a) Reactivity of residual viruses, from 

18.2-19% Optiprep fractions, to gp41 antibodies 2F5 and 4E10 as a function of KR13 and 

HNG156 concentration.  (b). Reactivity of residual viruses to gp41 antibodies as a 

function of time of treatment with KR13 and HNG156. All samples in (a) and (b) were 

normalized to total gp41 content on intact virion. Error bars represent the standard 

deviation of the mean, n = 3.  (c) Average diameter of HIV-1 BaL virions untreated and 

post treatment with KR13 (1 µM) as determined by TEM.  The probability distribution 

box plot shows the average in red and the distribution in bar lines (n=16).  The diameter 

analysis was conducted using Image J Software.  Inset: Representative TEM Images 

obtained at designated time points, with the scale bar representing 50 nm diameter. ...... 83 

Figure 22: Inhibition of KR13-induced virus breakdown by the gp41-binding fusion 

inhibitor T20.  (A) BaL pseudovirus.  Virus was treated with 1 µM KR13 in the absence 

and presence of serial dilutions of T20 starting from 1 µM. Relative p24 release was 

measured using p24 ELISA by comparing the residual virion (18.2 - 19% Optiprep) and 

soluble protein (6-8% Optiprep) fractions.  Relative gp120 release was measured using 

western blot analysis by comparing content of gp120 in the analogous residual virion and 

soluble protein fractions.  Western blot values were obtained using Image J analysis of 

the protein bands. The IC50 value T20 inhibition of KR13-induced p24 release was 15.9 

± 4.9 nM using Origin Pro .8 (Origin Lab). No significant effect on the gp120 release in 

the presence of T20. Error bars represent the standard deviation of the mean, n = 3.  (B) 

R3A and R3A V38A pseudoviruses; the latter, mutant virus has been found previously to 
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be resistant to T20 inhibition. Release of p24 was quantified as for BaL pseudovirus in 

part (a).   The IC50 of T20 inhibition of peptide induced p24 release from the virus R3A 

was calculated to be 21.9 ± 5.9 nM.  The mutant virus V38A R3A did not exhibit 

inhibition of p24 release. Sigmoidal fits were obtained using Origin Pro .8 (Origin Lab). 

Error bars represent the standard deviation of the mean, n = 3. ....................................... 85 

Figure 23: Scheme comparing the HIV-1 deformation steps induced by peptide triazole 

(PT) and peptide triazole thiol (PT-SH) with gp120 shedding and gp41 trimer prehairpin 

formation that occurs during cell entry and infection. ...................................................... 92 

Figure 24: Effects of KR13-induced virus breakdown by the gp41-binding fusion 

inhibitor T20 on the T20 resistant mutant viruses.  (A) P24 release profile induced by 

KR13 on the T20 resistant viruses versus the Bal-01 virus WT. Relative p24 release was 

measured using p24 ELISA by comparing the residual virion (18.2 - 19% Optiprep) and 

soluble protein (6-8% Optiprep) fractions.  Error bars represent the standard deviation of 

the mean, n = 3.  (B) Inhibition of p24 release induced by KR13 on the mutant viruses, 

V38A, N43D and I37K compared to the wildtype control by T20.  The IC50 of T20 

inhibition of peptide induced p24 release from the virus BAL-WT was calculated to be 

43.3 ± 5.9 nM.  The T20 inhibitory effect of KR13 induced virolysis was desensitized by 

mutant viruses V38A and I37K while N43D did not affect this inhibitory effect as much 

compared to BAL-WT. Sigmoidal fits were obtained using Origin Pro .8 (Origin Lab). 

Error bars represent the standard deviation of the mean, n = 3. ....................................... 97 

Figure 25: Schematic representation of the gp41 inhibitors and site of action on gp41. 

(A) The sequences of the CHR  (HR2) and NHR (HR1) inhibitors and the regions on the 

gp41 sequence from which they were derived. This is shown on a gp41 sequence of the 

HXB2 strain. Further this also shows the gp41 antibodies and the sequence on gp41 that 

it binds to[3]. (B) Target sites of the different peptide fusion inhibitors and antibodies 

tested (drawing not to scale). For simplicity, we show only one gp41 molecule instead of 

the gp41 trimer. ................................................................................................................. 99 

Figure 26: The effects of fusion inhibitors on KR13 induced virolysis. (A) The inhibition 

of p24 release induced by KR13 (1µM) using fusion inhibitors starting at 5 µM 

concentration. The IC50 values of the fusion inhibitors’ inhibition of KR13-induced p24 

release was calculated using Origin Pro .8 (Origin Lab) and summarized in table 2. (B) 

p24 release from HIV-1 BaL pseudotyped by the fusion inhibitors. (C) Inhibition HIV-1 

BaL pseudotyped infection in HOS CD4+veCCR5+ve cells by fusion inhibitors T20, C37, 

N36 and 5 Helix in the presence of KR13 (500 nM). (D) Inhibition HIV-1 BaL 

pseudotyped infection in HOS CD4+veCCR5+ve cells by fusion inhibitors T20, C37, N36 

and 5 Helix.  Error bars represent the standard deviation of the mean, n = 3. ................ 102 

Figure 27: p24 release of the inhibition by fusion peptides T20, C37, N36 and 5 helix. 

The fusion peptides were added at different times either before addition or after addition 

of KR13. The relative p24 release measured subtracted from the negative control at each 

time point with viruses incubated with PBS. The p24 release was quantified using ELISA 

and the results are averaged from n=3. ........................................................................... 105 
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Figure 28: Antibody mapping of the gp120 and gp41 post KR13 and HNG156 treatment 

on HIV-1 BaL pseudotyped. (A) Antibody mapping of gp120 post KR13 (1 µM) and 

HNG156 (1 µM) using ELISA analysis. The region where the antibodies are directed to 

is shown in the bottom of the x-axis. The % binding is compared to the antibody binding 

to 100 ng/ml monomeric gp120 which is shown as a dotted green line. (B) Antibody 

mapping of gp41 on the residual virion post KR13 (1 µM) and HNG156 (1 µM) using 

ELISA analysis. The gp41 concentration on the y-axis is calculated from a standard curve 

of the antibody binding to soluble gp41 for each antibody. Error bars represent the 

standard deviation of the mean, n = 3. ............................................................................ 108 

Figure 29: Schematic representation of the KR13 induced virolytic cascade. (A) Kinetic 

breakdown of the virolytic process, first showing the peptide binding following which the 

gp120 is shed off and the gp41 is exposed within the first 10 minutes. Following this is 

the rate limiting step of the pore formation caused by conformational changes in gp41 

and eventually p24 release from the viral core. (B) Detailed schematic of the 

conformational changes of gp41 during virolysis, the loops reach a pre-lysis intermediate 

following which it is collapsed into a 6 helix bundle with the loop region on gp41 hidden 

into the viral membrane and MPER region exposed out of the membrane, (C) The 

zoomed in version of the 6 helix bundle formation schematic drawn based on the 

experimental results. ....................................................................................................... 113 

Figure 30: Characterization of the AuNP-KR13 conjugates. (A) Compares the theoretical 

AuNP diameters, that were expected with increasing concentration of citric acid in the 

reaction as represented in Frens et al. 1973, to the diameters of the AuNP that were 

syntehsized as measured using dynamic light scattering (DLS) (n=25). (B) The % 

intensity of the different diametes of the AuNP-KR13 conjugates as measured on the 

zetasizer using the dynamic light scattering methodology (n=3). (C) Shows the 

representative TEM images of the AuNP-KR13 conjugates with diameters 13.3 nm, 19.9 

nm, 42.8 nm and 92.6 nm. Error bars represent the standard deviation of the mean, n > 3.

......................................................................................................................................... 129 

Figure 31: Size dependent anti-viral effects of the AuNP-KR13 conjugates on the HIV-1 

BaL pseudovirions. (A) Inhibition of cell infection was measured using a single round 

infection assay as explained in methods.  The IC50 values are reported in Table 1. (B) 

Relative p24 release from the cell-free HIV-1 BaL pseudovirions with increasing 

concentration of the different diameter AuNP-KR13 conjugates. The EC50 values are 

reported in Table 1. Error bars represent the standard deviation of the mean, n = 3. ...... 131 

Figure 32: Anti-viral effects of AuNP-KR13 conjugates with increasing diameter of the 

AuNP with equal density of KR13 coverage per square are on the surface of the AuNP. 

(A) Inhibition of HIV-1 infection by the AuNP-KR13 conjugates were measured using a 

single round infection assay as explained in methods.  The IC50 values are reported in Table 

3. (B) Relative p24 release from the cell-free HIV-1 BaL pseudovirions with increasing 

concentration of the different diameter AuNP-KR13 conjugates. The EC50 values are 

reported in Table 3. Error bars represent the standard deviation of the mean, n = 3. ...... 133 
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Figure 33: Anti-viral effects of AuNP-KR13 (19.9 nm diameter) with increasing surface 

desnity coverage of KR13 with 100% being 73 peptides per AuNP as represented in 

Table 2. (A) Inhibition of cell infection was measured using a single round infection assay as 

explained in methods.  The IC50 values are reported in Table 2. (B) Relative p24 release from 

the cell-free HIV-1 BaL pseudovirions with increasing concentration of the AuNP-KR13 

conjugates with decreasing KR13 density coverage. The EC50 values are reported in Table 2. 

Error bars represent the standard deviation of the mean, n = 3. ..................................... 135 

Figure 34: Plots ofAuN: KR13 (20 nm and 80 nm) induced infection inhibition and virus 

breakdown of replication competent HIV-1 BaL virus.  (A)  Inhibition of cell infection was 

measured using a p24 ELISA of the produced virions in the presence of the inhibitor.  The 

IC50 values of AuNP:KR13 (20 nm) and AuNP:KR13 (80 nm) to inhibit HIV-1 BaL 

infection being 3.16 nM and 0.73 nM respectively. (B) Relative p24 release from the cell-free 

HIV-1 BaL (replication competent) with increasing concentration of the 20 nm and 80 nm 

diameter AuNP-KR13 conjugates. The EC50 values of AuNP:KR13 (20 nm) and 

AuNP:KR13 (80 nm) to inhibit HIV-1 BaL infection being 8.19 nM and 0.49 nM 

respectively. Error bars represent the standard deviation of the mean, n = 3. ................. 137 

Figure 35: Comparing the anti-viral effects of AuNP-KR13 and KR13 on the HIV-1 BaL 

pseudotyped virus. (A) Shows the MPER (membrane proximal external region) specific 

gp41 epitope exposure on the AuNP-KR13 and KR13 alone treated virus by testing 

MPER specific antibodies (2F5 and 4E10) anbitody binding to HIV-1 BaL pseudotyped 

virion after 30 minutes of AuNP-KR13 (20 nm diameter) and KR13 repectively. (B) T20 

(Fusion Inhibitor) inhibition of AuNP-KR13 (50 nM) and KR13 (1 µM) induced p24 

release of HIV-1 BaL pseudotyped, with The IC50 value T20 inhibition of KR13-induced 

p24 release being 15.9 ± 4.9 nM using Origin V.8.1 (Origin Lab). No significant effect on 

the AuNP-KR13 induced p24 release in the presence of T20. (C) Time dependent anti-

viral effects of AuNP-KR13 (20 nm) on the viral infection inhibition p24 and gp120 

release. . Time-dependence of viral breakdown by HNG156 (a) and KR13 (b) treatments 

of HIV-1 BaL pseudovirus. The % of cell infection retained after peptide treatment is 

shown on the left y-axes, and the viral protein gp120 and p24 retained in the virus 

fraction is shown on the right y-axes. All samples were adjusted to the untreated virus as 

100% infection and 100% viral protein retention . Each time point had controls of 

untreated virus which was used for normalizing relatively for the each time point peptide 

treatment. Error bars represent the standard deviation of the mean, n = 3. .................... 140 

Figure 36: Comparing the antiviral effects which include virus infection inhibiton (A) 

and p24 release (B) of AuNP-KR13 (20 nm) compared to the virus infection inhibiton (C) 

and p24 release (D) of KR13 on the HIV-1 BaL pseudovirions with varying 

concentrations of S375W mutant spikes incorporated. Inhibition of HIV-1 infection was 

measured using a single round infection assay as explained in methods.  The cell-free KR13 

and AuNP-KR13 (20 nm) induced p24 release from these virions were measured using the 

p24 ELISA of the released protein as explained in the methods section.  The EC50 values are 

reported in Table 8. Error bars represent the standard deviation of the mean, n = 3. ...... 141 

Figure 37: A representative model of the AuNP-KR13 and HIV-1 virus interface. The 

diameters of the HIV-1 virus as well as the AuNP-KR13 conjugates are taken from the 
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measured values by DLS and TEM respectively. The width and height of a spike was 

taken from the cryo-TEM modeling from Mao et al. 2012. (A) Shows the interface of the 

AuNP and virion interface for the size variation of AuNP from figure 30 viewed from a 

perspective parallel to the viral membrane (top) and viewed from the perspective of the 

AuNP, at the same contour level (bottom). (B) Shows the interface of the AuNP and 

virion interface for the density variation of AuNP from figure 31 viewed from a 

perspective parallel to the viral membrane (top) and viewed from the perspective of the 

AuNP, at the same contour level (bottom). The contact radius, α, calculated between the 

AuNP and HIV virion are shown in the bottom images. The model is just representative 

and has assumptions, one being that the peptides around the AuNP have an isotropic 

arrangement, two , both the AuNP and HIV-1 virion are perfect spheres and three that the 

peptide on the AuNP and the spike on the virion are stagnant. ...................................... 144 

Figure 38: A presentation of how the WT: mutant (S375W) monomers are arranged on 

the virus spike with different ratios of the WT: mutant DNA concentrations used for virus 

production. These % of spikes are calculated using the formula which is elaborated in the 
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Figure 39: Anti-viral effects by KR13, KR13b and AuNP-KR13 on virus producer cells. 

(A) Total p24 content in the separated virus fraction from cell supernatants that were 

treated with KR13 (black), KR13b (blue) and AuNP-KR13 (red). (B) Viral infection  and 

(C) gp120 content of the of the virus fraction collected post inhibitor treatment of the 

producer cells, the samples were normalized to p24 content prior to addition into HOS 

CD4+veCCR5+ve cells and tested for gp120 using western blot analysis respectively. The 

IC50 values  for viral infection inhibition of produced virions treated with KR13 and 

AuNP-KR13 are 25.6 ± 3.5 nM and 1.2 ± 0.05 nM respectively. The EC50 of gp120 

shedding from the produced virions post KR13, KR13b and AuNP-KR13  treatment  are 

25.7 ±7.2 nM, 38.7 ± 3.4 nM and  1.8 ± 2 nM respectively. Error bars represent the 

standard deviation of the mean, n = 3. ............................................................................ 163 

Figure 40: Cell viability of transfected 293T cells which are incubated with KR13 

(black), KR13b (blue) and AuNP-KR13 (red). The samples were tested using WST-1 

reagent and the absorbance measured at 450 nm. The samples were compared to control 

which is PBS treated virus producer 293T cells. Error bars represent the standard 

deviation of the mean, n = 3. .......................................................................................... 165 

Figure 41: Effects of KR13, AuNP-KR13 and KR13b on CHOK1 cells stably expressing 

gp160. The dotted lines show the cell viability of the cells when treated for 24 hours with 

the inhibitors and post a media change. The cell viability was measured using WST_1 

Pre-mix reagent and the absorbance read at 450 nm.  The samples were normalized from 

the negative control which was the absorbance measured of cells treated with PBS.  The 

solid lines show the gp120 shedding from the CHOK1 gp160 +ve cells when treated with 

the inhibitors for 24 hours. The cell supernatants were collected and measured for gp120 

using western blot analysis. The positive and negative controls include cells treated with 

0.1% triton X and cell treated with PBS respectively. Error bars represent the standard 

deviation of the mean, n = 3. .......................................................................................... 167 
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Figure 42: The breadth analysis of KR13 and AuNP-KR13 inhibition of vironeogenesis. 

(A) Relative the viral content of the cell supernatant post 24 hours of treatment of 

producer cells measured by p24 quantification. The % p24 was relative to the 100% 

control which was cells treated with 0.1% triton X and 0% control which was producer 

cells treated with PBS (B) Viral infection of the produced virions post 24 hours of 

inhibitor treatment. The p24 levels were normalized prior to addition to HOS CD4+ve 

CCR5 +ve cells. (C) Cell viability of the 293T transfected cells 24 hours post inhibitor 

addition. Measured using WST-1 Premix and normalized to the untreated cell control 

incubated for the same time. The samples were quantified using p24 content in the cell 

supernatant 24 hour post treatment to measure produced viruses. Error bars represent the 

standard deviation of the mean, n = 3. ............................................................................ 169 

Figure 43: Testing the specificity of KR13 induced MPER exposure. (A) Effect of KR13 

on the inhibitory action of the MPER antibodies 2F5, 4E10, 10-E8 and 98-6. The IC50 

values of the MPER antibodies 2F5, 4E10 and 10E8 are 0.42 µg/ml, 0.78 µg/ml and 

0.098 µg/ml and are shown in dotted lines. The samples are normalized to the control 

100% infection which is virions treated with PBS and loaded onto HOS CD4+veCCR5+ve 

cells. (B) Inhibition of p24 release induced by KR13 (1µM) by 2F5, 4-E10, 10E8 and 98-

6. The samples are normalized to 100% release being the p24 released by the HIV-1 BaL 

pseudotyped treated with 1 µM KR13. . Error bars represent the standard deviation of the 

mean, n = 3. ..................................................................................................................... 177 

Figure 44: The schematic showing the protocol used for the HIV-1 BaL pseudotyped 

virions deactivated with KR13 or KR13b immunization in BALB/C mice. This also 

shows in red dots where the blood was collected for further analysis. The table below 

shows the immunological activities expected in the groups based of on the proteins 

reactivity of the residual virions. The gp41 used here as control is the monomeric soluble 

gp41 obtained from NIH aids repository. Data adopted from Michele Kutzler ............. 181 

Figure 45: Delivery of KR13 treated virus generates anti-gp41 antibodies in mice post 

first immunization. The gp120, p24 and gp41 (1 µg/ml) was coated to an ELISA plate 

and coated overnight. The plate was blocked with 3% BSA and the sera were added at 

1:10 dilution. The antibody binding was detected using horseradish peroxidase–labeled 

goat anti-mouse IgG. Data obtained from Kutzler lab (Michele Kutzler). ..................... 183 

Figure 46: Characterization of the sera obtained post immunization of formulation, gp41 

protein, residual virion post KR13 (1 µM) and KR13b (1 µM) treatment. (A) ELISA 

results showing sera binding to MPER (n=6). (B) ELISA results showing dilution of sera 

competing with 2F5 anti-gp41 antibody (1ug/ml) to MPER. The number of animals bled 

for formulation group (n=4), gp41 protein (n=5), KR13 treated residual virion (n=6) and 

KR13b treated residual virion (n=6). Data obtained in collaboration with Michele Kutzler

......................................................................................................................................... 186 

Figure 47: The effects of core stability on KR13 and AuNP KR13 induced p24 release 

on HIV-1 BaL pseudotyped.  The p24 release induced by KR13 (A) and AuNP-KR13 (B) 

on HIV-1 BaL WT compared to the core mutant virions E45A and E213A. The VSV-G 

enveloped WT virus and its core mutants were also tested for KR13 (C) and AuNP KR13 
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(D) induced p24 release. The controls used was 100% release which was virions treated 
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Figure 48: The characteristics of immature HIV-1. (A) Schematic representation of the 

HIV gag with matrix protein (MA) in blue, capsid protein (CA) in red and nucleocapsid 

(NC) in green. (B) The model of the immature (left) and mature (right) virion and the 

location of the gag proteins in both these virions. (C) Average point stiffness of different 

variation of HIV-1. The stiffness is a mean value (~100 FD curves) of the total number of 

virions analyzed per sample (number shown in the bars). .............................................. 194 

Figure 49: The p24 release induced by KR13 (A) and AuNP-KR13 (B) on immature 

virions compared to BaL-01 wild type control. The p24 content of the virions are 

normalized prior to experiment. The 100% p24 release control is virions treated with 

0.1% triton X and 0% control is virions treated with PBS alone. n=-1 .......................... 199 

Figure 50: gp120 quantification and spike density variation of BAL-01 WT HIV-1. (A) 

The gp120 quantification of the gp120 on the viral surface of BAL-WT compared to 

NL4-3 ΔPro and MA-P6 mutant. The antibody used for gp120 detection was D7324 and 

secondary antibody, anti-sheep HRP. (B) The characterization of the HIV-1 BaL virions 

with varying spike density which was quantified based on the western blot analysis from 

the inset shown. The p24 was quantified using anti-p24 (ab9313) and gp41 using anti-

gp41 (98-6) and their respective secondary antibodies using ELISA analysis. p24 release 

profiles of  KR13 (C) and AuNP-KR13 (D) treatment with HIV-1 with varying spike 

density. The values were plotted using Origin Pro 8.0 and the error bars represent 
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  Abstract 

Irreversible Breakdown of HIV-1 by Peptide Triazole Thiols and Multivalent Gold 

Nanoparticle Conjugates 

Arangassery Rosemary Bastian 

 

 

 

 

 

The HIV entry is a critical multi-stage process which leads to attachment to the cell 

receptor followed by co-receptor binding leading to a conformation change in the HIV 

envelope spike leading to membrane fusion. The peptide triazoles developed in the 

Chaiken  lab has previously been established to function as dual antagonists of the 

binding of gp120 at its host cell receptor binding sites for both CD4 and CCR5/CXCR4 

and have  shown to have broad neutralization In Vitro.  In this work we showed that a 

representative member of this class, peptide triazole thiol, led to HIV inhibition but also 

leads to irreversible lysis and complete inactivation of cell-free HIV-1. Further to 

improve the potency of these peptide triazole thiol inhibitors, I created multivalent 

displays of KR13 on gold nanoparticles that led to a drastic potency increase in inhibition 

of HIV-1. 

My research is focused on understanding the mechanism of action of the peptide triazole 

thiol and its gold nanoparticle conjugates that lead to the virolysis action of HIV-1. In 

order to study this intriguing breakdown of HIV-1, my studies focused on kinetic and 

thermodynamic studies. This included understanding the fate of several important viral 

proteins, including gp120, gp41 and p24, time dependent inhibition of viral entry into 

host cells and the morphological and biological state of the residual virus. Further the 

molecular, physical and functional transformations of the gold nanoparticle peptide 
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conjugates and how these properties affect their virolytic function were tested. From 

these studies it is conclusive that the peptide triazole thiol virolysis event does follow a 

time-dependent breakdown pathway of the viral machine that eventually leads to 

complete disruption of the virus. A clear correlation between peptide triazole thiol 

dependent HIV-1 virolysis and HIV-1 – host cell fusion was observed. Gold nanoparticle 

peptide triazole conjugate studies showed that the gold nanoparticle inhibitor virolysis 

works by a different mechanism all together. We further showed that increasing size of 

the nanoparticle and density of peptide coverage led to an inhibitor with almost 2000 fold 

enhancement of its anti-viral potency. These studies therefore have led to two major 

findings; one, the discovery of an innovative class of HIV-1 inhibitors that that lead to 

complete irreversible breakdown of the virus by hijacking the virus-cell fusion 

mechanism and two, the proof of concept model of nanoparticle-inhibitor constructs that 

have opened up the field to the rules required for development of highly potent 

nanoparticle inhibitor constructs that irreversibly lyse the virus. These findings have 

thereby given the HIV-1 field as well as the nanomedicine field an innovative approach 

that can be further developed and nurtured.  
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Summary 

 

The human immunodeficiency virus which is the viral precursor that is 

responsible for the disease that is still a challenge and an epidemic, AIDS [4-6]. Several 

top physicians as well as scientists in the field have been trying to combat this virus and 

trying to inhibit the infection and spread of the disease. Due to the constant mutation 

tendencies of the HIV virion it has become a big challenge to target this virus and 

eradication of the virus infection all together [7]. Our group at Drexel University College 

of medicine has developed several inhibitors that target the virus directly that not only 

leads to very potent entry inhibitors  but further have gone a step further to create 

microbicides that target the virion Env and lead it to irreversible self-destruction[8-10]. 

This innovative approach has led to the development of a class of microbicides that can 

be used at several stages of AIDS progression which include, initial entry, reduction of 

new virus production as well as cell-cell transmission of the virion leading to complete 

virus abolition of the disease progression.  
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Figure 1: Fusion of HIV-1 with host cell. The HIV proteins gp120 and gp41, 

together known as the HIV-1 spike interacts with the receptor CD4 and 

coreceptor CCR5 or CXCR4. The gp120 sheds off the spike and the gp41 is 

exposed on the cell surface. Gp41 follows a 6-helix bundle formation and the 

virus and cell surface fuse and the capsid is released. The inhibitors that are 

currently approved for therapy that target HIV-1 fusion with cell are indicated in 

red with maraviroc that targets the co-receptor, CCR5 binding to gp120 and T20 

(enfurvitide) that targets gp41 blocking 6-helix bundle formation and therefore 

fusion of the two membranes.  
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Host cell infection by HIV-1 is mediated by cell receptor interactions with 

trimeric envelope glycoprotein (Env) spikes that are exposed on the virus membrane 

surface.  Env is the only virus-specific protein on the virion surface, and is essential for 

cell receptor interactions and subsequent virus-cell fusion [11-13] (Figure 1).  Hence, 

Env presents an obvious target to attack the virus directly in order to block the cascade of 

integrated binding and conformational change steps that lead to host cell infection.  Env-

specific inhibitors that could inactivate the virus before receptor encounter would hold 

great promise of preventing AIDS transmission and progression. The proteins of the 

HIV-1 Env include gp120 and gp41 on the viral envelope spike and the cell surface 

receptors include CD4 and a chemokine receptor, either the CCR5 or CXCR4. The fusion 

inhibitor T20[14], and the CCR5 inhibitor maraviroc[15] are approved drugs used 

currently for salvage therapy in HIV-infected patients, though trials are ongoing to assess 

their addition to first line regimen (Figure 1).  T20 targets the N-terminal heptad repeat 

region of gp41, blocking gp41 conformational changes essential for 6-helix bundle 

formation and membrane fusion. This inhibitor however has a relatively short time 

window to act on the transiently exposed N-helix of gp41 at the cell-virus synapse. In 

addition, T20 is logistically difficult to administer, as it can only be given parentally, and 

adverse reactions at sites of injection are common. Maraviroc only blocks R5-tropic HIV-

1 and its use requires that CXCR4-tropic viruses are not present [15]. While there are 

other small molecule entry inhibitors[16, 17], peptidomimetics[18, 19] and anti-CD4 

antibodies[20, 21] that block or interfere with proteins at the cell-virus interface, they are 

still not advanced to clinical use as a first line regimen. 
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Figure 2: The schematic representation of the peptide triazole mode of action. It is an 

allosteric diverter that puts the gp120 protein in an inactive state that is insensitive to 

CD4 and CCR5 binding leading to complete inhibition of HIV fusion and therefore entry 

of the virion into the host cell.  
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These groups of microbicides are called peptide triazole inhibitors, made with amino 

acids just like proteins in the body and hence they are very biocompatible[22]. They have 

been engineered by using a technology called click chemistry to create a pharmacophore 

[22] that binds close the CD4 binding pocket, which is a highly conserved region among 

the several drug resistant mutants strains of the virus that are currently present. The 

peptide triazoles compete with the CD4 as well as co-receptor binding site which 

therefore inhibits the virus from initial contact with the host cell, blocking its entry [9, 

23-25]. The peptide triazoles revert gp120 to an alternate inactivate state which will not 

proceed towards CD4 or coreceptor binding, hence blocking virus cell fusion as shown in 

figure 2. This class of peptides was further developed to create the virolytic class of the 

peptide triazole inhibitors called peptide triazole thiols [6, 8]. These virolytic peptides 

have an additional characteristic in addition to entry inhibition, which is the cell-free 

virolysis. This unique effect of the peptide triazole thiol is still under investigation but we 

have shown that the cysteine in the C-terminus is very crucial for this lytic effect[6]. 

Further we also have demonstrated that this effect follows a similar pathway as regular 

virus fusion with the host cell. This was proven by showing that peptide induced virus 

breakdown followed a similar time-line as virus fusion as demonstrated in Bastian et al. 

2013 [6]. Also further the fusion inhibitor, T20 that targets HIV-1 spike protein gp41 and 

blocks the 6 helix bundle formation of the virion, also inhibits the peptide induced virus 

breakdown. These two striking results have led to exploration of how the peptide triazole 

thiols are hi-jacking the virus fusion machinery and mocking the virion to think it is 

fusing with a cell but instead leading to complete release of the protein (p24) that is in the 

virus nucleus into the surrounding environment. One additional component that makes 
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there peptides very unique is that they can target multiple clades of the HIV-1 virus 

including the founder viruses. Several inhibitors that are currently in the pipeline have 

very few specific clades that they are more active against, and therefore are limited to 

their inhibitory action. The results of these are elaborated in the Bastian et al. 2013 paper 

[6].  

This novel finding is not only creating a new class of virus targeted inhibitors but 

also can answer some unknown questions about virus fusion with a host cell that is yet to 

be answered. We have also led to several discoveries juxtapositioning this finding that 

can lead to the creation of inhibitors that can completely and irreversible destruct the 

virion at the site of initial contact with the host. Our current research is focused on 

several aspects of this potent class of virus disrupting inhibitors. We had previously 

shown that multivalent display of this virolytic peptide triazole thiols lead to a 20 fold 

enhancement of the antiviral effects making it a much more potent inhibitor [8]. But 

recently we found that if we use nanotechnology to present an increased local 

concentration of this virolytic inhibitor on a single virion we can lead to nearly 200 fold 

potency enhancement of virolysis compared to peptide alone and also further we saw that 

this leads to disruption of the infected cells that act as a virus producing factory.  

Therefore figure 3 summarizes the effects of peptide triazole inhibitors as well as their 

multivalent gold nanoparticle conjugates and shows how they target different stages of 

the virus infection as well as how they act as a multi level process that can be used as 

microbicides to exterminate the disease completely. This therefore is a innovative 

approach that can be developed further for longer bioavailability as well as microbicidal 
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preparations in order to create a multi-process inhibitor that can target the virus and lead 

to pre-infective inactivation and complete breakdown of the virus.  

 

 

Figure 3: Schematic representation of the different effects of peptide triazoles and its 

conjugates. It summarizes the different stages of HIV infection 
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Specific Aims 

 

My overall aim is to study these very intriguing phenomena of irreversible HIV-1 

breakdown induced by peptide triazole and its multivalent conjugates and to 

understand the mechanism of this action. There is an urgent need for antiretroviral 

agents to combat the spread of HIV-1 [26].  With the exception of the recently approved 

fusion inhibitor enfuvirtide (T20), most of the currently approved HIV drugs target viral 

enzymes, in particular reverse transcriptase, protease and recently integrase [27-29].  In 

contrast, current first-line therapies include no antagonist that targets the entry process 

and remains a compelling and yet elusive means to prevent infection and spread of the 

virus.  Entry is dependent on the ability of the virus envelope protein spike to interact 

with specific cell receptors in a multistage process that triggers conformational 

rearragements in Env  and consequent fusion of virus and cell membrane to deliver virus 

contents to the host.  Agents that could either block virus Env – host cell receptor 

interactions or inactivate the Env spike before cell encounter would be powerful tools for 

AIDS prevention and treatment. The HIV-1 envelop (spike) is known to be metastable in 

its native form and becomes much more conformationally stable post CD4 receptor 

binding [30]. A peptide triazole (PT) class of entry inhibitors has been identified 

previously and found to be able to bind to HIV-1 gp120 with close to nanomolar affinity, 

to suppress protein ligand interactions of the Env protein at both its CD4 and co-receptor 

binding sites and to inhibit cell infection by a broad range of virus subtypes[10, 22, 31, 

32].   
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The HIV-1 virion envelop has been shown previously to be metastable in its native state 

[30, 33, 34]. Once gp120 binds to CD4 on the host cell, the envelope becomes very stable 

and following the coreceoptor binding leads to the trigger of the remaining cascade 

structural changes in the envelope that eventually leads to fusion[35-38]. Previously, 

Emileh et al. has demonstrated that the peptide triazoles put the gp120 env protein in an 

altered confirmation that stabilizes the inactive state. This therefore stops the cascade 

conformational changes of the envelope required for fusion to occur[24, 39]. The figure 

below demonstrates the structural changes the HIV-1 Env goes through post CD4 binding 

and also post peptide triazole binding (Figure 4). This led me to the development of my 

thesis development and hypothesis;  

  

Figure 4: Schematic showing the state of the HIV-1 env post CD4 binding (bottom left) and peptide 

triazole binding (bottom right). The structures shown for the gp120 are adapted and modified from 

Emileh et al. 2013. 
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The metastability of the HIV-1 envelope protein provides a target for irreversible 

inactivation of HIV-1 and suppression of host cell entry. There is a need to create an  

agent  that combines,  for  the  first  time,  two  functionalities  uniquely  suited  to  

attacking  HIV as soon as it presents itself in the host body.   (1)  strong  and  

selective  binding  to  the HIV  envelope  spike  glycoprotein  gp120,  and  (2)  

destabilize the virus membrane leading to complete HIV breakdown.  The  rationale  

behind  this  design  objective  is  based  on  the  idea  that  is to  destabilize the HIV 

membrane either by using protein structural modifications or physical membrane 

stress to disrupt  the  membrane  integrity and enhance inhibitory potency  

sufficiently  to  cause  irreversible  leakage  of  viral  contents,  rendering  the  virus  

noninfectious.  This work can help identify HIV-1-specific virucidal agents to use in 

AIDS treatment and prevention by promoting cell-free virus destabilization and 

inactivation of HIV-1.  

 

4 specific aims for this project include:  

Aim 1. Characterize the irreversible inactivation by peptide triazole thiol and the 

relationship of this peptide induced virolysis to the virus-cell fusion process: Using 

coordinated virus infection and study of viral content release, the effects of peptide 

triazole thiol (PTT) on the virion. To better understand the intrinsic mechanism of PTT 

induced virolysis, the effects of the virolytic PT on molecular and physical transitions 

that occur in the metastable HIV-1 virion, including gp120 shedding (ELISA), release of 

intraviral components (ELISA for p24), gp41 on the residual virion, loss of membrane 
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integrity (TEM) and loss of cell infection activity will be measured. Specific focus on 

understanding the mechanism of PTT induced virolysis will be tested by comparing PTT 

induced virolysis relation to virus-cell fusion.  

Aim 2. Develop multivalent nanoparticle constructs of the virolytic peptide triazole, 

understand the mechanism of action of these nanoparticle conjugates and determine 

the rules necessary to create highly potent nanoparticle conjugates. To increase the 

potency of the virolytic PTT action on HIV-1, gold nanoparticle conjugates of PTT will 

be constructed. The mechanism of action of these nanoparticle conjugates, on the 

metastable HIV-1 will be conducted by testing the release profiles of viral proteins and 

morphological analysis of the treated virion. From these studies, rules required to create a 

nanoparticle construct will be established and also a model of the gold nanoparticle – 

PTT conjugate and HIV-1 interface will be created.  

Aim 3: Determine the effects of virolytically active peptide triazole thiols and 

nanoparticle conjugates on new virus formation and proliferation. Peptide triazoles 

are known to target the HIV-1 entry, but due to its known unique function, the virolytic 

peptide triazoles ability to inhibit viral production and infected cells was tested. Virus 

harvested in the presence of peptide triazoles and gold nanoparticle peptide triazole 

conjugates will be tested for infectivity, p24 content, gp120 release and gp41 recognition 

patterns.   

Aim 4: Understand the mechanism of PTT induced virolysis by testing stabilizing 

viral capsid mutants and immature virus particles and development of an 

immunogen using residual post PTT treatment. In order to better understand the 

mechanism of the virolytic breakdown by PTT, the effect of PTT on stabilized p24 core 
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mutant HIV-1 as well as immature HIV-1 will be tested. The residual virion post PTT 

treatment will be used as an immunogen to develop antibodies against viral envelope 

protein gp41.  

Overall, this work will derive principles for designing virolytic agents that 

specifically target HIV-1. The functional and molecular transitions of the virolytic 

process will give more insight towards understanding the viral fusion mechanism. The 

NP’s will help expand understanding of the extent to which the Env metastability that is 

critical for pathogenic host cell entry can be hijacked for therapeutic and microbicide 

functions. The results will provide precedent for how other gp120 inhibitor compositions 

can be devised for HIV-1 virus inactivation as well as how ligand-specific pathogen 

rupture can potentially be achieved for other viruses, such as influenza, ebola and dengue, 

that contain metastable prefusion surface protein complexes. 
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1. Introduction 

 

Acute immunodeficiency syndrome or AIDS is caused by the Human immunodeficiency 

virus (HIV-1) [40, 41].  Since the first reported case of AIDS in the US, it has been 

nearly 30 years and the progress that has been made to understand and treat the disease is 

exceptional[41]. In the 30 years since the discovery of the HIV virus, 31 medicines have 

been approved to treat HIV infection, and a 20 year old diagnosed with HIV can expect 

to live 50 years. With nearly 90 medicines in development for the treatment of 

HIV/AIDS, promising treatment gains are on the horizon. All this started with the 

introduction of highly active antiretroviral therapy (HAART) in 1996[42, 43]; this 

changed the outlook of treatment for this epidemic and had an exponential improvement 

of treatment regimens. HAART lead to 70% drop in mortalities and this lead to a ray of 

hope for this deadly disease [41, 44]. Although HAART therapy has progressed very well 

and has resulted in a drastic decrease of the new infections as well as reducing the 

number of deaths resulting from AIDS, it is still not a cure for this disease. The HAART 

therapy although leading to success does come with baggage, as in, people getting 

treatment are more prone to creating new resistant variants of the virus making the virus 

much more difficult to tackle [40, 45]. Currently, according to the 2013 UNAIDS Global 

report, there are currently 33.3 million people living with HIV globally and 2.6 million 

newly infections. Although the HAART therapy coverage is improving exponentially, it 

is till limited because the number of new infections outweighs the treatment availability 
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[40, 41]. Therefore, there is a huge requirement for the development of novel drugs, drug 

targets and/or vaccine that can control and eventually eradicate the AIDS epidemic [40, 

41]. In order for the development of novel drug and drug targets, it is important to study 

the structure/configuration of the virus itself and further understand how the epidemic has 

evolved and what drugs and drug targets is currently used to target the virus or the virus 

infection. Further we will explore focus on the microbicides that target virus entry 

specifically because we believe that this is one of the most important areas of the HIV 

lifecycle to focus on for drug development in order to eliminate the disease progression.  

 

1.1 Structure and Lifecycle of the virus 

 

1.1.1 Structure of the Virus 

 

HIV-1 is an enveloped retrovirus that is slowly replicating and hence specifically 

belongs to the lentivirus genus [46]. It is approximately 100-120 nm diameter and 

mostly is spherical in shape[47]. The structure can be simply stated as a collection of 

fifteen proteins and an RNA encapsulated by a lipid bilayer [46, 47]. There are 

twelve of these proteins present in the viral particle: The four Gag proteins MA 

(matrix), CA/ p24 (capsid), NC (nucleocapsid) and p6 plus the two Env proteins 

gp120 and gp41 are the structural components of the virus. The three Pol proteins PR 

(protease), RT (reverse transcriptase) and IN (integrase) provide essential enzymatic 

functions and along with the accessory proteins Vif, Vpr and Nef, are packaged into 

the virion [46]. The three other HIV-1 encoded proteins Tat, Rev and Vpu are gene 
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regulatory proteins that help with the HIV infection and lifecycle. The lipid bilayer 

that encapsulates the virus is taken from the membrane of the hot cell when a new 

virion buds off the host cell. The lipid bilayer of the virus has a higher level of 

several lipids compared to the human t-cell membrane with composition percentages 

similar to a lipid raft on a host cell lipid membrane [48-50].  

 

HIV-1 is very highly genetically variable due to its ease to mutate in order to survive 

and become resistant. There are three groups of HIV-1 based on the differences in 

the envelope (env) region: M, N, and O [51]. Group M is the most prevalent and is 

subdivided into eight subtypes (or clades), based on the whole genome, which are 

geographically distinct. The most prevalent are subtypes B (found mainly in North 

America and Europe), A and D (found mainly in Africa), and C (found mainly in 

Africa and Asia); these subtypes form branches in the phylogenetic tree representing 

the lineage of the M group of HIV-1[52, 53]. Because most of this divergence and 

mutations arise in the env of the HIV it is important to study the envelope and 

develop drugs that target this very vulnerable yet important protein of the virus.  

 

Structure of the HIV Envelope:  

The envelope glycoprotein (Env) is presented as a trimer on the viral envelope and it 

is the only virally encoded antigen on the surface of HIV-1[54]. This is the first 

trigger that leads to viral entry into host cells, and is the region of the virus that 

morphs itself in order to survive in the cell environment [52, 54-56]. The trimer is 

composed of heterodimers of gp120/gp41 complexes and the two proteins are 
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attached to each other through a non-covalent association [57]. The gp120 

glycoprotein must be flexible to allow conformational change, yet retain sufficient 

contact with gp41 to maintain the integrity of the unliganded trimer and, after CD4 

binding, to arrest gp41 transitions at a prehairpin intermediate stage. The shedding of 

gp120 from the trimer and functional inactivation of the CD4-bound spike are well 

documented consequences of missteps in this demanding process. Various structures 

of components of gp120 and gp41, alone and in complex with different ligands have 

been determined [12, 58].  

Gp120 is a heavily glycosylated protein with up to 50% of its molecular weight 

contributed by carbohydrates [59, 60]. The gp120 sequence contains five conserved 

regions (C1-C5) interspersed with five variable loops (V1-V5) as shown in Figure 5 

[57]. It has been shown by very extensive studies that the five conservative regions 

make up the core and the variable loops extend out of it. Most of the literature 

depicts the gp120 architecture to be thought as a series of domains/layers that move 

according to the binding with receptor and co-receptor. Figure 5A and 5B 

demonstrate how these layers move respect to each other post ligand/receptor 

binding [1, 57]. And Figure 5C demonstrates the first crystal structure showing 

gp120 presented as a structural complex of gp120 with sCD4 and 17b for 

crystallization purposes. 17b is an antibody that binds to the coreceptor binding site 

on gp120 and thus acts like a coreceptor surrogate for structural studies [61].  
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Figure 5: A. Model of the conformational changes in the HIV-1 gp120 monomer induced 

by CD4 binding (B) (Image adopted from Xiang etl al. 2010)[1]. The viral membrane is 

on the top of the image. The gp120 outer domain (OD) is yellow. The HIV-1 gp120 inner 

domain consists of a β-sandwich (red) and loops that form three topological layers (layer 

1 [magenta], layer 2 [green], and layer 3 [yellow]). B. Changes in the V3 loop and the β 

20 – β 21 which form the bridging sheet post CD4 binding to expose gp120 for 

coreceptor binding. Image adapted from Xiang et al. 2010[1]. C. The crystal structure 

revealing the complex of gp120 (HXBC-2), sCD4 and 17b (a coreceptor surrogate 

antibody), PDB: 1G9M. 
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 Although this structure presented in figure 5C did lack the variable loops, the 

protein was modified to contain no N and C-termini, deglycosylated and in complex 

with CD4 and 17b for crystallization purposes, this finding revealed several potential 

inhibitor development against gp120 [61-63]. Several structural studies have been 

conducted in the past 16 years resulting in a more complete picture of this state of 

gp120 by adding other components like the V3 and V4 loops and the N and C-

termini[57, 64, 65]. In 2013, for the first time ever using cryo electron tomography 

the 6-Å structure of the membrane bound fully glycosylated, HIV-1 Env trimer was 

revealed in its uncleaved and unliganded stage (Figure 6) [2]. This was further 

demonstrated also by several groups in the same year using the cryo- EM 

methodology as described by Mao et al. 2013 [66-70]. This lead to a giant leap in the 

field which lead to several discoveries of antibodies, conservative binding sites in the 

native trimer, as well as new inhibitor target sites on the HIV env. Further one of the 

greatest and most encouraging rewards of last year to the field was the crystal 

structure of the native cleaved trimer (SOSIP) – pdb structure 4NCO [54]. This has 

led to the discovery of several key sites on the HIV-1 env that is highly 

immunodominant and immunoactive which brings an HIV vaccine creation closer to 

reality [71-73].  

Gp41 is a 41 amino acid glycoprotein that contains three domains, the extracellular 

domain (ED), the transmembrane domain (TMD) as well as the cytoplasmic domain 

(CD). The extracellular domain consists of a fusion peptide (FP), a N- heptad repeat 

(NHR), a loop region, a C- heptad repeat (CHR) as well as the membrane proximal 

external region (MPER) (Figure 6) [74-78]. In the currently accepted model, HIV-1 
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fusion cascade begins with the binding of surface subunit gp120 to target cell 

receptors. Activation of the fusion leads to structural rearrangements of the gp41 

ectodomain leading to a final structure that as shown in Figure 6 and which was 

crystallographically resolved in 1997 as the 6-helix bundle[49, 79]. These structural 

rearrangements include the reorientation of the NHR and CHR and collapse into a 

folded 6 helix bundle with the fusion peptide anchored to the cell membrane and the 

TMD to the viral membrane. In this 6 helix bundle structure the carboxyl-terminal 

helices arrange in the reverse direction against hydrophobic grooves outside the 

coiled coil, so that the amino- and carboxyl-termini are placed at the same end of the 

molecule. This therefore is speculated to result in both the membranes moving closer 

to each other and leading to lipid mixing [80, 81]. Following the lipids start mixing 

between both the membranes that lead to a hemi-fusion intermediate and eventually 

complete fusion [82-85].  

 

The HIV-1 env structural information has advanced due to the new structures that 

have evolved over the past 10 years and this has brought new insight into building 

new targets for inhibition as well as immunogen creation. The Figure 6, is from the 

recent paper by Kwong et al. 2012, shows us how the cryo-EM structure of the Env 

trimer is giving us information on developing new target sites for antibodies. 

Especially recent advances towards the PGT antibodies that target the V3 loop 

glycans are becoming increasing interesting due to their broad neutralization activity 

[86-90].  
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Figure 6: Currently available crystal structure at 2°A resolution of gp41 6 helix bundle. 

Figure on the left (A) shows the 6 helix bundle structure including the membrane 

proximal external region (MPER) and fusion peptide proximal region (FPPR). The dark 

blue is the HR1 (NHR) andlight blue is HR1 (CHR). B. Close up of the MPER (grey) and 

FPPR (light blue) region showing hydrophobic interactions. C. Showing the bottom view 

of the 6 helix bundle. For the 6-helix bundle core, the structure used is the modified 

version of pdb 1AIK and the MPER structure is pdb 1P5A. The figure is a modified 

figure from Buzon et al. 2010[4]. 
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Figure 7: A. Sites of HIV‑1 vulnerability to neutralizing antibodies. The HIV‑1 

envelope spike is the cryo EM structure of the uncleaved trimer obtained by Mao et 

al. 2013[2]. 
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1.1.2 HIV Life cycle  

 

The HIV virus is a sexually transmitted virus that enters the body through sexual contact 

that lead to fluid exchange or other forms of fluid exchange like breast feeding, blood 

transfusions or needle sharing [82, 91-93]. The HIV lifecycle is split into six major parts, 

these includes, (a) virus entry, (b) reverse transcription, (c) integration, (d) transcription, 

assembly, and (e) budding and maturation[94]. HIV-1 infects cells that display the CD4 

receptor on their surface (CD4+) along a mandatory coreceptor, a member of the 

chemokine receptor family, either CCR5 or CXCR4 [95]. These cells include immune 

cells present in our body such as the CD4+ve T-cells (lymphocytes), macrophages and 

microglial cells [96]. Further HIV-1 is known to latch on to dendritic cells that assist with 

spread of infection [97]. The virus lifecycle can be summarized as follows; The HIV-1 

Env protein gp120 binds to the receptor (CD4) and then the coreceptor. Following, gp120 

is shed off exposing the gp41 that inserts its fusion peptide into the cell membrane. The 

gp41 protein undergoes conformational changes that lead to virus-cell membrane fusion 

and allow the virion core, composed of MA, RT, IN, Vpr and RNA, to enter the cell [46]. 

This complex is transported to the cell nucleus where the viral genetic code encoding 

RNA is transcribed into DNA by RT and integrated into the host genome by IN [46, 95]. 

At this point, the cell becomes a HIV protein production factory and is ready to produce 

more viral proteins. These viral proteins are then transported to the cell surface 

membrane and assembled and budded off. Post budding, the immature virion goes 

through a protease digestion of the capsid in order to create a fully mature infectious 

virion, and continue the virus life cycle by infecting other targets. Because my project 
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focused on developing inhibitors that target the first interaction in the HIV lifecycle, the 

HIV-1 entry, it is important to understand this step in more detail.  

 

HIV-1 Entry: 

 

The HIV-1 entry is an elusive target for drug development because it’s the first 

step in the HIV-1 lifecycle that leads to infection. One of the first steps of the 

entry process is the interactions of the positively charged domains on gp120 with 

negatively charged proteoglycans on the surface of the cell [98, 99]. This is an 

important step but is not critical for the processes that follow during viral entry. 

The entry process happens as a sequence of events which are schematically 

illustrated in Figure 2. Next is one of the most crucial steps for entry, the 

interaction of Env glycoprotein gp120 with the T cell co-receptor CD4 [37, 100-

103]. CD4 binding results in extensive conformational changes within gp120 

that induces a greater exposure of gp41 and the formation of the co-receptor 

binding site [37, 104-106]. This is structurally described as two sets of beta 

sheets brought together by CD4 binding to form a 4 stranded beta sheet called 

the bridging sheet and also movement and exposure of the V1/V2 and V3 loops 

structures which in turn exposes the co-receptor binding site [88, 106, 107]. 

Gp120 binding to the coreceptor, CCR5 or CXCR4 depending on the virus 

tropism,  results in further conformational changes in the Env that leads to the 

exposure of gp41 and insertion of a hydrophobic sequence of residues on its N-

terminus called the fusion peptide into the host cell membrane[108-110]. Once 
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the fusion peptide is inserted into the host cell membrane, the extended 

conformation of gp41 with its C-terminus in the viral membrane and its N-

terminus in the cell membrane is called the “prehairpin intermediate”[109, 111]. 

Following this short lived state the two heptad repeats of gp41 fold into a hairpin 

structure which results in an energetically favorable structure known as the six 

helix bundle[78, 80, 112, 113]. This brings the two membranes together and 

leads to membrane fusion and insertion of the virion core into the cell, 

effectively starting the infection[114]. The 6 helix bundle formation have two 

distinct depictions as shown is figure 8, Figure 8A shows that for efficient 

fusion and virus-cell membrane fusion you require two spikes to be triggered, 

while Figure 8B shows that for fusion you require only one spike trigger. Both 

these theories have been proved with evidence, and so it is very much debated to 

whether we require more than one spike for efficient fusion and hence HIV 

infection [85, 115].  
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Figure 8: Schematic diagram of gp41 function during HIV fusion.  A. The model 

adapted from Dr.Salzwedel in which he demonstrates the 6 helix bundle formed with one 

spike and folded perpendicular to the viral membrane. The gp41 HR1 and HR2 regions 

are depicted in blue and yellow, respectively. B. The 6- helix bundle formation adapted 

from adapted from Chan and Kim [116]. The gp41 HR1 and HR2 regions are depicted in 

purple and green, respectively.  
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1.2 HIV inhibitors 

 

There are several inhibitors currently in market as well as currently in clinical trials 

and in preliminary development that targets several stages of the virus lifecycle. It is 

important to develop these inhibitors that target different stages of the virus life cycle 

so that they can be used in combination as well as individually. Further the UNAIDS 

and other global health initiatives are funding the development of HIV inhibitors in 

order to get closer to the eradication of this epidemic and reduce the number of 

deaths. Further it is important to create inhibitors that are easy to produce in large 

quantities at low rates so that this can be served as a drug for a globally spreading 

disease. Highly active antiretroviral therapy (HAART) was initiated in the 1970s 

when the virus was very less known. This was mostly done by several independent 

researchers and biologists trying to understand the virus and the disease better [117]. 

But the first known treatment used and also known as the initial HAART therapy 

was in 1986 in a double blind study. They used azidothymidine (AZT) to treat AIDS 

symptoms showing individuals [118]. In 1996, the introduced using the combination 

therapy for AIDS treatment and this resulted in a decline of deaths and 

hospitalizations from 60% to 80% [43, 119]. Now more than a decade later HAART 

therapy has brought down the deaths from AIDS to nearly 85%. Further there are 

more than 30 FDA approved HIV drugs that can be used in several combination 

HAART [117, 120]. This wonderful progress has led to hope of survival increasing 

and also our hope of completely eradicating the disease is becoming reality. The 

UNAIDS last year has come up with a complete eradication initiative called “Getting 
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to Zero”, and this is a combination of patient and people awareness, treatment 

approach, treatment breadth around the world and a very important factor, new drug 

development[41]. A report by UNAIDS showed that a record 9.7 million people 

living with HIV were accessing treatment in 2012 compared to just over 8.1 million 

in 2011––an increase of 1.6 million in one year alone. This is mostly due to the 

increased availability and also the increased awareness and rapid free HIV testing 

that is provided around the world. Hence it is important to know the overview of the 

current drugs used in HAART therapy and what are the challenges faced [2, 121].  

 

1.2.1 Current Inhibitors in the market 

 

There are currently over 30 inhibitors that are approved by FDA for HAART 

therapy. These inhibitors are divided into six different classes. These include; 

nucleoside reverse transcriptase inhibitors (NRTIs, nonnucleoside reverse 

transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), integrase inhibitors 

(IIs), fusion inhibitors (FIs) and Chemokine receptor antagonists (CRAs). The 

inhibitors that are in each class target a different step in the virus life cycle and 

therefore HAART used a minimum of two inhibitors in combination[122, 123]. 

The regimens of HAART are decided based on several factors that have been a 

learning process and is set up by the WHO in collaboration with the UNAIDS 

committee and FDA [121, 124-126]. These factors include the ease of use, the 

allergies of patients, the stage of infection based on the CD4 counts and largely 

by the availability and clinical preferences in developing countries [126-128]. 
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There are several challenges that are faced during HAART; the first and the 

most challenging is the resistance to the drug. A study was conducted recently in 

order to assess why there was failure in HAART first line therapy and one of the 

main reasons was resistant mutants of the virus developing very quickly [129]. 

The other challenging include adverse side effects specific to different patients, 

pregnant women having limited treatment and hence disease spread and co-

infection with hepatitis B or C virus or tuberculosis which makes it very difficult 

to maintain treatment[129-134].  

 

1.2.2 Inhibitors that target HIV entry in HAART 

 

There are currently only two FDA approved inhibitors that target HIV fusion and 

entry, these include T-20 or enfurvitide, which targets the pre-fusion 

intermediate gp41 N-termini, and maraviroc, which targets the co-receptor 

CCR5, present on the host cell [135, 136]. Both of these inhibitors are only used 

salvage therapy during HAART treatment due to several reasons and challenges 

which are detailed in this section.  

 

T-20: 

 

Enfuvirtide also marketed under the name FUZEON, is a synthetic peptide 

inhibitor that is 36-amino acid long and targets gp41[137]. T20 is a peptide from 

the gp41 protein extending from Tyr638 in the middle of the C-HR to Phe673 in 
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the Trp-rich membrane proximal external region (MPER) that before the 

TMD[137]. Therefore tis gp41 C-HR peptide targets the gp41 N-terminal heptad 

repeat region (N-HR), blocking gp41 conformational changes essential for the 

entry process. But as we know from above, during the fusion process, the N-HR 

is exposed from 10-20 minutes and hence the time of action of T-20 is very 

limited[138]. There are several mutants on the N-HR that have developed as 

resistant/escape mutants of T20 which reduce the binding affinity of the inhibitor 

nearly 40-80 fold [139-142]. One of the major mutants includes V38A, N34D as 

well as I37K and these have different range of resistance but do not affect HIV-1 

fusion and infection[14, 141]. This therefore is one of the reasons why T20 is not 

used in the first line regimen of HAART. The other reasons include the allergies, 

diarrhea and skin irritation and rash in region of delivery [143, 144]. T20 is 

usually administered by subcutaneous injection at a dose of 90 mg (1 ml) twice-

daily and a paediatric dose of 2 mg/kg to provide comparable exposure to the 

adult 90 mg dose independent of age group, pubertal stage, body weight or body 

surface area[136, 145, 146]. And other limitation of use of T20 in first line 

therapy include the availability, the expenses of production as well as the 

amount of social awareness because it is still new to HAART[136, 147].  

 

Maraviroc:  

 

Marviroc is the product of a high-throughput screen conducted by Pfizer in order 

to identify an imidazopyridine CCR5 ligand [148, 149]. The CCR5 belongs to a 



31 

 

G-protein coupled receptor superfamily and is the co-receptor that is required by 

most HIV-1 clades for complete fusion [150, 151].  Further CCR5 is a very 

compelling target for therapeutic intervention because of its natural absence in 

the Δ32 homozygous genotype populations and hence are also protected greatly 

from HIV-1 infection [152, 153]. The crystal structure of maraviroc with CCR5 

was solved by Tan et al. in 2013, pdb No. 4MDS and from this it is observed that 

maraviroc binds specific to the extracellular loop -2 of CCR5 [154]. Maraviroc 

was FDA approved in 2007 for use as an antiretroviral but its use was limited to 

special cases of patients for salvage therapy [155, 156]. Maraviroc blocks R5-

tropic but not X4-tropic HIV-1; thus, clinical use requires co-receptor tropism 

assays to be performed prior to initiating treatment [16, 155, 157, 158]. In 

addition there are challenges that rise with the use of the drug, which is 

administered orally at 600 mg/day, such as rash, dizziness, and upper respiratory 

infections. In addition overdose or patients with hepatic abnormalities will be 

subjected to severe adverse effects due to its toxicity [155, 159, 160]. Resistance 

of the drug has been reported with resistant variants of the virus developing with 

mutations in the v3 loop [161].  

 

From the above it is clearly observed that there is a huge necessity and huge gap 

in the advance of fusion and entry inhibitors of HIV. Therefore it is important 

for us, the scientific community to conduct a major therapeutic intervention 

advancing the development of inhibitors that target HIV fusion and entry.  
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1.2.3 Microbicides that target HIV virus entry 

 

There are currently several inhibitors as well as antibodies that are currently in the 

pipeline that target different stages of HIV-1 entry into host cells. The following 

section will conduct a review of the current entry and fusion inhibitors that are in 

either phase I, II or III clinical trials and also the new inhibitors that are in early 

development. The inhibitors currently in development will be listed based on 

different stages of the HIV-1 entry.  

 

The gp120 and CD4 interaction:  

 

There are several inhibitors that target this interaction, either that bind to gp120 or 

the CD4. This is a very critical stage due to its importance in initial contact with 

the host cell. CD4 is a single transmembrane protein with four extracellular 

domains from which the 3rd and 4th domains seem to be crucial for gp120 binding, 

especially the beta hairpin that contains the Phe 43 residue [162]. Further years of 

biochemical and mutational analysis have revealed that the Phe 43 and Arg 59 on 

CD4 are important for binding to gp120[163, 164]. In 1998 Kwong et al. derived 

the crystal structure of gp120 bound to CD4 and showed that there are several 

interactions that are important for the CD4 and gp120, where CD4 binds to a 

region on gp120 between the inner and outer domains[61, 164, 165]. This area on 
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gp120 was later on known to be the phe 43 cavity and contains amino acids that 

are nearly 98-99% conserved in a glycoprotein that is highly mutated [61-63].  

This important interaction is a very attractive one but has not given very many 

success stories. Although they are very many inhibitors in the pipeline very few 

have managed to surpass several factors and reach to a stage of clinical trials. One 

of the first attempts was the development of soluble CD4 protein in order to target 

the virus prior to host cell encounter and thus resulting in blockade of the phe 43 

cavity necessary for the CD4 receptor binding. Although this showed good 

potency of inhibition in vitro there was limited success in patients in clinical trials 

due to high resistance to the drug by primary isolates[166]. Following this the 

crystal structure of the gp120-CD4 became available and there were many 

attempts to develop small molecule inhibitors that targeted the phe 43 cavity. 

These included a class of BMS compounds specifically BMS 378806, BMS 

448043 and BMS 626529[167]. These compounds mostly did not process any 

further than phase 2 clinical trials due to its poor pharmacokinetics although they 

did have very potent inhibition IC50s[18]. The BMS compounds mostly appear to 

stabilize gp120 in a conformation that is incapable of binding to CD4 but some 

also show to interfere with conformational changes in gp120[168, 169]. 

Following these attempts there was an era of the CD4 mimetics, in which there 

were screens conducted in order to find small molecules that fit/bind deep into the 

phe 43 pocket of gp120. These included M33 peptide, the NBD group of 

compounds as well other small molecule inhibitors. The main problem that arose 

from these compounds was the conformational entrapment of gp120 by these 
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compounds resulted in increased coreceptor binding which led to enhancement of 

infection at lower concentrations [64, 168, 170-173].  

There were also antibodies that targeted this interaction that was developed both 

through screen studies as well artificial creations. Ibalizumab (TNX-355) is an 

antibody that binds to CD4 D1-D2 domain, this does not directly block the CD4-

gp120 interaction but stops the interactions that follow [174, 175]. There are 

antibodies that have evolved that conformational entrap gp120 in a state where the 

phe 43 pocket is either sterically hindered or no longer accessible, these include, 

F105, b12, and the VRC group of antibodies which is currently going into human 

clinical trials, trial -VRC-HIVMAB060-00-AB [176-182]. One of the most recent 

and hyped antibody developments is the PGT group of antibodies that target the 

glycans of gp120 specifically close to the V3 loop region [86, 183]. These are 

similar to 2G12 which was one of the first glycan antibodies that target the 

glycans on gp120 [184]. But these PGT antibodies are much more specific and 

have a specific region of binding which has been mapped out on the native trimer 

using PG9 antibody through cryo tomography[185]. Although there are very 

potent antibodies against the binding of CD4 to gp120, they are still very 

expensive to mass produce and resistant mutants are very easy to develop [182, 

186]. But these antibodies are heading in a vaccine direction due to their stability 

and biocompatibility for patients at risk and currently there are many attempts that 

are being made in the direction of vaccine development [89, 187, 188].  
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The gp120 and coreceptor engagement:  

 

There are several chemokines in the body that include CCL3 (MIP-1α), CCL4 

(MIP-1β), and the most studied RANTES [189]. These induce internalization of 

the coreceptor CCR5 for a brief period but it is not an irreversible action, the 

CCR5 is recycled back onto the cell surface [190]. There have been several 

different types RANTES derivatives that have been developed to improve its 

function and have also been used as topical microbicides [191-193]. The 

limitation is the dual effect of the chemokines and also that it works more 

efficiently with CCR5 and not CXCR4 [193]. The next category is the small 

molecule inhibitors, which are the newer versions of marviroc such as viciviroc, 

aplaviroc and cenicriviroc. These inhibitors are developing still and cenicriviroc 

has an additional property of being anti-inflammatory which might be beneficial 

due to the immune activation by HIV [194-197]. These inhibitors however have 

cell toxicity issues and severe side effects which might be challenging to 

overcome and still produce an affordable inhibitor[194, 195]. Several drugs have 

also been developed against CXCR4 coreceptor specifically such as AMD3100 

but have not proceeded to clinical trials due to its medical complications and poor 

pharmacokinetics [198]. The other direction of approach is the antibody 

development against the coreceptor interaction with gp120 and the top antibodies 

developed include 17b, 2D7 and PA14 [199, 200]. Although these antibodies, also 

known as CD4 induced antibodies, do have a low nano molar inhibitory 
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concentration, they are specific to CCR5 [21, 187]. And also they act in a short 

time window of action and hence cannot be used as a microbicide efficiently.  

 

The fusion of HIV and host cell membrane: 

 

As seen in figure 6 and figure 8, the last step of HIV entry is the exposure of 

gp41, insertion of the FP into the cellular membrane and following the 6 helix 

bundle formation both the membranes fuse together and result in complete fusion 

and virus entry. This step of HIV entry is one of the most developed and oldest 

areas where inhibitor development is focused. These have been mostly been 

conducted by peptide sequences that have been developed from heptad repeats 

that could bind to their respective partner heptad repeats blocking the major step 

in fusion, the 6 helix bundle formation [79, 137]. These inhibitors include the 

inhibitors that are peptides from the CHR of gp41 which include T20, C34, T1249 

and sifuvirtide [163, 201, 202]. There are also peptides from the NHR of gp41 

which include N36, NCCG41, 5 helix and T21 [201, 203, 204]. These inhibitors 

target the fusion process but their time of action is very limited to the fasted step 

in HIV-1 entry which is the pre-fusion intermediate of gp41 [76]. Although these 

C-peptides described above have a very high clearance rate due to their 

vulnerability to proteases present in the cell. Hence recent developments have 

been on developing other more biocompatible and bioavailable fusion inhibitors. 

These include the D-peptide inhibitors that bind the N-HR pocket with high 

affinity and potently inhibit viral entry [205, 206]. These d-peptides are also 
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known to be active against resistant mutants of the 5-helix and T20, making it 

more broadly active [205, 207]. The progress of these inhibitors is progressing 

slowly and lately multivalent versions are being created [208]. Once again the 

limiting factor is the time window of action, which is during the pre-fusion 

intermediate state of gp41, which is very short lived [114, 157, 209-211].  

 

1.2.4 Virucidal agents that lead to virus disruption 

 

Virucidal agents are microbicides that lead to destruction of the virus particles 

upon contact. These agents differ from the regular microbicides due to the fact 

that they act directly or indirectly on the viral membrane leading to irreversible 

or reversible lysis [212, 213]. The current virucides are small molecules and 

peptides that target the viral membrane directly. These inhibitors are used as 

preventatives due to its early on action on the virus leading to damage of the 

virus to proceed towards infection. The virucides include surfactants like 

nonoxynol-9, [214] which is a spermicidal molecule [215]. Others include bile 

salts derivatives that can target the virus using a surfactant mechanism [212]. 

These surfactants are effective virucides but they have very adverse effects on 

the other cells in the body due to their surfactant mechanism. This was shown 

during the pharmacokinetic test of nonoxynol-9 in a vaginal gel, they showed 

severe damaging effects on the epithelial linings of the female vagina [215]. 

There are other multivalent conjugated virucides such as polyamide nucleic acid-

membrane transducing peptide conjugates lead not only to HIV-1 replication 
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inhibition but also have virucidal properties [216]. The dendrimer microbicide 

SPL7013 is a broad spectrum inhibitor that targets not only HIV but also Herpes 

simplex virus (HSV) and human papillomavirus. These have also shown to have 

virucidal properties leading to rupture of virus [217, 218]. Although these 

inhibitors have good virucidal properties they have drawbacks such as their 

limited knowledge of mechanism of action, specificity and also the risk of cell 

toxicity [218, 219].  

 

1.3 A Unique HIV-1 Entry Inhibitor 

 

From the above group of inhibitors it is clearly evident that there is a need for HIV 

entry inhibitors that are non-toxic, have low clearance rate and are specific the HIV 

inhibition. Further the inhibitors that are currently in market for HIV fusion and entry 

are limited due to their availability, expense of production, specificity to 

receptor/target and finally resistant mutations developing in the virus. This therefore 

led us to the search for a potent inhibitor that is novel and could target the gp120-CD4 

interaction which is one of the first stages of virus and host cell encounter.  

 

We have discovered a family of peptide triazoles (PTs) that function as dual receptor 

site antagonists of HIV-1 Env gp120 by targeting a conserved functional site that 

overlaps the CD4 binding region of the Env protein[9, 22].  High affinity PTs were 

found to bind to HIV-1 gp120 with nano molar affinity, suppress protein ligand 

interactions of the Env protein at both the CD4 and co-receptor binding sites, and to 
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stabilize a partially structured conformational state, suggesting allosteric aspects of 

the inhibitory mode of action (Figure 9) [23].  The parent peptide of PTs was 12p1 

which is a peptide that as obtained from a random phage library screen to identify 

peptides targeting gp120 [220]. 12p1 was one of the most potent peptides in the 

screen with a gp120 binding affinity of 3.7 µM Kd value, and showed good specificity 

[221]. In order to understand the mechanism of action of 12p1, alanine scanning 

mutants and truncations of the peptide were produced.  From this it was found out 

that 2-8th residues of 12p1 was important for activity and importantly the proline-

tryptophan cluster was important for binding and mimicked the Phe43 of CD4[9, 23]. 

Following this our lab modified 12p1 by adding an azidoproline group to substitute 

the proline group on 12p1 in order to create the first generation of peptide triazoles. 

This enhanced the potency of inhibition nearly two orders of magnitude and also had 

an additional feature of dual antagonism [23, 221]. Further a ferrocene group was 

added on the azidoproline ring in order to enhance potency. This addition was 

conducted by click chemistry on the peptide which had an azidoproline substitution in 

order to add the ferrocenyl group [221]. This generated the second generation of PTs 

with HNG156 being the most studied PT (Figure 9).  It was important to understand 

the mechanism of action of this unique PT and this led us to a series of peptide 

truncations and residue substitutions [32]. This showed that the c-terminal was 

important for activity and also the isoleucine, azidoproline and tryptophan (IXW) in 

that order is important for function(Figure 9) [32]. Further it was important to 

understand the binding site of the peptide, for this we used the truncated version, 

UM15 and UM24 as the ligand and alanine mutations in gp120 in order to map out 
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the binding site. From this we saw that the residues close to the phe 43 cavity of 

gp120 is important for PT binding, namely, D474, T257, M475 and E370[25]. These 

residues are highly conserved in gp120 and are present overlapping the phe 43 cavity 

(Figure 9) [222, 223].  Further, the lab has been converting the peptide to its D-

peptide variants for increased stability in physiological conditions, one of the variants 

are shown in figure 9 – KR42 [224]. This therefore demonstrates a unique and novel 

approach to microbicide development. 

 

Further modifications on the PT are presented in this thesis to make it a much more 

modified and improved inhibitor. These include modification of the AA in the PT and 

creation of multivalent constructs of PT in order to increase the local concentration of 

the inhibitor on the virus.  
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Figure 9: Summary figure showing the generations and characteristics of peptide 

triazoles. The figure above shows the modifications made to the parent peptide 12p1 

structurally and the increase in potency of CD4 and 17b competition to gp120 monomer 

binding and the HIV-1 BaL-01 pseudotyped infection inhibition by these PTs. The blue 

highlighted are on the structures show the active pharmacophore of PTs. The figure 

below shows how the PTs transition the unliganded gp120 to an open activated state 

which is a conformational entrapment of gp120 from proceeding to the CD4 bound state.  
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1.4 Nanoparticles and HIV-1 

 

There have been several developments that have been conducted over the years in 

order to generate nanocarriers of anti-hiv drugs. There have been many types 

including polymeric nanoparticles, non-polymeric nanoparticles as well as biological 

carriers such as viral vectors (Figure 10) [225, 226]. Most of these have been 

developed to increase stability of the drug in vivo as well as enhance their targeted 

delivery in order to make the drug long lasting[227]. Targeted delivery of some 

drugs to very difficult regions of the human body (especially the central nervous 

system) are easily achieved using nanoparticle carriers with drug mostly loaded in 

the particle lumen and the nanoparticle membrane mostly hydrophobic such as 

liposomes (Figure 10) [225, 228-230]. In a recent study based on polymeric systems, 

nanosuspensions (200 nm) of the drug rilpivirine stabilized by polyethylene-

polypropylene glycol and PEGylated tocopheryl succinate ester (TPGS 1000) were 

studied [231]. One of the most recent development by GSK which is becoming great 

success as a long-acting single dose injectable is the GSK-1265744 which is an 

analogue of the HIV integrase inhibitor dolutegravir. This crystalline active drug is 

then milled to an average nanoparticle size of 200 nm with 100% active drug with 

surfactant, polymer, tonicity agent and water for injection (ViiV healthcare). The 

pharmacokinetics are very promising and the drug is available in sera for more than 

30 days with only one injection at 200mg/ml [232, 233].  

 



43 

 

Another category of nanocarriers is nanoparticle conjugations of low potency anti-

HIV inhibitors to enhance their potency. The two studies that inspired me to use gold 

nanoparticles are the Bowman et al. study of conjugating a derivative TAK779 on a 

gold nanoparticle and the study by Elechiguerra et al. that used naked silver 

nanoparticles to target cell-free virus and lyse them prior to cell encounter[234, 235]. 

Bowman et al. showed that by conjugating SDC-1721 a derivative of TAK779 with a 

very low antiviral activity was conjugated onto 2 nm diameter AuNPs. There was 

approximately 2000 fold increase in potency and thus proving that nanoparticle 

conjugation increases local concentration of the drug on the virion surface making it 

highly active antivirals[235]. Therefore this was an inspiration to creating AuNP-

peptide triazole conjugates in this study. However bowman et al. used 2 nm AuNP 

which might have non-specific cellular uptake as shown previously[236]. The silver 

nanoparticles were approximately 20 nm to avoid non-specific cellular uptake, and 

this showed that there was sulfur interaction with the silver nanoparticle surface 

lysing the virion. But this also led to slight cell-toxicity which might be a limiting 

factor in its development and the specificity is low[234].  
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Figure 10: Schematic representing the different nanocarriers currently used in HIV-1 field 
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CHAPTER 2: SYNTHESIS AND ANTIVIRAL ACTIVITIES OF THE FIRST 

GENERATION OF VIROLYTIC AGENTS  
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2.  Introduction 

 

There is an urgent need for antiretroviral agents to combat the spread of HIV-1[41]. 

Other than T20 and maraviroc used in salvage therapy, there is limited first-line anti-HIV 

drugs target the entry process [14, 16, 28, 237, 238]. The fusion inhibitor enfuvirtide 

(T20) [14] and the CCR5 inhibitor maraviroc [15] are the only currently approved HIV 

entry drugs for both first-line and salvage therapy [16, 157, 158].  T20 targets the N-

terminal heptad repeat region of gp41, blocking gp41 conformational changes essential 

for 6-helix bundle formation and membrane fusion [14]; however, T20 has a relatively 

short time window to act on the transiently exposed N-helix of gp41 at the cell-virus 

synapse [239]. In addition, T20 is logistically difficult to administer, as it can only be 

given parentally, and adverse reactions at sites of injection are common [16, 240]. 

Maraviroc blocks R5-tropic but not X4-tropic HIV-1; thus, clinical use requires co-

receptor tropism assays prior to initiating treatment [16, 155, 157, 158]. Other small 

molecule entry inhibitors in development include: small molecules against gp120, gp41 

and co-receptor [16-18, 241-244]; monoclonal antibodies targeting CD4 [20] and CCR5 

[245, 246]; and neutralizing antibodies targeting the virion [21, 89, 247]. However, none 

of these latter agents have as yet advanced to first-line clinical use [248-250]. Therefore 

initial entry of HIV-1 into host cells remains a compelling and yet elusive target for 

developing agents to prevent infection[238]. This step is mediated by a sequence of 

interactions of a trimeric gp120/gp41 envelope (Env) protein complex with host cells, 

including initial gp120 encounter with the cellular receptor CD4 and a chemokine co-

receptor usually either CCR5 or CXCR4[116].   
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Since gp120 is the first viral protein to interact with the host cell, it is an attractive 

target for inhibiting infection.  We previously identified a peptide triazole class of HIV-1 

Env gp120 inhibitors that are highly active on R5-and X4-tropic viruses and exhibit 

remarkable breadth among different HIV-1 subgroups [10, 32]. This inhibition is 

mediated by binding to a region of gp120 that partially overlaps the CD4 binding site [9, 

10, 22-25, 32, 224].  The peptide triazole inhibitors appear to function mechanistically by 

trapping gp120 in an inactive conformation that is distinct from either the flexible, 

unliganded conformation or the highly structured, CD4-activated state [9, 10, 22-25, 32, 

224]. This conformational entrapment serves to prevent entry prior to virion attachment 

to CD4 or coreceptor on target cells [9, 23].  In this study we report the first ever peptide 

triazole derivative that is virucidal leading to irreversible disruption of the viral particle. 

Following the discovery, we more elaborately characterize the mechanism of action of 

these unique and novel PTs and its relation to HIV-1 fusion with host cell. This therefore 

will showcase the first ever virucide that is  not toxic to cell, broadly action and acts on 

the virus by hijacking the virus-cell fusion mechanism for complete irreversible lysis of 

the virus particle. We herein report this unexpected finding, which has significant 

implications for both prevention and therapeutic applications. 

 

We found that, while all peptide triazoles tested induced shedding of gp120, only those 

containing a C-terminal sulfhydryl group induced p24 release.  The apparent poration of 

virions leading to p24 release occurred on replication competent HIV-1 as well as on 

pseudoviruses bearing an HIV-1 Env.  Remarkably, the lysis activity of the peptide 

triazole thiols (PTTs) was completely inhibited by fusion inhibitors that target gp41 such 
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as T20, C34, 5 Helix and N36. This desensitization by the fusion inhibitors suggested that 

the disruption of viral membranes was coupled to physiological activation of gp41 and 

formation of the 6-helix bundle post initial binding of gp120 to CD4 during HIV entry to 

host cells.  We also defined kinetic and biochemical differences between inhibition of 

viral infectivity and phases of virion disruption.  Our findings strongly suggest that the 

novel virolytic effect induced by KR13 is related to physiological triggering of fusion 

machinery on the envelope glycoprotein trimer, which in the absence of CD4 or 

coreceptor engagement leads to disruption of the viral membrane and potent, irreversible 

viral inhibition. 

 

2.1 Production and validation of the virolytic peptide triazole thiol, KR13 

 

2.1.1 Materials 

 

All Fmoc-protected α- and β-amino acids, O-Benzotriazole-N,N,N’,N’-

tetramethyl- uranium-hexafluoro-phosphate  (HBTU),  1-

Hydroxybenzotriazole  (HOBt), Rink  amide resin (4-(2',4'-

Dimethoxyphenyl-Fmoc-aminomethyl) phenoxy resin) with a 0.55 

mmol/g substitution, N,N- dimethylformamide (DMF), Pyridine and N,N-

Diisopropylethylamine (DIPEA)  were  purchased  from  Chem-Impex  

International  Inc,  Ethynylferrocene  and Cu(I)I was purchased from 

Sigma-Aldrich and used without further purification. Fmoc- cis-4-

azidoproline was synthesized starting with commercially available trans-

Hyp-OH. Monomeric YU2 gp120 and sCD4 were produced in-house in 
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293F cells following a previously established protocol [10, 25]. Ten mM 

phosphate buffer was prepared using monosodium phosphate, 

monohydrate and disodium phosphate heptahydrate to reach pH 7.2. All 

other materials were obtained from Fisher Scientific. 

 

2.1.2 Synthesis of Peptide Triazole and peptide triazole thiol Inhibitors 

 

Peptide triazole and peptide triazole thiol (KR13) were synthesized by 

manual solid phase synthesis using Fmoc chemistry on a Rink amide resin 

at 0.25mmol scale. The [3 + 2] cyclo addition of azide and 

ethynylferrocene was carried out by copper catalyzed, on resin method 

[22]. Once the synthesis was complete, the peptide was removed from 

solid-phase resin using a cleavage cocktail mixture of 95:2:2:1 

trifluoroacetic acid (TFA)/1, 2- ethanedithiol/water/thioanisole for 3 h. 

Crude peptide was isolated by precipitation into 20 volumes of cold ether 

and purified by reverse-phase HPLC (Beckmann Coulter) on a C18 

column with a linear gradient of 5-95 % of acetonitrile/water in 0.1% TFA 

(Figure 11A). The final purified peptide was confirmed by MALDI-TOF-

MS, m/z of KR-13: 2084.79 [M+H] +   (Mcal = 2083.5 Da) (Figure 11B). 

The sequences of the main peptides produced are; HNG156 

(RINNIXWSEAMM-CONH2) and KR13 (RINNIXWSEAMMβAQβAC-

CONH2), where X is ferrocenyltriazole-Pro, were synthesized by manual 

solid phase synthesis using Fmoc chemistry on a Rink amide resin at a 
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0.25 mmol scale (Figure 12) [8, 22]. Control peptide triazoles, KR13s and 

KR13b were also prepared and validated as described above (Figure 12).  

Purity of produced peptides was confirmed by RP-HPLC and MALDI-

TOF. Prior to cellular assays using peptide triazoles, we tested for their 

possible effects on cell viability with HOS CD4+ve CCR5+ve cells after 24 

hours of inhibitor exposure. The cell viability was measured using the 

tetrazolium salt premix reagent, WST-1 from Takara Bio Inc. following 

the manufacturer’s protocol.  The formazan product was measured using 

the micro plate reader at absorbance wavelength 460 nm (Molecular 

Devices). 
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Figure 11:  Validation of the lab synthesized KR13. A. HPLC profile of KR13: 

VYDAC-C18 analytical column: 5-95% Acetonitrile/water in 0.1%TFA. B. MALDI-

TOF spectrum of KR13; m/z Obs : 2084.79 [M+H]+ (Mcal = 2083.5 Da) (data from 

Wistar Inc.) 
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Figure 12: Chemical structures (left) and sequences (right) of the peptide triazoles 

HNG156, KR13, KR13s and KR13b.  The chemical structures were generated in 

Chemdraw Pro 13.0. The underlined residues in the one letter coded sequences on the 

right denote the changes made to the parent peptide triazole (HNG156) to derive the three 

additional peptide triazoles investigated in this paper.  X = ferrocenyl-triazole-Pro and 

Acm = Acetamidomethyl.  

 

 

 

 

 

 

 

2.1.3 Peptide Characterization and Optical Biosensor Binding Assays 

 

The effects of the synthesized PTs on gp120 binding of sCD4 and mAb 17b were 

screened by competition ELISA (Enzyme Linked Immunosorbent Assay), Figure 12. 
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In a typical assay, HIV-1YU-2 gp120 (100 ng) was immobilized on a 96-well 

microtiter plate overnight at 4 °C, followed by three times washing with PBST buffer 

(1x PBS with 0.1 % Tween-20 v/v) and blocked with 3 % BSA (Bovine Serum 

Albumin) in 1× PBS for 2 h. Serial dilution peptide (5uM to down 0.001 µ M) was 

premixed with 0.1µg/ml sCD4 and the mixture was added to the plate in triplicate 

(65µ/well) and incubated for 1 hour. The plate was washed three times with PBST 

followed by 1 hour incubation with biotinylated anti-CD4 antibody at 65µl/well 

(eBioscience). The PBST wash step was repeated followed by 1 hour incubation with 

streptavidin-bound horseradish peroxidase (AnaSpec) at 1:3000 dilution and 

65µl/well. The above experiment was repeated using Serial dilution peptide (5uM to 

down 0.001 µ M) mixed mAb 17b (protein A purified) at 0.1 µg/ml. After 1 h 

incubation followed by washing three times, goat-anti-human-HRP antibody 

(Chemcon) was added and incubated for 1 h. The extent of HRP conjugate binding 

was detected in both assays by adding 200 μl o-phenylenediamine (Sigma–Aldrich) 

reagent for 30 min followed by measuring optical density (OD) at  450 nm using a 

micro plate reader (Molecular Devices). All incubation was done at room temperature 

unless otherwise mention and the samples were loaded in triplicate.  
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Figure 13: ELISA-derived competition of sCD4 (a) and m17b (b) binding to plate-

immobilized gp120 by KR13, HNG156, KR13s, and KR13b. The optical density values 

obtained for sCD4 and 17b binding to the gp120 in the absence of peptide were taken as 

100% binding controls. The IC50 values calculated for sCD4 competition by KR13, 

KR13b, HNG156 and KR13s were 22.2 ± 3.2 nM, 15.8 ± 2.9 nM, 12.4 ± 1.2 nM and 

undetected. The IC50 values calculated for 17b competition by KR13, KR13b, HNG156 

and KR13s were 20.5 ± 3.5 nM, 415.8 ± 22.9 nM, 165.7 ± 27.6 nM and undetected. Error 

bars represent the standard deviation of the mean, n > 3. 
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Surface Plasmon resonance (SPR) interaction analyses were performed on a Biacore 

3000 optical biosensor (GE Healthcare) (Figure 14) at 25°C using standard 1× PBS, pH 

7.3, with 0.005% Tween-20. A CM5 sensor chip was derivatized by amine coupling by 

using N-ethyl-N-(3-dimethylaminopropyl) carbodiimide /N-hydroxysuccinimide-1 with 

HIV-1YU-2 gp120 (Fc2 cell) and as a control surface, mAb 2B6R (antibody to human 

IL-5 receptor α, Fc1 cell). For direct binding experiments, HIV-1YU-2 gp120 was 

immobilized on the sensor surface (~5500 RU); peptide analyte in PBS buffer 

(concentration range of 125nM to 0.98 nM) was passed over the surface at a flow rate of 

50 μL min−1 with a 5 min association phase and a 5 min dissociation phase. 

Regeneration of the surface was achieved by a single 5 second pulse of 10 mM glycine, 

pH 1.5. Data analysis was performed using BIAEvaluation 4.0 software (GE). A double 

reference subtraction was performed for each data set to account for non-specific binding. 

The steady state affinity analysis was performed by plotting data of association 

equilibrium value selected from 10 sec before dissociation phase for each concentration 

v/s peptide concentration (Figure 14).  
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Figure 14: Sensorgrams obtained from SPR analysis of direct binding of KR13, 

HNG156, KR13b and KR13s to gp120. The peptides at concentrations ranging from 

0.0003 µM to 0.156 µM were injected at a constant flow rate of 100 µl/min with 250 µl 

injection volume onto the surface of immobilized YU2 monomeric recombinant gp120. 

YU2 monomeric recombinant gp120 produced in 293F cells was immobilized on a 

Biacore CM5 chip at surface density of 2500 RU using EDC/NHS chemistry explained in 

detail in the Supplementary Text section. The graphs on the left show the sensorgrams 

obtained post double reference subtraction using the BiaEvaluation software. The graphs 
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on the right show steady state fit analysis of the Req values for each peptide 

concentration. The Req values were calculated using the BiaEvaluation software, with 

separate kon and koff fit analysis using the Langmuir equation described in Supplementary 

Text section.  Error bars represent standard deviation of the mean, n = 3. 

 

 

2.1.4 Cell viability analysis in presence of peptide triazoles 

 

Viability of cells in the presence of peptides KR13, HNG156, KR13b and KR13s 

was assessed using the tetrazolium salt premix reagent, WST-1, from Takara Bio 

Inc. following the manufacturer’s protocol (Figure 15). HOS CD4+ve CCR5+ve 

cells were treated with increasing concentrations of each peptide ranging from 0.1 

µM to 250 µM and incubated overnight at 37°C. Following media change, 10 µl 

of the tetrazolium salt was added to each sample and incubated for 30 minutes at 

37°C. The formazan product was measured using the micro-plate reader at 

absorbance wavelength 460 nm (Molecular Devices). 
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Figure 15: Cell Viability of HOS CD4+ve CCR5+ve cells in the presence of HNG156, 

KR13, KR13b and KR13s. The samples were tested using the WST-1 assay following 

manufacturer’s protocol. The viability of HOS CD4+ve CCR5+ve cells in the absence of 

inhibitor was the 100% control.  
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2.1.5 Results 

 

The synthesis of the virolytic peptide triazole is the same as the regular 

peptide triazole with the same pharmacophore (shown in blue in Figure 

11). Except the scrambled sequence of KR13 (KR13s) the other PTs 

compete with both CD4 and 17b binding to gp120 monomer showing that 

these peptides are dual acting, blocking both CD4 and 17b interaction 

(Figure 13). Peptide binding to gp120 was determined using surface 

plasmon resonance (SPR) interaction analysis, with Kd values for KR13, 

KR13b, and HNG156 found to be 2.71nM, 6.13 nM, and 13.4 nM, 

respectively (Figure 14). Binding analysis of KR13s by SPR direct 

analysis yielded low and inconsistent dose dependent signals, and no Kd 

was determined in this case.  The Kd values were determined using 

BiaEvaluation software using the steady state affinity model. It was also 

confirmed that the peptide triazoles in this study did not induce any 

significant cell toxicity by testing viability of HOS CD4+ve CCR5+ve 

cells exposed to these inhibitors for 24 hours at 37 °C (Figure 15). 

 

2.2 Antiviral functions of peptide triazoles and the peptide triazole thiol 

 

The antiviral functions of the peptide triazole variants were tested both on the 

virus-host cell interaction as well as on the cell-free virus. This is important to test 
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so that when these peptides are transitioned into microbicides we can target on 

different stages of the virus lifecycle depending on their anti-viral functions 

observed.  

 

2.2.1 Materials 

 

Modified Human Osteosarcoma Cells (HOS CD4+ve CCR5+ve) engineered to 

express CD4 and CCR5, receptor and co-receptor respectively, as well as pNL4-

3.Luc R-E- backbone DNA, were obtained from Dr. Nathaniel Landau[251].  The 

HOS CD4+ve CCR5+ve cells were grown in DMEM supplemented with 10% FBS, 

2.5% HEPES, 1% Penicillin- Streptomycin, 2% L-Glutamine and 1 mg of 

puromycin. 293T cells were obtained from American Type Culture Collection and 

grown in the same culture medium as the HOS CD4+ve CCR5+ve cells except 

without puromycin. The plasmids for HIV-1 BaL-01 gp160 and VSV-G Env 

DNA were gifts from Dr. Julio Martin-Garcia. The antibodies mouse anti-p24, 

rabbit anti-p24, and the protein p24, were from Abcam. Monomeric YU2 gp120 

and sCD4 were produced in-house in 293F cells following a previously 

established protocol [10, 25]. Fully Infectious HIV-1 (BaL) was a gift from Dr. 

Michele Kutzler and obtained from Penn Center For AIDS Research (CFAR). The 

protein gp120 monomer was produced using already-established protocols [25], 

anti-gp120 was from Alto chemicals. Gp41 protein, enfuvirtide (T20) and anti-

gp41 antibodies 4E10, 2F5 and 98-6 were from NIH AIDS Research and 

Reference Reagent Program (ARRRP). Enhanced chemiluminescence western 
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blot detection system was from Amersham. O-phenylenediamine (OPD) was from 

Sigma Aldrich.  All other materials were from Fisher Scientific.  

 

2.2.2 Pseudoviral infection assay 

 

2.2.2.1 Production of single-round recombinant luciferase producing HIV-1 

virus like particles (VLPs): 

 

The recombinant virus consisted of (1) the pro-viral envelope plasmid 

sequence corresponding to the CCR5 targeting HIV-1BaL strain or a VSV 

(Vesicular Stomatitis Virus) pseudotype and (2) the backbone sequence 

corresponding to an envelope-deficient pNL4-3-Fluc+env– provirus 

developed by N. Landau[252]. 4 µg of envelope and 8 µg of backbone DNA 

were co-transfected into 293T cells using FuGene 6 as the transfection reagent 

[253].  Fourteen hours post-transfection, the medium was changed, and 

subsequently the VLP-containing supernatants were collected at 48 hours post 

transfection.  The VLP-containing supernatants were cleared using a 0.45 µm 

syringe filter and purified further by spinning the sample on an iodixanol 

gradient, using a Hoefer continuous gradient maker, ranging from 6 - 20 % 

iodixanol, at 30,000 rpm for 2 hours at 4 °C (Figure 16).  The collected 

fractions were validated for p24 content using capture ELISA and for gp120 

content using western blot detection as described in the main text. Virions 

purified on the 6-20% iodixanol gradient exhibited a characteristic distribution 
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profile of p24 and gp120 content (Figure 16), enabling viral (18-19.2% 

iodixanol) and soluble protein (6-8% iodixanol) fractions to be isolated. The 

purified virus samples were collected between the 18.2%-19% iodixanol 

fractions on the gradient, aliquoted and stored at -80°C until further use 

(Figure 16).  
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Figure 16: Scheme depicting method of purification of intact virus and peptide-triazole 

derived virus breakdown products by gradient centrifugation. (A) Scheme of location of 

sample loading and the positions of the 20% and the 6% optiprep fractions after 

centrifugation.  (B) Plot of the virus infection, gp120 release and p24 release activities for 

the iodixanol fractions collected from the gradient post  KR13 (1 µM) treatment. The 

soluble protein fraction corresponded to 6-8% iodixanol, and the treated virus fraction to 

the 16-18% fraction, based on the presence respectively of freely soluble p24 and gp120 

in the former and viral infection activity in the latter.  The controls include virus treated 

with PBS (intact virus) and virus treated with 1% triton X and boiled for 5 min at 95°C 

before gradient purification (solubilized proteins). 
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2.2.2.2  Luciferase reporter assay: 

 

A luciferase reporter assay was used to monitor cell infection activity of 

pseudovirion preparations as well as the inhibition of infection. For the infection 

profiles, 8,000 cells per well in a 96 well plate were incubated for 24 hours 

followed by addition of serial dilutions of the gradient purified virus fractions. 

Forty-eight hours post infection, luciferase activity was measured [8].  Cells were 

lysed with 50 µl of Passive Lysis Buffer (Promega) per well for 5 minutes 

followed by quick freeze/thaw cycles. Luciferase assay was performed using 1 

mM D-luciferin salt (Anaspec) as substrate and detected on a 1450 Microbeta 

Liquid Scintillation and Luminescence Counter (Wallac and Jet). For inhibition of 

infection assays with the peptide triazoles, infectious dilutions (1 million RLU 

(Relative Luminescence Units)) of the pre-tested purified virions were pre-

incubated with serial dilutions of the inhibitor for 30 minutes at 37°C. HOS 

CD4+ve CCR5+ve cells, seeded at 8,000 cells per well in a 96 well plate, were 

incubated for 24 hours followed by addition of the pre-incubated inhibitor-virus 

complex. Forty eight hours post infection, luciferase activity was measured as 

explained above [8]. The same method was used in order to measure the effect of 

the peptides, KR13 and HNG156, on the HOS CD4-ve CCR5+ve cells in order to 

check for possible enhancement of infection (Figure 16). Non-linear regression 

analysis was used with Origin Pro.8 (Origin Lab) to determine IC50 values. All 

experiments were performed at least in triplicate, and results were expressed as 
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relative infection with respect to cells infected with virus in the absence of 

inhibitor (taken as 100% infection).  

 

2.2.3 P24 Release assay 

 

Serial dilutions of peptide triazole starting from 50 µM were incubated for 30 

minutes with working dilution of the purified pseudotyped HIV-1 BaL virus.  

Control samples included (1) PBS with virus and (2) 1% Triton X-100 with virus. 

Ten 1 ml fractions were collected from the gradient.  Each fraction was tested for 

p24 content using capture ELISA. High binding polystyrene ELISA plates were 

coated overnight at 4°C with 50 ng of mouse anti-p24 and blocked with 3% BSA. 

The blocked plate was rinsed 3 times with PBS-T (PBS and 0.05% Tween 20), 

and 1 ml gradient fractions were loaded onto the plate using a 1:10 dilution factor 

with 0.5% BSA in triplicate.  After two hour incubation, rabbit anti-p24 was 

added to the plate for 1 hour, following PBST rinse (3 times, 5 minutes each), and 

then anti-rabbit IgG fused to horseradish peroxidase (HRP) was added to the plate 

and incubated for another hour. Following further PBST rinse, o-

Phenylenediamine (OPD) was added to the plate and incubated in the dark for 30 

minutes. The optical density (OD) was measured at 450 nm using a micro plate 

reader (Molecular Devices).   
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2.2.4 Gp120 shedding assay 

 

The HIV-1 BaL pseudovirions were treated with the peptide triazole of interest 

for 30 minutes at 37 °C, and the fractions were collected from centrifugation in a 

6-20% iodixanol gradient. Fractions were boiled with SDS loading buffer for 5 

minutes and proteins separated on a 12% SDS non-reducing polyacrylamide gel 

(NuPAGE – Invitrogen). As a control in the gels, YU2 recombinant gp120 

monomer produced in 293F cells was used at 500ng/ml.  This control usually runs 

as a lower molecular weight species compared to the BaL virus gp120.   We 

surmise that this is due to an altered glycosylation pattern for the cell type (293F) 

used to express the recombinant protein versus the cells (293T) used to produce 

the BaL virus. The 293T cells produced gp120 runs approximately at 100 kDa 

while the gp120 from 293F cells runs approximately at 120 kDa (data shown in 

bastian et al. 2013)[6].  The separated proteins in the gels were electrophoretically 

transferred onto (Polyvinylidene Fluoride) PVDF membrane at 100 mV for 1 

hour. The blotted membrane was blocked with 5% skimmed milk in PBST for 1 

hour at room temperature. After washing the membrane with PBST, sheep gp120 

antibody (D3724) diluted in 5% skimmed milk was added and incubated for 1 

hour at room temperature. The bound antibodies were detected by horseradish 

peroxidase-conjugated anti-sheep IgG secondary antibody followed by the 

enhanced chemiluminescence detection system (Amersham) according to the 

manufacturer's protocol.  
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2.2.5 Viral infection inhibition and viral breakdown of fully infectious HIV-1 by 

peptide triazoles 

 

Virions were purified using 6-20% iodixanol gradient and p24 content measured 

using ELISA. The TCID50 was determined using Origin Pro.8 (Origin Lab). The 

working dilution of virus was pre-treated with a serial dilution of KR13 or 

HNG156 starting from 100 µM for 30 min at 37 °C. HOS CD4+ve CCR5+ve cells 

seeded, at 8,000 cells per well in a 96 well plate, were incubated for 24 hours 

followed by addition of pre-incubated inhibitor-virus mixture.  After 48 hours 

infection, p24 content of virions in the supernatant was measured in order to 

determine the IC50 value of viral inhibition. Further, the peptide triazole and cell-

free virus were pre-incubated for 30 min at 37°C followed by spinning for 2 

hours at 13,600 rpm in a table top centrifuge (Eppendorf) at 4°C. Supernatant 

was separated and p24 content determined using the p24 capture ELISA 

explained above. The extents of viral inhibition and p24 release from fully 

infectious HIV-1 BaL were also evaluated for control peptide HNG156.  
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2.2.6 Results of the antiviral effects of peptide triazoles 

 

2.2.6.1 Separation of virus components derived from HIV-1 breakdown 

induced by peptide triazoles: 

 

To probe the effects of peptide triazoles on HIV-1, gradient-purified viral 

pseudotype particles containing the HIV-1 BaL Env were treated with 

various peptide triazole variants and then fractionated using iodixanol 

gradient centrifugation [254]. The density gradient enabled separation of 

the solubilized proteins from the residual virion fraction. Each gradient 

fraction was tested for viral infectivity and protein content.  Proteins 

released from virus particles were present in the 6-8% Optiprep fraction 

(soluble protein fraction), while the intact virions were present in the 18.2-

19% Optiprep fraction (residual virion fraction). Solubilized protein and 

residual virion fractions were evaluated for infectivity and for p24, gp120 

and gp41 content (Figure 16).    
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2.2.6.2 Dose dependence and specificity of KR13-induced virus 

breakdown: 

 

We compared the effects of KR13 and control peptides on HIV-1 infectivity 

and structure.  Peptides included KR13b (KR13 with the thiol blocked with 

an acetamidomethyl (ACM) group); KR13s, which contains a WX 

scrambled KR13 amino acid sequence in the gp120-binding IXW 

pharmacophore [10, 22, 32]; and the parent peptide triazole HNG156, which 

contains no free thiol group [22] (Figure 12). These peptides were 

chemically synthesized using previously established methods [22, 23, 31, 

32].  Anti-viral effects of the peptide triazoles were initially measured using 

HIV-1 BaL pseudotyped virions.  As shown in Figure 17A, peptides KR13, 

KR13b, and HNG156 each inhibited infection, with KR13 and KR13b 

exhibiting the greatest potency, while the sequence-scrambled peptide 

control KR13s was inactive.  Peptide effects on the contents of the virions 

were determined by treating gradient-purified pseudotyped particles with 

increasing concentrations of each peptide and determining gp120 shedding 

and p24 release. The peptides KR13, KR13b and HNG156, but not the 

KR13s control, caused gp120 shedding (Figure 17B; see Appendix Fig. 1 

for western blot images). IC50 values for gp120 shedding by the active 

peptides were comparable (Table 1) and similar to IC50 values for inhibition 

of cell infection. In contrast, KR13, but not the other peptide triazoles, 

induced p24 release (IC50 32 ± 10 nM) (Figure 17C). The samples were 
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normalized to the untreated virus, for which spontaneous p24 release and 

gp120 shedding were both <5% of the total protein contents as determined 

by solubilization of the virus particles with 1% triton X treatment 

(Appendix Fig. 1). No inhibition of infection was observed on viruses 

pseudotyped with either VSV-G or AMLV envelope, indicating that the 

effects on HIV-1 were highly specific (Appendix Fig. 2).  All the IC50 and 

EC50 values were obtained using sigmoidal plot fit in Origin Pro. 8. 
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Figure 17: Dose response of the effects of peptide triazoles on HIV-1 BaL pseudovirus.  (A) Inhibition of 

cell infection was measured using a single round infection assay.  The EC50 values are reported in Table 1. 

(B) Relative gp120 shedding was determined for the peptides KR13, KR13b, HNG156 and KR13s using 

western blot analysis. Electrophoretic bands of gp120 in soluble protein and residual virus fractions were 

quantified using Image J analysis; IC50 values obtained are in Table 1. A low level of gp120 shedding 

(<5%) was observed with the intact virus used as the negative control.   Data were normalized to 100% 

gp120 shedding observed with 1% triton X treated lysed virus. (C) Relative p24 release induced by peptides 

was measured using ELISA.  The data were normalized using untreated virus as negative control (<5% p24 

release), and p24 release observed with 1% triton X treated virus was taken as 100% p24 content.  The p24 

release IC50 value for KR13 was 500 ± 80 nM, while the other peptide triazoles exhibited no significant p24 

leakage. Sigmoidal curve fits of data were obtained using Origin Pro.8 (Origin Lab). Error bars represent 

the standard deviation of the mean, n > 3. 
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2.2.6.3 Effects of KR13 on fully-infectious virus: 

 

To determine if the effects of peptide triazoles on pseudotyped HIV-1 BaL 

particles would also occur on infectious viruses, we performed a dose 

response analysis for viral infection inhibition and p24 release on fully 

infectious HIV-1 BaL. As shown in Table 1 and figure 17, both HNG156 and 

KR13 inhibited viral infectivity on HOS CD4+ve CCR5+ve cells (IC50 values of 

0.53 µM and 5.5 µM, respectively), and caused both gp120 shedding (IC50 

value of 1.2 µM) and p24 release (IC50 value of 4.4 µM) (Figure 18).  Thus, 

the virolytic activity induced by KR13 on pseudotyped HIV-1 virions was 

also seen with replication competent HIV-1. All the IC50 and EC50 values were 

obtained using sigmoidal plot fit in Origin Pro. 8. 

 

2.2.6.4 Breadth analysis of peptide triazole thiol induced virolysis 

 

In order to examine if the virolytic effect induced by KR13 occurs broadly 

with multiple clades of the HIV-1 virus family, we tested several variants 

from each of clades A, B and C. We also examined transmitted founder 

viruses prepared from Env plasmids ZM246F.C1G, ZM247Ffs and 

ZM249M.B10.D4. From the p24 release effects observed (Figure 19), it is 

evident that the virolytic effect induced by KR13 indeed occurs broadly, 

with IC50 values ranging from 0.7 µM to 26 µM. This range of action is 
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consistent with the viral infection inhibition breadth analysis conducted by 

McFadden et al. 2011 for the parent peptide HNG156 [10]. The results 

obtained show that peptide induced virolysis is conserved and inactivates 

multiple clades of HIV-1. 
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Figure 18: Inactivation (A) and virion breakdown (B and C) of HIV-1 BaL fully infectious virus by 

KR13 and HNG156. The EC50 values for inhibition of infection by KR13 and HNG156 were 639 ± 

68.9 nM and 5.5 ± 0.9 µM, respectively. Gp120 Retention (B) was tested by western blot analysis 

using D7324 anti-gp120 on the residual gp120 on the virions treated with KR13.  The IC50 of 

KR13 gp120 shedding was 1.2± 0.93 µM. Release of p24 by KR13 and HNG156 (C) was tested 

with a p24 leakage assay using ELISA as explained in the Materials and Methods section.  The 

IC50 value for KR13 induced virolysis was 4.4 ± 0.7 µM.  No p24 release was observed by 

HNG156 upto at 200 µM.  All of the above EC50 and IC50 values were obtained using the Origin 

Pro. 8 software with sigmoidal fits. Error bars represent the standard deviation of the mean, n = 3. 
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Figure 19: Antiviral breadth of KR13 induced virolysis. Dose responses, shown by 

sigmoidal curve fits, were obtained using Origin Pro. 8 (explained in Materials and 

Methods section) for p24 release induced by KR13 ranging from 1 nM to 50 µM from 

several clades of HIV-1 pseudoviruses (A) and transmitted founder viruses (B). (C) Table 

of the IC50 values obtained from (A) and (B). Error bars represent the standard deviation 

of the mean, n = 3. 
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2.3 Mechanism of the peptide triazole thiol virolysis 

 

In order to study in detail the mechanism of the KR13 virolysis, the kinetic 

breakdown of the lysis, the immunological and morphological characteristics of the 

residual virus post treatment as well as how fusion inhibitors affect this lytic event 

was studied. This lead to defining kinetic and biochemical differences between 

inhibition of viral infectivity and phases of virion disruption.  Our findings strongly 

suggest that the novel virolytic effect induced by KR13 is related to physiological 

triggering of fusion machinery on the envelope glycoprotein trimer, which in the 

absence of CD4 or coreceptor engagement leads to disruption of the viral membrane 

and potent, irreversible viral inhibition. 

 

2.1.4 Kinetic tracking of transitions during peptide-induced viral breakdown 

 

The time course of peptide triazole dependent HIV-1 breakdown was 

evaluated.  The respective peptide triazole was pre-incubated with purified 

virus at a working concentration for times ranging from 1 min to 24 hour at 

37°C. The treated samples were then purified on a 6-20 % iodixanol gradient 

as explained above. For each time point, purified virions incubated with PBS 

at 37°C and alternatively with 1% Triton-X 100 was used as negative and 

positive controls, respectively. Each fraction was collected and quantified for 

p24 (capsid protein), gp120 and viral infection as explained above. 
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Based on IC50 values (Table 1), a working dilution of gradient-purified 

pseudotyped HIV-1 particles was exposed to KR13 (1 µM) or HNG156 (100 

µM), with incubation times ranging from 1 min to 24 hours at 37 °C. The 

infectivity of viruses was evaluated, and fractions from post-exposure density 

gradient fractionation were tested for relative gp120 shedding and p24 release by 

determining the distribution of protein content between the soluble and virion-

containing fractions.  As shown in Figure 20, infectivity inhibition and gp120 

shedding had similar kinetics for both KR13 and HNG156 peptides. However, 

p24 release was only induced by the KR13 peptide and was delayed kinetically. 

Thus, p24 release from viral particles was clearly distinct from effects of 

peptides on infectivity and gp120 shedding. Each time point was normalized to 

its own negative control, which was the untreated virus, and to 100% release 

determined by 1% triton X treated virus.  The negative controls showed minimal 

spontaneous p24 release and gp120 shedding of 5 to 15% from 1 min to 24 

hours, respectively. All the IC50 and EC50 values were obtained using 

sigmoidal plot fit in Origin Pro. 8. 
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Figure 20: Time-dependence of viral breakdown by HNG156 (a) and KR13 (b) treatments of 

HIV-1 BaL pseudovirus. The % of cell infection retained after peptide treatment is shown on the 

left y-axes, and the viral protein gp120 and p24 retained in the virus fraction is shown on the right 

y-axes. All samples were adjusted to the untreated virus as 100% infection and 100% viral protein 

retention. Each time point had a control of untreated virus, and this was used to normalize each 

time point of peptide treatment.  The concentrations of KR13 and HNG156 were kept constant for 

each time point at 1 µM and 100 µM, respectively. Untreated controls showed <5% p24 release 

and gp120 shedding, and <2% loss of cell infection activity.  Error bars represent the standard 

deviation of the mean, n = 3. 
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2.1.5 Detection of immunoreactive gp41 on virions post peptide-induced 

virus breakdown 

 

Residual virus and released protein fractions obtained by gradient purification 

from KR13 and HNG156 treatments were analyzed for gp41 content.  

Initially, the presence of gp41 in the treated fractions was detected using 

western blot analysis with human mAb 98-6 followed by anti-human IgG 

HRP secondary antibody. Blots were analyzed using the Enhanced 

Chemiluminescence detection system (Amersham).  

 

We also measured the presence of gp41 epitopes for human mAb’s 2F5 and 

4E10 using an altered ELISA detection method to minimize virus particle 

disruption [255].  Pseudovirions were treated for 30 min at 37°C with 

increasing concentrations of either KR13 or HNG156, and samples spun on a 

6-20% iodixanol gradient. Virus fractions were collected and fixed with equal 

volume of 0.1% paraformaldehyde for 30 minutes at 4°C. The treated virus 

fractions were spun at 16,000 X g for 2 hours at 4°C in an Eppendorf table top 

centrifuge. Following PBS wash, fixed virions were coated on an ELISA plate 

at 50 µl per well and incubated overnight at 4°C. The plate was blocked with 

3% BSA, and ELISA was used to detect gp41 epitopes with human gp41 

antibodies 2F5 and 4E10 followed by addition of anti-human IgG HRP 

secondary antibody. This method also was used to assess time-dependent 
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exposure of gp41 epitopes on the pseudotyped HIV-1 BaL virions induced by 

KR13 and HNG156 treatment at 1 µM constant concentration.  

 

Initial western blot analysis of KR13 and HNG156 treated HIV-1 BaL 

pseudotype virions were performed using the human anti-gp41 mAb 98-6, 

which reacts with a linear epitope at residues 644-663 in the gp41 ectodomain. 

Following either KR13 or HNG156 treatment, gp41 remained associated with 

virions (Appendix Fig. 2), while gp120 was released into the soluble fraction 

(Figures 17 and 120).  

 

Remarkably, for KR13-treated particles, gp41 was detected only weakly by 

98-6 in either soluble or virion-associated fractions. To determine if this effect 

resulted from a peptide-induced conformational change that blocked exposure 

of the 98-6 epitope, binding was assessed to conformationally dependent gp41 

antibodies 4E10 and 2F5, which react with membrane-associated MPER 

epitopes at the base of the gp41 ectodomain.  To test the antibody binding, the 

peptide-treated purified virions were fixed using 0.1% paraformaldehyde in 

order to maintain gp41 conformation.  The fixed virions were evaluated by 

ELISA as described above. On untreated or HNG156-treated virions, MPER 

epitopes were poorly exposed (Figure 21).  However, on KR13-treated 

virions, reactivity to 4E10 and 2F5 increased in a dose-dependent manner and 

occurred at concentrations comparable to those required to induce gp120 

shedding and p24 release (Figure 21A).  This effect was also time-dependent, 
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with kinetics similar to that seen for p24 release (Figure 21B). Thus, while 

KR13-treatment induced p24 release, gp41 was clearly retained on virions, but 

in a conformationally altered state associated with loss of 98-6 epitope and 

exposure of MPER-associated epitopes.   

 

2.1.6 Analysis of the peptide-treated virions by transmission electron 

microscopy 

 

Transmission Electron Microscopy (TEM) was conducted to visualize the 

morphology of the virions treated with KR13. Purified pseudotyped HIV-1 BaL 

virus and KR13 were pre-incubated from 5-1440 min at 37 °C. Following 

incubation, samples were fixed with 2% gluteraldehyde for 30 minutes at room 

temperature, and then embedded in Spur’s low viscosity epoxy medium after 

acetone washes to dry the virions, slices (100 nm thick) were prepared using an 

ultra-microtome (Leica EM UC6), loaded onto a holey carbon TEM 200 mesh 

grid (Electron Microscopy Science) and imaged using the JEM 2100 operated at 

120 kV (JEOL, Japan).  Sixteen images were taken per sample, and the sizes of 

observed particles were determined, using Image J software to derive average 

diameters of the virion particles from TEM images measured from 5 angles. 

 

Transmission electron microscopy (TEM) analysis was conducted to assess the 

morphology of KR13-treated virions before and after p24 release. Pseudotyped 

HIV-1 BaL was treated with KR13 (1 µM) from 1 min to 24 hours and samples 
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removed at various time points for TEM imaging. A total of 16 images per sample 

were taken (Appendix Fig. 4), and a probability distribution was plotted to 

determine the average diameter of the virions pre- and post-KR13 treatment 

(Figure 21C). Following KR13 treatment, virion diameter was reduced by >50% 

after 24 hours.  In addition and in contrast to the pre-incubation time point when 

cores were typically condensed and clearly observed, the core morphology of 

KR13-treated virions at 24 hours was substantially different, with a shriveled and 

disordered appearance. Similar, although less impressive, morphologic changes 

were observed at 360 minutes, a time point at which a 50% reduction in virion 

p24 content was observed (Figure 20). Thus, consistent with biochemical and 

immunological changes in KR13-treated virions, striking morphologic differences 

were also evident.  
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Figure 21: The gp41 content and morphology of residual virions derived from peptide triazole 

treatments of HIV-1 BaL pseudovirus.  (a) Reactivity of residual viruses, from 18.2-19% 

Optiprep fractions, to gp41 antibodies 2F5 and 4E10 as a function of KR13 and HNG156 

concentration.  (b). Reactivity of residual viruses to gp41 antibodies as a function of time of 

treatment with KR13 and HNG156. All samples in (a) and (b) were normalized to total gp41 

content on intact virion. Error bars represent the standard deviation of the mean, n = 3.  (c) 

Average diameter of HIV-1 BaL virions untreated and post treatment with KR13 (1 µM) as 

determined by TEM.  The probability distribution box plot shows the average in red and the 

distribution in bar lines (n=16).  The diameter analysis was conducted using Image J Software.  

Inset: Representative TEM Images obtained at designated time points, with the scale bar 

representing 50 nm diameter.   
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2.1.7 Fusion inhibitor enfuvirtide (T20) effects on virolysis 

 

The effect of T20 on virus breakdown by KR13 was assessed. KR13 at 1 µM and 

serial dilutions of T20 starting at 1 µM were co-incubated with pseudotyped HIV-

1 BaL for 30 min at 37°C. Treated virion samples were fractionated on a 6-20% 

iodixanol gradient (above). Gradient fractions were quantified for p24 using 

ELISA, and relative p24 release was quantified and plotted using the Origin Pro.8 

(Origin Lab).  Collected gradient fractions also were analyzed for gp120 shedding 

using western blot analysis, with detection using primary antibody D7324 and 

secondary anti-sheep HRP. The bands of the blot were analyzed using Image J 

software. The IC50 values were calculated using Origin Pro.8 (Origin Lab). To 

further determine whether T20 inhibited peptide-induced virolysis through gp41 

interaction, a T20-resistant, gp41-mutated HIV-1 virion was validated and tested 

for T20 inhibition of KR13-induced virus breakdown.  To additionally confirm 

the specificity of the T20 inhibition, a competition surface plasmon resonance 

experiment was conducted (Appendix text). Data were analyzed using Biacore 

3000 optical biosensor (GE Healthcare) BiaEvaluation software. Steady state 

analysis was conducted using the method of Morton et al. [256] (Figure 22). 
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Figure 22: Inhibition of KR13-induced virus breakdown by the gp41-binding fusion inhibitor T20.  

(A) BaL pseudovirus.  Virus was treated with 1 µM KR13 in the absence and presence of serial 

dilutions of T20 starting from 1 µM. Relative p24 release was measured using p24 ELISA by 

comparing the residual virion (18.2 - 19% Optiprep) and soluble protein (6-8% Optiprep) fractions.  

Relative gp120 release was measured using western blot analysis by comparing content of gp120 in 

the analogous residual virion and soluble protein fractions.  Western blot values were obtained 

using Image J analysis of the protein bands. The IC50 value T20 inhibition of KR13-induced p24 

release was 15.9 ± 4.9 nM using Origin Pro .8 (Origin Lab). No significant effect on the gp120 

release in the presence of T20. Error bars represent the standard deviation of the mean, n = 3.  (B) 

R3A and R3A V38A pseudoviruses; the latter, mutant virus has been found previously to be 

resistant to T20 inhibition. Release of p24 was quantified as for BaL pseudovirus in part (a).   The 

IC50 of T20 inhibition of peptide induced p24 release from the virus R3A was calculated to be 

21.9 ± 5.9 nM.  The mutant virus V38A R3A did not exhibit inhibition of p24 release. Sigmoidal 

fits were obtained using Origin Pro .8 (Origin Lab). Error bars represent the standard deviation of 

the mean, n = 3. 
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2.1.8 Discussion  

Previously, we reported that peptide triazole inhibitors of HIV-1 infectivity target 

gp120 on the HIV-1 virion and allosterically block CD4 and coreceptor 

(CCR5/CXCR4) binding sites on gp120 [22, 23].  Recently, peptide tirazole 

containing a C-terminal sulfhydryl group caused irreversible, cell-independent 

disruption of viral particles, as shown by release of the capsid protein p24 [8].  In 

the current study, we sought to more fully characterize the underlying mechanism 

of these effects.   We detected multiple molecular transformations during peptide-

induced inactivation and disruption of viral particles.  The peptide triazole thiol, 

KR13, was unique in causing both gp120 shedding and p24 release, and this 

effect was seen with several clades as well as transmitted founder pseudovirions 

(Figure 17), showing the breadth of virolytic inactivation. The virolytic effect 

induced by KR13 was also observed with replication competent, fully infectious 

HIV-1 BaL virions (Figure 18). Of note, for the fully infectious virions, the IC50 

values for peptide induced gp120 shedding as well as virolysis  were higher.  One 

possible explanation for this difference is the reduced spike density on infectious 

virion surfaces compared to the pseudotyped virions. From our data, we observed 

that the pseudovirions used in this study have spike densities ranging from 60-70 

spikes per virion, while the fully infectious BAL-01 had approximately 12-15 

spikes per virion. The spike densities  were calculated from gp120 content 

determined by western blot analysis of the virus supernatants as described in 

above.  
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Gp120 shedding tracked kinetically with loss of cell infection activity, while p24 

release occurred more slowly (Figure 20). The free sulfhydryl group was required 

for p24 release but not gp120 shedding, as a non-sulfhydryl peptide triazole 

(HNG156) induced only gp120 shedding as did the KR13b derivative containing 

a blocked sulfhydryl group.  Strikingly, p24 release was potently inhibited by the 

entry inhibitor,T20, which specifically blocks formation of the gp41 6-helix 

bundle, on the Env trimer, that is induced following CD4 and coreceptor 

engagement by gp120 and required for membrane fusion (Figure 22)  [14].  

Moreover, membrane proximal MPER epitopes on gp41, which are 

characteristically concealed prior to CD4/coreceptor engagement, became highly 

exposed on viral particles (Figure 19).  Overall, gp120 shedding, 6-helix bundle 

formation, and perturbations in the viral membrane that cause p24 release and 

gp41 MPER epitope exposure are analogous to physiological events that occur 

during viral fusion and entry. These findings are consistent with a model in which 

peptide triazole thiols trigger native structural programs on the HIV Env trimer 

that are associated with membrane fusion.   This view is depicted schematically in 

Figure 23.  

 

The requirement for the free sulfhydryl group of KR13 in virolysis was 

demonstrated using synthetic peptide triazole variants.  Several peptides in 

addition to KR13 were examined, including the parent HNG-156 peptide that 

contained no Cys residue, the KR13b peptide in which the –SH group is blocked 

and a sequence-scrambled control peptide KR13s (Figure 12).  Both HNG156 
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and KR13b bound to gp120 and had strong antiviral activities (Figure 17 and 

Table 1).  However, neither of these peptides caused p24 release. Hence, the free 

Cys-SH group in KR13 is essential for its observed lytic activity. We cannot yet 

define the mechanistic role of the sulfhydryl group in Env protein disruption.  

However, Env protein disulfide exchange has been reported to be important in 

viral entry [257-259]. Hence, it is possible that disulfide exchange may be a 

component of the KR13-induced gp120 transitions that alter Env spike 

conformations and, in the absence of a target cell, disrupt the viral membane 

resulting in breakdown of the virion particle. 

 

We investigated the time dependence of KR13-induced viral disruption by 

tracking the fate of the viral components gp120, gp41 and capsid protein (p24). 

We observed (Figure 20) a series of breakdown steps, in which gp120 shedding 

and loss of infectivity occurred at similar rates, while loss of p24 from the viral 

capsid occurred more slowly.  The difference in rates was evident by a loss of 65-

70% of gp120 and infectivity at 30 minutes of KR13 exposure, while only 10% 

loss of p24 occurred at this time.  KR13 treatment also caused a time dependent 

exposure of the MPER epitope as tracked by the antibodies 2F5 and 4E10 (Figure 

20B). Of note, the membrane-associated MPER epitopes are not well exposed on 

unliganded viral particles and become transiently exposed during conformational 

changes associated with entry [260].  Overall, the time dependence of the 

molecular transitions that occur upon peptide triazole thiol treatment suggests a 

specific transformation pathway of lytic breakdown that can be related to the 
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organized molecular structure of the virus and changes in that structure that likely 

occur during the fusion process in virus cell entry.  

  

The presence of a specific time-dependent pathway of virion disruption also fits 

with observed changes  in the physical structure of the virus.  The morphology of 

KR13-disrupted virions was examined by TEM. From the images obtained at 

different times of KR13 exposure (Figure 21C and Appendix Fig. 4), treated 

virions were smaller, with a >50% reduction in average diameter compared to 

untreated virions.  These results indicate that, rather than resulting in a non-

specific and global fragmentation of viral particles, peptide triazole thiol causes a 

more limited poration, resulting in an intact, although collapsed, particle that 

releases p24 capsid but retains membrane-associated gp41.   

 

We further evaluated the possibility that this disruption of viral particles and 

accompanying changes in gp41 might be related to virus-cell fusion by examining 

the effect of the fusion inhibitor T20. The latter targets the gp41 N-terminal 

heptad repeat region (N-HR) and blocks 6-helix bundle formation of gp41, an 

important Env structural transition state in fusion [239].   Indeed, T20 completely 

inhibited p24 release with an IC50 of 15 ± 4.9 nM comparable to its potency in 

fusion inhibition [137].  No  effect was observed of T20 on the KR13-induced 

gp120 shedding (Figure 22).  Suppression of capsid protein (p24) release by T20 

strongly suggests that the formation of the 6-helix bundle prefusion complex may 

be coupled to peptide-induced poration of the viral membrane and virion 
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inactivation. This possibility was supported by the finding (Figure 22B) that no 

inhibition of p24 release was seen for an HIV-1 Env bearing a mutation (V38A) 

that confers resistance to T20 [261, 262] .  In addition, using surface plasmon 

resonance analysis, T20 did not interfere with KR13 binding to sensor-

immobilized gp120 (Appendix Fig. 5), indicating that this effect was not the 

result of artifactual binding of T20 to the KR13 peptide.  

 

Previous studies have shown that sCD4 [263] and some CD4 mimetic small 

molecules such as NBD-556 can activate infection in CD4-ve CCR5+ve cells [172].  

Since KR13 appears to induce gp41 6-helix bundle formation, and the latter is a 

required step in cell entry, we evaluated whether  KR13 might enhance infection 

of CD4 negative cells.   The same incubation conditions were used as for 

inhibition of HIV-1 entry into HOS CD4+ve CCR5+ve cells.  As shown in 

Appendix Fig. 6, no enhancement of infection was observed under these standard 

conditions.  Interestingly, concerning possible effects of peptide triazoles on Env-

expressing cells, we have observed using CHO-K1 cells expressing gp160 that 

KR13 caused gp120 shedding but did not lyse the cells (results shown in chapter 

4).  Hence, the virion structure is important for peptide-induced virolysis.  

 

Because peptide triazoles can inactivate virus by targeting the Env spike leading 

to irreversible virus breakdown, this class of Env inhibitors may be effective in 

prevention strategies such as microbicides as novel compounds that specifically 

inactivate viruses before attachment to host cells [10, 264].  In addition,  an 
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attractive though at this stage speculative possibility is that the gp41-antigenic 

properties of virion particles after peptide triazole thiol treatment may make such 

a process useful for forming attenuated virus products capable of stimulating a 

neutralizing immune response.   

 

Previous studies have reported several other agents, including peptide NS5A 

[265], antibodies 2F5 and 4E10 [266] and sCD4 [267] that lead to HIV-1 

breakdown.  Peptide triazoles are more HIV-1 specific than NS5A.  In addition, 

viral breakdown triggered by these peptides appears to occur faster than 

breakdown caused by the antibodies and sCD4 [12, 266].  Overall, the current 

work reinforces the feasibility of novel pharmacologic approaches that can be 

applied to specifically disrupt viral particles (Figure 23).  Furthermore, peptide 

triazoles can be useful probes to explore poorly understood events, at the viral 

envelope following CD4 and coreceptor engagement, that lead to alterations of 

the viral membrane and its fusion to the cell membrane during entry. 
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Figure 23: Scheme comparing the HIV-1 deformation steps induced by peptide 

triazole (PT) and peptide triazole thiol (PT-SH) with gp120 shedding and gp41 trimer 

prehairpin formation that occurs during cell entry and infection. 
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2.4 Comparing the peptide triazole thiol virolysis to HIV-1 fusion with the host 

cell 

 

I showed in this thesis that KR13, a sulfhydryl-containing peptide triazole, can bind to 

gp120, block CD4 and co-receptor binding, inhibit viral infectivity, and physically 

disrupt viral particles.  Further preliminary studies was conducted in order to characterize 

the mechanism by which these transformations occur. These results showed that KR13 

peptide triazole initially causes viral inactivation through the release of gp120 followed 

by subsequent interactions with its free sulfhydryl leading to 6-helix bundle formation, 

viral membrane disruption, and p24 release.  Our data are consistent with the conclusion 

that KR13 triggers structural changes in the HIV-1 trimer typically associated with viral 

entry and membrane fusion and that, in the absence of target cells, these changes result in 

irreversible viral inactivation and lysis. Hence it was important to further analyze this 

relationship between KR13 dependent virolysis and HIV-1 – cell fusion.  

 

Previous studies have showed that the fusion inhibitor, T20, has developed resistant 

mutants that are no longer sensitive to T20 inhibition of HIV-1 fusion with the host cell. 

These mutants are mostly on the NHR of gp41, and stops T20 from interacting with the 

gp41 protein and stopping the 6 helix bundle formation. In this study these mutants were 

incorporated into the BAL-01 pseudotyped HIV-1 virion and tested to see their effects on 

T20 inhibition of KR13 induced virolysis. The results showed that these T20 mutants had 

differential levels of desensitization of the T20 inhibition of the KR13 induced virolysis. 

The next step to understanding this relationship was to study the differential inhibitory 
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effects of different already known fusion inhibitors such as 5 helix, N36, C34 and C36 

which either bind to the CHR or the NHR of gp41 respectively. The time dependent and 

concentration dependent inhibition of the fusion inhibitors of KR13 induced virolysis. 

There were very interesting observations which gave insights into the way in which the 6 

helix bundle might be folded post virolysis. Therefore, next the structural confirmation of 

gp41 on the residual virus post peptide triazole induced virolysis was tested. This led to 

the speculated model of the gp41 folded to a 6 helix bundle post virolysis as shown in 

this section. By studying the mechanism of pore formation, 6 helix bundle formation and 

lysis by KR13 on HIV-1 will provide deep insight into the way an HIV-1 cell fusion 

occurs. The potent and specific activity of this novel compound and its ability to 

inactivate virions prior to target cell engagement suggest that KR13 could be highly 

effective as a microbicide in inhibiting HIV transmission across mucosal barriers as well 

as a probe to understand biochemical signals required for membrane fusion.    

 

2.4.1 Testing the effects of several T20/enfurvitide mutants on HIV-1 virolysis 

 

Previous studies have shown that there are several resistant mutants have 

developed over the years for T20 [142]. In this study we will be using the most 

common and most effective resistant mutants of T20 which are V38A, N43D 

and I37K. V38A has been shown to have the highest potency, following N43D 

and I37K [268]. V38A and N43D were obtained from mutations that arose from 

clinical studies using T20, while I37K was a resistant mutant of C34 peptide but 

was also tested for T20 [269, 270]. The plasmids of the envelope with the mutant 
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gp41 regions were obtained as a gift from James Hoxie. The viruses with the 

mutant gp41 envelopes were synthesized as explained in section 2.2.2.1 using 

293T (HEK) cells. The backbone DNA used was the pNL4-3-Fluc+env– 

provirus developed by N. Landau[252]. Serial dilutions of KR13 starting at 

50µM were co-incubated with pseudotyped HIV-1 BaL (WT), V38A, N43D and 

I37K for 30 min at 37°C. Treated virion samples were fractionated on a 6-20% 

iodixanol gradient (above). Gradient fractions were quantified for p24 using 

ELISA, and relative p24 release was quantified and plotted using the Origin 

Pro.8 (Origin Lab).  Also the viral infection inhibition by KR13 and T20 on 

these HIV-1 mutants was compared by conducting the viral infection inhibition 

assay as explained in section 2.2.2.2. The starting concentration of T20 and 

KR13 used was 5 µM and 50 µM respectively.  Following, KR13 at 1 µM and 

serial dilutions of T20 starting at 1 µM were co-incubated with pseudotyped 

HIV-1 BaL (WT), and the resistant mutant viruses V38A, N43D and I37K for 30 

min at 37°C. The samples were then purified in order to separate the residual 

viruses from the released proteins by spinning at 15,300 rpm for 2 hours at 4°C. 

The released p24 was assayed by ELISA and quantified compared to positive 

and negative controls which were the released p24 from viruses treated with 1% 

triton X and PBS respectively.  

 

Just to confirm the mutant HIV-1 pseudotyped virions were resistant to T20, 

control viral infection inhibition studies were conducted. The results are 

summarized in Appendix Fig. 7. The results showed that T20 was most resistant 
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to I37K and it still showed infection inhibition for V38A and N43D. For KR13, 

the HIV-1 mutant that was inhibited the least for its viral infection was I37K but 

V38A and N43D both were not that different for the viral infection inhibition 

(Appendix Fig. 7). Figure 24 summarizes the anti-viral effects of KR13 on 

these mutant viruses compared to BAL-01 WT virus. From the figure it clearly 

shows that the p24 release is not that different for V38A compared to WT HIV 

for KR13 while N43D and I37K were much weaker at releasing. Further, the 

T20 inhibition of KR13 induced lysis on the mutant viruses was much weaker 

and there was a differential effect.   
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Figure 24: Effects of KR13-induced virus breakdown by the gp41-binding fusion inhibitor T20 

on the T20 resistant mutant viruses.  (A) P24 release profile induced by KR13 on the T20 resistant 

viruses versus the Bal-01 virus WT. Relative p24 release was measured using p24 ELISA by 

comparing the residual virion (18.2 - 19% Optiprep) and soluble protein (6-8% Optiprep) 

fractions.  Error bars represent the standard deviation of the mean, n = 3.  (B) Inhibition of p24 

release induced by KR13 on the mutant viruses, V38A, N43D and I37K compared to the wildtype 

control by T20.  The IC50 of T20 inhibition of peptide induced p24 release from the virus BAL-

WT was calculated to be 43.3 ± 5.9 nM.  The T20 inhibitory effect of KR13 induced virolysis was 

desensitized by mutant viruses V38A and I37K while N43D did not affect this inhibitory effect as 

much compared to BAL-WT. Sigmoidal fits were obtained using Origin Pro .8 (Origin Lab). Error 

bars represent the standard deviation of the mean, n = 3. 
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2.4.2 Comparing the effects of different fusion inhibitors that target the virus 

protein gp41 on the inhibition of peptide triazole thiol virolysis and HIV-

1- host cell fusion 

 

In order to biochemically understand the transitions of gp41 during virolysis the 

inhibitory actions of this effect by fusion inhibitors, which have established 

binding sites on gp41, were tested. This method therefore helped to breakdown 

the virolytic process and understand better the conformational changes that gp41 

goes through. To achieve this, the most studied and well understood fusion 

inhibitors which include the CHR inhibitors, 5 Helix and N36, and the NHR 

inhibitors, T20, C34 and C36 [116, 170, 239, 271]. The NHR inhibitors are 

shown to bind to the CHR of gp41 and inhibit the 6 helix bundle (6HB) 

formation at nM affinities [170, 271].  The CHR inhibitors however are shown 

to be blockers of the 6HB formation and also is involved with inhibition of 

forming a stable fuseogenic core and the stability of the 6HB [3, 272]. The 

Figure 25 shows a summary of the peptides used in this study and also the site 

on gp41 where they bind. This figure is adapted from the paper by Baldwin and 

Berkhout, 2008 [3].  
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Figure 25: Schematic representation of the gp41 inhibitors and site of action on gp41. (A) The 

sequences of the CHR  (HR2) and NHR (HR1) inhibitors and the regions on the gp41 sequence 

from which they were derived. This is shown on a gp41 sequence of the HXB2 strain. Further this 

also shows the gp41 antibodies and the sequence on gp41 that it binds to[3]. (B) Target sites of the 

different peptide fusion inhibitors and antibodies tested (drawing not to scale). For simplicity, we 

show only one gp41 molecule instead of the gp41 trimer. 
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2.1.8.1 Concentration dependent effect of the fusion inhibitors on 

virolysis 

 

In order to test the effects of these fusion inhibitors on KR13 induced 

virolysis, KR13 at 1 µM and serial dilutions of the inhibitors starting at 1 

µM were co-incubated with pseudotyped HIV-1 BaL (WT) for 30 minutes 

at 37°C. The samples were then spun on at 15,300 rpm for 2 hours at 4 ºC 

(Eppendorf Centrifuge 5415R). The supernatant was collected and the p24 

content was quantified by p24 ELISA as described in section 2.2.2.3. The 

relative p24 release was quantified and plotted using the Origin Pro.8 

(Origin Lab) compared to the positive and negative controls which were the 

virus incubated with KR13 alone and the virus incubated with no inhibitor 

but PBS alone instead. Prior to calculations the background p24 leakage for 

the inhibitors alone with no KR13 added were tested and validated to be 

<2% compared to the negative control. The controls were also tested for 

viral infection inhibition in order to compare their anti-viral effects. In order 

to test the effects of KR13 on the inhibitory effect of the fusion inhibitors, a 

serial dilution of the inhibitors starting at 5 µM was incubated with 

pseudotyped HIV-1 BaL-01 virus in the presence of 500 nM KR13 for 30 

minutes at 37°C. The samples were then added to HOS-CD4+ve CCR5+ve 

cells and the steps for a viral infection inhibition assay were followed as 

described in section 2.2.2.2. The samples were tested for viral infection 

using the reported gene assay as described above.  
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The results are summarized in Figure 26. Figure 26A shows that in general 

all these fusion inhibitors also lead to inhibition of KR13 induced virolysis 

to different degrees. The 5 helix and T20 showing the best inhibition, 

followed by N36 being an intermediate inhibitor and C37 and C34 affecting 

virolysis the least. The Figure 26B shows that these fusion inhibitors have 

no non-specific p24 release on its own. The viral infection inhibition assays 

conducted are summarized in Figure 26C and 26D. Compared to Figure 

26D, in which the viral infection inhibition of the fusion inhibitors alone is 

shown, the infection inhibition is greatly enhanced for all the 4 inhibitors in 

the presence of KR13. This therefore shows that KR13 has a synergistic 

effect with the fusion inhibitors when it comes to HIV-1 BaL pseudotyped 

infection inhibition. The IC50 values are summarized in table 2.  
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Figure 26: The effects of fusion inhibitors on KR13 induced virolysis. (A) The inhibition of p24 release 

induced by KR13 (1µM) using fusion inhibitors starting at 5 µM concentration. The IC50 values of the 

fusion inhibitors’ inhibition of KR13-induced p24 release was calculated using Origin Pro .8 (Origin 

Lab) and summarized in table 2. (B) p24 release from HIV-1 BaL pseudotyped by the fusion inhibitors. 

(C) Inhibition HIV-1 BaL pseudotyped infection in HOS CD4+veCCR5+ve cells by fusion inhibitors T20, 

C37, N36 and 5 Helix in the presence of KR13 (500 nM). (D) Inhibition HIV-1 BaL pseudotyped 

infection in HOS CD4+veCCR5+ve cells by fusion inhibitors T20, C37, N36 and 5 Helix.  Error bars 

represent the standard deviation of the mean, n = 3.    
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2.1.8.2 Time-dependent effect of the fusion inhibitors on KR13 

induced virolysis 

 

The time course of peptide triazole dependent HIV-1 breakdown inhibition 

by the fusion inhibitors T20, C37, N36 and 5 Helix was evaluated.  This was 

a time of addition experiment in order to test upto to what time is the 

prefusion intermediate exposed on a KR13 treated virion for the fusion 

inhibitor to bind. Therefore the fusion inhibitor was added either before 

addition of KR13 to HIV-1 BaL pseudotyped or 0 – 60 minutes after 

addition of KR13. The samples were then incubated for an additional 30 

minutes at 37°C and then spun on a table top centrifuge for 2 hours at 

15,300 rpm at 4°C. For each time point, purified virions incubated with PBS 

at 37°C and alternatively with 1% Triton-X 100 was used as negative and 

positive controls, respectively. The supernatant was collected and quantified 

for p24 (capsid protein) using the ELISA described above. 

 

Figure 27 summarizes the results that were observed from the time of 

addition experiment. Both the 5 helix and N36 surprisingly showed nearly 

75% inhibition of the p24 release by KR13 even when added 60 minutes 

post peptide addition. The C37 and T20 effects reduced from 80% to 20% 

inhibition when the time of addition was after 10 minutes post peptide 

addition. This shows evidence that the CHR is much more accessible to the 
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fusion inhibitors even 60 minutes post KR13 treatment which gives us 

evidence that the NHR is not as accessible.  
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Figure 27: p24 release of the inhibition by fusion peptides T20, C37, N36 and 5 

helix. The fusion peptides were added at different times either before addition or 

after addition of KR13. The relative p24 release measured subtracted from the 

negative control at each time point with viruses incubated with PBS. The p24 release 

was quantified using ELISA and the results are averaged from n=3.  
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2.4.3 Antibody mapping of the residual virion post KR13 virolysis 

 

The gp41 on the residual virion as well as the gp120 that was shed off during 

virolysis by KR13 was antibody mapped using antibodies with known binding 

sites on the respective proteins. This analysis would give very specific insights 

about the confirmation of the gp41 as well as the gp120 post virolysis and hence 

would give us better understanding about the mechanism of this action. The 

antibodies used for the gp41 antibody mapping and the gp120 antibody mapping 

are summarized in table 3 and 4 respectively.  

 

The HIV-1 BaL Pseudovirions were treated for 30 min at 37°C with KR13, 

HNG156 (1 µM) or PBS as negative control, and samples spun on a 6-20% 

iodixanol gradient. The released proteins were collected in the 6-8% fractions and 

pooled together. This released protein fraction was then fixed using equal volume 

of 0.1% paraformaldehyde and purified on a sephadex G-25 column. The purified 

protein was then loaded onto an ELISA plate at 100 µl per well and incubated 

overnight at 4°C. The plate was blocked with 3% BSA, and ELISA was used to 

detect gp120 epitopes with human gp120 antibodies from table 3 and followed by 

addition of anti-human IgG HRP secondary antibody.  The virus fractions from 

the iodixanol gradient were collected and fixed with equal volume of 0.1% 

paraformaldehyde for 30 minutes at 4°C. The treated virus fractions were spun at 

16,000 X g for 2 hours at 4°C in an Eppendorf table top centrifuge. Following 

PBS wash, fixed virions were coated on an ELISA plate at 50 µl per well and 
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incubated overnight at 4°C. The plate was blocked with 3% BSA, and ELISA was 

used to detect gp41 epitopes with human gp41 antibodies from table 4 followed 

by addition of anti-human IgG HRP secondary antibody. This method was used to 

assess time-dependent exposure of gp41 epitopes on the pseudotyped HIV-1 BaL 

virions induced by KR13 and HNG156 treatment at 1 µM constant concentration.  

 

Figure 28 shows the results from the antibody mapping studies. Figure 28A 

shows the antibody mapping of the gp120 protein released from the virion post 

KR13 addition. The CD4 binding antibodies shows reduced binding as expected 

due to both the peptides, KR13 and HNG156, altering the gp120 confirmation to 

reduce CD4 and 17b binding as previously shown (Figure 13 and 14). F105 

however showed good binding to the gp120 post KR13 and HNG156 treatment. 

However there were clear changes observed in gp120 treated with KR13 

compared to HNG156 post CD4 binding site. This is shown especially with 2G12 

which showed no binding to gp120 post KR13 treatment while HNG156 had good 

binding. Figure 28B shows the gp41 epitopes exposed on the residual virion post 

HNG156 treatment or KR13 treatment using antibody mapping. This shows that 

the HNG156 treated residual virion resembled the untreated virion based on the 

antibody binding, with increased binding to the HR2 region but mostly linear 

epitopes. But the KR13 treated residual virion gp41 had very distinctly increased 

binding to the MPER (membrane proximal external region). This is consistent 

with the data observed in Figure 21, which shows that there is increased MPER 

exposure with increasing concentration of KR13.  
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Figure 28: Antibody mapping of the gp120 and gp41 post KR13 and HNG156 treatment 

on HIV-1 BaL pseudotyped. (A) Antibody mapping of gp120 post KR13 (1 µM) and 

HNG156 (1 µM) using ELISA analysis. The region where the antibodies are directed to is 

shown in the bottom of the x-axis. The % binding is compared to the antibody binding to 

100 ng/ml monomeric gp120 which is shown as a dotted green line. (B) Antibody mapping 

of gp41 on the residual virion post KR13 (1 µM) and HNG156 (1 µM) using ELISA 

analysis. The gp41 concentration on the y-axis is calculated from a standard curve of the 

antibody binding to soluble gp41 for each antibody. Error bars represent the standard 

deviation of the mean, n = 3. 
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2.5 Model of the residual virion post peptide triazole thiol virolysis 

 

This study was conducted to focus on what are the conformational changes elicited 

on the virion during KR13 treatment that leads to virolysis of HIV-1. Previously we 

have shown that this lytic action follows a time dependent pathway that is similar to 

HIV-1 fusion, with the rate limiting step being the 6 helix bundle formation and 

poration action (Figure 20) [6]. The first steps of binding and gp120 shedding occur 

within the first 10 minutes just like in HIV-1 fusion [6, 85, 138, 273]. Following that 

there was a concentration dependent and time dependent exposure of MPER with 

KR13 treatment (Figure 21). For a typical virus-cell fusion reaction, the MPER site 

is also exposed during 6 helix bundle formation as shown by several studies both 

antibody binding and mutational studies [274, 275]. This along with the antibody 

mapping studies has given me a much better understanding of the conformational 

changes of gp41 in the virus membrane during the virolytic poration action.  

 

The T20 resistant mutant studies were the first lead on into understanding the 

conformational alterations in gp41. From this mutant study what we saw is that the 

KR13 p24 release was least inhibited by T20 in the virus that had the I37K mutation. 

This mutation was originally discovered as a C34 peptide resistant mutation and was 

also tested for T20 resistance later on [3, 270]. The I37K mutation is in the 

hydrophobic pocket in the NHR of gp41 and showed the largest change in the 

binding energy and led to the collapse of the coiled coil structure 6 helix 

bundle[14].Following I37K were V38A and N43D that resulted in electrostatic 
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repulsion also stopping the 6 helix bundle formation and resistance to T20 binding. 

This was clearly evident in the T20 viral infection inhibition of these mutated virions 

as seen in Appendix Fig. 7. This was also followed through to the inhibition of the 

peptide dependent virolytic effect by T20 in which the mutant virions followed a 

desensitization of I37K >> V38A >> N34D. Therefore this also indicates that the 

T20 inhibitory effect on HIV-1 fusion also had the same effect on KR13 dependent 

HIV lysis.  

 

Not only did T20 lead to inhibition of the KR13 dependent virolytic effect, but other 

fusion inhibitors that targeted the 6 helix bundle formation of gp41 also led to 

inhibition of KR13 induced virolysis. The results summarized in Figure 26 

demonstrated differential effects of the fusion inhibitors effects. The inhibitors that 

target the CHR had a much more long term effect as demonstrated in Figure 27. 

Although T20 had a better potency of p24 release inhibition compared to N36, this 

T20 site was no longer available completely post 10-20 minutes of KR13 exposure to 

the virion. Further it was also observed that KR13 treatment led to the exposure of 

the fusion inhibitor binding site because the fusion inhibitors had a much better 

inhibitory effect on HIV-1 infection on HOS CD4+veCCR5+ve (Figure 26). From the 

time dependent addition experiment we observe that the NHR is hidden post 10 

minutes of KR13 treatment on the virus compared to the CHR which is more 

available even post 60 minutes of KR13 treatment. The results showing that the CHR 

fusion inhibitors N36 and 5 Helix still have nearly 80% inhibition of p24 release 

even after 60 minutes of KR13 treatment shows that the 6 helix bundle formed 
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during virolysis is very similar to the 6HB during fusion. This is shown in literature 

as the asymmetric deactivation of gp41 which shows  exposure of the CHR even post 

6HB formation [276].   

 

In order to construct a model of the virion post virolysis the antibody mapping of the 

residual virion was necessary. From the results summarized in Figure 28 we observe 

that the KR13 treated virus has MPER exposed. The binding shows that even the 

MPER region that is very close to the TMD is also exposed due to the binding of 

4E10. The gp120 mapping shows that the 2G12 binding is also lost in the KR13 

treated virus gp120, showing that KR13 in addition to the CD4 and coreceptor 

binding regions also has binding or affects binding near the V3 loop region. From all 

the data obtained from above and also from the results observed previously the 

mechanism of KR13 induced virolysis is much more well-defined and shown 

schematically in Figure 29. This figure shows the time dependent virolytic events in 

part B and the rate limiting step, which is the gp41 conformational changes during 

the collapse and pore formation, is shown in Figure 29A much more in detail. The 

coiled HR’s of gp41 are not to scale but are shown to get a much more realistic 

visual representation.  

 

The study above shows that there is a very close correlation between HIV-1 cell 

fusion and KR13 induced HIV-1 irreversible breakdown. Table 5 summarizes the 

effects of peptide triazole thiol (KR13) induced virolysis and its similarity to virus-

cell fusion. This therefore shows that the peptide hijacks the fusion mechanism and 
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mocks the virus to think its fusing with a cell. This therefore leads to the cascade 

action of HIV-1 fusion without a cell present. The 6 helix bundle is formed during 

virolysis but might not be folded symmetrically which is also possible in regular 

virus-cell fusion[276]. In order to better define this virolytic mechanism it is 

important to understand what are the other steps in this cascade therefore future 

studies will be looking at the effects on the viral  

membrane and further how the cytoplasmic tail of gp41 also is involved in lysis and 

the energy required for poration. The potent and specific activity of this virolytic 

peptide and its ability to inactivate virions prior to target cell engagement by 

hijacking the viral fusion mechanism will provide insight to the virus-cell fusion. 

Further this agent will be highly effective as a microbicide in inhibiting HIV 

transmission across mucosal barriers as well as a probe to understand biochemical 

signals required for membrane fusion.    
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Figure 29: Schematic representation of the KR13 induced virolytic cascade. (A) Kinetic 

breakdown of the virolytic process, first showing the peptide binding following which the gp120 is 

shed off and the gp41 is exposed within the first 10 minutes. Following this is the rate limiting 

step of the pore formation caused by conformational changes in gp41 and eventually p24 release 

from the viral core. (B) Detailed schematic of the conformational changes of gp41 during 

virolysis, the loops reach a pre-lysis intermediate following which it is collapsed into a 6 helix 

bundle with the loop region on gp41 hidden into the viral membrane and MPER region exposed 

out of the membrane, (C) The zoomed in version of the 6 helix bundle formation schematic drawn 

based on the experimental results.  
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CHAPTER 3: MECHANISM OF MULTIVALENT ENCOUNTER FOR 

POTENCY ENHANCEMENT OF PEPTIDE TRIAZOLE INACTIVATORS OF 

HIV-1 
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3 Introduction 

There is an urgent need for new antiretroviral agents for the prevention and 

treatment of HIV-1 infection.  Current inhibitors used in most combination 

antiretroviral therapies target viral enzymes reverse transcriptase, integrase and 

protease.  Although the use of combination antiretroviral therapy has resulted in 

reducing viremia and HIV related morbidity and mortality, these drugs target the 

later stages of HIV-1 infection and have significant challenges such as complex 

regimens and treatment-resistant variants of HIV-1. Currently, there are only two 

FDA approved antiretroviral drugs targeting the initial entry of the virus into host 

cells, namely T20 (enfurvitide) and maraviroc, but these are used mainly in salvage 

therapy due to risks concerning their usage. T20, a fusion inhibitor, targets transient 

conformations of the virus Env protein, gp41, and hence has a relatively short time 

window to act during HIV-1 host  cell fusion event. Maraviroc, on the other hand, 

targets the host cell co-receptor, CCR5 and can only block R5-tropic HIV-1 virions 

from infecting the cell.  Hence, this will result in the prevelance of the X4-tropic 

HIV-1 virus.  

Host cell infection by HIV-1 is mediated by cell receptor interactions with trimeric 

envelope glycoprotein (Env) spikes that are exposed on the virus membrane surface.  

Env protein is the only virus-specific protein on the virion surface.  The external 

gp120 component of Env is essential for cell receptor (CD4) and coreceptor (usually 

CCR5 or CXCR4) interactions and subsequent virus-cell fusion.  Hence, Env gp120 

presents an obvious target to attack the virus directly in order to block the cascade of 

integrated binding and conformational change steps that lead to host cell infection.  
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Env-specific inhibitors that could inactivate the virus before receptor encounter 

would hold great promise in preventing AIDS transmission and progression. In spite 

of the potential of gp120 antagonists as microbicides, progress has been limited for 

such agents, due to such factors as, high rate of mutation of gp120 protein leading to 

development of inhibitor resistance[277-279], low potency of small molecule 

inhibitors [18, 170, 187], the high cost and potential toxicity of protein 

inhibitors[159, 194, 280], and the potential risk of infection enhancement with CD4-

mimicking ligands[187, 243].   

Previously we showed that a family of entry inhibitors, peptide triazoles, bind 

specifically and with high affinity to HIV-1 Env gp120, antagonize the interactions 

of Env binding sites for both host cell receptors CD4 and CCR5/CXCR4 and cause 

gp120 shedding from the virus surface, leading to HIV-1 inactivation before host 

cell encounter[9, 10, 22, 24, 25, 32].  The most potent compositions of peptide 

triazole inactivators discovered so far are multivalent forms conjugated to 

monodisperse gold nanoparticles.  The conjugates initially derived were found to 

have low nanomolar inhibitory values and to act as virucidal agents leading to the  

irreversible breakdown of the virus before the virus has a chance to engage the host 

cell[8].   

The functional properties of virolytic gold nanoparticle-peptide triazole (AuNP-PT) 

conjugates make it feasible long term to use this type of agent to inactivate HIV-1 

before host cell encounter.  In the current work, we sought to investigate the 

mechanism of cell-free HIV-1 inactivation using the AuNP-PT multivalent 

nanostructures. Previous literature has shown that using nanoparticles ehanced 
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antiviral activity of an inhibitor[281, 282]. We evaluated the impact of altering the 

properties of both the AuNP-PT constructs, by increasing size of the AuNP core and 

density of the PT coverage, and the HIV-1 virus spike density.  The results 

demonstrate the importance of multivalent contact between nanoparticle and virus 

surface interaction partners.  The results lead to Env-targeting NP designs that take 

advantage of HIV-1 Env metastability and cause specific and irreversible HIV-1 

inactivation.  Overall, the investigation demonstrates that the multivalent physical  

contact approach  can be used as a general strategy for antagonizing HIV-1 

transmission and proliferation. 

 

3.1 Materials and Methods: 

 

3.1.1 Materials 

 

For peptide triazole synthesis, all fmoc-protected α- and β-amino acids, O-

Benzotriazole-N,N,N’,N’-tetramethyl-uronium-hexafluoro-phosphate (HBTU), 1-

Hydroxybenzotriazole (HOBt), Rink amide resin  (4-(2',4'-Dimethoxyphenyl-

Fmoc-aminomethyl)phenoxy resin) with a 0.55 mmol/g substitution, N,N- 

dimethylformamide (DMF), Pyridine and N,N-di-isopropylethylamine (DIPEA) 

were purchased from Chem-Impex International Inc, Ethynylferrocene and Cu(I)I 

was purchased from Sigma-Aldrich and used without further purification. Fmoc-

cis-4-azidoproline was synthesized starting with commercially available trans-

Hydroxyproline-OH[22].  Gold (III) chloride hydrate and citric acid were 
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obtained from Sigma-Aldrich, Bis (p-sulfonatophenyl) phenylphosphine 

dehydrate dipotassium salt (BSPP) from Strem Chemicals. Citric acid and 

cysteine used in the conjugation were from Sigma Aldrich. Modified human 

osteosarcoma cells (HOS.T4.R5) engineered to express CD4 and CCR5, receptor 

and co-receptor respectively, as well as pNL4-3.Luc R-E- backbone DNA, were 

obtained from Dr. Nathaniel Landau.  The HOS.T4.R5 cells were grown in 

DMEM supplemented with 10% FBS, 2.5% HEPES, 1% Penicillin- 

Streptomycin, 2% L-Glutamine and 1 mg of puromycin.  293T cells were 

obtained from American Type Culture Collection and grown in the same culture 

medium as the HOS.T4.R5 cells except without puromycin.  The plasmids for 

HIV-1 BaL-01 gp160 and VSV-G Env DNA were from the AIDS Research and 

Reference Reagent Program (ARRRP).   Replication competent HIV-1 BaL-01 

virions were obtained from the University of Pennsylvania Center for AIDS 

Research (Penn CFAR). Mouse anti-p24, rabbit anti-p24 and p24 protein were 

from Abcam. Fully Infectious HIV-1 (BaL) was a gift from Dr. Michele Kutzler 

and obtained from the Penn CFAR.   The gp120 monomer protein was produced 

using an already-established protocol[25], anti-gp120 D7324 was purchased from 

Alto chemicals. Gp41 protein, Enfurvirtide (T20) and anti-gp41 antibodies 4E10 

and 2F5 were obtained from from NIH AIDS Research and Reference Reagent 

Program (ARRRP). Enhanced Chemiluminescence western blot detection system 

was from Amersham. O-phenylenediamine (OPD) was from Sigma Aldrich.  All 

other materials were from Fisher Scientific. 
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3.1.2 Peptide Triazoles 

 

To conjugate peptide triazoles on nanoparticles, the peptide triazole KR13 

(RINNIXWSEAMMβAQβAC, X=ferrocenyltriazolePro) was synthesized to 

contain the 12-residue N-terminal sequence of HNG-156 with a C-terminal 

extension containing a free thiol group.  KR13 itself contained the essential 

peptide triazole pharmacophore, Ile-triazole-Pro-Trp, and not surprisingly was 

functionally active [6].  The free sulfhydryl group was incorporated to enable 

direct thiol conjugation to the gold surface of AuNP[8].  

 

3.1.3 Gold nanoparticles 

 

The citrate reduction method developed by Frens et al. [283] was modified in 

order to synthesize size-controlled, stable and monodisperse AuNPs.  The citrate 

acid concentration was varied to obtain AuNP with various sizes ranging from 

13 nm – 123 nm. The citrate reaction solution, initially at 100˚C, was cooled to 

room temperature and BSPP (18 mg/ml for 20 nm AuNP) was added to the 

synthesized particles and stirred overnight at room temperature. The resulting 

particles were further washed with phosphate buffer at pH 7.2 and concentrated 

using a Millipore 100,000 kDa filter. The particle size was determined by 

Dynamic Light Scattering (DLS) in the Zetasizer NS90 (Malvern Instruments), 
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and the particle concentration was calculated using the absorbance at 450 nm 

and the peak absorbance of the UV spectrum[284]. The AuNP particle 

morphology was characterized using Transmission Electron Microscopy. 

Samples were prepared by adding a drop of the AuNP solution onto a lacey 

carbon grid film and then allowing evaporation.  Bright field images were taken 

with a JEM 2100 camera operated at 200 kV. Further the samples were validated 

for cell cytotoxicity and stability in physiological conditions prior to cellular 

assays, the methods and results are elaborated in appendix Fig. 8A and B.  

 

3.1.4 Gold nanoparticle-peptide triazole conjugates 

 

Peptide conjugation to the AuNPs was achieved via covalent linkage between the 

thiol moiety (-SH) on C-terminal cysteine residue and the gold surface of 

AuNP[8]. A flocculation assay[285] was conducted to determine the ratio of 

AuNP to KR13 to use for complete peptide conjugation without peptide 

aggregation following the protocol developed by Xie et al. 2003 (Appendix Fig. 

9). The BSPP-stabilized AuNP:PT mixtures in phosphate buffer were stirred 

vigorously for 30 minutes at 25ºC. Excess peptide was removed from the 

nanoparticle fraction using a 10,000 MW cut-off centrifugation filter. PT content 

of AuNP-PT preparation was determined using amino acid analysis after acid 

hydrolysis (Keck Institute, Yale University). To prepare AuNP-PT particles with 

varying density of KR13, we used 20 nm AuNPs. We mixed different molar ratios 

of KR13 and L-cysteine during the step of peptide conjugation to AuNP. Both 
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molecules present a single reactive thiol for covalent attachment to the BSSP-

stabilized nanoparticle. However, AuNP-Cys has no virolytic activity (Table 2), 

and only the KR13 component will bind to HIV Env on the virion surface.  

Incorporation of KR13 was measured directly by amino acid analysis.  We 

calculated the average density of peptide coverage (ρcoverage) by the relationship,  

𝜌𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒  =  
[
𝐶𝑝𝑒𝑝𝑡𝑖𝑑𝑒

𝐶𝐴𝑢𝑁𝑃
]

 𝜋𝑑2 
 

where πd2 is surface area of nanoparticle and Cpeptide/CAuNP is molar ratio of 

peptides per nanoparticle. The conjugates were validated for peptide conjugation 

by testing their change in zeta potential, which was measured by the Zetasizer 

NS90 (Malvern Instruments) (Appendix Fig. 10). Further their monodispersity 

was assessed using both the DLS (Figure 29B) as well as TEM imaging (Figure 

29C).  

 

3.1.5 HIV-1 Pseudotyped Virions 

 

The recombinant virus consisted of the pro-viral envelope plasmid sequence 

corresponding to the CCR5 targeting HIV-1BaL strain or a VSV (Vesicular 

Stomatitis Virus) pseudotype, and the backbone sequence corresponded to an 

envelope-deficient pNL4-3 luc+, env– provirus developed by N. Landau[251, 

286]. Four µg of envelope DNA and eight µg of backbone DNA were co-

transfected into 293T cells using FuGene 6 as the transfection reagent 

(Promega).  Fourteen hours post-transfection, the medium was changed, and the 

VLP containing supernatants were collected at 48 hours post transfection.  
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Protease digestion of pseudovirus was conducted by treating the culture 

supernatants with a protease cocktail of 1 μg of trypsin, chymotrypsin, subtilisin, 

and/or proteinase K (Sigma) at 37°C as described by Crooks et al. [287]. 

Following the enzyme digest, soluble proteins (including Env gp120 and p24) 

were removed via fractionation on 6-20% iodixanol gradient for 2 hours at 

30,000 rpm. The collected fractions were validated for p24 content using capture 

ELISA as well as gp120 content using the western blot detection. Virions 

purified on the 6-20% iodixanol gradient exhibited a characteristic distribution 

profile of p24 and gp120 content, enabling viral fractions (18-19.2% iodixanol) 

and soluble protein fractions (6-8% iodixanol) to be isolated. The gradient-

purified virus samples were collected, aliquoted and stored at -80°C until further 

use.   

 

3.1.6 Env Spike Presentation on the Virus Surface  

 

To make viruses with varying spike density, HEK293T cells were transfected 

with backbone vector, pNL4-3.Luc R-E-, and a mixture of active env plasmid 

(HIV-1 BaL - WT) with a plasmid encoding inactive env gp120 S375W BaL; 

the S375W mutation has been found previously to cause suppression of PT 

binding to gp120[222],[24]. Of note, varying density does not in itself eliminate 

the potential for local clustering, and indeed evidence has been obtained showing 

that HIV-1 Env spike has the tendency to cluster[288, 289].  Control virions 

included those with all-active Env (BaL- WT) and all-inactive Env (S375W 

BaL).  Protease digestion of spike-varying viruses was conducted as described 
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above.  Spike density was quantified using western blot analysis of gp120, viral 

infection and p24 content (ELISA) as explained above (Appendix Fig. 11). 

 

 

3.1.7 Anti-viral functions of AuNP-KR13 conjugates  

 

Dependence of anti-viral effects on the size of AuNP-KR13:  

To test the effects of nanoparticle size on viral inhibition and virolytic activity, we 

synthesized gold nanoparticles (AuNP) with diameters ranging from 10-200 nm 

as previously described. After AuNP functionalization with the KR13 peptide, we 

utilized assays for HIV cell infectivity and cell-free leakage of virus contents, p24 

and gp41, to correlate nanoparticle diameter and surface area of the AuNP-

KR13’s with antiviral effects.  Purified virus was treated with AuNP-KR13 

constructions for thirty minutes at 37°C and spun on a 6-20% iodixanol gradient 

for 2 hours at 30,000 rpm. The collected virus fraction and the supernatant 

fraction were tested for infectivity, p24 and g120 content from the virus post 

treatment. Virus treated with PBS for 30 minutes at 37°C was used as negative 

control for background signal, and virus incubated for 5 minutes with 2% Triton-

X at 98°C was the positive control for p24 and gp120 content.  

 

Modulating nanoparticle surface density of peptide triazoles on AuNP: 

Peptide triazole inhibitor coverage on 20 nm diameter Au nanoparticles was 

varied by mixing different molar ratios of KR13 and L-cysteine during the step of 
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peptide conjugation to AuNP.  Both molecules present a single reactive thiol for 

covalent attachment to the BSSP-stabilized nanoparticle.  However, only the 

KR13 were expected to bind to HIV envelope glycoproteins on the surface of the 

virion. AuNP and KR13 were synthesized and functionalized as described above.   

Cysteine/KR13 molar ratios were varied from 0:1000 to 1000:0 in increments of 

50.  We calculated the density of peptide coverage (ρ coverage) by the 

relationship: 

 ρcoverage = [Cpeptide/CAuNP] / 4π(d/2)2 

where 4π(d/2)2 is surface area of nanoparticle and Cpeptide/CAuNP is the molar ratio 

of peptides per nanoparticle.  Purified virus was treated with AuNP-KR13 

constructions for thirty minutes at 37°C and spun on a 6-20% iodixanol gradient 

for 2 hours at 30,000 rpm. The collected virus fraction and the supernatant 

fraction were tested for infectivity and both p24 and g120 contents post treatment.  

 

AuNP-KR13 effects on replication competent HIV-1:  

Replication competent HIV-1 BaL virions were obtained from the Penn CFAR, 

purified using 6-20% iodixanol gradient and p24 content measured using ELISA. 

The inhibitor concentration that gives 50% reduction of the viral titer in tissue 

culture (IC50) was determined using Origin V.8.1 (Origin Lab). The working 

dilution of virus was pre-treated with a serial dilution of AuNP-KR13 (20 nm and 

80 nm), starting from 50 µM and 10 µM respectively, for 30 min at 37 °C. 

HOS.T4.R5 cells, seeded at 8,000 cells per well, were incubated for 24 hours 

followed by addition of pre-incubated inhibitor-virus mixtures.  After 48 hours 



125 

 

infection, p24 content of virions in the supernatant was measured in order to 

determine the IC50 value of inhibition of virus infection. For the latter, the peptide 

triazole and cell-free replication competent HIV-1 BaL virus were pre-incubated 

for 30 min at 37°C followed by spinning for 2 hours at 13,600 rpm in a table top 

centrifuge (Eppendorf) at 4°C. Supernatant was separated and p24 content 

determined using the p24 capture ELISA as described above. The extents of viral 

inhibition of, and p24 release from, fully infectious HIV-1 BaL were also 

evaluated for control peptide KR13 (data shown in Bastian et al. 2013) [6].   

 

3.1.8 Comparisons of anti-viral functions of AuNP-KR13 to KR13 alone  

 

Exposure of gp41 in viruses treated with AuNP-KR13 and KR13:  

The HIV-1 BaL pseudotype was incubated with increasing concentration of either 

KR13 starting at 50µM or AuNP-KR13 starting at 1 µM (KR13 concentration) for 

30 minutes at 37°C. The samples were spun at 16,000 rpm for 2 hours at 4°C, and 

the virion fraction for each sample was collected and fixed using a homemade 

fixative with 0.1% formaldehyde and 4% gluteraldehyde in PBS. Glycine (0.1 M) 

was added to stop the crosslinking reaction by the fixative. The virions then were 

loaded onto an ELISA plate (high protein binding) and incubated overnight on a 

shaker at 4°C. The plate was blocked with 3% BSA, and ELISA was used to 

detect gp41 epitopes with human gp41 antibodies 2F5 and 4E10 followed by 

addition of anti-human IgG HRP secondary antibody. 
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Effect of fusion inhibitor enfurvirtide (T20) on virolysis induced by AuNP-KR13 

and KR13:  

T20 was shown previously to effect the 6-helix bundle formation of the HIV-1 

virion during fusion with the host cell[14, 239].  Further, T20 was found to 

specifically inhibit KR13-induced HIV-1 cell-free virolysis [6].  A corresponding 

experiment was conducted to test whether T20 inhibited virolysis of pseudotyped 

HIV-1 BaL induced by AuNP-KR13. The AuNP-KR13 was kept at an IC80 

concentration of 25 nM, and serial dilutions of T20 starting at 1 µM were co-

incubated with pseudotyped HIV-1 BaL for 30 min at 37°C. Treated virion 

samples were fractionated on a 6-20% iodixanol gradient (above). Gradient 

fractions were quantified for p24 using ELISA, and relative p24 release was 

quantified and plotted using Origin V.8.1 (Origin Lab).  

 

Time dependence of AuNP-KR13 induced HIV-1 breakdown:  

The time dependence of gp120 shedding, p24 release and inhibition of 

pseudotyped HIV-1 BaL by an IC80 concentration of AuNP-KR13 (25 nM) was 

measured. The AuNP-KR13 was incubated with the virus for different times 

ranging from 1 min to 24 hours at 37°C, the samples were spun on a 6-20% 

iodixanol gradient and the gradient fractions were tested for gp120 shedding, p24 

release and inhibition of viral infection. For gp120 shedding, the fractions were 

tested using a western blot analysis with primary anti-gp120 antibody, D7324, 

and secondary antibody, anti-sheep HRP. For p24 release, the ELISA explained 
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above was used.  For inhibition of viral infection, the luciferase reporter assay 

was used as explained above[6].   

 

 

Anti-viral effects of AuNP-KR13 vs. KR13 on HIV-1 pseudovirions with modified 

env spike presentation on the virus surface:  

Comparisons were made of the lytic deformation of viruses by KR13 and AuNP-

KR13 with viruses containing a varying proportion of PT-resistant mutant Env 

spike vs. WT spike density. In the western blot analysis, the amount of loaded 

virions was normalized using both p24 content from ELISA and total protein 

content measured using Bradford assay. Antiviral assays included inhibition of 

infection by KR13 compared to AuNP-KR13 on HOS.T4.R5 cells, and cell-free 

HIV-1 p24 release.  

 

3.1.9 Morphological Analysis of HIV-1 after AuNP-KR13 conjugate treatments  

 

Transmission Electron Microscopy (TEM) was conducted to visualize the 

morphology of the virions treated with AuNP-KR13. Purified pseudotyped HIV-1 

BaL virus and AuNP-KR13 were pre-incubated from 5-1440 min at 37°C. 

Following incubation, samples were fixed with 2% glutaraldehyde for 30 minutes 

at room temperature, and then embedded in Spurr’s low viscosity epoxy medium 

after acetone washes to dry the virions.  Slices (100 nm thick) were prepared 

using an ultra-microtome (Leica EM UC6), loaded onto a holey carbon TEM 200 
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mesh grid (Electron Microscopy Science) and imaged using the JEM 2100 camera 

operated at 120 kV (JEOL, Japan).  Sixteen images were taken per sample, and 

the sizes of observed particles were determined, using Image J software to derive 

average diameters of the virion particles from TEM images measured from 5 

angles. 

 

3.2 Results 

 

3.2.1 Monodispersity of Gold Nanoparticle-Peptide Triazole Conjugates  

 

The physical characteristics of gold nanoparticle-peptide triazole conjugates were 

validated by DLS, TEM and U.V. absorbance. The particle size was obtained by 

DLS using the Zetasizer NS90 (Malvern Instruments), while the particle 

concentration was calculated using the UV spectrum as described in the methods 

section[284]. The DLS data are shown in Figure 30, along with representative 

TEM images of AuNP-KR13 conjugates of various AuNP sizes. Figure 30A also 

shows the comparison between the expected sizes of AuNP using varying 

concentrations of citric acid as well as the experimentally obtained diameters 

(DLS). The AuNP-PT conjugates showed good monodispersity as observed by 

the TEM images in Figure 30C. Further, as shown in Appendix Fig. 10, zeta 

potential values for AuNP-KR13 conjugates compared to the AuNP alone verified 

the successful peptide conjugation to AuNP [290].  
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Figure 30: Characterization of the AuNP-KR13 conjugates. (A) Compares the theoretical 

AuNP diameters, that were expected with increasing concentration of citric acid in the 

reaction as represented in Frens et al. 1973, to the diameters of the AuNP that were 

syntehsized as measured using dynamic light scattering (DLS) (n=25). (B) The % 

intensity of the different diametes of the AuNP-KR13 conjugates as measured on the 

zetasizer using the dynamic light scattering methodology (n=3). (C) Shows the 

representative TEM images of the AuNP-KR13 conjugates with diameters 13.3 nm, 19.9 

nm, 42.8 nm and 92.6 nm. Error bars represent the standard deviation of the mean, n > 3. 
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3.2.2 Anti-viral effects of AuNP-KR13 conjugates 

 

Size dependence of the anti-viral functions of AuNP-KR13:  

 

AuNP-KR13 conjugates were tested for both inhibition of HIV-1 BaL pseudotype 

infection of HOS.T4.R5 cells as well as the cell-free p24 release, in both cases 

after 30 min exposure of viruses to AuNP-KR13 conjugates.  Figure 31 shows the 

dose responses of the effects, and IC50 values are summarized in Table 6.  The 

results are compared to KR13 alone.  Strikingly, the anti-viral effects are greatly 

enhanced with increasing size of the nanoparticle.  Table 6 also shows the 

number of peptides per nanoparticle calculated from amino acid analysis and the 

amount of peptide per square nanometer on the AuNP surface.  The latter assumes 

that AuNP is a perfect sphere and that individual molecules of KR13 are 

equidistant from each other on the NP surface.  

To further probe the size dependence of AuNP antiviral effects and to 

mathematically model the AuNP-PT and virus interface, we prepared 

nanoparticles in which the number of PT per unit area (PT density) of AuNP 

surface was kept as similar as possible, by adding sufficient peptide to ensure 

stability monitored by flocculation assay (Methods) and then adding further 

peptide determined empirically to equalize density. The antiviral effects of 

increasing size of AuNP with equal PT density in AuNP-KR13 conjugates are 

shown in Figure 32, and the IC50 values obtained from these are summarized in 
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Table 8.  Here, a clear correlation was observed between the effects of AuNP size 

on inhibition of viral infection and p24 release.  

 

 

 

 

 

 

 

Figure 31: Size dependent anti-viral effects of the AuNP-KR13 conjugates on the HIV-1 

BaL pseudovirions. (A) Inhibition of cell infection was measured using a single round 

infection assay as explained in methods.  The IC50 values are reported in Table 1. (B) 

Relative p24 release from the cell-free HIV-1 BaL pseudovirions with increasing 

concentration of the different diameter AuNP-KR13 conjugates. The EC50 values are 

reported in Table 1. Error bars represent the standard deviation of the mean, n = 3. 
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Compared to Figure 31, Figure 32 shows a better correlation between the effect 

of the viral infection inhibition and p24 release. This might be due to the 

approximately equal number of peptide coverage per square nanometer and 

which can be used further for AuNP-KR13 and HIV-1 BaL pseudotype spike 

interface modelling.  
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Figure 32: Anti-viral effects of AuNP-KR13 conjugates with increasing diameter of the 

AuNP with equal density of KR13 coverage per square are on the surface of the AuNP. 

(A) Inhibition of HIV-1 infection by the AuNP-KR13 conjugates were measured using a 

single round infection assay as explained in methods.  The IC50 values are reported in Table 

3. (B) Relative p24 release from the cell-free HIV-1 BaL pseudovirions with increasing 

concentration of the different diameter AuNP-KR13 conjugates. The EC50 values are 

reported in Table 3. Error bars represent the standard deviation of the mean, n = 3. 
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Impact of density variation of peptide triazoles conjugated on AuNP on anti-viral 

functions: 

 

AuNP-KR13 conjugates were prepared with varying KR13 densities on 20 nm 

nanoparticles and tested for both inhibition of HIV-1 BaL pseudotype cell 

infection with HOS.T4.R5 cells and cell-free p24 release after 30 min of exposure 

of virus with AuNP-KR13 conjugates. The values computed for KR13 coverage 

per square nanometer of the AuNP surface assumed that AuNP is a perfect sphere 

and that individual KR13’s are equidistant from each other on the NP surface. As 

shown in Figure 33 and Table 8, inhibition of both viral infection and p24 release 

activities were greater with increasing density of KR13 on the AuNP surface. The 

total number of peptide molecules per AuNP was obtained by amino acid 

analysis.  The AuNP with 0 moles of KR13 have 100% cysteine coverage.  As 

shown in Table 3, the latter non-peptide AuNP exhibited no non-specific anti-

viral effects.  
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Figure 33: Anti-viral effects of AuNP-KR13 (19.9 nm diameter) with increasing surface 

desnity coverage of KR13 with 100% being 73 peptides per AuNP as represented in 

Table 2. (A) Inhibition of cell infection was measured using a single round infection assay as 

explained in methods.  The IC50 values are reported in Table 2. (B) Relative p24 release from 

the cell-free HIV-1 BaL pseudovirions with increasing concentration of the AuNP-KR13 

conjugates with decreasing KR13 density coverage. The EC50 values are reported in Table 2. 

Error bars represent the standard deviation of the mean, n = 3. 
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AuNP-KR13 potencies with replication competent HIV-1: 

 

The anti-viral effects of 20 and 80 nm AuNP-KR13 particles were tested with 

replication-competent Bal-01 HIV-1, as shown in Figure 34. The results 

demonstrate that the AuNP-KR13 is effective and has a greater potency than 

KR13 alone (approximately 300 fold greater for the 20 nm AuNP-KR13 and 1400 

fold greater for the 80 nm AuNP-KR13 more potent, compared to KR13).  

 

3.2.3 Comparison of the anti-viral functions between AuNP-KR13 and KR13 

 

We previously observed that KR13-induced lysis of HIV-1 embodies virus 

breakdown properties reminiscent of those occurring during virus-cell fusion.  

These include exposure of the membrane proximal external region (MPER) of 

gp41 and inhibition by fusion inhibitor T20.  In the current work, we sought to 

compare AuNP-KR13 lysis for these properties.  As shown in Figure 35A, 

AuNP-KR13 treatment does not induce a concentration-dependent exposure of 

MPER on the residual virion, while treatment with KR13 does.  In addition, as 

seen in Figure 35B, the fusion inhibitor, T20, does not lead to the inhibition of 

AuNP-KR13 induced p24 release, in contrast to the inhibition seen with KR13.  

Figure 35C shows that, like KR13, AuNP-KR13 induced virolysis is 

accompanied by gp120 shedding.  However, for AuNP-KR13, gp120 shedding, 

p24 release and viral infection inhibition occur simultaneously, all starting within 

10 min of incubation with the virus.  By comparison, in KR13 virolysis, p24 
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release occurred with a time lag compared to the gp120 shedding and virus 

infection inhibition[6]. Hence, from the data shown above, the AuNP-KR13 

induced virolysis process appears to be controlled differently than for KR13. 

 

 

 

 

Figure 34: Plots ofAuN: KR13 (20 nm and 80 nm) induced infection inhibition and virus 

breakdown of replication competent HIV-1 BaL virus.  (A)  Inhibition of cell infection was 

measured using a p24 ELISA of the produced virions in the presence of the inhibitor.  The IC50 values 

of AuNP:KR13 (20 nm) and AuNP:KR13 (80 nm) to inhibit HIV-1 BaL infection being 3.16 nM and 

0.73 nM respectively. (B) Relative p24 release from the cell-free HIV-1 BaL (replication competent) 

with increasing concentration of the 20 nm and 80 nm diameter AuNP-KR13 conjugates. The EC50 

values of AuNP:KR13 (20 nm) and AuNP:KR13 (80 nm) to inhibit HIV-1 BaL infection being 8.19 

nM and 0.49 nM respectively. Error bars represent the standard deviation of the mean, n = 3. 
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3.2.4 Impact of Env Spike Presentation on the Virus Surface 

 

We sought to evaluate the importance of simultaneous multi inhibitor-gp120 

interactions in AuNP-KR13 induced virolysis.  Such encounter could occur by 

such mechanisms as localized Env spike clustering or multivalent attachment at 

single spikes.  If the AuNP-PT effect were multivalent and required encounter 

with multiple fully active Env spikes, we expected to observe that reducing active 

Env density would cause more reduced anti-viral activity with AuNP-KR13 than 

KR13 alone.  To examine this prediction, we compared lytic processes using 

HIV-1 BaL pseudotype viruses containing different ratios of functional and non-

functional gp120.   The viruses were produced (see section 4.2) with varying 

relative amounts of WT and S375W gp120, the latter of which has been found to 

be ineffective in binding the peptides [25]. Spike variations on the virus, provided 

by altering the relative abundance of WT vs. mutant S375W gp160 DNA during 

virus production, led to virions with varying density of WT gp160’s on the virion 

surface. In order to model whether the AuNP-KR13 conjugates work by a 

multivalent contact mechanism, it was important to know how the mutant (M) and 

WT (W) monomers were arranged on the spikes (each of which has three 

monomers[105]) of the virions containing various amounts of mutant DNA. By 

assuming random protomer assortment, and using i = number of WT protomers, 

{𝑊3  , 𝑊2𝑀1,  𝑊1𝑀2, 𝑀3 } =  {𝑊𝑖𝑀3−𝑖}           𝑖 𝜖 [0,3] 

∝𝑖=
3!

𝑖! (3 − 𝑖)!
  𝑓𝑖(1 − 𝑓)3−𝑖 



139 

 

where 𝑓 = 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑊𝑇 𝐷𝑁𝐴 −

𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝑛𝑣 (𝑊𝑇)𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 

The values for α0, α1, α2 and α3 for each ratio of WT: S375W DNA were calculated from 

the formula above, and these values are given in Figure 38.   The AuNP-KR13 and KR13 

effects on these mutated viruses are shown in Figure 36 and Table 9.   

Analysis of virus infection inhibition by both KR13 and AuNP-KR13 revealed that, with 

for total of 4 

However, some significant differences were observed in the response patterns.  AuNP-

KR13 retained activity even with small abundance of fully active spikes e.g. WT-S375W 

ratios of 1-3 and 0.5-3.5.  In contrast, KR13 activity falls off more dramatically at those 

conditions (Figure 36).  This could reflect fundamental differences in how AuNP-KR13 

and KR13 encounter the virus to cause lysis.   
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Figure 35: Comparing the anti-viral effects of AuNP-KR13 and KR13 on the HIV-1 BaL 

pseudotyped virus. (A) Shows the MPER (membrane proximal external region) specific gp41 

epitope exposure on the AuNP-KR13 and KR13 alone treated virus by testing MPER specific 

antibodies (2F5 and 4E10) anbitody binding to HIV-1 BaL pseudotyped virion after 30 minutes of 

AuNP-KR13 (20 nm diameter) and KR13 repectively. (B) T20 (Fusion Inhibitor) inhibition of 

AuNP-KR13 (50 nM) and KR13 (1 µM) induced p24 release of HIV-1 BaL pseudotyped, with The 

IC50 value T20 inhibition of KR13-induced p24 release being 15.9 ± 4.9 nM using Origin V.8.1 

(Origin Lab). No significant effect on the AuNP-KR13 induced p24 release in the presence of T20. 

(C) Time dependent anti-viral effects of AuNP-KR13 (20 nm) on the viral infection inhibition p24 

and gp120 release. . Time-dependence of viral breakdown by HNG156 (a) and KR13 (b) 

treatments of HIV-1 BaL pseudovirus. The % of cell infection retained after peptide treatment is 

shown on the left y-axes, and the viral protein gp120 and p24 retained in the virus fraction is 

shown on the right y-axes. All samples were adjusted to the untreated virus as 100% infection and 

100% viral protein retention . Each time point had controls of untreated virus which was used for 

normalizing relatively for the each time point peptide treatment. Error bars represent the standard 

deviation of the mean, n = 3. 
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Figure 36: Comparing the antiviral effects which include virus infection inhibiton (A) and 

p24 release (B) of AuNP-KR13 (20 nm) compared to the virus infection inhibiton (C) and p24 

release (D) of KR13 on the HIV-1 BaL pseudovirions with varying concentrations of S375W 

mutant spikes incorporated. Inhibition of HIV-1 infection was measured using a single round 

infection assay as explained in methods.  The cell-free KR13 and AuNP-KR13 (20 nm) induced 

p24 release from these virions were measured using the p24 ELISA of the released protein as 

explained in the methods section.  The EC50 values are reported in Table 8. Error bars represent 

the standard deviation of the mean, n = 3. 
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3.2.5 A continuum mechanics model of the virion-nanoparticle complex 

 

In order to better understand how the AuNP-KR13 conjugates interact with the 

spikes on the virions, we sought to construct a mathematical model. The surface 

of AuNP-KR13 particles with varying peptide densities and sizes were modeled 

as shown in Figure 37. The spike dimensions of gp160 were obtained from Mao 

et al.[106] ,wherein the calculated height and width of the spike was found to be 

12 nm and 15.5 nm, respectively, from single particle cryo-electron microscopy.  

The contact area between the AuNP and virus was modeled by the Hertz contact 

radius (α) formula using an elastic infinite half space analysis[291], 

𝛼 =  [
3𝐿𝑅

4𝐸∗
]

1/3

 

where L is the applied normal force (load), and the combined Young’s modulus 

and radius of curvature of the two materials 1 and 2 are E* and R, i.e., 

𝐸∗ =  (
1−𝑣1

2

𝐸1 +
1−𝑣2

2

𝐸2 )
−1

   , and  𝑅 =  (
1

𝑅1
+  

1

𝑅2
)

−1
  

In the equation above, material 1 is AuNP and the material 2 is the HIV 

pseudovirus; v1 and v2 are the poisson ratios of materials 1 and 2, respectively. 

The poisson ratio, v1, and the elastic modulus, E1, for gold nanoparticle used for 

the calculation were 0.32 and 100 GPa, respectively[292, 293].  The poisson ratio, 

v2, and the elastic modulus, E2, for the HIV pseudovirus used for the calculation 

were 0.44 and 440 MPa respectively[294-297]. The load force used was 130 pN, 

which is the maximum force that can be exerted on the viral membrane that does 

not fracture the surface[294, 297].  Several assumptions were taken into account 
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in order to resolve a simplified mathematical model for the contact interface 

between virion and nanoparticle. These assumptions include: (a) the virus and the 

AuNP are perfect spheres and (b) the peptides on the AuNP surface have an 

isotropic arrangement. Figure 38 depicts the interface of the AuNP and virion 

surfaces resulting from the above calculations.  

 

3.2.6 Morphological analysis of AuNP-KR13 effects on HIV-1  

We sought to image the virus-nanoparticle interface and consequent virus lysis 

using transmission electron microscopy.  Viruses were treated with the AuNP-

KR13 (20 nm and 80 nm) conjugates for 10 minutes, and then fixed and loaded on 

a TEM grid.  Uranyl acetate was used as a contrast agent to stain the lipids in 

order to visualize the virion.  Representative images obtained are shown in 

Appendix Fig 13.  In the images for both the 20 nm and 80 nm AuNP-KR13, a 

limited number of AuNP-KR13 particles (average 1-3) were found associated 

with individual virions, suggesting that a small number of NP’s is sufficient to 

induce virus lysis. The 80 nm AuNP-KR13 appeared to cause a more drastic 

disruption of the virion compared to the 20 nm AuNP-KR13.  
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Figure 37: A representative model of the AuNP-KR13 and HIV-1 virus interface. The diameters 

of the HIV-1 virus as well as the AuNP-KR13 conjugates are taken from the measured values by 

DLS and TEM respectively. The width and height of a spike was taken from the cryo-TEM 

modeling from Mao et al. 2012. (A) Shows the interface of the AuNP and virion interface for the 

size variation of AuNP from figure 30 viewed from a perspective parallel to the viral membrane 

(top) and viewed from the perspective of the AuNP, at the same contour level (bottom). (B) 

Shows the interface of the AuNP and virion interface for the density variation of AuNP from 

figure 31 viewed from a perspective parallel to the viral membrane (top) and viewed from the 

perspective of the AuNP, at the same contour level (bottom). The contact radius, α, calculated 

between the AuNP and HIV virion are shown in the bottom images. The model is just 

representative and has assumptions, one being that the peptides around the AuNP have an 

isotropic arrangement, two , both the AuNP and HIV-1 virion are perfect spheres and three that 

the peptide on the AuNP and the spike on the virion are stagnant. 
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Figure 38: A presentation of how the WT: mutant (S375W) monomers are arranged on 

the virus spike with different ratios of the WT: mutant DNA concentrations used for virus 

production. These % of spikes are calculated using the formula which is elaborated in the 

results section. 
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3.3 Discussion 

 

This study demonstrated the ability to enhance the anti-HIV-1 potency of peptide 

triazoles dramatically by gold nanoparticle display and at the same time derived a 

conceptual model of nanoparticle-virus encounter to account for this enhancement.  

Previously, we demonstrated that conjugating peptide triazole thiol on AuNP (20 nm) 

enhanced potency of its anti-viral function[8]. To investigate the limits of this 

enhancement effect and provide a mechanistic explanation, we altered the size of the 

AuNP as well as the density of the peptide coverage on the AuNP. Increasing both the 

size and PT coverage density led to an enhancement in potency of both the viral infection 

inhibition as well as the cell-free virolysis (Figures 31, 32 and 33). Potency 

enhancement was also observed in replication competent HIV-1 (Figure 34).  

While prior work had shown that the peptide triazole KR13 alone can causes HIV-1 

inactivation and lysis, in this study we show that these antiviral effects are enhanced by 

AuNP-KR13 conjugates. But there are several observations made in this study (Figure 6) 

demonstrated that the mechanism by which AuNP-KR13 induces inactivation and lysis is 

different from KR13 alone.  The membrane proximal external region of gp41 on the HIV 

Env is known to be exposed during the HIV-1 and host cell fusion process, but to be 

unexposed in the ground (unliganded) state of the virus[274].  For KR13, we previously 

observed both concentration dependent and time dependent exposure of the MPER 

epitope on the HIV-1 virion when viruses were treated with KR13[6].  However, in the 

case of AuNP-KR13, we did not observe MPER epitope exposure (Figure 35A). In 

addition, the data in Figure 6B show that T20, which is a fusion inhibitor that targets the 
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6-helix bundle formation of gp41 during HIV- fusion with host cell, inhibits KR13-

induced p24 release (as reported previously) but does not inhibit such release by AuNP-

KR13. Further, the data of Figure 6C show that gp120 shedding, infection inhibition and 

virolysis induced by p24-release of the HIV-1 BaL pseudotype all had a similar time-

dependence for the AuNP-KR13 exposure, versus unequal kinetics for KR13 (for which 

p24 release lagged compared to gp120 shedding and infection inhibition[6]).  

Collectively, the characteristics of MPER exposure, T20 sensitivity and time-dependence 

of antiviral effects observed for KR13 all argue that KR13-induced lysis bore a 

relationship to the physiological events of virus-cell fusion.  In contrast, the lack of these 

phenotypes (or a similar word) with AuNP-KR13 suggests that the latter responds to 

different forces (Figure 35).  Table 9 summarizes the differences between KR13 induced 

virolysis and AuNP-KR13 induced HIV-1 virolysis.  

Several other differences between KR13 and AuNP-KR13 have emerged during ongoing 

investigations of KR13-induced lysis (Lauren Bailey, manuscript in preparation). A 

gp120 antibody, 2G12, that binds to the V3 loop and inhibits KR13 induced virolysis, 

was found not to inhibit AuNP-KR13 induced virolysis (data not shown) We have also 

found that DTNB (dithionitrobenzene), a thiol blocking agent that inhibits KR13 induced 

virolysis, did not affect AuNP-KR13 mediated virolysis (data not shown). These data 

reinforce the need to consider gold nanoparticle specific mechanisms to explain the 

virolytic activity of AuNP-KR13.   

The responses of potency enhancement to nanoparticle and virus surface properties are 

consistent with multivalent contact between virus and nanoparticle surfaces as a major 

driving force for the antiviral effects of AuNP-KR13.   A key aspect for multivalent spike 
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engagement at the virus-nanoparticle interface is the importance of density of both 

components.  As noted above, we observed that the density of peptide on the AuNP 

surface has a high impact on its anti-viral potency (Figure 32 and Tables 5 and 7).  In 

addition, varying the amount of wildtype (active) spikes on the HIV-1 virion surface by 

replacing the active spikes with the peptide-insensitive mutant spikes, S375W, also had 

an impact on antiviral activities for AuNP-KR13 and with KR13 alone.   By 

incorporating progressively more mutant vs. peptide-sensitive WT gp120 in the HIV-1 

virions, we observed reduced sensitivity to HIV-1 infection inhibition by both KR13 and 

AuNP-KR13.  However, the effect of reduced WT gp120 abundance on p24 release was 

greater for KR13 than for AuNP-KR13.  Correlating with the relative numbers of 

heterogeneous and homogenous spikes with mutant-WT mixtures (Figure 38), we found 

that, while KR13 induced p24 release required an average of ≥1 fully active spike 

(containing 3 active WT monomers in individual spikes) per virion, the AuNP-KR13 (20 

nm) induced up to 50% p24 release even with an average of 0 fully active spikes.  

Based on the above results, we configured a multivalent encounter model based on the 

previously known dimensions of the virus[61, 106] and the following assumptions: (a) 

the KR13 on the AuNP are isotropic and equidistant from each other, (b) the virus and 

AuNP are perfect spheres; and (c) the spikes on the HIV-1 virion are stationary and do 

not cluster prior to nanoparticle encounter (Figure 37). While we recognize that these 

assumptions are idealized descriptors, they account for the general trends of increased 

interactions of AuNP-immobilized ligands with multiple spikes and the relative 

insensitivity of the encounter to the need for fully active spikes.   
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We speculate that multivalent contact could lead to an elevated stress on the HIV 

membrane and eventually cause irreversible collapse of the virion particle (Appendix 

Fig. 13). Further investigation is needed to better understand the nature of the virus 

membrane transformation caused by AuNP-KR13 and how this type of effect compares 

to membrane transformations triggered by other types of virus-lysing agents [298-300].  

Nonetheless, the nanoparticle-virus encounter model could provide a guide to further 

design inhibitor-NP complexes for HIV-1 and potentially other similar viruses such as 

influenza virus, sarcoma virus and more.  

The work presented here reinforces the potential usefulness of inhibitor display on 

nanoparticles to improve potency for disease prevention and intervention. While 

nanocarriers have been used as vehicles for drug delivery, their use for forming 

therapeutic agents has been more limited[228, 301-303]. Jiang et al. have shown that gold 

nanoparticles ranging from 2-100 nm in diameter conjugated to multiple trastuzumab 

antibodies enable targeting and cross-linking of human epidermal growth factor receptor 

(HER)-2 in human SK-BR-3 breast cancer cells, by causing reduced (HER)-2 receptor 

expression and inducing receptor mediated endocytosis[304]. Jiang also showed that the 

anti-cancer potencies were altered by variations of the diameter of the gold nanoparticles, 

with the larger particles having more protein on its surface and increased avidity, while 

the smaller particles exhibited greater receptor mediated endocytosis[304].   

Nanomedicine design for HIV-1 infection inhibition also has been limited[305].  Gold 

nanoparticle display has been shown previously to increase the antiviral potency of the 

HIV-1 inhibitor SDC-1721, a derivative of TAK-779, that targets the cellular coreceptor, 

CCR5[235, 306].  However, such studies have used very small (2 nm) AuNP that could 
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be taken up by cells non-specifically[236].  Heterogeneity of the HIV-1 also has been a 

problem limiting antibody and drug targeting[307].  The current work argues that gold 

nanoparticle display could help overcome the heterogeneity of Env spikes by enabling 

multivalent attachment of neighboring partially defective spikes.  The current work 

provides a generalizable approach for nanoparticle drug design not only for HIV-1 but 

also for other infectious enveloped viruses such as influenza and hepatitis B virus.  
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CHAPTER 4: USING THE VIRUCIDAL AGENTS TO TARGET OTHER 

STAGES OF THE HIV-1 LIFECYCLE 
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4 Introduction 

HAART therapy used 2 or more antiretrovirals currently to treat patients with HIV. 

This form of therapy was chosen so that one can target different stages of the HIV 

life cycle and hence lead to enhanced inhibitory effect [126]. However, treatment 

efficacy relies on access to treatment and excellent adherence, which has proven to 

be a serious challenge to those receiving highly active antiretroviral therapy 

(HAART) [308]. There is a lot of resistance to most of the drugs used in HAART as 

well as there is a lot of non-adherence developing in adult populations [309].  Hence 

it is important to develop new inhibitors that are broadly acting and can target 

multiple stages of the virus.  

 

Since the over 20 years ago after the discovery of HIV-1, this virus has cause an 

epidemic disease called AIDS. There have been many attempts to eradicate the 

disease but somehow the virus finds a way to mutate and protect itself [89, 310]. 

There have been many attempts made in order to create immunogens that can serve 

as vaccines against this virus and there have been very few successes[182]. 

Therefore another venue which needs a lot of research and novel interventions is the 

vaccine development field.   

 

Hence this study will focus on a novel discovery that the virolytic peptide triazole 

and its multivalent conjugate to target not only the entry and fusion stage of the 

lifecycle but also lead to inhibition of new virus production or also known as 
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vironeogenesis. Further we will elaborate on how the residual virus post KR13 

treatment can be the perfect custom made immunogen using the virus that infected 

the host cell to create neutralizing antibodies against new infections.  These novel 

discoveries will open the phase on multifaceted therapy targeting different stages of 

the HIV-1 lifecycle using just one agent, making it much more reliable convenient 

as well as efficient.  

 

 

4.1 New virus production inhibition by peptide triazoles and gold nanoparticle 

peptide triazole thiol conjugates  

 

4.1.1 Introduction 

 

HAART therapy has led to a substantial decrease in deaths caused by AIDS, 

prolonging the life of the infected individual [126]. However, there is a gap in 

research knowledge in developing singular novel inhibitors that target multiple 

stages of the virus life cycle as opposed to combination therapy like HAART. 

Microbicides developed to target viral entry may also be able to target newly 

produced viruses[311], but unfortunately the bioavailability and stability of these 

inhibitors are very low, making targeting newly produced virions very difficult, 

and relegating such drugs to preventative treatments[312]. 

 

 



154 

 

As the precursor to its presence on newly budded virions, HIV Env glycoprotein 

must first be constructed and trafficked to the surface of the membrane by 

standard transcription, translation, and modification cellular machinery, which 

provides a potential shared target between an infected cell and its daughter 

virions [313]. Indeed, this has provided other studies with a method of efficiently 

and specifically killing HIV-infected cells, by conjugating cytotoxic agents to 

anti-Env antibodies [314, 315].  Furthermore, since the latent population of HIV 

infected cells has proven to be one of the most difficult stages of the HIV 

lifecycle to attack [316], and because this latent population is known to express 

gp120 on their cell membranes when stimulated [317, 318], the strategy of anti-

Env immunotoxins has also been shown to kill reactivated modeled latently 

infected cells (Brooks 2003).  However, the risks of broadly cytotoxic agents, 

combined with Env's variability, and complications with latent reactivation may 

limit the scope of such approaches. 

 

A peptide triazole (PT) class of entry inhibitors has been identified by our group 

in prior work and found to be able to bind to HIV-1 Env gp120 with nanomolar 

affinity, to suppress protein-ligand interactions of the Env protein at both its 

CD4 and co-receptor binding sites, and to inhibit cell infection by a broad range 

of virus subtypes[6, 10, 23].  Strikingly, we have recently found that a 

multivalent form of the peptide triazole KR13 displayed on gold nanoparticles 

(AuNPs) is able to disrupt virus particles in the absence of host cells, causing 
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leakage of the internal protein p24 and exhibiting strong antiviral activity as 

shown in chapter 3 [8]. 

 

This study reports on the discovery of other special functions of KR13 and its 

multivalent gold nanoparticle conjugate. KR13 and AuNP-KR13 were able to 

inhibit new virus production (vironeogenesis) by HIV-1 infected cells, and 

AuNP-KR13 additionally exhibited cytotoxicity specific against infected 

producer cells. Further developments of AuNP-KR13's cytotoxic effect may lead 

to the capability to target and kill latently infected cells. 

 

4.1.2 Materials and Methods 

 

4.1.2.1 Materials 

 

Modified Human Osteosarcoma Cells (HOS.T4.R5) engineered to express 

CD4 and CCR5, receptor and co-receptor respectively, as well as pNL4-

3.Luc R-E- backbone DNA, were obtained from Dr. Nathaniel Landau.  The 

HOS.T4.R5 cells were grown in DMEM supplemented with 10% FBS, 

2.5% HEPES, 1% Penicillin- Streptomycin, 2% L-Glutamine and 1 mg of 

puromycin. 293T (Human Embryonic Kidney) cells were obtained from 

American Type Culture Collection and grown in the same culture medium 

as the HOS.T4.R5 cells except without puromycin. CHO-K1 gp160 +ve 

cells and regular CHO-K1 cells were obtained from the aids repository and 
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were grown in DMEM supplemented with 10% FBS and 1% Penicillin- 

Streptomycin. The plasmids for HIV-1 BaL gp160 and VSV-G Env DNA 

were gifts from Dr. Julio Martin-Garcia. The antibodies mouse anti-p24, 

rabbit anti-p24, and the protein p24, were from Abcam.  Fully Infectious 

HIV-1 (BaL) was a gift from Dr. Michele Kutzler and obtained from Penn 

Center For AIDS Research (CFAR). The protein gp120 monomer was 

produced using already-established protocols [25], anti-gp120 was from 

Alto chemicals. Gp41 protein, Enfurvitde (T20) and anti-gp41 antibodies 

4E10, 2F5 and 98-6 were from NIH AIDS Research and Reference Reagent 

Program (ARRRP). Enhanced Chemiluminescence western blot detection 

system was from Amersham. O-phenylenediamine (OPD) was from Sigma 

Aldrich.  All other materials were from Fisher Scientific.  

 

4.1.2.2 Production of the peptide triazoles and gold nanoparticle peptide 

triazole conjugate 

 

For this study, we synthesized the peptide triazole denoted KR13, composed 

of the 12-residue amino acid sequence of the previously identified high 

potency peptide-triazole HNG156 [319] with a C-terminal extension 

containing a Cys-SH group. This cysteine-containing derivative was 

selected because the introduced SH group facilitates conjugation to the 

AuNP carriers.   KR13 was prepared by manual solid phase synthesis using 

Fmoc chemistry on a Rink amide resin at 0.25 mmol scale [22]. The amino 
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acid sequence of KR13 is RINNIXWSEAMMβAQβAC-CONH2, where X 

is ferrocenyltriazole-Pro. As control KR13b was synthesized which is the 

KR13 amino acid sequence with an acetomethyl group at the C terminus to 

block the active cysteine (Appendix Fig. 14). The KR13 and KR13b was 

validated for function by conducting a CD4 and 17b competition assay as 

explained in bastian et al. 2011[8].  

 

The gold nanoparticle was synthesized using the Frenz method of citric acid 

reduction of HAuCl4 and for this study we produced AuNPs at 20 nm 

diameter on average . The AuNPs were then stabilized using The 

synthesized particles will be stabilized using Bis-(p-sulfonatophenyl) phenyl 

phosphine dehydrate dipotassium salt (BSPP, Strem Chemicals) and 

transferred into phosphate buffer (pH 7.2) using a Millipore 10,000 MWCO 

filter. The AuNP was validated using dynamic light scattering and the size 

was measured as previously explained in Haiss et al. [8, 284]. The KR13 

was then conjugated onto the AuNP using the cysteine residue by vigorously 

stirring a 1000:1 ratio for 30 minutes at room temperature. The conjugate 

was then stirred at 4°C overnight. The unconjugated peptide was washed off 

using a 100K filter and the sample was resuspended in phosphate buffer (pH 

7.2). AuNP-KR13 coverage density was determined using amino acid 

analysis (Keck Institute, Yale University).  
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4.1.2.3 The effect of peptide triazoles and gold nanoparticle peptide 

triazole thiol on HIV-1 producer cells 

 

The peptide triazoles KR13 and KR13b as well as the AuNP-KR13 

conjugate was validated for their antiviral effects by testing their viral 

infection inhibition  as well as their p24 release profiles as previously 

described in Bastian et al. 2013 and 2011 respectively. Following the effect 

of these inhibitors on HIV-1 BaL pseudotyped producer cells were tested.  

 

3 million human embryonic kidney cells (293T) were seeded onto a T-75 

flask until attached for producing HIV-1 BaL pseudotyped. For recombinant 

pseudovirus production the  pro-viral envelope plasmid sequence used was 

the CCR5 targeting HIV-1 BaL strain and the backbone plasmid sequence 

used was an envelope-deficient pNL4-3-Fluc+env– provirus developed by 

N. Landau [252]. 4 µg of envelope and 8 µg of backbone DNA were co-

transfected into 293T cells using FuGene 6 or polyethylenimine as the 

transfection reagent [253].  Fourteen hours post-transfection, the virus 

producer cells were washed with PBS and detached using 0.05% trypsin. 

The cells are re-seeded onto a 24 well plate at 100,000 cells/ml with 2 mls 

per well. Post 24 hours of re-seeding, the cells were washed with PBS and a 

serial dilution of the inhibitors KR13, KR13b and AuNP-KR13 were added 

1:1 ratio with cell media. The cell supernatants were collected 24 hours post 

inhibitor addition and spun on a 6-20% iodixanol gradient at 30,000 rpm for 



159 

 

2 hours at 4°C. The virus fraction (16-18%) was collected and tested for p24 

content, gp120 content as well as tested for viral infection in HOS 

CD4+veCCR5+ve as explained in section 2.2.2.2.  

 

The p24 content was measured using ELISA as explained in section 2.2.3 

and the gp120 content was measured using western blot analysis using 1:10 

dilution of the virus fraction and primary and secondary antibodies, anti-

gp120 D7324 and anti-sheep HRP respectively.  

 

4.1.2.4 Cell viability of the virus producer cells in the presence of the 

peptide triazoles and gold nanoparticle peptide triazole thiol 

 

The virus producer cells once transferred to a 24 well plate and loaded with 

inhibitors KR13, KR13b and AuNP-KR13 as explained above, the 

supernatants were collected and the remainder cells were validated for cell 

viability. The cells were washed with PBS and loaded with 250 µl of the 

Pre-mix WST-1 reagent (Takara Bio Inc.). The reagent was incubated with 

the cells at 37°C for 30 minutes. Following incubation the absorbance was 

read at 450 nm using a plate reader (Tecan Instruments). The absorbance 

value at 450 nm corresponds to the mitochondrial activity of the cell. 

Furthermore, in order to test whether the cytotoxicity observed by AuNP-

KR13 is specific to peptide triazole binding, we tested the effect of KR13 
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and AuNP-KR13 on cells transfected with the infectious, but PT-resistant, 

envelope mutation S375W [24, 25] (Appendix Fig. 17). 

 

4.1.2.5 Effect of the peptide triazoles and gold nanoparticle peptide 

triazole thiol on cells stably expressing gp160 on the surface 

 

In order to understand the mechanism of action of how these inhibitors lead 

to virions produced with no activity it was important to understand on a 

cellular level how they react. In order to test  this, CHO-K1 gp160 +ve cells 

and regular CHO-K1 cells were obtained from the NIH aids repository and 

grown in their growth media at 100,000 cells per well on a 96 well plate. 24 

hours post seeding serial dilution of KR13, KR13b and AuNP-KR13 were 

added onto the cells and incubated overnight. The cell supernatants were 

collected and tested for gp120 shedding using western blot analysis as 

described above. The controls were PBS incubated instead of the inhibitors 

and also the CHO-K1 cells that has no gp160 expression. The cell viability 

was also tested post inhibitor addition as explained above using the pre-mix 

WST-1 reagent.  

 

4.1.2.6 Breadth analysis of new virus formation inhibition by peptide 

triazoles and gold nanoparticle peptide triazole thiol on replication 

competent viruses 
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The virus DNA was obtained from the University of Pennsylvania CFAR as 

a gift from Farida Shaheen. 293T cells were transfected with the virus DNA 

in 24 well plates as described above. The variety of viral DNA used was to 

test for tropism sensitivity as well as clade breadth of this inhibitory effect 

of these peptides and conjugates which included YU2, JRCSF, NL4-3, 

HXBC2 and R3A. Three dilutions of the inhibitors KR13, KR13b and AuN-

KR13 (10 µM, 1 µM and 0.1 µM) were added to the producer cells post a 

PBS rinse. The samples were incubated for 24 hours and the cell 

supernatants were tested for infection on HOS CD4+veCCR5+ve cells. Since 

the produced virions have no luciferase reporter gene in their RNA, the 

following protocol was used for quantification of infection. HOS CD4+ve 

CCR5+ve cells seeded, at 8,000 cells per well in a 96 well plate, were 

incubated for 24 hours followed by addition of cell supernatant collected 

from the 293T cells above.  After 48 hours infection, p24 content of virions 

in the supernatant was measured in order to determine the infection of the 

produced virions. All these experiments suing replication competent virions 

were conducted in a BSL-3 facility.  
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4.1.3 Results 

 

4.1.3.1 Inhibition of vironeogenesis by peptide triazoles and gold 

nanoparticle peptide triazole thiol  

 

The effect of KR13, KR13b as well as AuNP-KR13 on virus producer cells 

was tested in order to check whether these novel inhibitors can target 

multiple stages of the HIV lifecycle. The inhibitors were added to the 

producer cells and the cell supernatants were purified and tested for p24 

content as well as viral infection and gp120 content. As control producer 

cells treated with PBS alone was used. The viral infection and gp120 content 

was tested by using normalized virus containing solution from the p24 

content analysis in order to confirm we are loading equal amount of virus. 

Although, the AuNP-KR13 treated cell supernatants had a reduction in p24 

content and hence we did not normalize the p24 content for the gp120 and 

viral infection analysis. Figure 39 shows the p24 content, viral infection and 

gp120 content on the virions collected post inhibitor treatment. From this we 

clearly see that KR13 and AuNP-KR13 lead to virions that are not infectious 

and also do not contain gp120 on their viral membrane. But the virions still 

have p24 in their viral lumen showing that the mechanism is not the same as 

how the KR13 and AuNP-KR13 target produced viruses (Appendix Fig. 

14). Further even though KR13b does not lead to virions that are non-

infectious, it still has reduction of gp120 on the viral surface (Figure 39C).  
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Figure 39: Anti-viral effects by KR13, KR13b and AuNP-KR13 on virus producer cells. (A) 

Total p24 content in the separated virus fraction from cell supernatants that were treated with 

KR13 (black), KR13b (blue) and AuNP-KR13 (red). (B) Viral infection  and (C) gp120 

content of the of the virus fraction collected post inhibitor treatment of the producer cells, the 

samples were normalized to p24 content prior to addition into HOS CD4+veCCR5+ve cells and 

tested for gp120 using western blot analysis respectively. The IC50 values  for viral infection 

inhibition of produced virions treated with KR13 and AuNP-KR13 are 25.6 ± 3.5 nM and 1.2 

± 0.05 nM respectively. The EC50 of gp120 shedding from the produced virions post KR13, 

KR13b and AuNP-KR13  treatment  are 25.7 ±7.2 nM, 38.7 ± 3.4 nM and  1.8 ± 2 nM 

respectively. Error bars represent the standard deviation of the mean, n = 3. 
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4.1.3.2 Cell viability of the virus producer cells in the presence of the 

peptide triazoles and gold nanoparticle peptide triazole thiol 

 

We tested to see whether the virus producer cells had any toxicity in the 

presence of the inhibitors, KR13, KR13b and AuNP-KR13. In order to test 

this we used the WST-1 pre-mix reagent that forms a formazan product 

based on the metabolic activity of the cells. The results are summarized in 

Figure 40, and show that the cells are nearly 100% viable in the presence of 

KR13 and KR13b but substantially get affected in the presence of AuNP-

KR13. This therefore validates why the p24 content of the virus produced 

from cells treated with AuNP-KR13 have relatively low amount of p24 

(Figure 39A). In order to confirm that the AuNP alone had no effects on 

cell viability, the producer cells were subjected to unconjugated AuNP as 

well as AUNP conjugated to KR13s a scrambled sequence of KR13 that has 

no antiviral activity. The results showed that these controls had no effect in 

cell viability (Appendix Fig. 15).   
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Figure 40: Cell viability of transfected 293T cells which are incubated with KR13 

(black), KR13b (blue) and AuNP-KR13 (red). The samples were tested using WST-1 

reagent and the absorbance measured at 450 nm. The samples were compared to control 

which is PBS treated virus producer 293T cells. Error bars represent the standard 

deviation of the mean, n = 3. 
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4.1.3.3 Peptide triazoles and gold nanoparticle peptide triazole thiol 

functions on cells stably expressing gp160 on the surface 

 

To better understand the mechanism of how the KR13 and AuNP-KR13 

treatment leads to virions that are non-infectious we tested their effects on 

cells expressing the HIV env (gp160). This was done with CHO-K1 cells 

that stable express gp160 trimer. With inhibitor treatment we observed that 

gp120 was shed from the cell surface in a concentration dependent manner 

(Figure 41). From this result we can confirm that the gp120 also is shed 

from virion producer cells upon peptide treatment leading to virions that 

have no gp120 on their surface and thus no infection. Further this also 

validates that the p24 is not released from the produced virions because the 

peptide acts on a cellular level. The AuNP-KR13 treatment although not 

only led to gp120 shedding from the CHO-K1 cell surface but further led to 

cell lysis and thus cell toxicity (Figure 41). The cell viability of CHO-K1 

cells –ve gp160 was also conducted in the presence of KR13, KR13b as well 

as AuNP-KR13. This was a control experiment done in order to test if this 

gp160 shedding is specific and also whether AuNP-KR13 cell lysis is 

specific to cells expressing gp160 (Appendix Fig. 16). From this 

experiment it is evident that the AuNP-KR13 induced cell toxicity is 

specific to cells expressing gp160 on their envelope (Figure 40 and Figure 

41). 
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Figure 41: Effects of KR13, AuNP-KR13 and KR13b on CHOK1 cells stably 

expressing gp160. The dotted lines show the cell viability of the cells when treated for 

24 hours with the inhibitors and post a media change. The cell viability was measured 

using WST_1 Pre-mix reagent and the absorbance read at 450 nm.  The samples were 

normalized from the negative control which was the absorbance measured of cells 

treated with PBS.  The solid lines show the gp120 shedding from the CHOK1 gp160 

+ve cells when treated with the inhibitors for 24 hours. The cell supernatants were 

collected and measured for gp120 using western blot analysis. The positive and 

negative controls include cells treated with 0.1% triton X and cell treated with PBS 

respectively. Error bars represent the standard deviation of the mean, n = 3. 

.  
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4.1.3.4 The new virus production inhibition by peptide triazoles and 

AuNP-KR13 had a broad spectrum against replication HIV-1 

competent virions   

We used a broad spectrum of HIV-1 virions which include YU2 and JRCSF 

(clade B, tier 2 and CCR5 tropic); NL4-3 (clade B, tier 1 and dual tropic); 

HXBC2 (clade B, tier 1 and CXCR4 tropic) and R3A (clade B, tier 2 and 

dual tropic). The results are summarized in Figure 42 and we observe that 

KR13, KR13b as well as AuNP-KR13 all lead to production of non-

infectious virions with all the various virions tested. The virions produced in 

the presence of AuNP-KR13 however had a reduced level of p24 in the 

supernatant showing that there were fewer virions produced compared to 

KR13 and KR13b treated virions. The effect of KR13, KR13b and AuNP-

KR13 had some very interesting differential effects observed between the 

different types of virions tested. First of all R3A which is a lab adapted 

strain had the least effect by the inhibitors compared to other strains and 

JRCSF had the highest effect by KR13 and AuNP-KR13. Further the 

inhibitory action by KR13 and AuNP-KR13 was observed with both the 

dual tropic,NL4-3 and CXCR4 tropic, HXBC2 although AuNP-KR13 action 

was limited in NL4-3.  
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Figure 42: The breadth analysis of KR13 and AuNP-KR13 inhibition of vironeogenesis. (A) Relative 

the viral content of the cell supernatant post 24 hours of treatment of producer cells measured by p24 

quantification. The % p24 was relative to the 100% control which was cells treated with 0.1% triton 

X and 0% control which was producer cells treated with PBS (B) Viral infection of the produced 

virions post 24 hours of inhibitor treatment. The p24 levels were normalized prior to addition to HOS 

CD4+ve CCR5 +ve cells. (C) Cell viability of the 293T transfected cells 24 hours post inhibitor 

addition. Measured using WST-1 Premix and normalized to the untreated cell control incubated for 

the same time. The samples were quantified using p24 content in the cell supernatant 24 hour post 

treatment to measure produced viruses. Error bars represent the standard deviation of the mean, n = 3. 

 



170 

 

4.1.4 Discussion 

 

Previously we have shown that KR13, KR13b and AuNP-KR13 can inhibit viral 

infection with nM potencies and further we have also shown that KR13 and 

AuNP-KR13 have an addition virolytic function [6, 8]. In this study we have 

shown for the first time a class of inhibitors that have multifaceted anti-viral 

functions that target not only inhibition of viral entry and fusion but further can 

inhibit viral propagation by targeting new virus production. We showed that 

KR13 and AuNP-KR13 can target virus producer cells and inhibit new virus 

production. Further AuNP-KR13 showed an addition effect of cell-lysis or 

toxicity of cells that are either producing active HIV-1 virions or have stable 

g160 on the cell surface. This vironeogenesis inhibitory effect of this class of 

peptide triazoles and conjugate had good breadth of action across the replication 

competent HIV-1 viruses and also was specific in action. Therefore is a novel 

inhibitor class that can target multiple stages and hence provide not only 

protection against HIV-1 initial entry but can even limit propagation of the virus.  

 

The 293T cells that were transfected to produce HIV-1 BaL pseudotyped was 

treated with KR13 and AuNP-KR13 and this lead to viruses produced that were 

non-infectious (Figure 39). Although KR13, KR13b and AuNP-KR13 treatment 

led to virions produced with no gp120 on the viral surface only KR13 and AuNP-

KR13 led to virions that were non-infectious. In order to explain this effect it is 

important to know that HIV-1 pseudovirions have nearly 80% of misfolded gp120 
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that are very weakly tethered to gp41 and can be shed off non-specifically or with 

a very slight conformational change[267, 320, 321]. From previous work we 

know that only KR13 and AuNP-KR13 induce virolysis when treated on cell-free 

HIV-1 BaL pseudotyped. Hence the treatment of virus producer cells with KR13b 

might be resulting in shedding off of the misfolded Env protein but keeping the 

functional Env intact which therefore results in infection (Figure 39B).  

 

The cell viability studies conducted show that the KR13 and KR13b treated virus 

producer cells as well as cells that stably express gp160 on their surface had no 

effect of toxicity. But from the results shown in Figure 41 we observe that the 

gp120 is shed from the surface of the CHOK1 cells that stably express gp160, 

which gives us a mechanistic insight to how these inhibitors produce virions that 

are non-infectious. The peptide treatment leads to gp120 shedding from the virus 

producer cells which therefore leads to virions that are budded with no gp120 on 

their surfaces and thus are non-infectious. But as previously explain KR13b might 

be shedding off only gp120 that are misfolded from the virus producer cells and 

thus still leads to budding of virions that are infectious. In order to further test this 

hypothesis, future studies will be focused on understanding the confirmation of 

the shed off gp120 using antibody mapping and mutational analysis.  

 

The AuNP-KR13 treatment however had some interesting observations that 

might give us a better understanding of its mechanism of action. First and 

foremost AuNP-KR13 treatment resulted in virions with much less p24 content in 
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their lumen (Figure 39A). We also observed that AuNP-KR13 treatment of the 

virus producer cells led to cell-toxicity with a CC50 of 232 ± 53 nM. Since KR13 

is decorated in a multivalent fashion around the AuNP, this will result in an 

increased local concentration of KR13 on the cell surface. Previously we have 

found that KR13 and AuNP-KR13 result in virolysis of cell free virus, and so this 

explains why the increased concentration of KR13 on the virus producer cell 

surface by AuNP conjugation might result in cell membrane stress due to poration 

and thus lead to cell lysis which will result in cell toxicity[6, 8]. This result is also 

shown in CHOK1 cells that stably express gp160 on its surface. From Figure 40 

it is evident that the cells start dying only when more than 80% of the gp120 is 

shed from its surface. Therefore the AuNP-KR13 vironeogenesis inhibition 

precedes the cell toxicity effect making this a multi-step inhibitory action. 

Previous studies have found that cells that express gp120 on their surfaces are 

either producer cells or cells that contain latent HIV-1 population [318, 322]. 

Therefore finding an inhibitor that targets this latent population is revolutionary 

and can be extremely advantageous [323].  

 

The KR13 and AuNP-KR13 activity observed in this study is specific as seen in 

appendix Fig. 15 and 16. The breadth analysis conducted showed that these 

inhibitors are broad acting against HIV-1 replication competent virions (Figure 

42). Further we also showed the AuNP-KR13 led to virions with less p24 in the 

replication competent virion lumen as observed in HIV-1 BaL pseudotyped. The 

R3A virus however was not that sensitive to the inhibitory action by KR13 and 
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AuNP-KR13 (Figure 42B). The R3A virion is a lab adapted viral strain and 

usually functions very well with lab developed inhibitors but in this study it was 

the opposite result. This might also be because the inhibitors were developed and 

tested on BaL virions and thus might be more specific to this viral strain. Studies 

will be conducted in the future to identify the genetic difference between these 

viral envelopes that might be showing these differential effects by these 

inhibitors. But all in all it is important to observe that these inhibitors are able to 

successfully lead to non-infectious virions across a panel of virions that are 

otherwise difficult to inhibit. Therefore this study exemplifies the emergence of a 

new class of inhibitors that can target multiple important stages of HIV-1 

infection including; irreversible inactivation of virus, blocking virus entry and, 

stopping new virus formation.   

 

 

4.2 Immunogen creation using the peptide triazole thiol treated residual virion 

 

4.2.1 Understanding the potential of a customizable immunogen creation on the 

HIV-1 epidemic 

 

HIV-1 has been a very difficult virus to completely eradicate due to its high 

degree of genetic diversity and antigenicity. Although there have been many 

trials that have been conducted in order to develop a successful vaccine there is 

still no progress due to the limited neutralizing antibodies developed in this 
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process[182, 324]. The field has now switched focused on controlling viral load 

after infection and reduce secondary transmission [325-328].  This is another 

difficult challenge due to the quick mutations the virus goes through in the host 

cell post infection. Hence it is very important to design vaccines that target sites 

on the virion that is highly conserved through the genetic diversity, close to 

100% [329]. There have been many recent advances in developing immunogens 

against gp120 because this is one of the first viral proteins that are encountered 

by the host immune system [51, 188, 330]. Such an advance is using the new 

gp120 glycan antibody series PGT, but this is still developing and might take a 

long time due to the irregularity of the glycans present on the gp120 protein[188, 

331]. Hence targeting this protein will lead to antibody leads that can be further 

developed. But this glycoprotein goes through several conformational changes 

once in the cell and can hence bypass the immune system attack and reach its 

target cell. And even though studies are currently being conducted with native 

gp140 trimers as the immunogen, it is still very limited in developing 

neutralizing antibodies [332-334]. 

 

Our previous studies have shown that KR13, a peptide triazole thiol lead not 

only to HIV infection inhibition but also to cell-free irreversible virolysis [6, 8]. 

Further we have also demonstrated that the KR13 treated HIV-1 BaL 

pseudotyped residual virion has gp41 still on its surface and is immunoactive 

against the MPER binding site[6]. This therefore has led us to the work in this 

section which focuses on developing the KR13 residual virion as an immunogen. 
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In the vaccine development front, MPER site on gp41 is one of the most 

immunoreactive areas of the virus that has led to several neutralizing antibody 

development such as 2F5, 4E10 and most recently 10E8 [335-339].  

 

In this study we will be focusing on developing an immunogen which can be a 

created from the virions present in an infected individual and hence can be 

tailored to specifically target that viral strain and thus make it custom made for 

each individual. This novel approach will be the start on a revolutionary 

approach for vaccine development in the HIV field due to it surpassing the 

hurdle of HIV genetic diversity by forming a custom immunogen for each 

individual. This preliminary study might also lead to development of new 

neutralizing antibodies that target gp41 and can be further developed to find 

crucial binding sites on gp41 that can be target for creating new microbicides 

and inhibitors of HIV-1.  

 

4.2.2 Antibody epitope exposure mapping of the residual virion post peptide 

triazole thiol virolysis 

 

 

The gp41 epitope exposure was further validated by conducting a gp41 antibody 

mapping experiment. The peptide treated residual virions were fixed using equal 

volume of 0.1% paraformaldehyde and loaded onto an ELISA plate. A panel of 

gp41 antibodies was used in order to test the conformation of gp41 on the 
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residual virion post KR13 treatment as shown in Figure 28B. From this it is 

clearly evident that the MPER is exposed on virions treated with KR13 

specifically. In order to confirm that the immunoactive areas of gp41 are 

exposed on the KR13 a competition experiment was conducted. HIV-1 BaL 

pseudovirions were incubated with a constant concentration of KR13 (1 µM) and 

increasing concentration of 2F5, 4E10 or 10E8 (anti-MPER antibodies) and as 

control 98-6 (anti-gp41 linear epitope) for 30 minutes at 37°C. The samples were 

then either loaded onto HOS CD4+veCCR5+ve cells to test viral infection as 

explained in section 2.2.2.2 using luciferase reporter gene assay or spun on a 

table top centrifuge at max speed (15,600 rpm) for 2 hours at 4°C for p24 release 

analysis.  The supernatants were collected and tested for p24 using a p24 capture 

ELISA as explained in Bastian et al. 2013 [6].  

 

The results are shown in Figure 43, and from this we observe that all the three 

gp41 antibodies that target MPER and are highly neutralizing are able to inhibit 

the KR13 induced p24 release from the HIV-1 BaL pseudovirions. This shows 

that the MPER exposure is important for leakage and further also validates that 

this exposure is specific to KR13 treatment.  
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Figure 43: Testing the specificity of KR13 induced MPER exposure. (A) Effect of KR13 on the 

inhibitory action of the MPER antibodies 2F5, 4E10, 10-E8 and 98-6. The IC50 values of the MPER 

antibodies 2F5, 4E10 and 10E8 are 0.42 µg/ml, 0.78 µg/ml and 0.098 µg/ml and are shown in dotted 

lines. The samples are normalized to the control 100% infection which is virions treated with PBS and 

loaded onto HOS CD4+veCCR5+ve cells. (B) Inhibition of p24 release induced by KR13 (1µM) by 

2F5, 4-E10, 10E8 and 98-6. The samples are normalized to 100% release being the p24 released by 

the HIV-1 BaL pseudotyped treated with 1 µM KR13. . Error bars represent the standard deviation of 

the mean, n = 3. 
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4.2.3 The sample preparation and validation of the immunogen for in-vivo 

studies 

 

In order to start immunogen creation it is important to understand its 

immunoreactivity in vitro. The immunogen was created as explained above by 

using KR13 (1µM) and treating with HIV-1 BaL pseudotyped virions that was 

lab synthesized as explained in section 2.2.2.1. As controls KR13b and PBS 

treated HIV-1 BaL pseudotyped virions were used to confirm the production of 

the immunogen. The virions once synthesized using a co-transfection of the 

HIV-1 BaL envelope plasmid and envelope-deficient pNL4-3-Fluc+env– 

provirus, was purified using a 6-20% iodixanol gradient as shown in Figure 16. 

The peptide and virus was incubated together for 30 minutes at 37°C and then 

purified once again in a 6-20% iodixanol gradient to separate the released viral 

proteins from the residual virion (16-18% iodixanol). The residual virion 

fraction was pooled and buffer exchanged to PBS. The samples were then fixed 

with equal volume of 0.1% paraformaldehyde for 30 minutes at 4°C. The treated 

virus fractions were spun at 16,000 X g for 2 hours at 4°C in an Eppendorf table 

top centrifuge. The resulting collected virus was loaded onto an ELISA high 

protein binding 96 well plate and coated at 4°C overnight. The plate was blocked 

with 3% BSA for 2 hours at room temperature, and then anti-g120 (D7324), 

anti-gp41 (2F5, 4E10 and 98-6), and anti-p24 (ab 93913 – abcam). The gp120 

content and p24 was tested in the residual virion in order to confirm the virus 

was completely inactive. Further the virion was also tested for viral infection in 



179 

 

HOS CD4+veCCR5+ve cells as explained above. Further the residual virions was 

tested to see the exposure of gp41 using 98-6 linear gp41 antibody and 

specifically MPER in gp41 using conformational gp41 antibodies, 2F5 and 

4E10.  

 

The results from two batches prepared are shown in appendix Fig. 17 and we 

can clearly see that the KR13 treated virions have very low levels of gp120 and 

p24 while a good amount of gp41 (~500 µg/ml). The gp41 in the KR13 treated 

virions was quantified using anti-gp41 2F5 standard curve (for binding to 

monomeric gp41 protein) and the gp41 in the IV (intact virus) and KR13b 

treated virions was quantified using anti-gp41 98-6 standard curve (for binding 

to monomeric gp41 protein). The samples were then transported for 

immunization in balb/c mice (Jackson Laboratories, Bar harbor, ME) in the 

Kutzler lab. The mice was acclimatized to the facility and stored in a 

temperature controlled, light-cycled specific pathogen free facility at Drexel 

University College of Medicine.  

 

4.2.4 First immunization trial with the peptide triazole treated virions and results  

 

For mouse immunizations, experimental groups (Figure 44) contained 100 μl of 

formulation (Freund’s) as negative control (n=3); 100 μl of PBS containing 22 

μg of either KR13-treated HIV-1 BaL pseudovirus (n=4) or KR13b-treated HIV-

1 BaL pseudovirus (n=4).  100 μl of immunogen was mixed 1:1 with incomplete 



180 

 

freunds adjuvant and injected into the right quadriceps muscle using an insulin 

syringe needle (28 g). At endpoints designated in the figure legends, animals 

were sedated using isofluorane, and 200ul of mouse serum was collected on 

awake mice using the submandibular technique as described in animal protocol 

20090.  Immunizations will be carried out separated by 2 weeks.   
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Figure 44: The schematic showing the protocol used for the HIV-1 BaL pseudotyped virions 

deactivated with KR13 or KR13b immunization in BALB/C mice. This also shows in red dots 

where the blood was collected for further analysis. The table below shows the immunological 

activities expected in the groups based of on the proteins reactivity of the residual virions. The 

gp41 used here as control is the monomeric soluble gp41 obtained from NIH aids repository. Data 

adopted from Michele Kutzler 
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The sera were collected as described in figure 44 and they were used to detect 

gp41, gp120 and p24 antibodies. The respective soluble proteins (gp41, p24 and 

gp120 – obtained from NIH aids repository) were coated in an ELISA high 

protein binding overnight at 4°C and the plate was blocked for 2 hours with 3% 

BSA at room temperature. Sera from immunized mice were diluted in blocking 

buffer, added to wells in duplicate, and incubated at room temperature for 2 

hours or overnight at 4°C. Bound antibodies were detected with horseradish 

peroxidase–labeled goat antimouse IgG (Santa Cruz Biotechnology) and 

developed with substrate 3,3′,5,5′-tetramethylbenzidine (TMB) H2O2 (Pierce).  

 

The results are summarized in figure 45. And this first batch shows promising 

results with KR13 residual virions generating anti-gp41 antibodies comparable 

to control gp41 protein which also generates anti-gp41 antibodies. Although this 

was promising we did observe that the formulation used did reduce the 

antigenicity of the residual virions (Appendix Fig. 18). And so for the next set 

of immunizations we switched to footpad injections with no adjuvant addition 

using PFA fixed virus particles. The sera collected from the 2nd and 3rd 

immunizations were also tested for antibodies generated for p24, gp120 and 

gp41 using the capture ELISA as described above. The results are summarized 

in Appendix Fig. 19, and we see that the sera from the mouse immunized with 

KR13 treated residual virion had binding specific to gp41 even at the 3rd 

immunization.  
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Figure 45: Delivery of KR13 treated virus generates anti-gp41 antibodies in mice post 

first immunization. The gp120, p24 and gp41 (1 µg/ml) was coated to an ELISA plate 

and coated overnight. The plate was blocked with 3% BSA and the sera were added at 

1:10 dilution. The antibody binding was detected using horseradish peroxidase–labeled 

goat anti-mouse IgG. Data obtained from Kutzler lab (Michele Kutzler).  
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4.2.5  The future directions and importance of the immunogen work 

 

The figure 45  shows promising results, and currently there is work being done 

in order to study whether the generated antibodies from the final  bleed post the 

first immunization study is MPER specific and neutralizing. In order to detect 

the MPER specific epitopes,  an assay was developed, in which MPER (2 µg/ml) 

is coated in a high-protein binding ELISA plate and incubated overnight at 4°C. 

Following this the plate was blocked for non-specific binding using 3% BSA and 

incubated for 2 hours at room temperature. Serial dilution of the sera was loaded 

for 2 hours to the plate and incubated at room temperature. The samples were 

then detected using anti-mouse HRP (Santa Cruz Biotechnology). The find out 

whether the MPER antibodies generated is neutralizing two different assays 

were designed and performed. The first assay was a competition ELISA in 

which the MPER was coated on an ELISA plate as explained above. The plate 

was blocked with 3% BSA and serial dilution of the sera was loaded with equal 

volume of anti-gp41 antibodies, 2F5, 4E10 and 10E8 (MPER specific) at 1µg/ml 

concentration. The samples were incubated for 1 hour at room temperature, 

following addition anti-human HRP (EMD Millipore) specific to the MPER 

antibodies. The preliminary results are shown in Figure 46. From this it is 

clearly evident that the KR13 treated residual HIV-1 BaL pseudotyped 

immunization in Balb/c mice is able to generate antibodies specific to MPER 

(Figure 46A). The competition assay done with MPER specific antibody 2F5 

and the sera generated from the different immunogens showed that the sera from 
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the gp41 protein and the residual virion post KR13 treatment had competition 

with 2F5 (Figure 46B).  

 

From these results it is evident that the KR13 treated residual virion is a custom 

made immunogen that leads to generation of MPER specific antibodies. 

Currently work is being conducted to test the neutralization of HIV-1 BaL 

infection of HOS CD4+veCCR5+ve cells. These astounding results can lead to the 

initiation of a study that can produce immunogens using the virions that are 

already in patients that are infected and thus stop AIDS progressing and 

eventually suppression.  
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Figure 46: Characterization of the sera obtained post immunization of formulation, gp41 protein, 

residual virion post KR13 (1 µM) and KR13b (1 µM) treatment. (A) ELISA results showing sera 

binding to MPER (n=6). (B) ELISA results showing dilution of sera competing with 2F5 anti-gp41 

antibody (1ug/ml) to MPER. The number of animals bled for formulation group (n=4), gp41 

protein (n=5), KR13 treated residual virion (n=6) and KR13b treated residual virion (n=6). Data 

obtained in collaboration with Michele Kutzler 
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4.3 Effect of virolytic agents on capsid mutants and immature virus particles 

 

4.3.1 Effect of capsid stability on the HIV-1 virolytic effect by KR13 and 

AuNP-KR13 

 

From previous studies and the studies in this thesis we have shown that a class of 

peptide triazoles known as peptide triazole thiols led to virolysis of HIV-1 which 

is measured by p24 release from the viral core[6, 8]. Further we also showed that 

the multivalent conjugate of the peptide triazole thiol, AuNP-KR13 led to the 

same HIV-1 virolysis but at a much lower concentration of the inhibitor [8]. The 

mechanism of HIV-1 virolytic activity observed by peptide triazole thiol, KR13, 

has been shown to follow a pathway in which it hijacks the viral-cell fusion 

mechanism. The mechanism of virolytic activity observed by AuNP-KR13 

however is a much more physical action on the virion that leads to complete 

obliteration of the virus.  

 

This study was conducted in order to better understand whether the p24 released 

by KR13 and AuNP-KR13 is from the intra-viral space between the membrane 

and the viral core or whether it is specifically released from the viral core. The 

average HIV-1 virion has been shown to have from 1500- 3000 molecules of p24 

[340-342]. Previous studies have shown that the viral capsid contains only 10-

20% of the total p24 content of the virion and the remaining is in the intra-viral 

space between the viral matrix and the core[343-345]. The HIV-1 capsid core 
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(CA) consists of a total of 231 residues of the hexamers of p24 and 6 pentamers 

that are connected using a flexible linker. Interactions between the N-terminal 

domains (NTDs) form hexamers through an intersubunit NTD-NTD interface, 

while the C-terminal domains (CTDs) form dimers that connect adjacent 

hexamers through a CTD-CTD interface[341, 342, 346, 347].  

 

Therefore in this study we will be using the previously known mutants of the 

capsid in between the NTD-NTD (E45A) interface and the CTD-NTD interface 

(E213A) in order to make the capsid core much more stable and thus test the 

effect of this on the release p24 by KR13 and AuNP-KR13 [343, 344, 348]. From 

this study we observed that the making the HIV capsid led to a drastic reduction 

in the p24 released by KR13. This effect however was not observed with AuNP-

KR13 which even though had a slight reduction still led to approximately 70% 

p24 release with both the core stability mutations.  

 

 

4.3.1.1 Materials and Method 

 

Materials 

 

For peptide triazole thiol preparation, the protocol was followed as 

previously explained [6, 8]and the reagents were purchased from Chem-

Impex International Inc, Ethynylferrocene and Cu(I)I was purchased from 
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Sigma-Aldrich and used without further purification. Fmoc-cis-4-

azidoproline was synthesized starting with commercially available trans-

Hyp-OH [22]. Gold (III) chloride hydrate and citric acid were procured 

obtained from Sigma-Aldrich, Bis (p-sulfonatophenyl) phenylphosphine 

dehydrate dipotassium salt (BSPP) from Strem Chemicals. Modified human 

osteosarcoma Cells (HOS CD4+ve CCR5+ve) engineered to express CD4 and 

CCR5, receptor and co-receptor respectively, as well as pNL4-3.Luc R-E- 

backbone DNA, were obtained from Dr. Nathaniel Landau.  The 

HOS.T4.R5 cells were grown in DMEM supplemented with 10% FBS, 

2.5% HEPES, 1% Penicillin- Streptomycin, 2% L-Glutamine and 1 mg of 

puromycin. 293T cells were obtained from American Type Culture 

Collection and grown in the same culture medium as the HOS.T4.R5 cells 

except without puromycin. The plasmids for HIV-1 BaL-01 gp160 and 

VSV-G Env DNA were from the AIDS Research and Reference Reagent 

Program (ARRRP). The core mutant plasmids E213A and E45A and the 

immature virion core plasmids MA/P6, MA/P6 ΔE, NL4-3 ΔPro were 

obtained from Dr. Christopher Aiken from Vanderbilt University. The 

antibodies mouse anti-p24, rabbit anti-p24, and the protein p24, were from 

Abcam. Enhanced chemiluminescence western blot detection system was 

from Amersham. O-phenylenediamine (OPD) was from Sigma Aldrich.  All 

other materials were from Fisher Scientific. 
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Methodology 

 

In order to test the effects of the capsid stability, HIV-1 BaL pseudotyped 

containing the core mutants were produced using the virus production 

protocol as mentioned above. 4 µg of envelope (BaL-01) and 8 µg of 

backbone DNA (NL4-3 WT, E213A and E45A were co-transfected into 

293T cells using FuGene 6 as the transfection reagent [253].  Fourteen hours 

post-transfection, the medium was changed, and subsequently the VLP-

containing supernatants were collected at 48 hours post transfection.  The 

VLP-containing supernatants were cleared using a 0.45 µm syringe filter and 

purified further by spinning the sample on an iodixanol gradient, using a 

Hoefer continuous gradient maker, ranging from 6 - 20 % iodixanol, at 

30,000 rpm for 2 hours at 4 °C.  

 

In order to test the effect of the core stability, serial dilution of the peptide 

KR13 and AuNP-KR13 were incubated with a known concentration of the 

virions for 30 minutes at 37°C. The samples were then spun at max speed on 

a table top centrifuge for 2 hours at 4°C. The supernatant was collected and 

quantified for p24 using a capture ELISA as explained in section 2.2.3. As 

negative and positive controls the viruses are treated with PBS alone and 

0.1% triton X respectively. In order to validate this effect is specific, the 

effect of VSV-G virions produced with the core mutants were also tested for 

p24 release with KR13 and AuNP-KR13.  
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4.3.1.2 Results 

 

The effect of the capsid mutation on the KR13 and AuNP-KR13 p24 release 

are summarized in Figure 47. From this we observe that the p24 release 

induced by KR13 on the HIV-1 virions is severely affected by both the 

E45A and the E213A. While for the p24 release by AuNP-KR13 was not 

affected as much by the E213A mutation compared to E45A. The VSV-G 

enveloped virions with the core mutants and WT had no effect and did not 

lead to p24 release with KR13 or AuNP-KR13 treatment. Further we also 

saw that the mutants had very minimal levels of viral infection which is 

concurrent with the data observed previously with these mutants due to the 

stability of the cores [343, 344].  

 

4.3.1.3 Discussion 

 

From the results we observe that the core mutants of HIV-1 which make the 

core more stable leads to reduction in levels of p24 released. The interesting 

factor is that the core is made up of only approximately 10-20% of the total 

p24 content in a virion and the core mutants E213A and E45A lead to the 

core containing 30% and 40% of the total p24 content[343, 344]. As 

observed by Figure 47A, the p24 release in the virion with the E45A mutant 

is much more stabilizing compared to E213A of the core. While the AuNP-
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Figure 47: The effects of core stability on KR13 and AuNP KR13 induced p24 release on HIV-1 

BaL pseudotyped.  The p24 release induced by KR13 (A) and AuNP-KR13 (B) on HIV-1 BaL WT 

compared to the core mutant virions E45A and E213A. The VSV-G enveloped WT virus and its 

core mutants were also tested for KR13 (C) and AuNP KR13 (D) induced p24 release. The controls 

used was 100% release which was virions treated with 1% triton X and 0% release as virions 

treated with PBS alone.  

KR13 induced p24 release is not that affected by the E213A mutant 

compared to the E45A mutant (Figure 46B).  
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The E213A mutation is in the helix 10 of the CTD of the capsid dimer and 

leads to a stronger bond between the two dimers in the hexameric lattice 

which E45A is a mutation in the helix 2 of the NTD of the capsid hexamer 

and this makes the interactions between the hexamers much more stronger 

keeping the core structure hyperstable[343, 344]. From the results it is 

clearly visible that the stability between the dimers of p24 protein in the 

hexameric lattice is much more important than the stability of the core itself. 

Further this effect is specific as seen by the VSV-G controls in which the 

KR13 and AuNP-kR13 treatment has no effect on the p24 release (Figure 

47C and D).  

 

4.3.2 Peptide triazole thiol effects on immature HIV-1pseudotyped virions 

 

In a HIV-1 virus lifecycle, post budding of new virions from the host cell, the 

virus undergoes a maturation process in order to become completely infectious. 

The immature virion is much thicker and has a hard gag shell that makes the 

virion much stiffer and will not be able to infect a new cell [295, 341, 349, 350]. 

The Figure 48 shows the structure of the immature compared to the WT and 

shows how much stronger the viral shell of the immature virus is (3.1 N/m 

stiffness) compared to the mature virus (0.2 N/m stiffness)[295].  
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Figure 48: The characteristics of immature HIV-1. (A) Schematic representation of the 

HIV gag with matrix protein (MA) in blue, capsid protein (CA) in red and nucleocapsid 

(NC) in green. (B) The model of the immature (left) and mature (right) virion and the 

location of the gag proteins in both these virions. (C) Average point stiffness of different 

variation of HIV-1. The stiffness is a mean value (~100 FD curves) of the total number of 

virions analyzed per sample (number shown in the bars).  
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In order to produce these immature particles there are two plasmids that were 

given to us as a gift from Dr. Christopher Aiken. These were the NL4-3 MA/P6 

core plasmid and the NL4-3 ΔPro. The MA/P6 contains substitutions preventing 

cleavage of the major Pr55Gag cleavage sites but encoding a wild-type PR 

sequence.  This mutation has shown to produce immature particles that are non-

infectious and have a defective gag preventing correct protease cleavage action 

[351-353]. The other plasmid NL4-3 ΔPro is the core plasmid with no protease 

gene and thus will lead to production of immature particles [354-356]. Therefore 

both these mutants lead to virions that are immature with very rigid viral shells 

and are non-infectious.  

 

In this study we will be testing whether these immature HIV-1 particles are lysed 

by KR13 or AuNP-KR13 just like the regular wild type BaL virion. This was 

conducted in order to understand whether the virus leakage induced by these 

virolytic agents depends on the stiffness of the viral membrane. The results show 

that this effect is indeed dependent on the virus stiffness for both KR13 

treatment and AuNP-KR13 treatment. Further this gives us insight on viral 

envelope incorporation on immature virus and how this affects the amount of 

leakage observed with KR13 and AuNP-KR13 treatment.   
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4.3.2.1 Materials and Methodology 

 

4.3.2.1.1 Production and validation of the immature HIV-1 virions 

 

The virions are produced as previously described by using co-transfection 

of 4 µg of HIV-1 BaL-01 envelope plasmid DNA and 8 µg of backbone 

DNA (NL4-3 WT, NL4-3 MA/P6, NL4-3 MA/P6 Δenv, NL4-3 ΔPro, NL4-

3 ΔPro ΔEnv). The cells used for virus production was the 293T cells 

seeded at 3 million cells in a T75 flask. The cell supernatant were collected 

48 hours post incubation at 37°C and purified using 6-20% iodixanol 

gradient as explained above. The viruses were collected in the virion 

fraction (16-18% iodixanol) and the buffer was transferred to DMEM. The 

virions were then validated by testing its p24 content using a capture 

ELISA as explained above, and tested for virus infection of TZMB1 cells. 

Since the backbone DNA plasmid used to produce the virions did not 

contain the luciferase reporter gene we used TZMB1 cells which contains a 

tat promoter gene that provides luminescence upon HIV-1 infection to 

quantify infection[357].  

 

4.3.2.1.2 KR13 and AuNP-KR13 treatment of immature HIV-1 virions 
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The produced virions were normalized for their p24 content and a serial 

dilution of KR13 or AuNP-KR13 were incubated with the virus for 30 

minutes at 37°C. The samples were then spun on a table top centrifuge at 

max speed (15,600 rpm) for 2 hours at 4°C. The supernatants were 

collected and tested for p24 using a capture ELISA method. The controls 

included 100% release which was virions treated with 0.1% triton X and 

0% release which was virions treated with PBS alone. The values were 

calculated and plotted using Origin Pro. 8.  

 

4.3.2.1.3 Testing the amount of Env incorporation and its dependence on 

p24 leakage induced by KR13 and AuNP-KR13 

 

From the results we observed that the p24 release induced by KR13 and 

AuNP-KR13 was reduced by the immature virions. Hence we conducted a 

western blot analysis of the amount of gp120 present in these immature 

virus particles. The virions were normalized to their p24 content and loaded 

into an SDS page gel (10%) and detected using anti-gp120 D7324 and 

secondary antibody anti-sheep HRP. Therefore we produced regular wild 

type virus particles with reduced amounts of Env incorporation by reducing 

the concentration of Env plasmid DNA used during transfection. This 

therefore resulted in virions with reduced level of spikes (Figure 50A).  
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4.3.2.2 Results 

 

4.3.2.2.1 P24 release induced by KR13 and AuNP-KR13 on immature 

HIV-1 virus particles 

 

Figure 49 shows that the p24 release induced by both KR13 and AuNP-

KR13 is completely suppressed in the both the MA/P6 and NL4-3 ΔPro 

immature HIV-1. The virions were normalized for the p24 content prior to 

the leakage assay. From this it is clearly evident that the immature virions 

are too stiff for the virolytic action of both KR13 and AuNP-KR13. AuNP-

KR13 does have a low amount of release (20%) at the highest concentration 

(5 µM KR13). Therefore this shows that the AuNP-KR13 action is much 

more vigorous that the KR13 alone leading to poration of the immature 

viral membrane which is nearly 10 times stiffer that the regular WT HIV-1 

membrane (Figure 48C).  
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Figure 49: The p24 release induced by KR13 (A) and AuNP-KR13 (B) on immature virions 

compared to BaL-01 wild type control. The p24 content of the virions are normalized prior to 

experiment. The 100% p24 release control is virions treated with 0.1% triton X and 0% 

control is virions treated with PBS alone. n=-1 
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4.3.2.2.2 HIV-1 Env incorporation in the viral membrane and its 

dependence on virolysis induced by KR13 and AuNP-KR13 

 

The gp120 content in the immature virions are quantified using western blot 

analysis and the results are summarized in figure 49A. This shows that 

there are very low levels of gp120 in the immature virions. Since KR13 and 

AuNP-KR13 binds to gp120 and then proceeds to p24 release, if the level 

of gp120 is lower this might impact the p24 release profile. In order to test 

this, we produced HIV-1 BaL WT with reduced levels of gp160 by 

reducing the Env DNA. The Figure 50B shows the characterization of the 

HIV-1 BaL WT with reduced levels of spikes. The amount of spike 

incorporation was validated from the gp120 content and compared to a 

standard curve of monomeric gp120.  The Figure 50C shows that the 

virolytic activity of the KR13 and AuNP-KR13 on the HIV-1 virion 

reduces with reducing level of with the spike incorporation.  
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Figure 50: gp120 quantification and spike density variation of BAL-01 WT HIV-1. (A) 

The gp120 quantification of the gp120 on the viral surface of BAL-WT compared to 

NL4-3 ΔPro and MA-P6 mutant. The antibody used for gp120 detection was D7324 and 

secondary antibody, anti-sheep HRP. (B) The characterization of the HIV-1 BaL virions 

with varying spike density which was quantified based on the western blot analysis from 

the inset shown. The p24 was quantified using anti-p24 (ab9313) and gp41 using anti-

gp41 (98-6) and their respective secondary antibodies using ELISA analysis. p24 release 

profiles of  KR13 (C) and AuNP-KR13 (D) treatment with HIV-1 with varying spike 

density. The values were plotted using Origin Pro 8.0 and the error bars represent 

standard deviations of n=3. 
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4.3.3 Discussion 

 

The results in this study have shown several important characteristics of the 

virloytic activity observed by KR13 and AuNP-KR13 that will give more insight 

to the mechanism of this activity. The results show that KR13 and AuNP-KR13 

p24 release is diminished with the p24 core mutants as well as immature virions. 

This shows that the p24 release by KR13 and AuNP-KR13 depends on the 

stability of the viral core and stiffness of the viral membrane. Previously we 

have shown that the KR13 induced p24 release is caused by hijacking the viral-

cell fusion mechanism, and previous studies have shown that the immature 

virions and hyper stable core mutants have no infection[6, 344, 349, 351, 357]. 

Therefore since these mutants limit viral entry to host cell and also inhibits 

KR13 dependent virolysis this confirms that both these actions are correlated.    

 

The results of the core mutants show that KR13 induced virolysis has a different 

mechanism compared to the AuNP-KR13 induced virolysis. The AuNP-KR13 

virolysis is not affected when the dimers in the capsid is mutated to have an 

electrostatic bond making it hyperstable, while when the capsid has a mutation 

to make the bond between the hexamers stronger, this led to reduction in p24 

release. But for KR13 induced virolysis both the mutants that made the capsid 

core stable reduced the p24 release dramatically. It is known that capsid core 

contains only around 20% of the total p24 content in the virus, and when the 

core is hyperstable the core contains max 40% of p24 [343-345, 351]. Therefore 
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from this we can conquer that the AuNP-KR13 poration is much larger than the 

pore formed with KR13 on the HIV-1 viral membrane. This can be further 

explored by studying mutants in the core like L203A and Q219A which are 

capsid destabilizing and L49D which disrupts the interaction between gp120 and 

gp41[343-345, 358].  

 

The stiffness of the immature HIV virions is 10-20 fold more stiff than the HIV-

1 BaL wildtype. The MA-P6 mutation still has the protease enzyme but has a 

defective gag protein and thus cannot lead to complete protease digest and hence 

will not form mature infectious virions[351-353]. The NL4-3 ΔPro virions are 

completely immature because with the protease enzyme they will not be able to 

mature [351, 354, 356]. The slight activity of AuNP-KR13 with MA-P6 shows 

that the gag deficiency is not as effective as the protease deletion to inhibit 

virolysis. Previous studies have shown that the defective gag MA-P6 mutation is 

not as stiff as the protease deleted virus but both of these mutations are much 

stiffer than the regular HIV WT [350, 359]. Hence AuNP-KR13 virolytic 

process is stronger and can induce a pore even on viral membranes that can be 

much stiffer. Future work will be focused on testing mutations that alter the viral 

membrane rigidity such as the cytoplasmic tail deletion of gp41 and also using 

protease inhibitors to test their effect on AuNP-KR13 induced virolysis [350, 

360, 361].  
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This unique action by KR13 can be used to study several unknown aspects of 

fusion as well as maturation that still need a lot attention. Further the virolysis by 

AuNP-KR13 is so strong that it forms much larger pores making it a much more 

effective inhibitor. This design therefore can be emulated on other inhibitors that 

have low inhibitory effects and can be used to enhance their effect by 

conjugating to AuNP. This therefore provides new insight into understanding the 

virolytic activity by peptide triazole thiols and further lead to potent microbicide 

development that can target multiple stages of the virus lifecycle making this a 

different form of combination therapy.  
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CHAPTER 5: FUTURE DIRECTIONS  
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5 Introduction 

The work elaborated in this thesis has led to several novel discoveries and further 

several methodologies that are very valuable for the virology field. The discoveries in 

this work have led to 5 research grant proposal of which 3 grants that have awarded 

as well as the Schlumberger Fellowship which I obtained to complete my work. One 

of the most novel discoveries in this work was the discovery of a new class of peptide 

triazoles that have additional virus breakdown effects including gp120 shedding and 

p24 release leading to complete virus lysis. The other discovery was the development 

of a multivalent construct of the peptide triazole that led to several rules that can be 

translational in the biology and engineering field. The AuNP-KR13 size and density 

dependent analysis led to the layout of rules necessary for developing one of the most 

potent inhibitors by using multivalent displays. This work has also led to the one of a 

kind immunogen that is the first immunogen that can be custom made for each 

infected individual that can lead to generation of antibodies specific to the 

immunodominant viral protein, gp41. Further the inhibitors developed here can target 

multiple stages of the HIV-1 lifecycle involving entry, fusion, vironeogenesis as well 

as latent population of the virus. This composition of work therefore has led to 

microbicide, immunogen as well as multivalent drug like construct development that 

can help reduce the viral load and further lead towards eradication of HIV-1. Even 

though several interesting projects that have high potential have been developed in 

this thesis, there is still a lot of work to be done in order to lead these projects in the 

right direction to further develop them into innovative products and methodologies 
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that can be great contributions toward one ultimate goal, hinder HIV spread and 

eventually eradicate this life threatening disease.  

This section therefore is dedicate to giving suggestions and ideas for each of the 

discoveries made through this thesis work in order to direct it in the right direction it 

further.  

 

5.1 Peptide triazole thiols 

 

Peptide triazole thiol was first developed as one of my projects with the help of Dr. 

Kantharaju Kammana a post doc in our lab. This was initially synthesized in order to 

conjugate to gold nanoparticles (AuNPs) in order to form a multivalent construct and 

thus enhance its potency. Although this was eventually achieved and we obtained 

over 20 fold enhancement of potency by using 20 nm AuNP, we also discovered the 

unique feature of this peptide. This was the irreversible lysis of the HIV-1 virion 

leading to p24 release from the virus core. This opened up the pathway to several 

other discoveries that are spelled out in this thesis. So far we have come to several 

conclusions a) the p24 release by KR13 is specific to HIV and irreversible. b) the 

thiol on the peptide is very important for its virolytic activity c) the peptide 

dependent HIV virus lysis follows a kinetic and biochemical pathway very similar to 

HIV-cell fusion (Table 5). d) This action is broad and is also effective for founder 

virions, and e) The residual virion post peptide induced lysis is highly immunoactive.  

 

The future directions that can be envisioned for peptide triazole thiols are as follows:  
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5.1.1 Structural understanding of the importance of thiol on peptide triazole 

thiol for HIV-1 virolysis 

 

This involves understanding specifically where the peptide triazole thiol 

(PTT) binds on gp120 and how it triggers this cascade action on the viral 

spike that later on translates to the viral membrane leading to poration. 

Also it is important to track the peptide thiol during this virolysis event in 

order to study the fate of the peptide which might help with the 

understanding the mechanism of action. Structural docking studies 

alongside mutational studies altering the disulfide on gp120 and studying 

the binding of PTT to gp120 will help better understand the importance of 

thiol.  

 

5.1.2 Study the 6 helix bundle formation post peptide triazole thiol induced lysis 

and compare it to virus-cell fusion 

 

The next important work to be conducted is to understand the 6 helix 

bundle formation during virolysis and compare it to virus-cell fusion. This 

will not only give us a better understanding of the virolysis mechanism but 

also shed light on how the virus-cell fusion takes place. This can be 

achieved by conducting mutational analysis on the different regions of 

gp41 that are important for the fusion process and are known to help with 

this process and see how this affects peptide induced virolysis. The next 

step would be to understand how fusion inhibitors that target different 
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established sites on gp41 and test how they affect peptide induced 

virolysis. Temperature arrest studies can be conducted in order to freeze 

the virolytic process at different stages and use antibody mapping and 

fusion inhibitors to understand the conformational changes of gp41 to 

breakdown the virolytic/poration process.  

5.1.3 The role of the HIV-1 membrane during peptide triazole thiol induced 

virolysis:                                                   

Post PTT treatment, HIV-1 goes through a sophisticated breakdown 

process, and the least explored arena is the alterations in the HIV-1 

membrane during this. Hence it is important to focus on the viral 

membrane, alter the membrane properties and study how this affects the 

poration process. Studies need to be conducted to test how the virion goes 

through the energy barrier required for the poration process [362, 363].   

 

5.1.4 Breadth of action of the peptide triazole thiol induced virolysis 

The breadth of the PTT induced virolytic event not only on replication 

competent but also primary isolates as well as patient samples at different 

stages of AIDS need to be conducted in order to better understand the 

overall breadth of this unique effect. This work therefore will not only 

provide a complete mechanistic breakdown of the virolytic process 

induced by KR13 but also give critical information of the HIV-1 – cell 

fusion which will be very important and valued by the scientific 

community.  
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The Figure 51 shows a breakdown of the studies that can be conducted in the 

future in order to better understand KR13 induced HIV-1 virolysis.  

 

 

 

 

Figure 51: Schematic showing the future directions of peptide triazole thiols. TAS- 

Temperature arrest state, 6HB- 6 helix bundle.  
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5.2  Gold Nanoparticle peptide triazole thiol 

 

The gold nanoparticle peptide triazole thiol was developed to create a multivalent 

conjugate in order to enhance the potency of the peptide triazoles. The multivalent 

conjugate was first created with 20 nm AuNPs and KR13 and this led to 

approximately 20 fold enhancement of KR13 antiviral potency. But in this work we 

discovered that AuNP-KR13 conjugate can also lead to p24 release and complete 

destruction of the HIV-1 virion. The mechanism by which the AuNP-KR13 leads to 

virolysis is completely different from the mechanism of KR13 dependent virolysis 

(Table 10). This therefore made me further explore this multivalent effect, which led 

to one of the most potent inhibitors ever created in our lab with a low picomolar IC50 

and EC50 of viral infection inhibition and viral p24 release respectively. The 

multivalent gold nanoparticle could be a prototype for enhancing other inhibitors that 

target virus or cell surface. This therefore led to a revolutionary discovery that can 

now guide future nanomedicine and develop nanocarriers that are efficient and can 

maximize their potential.  

 

5.2.1 Changing the nanoparticle backbone to a more biocompatible design 

 For future work on the development of the gold nanoparticle peptide triazole 

 thiol, it is important to identify a more biocompatible nanoparticle core that 

 maintains the same rigidly gold. Previous studies in our lab have shown that soft 

 core nanoparticle do not lead to the potent p24 release but still have infection 

 inhibition enhancement when peptides are decorated around its surface. Therefore 
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 materials like chitosan or stiff polymers can be used as alternatives to create 

 nanoparticle-peptide conjugates so that it can be as potent as gold nanoparticles 

 but can be used in clinical trials. It is also important to better understand the 

 mechanism of action of AuNP-KR13. Since AuNP has an advantage of high 

 electron density, it can be used as a marker in electron microscopy studies in 

 order to study the transformations of the virions post AuNP-KR13 treatment in 

 super resolution.  

 

5.2.2 HIV-1 membrane changes post AuNP-KR13 treatment 

  Further understand the membrane disruptions the virion goes through and the 

 stress induced on the viral membrane surface that leads to poration and complete 

 irreversible lysis.  

5.2.3 Further development of other anti-viral effects of AuNP-KR13 

 Another very interesting development in this thesis was the cell toxicity effect 

 by the AuNP-KR13 on cells expressing gp120. This might be very  advantageous 

 because this could be used to target one of the most difficult HIV-1 

 populations – the latent virions [364-366] which should be further explored. 

 Mutational analysis as well as breadth analysis is also important in order to 

 further understand the mechanism by which the AuNP-KR13 leads to poration of 

 the virion.  
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5.2.4 Future of AuNP-KR13 

 The work developed here is the preliminary steps for the creation of a 

 preventative drug design that can target the virion at the entry site. Therefore this 

 once this effect is reproduced in a much more biocompatible nanoparticle 

 construct with a much more efficient PTT (eg. peptidomimetic), it can be 

 developed into a preventative drug. For this it is best to be put the nanoparticle 

 construct in either a gel or film construct that is pH sensitive, and can lead to a 

 slow release of the nanoparticle conjugates during entry of the virion [367].  

 

Figure 52 has summarized the future directions of AuNP-peptide triazole thiol 
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5.3 The immunogen creation with the peptide triazole thiol 

 

The results from the peptide triazole thiol treatment of HIV-1 also lead to an striking 

result, the antigenicity of the residual virion. The residual virion post KR13 treatment 

had gp41 on the viral membrane that was immunologically active. Initially this the 

observation of this activity was set aside in order to better understand the mechanism 

of virolysis, but once the high binding of the gp41 to already known neutralizing 

antibodies of gp41 2f5 and 4E10 this had to be further explored. There are very few 

Figure 52: Schematic showing the future directions of AuNP-KR13. NP- 

nanoparticle 
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immunogens that are currently being created in order to be used to generate 

antibodies that can target this high genetically variant virus [368]. Therefore there is 

an urgent need to develop an immunogen that can generate broadly active 

neutralizing antibodies in humans against infection of a broad range of HIV-1 

subtypes. This project is still taking in its preliminary stages but the results are very 

promising. Hence it is important to explore further the immunoreactivity of the 

residual virion post peptide triazole treatment. This study introduces the concept of 

custom made immunogen in which the infected host’s virions are used to boost their 

immune reaction against the disease progression. In order to confirm that we are 

generating neutralizing antibodies it is important to explore the exact site to which 

these antibodies are generated. DNA priming is another technique that is currently 

initiated in the third set of immunization studies to boost the immune response 

against the residual virion and thus generate larger titers as well as a broad range of 

antibodies against the native gp41 on the virion with no modifications.  

 

To summarize, the scheme below represents the future directions of each individual 

concept revealed in this thesis. The peptide triazole thiols and the gold nanoparticle 

peptide triazole thiol conjugates are the first generation of virolytic agents that are 

broadly active, can inhibit multiple stages of the virus lifecycle and are highly potent. 

These agents can be used as leads for developing more stable versions which can be 

sustained in the body and can be used either as microbicides or as preventatives for 

PreP (Pre-exposure prophylaxis). The immunogen creation is still in development but 
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once the preliminary data is established, it is a project with high potential for the 

future of HIV-1 infection prevention (Figure 53).  

 

 

Figure 53: Schematic summarizing the potential future directions of the lead drug 

candiadates developed in this thesis against HIV-1 infection 
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TABLES 

Table 1: Potencies of inactivation and breakdown of BaL HIV-1 pseudotyped and 

replication competent virions by peptide triazoles.  The extents of loss of cell infection, 

p24 release and gp120 shedding were measured for KR13, KR13b, KR13s and HNG156 

treatment of BaL pseudovirus.  * Designates the EC50 and IC50 values of the viral 

infection inhibition, gp120 shedding and p24 release, respectively, obtained for fully 

infectious HIV-1 BaL virions induced by KR13 and HNG156.  All of the IC50 and EC50 
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values were determined from dose response profiles (Figure 17 and Appendix Fig.1 ) 

using Origin Pro.8 (Origin Lab). ± designates the standard deviation of the mean, n > 3. 

 

 

 

 

 

 

 

 

 

 

Peptide Viral Inactivation 

EC50  (nM) 

p24 Release 

IC50 (nM) 

gp120 Shedding 

IC50 (nM) 

HNG156 803 ± 120 

*5500 ± 1100 

>500,000 

*>200,000 

500 ± 230 

*1800 ± 1000 

KR13 23 ± 45 

*639 ± 71 

500 ± 80 

*4400 ± 930 

32 ± 20 

*1200 ± 930 

KR13s >500,000 >500,000 >500,000 

KR13b 52 ± 35 >100,000 120 ± 43 
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Table 2: Potencies of effects of fusion inhibitors on inactivation and breakdown of BaL 

HIV-1 pseudotypedvirions by peptide triazoles.  The extents of loss of cell infection and 

p24 release for T20, C34, C37, N36 and 5 Helix treatment of BaL pseudovirus with or 

without KR13 are summarized.  All of the IC50 and EC50 values were determined from 

dose response profiles (Figure 26) using Origin Pro.8 (Origin Lab). ± designates the 

standard deviation of the mean, n > 3. 

FUSION 

INHIBITORS 

IC50 OF VIRAL INFECTION 

INHIBITION 

EC50 OF P24 RELEASE 

WITHOUT 

KR13 (NM) 

WITH 500 NM 

KR13 (NM) 

WITHOUT 

KR13 (NM) 

WITH 1 µM 

KR13 (NM) 

T20 8.2 ± 1.2 < 0.001 > 5000 0.5 ± 0.2 

C34 NA NA > 5000 7.84 ± 1.8 

C37 65.7 ± 4.6 ~ 0.001 > 5000 3230 ± 800 

N36 107.3 ± 24.2 ~ 0.01 > 5000 3.23 ± 0.8 

5 HELIX 4.5 ± 0.4 <0.001 > 5000 0.26 ± 0.8 
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Table 3: Antibody panel against gp120 and their binding sites. The dilution that is 

specified in the third column is the dilution used for the antibody mapping in Figure 28. 
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Table 4: Antibody panel against gp41 and their binding sites. The dilution that is specified in the 

fourth column is the dilution used for the antibody mapping in figure 25. 
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Table 5: A table showing the similarities between KR13 induced virolysis and virus-cell 

fusion 

 

Peptide triazole thiol  

(PTT) Induced Virolysis 

HIV – Cell fusion  Supporting Data 

The steps of HIV-1 

virolysis by PTT include 

gp120 shedding 

followed by a slower 

rate limiting p24 release 

from the viral lumen 

During virus cell fusion the 

rate limiting step is the relative 

content mixing of the virion 

and cell membrane release of 

the p24 core of the virion into 

the cell lumen 

Figure 20 and Figure 21, 

Chien et al. 2008 

Gp120 is shed off from 

the virion surface post 

PTT binding 

Gp120 is shed off from the 

virion post CD4 binding 

Figure 17, 18 and 20  

Moore et al. 1990 and Haim 

et al. 2009 

The gp41 on the HIV 

virion post PTT 

treatment leads to 

MPER exposure 

The gp41 on the HIV virion 

post CD4 and coreceptor 

binding leads to MPER 

exposure 

Figure 21, Dimitrov et al. 

2007, Monetro et al. 2008 

Fusion Inhibitors 

inhibit PTT induced 

virolysis 

Fusion inhibitors inhibit HIV-

cell fusion 

Figure 22 and Figure 26, 

Chan et al. 1998 
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Table 6: Potencies of inactivation and breakdown of BaL HIV-1 pseudotyped AuNP-

KR13 conjugates of different diameters.  The extents of loss of cell infection and p24 

release AuNP-KR13 treatment of BaL pseudovirus.  The average numbers of peptides per 

AuNP were measured using amino acid analysis and the peptide coverage per nm2 was 

calculated.  All of the IC50 and EC50 values were determined from dose response profiles 

(Figure 31) using Origin Pro.8 (Origin Lab). ± designates the standard deviation of the 

mean, n > 3. 

 

 

Diameter 

Viral infection 

inhibition  

IC50 (nM) 

 p24 release  

EC50 (nM) 

Average Number 

of peptides per 

AuNP  

Peptide density 

per nm2  

13.2nm 60 ± 10 10.94735 ± 1.66 34 0.062 

19.9nm 0.9 ±0.2 14.1626 ±  1.52 73 0.059 

42.8nm 0.18 ± 0.1 12.09586 ± 0.83 139 0.024 

92.6nm 0.02 ± 0.01 9.85039 ±  0.61 220 0.008 

123.4nm 0.01 ± 0.01 5.70828 ±  0.60 652 0.014 
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Table 7: Potencies of inactivation and breakdown of BaL HIV-1 pseudotyped AuNP-

KR13 conjugates with varying peptide coverage density.  The extents of loss of cell 

infection and p24 release AuNP-KR13 treatment of BaL pseudovirus.  The average 

number of peptides per AuNP were measured using amino acid analysis and the peptide 

coverage per nm2 was calculated.  All of the IC50 and EC50 values were determined from 

dose response profiles (Figure 33) using Origin Pro.8 (Origin Lab). ± designates the 

standard deviation of the mean, n > 3. 

 

 

No of KR13 

Per AuNP 

Viral infection 

inhibition  

IC50 (nM) 

p24 release  

EC50 (nM) 

Peptide density 

 per nm2 

68.6  0.42 nM 1.64 nM 
0.055 

28.8 1.1 nM 6.2 nM 
0.023 

10.9 8.1 nM 19.5 nM 
0.009 

0 >50 nM AuNP >50 nM AuNP 
NA 
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Table 8: Potencies of inactivation and breakdown of BaL HIV-1 pseudotyped AuNP-

KR13 conjugates of different diameters with same amount of peptide per nm2.  The 

extents of loss of cell infection and p24 release AuNP-KR13 treatment of BaL 

pseudovirus.  The average number of peptides per AuNP were measured using amino acid 

analysis and the peptide coverage per nm2 was calculated.  All of the IC50 and EC50 values 

were determined from dose response profiles (Figure 33) using Origin Pro.8 (Origin Lab). 

± designates the standard deviation of the mean, n > 3. 

 

Inhibitor Used 

Viral Infection 

Inhibtion IC50 

(nM) 

P24 release 

EC50 (nM) 

Coverage density  

(no. of peptides)  

Peptide 

density per 

nm2 

KR13 196.6 ± 36.29 3250 ± 567 1 1 

AuNP-KR13 (20.2 

nm) 5.3 ± 1.14 9.7 ±  1.07 96 0.075 

AuNP-KR13 (42.3 

nm) 0.7  ±  0.14 1.2 ± 2.5 430 0.077 

AuNP-KR13 (80.2 

nm) 0.05 ± 0.06 0.2 ± 0.4 1387 0.069 
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Table 9: Potencies of inactivation and breakdown of BaL HIV-1 pseudotyped AuNP-

KR13 (20.2 nm) conjugate (left) and KR13 alone (right) with HIV-1 pseudotyped with 

increasing amount of mutant spikes (S375W).  The extents of loss of cell infection and 

p24 release AuNP-KR13 treatment of BaL pseudovirus.  The amount of spike density 

was calculated as shown in methods section 4.1 and summarized in figure 36.  All of the 

IC50 and EC50 values were determined from dose response profiles (Figure 36) using 

Origin Pro.8 (Origin Lab). ± designates the standard deviation of the mean, n > 3. 
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Table 10: A table summarizing the differences between KR13 and AuNP-KR13 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarities Differences Supporting Data 

Both p24 and gp120 is 

released from the HIV-1 

virion post treatment 

AuNP-KR13 treatment has a 

faster rate of both p24 and 

gp120  release from the virion 

compared to KR13 

Figure 35 

Lead to morphological 

alteration to the virion  

The physical effect of AuNP-

KR13 on the virion is more 

dramatic and irregular 

compared to KR13 which gives 

more shrunken particles 

Appendix Fig. 4 and 

Appendix Fig. 13 

The gp41 remains on the 

virion post treatment 

AuNP-KR13 treatment does not 

expose MPER on gp41 

Figure 21 and Figure 35 

Both result in gp120 

shedding from the HIV-1 

producer cells leading to 

inactive virus production 

AuNP-KR13 treatment also 

leads to cytotoxicity and 

eventually death of these virus 

producer cells 

Figure 39, Figure 40 

The p24 release is only 

observed with peptide 

triazoles with thiol 

The free thiol on KR13 is 

important for virolysis only for 

KR13 alone and not AuNP-

KR13. The p24 release by KR13 

is inhibited by DTNB and 2G12, 

blocking free thiols as well as 

disufide rich regions of gp120.  

Figure not shown 

The thiol for KR13 is 

important for function  
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6 APPENDIX 

 

Control optical biosensor analysis to rule out non-specific T20-KR13 interaction:  

As part of confirmation of the specificity of the T20 inhibition of HIV-1 lytic 

deformation by KR13, a competition surface plasmon resonance experiment was 

conducted. Since T20 requires a small amount of DMSO for adequate solubility, all of 

the SPR experiments with T20 were conducted in PBS + 0.005% Tween-20 containing 

2% DMSO as running buffer. Direct binding of KR13 and T20 respectively was also 

conducted separately by injecting 0.3 nM to 156 nM of the above peptides in 2% DMSO-

containing buffer over the gp120 surface. This was done to monitor the binding of the 

peptides in the presence of 2% DMSO (Appendix Fig. 5). For KR13/T20 competition 

experiments, serial dilutions of the T20 (starting from 5 µM) with a constant 

concentration of KR13 (300 nM) were pre-mixed for 30 minutes and injected over the 

gp120 surface. Controls included buffer alone, KR13s (300 nM) alone and T20 (5 µM) 

alone. Data were fit to the Langmuir 1:1 binding equation to estimate steady state affinity 

in BiaEvaluation version 4.0 (GE) (direct binding) as noted above. The sensorgrams 

obtained (Appendix Fig. 5) demonstrated lack of interference of KR13 binding to gp120 

by T20.  This is consistent with lack of nonspecific binding of T20 to KR13. 

 

Cell-Culture and Cytotoxicity Test:  

 

The AuNP-KR13 conjugates were tested for stability in physiological conditions 

(Appendix Fig. 9A), as well as cytotoxicity test in vitro using the using the tetrazolium 

salt premix reagent, WST-1 from Takara Bio Inc. following the manufacturer’s protocol. 

The formazan product was measured using the microplate reader at absorbance 

wavelenght 460 nm (Molecular Devices) (Appendix Fig. 9B).  
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APPENDIX FIGURES 

 

Figure 1: Western blot gel images showing gp120 shedding from HIV-1BaL pseudovirus 

as a function of dose of KR13, HNG156, KR13b and KR13s. The western blots were 

stained using the primary anti-gp120 antibody D7324 and secondary anti-sheep HRP. 

Controls shown were intact virus (IV, treated with PBS) and recombinant gp120(200 

ng/ml).  The gp120 control was the YU2 recombinant gp120 obtained by 293F cell 

expression and contains monomeric and aggregate bands as observed previously [25]. 

The gp120 from the virions ran at a different size compared to the monomeric gp120 

most likely due to a different extent of glycosylation on the surface of these proteins 

when expressed in 293T cells. 
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Figure 2: Inhibition of infection of HOS CD4+ve CCR5+ve cells by recombinant viruses 

pseudotyped with the envelope for VSV-G (a) and AMLV (b) by the peptides HNG156, 

KR13, KR13b and KR13s at concentrations ranging from 250µM to 0.01 nM. The data 

were normalized to 100% infection activity in the absence of peptide triazole.  
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Figure 3: Measurement of gp41 content in HIV-1 BaL pseudotype treated with KR13 

and HNG156, respectively, as detected by mAb 98-6. Soluble protein (6% Optiprep) and 

residual virion (18.2 - 19% Optiprep) fractions of the gradient purified, peptide treated 

virus (HIV-1 BaL pseudotyped) were separated by polyacrylamide gel electrophoresis 

and transferred to a PVDF membrane. Bands were detected with anti-gp41 mAb 98-6.  

Band intensities were normalized to total gp41 content present in intact virus control 

(virus treated with PBS). Error bars represent the standard deviation of the mean, n = 3. 
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Figure 4: Raw TEM images used to determine the diameter distributions in Figure 21. 

The intact virus field was obtained for viruses treated with PBS for 30 minutes at 37 °C 

before fixing the virions with 0.1% paraformaldehyde and loading on epoxy for TEM 

analysis.  Separate samples of virions were treated for 30, 720 and 1440 minutes with 

KR13 at 37 °C before fixing with paraformaldehyde. The epoxy samples were cut into 

100 nm thick slices using a Leica EM UC6 Cryo-ultramicrotome and loaded onto a holey 

carbon TEM 200 mesh grid for TEM analysis. The grids were stained with 1% uranyl 

acetate and loaded onto the JEM 2100 microscope system (JEOL, Japan) operated at 120 

kV.  
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Figure 5: SPR analysis to test for possible artifactual binding of T20 to KR13.  All the 

samples were diluted in buffer that contained 2% DMSO and 0.005% tween 20 due to the 

low solubility of T20 in SPR buffer alone. (a) Sensorgrams for direct binding of KR13 to 

chip-immobilized soluble WT YU2 gp120. Data show proportionally increasing binding 

responses to immobilized gp120 at increasing concentrations of KR13. (b) Steady state fit 

analysis of the Req values for each concentration of the peptide from (a) calculated using 

the BiaEvaluation software, with separate kon and koff fit analysis using  the Langmuir 

equation described in Appendix Text section  (c) Sensorgrams for direct KR13 binding to 

chip-immobilized gp120 in the presence of T20.  Samples of T20 (0 µM to 5 µM – 

shown in the legend) and constant concentration of KR13 (300 nM) were pre-mixed (30 

min) and injected into the sensor flow cell. The binding profiles were observed on the 

same WT monomeric gp120 chip as in (a). As a baseline control, PBS (Buffer) alone was 

injected, T20 at 5 µM and KR13s at 300 nM were used as a negative controls.  Data show 

lack of significant dose-dependent effect of T20 on KR13 binding to gp120.  The 

negative control surface used was chip immobilized with non-specific EGFR antibody 

cetuximab. All curves were plotted using Biaevaluation 4.0 software (GE).  
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Figure 6: Dose responses of the effects of peptide triazoles, KR13 and HNG156 on HIV-

1 BaL pseudovirus induced infection inhibition of HOS CD4+ve CCR5+ve and HOS CD4-

ve CCR5+ve cells.  Extent of cell infection was measured using a single round infection 

assay.  Origin Pro. 8 was used for sigmoidal curve fitting, n=3. The x-axis represents 

Relative Luminescence Units (RLU) which was calculated by subtracting the background 

signal (approximately 120 RLU).  
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Figure 7: Viral infection inhibition of the T20 resistant mutant viruses by (A) T20 and 

(B) KR13. The data were normalized to 100% infection activity in the absence of peptide 

triazole.  Origin Pro. 8 was used for sigmoidal curve fitting, n=3. 
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Figure 8: (A) Stability of the gold and gold conjugates in physiological conditions shown 

in x-axis. The absorbance peak of the AuNP, AuNP-KR13 (20 nm diameter) as well as 

AuNP:BSPP at different physiological conditions, Phosphate Buffer (PB), DI-water, 

PBS, NaCl (17 mM) and HOS CD4+ve CCR5+ve growth media. (B) Cell toxicity assay 

using WST-1 reagent for the effect of AuNP-KR13 (20 nm diameter) and KR13 alone on 

HOS CD4+ve CCR5+ve 48 hours post addition.; no statistically significant differences 

measured, P<<<0.05, n =3 using a t test. 
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Figure 9: Flocculation assay of the AuNP in order to estimate the amount of peptide 

(KR13) required for stable conjugation. Equal concentration of AuNP is vigorously 

stirred with increasing concentration of KR13 for 30 minutes at room temperature. 

Following 1 M NaCl is added to the mixture and the absorbance at the surface plasmon 

resonance absorbance of AuNP (532 nm) is measured using a spectrophotometer. When 

the absorbance is stabilized, this shows that the conjugate is stable and no longer leads to 

aggregation, that concentration of the peptide to AuNP ratio is used for conjugation.  
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Figure 10: Zeta potential measurements from the zetasizer of the AuNP prior and post to 

KR13 addition. The diameters that are on the x-axis of the AuNP-KR13 is based off on 

the TEM and DLS measurements.  
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Figure 11: (A) Shows the activity of the HIV-1 BaL pseudotyped that have different 

levels of S375W mutant incorporated. The No. of spikes on the y-axis (red) is calculated 

from the gel image in the inset, assuming that one virus has 2500 molecules of p24 (Thali 

et al. 1994) and also that all spikes have three monomers incorporated. The gp120 content 

was measured using western blot analysis, the p24 release was measured using p24 

ELISA and virus infection was measured using single round luciferase reporter gene 

assay as explained in detail in the methods. (B) Shows the gp120 monomer standard 

curve from the western blot analysis and the linear fit equation in the inset which was 

used to calculate the gp120 monomers in the HIV-1 BaL pseudotyped that have different 

levels of S375W mutant incorporated. 
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Figure 12: Comparing the anti-viral effects of KR13 (A) versus AuNP-KR13 (20 nm) 

(B). This data is summarized from the raw data plots of viral infection inhibiton and p24 

release of KR13 and AuNP-KR13 presented in figure 34 respectively. This shows that the 

higher the value of the hills coefficient the sharper the slope of the curve and  the lower 

the anti-viral effect on the virion.   
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Figure 13: Representative images of the TEM images taken for intact virus, AuNP-KR13 

(20 nm) and AuNP-KR13 (80 nm) at  50 nM concentration and treated with the HIV-1 

BaL pseudotyped for 10 minutes at 37°C and fixed as explained in the methods. The 

samples are stained with 1% uranyl acetate and loaded onto a TEM copper grid and 

imaged using the JEM 2100 operated at 120 kV (JEOL, Japan).   
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Figure 14: (A) KR13 and KR13b structure and bottom right shows how KR13 is 

conjugated on 20 nm AuNP. (B) Viral infection inhibition of HOS CD4+veCCR5+ve cells 

by KR13 (black) KR13b (red) and AuNP-KR13 (blue) and the IC50 values are 52.1 ± 3.4 

nM, 147.3 ± 6.4 nM and 1.2 ± 2.4 nM respectively (C) p24 release from KR13, KR13b 

and AuNP-KR13 treated HIV-1 BaL pseudovirions. The samples are plotted using 100% 

as virions treated with 1% triton X and 0% as PBS treated virions. The EC50 values of the 

p24 release caused by KR13 and AuNP-KR13 are 3.15 ± 1.5 µM and 6.3 ± 5.1 nM.  

Origin Pro. 8 was used for sigmoidal curve fitting, n=3. Error bars represent standard 

deviation of n=3.  
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Figure 15: Testing the viral infection of the virions collected from producer 293T cells 

that are incubated with increasing concentrations of AuNP alone or AuNP-KR13s. The 

virions were collected and purified using a 6-20% iodixanol gradient and loaded onto a 

HOS CD4+veCCR5+ve and tested for infection 48 hours post addition. Error bars represent 

the standard deviation of the mean, n = 3. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



264 

 

 

Figure 16: Cell viability of CHOK1 cells after 24 hours post KR13, KR13b and AuNP-

KR13 treatment. The WST-1 pre-mix was used in order to test the cell viability and the 

absorbance was measured at 450 nm. CHOK1 cells treated with PBS for 24 hours were 

used as the 100% viability control. Error bars represent the standard deviation of the 

mean, n = 3. 
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Figure 17: Cell viability of 293T  cells transfected with S375W virion DNA and BAL-

WT DNA, in the presence of KR13 and AuNP-KR13. 24 hours post KR13  and AuNP-

KR13 treatment WST-1 pre-mix was used in order to test the cell viability and the 

absorbance was measured at 450 nm. 293T cells treated with PBS for 24 hours were used 

as the 100% viability control. Error bars represent the standard deviation of the mean, n = 

3. 

 

 


