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Abstract 
 

Impact of Envelope Cholesterol and Spike gp41 on Cell-Independent Lytic Inactivation 

of HIV-1 by Peptide Triazole Thiols 

Ramalingam Venkat Kalyana Sundaram 

 

HIV-1 is a retrovirus that infects host cells carrying the receptor CD4 and the co-receptor 

CCR5/CXCR4. The process of infection is carried out by the virus specific proteins gp120 

and gp41, expressed as a trimer of dimers on the virus surface.  This interaction can be 

interrupted with the use of peptide triazole thiols (PTT).  They are a family of entry 

inhibitors that carry dual antagonist behavior against gp120 by blocking both CD4 and co-

receptor interactions.   

 

The thiol introduced into the PTT sequence by a C-terminal Cysteine adds an additional 

irreversible inactivating step consisting of lysis leading to the release of capsid p24 protein 

from the lumen of the virus.  Since PTTs do not interact with the membrane as established 

with viral particles with no spike or particles pseudotyped with VSV-G, lysis must be a 

consequence of conformational changes within the spike being triggered by PTTs, resulting 

in membrane perturbation and the eventual mixing of viral luminal contents with the 

extracellular surroundings.  Since there is a similar mixing of viral contents with 

intracellular contents after CD4/co-receptor interaction with the virus, we decided to use 



2 
 

 
 

this lytic event as a window to study the lipid-protein interactions that take place to allow 

the disruption of the membrane and the eventual release of luminal contents.  This study 

was split into two sections.   

 

In the first section, the lipids that make up the viral lipid bilayer (envelope) were 

investigated and a thorough survey of literature pointed to cholesterol, the major lipid 

constituent (ca. 45 mol %).  Prior literature has shown that depletion with a chemical agent 

specific for cholesterol, methyl beta-cyclodextrin (MβCD) from the viral envelope or from 

cells producing viruses resulted in a complete loss of infectivity.  When tested for the 

impact of sterol depletion on lysis with PTT, the results were dramatic.  Small amounts of 

MβCD treatment (< 312 µM) led to a stark increase in the amount of lysis (ca. 2.5x base-

line lysis) before being suppressed at higher [MβCD].  This correlated with a similar bell-

shaped trend in infectivity of HIV-1 pseudotyped spikes but not VSV-G pseudotyped 

spikes suggesting it was specific to HIV-1.   

 

Further biochemical investigations showed that cholesterol content had mostly dropped 

(ca. 40%) within the small range of MβCD treatment and majority of the spike gp120 had 

shed, consistent with previous reports on MβCD treatment.  The enhancement and 

suppression of lysis after cholesterol depletion could be reversed by the supplementation 

of exogenous cholesterol.  More crucially, reversal could also be achieved with a sterol that 

supported rafts (cholestanol) and to a much lesser extent with a sterol that did not 

(coprostanol).  Fluorescent investigations into the viral envelope showed a rise in 
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membrane fluidity (> 312 µM MβCD) using the probe Laurdan and a bell-shaped 

quenching of fluorescence using the probe Dehydroergosterol with a nadir in intensity at 

312 µM MβCD.  These data suggested that the membrane was undergoing morphological 

changes with the depletion of cholesterol and this was affecting the lysis observed with 

PTTs and infectivity.  The sterol data and DHE data hint at the role of rafts in the transitions 

observed but this has not been conclusively proven.   

 

To further the understanding, the protein involved with the membrane gp41 was 

investigated.  Different regions of gp41 were examined for their role in lysis through site-

directed mutagenesis of the BaL.01 sequence.  Of the mutants created, all showed dose-

dependent lytic release with PTT treatment in comparable levels and IC50s to the wild-type 

BaL.01 pseudovirus.  While all mutants showed reduced infectivity, which was consistent 

with literature, mutations at the putative interface between envelope cholesterol and the 

spike (CRAC -> L676I, C-terminal tail truncation -> R706St) showed enhancement of lysis 

at [MβCD] lower than that for wild type (~ 10 µM).  One possible reason might be that 

envelope cholesterol that is held tightly by viral spike interactions is more easily removed 

by MβCD in the mutants. 

 

Mutations that targeted conserved tryptophan residues within the membrane proximal 

external region (MPER domain) affected the sensitivity to cholesterol depletion, with the 

mutant containing all Trp residues mutated (W(1-5)A) being the least sensitive.  Since 

these residues are known to be critical for infectivity of HIV-1 and other viruses including 
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Influenza and Ebola, the data suggest a common purpose for this region in both infectivity 

and lysis. 

 

Based on the mutational data collected, one may conclude the following: (1) Mutations 

have a much bigger effect on infectivity than on lysis. (2) Multiple regions of gp41 might 

be involved in the lytic mechanism, and mutations targeting single regions might not be 

big enough to stop lysis. (3) Alternatively, none of the regions targeted with mutations are 

crucial for lysis, though this is very unlikely due to the trends observed with sensitivity to 

cholesterol. 

 

Taken in context with the cholesterol depletion data, the findings can be explained with an 

energy to reaction argument.  High cholesterol content (~ 45 mol %) results in low fluidity 

and tight packing of phospholipids, and this might benefit the spike in helping it maintain 

structure and conformation.  However, it raises the energy barrier for the membrane-

interacting gp41 protein in processes such as fusion and lysis which require large 

conformational changes such as the formation of the 6-helix bundle.  Removing cholesterol 

to a limited extent might help lower the barrier, permitting these events to occur at a higher 

frequency and greater likelihood and this may be why we see an enhancement in lysis and 

infection. 
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Investigations into the lytic mechanism with PTTs have provided a potential window into 

the mechanism of fusion that occurs with HIV-1.  This is of critical importance, as there is 

a pressing need for entry inhibitors and a better understanding of the mechanism might 

foster a whole new generation of virus-inactivating, lytic entry inhibitors. 
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Specific Aims 
 

My overall aim was to study the intriguing lipid-protein machinery at the virological 

synapse that is responsible for the complicated processes of lysis and fusion.  I studied 

this mechanism by splitting off the role of viral lipids (cholesterol) and viral proteins (gp41) 

in the interplay that leads to lytic release of p24 and correlated any similarities with fusion.   

There is an urgent need for entry inhibitors.  The market contains effective therapeutics 

that target the virus after it has entered the host cell.  These therapies are focused on keeping 

the patient alive and leading as normal a life as possible.  Entry inhibitors raise the bar on 

therapeutics by targeting the virus before it enters the cell, transforming the patient of an 

incurable disease into a healthy individual taking preventatives.  Peptide triazoles and 

peptide triazole thiols represent a class of dual antagonist inhibitors that target a wide range 

of HIV-1 clades and cause dual antagonism of CD4 and co-receptor binding, shedding of 

gp120 from the virus spike and for the latter, lytic release of luminal capsid p24 protein.  

These consequences of PTT treatment make it an attractive therapeutic whose mode of 

action needs to be studied in greater detail.   

The crux of this thesis focused on the aspect of spike triggering by PTT that results in lytic 

release suggesting that spike protein conformational changes can perturb the surrounding 

lipid bilayer and possibly disrupt the integrity leading to release of luminal contents into 

the extracellular milieu.  This action mimics an aspect of fusion where the binding of CD4 

and co-receptor triggers conformational changes in the spike gp120 and gp41, and 

eventually results in the fusion of the lipid bilayers of the virus and cell.  Hence, using 
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PTTs as a model allows us to understand how gp41 in concert with the surrounding lipids 

undergoes membrane perturbation. 

 

The three specific aims for this project included: 

Aim 1: Determine the role of cholesterol present in the viral membrane on lytic 

release of p24 and correlate it with infection.  

This aim used a coordinated study between lytic release with KR-13, a PTT and infection 

on HIV-1 pseudoviruses that are depleted of cholesterol using methyl beta cyclodextrin 

(MβCD), a chemical that is specific to cholesterol.  To determine the impact of depleting 

cholesterol, assays were run along a same gradient of [MβCD] that determined lytic release 

with PTT (ELISA for p24), infectivity (chemiluminescence), shedding of spike gp120 

(western blots), membrane fluidity (Laurdan fluorescence shift) and membrane 

morphology with Dehydroergosterol (fluorescence).  

 

Aim 2: Determine and produce mutants within spike gp41 that target its interaction 

with the lipid bilayer. 

This aim focused on prior literature on regions of gp41 known to interact with the 

membrane and determine mutations that affect these interactions.  This was followed by 

site-directed mutagenesis efforts to create mutant pseudoviruses with different membrane-

binding abilities.  The produced pseudoviruses were characterized for infection 
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(chemiluminescence), gp120 content (western blots) and normalized with their p24 content 

(sandwich ELISA). 

 

Aim 3: Determine the effect the mutations created in Aim 2 have on cholesterol 

depletion and the difference between these mutants and wild type. 

This aim brought together concepts developed in aim 1 after cholesterol depletion and the 

mutants developed in aim 2 to create a holistic picture on the interplay that takes place 

between proteins and lipids during lytic release.  While a lot of the mutants that target 

sensitive regions, had little to no infectivity, their lytic behavior will be characterized. 

 

Overall, this work furthered the understanding of lipid-protein interactivity required for 

concerted processes like lysis and fusion and may enable us to develop classes of entry 

inhibitors that target this mechanism.  It will also enable us to forge new design pathways 

for PTTs. 
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Chapter 1: Introduction 
 

PATHOLOGY OF HIV-1 

 

HIV-1 is a virus that infects humans by targeting the cells of the immune system (CD4+ T 

cells, macrophages and dendritic cells).  The disease is thought to spread mainly through 

the exchange of fluids between two hosts, and in this regard, spread can occur indirectly 

by the sharing of needles.  Estimates (as of 2013) have the number of people who have 

HIV-1 at 35 million globally with the number of new infections dropping due to the spread 

of information on safe practices and enhanced access to antiretrovirals that reduce the 

chance of transmission (UNAIDS Report, 2014). 

 

ENTRY AND LIFE CYCLE OF HIV-1 

 

HIV-1 infects cells through a sequence of steps that start with the interaction of gp120 with 

the cellular receptors CD4 and CCR5/CXCR4 as shown in Figure 1.  This is followed by 

the exposure of the fusogenic tip of gp41, which is believed to become immersed in the 

lipid bilayer of the host cell.  This is followed by the collapse of the heptad repeat region 

of gp41 (N-HR and C-HR) into a six-helix bundle.  Thermodynamic data with peptides 

that mimic the sequence of this region suggest that the formation of the 6-HB complex 
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releases enough energy to allow for fusion of the membrane bilayers of the virus and the 

host cell, allowing the entry of the protein capsid and the genetic material into the cell [1]. 

 

 

 

 

Figure 1: Depiction of the initial interactions of the viral spike gp120 with host receptors CD4 and co-receptor 
CCR5/CXCR4 followed by the insertion of the fusion peptide and the formation of the 6-helix bundle that enables fusion. 
Adapted from [2] 

  

 

 

Once the genetic material has entered the cell, it is acted upon by an enzyme called reverse 

transcriptase that converts the viral RNA to DNA, which is then shuttled into the nucleus.  

Here, it is integrated into the host cell genome by another enzyme, integrase, after which 

the process can stop for a period of time, known as latency or the DNA can be expressed 

as mRNA immediately to start the translation process of expressing viral proteins.  The 

expressed viral proteins are shuttled from the endoplasmic reticulum, through the golgi and 

the cell surface where the assembly of viruses begins [3].  The proteins that make up the 

core of the virus assemble on the inner surface in an immature form, while the spikes 
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(gp120 + gp41) assemble on the outer surface.  Once all the proteins have been assembled, 

the virus buds off in an immature state.  A third enzyme associated with viruses, protease, 

is responsible for cleaving the immature poly-protein gag (Pr55) into its constituent 

proteins matrix (MA, p17), capsid (CA, p24), nucleocapsid (NC, p7) and this process is 

believed to occur immediately after budding [3, 4]. 

 

INHIBITORS AGAINST HIV-1 AND THE NEED TO TARGET ENTRY 

 

The steps of the HIV-1 lifecycle have been well studied biochemically and structurally 

leading to a family of drugs targeting each step known as highly active antiretroviral 

therapy (HAART).  While individual drugs demonstrated great efficacy in in vitro studies, 

they eventually lost activity in human studies due to the heavy rate of mutations the virus 

undergoes in each generation.  The big breakthrough in therapy occurred in 1996 at the 

International Conference on AIDS, where it was reported that a combination therapy 

targeting more than one step at a time proved effective at keeping the viral counts low.  

Recently, the FDA has approved the use of Truvada, a combination of two HAART drugs, 

Emtricabine and Tenofovir as a pre-exposure prophylaxis.  In this case, large human studies 

have shown that partners of HIV-1 positive individuals (seronegative individuals), taking 

Truvada were at a much lower risk of contracting HIV-1 compared to people on a placebo. 

This represented a significant breakthrough in HIV-1 prevention [5, 6].  However, all these 

steps targeted the virus after it entered the host.  There are only two approved drugs that 
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target the entry step: Fuzeon (Enfuvirtide, Roche), that targeted and inhibited the six-helix 

bundle formation, and Selzentry (Maraviroc, Pfizer), that targeted the co-receptor, CCR5 

and inhibited gp120 from binding to it [7].  Both of these drugs are prone to becoming 

ineffective due to virus mutations and have to be administered at high levels that often 

result in unpleasant side effects.  This led to their restricted use as salvage therapies after 

all other drugs had proven to be ineffective.  At this stage, there is a pressing need for more 

effective entry inhibitors. 

 

PEPTIDE TRIAZOLES AND PEPTIDE TRIAZOLE THIOLS 

 

The Chaiken lab has developed peptide triazoles, a sequence of amino acids with an active 

pharmacophore consisting of Ile-X-Trp where X is a non-natural amino acid, Azidoproline 

containing a triazole moiety that allows for the facile addition of a bulky metallocene 

(ethynyl ferrocene) through a copper-catalyzed Click chemistry [8-10].  These peptides 

target the spike gp120 and inhibit its interaction with both CD4 and co-receptor 

(CCR5/CXCR4).  They also result in the shedding of the spike gp120 from the spike 

resulting in irreversible inactivation of the virus [11].   

 

A recent generation of this peptide includes a Cys at the C-terminus containing a free thiol 

and embodies an additional mode of inhibition by causing the lysis of the virus and the 
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release of capsid protein (p24) from within the viral lumen but with retention of an intact 

residual particle.   

 

 

 

 

Figure 2: Sequence of the first generation PTT, KR-13 used in this study.  In letter code, the above sequence is: 
RINNIXWSEAMMBaQBaC where X = Ferrocenyl triazole Pro. 

 

 

 

The lytic activity is specific to viruses carrying HIV-1 gp120 and peptides triazoles 

carrying a free thiol, since control viruses pseudotyped with VSV-G glycoprotein are not 

lysed by this peptide, and peptides with the thiol group blocked or the active 

pharmacophore scrambled do not cause lysis [11].  After a thorough survey of literature, 

this is the first agent that simultaneously blocks both CD4 and co-receptor from binding to 

gp120, causes shedding of gp120 from the virus and the release of capsid p24 from the 

virus lumen without interacting directly with the virus membrane (envelope). 
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Further investigations have revealed that the process of lytic release by peptide triazole 

thiols (PTTs) can be inhibited using agents that target and arrest the formation of the 6-

helix bundle [11].  Also, treatment with the PTT results in a dose- and time-dependent 

exposure of the conserved MPER epitope, normally not visible to antibodies [11].  Taking 

both of these observations together suggests that PTT treatment of HIV-1 results in a 

sequence of steps including the formation of the 6-helix bundle, which is required for lysis.  

The requirement to form the 6-helix bundle and expose MPER in the process is similar to 

the entry steps the virus undertakes for a successful fusion event.  These data suggest that 

PTT-induced lysis involves the manipulation of the viral membrane through concerted 

conformational changes of the virus spike after the binding of the PTT to spike gp120.  To 

understand the nature of the lipid-protein interaction at the virological synapse that results 

in lysis, this thesis was focused on the lipids that make up the virus membrane (cholesterol) 

and the protein that interacts with the envelope (gp41). 

 

THE UNIQUE LIPIDOME OF HIV-1 

 

Lipidomic analysis of HIV-1 virions and the cells in which they are produced argue that 

virus membranes are mostly made up of cholesterol (45 mol %) [12-14].  This is a common 

feature amongst enveloped viruses such as Influenza [15, 16], Ebola [17] and Dengue Virus 

[18].  Cholesterol is crucial for the functionality of the virus, and depleting it from either 

the virus or the cells that produce the viruses results in viruses with low or no infectivity 
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[19-23].  The effect of cholesterol depletion on infectivity can be reversed by the addition 

of exogenous cholesterol [19].  The exact role played by cholesterol has not been decisively 

defined.   

 

 

 

 

Figure 3: Distribution of lipids that made up a viral envelope. Adapted from [12] 

  

 

 

Based on evidence with GPCRs including CXCR4, cholesterol is suggested to be a protein 

structure-supporting lipid [24].  It is packed into membranes at high concentrations so as 
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to help complex proteins with multiple membrane spanning domains retain 

structure/conformation as evidenced by the drop in GPCR agonist potency after cholesterol 

depletion.  Others have postulated that lipid bodies like HIV-1 with high radius of curvature 

due to their small size would be prone to falling apart due to the aqueous exposure of 

hydrophobic acyl groups of phospholipids.  Cholesterol helps as a packing agent, sterically 

covering hydrophobic regions and enhancing packing [25].  This postulate is supported by 

the fact that cholesterol content is higher in the outer leaflet than the inner one [12].  

Another lipid that is found in high amounts in viral membranes is sphingomyelin (SM) 

which is exclusively localized in the outer leaflet and is believed to interact with cholesterol 

through ionic bonds between the hydroxyl group on cholesterol and the amide group in SM 

[26].  The same group postulated that SM acts as a membrane anchor to hold on to 

cholesterol in the viral membrane and prevent it from passively falling out [25].   

 

Finally, it has also been shown that lipid rafts are important for HIV-1.  HIV-1 buds from 

the cell membrane raft regions with high local concentration of cholesterol, SM and GM1 

based on markers observed on viral membranes that are present in raft regions (CD55) and 

markers absent on viral membranes, which are not present in raft regions (CD45) [27-29].  

Adding to this, Pr55 gag oligomerizes on the inner cell membrane in regions rich in 

cholesterol [30, 31].  It has also been shown that recovery of infectivity after cholesterol 

depletion is possible with other sterols that support raft behavior in membranes but not by 

sterols that do not [19, 20].  These data suggest that sterols of a particular type play an 

important role in viral infectivity.  Hence, a focus of this thesis was to investigate the role 
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of cholesterol and sterols in general on lysis and compare them with the effect on 

infectivity. 

 

THE ROLE OF HIV-1 SPIKE PROTEINS IN FUSION 

 

While the lipids that constitute the viral membrane are crucial, regions of the viral spike 

protein have also been shown to participate in the perturbation of the viral membrane to 

effect fusion.  These regions exist within the transmembrane protein, gp41.  This protein 

can be functionally split into 7 distinct regions starting from the N-terminus: fusion peptide, 

N-heptad repeat, loop region, C-heptad repeat, MPER domain, transmembrane domain and 

the cytoplasmic tail.  The fusion peptide as mentioned earlier is involved in the interactions 

with host cells prior to fusion.  The N- and C-heptad repeat regions are involved in forming 

the 6-helix bundle that is believed to bring the cell and viral membranes together.  The 

MPER domain is a region rich in tryptophan residues and the sequence is heavily conserved 

across all clades of HIV-1 [32, 33].  It is also believed to be involved in fusion based on 

mutational studies that have substituted the tryptophans to alanines [32, 33].  
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Figure 4: (A) Sequence and location of MPER in gp41. (B) NMR structure of MPER in lipid micelles illustrating the 
orientation of conserved Tryptophan residues. Figure adapted from [34] 

 

 

 

The conserved requirement for tryptophans is also seen in other viruses including Influenza 

and Ebola.  The C-terminal residues of this region (LWYIK) form a CRAC domain 

(Cholesterol Recognizing Amino acid Consensus sequence) and are believed to interact 

with cholesterol [35-38].  Mutations to the first residue that substitute an Ile for a Leu have 

a large negative effect on the cholesterol binding ability of the pentapeptide and reduce the 

infectivity when incorporated into the viral sequence.  The transmembrane domain anchors 

the protein to the viral membrane.  It also contains a mid-span arginine, a polar residue in 
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the middle of a hydrophobic region of the lipid bilayer.  This residue is believed to either 

create a water compartment in the middle of the bilayer or interact with the phospholipid 

head groups of the inner leaflet, thereby thinning the lipid bilayer [39-41].  This might 

reduce the energy required to allow for fusion.  Finally, the cytoplasmic domain is located 

at the C-terminus of the protein and, depending upon the clade, can be more than 150 

residues long.  This region contains three domains known as lentiviral lytic peptides based 

on the lytic activity these peptides have on lipid bilayers [42].  While little is known about 

the structure or function of the cytoplasmic tail, they are thought to interact with membrane 

cholesterol in the inner leaflet [43].  Together, these regions of the virus spike function to 

manipulate the lipids around them as part of the fusion process. 

 

ESTABLISHING A MODEL TO STUDY THE VIROLOGICAL SYNAPSE 

 

The use of PTTs like KR-13 to effect virolysis suggests that conformational changes in the 

protein can perturb the surrounding membrane lipids in order to allow the escape of capsid 

p24.  The interactions of viral gp120 with CD4 and co-receptor suggest similarly that spike 

protein re-arrangement can be used to bring about the formation of a fusion pore and the 

release of the viral contents into the host cell.  The role of protein and lipid interplay is as 

yet not well understood.  The establishment of lysis as a model to study protein mediated 

lipid perturbation leads to the crux of this thesis.   
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Chapter 2: Role of Membrane 
Cholesterol on Lytic Release with 

PTTs and Infectivity 
 

 

BACKGROUND: 

 

HIV-1 is an enveloped virus, with a lipid bilayer that separates the contents of the virus 

from the extracellular milieu.  HIV-1 has two surface proteins, exposed on the lipid bilayer, 

that are used for entry.  These proteins, gp120 and gp41, form a trimer of gp120-gp41 

heterodimers that is commonly denoted the viral spike or Env protein.  For productive 

infection to take place, initial interactions of the viral spike gp120 component with cellular 

receptors CD4 and CCR5[44] are followed by conformational changes in gp120 that 

expose gp41 to the host cell membrane.  This is followed by the interaction of the fusogenic 

tip of gp41 with the cell membrane, and rearrangement of the helical heptad repeat regions 

within each gp41 subunit of the trimer to form a 6-helix bundle, the latter of which brings 

the viral and cellular membranes into close proximity to allow membrane fusion.  Fusion 

enables the luminal contents including virus genomic RNA, to enter the cell, leading to 

virus life cycle steps to establish cellular infection.  While membrane fusion is known to 

be critical for virus cell entry and infection, the membrane transformation events occurring 

during fusion are not fully understood [45]. 
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To inhibit entry of HIV-1, we previously identified peptide triazoles as a class of HIV entry 

inhibitors that bind to gp120, inhibit it from interacting at either the CD4 or co-receptor 

binding sites through conformational entrapment [8] and, in the context of the spike, trigger 

gp120 shedding.  KR-13, a peptide triazole thiol (R I N N I X W S E A M M βA Q βA C-

amide, X = ferrocenyl triazole proline), with a free thiol (PTT) at the C-terminal cysteine 

residue, not only inhibits HIV-1 infection with nanomolar potency and causes gp120 to be 

shed from virus, but also triggers release of luminal p24, thus adding, along with shedding, 

to the irreversible inactivation of virus in a cell-free environment [11, 46].  The release of 

p24 suggests the ability of the PTT to perturb the viral envelope without directly interacting 

with the envelope membrane, leading to a loss of membrane integrity.  Lytic p24 release 

appears to not occur through fragmentation of the envelope but rather by more limited 

membrane transformation, since post-KR-13 treated virions visualized by transmission 

electron microscopy (TEM) retain an intact though shrunken physical state [11].   

 

In order to identify properties of the envelope that control the lytic inactivation process, we 

investigated the effect of progressive cholesterol depletion.  Cholesterol is a major 

constituent of the HIV-1 envelope membrane bilayer, making up 45 mol % [12, 14, 47].  

Here, we evaluated the effects of cholesterol depletion on KR13-triggered HIV-1 lysis by 

pre-treating pseudoviruses with methyl beta-cyclodextrin (MβCD).   Strikingly, we 

observed a bell-shaped response of lysis to progressive increase of [MβCD] that included 

enhancement of function at intermediate [MβCD] even though significant shedding of 
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gp120, the binding target for KR-13 (PTT), occurred at conditions that induced 

enhancement of lysis.   [MβCD] concentrations enhancing lysis also caused infectivity 

increase.  The enhancement effects on both lysis and infectivity were reversed by adding 

exogenous raft-promoting sterols.  Differential effects of temperature on lysis of untreated 

vs MβCD-treated virus suggested that a decrease in the energy barrier to membrane 

disruption may be responsible for the parallel enhancement effects of MβCD on lysis and 

infectivity.  Further, the enhancement effects observed here are reminiscent of similar 

effects reported previously for influenza virus lipid mixing and liposomal fusion [48], as 

well as HIV-1 infectivity [19], suggesting that cholesterol content provides a balance of 

function and stability that is found in enveloped virus membranes generally.  
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METHODS:  

 

GENERAL REAGENTS: 

 

HOS cells expressing CD4/CCR5 were acquired from the NIH AIDS Reagent Program 

from Dr. Nathaniel Landau. DNA sequences encoding BaL.01 Env and NL4-3 R- E- Luc+ 

core were also obtained from the NIH AIDS Reagent Program from Dr. John Mascola and 

Dr. Nathaniel Landau respectively.  The plasmid encoding JR-FL gp160 was a kind gift of 

Dr. Simon Cocklin, while the plasmid encoding YU-2 gp160 was a kind gift of Drs. Alon 

Herschorn and Joseph Sodroski.  Methyl β-Cyclodextrin (MβCD), cholesterol, cholestanol 

(5α-Cholestan-3β-ol), coprostan-3-ol (5β-Cholestan-3β-ol), dehydroergosterol (Ergosta-

5,7,9(11),22-tetraen-3β-ol) and Triton X-100 were purchased from Sigma Aldrich.  

Laurdan dye was purchased from Invitrogen.  Rabbit and mouse anti-p24 and CD45 

antibodies were purchased from Abcam.  D7324 anti-gp120 antibody was purchased from 

Aalto. 

 

PROTEIN REAGENTS: 

 

Soluble CD4 (sCD4) was produced and purified as described before [9]. Monoclonal 

antibody 17b was obtained from Strategic BioSolutions.  Wild-type (WT) gp120YU-2 was 
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produced from a pcDNA3.1 vector encoding a V5 (GKPIPNPLLGLDST) coding 

sequence, N-terminal to the C-terminal HIS6 tag.  The vector also carries the mammalian 

codon-optimized sequence for a CM5 secretion peptide and gp120YU-2 (a gift from Drs. 

Navid Madani and Joseph Sodroski).  DNA for transient transfection was purified using a 

Qiagen MaxiPrep kit (Qiagen) and transfected into HEK 293F cells according to 

manufacturer’s protocol (Invitrogen).  Five days after transfection was initiated, cells were 

harvested and spun down, and the supernatant was filtered through 0.2 µm filters (Corning). 

Purification was performed over a 17b antibody-coupled column prepared using NHS-

activated Sepharose (GE Healthcare); gp120 was eluted from the column using 0.1M 

Glycine buffer pH 2.4 into 1M Tris pH 8.0. Identity of the eluted fractions was confirmed 

by SDS-PAGE and western blotting using antibody D7324 (Aalto Bioreagents).  After 

pooling the peak fractions, additional purification including removal of aggregates was 

performed with a pre-packed Superdex 200 HR gel filtration chromatography column (GE 

Healthcare). Monomer-containing fractions were identified by SDS-PAGE/Western 

blotting with mAb D7324, pooled, concentrated, frozen and stored at -80 °C. 

 

PEPTIDE TRIAZOLE SYNTHESIS AND VALIDATION: 

 

Peptides were synthesized as described before [9, 49] by stepwise solid phase synthesis on 

a Rink amide resin with a substitution value of 0.25 mmolg-1 (Novabiochem).  All Fmoc-

amino acid derivatives and coupling reagents were purchased from Chem-Impex 

International Inc.  Synthesis-grade solvents were used in all procedures.  All peptides were 
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purified to 98% homogeneity as judged by analytical reversed-phase HPLC on C18.  The 

integrity of purified peptides was confirmed by MALDI-TOF mass spectrometry; observed 

mass was 2085.43 Da vs. 2085.19 Da expected for KR-13 and 1713.89 Da vs. 1713.33 Da 

for HNG-156.  Peptide triazoles KR-13 and HNG-156 were solubilized in 1x PBS, pH 7.2 

and their absorbances measured at 280 nm with a quartz cuvette in a Shimadzu UV1700 

spectrophotometer.  The concentrations were determined using extinction coefficients of 

5965 M-1cm-1 and 6090 M-1cm-1 for HNG-156 and KR-13, respectively.  The functionality 

of peptides was tested by CD4 and 17b competition assays using surface plasmon 

resonance (SPR) analysis with a Biacore 3000 optical biosensor. 

 

PSEUDOVIRUS PRODUCTION:  

 

Pseudoviruses were produced as described before [9, 50].  Briefly, HEK 293T cells (3 x 

106) were co-transfected with 4 µg of BaL.01 gp160 plasmid and 8 µg of NL4-3 R- E- Luc+ 

core DNA, using Polyethyleneimine (PEI) as a transfection vehicle.  YU2 and JR-FL 

pseudoviruses were produced in an identical manner as BaL.01 pseudoviruses.  After 72 

hours, the supernatant containing virus was collected and filtered using a 0.45 µm filter 

(Corning) before being purified via gradient centrifugation on a 6% - 20% Iodixanol 

gradient (Optiprep, Sigma Aldrich) spun in an Sw41 Ti rotor (Beckman Coulter) at 110, 

000 x g for 2 hours at 4 °C.  The bottom 5 mls were collected and diluted in serum free 

medium before being aliquoted and frozen at -80 °C.  Importantly, viruses isolated by the 
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Iodixanol gradient method were found to contain no exosomes as judged by the absence of 

CD45 (Figure S1).  The diagnostic presence of CD45 in exosomes but not viruses has been 

reported before [51] .  All batches of pseudovirus were titrated for infectivity and p24 

content immediately after production. 

 

TREATMENTS OF VIRUS WITH MβCD AND PEPTIDE TRIAZOLES: 

 

All MβCD treatments were performed with freshly solubilized powder in PBS.  Treatments 

involved mixing virus samples with MβCD (1:1, v/v) and incubating for 30 minutes at 37 

°C.  For lysis experiments, the samples were immediately treated with PTT or controls 

except for the temperature-dependence experiment.  For the latter experiment, samples 

were first treated with 78 µM MβCD or PBS for 30 minutes at 37 °C and then moved to 

incubators at different temperatures (4 °C, 8 °C, 16 °C, 23 °C, 30 °C, 37 °C and 42 °C) and 

equilibrated for 15 minutes.  Simultaneously, solutions containing PTT were added to 

separate tubes and also equilibrated at the appropriate temperatures.  At the 15 minute time 

point, all solutions were mixed and incubated for another 30 minutes.  All samples were 

then spun and tested for leaked p24 capsid protein.  The amount of lysis was divided by 

1800 seconds to produce a “pseudo-rate of lysis (k)” whose natural log was then plotted 

against the inverse of the absolute temperature (1/T) at which lysis occurred.  The slopes 

were calculated from best-fit lines determined using the linear fitting algorithm provided 

by Origin Pro 9.0.   
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For shedding experiments, pseudovirus samples were spun immediately after 30 minutes 

of MβCD treatment for 2 hours at 21,130 x g.  For infectivity experiments, samples were 

washed to remove MβCD by Iodixanol gradient centrifugation.  For infectivity experiments 

involving cholesterol reconstitution, samples were treated with MβCD for 30 minutes at 

37 °C, washed, treated with exogenous cholesterol for another 30 minutes at 37 °C and 

then fractionated by centrifugation in a gradient composed of Iodixanol (Optiprep, Sigma) 

(6% - 20%) diluted in PBS.  After running the 2 hour spin at 110,000 x g at 4 °C, fractions 

were collected and tested for p24 content and infectivity. 

 

A competition ELISA between KR-13 and either CD4 or 17b binding for gp120 was used 

to rule out any effect of MβCD on KR-13 function.  For this assay, 96 well high binding 

ELISA plates were coated with 100 ng/well of soluble gp120 protein overnight (16 hours) 

at 4 °C.  Following a blocking step with 3% BSA in PBS, samples of CD4 (final 30 nM) 

or 17b (co-receptor surrogate, final 15 nM) were mixed (1:1 v/v) with KR-13 in 0.5% BSA 

with/without MβCD and loaded onto the plate.  The plate was incubated at room 

temperature for 2 hours with agitation before being stained, for CD4 by Anti-human CD4 

biotinylated OKT4 (eBioscience) and then Streptavidin-HRP, and for 17b by secondary 

antibody anti-human IgG conjugated to HRP.  This was followed by a 30-minute 

incubation with ortho-phenylenediamine (OPD) dissolved at 0.4 mg/ml in sodium citrate 

with perborate to measure colorimetrically the bound CD4 and 17b using absorbance on a 

Tecan Infinite m50 plate reader at 450 nm.  Each plate contained positive (CD4 or 17b 

only) and negative (no protein) controls that provided a window for the signal.  
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PROTEASE TREATMENT OF HIV-1 PSEUDOVIRUSES: 

 

HIV-1 pseudovirus supernatants collected from transfections were concentrated to 500 

µL/sample.  Samples were labeled as “control” or “protease”.  Both samples received 500 

U of EndoH enzyme (New England Biolabs) diluted in 10 µL of G5 buffer.  Samples were 

flicked to promote mixing and then incubated at 37 °C for 60 minutes.  For the protease 

sample, 1 µg/ml of each of Proteinase K, Chymotrypsin (SigmaAldrich) and Trypsin 

(Cellgro) were added and flicked to promote mixing as per the protocol developed by 

Crooks et al [52].  For the control sample, a matching volume of PBS was added and the 

samples were incubated for 60 minutes at 37 °C.  One tablet of protease inhibitors 

(Complete Mini, Roche, Germany) was dissolved in 10 mls of 1X PBS.  500 µl of the 

inhibitor mix was added to each tube after 60 minutes of protease treatment.  Both samples 

were then purified on an Iodixanol gradient as described for the pseudovirus production 

above. 

 

P24 RELEASE DETECTION BY SANDWICH ELISA: 

 

p24 sandwich ELISAs were performed as described before [11].  Briefly, 96 well high 

binding ELISA plates (Corning) were coated with 50 ng/well of mouse anti-p24 and 

incubated on a rocker overnight (16 hours) at 4 °C.  The antibody solution was mixed 

before being blocked with 3% BSA in PBS, pH 7.2 for two hours at room temperature on 
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a rocker.  The plate was washed briefly with PBS containing 0.1% Tween – 20 (PBS-T) 

before being loaded with samples. 

 

Virus stocks were diluted in PBS, pH 7.2, so as to contain 50 ng/ml p24 content in the final 

sample to be loaded on the plate.  The diluted virus was mixed with MβCD in PBS (1:1 

v/v) through inversions and incubated at 37 °C for 30 minutes.  KR-13 or HNG-56 (non-

lytic peptide) or PBS (negative control) was then added to all the tubes (1:1, v/v), and the 

samples were all mixed by inversions before incubating for another 30 minutes at 37 °C.  

The 1.5 ml tubes were then spun for 2 hours at 4 °C at 21,130 x g.  The top 100 µl of 

supernatant was carefully removed so as not to disturb the pelleted virus debris.  This 

supernatant was then diluted (1:1, v/v) in PBS containing 1% BSA and 1% Triton X-100.  

A p24 standard (Abcam, 50 ng/ml) was used in every assay in the same buffer.  50 µl/well 

of sample was then loaded onto the prepared ELISA plates.  The plate was incubated at 4 

°C overnight (16 hours) on a rocker before being washed 3 times with PBS-T.  The plate 

was then stained with rabbit anti-p24 primary antibody, followed by donkey anti-rabbit 

HRP conjugate (GE Biosciences) as a secondary antibody.  Both were incubated for 1 hour 

at room temperature sequentially in PBS containing 0.5% BSA with steady agitation.  The 

plate was washed before the addition of OPD.  Plates were developed for 30 minutes in the 

dark and the absorbance measured at 450 nm to determine endpoint values using an Infinite 

m50 (Tecan) plate reader. 
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PSEUDOVIRUS CELL INFECTION ASSAY: 

 

Pseudoviral infection assays carried out as described previously [9, 50] were used to 

validate the viruses used in this work and to track the effects of MβCD on infectivity.   

Briefly, HOS.T4.R5 cells were seeded the day before at 7000 cells, 100 µl/well in 96 well 

plates.  Virus stocks were diluted in growth media such that the final dilution gave 1 x 106 

luminescence counts. Cells were seeded the day before at 7000 cells, 100 µl/well in 96 well 

plates.  When used, MβCD was mixed with diluted virus (1:1, v/v) through inversions and 

incubated at 37 °C for 30 minutes.  Controls were mixed with an equivalent amount of PBS 

and no MβCD.  The samples were then washed using 6-20% Iodixanol gradient.  Medium 

was removed from the plates and virus-containing medium was added.  The plates were 

incubated for 24 hours at 37 °C before the medium was changed.  48 hours after the virus 

was added to the plate, the medium was removed and the cells were lysed (Passive Lysis 

Buffer, Promega).  The lysate was then transferred to a white well plate (Greiner) and 

mixed with 1 mM Luciferin salt (Anaspec) diluted in 0.1 M potassium phosphate buffer 

containing 0.1 M magnesium sulfate and the luminescence measured using a Wallac 1450 

Microbeta Luminescence reader at 490 nm. 
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ENZYMATIC QUANTIFICATION OF PSEUDOVIRUS CHOLESTEROL: 

 

Cholesterol was quantified using a previously established enzymatic method [53].  Samples 

of pseudovirus treated with different amounts of MβCD were rinsed thoroughly with 1x 

PBS prior to quantification using the enzymes Cholesterol Oxidase and Horse Radish 

Peroxidase.  The efficiency of MβCD removal sufficed, based on tests with MβCD alone 

resulting in background signal.  Samples of virus were mixed with Cholesterol Oxidase (1 

U/ml), Horse Radish Peroxidase (1 U/ml) and Amplex Red (150 µM, 10-acetyl-3, 7-

dihydroxyphenoxazine) in PBS and incubated in the dark in a white well plate (Greiner) 

for 30 minutes at 37 °C before being read in a fluorescence plate reader (Synergy 4, Biotek, 

Ex/Em (nm): 560/590).   

 

VIRUS GP120 SHEDDING QUANTIFICATION USING WESTERN BLOTS: 

 

gp120 shedding induced by MβCD alone (no PT present) was measured using Western 

blots as described before [11].  Briefly, MβCD was mixed with virus stocks (1:1, v/v) and 

incubated at 37 °C for 30 minutes before being spun for 2 hours at 21,130 x g at 4 °C. 

Sample supernatants were mixed 1:1 with Laemmli buffer and boiled at 95 °C for 5 minutes 

before being loaded onto 10% SDS-PAGE gels.  After gel electrophoresis, the protein was 

transferred onto a 0.45 µm PVDF membrane (Immobilon-P, Millipore), blocked with 5% 

milk solubilized in PBS containing 0.1% Tween-20 and then stained with sheep anti-gp120 
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(D7324, Aalto) followed by Donkey anti-sheep HRP (Invitrogen) antibodies.  Luminol 

substrate (Advansta) was added and the protein bands exposed on chemiluminescence film 

(Blue Ultra, Genemate) and developed (M35-A X-OMAT Processor, Kodak).  The 

developed film was then scanned and the corresponding image analyzed with Image J 

(NIH) densitometry. 

 

VIRUS GP41 QUANTIFICATION USING ELISA: 

 

Samples of pseudovirus were treated with the full range of MβCD and incubated at 37 °C 

for 30 minutes before being spun for 2 hours at 4 °C at 21,130 x g.  The supernatant was 

removed and the remaining pellet was mixed thoroughly by pipetting before being fixed.  

Samples were fixed in a solution containing 1% Paraformaldehyde and 0.1% 

Glutaraldehyde at 4 °C for 15 minutes before the fixative was quenched using 0.1 M 

Glycine.  The fixed virus samples were adsorbed overnight (16 hours) on an ELISA plate 

on a rocker at 4 °C.  gp41 protein (NIH AIDS Repository) was also adsorbed on the same 

plate.  The plate was blocked with 200 µl/well of 3% BSA in PBS for 2 hours before being 

stained sequentially with gp41 antibody 50-69 followed by anti-human HRP (Millipore) 

and OPD development.  All values were normalized to the untreated virus control as 100% 

and a PBS blank as 0%.   
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STEROL RECONSTITUTION ASSAY: 

 

Sterol reconstitution was performed using cholesterol, coprostanol or cholestanol.  Powder 

samples were solubilized in chloroform and then diluted in 1x PBS (1:19 v/v) to make up 

10 mM stocks in glass vials.  Samples were vortexed thoroughly to create a milky emulsion 

immediately prior to use.  Virus samples were pre-treated with MβCD prior to the addition 

of the sterol.  The sterol was incubated with the pseudovirus for another 30 minutes at 37 

°C prior to the addition of KR-13 and a subsequent third incubation step for 30 minutes at 

37 °C.  The samples were then pelleted by centrifugation at 21,130 x g for 2 hours and the 

supernatant tested for p24 capsid protein via p24 sandwich ELISA.  An intact virus sample 

(treated with only PBS) and lysed virus sample (treated with 1% Triton X-100 before 

pelleting through centrifugation) formed the 0% and 100% window.  Additional controls 

included MβCD + KR-13 and individual MβCD and sterol treatments to confirm that there 

was no non-specific lytic release of p24. 

 

Samples used in the infectivity assay were prepared in the same way as above, except that 

they were rinsed with serum free medium 3x for 3 minutes each at 2000 x g in Amicon 

concentrators (100 kDa MWCO, Millipore) before being aliquoted in 1.5 ml centrifuge 

tubes.  Cholesterol was serially diluted in PBS and then added to each tube. Samples were 

incubated for 30 minutes at 37 °C before being run through a 6 to 30 % Iodixanol gradient.  

Fractions from the gradient were added to HOS.T4.R5 cells in a 96-well plate.  The rest of 

the protocol was carried out as a regular infectivity assay as mentioned above. 
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For samples treated with only 5000 µM MβCD prior to sterol treatment, a stock of virus 

was treated with 5000 µM MβCD for 30 minutes at 37 °C before being added to 1.5 ml 

centrifuge tubes.  Solutions of exogenous cholesterol, coprostanol or cholestanol were 

serially diluted from 5000 µM before being mixed with the MβCD-treated samples of 

pseudovirus.  The tubes were inverted to mix the sterol with the virus before being 

incubated at 37 °C for another 30 minutes.  Samples were then incubated with KR-13 or 

PBS (negative control) for a final 30 minutes before being spun for 2 hours.  Then samples 

were treated as above to complete a p24 ELISA. 

 

PSEUDOVIRUS VISUALIZATION USING TEM: 

 

Virus samples were treated with MβCD for 30 minutes at 37 °C before being washed thrice 

at 2000 x g for 3 minutes each in Amicon concentrators (100kDa MWCO).  Samples were 

fixed in solution containing 1% Paraformaldehyde and 0.1% Glutaraldehyde at 4 °C for 15 

minutes.  Samples were washed again before being mixed with 1% osmium tetroxide and 

incubated with gentle shaking at 4 °C for 1 hour.  Samples were washed seven times with 

deionized water before being concentrated to 100 µl volume and loaded on Lacey carbon 

grids (EM Microscopy) and dried overnight.  Just before imaging, samples were stained 

with 0.1 % uranyl acetate and rinsed.  Imaging was performed on a JEOL 2100 

transmission electron microscope at 120 keV. 
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MEMBRANE FLUIDITY ANALYSIS: 

 

Membrane fluidity was probed using the fluorescent dye Laurdan (6-dodecanoyl-2-

dimethylaminonaphthalene) according to the protocol of Lorizate et al [53].  Briefly, 

Laurdan was mixed with virus (final concentration 1 µM) for 30 minutes at 37 °C before 

being washed using a 100 kDa Amicon Ultra concentrator 3 times at 2000 x g for 2 minutes.  

Samples of virus were then mixed with different concentrations of MβCD for 30 minutes 

at 37 °C before being imaged on a plate reader (Biotek, Synergy 4) (Ex/Em: 400nm/440nm 

(blue), 490nm (red)).  Fluidity was calculated in Generalized Polarization (GP) units, where 

GP > 0 denotes ordered domains, while GP < 0 denotes disordered membranes.  The 

formula used was: 

Generalized Polarization (GP) = (IB – IR) 

              (IB + IR) 

where IB = Intensity at 440 nm, and IR = Intensity at 490 nm 
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FLUORESCENT STEROL REPORTER ANALYSIS OF MEMBRANE STATE: 

 

HIV-1 pseudoviruses were stained with the fluorescent dye 7-dehydroergosterol (DHE, 

SigmaAldrich) that has a preference [54-57] for liquid ordered (raft) phase of membranes.  

DHE was dissolved in chloroform to make a stock solution.   Immediately prior to each 

experiment, the concentration of the dye was measured in methanol using UV-Vis 

absorbance.  Pseudoviruses were stained with 0.5 µM (final concentration) 

dehydroergosterol for 30 minutes in the dark at room temperature with constant agitation.  

Following this, excess dye was removed by running the virus + dye mixture through a PD-

10 desalting column (GE) before being treated with MβCD for 30 minutes at 37 °C in the 

dark.  All fluorescence measurements were performed in the presence of 1 M potassium 

iodide as a collisional quencher to ensure only membrane bound dye remained fluorescent.  

The measurements were performed using the Synergy 4 (Biotek) plate reader 

monochromator (Ex/Em, nm: DHE 330/425).  Untreated virus was used as 100% control, 

while a PBS sample was used as a 0% control. 

 

MATHEMATICAL ANALYSIS: 

 

All the data presented as percentages in this paper were subjected to a linear interpolation 

equation, for which controls in each individual experiment defined the 0% and 100% signal 

windows, and for which linearity within the signal window was established.  
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RESULTS: 

 

EFFECT OF MβCD PRE-TREATMENT ON THE LYTIC INACTIVATION OF HIV-

1 BY THE PEPTIDE TRIAZOLE THIOL KR-13 

 

We investigated the role of membrane cholesterol in KR-13 (PTT) triggered HIV-1 

perturbation and p24 release by measuring the effect of virus pre-treatment with increasing 

concentrations of MβCD.  Pseudotyped HIV-1 viruses were first treated with a range of 

[MβCD] for 30 minutes, followed by addition of KR-13 or a non-lytic parental peptide 

triazole, HNG-156 (R I N N I X W S E A M M-amide, X = ferrocenyl  triazole proline). 
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Figure 5: Lytic release of p24 from HIV-1 pseudovirions after treatment with MβCD and PTs.  Contents of p24 were 
measured by sandwich ELISA. (A) KR-13 dose-dependent release of p24 from BaL.01 pseudoviruses. (B) p24 release as 
a function of MβCD treatment.  Samples of virus were treated with MβCD followed with PBS (black squares), non-lytic 
parental peptide HNG-156 (blue triangles) or the lytic peptide, KR-13 (red circles), (n=5, mean ± SD). 

 

 

 

The concentrations of KR-13 used were based on the EC50 value first determined for p24 

release (Figure 5A); this value was similar to that observed before [11].  The concentration 

of HNG-156 used was 5 µM (final).  Treated samples were centrifuged to separate the 

pelleted virus fraction from the released p24 in the soluble protein fraction.  The latter was 

assayed by sandwich ELISA for p24 content.  When pre-treated with MβCD, the KR-13 

treated samples (red circles, Figure 5B) showed an initial marked increase in p24 release 

up to a maximum between 10 and 312 µM MβCD followed by a steep decline at higher 

concentrations.  No p24 release was observed with the addition of either PBS alone (black 

squares, Figure 5B) or HNG-156 (blue triangles, Figure 5B), indicating that the 

enhancement observed with MβCD was specific for KR-13.  
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Figure 6: Competition profiles of KR-13 with CD4 (A) and mAb 17b (B) for binding to gp120 in the presence of MβCD 
at 5000 µM (black squares), 1250 µM (red circles), 78 µM (blue triangles), 9.77 µM (pink triangles) and 0 µM of MβCD 
(green diamonds) (n=3, average + SD). 

 

 

 

Control experiments (Figure 6) showed that MβCD had no direct effect on KR-13 binding 

to soluble gp120.  Since MβCD at high concentrations (> 10,000 µM) has been reported 

previously to cause lysis [21], we evaluated the effect of MβCD alone and found that doses 

below 10,000 µM did not cause p24 release (Figure 5B).   
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BOTH CHOLESTEROL DEPLETION AND GP120 SHEDDING OCCURRED AT 

MβCD CONCENTRATIONS THAT CAUSED ENHANCED LYSIS  

 

Cholesterol loss induced by MβCD has been measured previously using a fluorimetric 

assay [58-60].  We used this assay to compare the effect of MβCD treatment on cholesterol 

content with effects on p24 release and infectivity.  Samples of MβCD-treated virus were 

washed with 1x PBS and then mixed with a cocktail containing cholesterol oxidase, 

horseradish peroxidase and 10-acetyl-3,7-dihydrophenoxazine (Amplex Red) to provide a 

fluorescence readout corresponding to cholesterol content.  Treatment with 1x PBS alone 

was used as a negative control, while untreated pseudovirus was used to determine the 

100% value for cholesterol content.   

 

 

 

 

Figure 7: Biochemical changes of BaL.01 pseudoviruses caused by MβCD treatment.  (A) Change in HIV-1 envelope 
cholesterol content normalized to untreated envelope following MβCD treatment using the fluorimetric readout from the 
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Amplex Red assay (n=2, mean ± SD).  (B) Quantification of HIV-1 spike proteins that are retained after MβCD treatment.  
gp120 (black squares) was assayed from the supernatant and retained gp41 (red circles) was assayed from the pellet 
fraction (gp120: n=2, gp41: n=4, mean ± SD). 

 

 

 

The results, shown in Figure 7A, confirm a dose-dependent depletion of envelope 

cholesterol content upon MβCD treatment, with a mid-point at ~50 µM.  Of note, the 

envelope cholesterol depletion was incomplete at the highest [MβCD] used.  Since 

cholesterol depletion was found (data not shown) to be greater (by 30% at intermediate 

MβCD concentrations) after addition of sphingomyelinase, which converts envelope 

sphingomyelin to ceramide [61], it is possible that the incomplete removal of cholesterol 

by MβCD could be due at least in part to stabilizing sphingomyelin-cholesterol interactions 

in the HIV-1 membrane [62]. 

 

We also examined whether the known effect of MβCD on gp120 shedding [21-23] occurred 

at the concentrations found to affect lysis.  Pseudovirus-associated gp120 and gp41 were 

examined, using Western blots and ELISA, respectively (Methods).   The data obtained 

(Figure 7B) show that gp120 was released from the residual virus in a dose-dependent 

manner, with a mid-point at ~10 µM, while gp41 was retained in the virus fraction.   

 

Since gp120 shedding analysis showed that a large amount of the spike associated gp120 

had shed at MβCD concentrations for which KR-13-induced lysis activity was high, we 

considered it likely that inactive (misfolded) spikes were being selectively shed.  The 
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presence of inactive spikes was confirmed by treating pseudoviruses with Endo H and 

proteolysis with trypsin, chymotrypsin and proteinase K, as used previously to selectively 

remove aberrant Env spikes [52, 63].  Enzyme-treated virus samples were purified on an 

Iodixanol gradient before being characterized for infectivity in chemiluminescence assays, 

gp120 quantitation with Western blots, and p24 content using sandwich ELISA for virus 

quantitation.  Resulting pseudovirus samples were used in p24 release and gp120 shedding 

assays.  While the gp120 content decreased markedly (~50%) with enzyme treatment (data 

not shown), infectivity of the viruses was not affected (data not shown), as was also found 

previously [52].  Importantly, as shown in Figure 8A, enzyme treated viruses exhibited a 

bell-shaped response to [MβCD] for lysis by KR-13 similar to that observed (Figure 5B) 

with viruses not treated with enzymes.   

 

 

 

 

Figure 8: Sensitivity of p24 release and gp120 shedding of enzyme-treated BaL.01 HIV-1.  (A)  p24 release from 
pseudoviruses treated with MβCD alone (black squares) and MβCD with KR-13 (red circles). (B) Virus gp120 shedding 
in response to MβCD treatment. (n=2, average + SD). 
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REVERSIBILITY OF MβCD-INDUCED EFFECTS BY STEROL REPLENISHMENT 

 

We evaluated the extent to which the enhancement effects of cholesterol depletion on lytic 

inactivation could be reversed by the addition of exogenous cholesterol.  HIV-1 

pseudoviruses were first treated with MβCD, then with exogenous cholesterol and finally 

with KR-13.  Each treatment was for 30 minutes at 37 °C.  Samples were spun to pellet 

virus, and the supernatants were tested for p24 content.  PBS treatment was substituted for 

both MβCD and cholesterol treatments as a negative control (Figure 9).   
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Figure 9: Lysis properties of BaL.01 pseudoviruses treated with MβCD and then reconstituted with exogenous sterol 
before the addition of KR-13.  Samples were first treated with PBS (-), 78 µM MβCD (+) or 5000 µM MβCD (+++) 
before the addition of 78 µM cholesterol, cholestanol or coprostanol.  All samples were then treated with the KR-13 (at 
5 µM) to determine p24 release (n=3, mean ± SD). 

 

 

 

For virus samples in which cholesterol depletion resulted in an enhancement of p24 release 

(specifically 28% to 57% at 78 µM MβCD), the addition of exogenous cholesterol reduced 

the observed enhancement.  Conversely, in virus samples for which cholesterol depletion 

led to a suppression of lysis (28% to 5% at 5000 µM MβCD), addition of exogenous 
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cholesterol led to a partial recovery.  The full set of cholesterol replenishment results 

obtained are reported in Figure 10. 

 

We evaluated the extent to which sterol derivatives with different capacities to support 

membrane raft formation and consequent HIV-1 infectivity [19] would support KR-13-

induced p24 release by evaluating viruses reconstituted with cholestanol and coprostanol 

instead of cholesterol. 
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Figure 10: Reversibility of cholesterol depletion from pseudoviral membranes.  Bar graphs show p24 release from KR-
13-treated HIV-1 pseudoviruses after reconstituting with cholesterol (A), cholestanol (B) and coprostanol (C) by 
sandwich ELISA.  Pseudoviruses were treated with PBS (black), 78 µM MβCD (red), 312.5 µM MβCD (blue), 1250 µM 
MβCD (pink) or 5000 µM MβCD (green) before sterol reconstitution was performed.  (n=3, mean ± SD). 

 

 

 

Pseudovirus treated with PBS throughout the experiment was used as the intact virus 

control (0%), while a detergent-treated sample of pseudovirus was used as the lysed control 

(100%).   No lysis was observed to occur with any of the sterol variants in the absence of 

KR-13 (data not shown).  As shown in Figure 9, exogenous cholestanol reversed the effect 

of cholesterol depletion, though the cholestanol-enabled recovery was reduced compared 

to that with cholesterol.  In contrast, coprostanol induced a much lower suppression of lysis 

at 78 µM MβCD and no recovery at 5000 µM MβCD.  The reduced effect of coprostanol 

is most evident in Figure 10C and the sample of virus treated with 5000 µM MβCD and 

then with increasing amounts of sterol (Figure 11, black triangles).   
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Figure 11: Raft-supporting sterol requirement for reversibility of MβCD depletion of cholesterol.  Samples of BaL.01 
pseudovirus were first treated with 5000 µM MβCD for 30 minutes at 37 C followed by replenishment with cholesterol 
(red squares), coprostanol (blue circles), or cholestanol (black triangles) for another 30 minutes and finally KR-13 before 
being spun to separate the released protein from virus debris.  The released protein was detected by sandwich ELISA.  
(n=3, mean ± SD) 

 

 

 

Importantly, the above results show that the effectiveness of a sterol to reverse cholesterol 

depletion effects on KR13-induced lysis parallels its ability to support raft formation in 

HIV-1. The functional importance of cholesterol rafts in virus infection has been previously 

reported [19]. 
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EFFECTS OF MβCD ON THE PHYSICAL PROPERTIES OF HIV-1 PSEUDOVIRUS 

MEMBRANE AT CONDITIONS OF LYSIS ENHANCEMENT AND SUPPRESSION   

 

We evaluated the morphological and biophysical transitions resulting from MβCD 

treatments affecting KR-13 induced lytic inactivation.  Untreated and 5000 µM MβCD 

treated pseudoviruses were fixed and imaged on a JEOL 2100 transmission electron 

microscope.  Images of untreated and MβCD-treated pseudovirions (Figure 12A and B) 

were not significantly different in size (117.5 ± 34.7 nm vs. 123.1 ± 41.8 nm respectively, 

n=30, mean ± SD). This observation, along with the finding of gp41 retention after lysis 

(Figure 7B), supports the conclusion that the virion remains intact after MβCD treatment 

in the absence of KR-13 exposure.   

 

 

 

 

Figure 12: Physical effects of MβCD on pseudoviruses. (A and B) TEM micrographs of untreated (diameter: 117.5 ± 
34.7 nm, mean ± SD, n=30) (A) and 5000 µM MβCD treated (diameter: 123.1 ± 41.8 nm, mean ± SD, n = 30) (B) 
pseudoviruses.  Scale bars represent 20 nm.  (C) Change in fluidity of the lipid envelope of HIV-1 (BaL.01, black squares) 
and VSV-G (red circles) pseudotyped viruses (n=3, mean ± SD) as detected by Laurdan fluorescence.  (D) Changes in 
bulk membrane fluorescence of BaL.01 pseudoviruses first loaded with DHE and then treated with a range of MβCD 
concentrations in the presence of 1 M potassium iodide (n=5, mean ± SD) 
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It has been shown previously using electron spin resonance (ESR) [64, 65] and 

fluorescence [53] that cholesterol depletion can result in more fluid membranes, and this 

was confirmed on both BaL.01 and VSV-G pseudotyped viruses using Laurdan in the 

current study (Figure 12C).   Importantly, however, a major shift in fluidity was observed 

only at high [MβCD] (> 312 µM), with no change at lower [MβCD] where increase in lysis 

was complete (Figure 5B).  

 

We evaluated changes in membrane sterol environment by a previously-developed 

fluorescence assay using dehydroergosterol (DHE) [66], a sterol that preferentially 

localizes in raft-like regions [54-57].  When treated with MβCD, DHE fluorescence 

emission was incrementally quenched at [MβCD] > 10 µM, with a fluorescence minimum 

at ~312 µM MβCD, after which emission recovered (Figure 12D).  The experiment was 

performed in the presence of 1M potassium iodide, which should quench any DHE 

extracted from the membrane by MβCD.  Hence, the fluorescence measured is taken to 

reflect membrane incorporated DHE only.  Importantly, the “inverted bell-shaped” curve 

of DHE fluorescence suggests that a membrane transformation occurred at the same 

[MβCD] as the enhancement of lysis. 
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MβCD PRE-TREATMENT REDUCES THE ACTIVATION ENERGY FOR LYSIS 

 

We asked whether cholesterol depletion might lower the energy barrier to KR13-induced 

membrane lysis. Lytic inactivation by KR13 has been found previously [11] to require 

gp41 6-helix bundle formation, a transformation that likely involves traversing an energy 

barrier.  A lower energy barrier for KR13-induced lysis could explain why greater lytic 

release occurred at increasing [MβCD] even though the content of gp120, the binding target 

for KR13, was decreased. Samples containing equal amount of pseudovirus were treated 

with PBS (control) or 78 µM MβCD for 30 minutes at 37 °C before being transferred to an 

incubator at different temperatures (4, 8, 16, 23, 30, 37 and 42 °C).  Temperature-

equilibrated PBS containing KR13 was mixed, and the samples incubated for another 30 

minutes.  All samples were then spun and the p24 contents of the fractions containing 

released protein were measured using sandwich ELISA.   
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Figure 13: Comparison of temperature dependence of virus lysis with and without MβCD pretreatment. Samples were 
treated with 78 µM MβCD (red circles) or PBS (black squares) for 30 minutes at 37 °C followed by an equilibration time 
of 15 minutes at different temperatures ranging from 4 °C to 42 °C.  Samples were then mixed with temperature 
equilibrated PTT (A: 5 µM KR-13, B: 2 µM KR-13) in PBS and incubated for another 30 minutes before being spun to 
separate released p24 protein from virus pellets.  Released p24 was measured by sandwich ELISA. (n=3, mean ± SD) 

 

 

 

As shown in Figure 13A, the slope of the lysis activity increase as a function temperature 

decreased for the MβCD-treated virus, suggesting that the activation energy for lysis was 

greater without MβCD pre-treatment.  Similar data were obtained in experiments with less 

KR13 (2 µM, Figure 13B), showing that the differences in temperature response are 

consistently observed at different extents of lytic reaction.  These data are consistent with 

the hypothesis that the activation energy for lysis is reduced after MβCD pre-treatment. 
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CORRELATION OF EFFECTS OF CHOLESTEROL DEPLETION ON KR13-

INDUCED LYSIS AND VIRUS INFECTIVITY 

 

The enhancement of HIV-1 lytic inactivation by MβCD treatment observed in the current 

work is similar to prior findings of enhanced HIV-1 infectivity by MβCD [19].  This 

correlation suggests a common effect of cholesterol depletion on the virus membrane 

transformation events occurring in virus membrane lysis induced by peptide triazole thiols 

and virus-cell membrane fusion occurring during infection.  We sought to confirm the 

finding of infectivity enhancement with viruses used in the current lysis study.   Samples 

of BaL.01 HIV-1 pseudotyped viruses were treated with PBS (control) or 78 µM MβCD 

before being washed and added to cells expressing receptors.  HIV-1 BaL.01 pseudovirus 

infectivity indeed was enhanced a [MβCD] conditions that cause lysis enhancement 

(Figure 14).   
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Figure 14: Infectivity of BaL.01 pseudoviruses treated with PBS, 78 µM MβCD and 78 µM MβCD followed by 78 µM of 
exogenous cholesterol (n=2, mean ± SD) 

 

 

 
When a similar treatment was performed on viruses without pseudotyped spikes (containing the capsid core coated with 
a lipid bilayer), neither lysis nor infection was observed in the [MβCD] dose range examined (data not shown).  When 
the MβCD treatment was performed on virus-free cells, which were then washed before addition of untreated viruses, no 
change in infectivity was observed (data not shown).  Of note, infectivity enhancement was also observed in the current 
work with JR-FL and YU2 (a tier 2, less easily neutralized strain vs. a lab adapted strain) pseudotyped HIV-1 (142% vs 
210 % respectively,  

Figure 15C).  The variable extent of infectivity enhancement observed with these latter 

viruses fits with the prior finding of more subdued MβCD enhancement effects reported 

with other pseudotyped viruses (LAI, 150% [19]). 
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Figure 15: Comparison of MβCD pre-treatment effects on lysis and infectivity on other HIV-1 isolates. (A) Amount of 
lysis observed with 5 µM KR-13 (PTT) for YU2 and JR-FL pseudoviruses; (B) Amount of lysis observed for YU2 and JR-
FL pseudoviruses with MβCD pre-treatment before the addition of PTT; (C ) Change in infectivity with MβCD treatment 
for YU2 and JR-FL pseudoviruses (n=3, mean ± SD). 

 

 

 

Addition of exogenous cholesterol has been found previously to reverse the effects on 

infection caused by cholesterol depletion [19].  We investigated whether or not 

enhancement of infectivity upon partial cholesterol depletion at low [MβCD] could be 

reversed by replenishment with different sterols, in an experiment analogous to that 

described above for lytic inactivation recovery.  Pseudovirus samples were first treated 

with 78 µM PBS.  After washing out soluble MβCD, virus was mixed with 78 µM 

cholesterol and then fractionated using an Iodixanol gradient.  Virus fractions were 

collected, and cell infection activities measured were normalized to p24 content.  The 

infectivity measured in the peak p24 fraction is reported in Figure 14.  As with lytic 
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inactivation activity, infectivity decreased substantially compared to the magnitude shown 

by MβCD-treated virus without added cholesterol.   
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DISCUSSION:  

 

The current investigation was undertaken to evaluate the role of membrane cholesterol 

depletion on the previously observed potent and specific lytic inactivation of HIV-1 by 

peptide triazole thiols, such as KR13 [11, 46], that bind to gp120 and trigger release of 

luminal p24.  Prior work [19, 21-23] had already shown that large-scale cholesterol 

depletion by high concentrations of MβCD (>500 µM) causes HIV-1 disruption and 

inactivation as judged by gp120 shedding and loss of cell infection activity.  Here, we 

observed a similar loss of lytic inactivation activity at high [MβCD].  However, 

importantly, we found that low-to-intermediate [MβCD] instead caused a significant 

enhancement of lytic inactivation (Figure 5B).  The enhancement effect, which we 

visualize to occur by  “sensitization” of the virus membrane to transformation, occurred in 

the same [MβCD] dose range at which substantial cholesterol depletion and gp120 

shedding occurred (Figure 7A and B). The effects of MβCD on lysis were reversed by 

adding cholesterol.  MβCD concentrations causing lytic enhancement also affected 

membrane lipid bilayer organization (Figure 12D) but not fluidity (Figure 12C), as judged 

using membrane-incorporated fluorophores (Dehydroergosterol vs. Laurdan).  The 

enhancement of lysis with partial cholesterol depletion may be related to a decrease in the 

energy barrier to membrane transformation as judged by the reduced slope in the rate of 

lysis with vs. without MβCD pre-treatment over a range of temperatures (Figure 13A and 

B).  In accord with prior findings [19], an enhancement of virus infectivity was also 

observed at moderate [MβCD] (Fig. 6), suggesting that common factors are important in 
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both membrane lysis induced by peptide triazole thiols and fusion occurring in virus-cell 

infection.   

 

Results obtained in this work argue that cholesterol depletion effects on lysis and infectivity 

are specific and likely due to alterations in the virus membrane.  The ability to reconstitute 

the functional phenotype of the untreated virus by sterol replenishment after MβCD 

treatment demonstrates that the MβCD effect is reversible and dependent mainly on sterol 

content in the virus membrane.  The extent of regain of phenotype upon replenishment is 

dependent on the extent to which the replenishing sterol supports raft formation, consistent 

with the previously observed importance of rafts for virus infectivity [19].  Further, we 

confirmed that the virus fractions used in this work were fully depleted in CD45 protein 

(Figure 25) and hence do not contain exosomes that could confound monitoring of 

biochemical effects due to non-specific release of gp120 or p24 upon MβCD treatments. 

That the MβCD effects observed in this work are due to specific changes in membrane 

order fits with the observed correlation of enhancement with changes in the fluorescence 

of the reporter DHE incorporated into the virus envelope membrane (compare Figure 12D 

and Figure 5B). 

 

Enhancement of PTT-induced lysis by concentrations of MβCD that cause Env gp120 

shedding is paradoxical, as the Env protein is needed for PTT binding.  Importantly, 

retention of HIV-1 infectivity has been shown before to tolerate reduced gp120 produced 
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by either enzymatic removal of inactive spikes [52] or lower incorporation of trimer on 

recombinant virus [67].  Still, the extent of gp120 shedding induced at lysis-enhancing 

concentrations of MβCD is substantial.  One possible explanation for this paradox is that 

any reduction of lysis due to loss of gp120 is counterbalanced by a reduction of the energy 

barrier for lytic transformation of the virus particles.  This explanation is supported by the 

observed decrease in slope (which relates to the activation energy) with 78 µM MβCD pre-

treatment (Figure 13A and B) when 80% of virus-associated gp120 has been shed (Figure 

7B).  The virus spike is known to be metastable, with receptor binding to Env able to drive 

a cascade of conformational transitions leading from a high energy Env unliganded state 

to a residual low energy form in which gp41 has formed a 6-helix bundle [45].  Depleting 

cholesterol could lower the energy barrier to gp41 6-helix bundle formation, which has 

been found previously to be a component not only of the entry/infection process [45] but 

also of the lysis process [11].  This hypothetically could occur because cholesterol can act 

as a stabilizing agent, locally increasing lipid density around the spike in raft domains and 

keeping it stable.  This stabilizing behavior has been observed for other proteins with 

membrane spanning domains such as CCR5 [68], β2 Adrenergic receptor [69], Serotonin 

1A receptor [70] and the Oxytocin receptor [71].  The fact that the cholesterol content on 

the native virus does not result in the most sensitized state of the spike is noteworthy.  In 

this view, depletion of cholesterol with MβCD would result in a more unstable Env spike, 

which would be more vulnerable to ligand-induced rearrangement, shedding and 

perturbation of associated membrane. Hence, the cholesterol content found on the native 

virus strikes a balance between stability and transformability of the virus spike, as depicted 

in Figure 16. 
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Figure 16: Rationale for how HIV-1 envelope cholesterol content helps strike a balance between stability of the spike at 
higher cholesterol content and transformability at lower cholesterol content. 

 

 

 
We found in this work that enhancement of ligand-induced virus lysis at intermediate cholesterol depletion correlates 
with infectivity enhancement, a phenomenon that has been observed previously [19] and amplified in the current study.  
The extent of MβCD dose dependence and sterol replenishment are similar for both lysis and infectivity.  Of note, the 
magnitude of infectivity enhancement previously reported to occur at elevated MβCD was lower than that observed in 
the current study.  The quantitative differences in the extent of infectivity enhancement in this and prior work may be due 
to use of different viruses, as shown here by differences with BaL01, YU2 and JR-FL pseudotypes (Figure 14 vs.  

Figure 15C).  As with lysis (discussed above), infectivity enhancement by MβCD 

concentrations that decrease the amount of gp120 presents a paradox of increased function 

in the face of decrease in the Env spike required for function.  We envision that the lower 

energy barrier effect found here for lysis would also explain increased infectivity with virus 

containing reduced gp120.  This fits with the previously observed finding that lysis and 

infection have mechanistic similarities, including a role for gp41 6-helix bundle formation 

in both processes [11].  
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The observations made in the current work, that cholesterol depletion can trigger changes 

in membrane properties leading to either functional enhancement or suppression depending 

on the extent of depletion, can be related to other Type I enveloped viruses, including 

Influenza, Ebola and Dengue, which have high cholesterol contents and depend on 

membrane transformation mechanisms to effect virus-cell membrane fusion and cellular 

infection [12, 14, 17, 18, 47, 48].  For example, a bell-shaped effect of cholesterol depletion 

on biophysical properties of liposomal fusion and content mixing rates for influenza virus 

has been reported [48].  Hence, defining the nature of membrane transformations that occur 

in enhancement of function caused by cholesterol depletion in HIV-1, including how these 

transformations are associated with Env spike protein, could help improve understanding 

of fusion mechanism for Type I viruses generally.  Such studies also could help in 

understanding the nature of membrane transformations triggered by Env protein ligands 

such as KR-13, and in turn how such lytic ligands could serve as prototypes to define 

strategies for virus neutralization by harnessing the vulnerabilities of enveloped virus 

membranes.  
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Chapter 3: Role of Spike gp41 in 
Lytic Release of p24 and Infectivity 

 

INTRODUCTION: 

 

The structural and functional characteristics of gp41 sequence domains have been 

evaluated extensively by antibody inhibition studies, mutagenesis and peptide mimics.  

Recent structures obtained via crystallography and cryo-TEM on SOSIP proteins have 

enhanced our understanding of gp41 structure within the context of a native-like spike [72, 

73].  This body of literature comes to our aid when we need to understand the structure of 

different regions of the ectodomain of gp41 that target the membrane. 

 

REGIONS OF INTEREST WITHIN GP41: 

 

CRAC region within MPER: This region involves 5 amino acids (LWYIK) that are >98% 

conserved (Los Alamos National Labs).  Peptide mimics of this region are capable of 

binding to cholesterol molecules, and in liposome studies, can cause cholesterol to 

aggregate out of the membrane and form crystals in local regions surrounding the peptide 

[36].  The single mutation that has the most suppression of these abilities is a Leu to Ile 

mutation though a clear explanation for such a small change having a big effect is not 
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known [38].  All mutations have been shown to have a drop in infectivity as compared to 

wild type and may affect lysis since they don’t interact as well with cholesterol. 

 

C-terminal tail of gp41: The C-terminal tail of gp41 found in the viral lumen has not been 

characterized as much in terms of structure or function.  Regions of the protein termed as 

lentiviral lytic peptides have been named thus due to the activity of peptides that mimic the 

sequence [42].  It has been shown that truncating the tail completely results in greater 

incorporation of spikes in viruses.  It also results in either a drop or increase in infectivity 

depending on which strain of HIV-1 virus is tested.  Truncating the tail might result in a 

loss in lysis with PTT if the tail is involved in the lytic mechanism.  The truncation is 

accomplished by introducing a stop codon at the first cytoplasmic residue.  If this is found 

to affect lysis, further mutations can be tested which allow differential lengths of the tail to 

exist. 

 

TM domain mid-span arginine: The mid-span region of gp41 consists of hydrophobic 

amino acids since the sequence domain traverses a hydrophobic region of the bilayer.  

However, it has a single polar amino acid in the middle (mid-span arginine).  This residue 

is >99% conserved within HIV-1 sequences (Los Alamos National Labs) and is also found 

in other viruses and is hypothesized to thin the membrane either through the formation of 

a water cavity within the bilayer or by interacting with phospholipid head groups on the 

inner layer [39, 41].  Either way, it has been shown computationally to reduce the energy 

required to further thin the membrane and disrupt it.  Mutations that replace this polar 
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residue with a hydrophobic residue such as Ala for Arg may result in the de-thinning of the 

membrane at the viral spike and suppress lysis from taking place. 

 

MPER tryptophans: There are five tryptophans that are spread out over the MPER 

sequence.  A comprehensive survey of the literature suggests these residues are crucial for 

infection.  Prior work has demonstrated that individual mutations have little effect on viral 

infectivity but combined mutations starting from the N-terminus have large suppressive 

effects on infectivity [32, 33].  Hence, the plan is to mutate Tryp residues to Ala and 

develop three mutants: W(1-5)A which consists of all 5 residues mutated; W(1-3)A which 

has only the first three (N-terminal) Trp residues mutated; and W(4-5)A which consists the 

last two (C-terminal) Tryp residues mutated.  The first mutant is an all/nothing mutation 

that should have the biggest effect.  The second and third mutants will help in locating the 

region of MPER most responsible for lysis. 

 

 gp120 Stabilization: Since prior work has demonstrated that gp120 is shed during the 

depletion of cholesterol, the literature was surveyed for mutations that stabilized gp120 

within the trimeric spike thereby potentially reducing the amount of gp120 being shed.  If 

shedding of gp120 were reduced, it would answer the question as to whether shedding were 

a requirement for the bell-shaped trend observed or a consequence of the transformations 

taking place.  If shedding were reduced, the number of functional spikes capable of 

participating in lysis at increasing amounts of MβCD, which might fundamentally alter the 

bell-shaped trend observed with wild-type virus.  The mutation that has been studied in 
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literature that has reduced shedding is one in gp120 that substitutes an Asn for a His [74, 

75].  This mutant is resistant to shedding with the addition of CD4.  Since CD4 and peptide 

triazoles have different binding sites and potentially induce different conformational 

changes within gp120, the mutant might not remain resistant to shedding and it remains to 

be tested. 

 

MATERIALS AND METHODS: 

 

Plasmids encoding BaL.01 gp160 and NL4-3 Luc+ R- Env- were obtained from the NIH 

AIDS Reagent Program as a kind gift from Dr. John Mascola and Dr. Nathaniel Landau 

respectively.  Primers to perform mutations were designed and then ordered from IDT 

Tech.   

 

PEPTIDE TRIAZOLE SYNTHESIS AND VALIDATION: 

 

Peptides were synthesized as described before [9, 49] by stepwise solid-phase peptide 

synthesis on a Rink amide resin with a substitution value of 0.25 mmolg-1 (Novabiochem).  

All Fmoc-amino acid derivatives and coupling reagents were purchased from Chem-Impex 

International Inc.  Synthesis-grade solvents were used in all procedures.  All peptides were 

purified to 98% homogeneity as judged by analytical reversed-phase HPLC on C18.  The 
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integrity of purified peptides was confirmed by MALDI-TOF mass spectrometry; observed 

mass was 2085.43 Da vs. 2085.19 Da expected for KR-.  Peptide triazole thiol KR-13 was 

solubilized in 1x PBS, pH 7.2 and the absorbance measured at 280 nm with a quartz cuvette 

in a Shimadzu UV1700 spectrophotometer.  The concentrations were determined using 

extinction coefficient of 6090 M-1cm-1 for KR-13.  The functionality of the peptide was 

tested by CD4 and 17b competition assays using surface plasmon resonance (SPR) analysis 

with a Biacore 3000 optical biosensor. 

 

SITE DIRECTED MUTAGENESIS: 

 

Mutations to the BaL.01 plasmid were introduced using the protocol from Qiagen.  

Reagents used were purchased from New England Biolabs.  Briefly, a 50 µl mix of 200 

nM of the forward and reverse primers was mixed with 5 µL of 10x PfuUltra buffer, 0.4 

ng/µL template DNA, 1 µL of 10 mM DNTP mix and 1 µL of PfuUltra enzyme was made 

and then run on an Eppendorf thermal cycler.  The PCR product was then subjected to a 2 

hour digest at 37 °C with DpnI to remove the template DNA.  The mixture was then 

transformed into XL-10 Gold ultracompetent bacteria and grown overnight on agar plates 

using Ampicillin as a resistance antibiotic.  Colonies were picked the following day and 

grown in a 3 ml culture overnight and then mini-prepped (Promega) to extract the DNA.  

The DNA was quantified and then sent for sequencing to Genewiz.  Once the mutation was 
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confirmed, the DNA was transformed into Stbl2 bacterial cells and grown in 500 ml 

cultures overnight and maxi-prepped (Qiagen) to extract transfection-grade DNA.   

 

For the mutations performed, all residue positions are numbered with respect to the BaL.01 

sequence.  V2E (V510E) was made using the forward primer: 5’-AGA AAA AAG AGC 

AGA GGG AAT AGG AGC TGT – 3’ and the reverse primer: 5’ – ACA GCT CCT ATT 

CCC TCT GCT CTT TTT TCT- 3’.  The C-tail truncation mutant was made by introducing 

a stop codon at residue Arg 706 with the forward primer: 5’ – GAA TAG AGT TTA GCA 

GGG ATA CTC ACC ATT ATC – 3’ and the reverse primer: 5’ – GAT AAT GGT GAG 

TAT CCC TGC TAA ACT CTA TTC – 3’.  The CRAC mutant was made by substituting 

Leu 676 with Ile with the forward primer: 5’ – CAA AAT GGA TCT GGT ATA TAA 

AAA TAT TC – 3’ and the reverse primer: 5’ – GAA TAT TTT TAT ATA CCA GAT 

CCA TTT TG – 3’.  The MPER mutations were performed sequentially.  W1 = 663, W2 = 

667, W3 = 669, W4 = 675, W5 = 677.  W(1)A was made with the forward primer: 5’ – 

TAT TAG AAT TAG ATA AAG CGG CAA GTT TGT GG – 3’ and the reverse primer: 

5’ – CCA CAA ACT TGC CGC TTT ATC TAA TTC TAA TA – 3’.  W(1-2)A was made 

with the forward primer: 5’ – ATT AGA TAA AGC GGC AAG TTT GGC GAA TTG 

GTT TGA CAT AAC – 3’ and the reverse primer: 5’ – GTT ATG TCA AAC CAA TTC 

GCC AAA CTT GCC GCT TTA TCT AAT – 3’.  W(1-3)A was made with the forward 

primer: 5’ – GAA TTA GAT AAA GCG GCA AGT TTG GCG AAT GCG TTT GAC 

ATA AC – 3’ and the reverse primer: 5’ – GTT ATG TCA AAC GCA TTC GCC AAA 

CTT GCC GCT TTA TCT AAT TC – 3’.  W(4)A was made with the forward primer: 5’ – 
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GAC ATA ACA AAA GCG TAT ATA AAA ATA TTC ATA ATG ATA GTA GGA G 

– 3’ and the reverse primer: 5’ – CTC CTA CTA TCA TTA TGA ATA TTT TTA TAT 

ACG CCA GCG CTT TTG TTA TGT C – 3’.  W(4-5)A was made with the forward primer: 

5’ – GAC ATA ACA AAA TGG CTG GCG TAT ATA AAA ATA TTC ATA ATG ATA 

GTA GG – 3’ and the reverse primer: 5’ – CCT ACT ATC ATT ATG AAT ATT TTT 

ATA TAC GCC AGC CAT TTT GTT ATG TC – 3’.  The W(1-5)A mutant was made 

sequentially after making W(1-3)A using the W(4-5)A primers.  The primers and mutations 

for the TM and shedding mutant were designed and performed by Andrew Holmes.  The 

TM mutant was created by substituting Arg 696 with Ala using the forward primer: 5’ – 

GCT TGA TAG GTT TAG CAA TAG TTT TTT CTG – 3’ and the reverse primer: 5’ – 

CAG AAA AAA CTA TTG CTA AAC CTA TCA AGC - 3’.  The shedding mutant was 

created by substituting His 66 with Asn using the forward primer: 5’ – GAT ACA GAG 

GTA AAT AAT GTT TGG G – 3’ and the reverse primer: 5’ – CCC AAA CAT TAT TTA 

CCT CTG TAT C - 3’. 

 

PRODUCTION AND CHARACTERIZATION OF PSEUDOVIRUSES:  

 

Pseudoviruses were made as described in Chapter 2.  Briefly, 3 million cells were seeded 

in a T-75 flask (Corning) the day before transfections.  DNA expressing the spike BaL.01 

gp160 or the mutant was co-transfected (4 µg) with the plasmid expressing the core (NL4-

3, Luc+R-E-, 8 µg) using polyethyleneimine as a transfection vehicle.  The growth medium 
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was changed 24 hours post-transfection and the supernatants collected 72 hours post-

transfection.  The supernatant was concentrated using a 100 kDa MWCO concentrator 

(Amicon, EMD Millipore) and loaded on an Optiprep gradient from 6% to 20% diluted in 

serum free media.  The samples were spun for two hours at 110,000 x g at 4 °C and then 

the fractions containing the virus were pooled and aliquoted before being frozen at -80 °C. 

 

Pseudoviruses were characterized for infectivity, gp120 incorporation and normalized 

based on their p24 content.  Infectivity assays were performed on HOS.T4.R5 cells using 

chemiluminescent signal from Luciferase activity as an end point readout.  gp120 

incorporation was measured by running viral lysate on a western blot.  p24 content was 

measured using a sandwich ELISA with a standard curve that allowed for quantification. 

 

LYSIS OF MUTANTS WITH PTT (KR-13) 

 

Lysis profiles were created by treating each mutant to a range of concentrations of the PTT 

starting from 100 µM.  Mutants, tittered for infectivity and p24 content immediately after 

production, were diluted such that 50 ng/ml (p24 content) was the final concentration 

loaded onto the plate.  Samples were mixed through six inversions and incubated at 37 °C 

for 30 minutes before being spun down to pellet viral debris at 21,130 x g for two hours at 

4 °C on a table top centrifuge (Eppendorf).  The top 100 µl was collected from each tube 

and mixed (1:1, v/v) with PBS containing 1% BSA and 0.1% TX-100 before being loaded 
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onto an ELISA plate that had been pre-coated with Mouse anti-p24 (Abcam) and blocked.  

Samples were allowed to bind overnight before being washed and stained with Rabbit anti-

p24 (Abcam, binds to an unknown but different epitope from the Mouse antibody) and a 

Donkey anti-Rabbit conjugated to HRP for 1 hour each.  End point results were generated 

colorimetrically using Sodium Citrate with Perborate as a substrate and 

Orthophenylenediamine (OPD) as a color changer.  Every mutant tested had a positive 

control (+ 0.1% TX-100) and a negative control (PBS, no PTT) that allowed the calculation 

of the lysis profile.   

 

For cholesterol depletion assays, samples of virus were first treated with a serial dilution 

of MβCD, starting at 5000 µM for 30 minutes at 37 °C followed by 5 µM KR-13 for another 

30 minutes at 37 °C before being spun to separate the released protein from the viral pellet.  

The rest of the assay was run as above. 
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RESULTS: 

 

MUTANT EXPRESSION AND CHARACTERIZATION 

 

All mutants were produced in HEK-293T cells and purified on a 6-20% Iodixanol 

(SigmaAldrich) gradient.  Once they were purified, all mutants were titered for infectivity, 

gp120 content and normalized using p24 content.  As the data show in Figure 17, all 

mutants had differing levels of infectivity.  The CRAC mutant and the MPER mutants had 

the least infectivity while the tail deletion mutant, the spike stabilization mutant and the 

TM mutant had intermediate levels of infectivity which were all consistent with prior 

literature.  All mutants had comparable levels of gp120 incorporation. 
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Figure 17: Characterization of BaL.01 mutant infectivity after being normalized for p24 content. (A) MPER mutants 
compared to wild-type. (B) CRAC, Tail truncation, TM and H66N mutants compared to wild-type 

 

 

 

PTT KR-13 CAUSES LYTIC RELEASE FROM MUTANTS TARGETING LIPID 

INTERACTING REGIONS OF GP41 

 

The PTT KR-13 has been shown to lyse BaL.01 pseudotyped virus (IC50 ~ 5 µM).  The 

question asked was whether mutants that affected the interaction of the virus spike protein 

gp41 with the viral envelope membrane would still be lysed.  Mutations were performed 

on the BaL.01 gp160 plasmid and the mutations, once confirmed, were expressed as mutant 

pseudotyped viruses.  Mutations targeted cholesterol interaction at the C-terminus of 

MPER (L676I in the CRAC sequence), the C-terminal tail with a stop codon (R706Stop), 
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membrane thinning with the mid-span Arginine (R696A), MPER interaction with the 

membrane (W(1-5)A, W(1-3)A and W(4-5)A) and spike stabilization (H66N).  Mutants 

were treated with KR-13 and then spun to pellet virus debris before the supernatant was 

tested via sandwich ELISA for p24 content.   

 

 

 

 
Figure 18: KR-13 dose profiles for BaL.01 pseudotyped wild-type and mutant viruses 

 

 

 

The data from Figure 18 (A and B) show that all mutants exhibit a dose-dependent lytic 

release when treated with KR-13.  While the EC50s vary between the mutants tested, the 

differences in estimated EC50s are relatively small.  
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MUTATIONS TARGETING MPER REGION OF GP41 HAVE DIFFERING 

SENSITIVITIES TO CHOLESTEROL DEPLETION 

 

Of the mutants characterized above, MPER mutants were tested for their sensitivity to 

cholesterol depletion with a lysis assay as done previously in Chapter 2.  Briefly, each 

mutant was treated with a dose range of MβCD starting from 5000 µM for 30 minutes at 

37 °C followed by 5 µM KR-13 for another 30 minutes at 37 °C.  As a control, a sample 

of each mutant was treated with PBS followed by KR-13 to get the base-line lysis.  After 

the 30 minute treatment with KR-13, all the samples were spun on a table top centrifuge at 

21,130 x g for 2 hours at 4 °C.  The supernatants were collected and tested for the presence 

of p24 protein.  The data suggest that the mutants show differing levels of sensitivity. 
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Figure 19: Lytic Release from WT and MPER Tryptophan Mutants. (A) Base-line release of capsid p24 after treatment 
with PBS for 30 minutes at 37 °C followed by 5 µM KR-13. (B) Release of capsid p24 after pre-treatment with MβCD 
for 30 minutes at 37 °C followed by 30 minutes with 5 µM KR-13 for WT (black squares), W(1-5)A (red circles), W(1-
3)A (blue upright triangles) and W(4-5)A (greed downward facing triangles). 

 

 

 

In Figure 19, the lytic release from tryptophan mutants with PTT were compared with WT.  

In Figure 19A, the base line lysis observed with KR-13 was similar between all three 

mutants and wild type.  In Figure 19B, the maximum enhancement observed was with the 

W(4-5)A mutant (green, 80%) and the least was with the W(1-5)A mutant (red, 50%).  The 

W(1-3)A mutant (blue, 70%) as expected fell in between the two though it was closer to 

W(4-5)A and WT.  The difference in behaviors observed with MPER mutants suggest 

sensitization observed with lysis after cholesterol depletion depends on the trp residues, 

though the exact role is unknown.  

 

MUTATIONS TARGETING PUTATIVE CHOLESTEROL BINDING REGIONS OF 

GP41 ALTER SENSITIVITY TO CHOLESTEROL DEPLETION 

 

Pseudoviruses expressing mutations targeting cholesterol-binding regions of gp41 were 

next tested for their sensitivity to cholesterol depletion with lysis. 

 

 

 



77 
 

 
 

 

Figure 20: Lytic Release from CRAC, C-tail truncation, and a double mutation incorporating both compared to WT. (A) 
Base-line release of capsid p24 after 30 minutes treatment with PBS at 37 °C followed by 30 minutes treatment with 5 
µM KR-13 at 37 °C. (B) Release of capsid p24 after 30 minutes treatment with MβCD at 37 °C followed by 30 minutes 
treatment with 5 µM KR-13 at 37 °C from WT (black squares), L676I (red circles), R706St (upright blue triangles and 
the double mutant, C-tail + CRAC (downward green triangles). 

 

 

 

In Figure 20, mutants targeting cholesterol-binding regions were compared.  Figure 20A 

shows the base-line lysis between the mutants.  Surprisingly, the L676I (CRAC) mutant 

and the double mutant showed enhanced baseline lysis (Figure 20A) compared to WT and 

the C-tail mutant (ca 40% compared to 20 and 25% respectively).  In Figure 20B, the lytic 

trend with KR-13 showed both the CRAC (L676I, red circles) and C-terminal tail 

truncation mutants (R706St, blue upright triangles) having enhanced lysis at low [MβCD] 

(< 10 µM) while the WT pseudovirus does not show enhanced lysis at higher [MβCD] (> 

10 µM).  Additionally, the maximum lysis for the L676I and the R706St mutants was lower 

than either WT or the double mutant.  Possibly the more significant interpretation of these 
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data is that the cholesterol-binding mutants all showed diminished total change in lysis 

from base line to the maxima with the L676I and R706St mutants having the least. 

 

MUTATIONS TARGETING TM AND GP120 DO NOT AFFECT LYSIS OR 

SENSITIVITY TO CHOLESTEROL 

 

The two remaining mutants (R696A, TM) and H66N were tested.  These mutants were not 

targeting cholesterol binding and hence were not expected to be different from WT. 

 

 

 

 

Figure 21: Lytic Release from WT, R696A (TM) and H66N (shedding resistant) mutants. (A) Base-line release of capsid 
p24 after 30 minutes treatment with PBS at 37 °C followed by 30 minutes treatment with 5 µM KR-13 at 37 °C. (B) 
Release of capsid p24 after 30 minutes treatment with MβCD at 37 °C followed by 30 minutes treatment with 5 µM KR-
13 at 37 °C from WT (black squares), R696A (red circles) and H66N (upright blue triangles). 



79 
 

 
 

 

 

 

As shown in Figure 21A and B, the trends observed with TM mutant (R696A, blue) and 

gp120 mutant (H66N, green) show no difference from the trend of WT (black squares) 

with cholesterol depletion, further confirming that differences are only observed with 

mutations targeting specific regions of gp41.   

 

DISCUSSION: 

 

Cholesterol is the most abundant constituent of viral lipid bilayers (ca. 45 mol %) [12, 14, 

47] and yet there is no definitive function attributed to it.  It has been hypothesized to bind 

to proteins containing segments known as CRAC domains based on calorimetry work done 

on pentapeptide sequences that mimic these domains [76, 77].  It has also been suggested 

that cholesterol acts as a packing factor, stabilizing membranes with high radii of curvature 

such as the viral envelope and complex membrane-bound proteins where conformation 

may be hard to maintain without membrane-imposed stability [78-80].  This might be 

important for the virus spike which is a high energy hexamer of proteins held together non-

covalently.  In fact, the cholesterol content surrounding spikes is thought to increase as the 

spike makes its way as an uncleaved protein from the endoplasmic reticulum in membranes 

with low cholesterol content to the cell surface where it has been cleaved and has become 
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metastable but is surrounded by high cholesterol content in lipid rafts from which it buds 

off as shown in Figure 22 [81, 82]. 

  

 

Figure 22: Changes in cholesterol content in lipid bilayers traversed by gp160 protein from synthesis in the endoplasmic 
reticulum to virion incorporation at the plasma membrane of cells.  Cholesterol content increases gradually from ~ 13% 
at the endoplasmic reticulum to ~16.7% in the golgi to ~50% in the plasma membrane.  Cholesterol quantification from 
[82] 

 

 

 

This might suggest that envelope cholesterol that tightly packs around the spike acts to 

create an energy barrier to stop the spike from conformational rearrangements that might 

result in inactivating it.  This energy barrier created by cholesterol would also hinder 

conformational changes required to undergo productive infection or lysis with PTTs.  

When cholesterol is depleted with the use of MβCD, there is less cholesterol present to 
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pack with the spike and this reduces the energy barrier.  It might explain the enhancement 

seen in lysis and infection.  Since the CRAC pentapeptides have been shown to bind 

cholesterol and the CRAC mutant peptide does not, we can hypothesize that the CRAC 

mutation in the virus might similarly reduce the affinity of gp41 CRAC for cholesterol.  

The same goes for the mutation that truncates the tail domain since this region is believed 

to interact with cholesterol within the inner bilayer leaflet.  While MβCD-based depletion 

happens only on the outer leaflet, it is thought that cholesterol located on the inner-leaflet 

flips to the outer leaflet to maintain the asymmetry between the leaflets.  It has been shown 

computationally with model membranes [62, 83] and with wet lab experiments [84] that in 

membranes with rafts, depletion of cholesterol begins in non-raft regions (fast pools, t½ = 

19~23 seconds, [84]), where the sterol has a lower affinity to remain in the membrane, 

followed by raft regions (slow pools, t½ = 15~30 minutes, [84]).  Based on prior literature 

on the behavior of CRAC peptides and our mutational data, we hypothesize that the 

presence of spike gp41 segments carrying the CRAC sequence enhance the area of the 

“slow pools”.  Hence, when the spike gp41 is mutated to have a lower affinity for the 

envelope cholesterol (e.g. L676I or R706St mutant), it can be assumed that sterols are more 

readily depleted from raft pools with agents such as MβCD, resulting in a lower amount of 

the depletion agent needed to sensitize the virus as observed in Figure 20B with the L676I 

and R706St mutants. 

 

While the CRAC domain might be responsible for cholesterol interaction, the rest of the 

MPER domain might have a different function.  The most potent mutational modifications 
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of MPER that lead to the largest drops in infectivity had to do with replacing all or the first 

three highly conserved tryptophans Figure 17A and [32, 33, 85, 86].  Even substituting 

tryptophan with alanine, an alternate hydrophobic residue still results in near complete loss 

of infectivity.  Such trends might be important for other enveloped viruses such as 

Influenza [87] and Ebola [88], which have similar MPER domains.  MPER is also exposed 

after KR-13 treatment, and preliminary data (not shown) suggested MPER antibody 10E8 

competed out lysis.  Mutants in the MPER region showed little or no infectivity (Figure 

17), though they expressed well and had nominal amount of spike gp120 incorporation, 

consistent with literature.  When tested for lysis however, they turned out to be similar to 

the wild-type virus (lytic IC50 with PTT, Figure 18B).  However, differences were revealed 

when the mutants were tested for sensitivity to cholesterol depletion (Figure 19B).  W(1-

5)A and W(1-3)A both had reduced sensitization with cholesterol depletion while W(4-

5)A was close to wild type pseudovirus.  The first three tryp residues are shown to be the 

most important in affecting infection while the last two (W(4-5)) have a smaller effect.  

While lysis with KR-13 was not completely aborted with the MPER mutations, a pattern 

of suppression emerged that was consistent with prior literature on infectivity.  Based on 

these observations, one could argue that either (1) MPER domain participates directly in 

lysis and cholesterol interactions, or (2) MPER domain participation is indirect in 

messaging from cholesterol to lysis, such as stability of the spike and/or 6-helix bundle 

formation.  However, it is clear that while lysis and fusion share many events, they have 

different sensitivities to protein changes. 
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Chapter 4: Data Interpretation and 
Future Directions 

 

 

The over-arching goal of this thesis was to shed light on the role of the lipid bilayer and 

the embedded spike gp41 protein in the lysis event triggered by PTTs like KR-13.  The 

benefits to pursuing PTTs are multi-fold: 

1.   PTTs are potent, sub-micromolar inhibitors of HIV-1 entry with dual antagonist 

behavior against CD4 and co-receptor, shedding of spike gp120 and lytic release of 

capsid p24, the latter two of which are irreversible in their inactivation of the virus.  

There is a pressing need for such entry inhibitors and understanding the mechanism 

of inhibition would help develop a powerful class of inhibitors including small 

molecules and peptidomimetics that share similar attributes. 

2.   PTTs have been shown to expose previously occluded, highly neutralizing epitopes 

on MPER, making post-treatment residual virions ideal vaccine candidates.  

3.   Of all that has been determined about HIV-1, the mechanism of fusion remains a 

black box.  While the events that precede it as well as the events that follow it have 

been determined, the actual mechanism of fusion remains unknown.  This has 

limited the targeting of HIV-1 entry to (1) targeting the spike proteins, gp120 and 

gp41, which are either conformationally dynamic, shielded by glycans and 

mutationally plastic or (2) targeting the membrane which is difficult since viral 

membranes come from infected cells making them very similar.  Since the response 
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of HIV-1 to PTTs mimics aspects of fusion, studying PTTs could advance our 

understanding of the fusion mechanism 

 

This thesis set out to uncover the role of lipids and spike proteins and their interplay and 

while it has fostered new understanding, there are still things to be achieved. 

 

DATA INTERPRETATION: 

 

The data presented in the thesis can help determine an important mechanism taking place 

at the virological synapse that is affected by lipid composition (Chapter 2) and spike 

sequence (Chapter 3).  These data however require the consideration of caveats.   

 

CAVEATS 

 

Below is a discussion of key pieces of data that are considered in this analysis. 

1.   MβCD-depletion of cholesterol has resulted in a dose-dependent enhancement in 

lysis observed with PTT (Figure 5B) and infectivity (Figure 14).  One worry is 

that MβCD might interact directly with the membranes or proteins to cause this 

effect.  We have assuaged concerns by washing samples with buffer thoroughly or 
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run samples through a gradient purification method, after MβCD treatment for 

infectivity assays.  In addition, a thorough survey of literature suggests MβCD is 

specific for cholesterol [89] and does not bind to or interact with lipid bilayers 

without interacting with cholesterol [90, 91].  Also, observations (Figure 10, 

Figure 11 and Figure 14) indicate that the trends in lysis and infectivity observed 

with MβCD can be reversed with supplementation of exogenous cholesterol, 

suggesting that the observed trends in lysis and infectivity have to do with 

cholesterol and not MβCD.   

 

The sensitization effects on lysis were also seen in an alternate assay in the absence 

of MβCD, albeit attenuated, where envelope sphingomyelin (SM) was cleaved to 

produce ceramide.   
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Figure 23: Lytic release of p24 with SMase treatment (black squares) and SMase treatment followed by PTT treatment 
(red circles). 

 
 
 
In this assay, the removal of the phosphorylcholine head group with the enzyme 

Sphingomyelinase is believed to reduce the interaction between SM amide groups 

and the hydroxyl head groups of cholesterol [92, 93].  Breaking of the interactions 

between SM and cholesterol was also achieved in an alternate way whereby 

envelope cholesterol in the outer leaflet was converted to 4-cholesten-3-one with 

the addition of cholesterol oxidase [94].  This conversion breaks the interaction 

between cholesterol and SM and possibly the interactions that are required for raft 

formations [95].   
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Figure 24: Impact of Cholesterol Oxidase (CO) pre-treatment on lytic release with PTT on HIV-1 pseudoviruses.  
Samples of BaL.01 HIV-1 pseudoviruses were treated with a range of serially diluted CO for 30 minutes at 37C and then 
treated with equal volumes of PBS (black squares) or 5 µM KR-13 (red circles) for another 30 minutes at 37C before 
spinning to pellet virus debris.  Supernatants were tested for p24 content via sandwich ELISA 

 
 
 
The treatment with Cholesterol Oxidase results in an enhancement of lysis from 

25% (base-line) to 57% (Figure 24).  The SMase and CO treatments suggest that 

the breaking of cholesterol/sphingomyelin interactions is a major effector of 

enhancement of lysis.  These data coupled with sterol reversal of MβCD-mediated 

depletion argue for cholesterol being the causative agent in the observed 

sensitization rather than MβCD. 

 

2.   Sensitization data presented in Figure 14 suggest that a small amount of MβCD-

depletion of envelope cholesterol enhances the infectivity of HIV-1 pseudoviruses.  
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This has not been reported in prior literature.  Depletion of cholesterol (with large 

amounts of MβCD > 312 µM) has been associated with a fall in infectivity, whether 

the treatments were done on cells producing virus or on the viruses themselves [19, 

21-23], but depletion with smaller amounts has never been reported.  One 

possibility for the difference in results might have to do with exosomes.  These are 

lipid particles put out by cells that present antigens on their surface depending on 

the state of the cell they bud from [96, 97].  They are difficult to differentiate from 

viruses since their size ranges form 30-100 nm, and in the case of exosomes from 

HIV-1 virus producing cells, they contain gag [51] and present spikes on their 

surface.  The argument to be made is whether the sensitization effects observed are 

due to p24 release from contaminant exosomes rather than from viruses.   

 

The first argument against the contamination of exosomes comes from infectivity 

data.  While exosomes might contain gag and spikes, there was no literature found 

showing they are capable of causing infection.  Since the trends observed with lysis 

and infectivity after cholesterol depletion correlate with each other, it is likely not 

due to exosomes.  Secondly, gradient centrifugation, the method used to purify the 

pseudoviruses based on density, is believed to efficiently separate exosomes, which 

are less dense than viruses [98].  Markers for exosomes such as 

Acetycholinesterase, a GPCR based receptor found on exosomes [98] were not 

present in the viral cultures based on Ache activity.  Finally, a consistent finding in 

the exosome field is the absence of the receptor CD45 on viruses and the presence 

of it on exosomes [51].  To test for the presence of CD45, pseudoviruses were run 
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in parallel to a pellet of HEK-293T cells on a 10% SDS-PAGE gel, transferred to a 

PVDF membrane and then detected using a rabbit anti-CD45 antibody (Abcam).  

The data showed CD45 in the cell pellet but not in the viruses.   

 

In the next step, HEK-293T cells were co-transfected to produce BaL.01 

pseudoviruses.  The produced pseudoviruses were run through a gradient and every 

fraction collected was tested for infectivity, p24 content and the presence of CD45 

using cell-based chemiluminescence, sandwich ELISA and western blot.   
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Figure 25: Characterization of contents of Iodixanol gradient fractions used to purify BaL.01 pseudoviruses.  Increasing 
numbers indicate increasing density.  P24 content (black squares) was determined via sandwich ELISA while infectivty 
(red circles) was determined via cell based assay with chemiluminescence as an endpoint and CD45 content (blue 
triangles) was determined using Western Blot. 

 

 

 

The data in Figure 25 suggest that CD45 was present in the supernatant collected 

from HEK-293T cells and in fractions (1, 2) that also have a lot of p24 content.  

However, it was not found in the fractions that were used to collect viruses from 

(6-9), based on infectivity values.  These data suggest that the pseudoviruses used 

in this study are free of CD45-containing exosomes.  
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3.   The final caveat to be considered is the impact of the level of spike gp120 in viruses 

on observed sensitization.  MβCD treatments that result in shedding of gp120, 

reducing the number of active spikes on the envelope surface (Figure 7B) also 

result in enhancement of lysis (Figure 5B) and infectivity (Figure 14) though the 

shedding phenomena have not been linked with either.  Protease treatments of the 

pseudovirus that are believed to result in fewer spikes that are “clean” and 

functional (50% drop) resulted in 200% enhancement in infectivity as shown in 

Figure 26.   

 

 

 

 

Figure 26: Effect of protease purification on gp120 incorporation (black), infectivity (red) and lysis with 5 µM KR-13 
(blue).  BaL.01 pseudoviruses were treated with EndoH for 30 minutes followed by a cocktail containing trypsin, 
chymotrypsin and proteinase K for another 30 minutes.  All treatments were done at 37C.  Pseudovirus sample control 
was treated at the same temperature and time as the enzyme-treated sample except with PBS additions.  Both samples 
were then run through an Iodixanol gradient and the resultant biochemical parameters measured by western blot 
(gp120), chemiluminescence (infectivity), and sandwich ELISA (lysis). 
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In other work done in this thesis, pseudoviruses produced with different amount of 

spikes showed that while spike incorporation was proportional to the amount of 

spike DNA used in the co-transfection to produce pseudoviruses, infectivity was 

inversely proportional up to a low threshold below which it plateaued as shown in 

Figure 27.   

 
 
 

 

Figure 27: Biochemical characterization of pseudoviruses made with different amounts of BaL.01 gp160 spike DNA.  
The pseudoviruses were characterized for gp120 content (western blots, black), infectivity (chemiluminescence, red) and 
lysis with 5 µM KR-13 (sandwich ELISA, red) and normalized for p24 content. 

 
 
 
Considering literature and the findings in this thesis, we could build an alternate 

model where reducing spike gp120 (before producing pseudoviruses by DNA 

amount reduction or after by protease treatments or MβCD treatments) results in 
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sensitization of the virus.  Prior literature has shown that pseudoviruses produced 

with fewer spikes show enhanced infectivity and vice versa [99] consistent with the 

findings in this thesis.   

The main finding that disagrees with this model is reversibility of lytic and 

infectivity trends with MβCD treatment with the supplementation of exogenous 

cholesterol.  While the sterol can reverse lysis and infectivity, shedding of gp120 is 

believed to be irreversible [11].  Hence, the trends cannot be attributed to simple 

gp120 content incorporated on pseudovirions. 

 

Consideration of these caveats is important to get a more balanced interpretation of the 

work presented in the previous chapters. 

 

PUTATIVE MODELS THAT UNIFY THE DATA 

 

The purpose of this section is to examine what is known about membranes and HIV-1 

spikes in literature and determine, based on the data, a model to explain the findings.  Three 

models will be developed for discussion. 
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Model # 1: Partial Depletion of Lipid Rafts Allows for Observed Enhancement of Lysis 

and Infectivity 

 

The existence of lipid rafts on cell membranes has been proposed and mostly accepted 

since the findings that some proteins associate with detergent resistant membranes and float 

to the top of a density gradient in flotation assays.  In these assays, it was determined that 

the proteins rose to the top with a mixture of certain lipids, namely cholesterol, 

sphingomyelin and GM1, a ganglioside which, along with mostly saturated phospholipids, 

result in rafts which are much more tightly packed compared to non-raft regions.  

Fluorescence microscopy coupled with advanced techniques such as Forster’s Resonance 

Energy Transfer (FRET) have determined that these raft domains are between 10-100 nm 

in diameter.  They are known to sequester certain proteins in the plasma membrane 

exclusively such as CD44, and to exclude others such as CD45. 

 

HIV-1 budding is believed to occur in these raft domains resulting in high concentration 

of cholesterol (45 mol %) and SM (18 mol %).  While it has not been determined, it is 

speculated that the viral envelope (membrane) is made up of rafts.  As mentioned before, 

cholesterol depletion occurs preferentially in non-raft regions and this results in defined 

raft vs. non-raft regions.  Flotation assays of gp41 in viral membranes revealed that it floats 

to the top suggesting it is raft-associated [19].  Other work has shown that the CRAC 

domain within gp41 prefers raft regions, and specifically the interface between raft and 

non-raft regions [100].  
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Other work has revealed that the interfaces between raft and non-raft regions contain a 

mismatch in lipid heights and make a weak region primed to be perturbed.  Hence, if 

cholesterol depletion leads to increasing the length of these interfaces, it might provide 

access to more spikes to the interface allowing an enhancement of lysis (Figure 5B) and 

infectivity (Figure 14). 

 

At higher depletion of cholesterol, infectivity gets arrested as does lysis with PTT.  One 

possible explanation is the spike is no longer associated with rafts.  This has been shown 

with flotation assays with gp41 no longer rising to the top after heavy cholesterol depletion 

(20,000 µM MβCD) though this association is re-established with supplementation of 

exogenous cholesterol [101]. 

 

The lipid raft model fits with the bell-shaped curve observed for lysis and infectivity with 

sensitizations at low treatments and abolishment at higher concentrations.  It also fits with 

published replenishment data on infectivity especially with sterols that support rafts 

(cholesterol and cholestanol) vs. sterols that do not (coprostanol) [19].  However, for lysis, 

we observed that coprostanol led to intermediate recovery of lysis (instead of no recovery) 

while cholestanol led to complete recovery (Figure 9).  The differences between 

cholestanol and coprostanol only became pronounced when larger amounts of cholesterol 

were depleted before exogenous supplementation (Figure 10 and Figure 11).  One 

explanation for this difference in coprostnol behavior might have to do with the presence 
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of rafts.  If rafts are not completely destroyed (as we believe to be the case with more 

modest MβCD treatments), addition of alternate sterols simply reverses the effect of 

removing cholesterol, namely adding bulk to the membrane.  This might not require a 

particular type of sterol.  However, when the raft is more completely destroyed, as could 

occur at high treatments of MβCD, the type of sterol added might determine if a raft re-

forms or not.  The concept of large-scale disruption is supported by the changing fluidity 

data at higher amounts of MβCD treatment. 

 

Model # 2: Clustering of Spikes Results in Enhancement of Lysis and Infectivity 

 

Fully infectious virions are believed to have between 8-14 spikes [67] while pseudoviruses 

can have more depending on the ratio of spike DNA to core DNA used in co-transfections 

(Figure 27).  Originally, the spikes were believed to be evenly spread, throughout the 

surface until the first super-resolution images challenged the view [102].  The images 

suggested that spikes on mature viral particles tended to cluster in groups on virion and this 

ability to cluster was lost in immature particles (uncleaved gag) or in virions where the 

spike was missing the C-terminal tail resulting in no or reduced infectivity respectively.  

Other groups found that each virus type has a certain minimum number of spikes required 

for infection and, the more spikes expressed than what is needed, the greater the observed 

infectivity, possibly due to the higher chance of interaction between a spike and cellular 

receptors [67]. These findings, combined with early cryo-TEM micrographs of the 
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virological synapse filled with spikes [103, 104], suggest that the clustering of spikes is 

beneficial for infectivity. 

This model on clustering fits well with the idea of what happens as cholesterol is depleted 

from the viral envelope.  The raft regions would shrink and the spikes which have an 

affinity for the raft regions would cluster so as to remain on the raft, thereby making it 

more likely for a positive interaction to occur when the virion interacted with a cell 

expressing CD4 and co-receptor.  This enhancement/greater likelihood of a productive 

encounter would remain while the raft was not completely depleted.  Once the threshold is 

crossed, the spikes would possibly spread out, with nothing keeping them together.  This 

idea would fit well with the bell-shaped infectivity trend but there is no evidence linking 

this model with lysis. 

In investigations on proximity requirements, it was determined by using mutants 

expressing different ratios of S375W (a mutation in gp120 that retains infectivity but 

suppreses the binding of peptide triazole thiols [105]) to WT gp120, that proximity between 

units of WT gp120 was not critical for lysis [106] as long as there was at least one complete 

trimeric spike made up of three WT gp120 units.   

The other control used to judge the validity model is the work done with the CRAC and C-

tail truncation (R706St) mutant pseudoviruses as well as the double mutant.  Since the 

CRAC region is important in recruiting spikes to raft regions [100], mutating it out using 

a Leu -> Ile mutation should stop recruitment to raft regions.  Similarly, The C-tail 

truncation mutant has been shown not to cluster in the native state ([102]).  Hence, if 

clustering is important for enhancement in infectivity and lysis, neither mutant should show 
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enhancement with progressive cholesterol depletion. However, this is not true as observed 

in Figure 20.  The CRAC mutant and the double mutant (CRAC + R706St) show bell-

shaped curves albeit with diminished overall sensitivity.  Hence, based on the available 

data, this model is not accepted. 

 

Model # 3: Formation of gp41 6-Helix Bundle Determines the Observed Enhancement in 

Lysis and Fusion 

 

After the interaction of gp120 with CD4, the most energy-releasing reaction is the 

formation of the 6-helix bundle based on calorimetric analysis with peptide mimics.  The 

energy released in the formation of the 6-HB is believed to be used in the fusion of the 

membranes [45], though how this occurs has not been determined.  One possibility is the 

formation of the 6-helix bundle is tied to a second process that requires a lot of energy and 

the two processes are in equilibrium with the event of CD4/co-receptor binding tipping the 

equilibrium toward 6-HB formation.  This could be due to (1) Spatial requirements since a 

large segment of the gp41 protein (3x NHR + CHR) comes in close proximity, possibly 

perturbing the membrane during hydrophobic collapse. (2) Bending of the membrane that 

might happen between the three gp41 units connected to the membrane during the 6-HB 

formation.  Or (3) Exposure of the MPER domains during fusion.  MPER is known to 

become exposed post-CD4 and co-receptor binding [107-109] and this transition of MPER 

might be energy intensive. 
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Figure 28: Illustration of the equilibrium that must be perturbed to form the 6-helix bundle 

 

 

 

Regardless of how the energy released from 6-HB formation is used, if the system in 

equilibrium is changed to reduce the energy-intensive process through a process such as 

depleting cholesterol, it would drive the system into forming 6-helix bundles with more 

likelihood.  One reason for the depletion to have this effect is that when more than 60% of 

cholesterol is depleted at the maximum enhancement in lysis and infectivity (Figure 7A), 

there might be more space within the bilayer which may make it easier spatially for bundles 

to form and easier to bend membranes if that were the determinant.  Another reason may 

have to do with the CRAC domain in MPER interacting with cholesterol.  With majority 

of the cholesterol depleted, it might have a lower number of interactions with the 

surrounding membrane, which might make MPER transitions easier to occur resulting in 

the observed enhancement with infectivity and lysis.  However, this model should be linear 
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with cholesterol depletion and does not fit the bell-shaped trend observed with lysis and 

infectivity at greater MβCD treatments making it difficult to pick this model. 

 

Conclusions: 

 

Based on the three models investigated, the lipid raft model fits with more findings than 

the other models.  However, the other two models cannot be completely excluded based on 

the data.  The clustering model, while it supported the observations with infectivity, did 

not have any data to support observations with lysis.  The 6-helix bundle requirement 

model, while it supported the enhancement findings for lysis and infectivity, did not explain 

why we see a drop at higher cholesterol depletion. 

 

It seems no model completely explains all the findings but each model supports certain 

aspects.  Some of the findings are quite new such as clustering of spikes and more 

investigations are required to determine the mechanism.  Others are poorly understood such 

as how 6-helix bundle formation directly translates to membrane perturbation and fusion.  

Based on what is known now, we must accept that further findings on these models are 

required to shed light on the complete mechanism by which cholesterol depletion results 

in bell-shaped trends in lysis with PTT and infectivity. 
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FUTURE DIRECTIONS: 

 

When investigating cholesterol and the ability of different sterols to recover lysis, 

cholestanol and coprostanol were tested since the former is known to support rafts and the 

latter does not [19].  The data obtained were interesting.  However, a main weakness was 

the lack of proof that the added sterols inserted into the lipid bilayer.  This could be 

remedied by visualizing the change in buoyant densities by running the treated virus 

samples and controls on Iodixanol gradients and visualizing the recovery of the density 

with the addition of the sterol after MβCD treatment.  The findings between cholestanol 

and coprostanol can be strengthened by testing other sterols such as Dihydrocholesterol, 7-

dehydrocholesterol, epicholesterol which support rafts and 4-cholestenone which does not 

[19]. 

 

The membrane morphology data acquired with Dehydroergosterol and the lytic recovery 

data with different sterols suggested that rafts might play a role in spike activity.  A recent 

paper has provided evidence that the N-terminal fusion peptide on gp41 actively seeks out 

the interface between raft and non-raft domains on the cell membrane to insert into to start 

fusion [110].  It is not too far a stretch that a similar interface on the viral envelope could 

help kick things along.  At ~45 mol % cholesterol, the envelope is believed to be in a gel 

phase but small amounts of depletion might result in a membrane with distinct raft and 

non-raft regions.  While they cannot be visualized without super-resolution microscopy, 

they are in the ball park of FRET measurements (1 nm < ro < 10 nm) with a pair of 
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membrane-embedded fluorophores such as Dehydroergosterol, a fluorescent sterol that 

closely mimics the raft preference of cholesterol [111] and an acyl chain-bound partner 

such as Dansyl or NBD.  By modifying the amount of the acceptor within the assays, it 

will be possible to calculate the size of the raft domains with changing amounts of the 

depletion agent.  This could foster new understanding of the location and behavior of the 

spike. 

 

Treatment of pseudoviruses with PTTs has shown an enhanced exposure of the conserved 

MPER epitope based on binding data with MPER antibodies 2F5, 4E10 and 10E8 leading 

residual virions to be attractive vaccine candidates in mouse studies [11].  Pre-treatment of 

the same pseudoviruses with low amounts of MβCD before the addition of PTT 

significantly enhances the lytic release of capsid p24 protein.  Removing sterol from the 

viral membrane is known to affect the location of the CRAC domain along the normal to 

the viral envelope [38] and might make it easier for antibody access.  Hence, it would be 

worthwhile to test if treatment with MβCD alone or pre-treatment with MβCD followed by 

KR-13 would significantly enhance the conserved MPER epitope exposure resulting in a 

better immunogen for vaccine studies. 

 

Investigations with the protein mutants that targeted the ability of gp41 to interact with the 

viral envelop led to some tantalizing findings.  The CRAC mutant and the C-terminal tail 

truncation mutant showed enhancement with lower amounts of MβCD than wild type or 

other mutants.  It would be worthwhile confirming cholesterol content and shedding of 
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gp120 to understand the behavior observed with these mutants.  Does cholesterol content 

change with smaller amounts of MβCD treatment for the mutants as compared to the wild-

type virus?  If we assumed that viral gp120 shedding occurred as a function of cholesterol 

removal, would this enhance shedding observed at lower amounts of MβCD?   

 

This finding can be verified with other mutants that have intermediate levels of CRAC 

activity such as LWGIG or GWGIK.  It would be worthwhile knowing if they also 

exhibited enhancement at doses of MβCD less than the ones shown for wild-type as this 

would establish a pattern of behavior for the CRAC region.  The C-terminal tail also has 

two putative CRAC domains which are removed in the truncation mutation.  It would be 

worthwhile creating a new mutant that moves the stop codon down toward the C-terminus 

allowing the expression of one or both regions and investigating if this alleviates the early 

sensitization observed. Getting these data would allow us to make stronger observations of 

the behavior of these regions. 

 

A major argument for the enhancement effects presented in chapter 2 and chapter 3 is a 

lowering of the energy barrier a spike would have to cross in order to initiate fusion (or 

lysis) by extracting spike cholesterol.  A recent publication demonstrated that viruses of 

different clades have different levels of infectivity based on the number of spikes they 

might need to recruit in order to carry out fusion [67].  While there is thermodynamic and 

mathematical proof that a single spike undergoing 6-helix bundle formation releases 

enough energy for fusion [45], a review of literature suggests this number is between 2 and 
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8 depending on the virus isolate chosen [67].  This publication showed that viruses with 

lower infectivity (possibly due to more inefficient bundle formation) recruited more spikes 

for fusion, which in turn meant a slower process compared to isolates that required fewer 

spikes.  If the energy barrier is being lowered by cholesterol extraction, the number of 

spikes required to carry out fusion/lysis might be reduced or at the very least, speeded up 

compared to an untreated virus sample.  This can be tested with the timed addition of 

inhibitors to lysis and fusion such as T-20 or C-37 or 5-helix which bind to and inhibit the 

formation of the 6-helix bundle. 

 

Alternatively, the publication sought the use of mixtures of different ratios of dominant 

negative mutants (cleavage deficient where gp120 and gp41 remain a single unit and fusion 

mutant, V2E, which has been tested in chapter 3) in combination with wild-type spikes on 

the same pseudovirus to demonstrate the change in number of spikes required to carry out 

fusion.  While the V2E mutant will not suppress lysis as we found in chapter 3, the cleavage 

deficient mutant might prove to be useful in determining whether the number of spikes 

required for infection and lysis drops after small amounts of MβCD treatment. 
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