Metadata, citation and similar papers at core.ac.uk

Provided by Drexel Libraries E-Repository and Archives

College of Engineering

UNIVERSITY

Drexel E-Repository and Archive (iDEA)
http://idea.library.drexel.edu/

Drexel University Libraries
www.library.drexel.edu

The following item is made available as a courtesy to scholars by the author(s) and Drexel University Library and may
contain materials and content, including computer code and tags, artwork, text, graphics, images, and illustrations
(Material) which may be protected by copyright law. Unless otherwise noted, the Material is made available for non
profit and educational purposes, such as research, teaching and private study. For these limited purposes, you may
reproduce (print, download or make copies) the Material without prior permission. All copies must include any
copyright notice originally included with the Material. You must seek permission from the authors or copyright
owners for all uses that are not allowed by fair use and other provisions of the U.S. Copyright Law. The
responsibility for making an independent legal assessment and securing any necessary permission rests with persons
desiring to reproduce or use the Material.

Please direct questions to archives@drexel.edu

https://core.ac.uk/display/190326797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.drexel.edu
http://idea.library.drexel.edu/
www.library.drexel.edu
mailto:archives@drexel.edu
http://www.drexel.edu/coe/

A Timing Optimization Method Based on Clock
Skew Scheduling and Partitioning in a Parallel
Computing Environment

Baris Taskin
Drexel University
Philadelphia, PA 19104
E-mail: tagkin@coe.drexel.edu

Abstract— This paper describes the implementation of a
heuristic method to perform non-zero clock skew scheduling of
digital VLSI cirenits in a parallel computing environment. In
the proposed method, circuit partitions that have low number of
timing paths between partitions are formed. Clock skew schedul-
ing is applied independently to each partition—sequentially or
in parallel on a computing cluster—and results are iteratively
merged. The scalability of the proposed method is superior com-
pared to conventional non-zero clock skew scheduling techniques
due to the reduction of analyzed circuit sizes (partition sizes) at
each iteration step and the potential to parallelize the analyses
of these partitions. It is demonstrated that after only the first
iteration step of the proposed method, feasible clock schedules
for 65% of the ISCAS’89 benchmark circuits are computed. For
these circuits, average speedups of 2.1X and 2.6X are observed
for sequential and parallel application of clock skew scheduling
to partitions, respectively.

[. INTRODUCTION

Mainstream integrated circuit design flow is normally tuned
for zero clock skew circuit design. Zero clock skew design is
popular due to its relative simplicity in various stages of the
design flow, compared to non-zero clock skew circuit design.
Nevertheless, non-zero clock skew design (scheduling) per-
mits improved circuit performances, and is desirable in high-
performance circuit design [1]. Various clock skew scheduling
methods targeting edge-triggered and level-sensitive circuits
have been proposed. The proposed techniques range from
techniques that lead to an optimal solution [2], [3] to those
that lead to a sub-optimal feasible solution [4], from those
that employ accurate models [2], [5] to those that employ
approximate models [6], from those that use graph theoretic
approaches [7], [8] to those that employ linear or quadratic
programming techniques [9], [10].

A common bottleneck for all these approaches is scalability.
Scalability 1s an issue because of the interdependence of
system timing paths of an entire circuit for clock skew schedul-
ing. Unlike prevailing static timing analysis methods where a
selected subset of timing paths (critical timing paths) must be
investigated, the entire set of timing paths must be investigated
for a full-scale application of clock skew scheduling. Such
analysis is typically computationally intensive for very large-
scale circuits. The computational intensity manifests itself in

1-4244-0173-9/06/$20.00 ©2006 IEEE.

Ivan S. Kourtev
University of Pittsburgh
Pittsburgh, PA 15261
E-mail: ivan@engr.pitt.edu

two main forms: (1) Hardship in or failure of path identifica-
tion and enumeration, (2) Excessive run times for conventional
clock skew scheduling application techniques.

In this paper, a heuristic method that improves the scal-
ability of clock skew scheduling through partitioning and
parallelization is proposed. A circuit is divided into multiple
partitions such that clock skew scheduling can be applied
independently to each partition. Furthermore, the application
of clock skew scheduling (to partitions) is parallelized for
improved scalability. An iterative solution method is proposed
to merge the results and verify the compatibility (feasibility)
of the solutions for each partition.

The rest of the paper is organized as follows. In Section II,
the conventional clock skew scheduling algorithm used in
this work is reviewed. In Section III, the motivation for the
presented research is described. In Section IV, the partitioning
and parallelization steps of the proposed method are described.
In Section V, experimental results are presented. The paper is
finalized in Section VL.

I[I. CLOCK SKEW SCHEDULING

Synchronous circuits are built of local data paths. A local
data path [1] is formed by two sequentially adjacent registers
and a combinational logic block between them. The timing
analysis of a synchrenous circuit is performed by satisfying the
relevant timing constraints for each local data path. A sample
local data path between sequentially adjacent registers R; and
Ry is shown in Figure 1. The minimum and maximum propa-
gation delays on the combinational logic block are denoted by
ng and DgM, respectively. The internal delays of a register,
not shown in Figure 1, are also defined: The minimum and
maximum clock-to-output delays of R; are denoted by Dé@n

Fegister R; Eegister Ay
Daalm |~ e Data Combinaticnal Data 2 Data Out
Logie
C c
Clock Delay ti-T Clock Delay th
Fig. 1. A local data path.

486

and DEQM, respectively. The setup and hold times of Ry are
denoted by Sy and Hy, respectively.

Due to process parameter variations or by design, clock
(signal) delays at each synchronous component of a circuit
may be nonidentical. Clock skew is defined as T;{m =1,
where # and #y represent the clock delays to registers R; and
Ry of a local data path, respectively. Clock skew scheduling
is the process of computing the optimal clock delays to each
register in order to meet a particular design objective. Popular
design objectives are maximizing the operating frequency T
and improving the tolerance of the circuit to secondary order
effects. The clock skew scheduling method of interest in this
work, shown in Table [and introduced in [2], targets maxi-
mizing the operating frequency of an edge-triggered circuit.

TABLE I
CLOCK SKEW SCHEDULING METHOD.
| LF Froblem [3] \
min T
st Tl f) €T =Dy — Dby =55
Tsun(in) 2 —Dfyy — Db+ Hy

III. MOTIVATION FOR RESEARCH

In state-of-the-art VLSI circuits with high logic depth and
design complexity, identification of timing paths and path enu-
meration cannot always be completed within reasonable time
and computation resources. A heuristic partitioning method is
proposed in this work in order to remedy this shortcoming.
In the proposed method, very long paths are split with a cut
and a level-sensitive latch operating in the transparent phase
is inserted on the cut. The transparent phase latch has no
effect on the functionality of the circuit because the data signal
immediately propagates through the latch. This latch, however,
shortens the logic depth of the original path.

Also, the linear programming (LP) clock skew scheduling
problem formulated for a VLSI circuit (Table [) can be very
large. If solvable, the run times of such large LP problems
are typically manageable within the long design cycles of
integrated circuits. However, some of these problems may
not be solvable at all with common computing resources. In
several industry applications, for instance, LP model problems
for the clock skew scheduling of large-scale circuits exceed the
practical limits of industrial strength computing resources [11].
In the method proposed in this paper, clock skew scheduling
is applied to (smaller) circuit partitions in a parallel computing
cluster, proving this process feasible.

Partitioning for improved scalability of clock skew schedul-
ing is pursued partially due to an intertwined relationship to the
resonant rotary clocking [12], [13] research. Resonant rotary
clocking technology [12], [13] is a next-generation clocking
technology that inherently supports—and requires the use of—
non-zero clock skew scheduling. The implementation of high-
speed digital circuits synchronized by the resonant rotary clock
technology entail partitioning due to the mesh structure of the

PARTITIONING !
2x2 GRID CHACO :
I REGISTER INSERTION
... iﬁﬂ;ﬁﬁé&ﬁfﬁéﬁ-é
XGRID + * + *
LP1 P2 LP3 LP4
GLPK GLPK GLPK GLPK
[11 [12 [13 [14
TOP BLOCK LP
T»=max(T1, T2, T3, T4)
GLPK
min T
\ ti=xi
XGRID + * + *
ILP1 LP2 LP3 LP4
: T=minT T=minT T=minT T=minT
=% ti=xi t=xi =%
: GLPK GLPK GLPK GLPK
D DRefterition ~ ~ T T T 7 ': NO css YES
. | FEASIBLE?

Fig. 2. Clock skew scheduling with partitioning method.

rotary clock distribution network. The details of such synchro-
nization will not be explained in this paper. Nevertheless, this
relationship is mentioned here due to comprising a driving
motivation for the presented work.

IV. HEURISTIC METHOD

The proposed method entails an initial partitioning stage
and an iterative solution stage as illustrated in Figure 2. In the
partitioning stage, instead of a traditional path-based or a net-
based partitioning methodology, a fine-tuned, timing-driven
partitioning methodology is used. In this partitioning method-
ology, partitioning criteria are selected such that partitions
which are amenable to clock skew scheduling are generated.
In the iterative solution stage, data paths that are local to each
partition are identified and corresponding timing constraints
are included in the clock skew scheduling problem for that
partition. Timing constraints of local data paths which span
different partitions are included in the clock skew scheduling
preblem of the “top block™ The LP problem formulation
for the application of clock skew scheduling in Table T is
used to formulate the clock skew scheduling problem of
each partition and the top block. The clock skew scheduling
problems of each partition are independent of each other,

487

so these analyses are parallelized. However, the solutions of
each partition and the top block are dependent due to the
timing paths between multiple partitions. Alternative methods
of iteration are proposed to solve for the dependencies. The
stages of this heuristic method is detailed in the following
subsections.

A, Partitioning with Chaco

In practical implementation of partitioning, the partitioning
tool Chaco [14] is used. Among the multiple criteria of
partitioning for clock skew scheduling are the weight, number
and location of the cuts amongst partitions, the weight of
each partition, the relative mapping of sequentially-adjacent
registers to partitions and the number of internal vertices per
partition. Chaco tracks the quality of these partitioning criteria
with user-defined priorities. In order to generate partitions
amenable to clock skew scheduling, the number of cuts
between partitions must be minimal and the number of internal
vertices (vertices that do not have edges between partitions)
must be maximal. Depending on particular design budgets,
the priority of the criteria, or the weights of particular nets or
vertices can be fine tuned.

For smaller circuits where the circuit graph [1] can be
generated easily, partitioning is applied on the generated circuit
graph. For larger circuits, where the circuit graph cannot be
generated (or takes excessive time), partitioning is applied on
the gate-level design. In this case, the partitioner is tuned such
that registered-input, registered-output partitions are generated.

The partitioning tool is operated with different priorities
assigned to the partitioning criteria. Experimentally, a bal-
anced priority assignment between minimizing the total cut
weight and maximizing the number of internal vertices is
found sufficiently effective.

B. Clock Skew Scheduling of Partitions

After partitioning, clock skew scheduling problems are
generated for the n circuit partitions, (LPy,LP,...,LP,). Bach
partition LP; 13 solved (sequentially or in parallel) in order to
compute the minimum clock peried permitted by that partition.
The maximum of the minimum clock periods reported from
each partition LP is selected as the common clock period at
which all the partitions are operable.

Next, the maximum of the minimum clock periods com-
puted for the partitions is used to further constrain the clock
frequency of top block LP. A constraint in the form

szax(nyTZr")Tﬂ) (1)

is added to the top block LP, where 1,T»,...,T, de-
note the minimum clock periods computed for partitions
LP)LP, ... LP,, respectively (see Figure 2). If the top block
LP problem is less constraining on the minimum clock period
than the partition LP problems, then the maximum of the min-
imum clock periods of the partition LP problems is selected
as the commen clock period (for partitions and the top block).
Otherwise, the minimum clock period computed for the top
block is selected as the common clock period.

The top block LP problem is solved gffer the partition LP
problems are solved, because the top block has all boundary
vertices implied in its constraints. Bach partition LP problem
only has a fraction of the boundary vertices implied in their
constraints. The solution of the clock delays to all boundary
vertices, as computed by the partition LPs and the top block
LP problem, are matched in order to verify the validity of
the computed minimum clock period. In order to match these
clock delays of boundary vertices, the solutions computed for
the top block LP problem are enforced on the partition LP
problems with equalities such as:

I =X, (2)

where the clock delay ; computed for register R; in the top
block LP problem is x; time units (see Figure 2). If the partition
LFP problems return feasibility, the computation is complete.

There are two points to note here. First, note that, the
presented heuristic method does not guarantee a feasible
solution. The following alternative approaches are proposed
to solve for he infeasible cases:

¢ Relteration: Iterations are performed on infeasible
subproblems to search for a feasible answer. The clock
delays whose values are changed from the optimal so-
lution of the top block LP are tracked such that the
feasibility of the remaining LLP problems are not violated.

e Constralning boundary vertices: The clock
delays of all boundary registers are set to an identical
value. Synchronous circuits are typically built to operate
at zero clock skew, thereby, this procedure guarantees
proper circuit operation. A similar clock delay restriction
procedure is applied to the timing of Intellectual Property
(IP) blocks in [3]. In the experiments performed on
ISCAS’89 benchmark circuits for IP blocks, restricting
the clock delays of boundary vertices caused an average
27% improvement of conventional clock skew scheduling
drop to 24% [3]. ‘

+ Delay padding: The minimum Dfpfm and maximum
Dfpr data propagation delays of a local data path are
formulated with additional slack variables S and Sg,
respectively. In the LP problem solution, slack values
reported on each local data path are the amounts of delay
that must be inserted along these logic paths. The clock
delays of the boundary registers are fixed prior to the
solution, such that, the solutions of the remaining LP
problems are not violated.

The second point to note is that, without register insertion,
the partition LP problems and the top block LP problem
are subproblems of the original LP problem. As the solution
of one of the subproblems (the top block LP problem in
this case) is enforced on the remaining LP problems, the
convex solution space of the original problem is not violated.
Thus, if a feasible solution is found without register insertion
and without ilerations, it is optimal. If register insertion is
performed or the alternative reiteration techniques described
above are used, however, suboptimal solutions can be obtained

488

or the convex solution space can be disturbed leading to
suboptimal solutions.

V. EXPERIMENTAL RESULTS

The main focus in experimentation is demonstrating the
Jeasibility of the application of clock skew scheduling with
partitioning (sequentially and in parallel). Towards this goal,
results for only the first iteration step are reported. In this
paper, the alternative iteration methods (Section IV-B) are
proposed as potential directions for circuit designers—they are
not analyzed experimentally.

A. Clock Skew Scheduling Results

Experiments are performed on an ISCAS’89 suite of bench-
mark circuits and an industrial circuit industrialil. The
timing information for ISCAS™89 circuits 1s generated with a
pre-determined algorithm, in which the fanout, size and type
of logic gates are considered. A single phase clock signal with
a 50% duty cycle is selected for synchronization. The internal
register delays are assumed negligible. The experiments are
performed on an Xgrid [15] parallel computing cluster built
with four (4) PowerMac computers with dual G5 1.8 GHz
microprocessors (only one processor is used in clients) and 3
GB RAM. A constant partition size of four (4) is selected.
The simplex optimizer of the GNU LP solver GLPK (version
4.8) [16] is used to solve the LP problems. The results are
presented on Table II.

In Table 11, the run times are reported in order to demon-
strate the speedups achievable through partitioning and par-
allel application of clock skew scheduling. Run times of the
conventional method are denoted by f.npen, the run times of
the sequential solution of partitions method are denoted by
Isequen and the run times of the parallel solution of partitions
method are denoted by fp4,;. The observed run times &5.guen
and fpgq rtecord speedups over conventional clock skew
scheduling application due to partitioning only, and, partition-
ing and parallelization, respectively. The feasibility of each
solution (Feas?) is shown in Table II. Each feasible solution
indicates an optimal minimum clock period, which provides
approximately 30% shorter clock perieds on average (see [3]),
over conventional zero clock skew, edge-triggered circuits.
Note that larger ISCAS’89 circuits have around 1.5k registers
and 20k paths while industriall has approximately 14k
registers and 3.7M paths.

It is observed from Table II that £, is consistently and
significantly (especially for large scale circuits) superior to
Loeguen AN Fooppen. Similarly, foege, is consistently superior to
Ieomen. The run time improvement from fiouen 10 figuen and
from fopnpen 10 fpgre are listed under KT g, and RT Ly,
respectively. The improvements are computed with the formula
[100(f515 — tuew)/ Foia]- On the ISCAS’89 benchmark circuits,
the average run time improvement via partitioning (RT s.p.n)
is 25%. The average run time improvement via partitioning
and parallelization RT I, 15 28%. The circuits, for which the
method is infeasible, are not considered in the computations
of the average improvement. Overall, the application of clock

TABLE II
CLOCK SKEW SCHEDULING RESULTS ON FOUR (4) PARTITIONS.

Circuit Run Time CSS (sec) RTI (%) Feas? \
Name | Leonven ‘ fsequen ‘ tparal RTIsequen | RTIpami y”n ‘
527 0 0 0 0 0 v
5208.1 0 0 0 0 0 v
52908 0 0 0 0 0 v
5344 0 0 0 0 0 v
5349 0 0 0 0 0 v
8382 0 0 0 0 0 v
8386 0 0 0 0 0 v
5400 0 0 0 0 0 v
5420.1 0 0 0 0 0 n
s444 0 0 0 0 0 v
8310 0 0 0 0 0 v
5326 0 0 0 0 0 v
53260 0 0 0 0 0 v
5041 0 0 0 0 0 n
5713 0 0 0 0 0 n
5820 1 1 1 0 0 v
5832 0 0 0 0 0 v
5838.1 2 0 0 0 100 n
5938 1 1 1 0 0 n
5953 0 0 0 0 0 v
5967 0 0 0 0 0 v
5991 0 0 0 0 0 v
51196 0 0 0 0 0 n
51238 0 0 0 0 0 n
51423 21 [3 71 86 v
51488 0 0 0 0 0 v
51494 0 0 0 0 0 v
81512 1 0 0 100 100 v
53271 4 2 1 50 75 n
53330 2 2 1 0 50 n
83384 22 4 3 82 86 v
31863 2 0 0 100 100 v
83378 9 5 2 44 78 n
50669 33 10 7 30 79 n
59234 52 15 8 71 85 n
592341 47 12 5 74 89 v
513207 86 17 10 80 88 v
515850 3545 735 447 79 87 n
s15850.1 1358 156 110 89 92 v
§35932 101 38 13 o2 87 n
538417 7707 | 3780 1845 51 76 v
538584 1394 749 339 46 76 v
Industriall nfa | 34680 | 25680 n/a n/a n

[Average [I 25] 28 | |

skew scheduling to partitions is feasible for 28 (65%) of the
total 43 circuits, whereas this method is not applicable to
the remaining 15 circuits (35%). For these 15 circuits, the
alternative methods described in Section IV-B can be used.

B. Overall Improvement Results

The run times of a complete non-zero clock skew timing
tool are also analyzed to profile the speedups gained in overall
program execution due to partitioning and parallelization.

On ISCAS’89 circuits, an average of 2.1X speedup is ob-
served in run time due to partitioning (without parallelization).
If the partitioned LP problems are solved in parallel, the
average speedup is 2.6X. It is intuitive that as the size of a
circuit increases, the clock skew scheduling step of a complete
tool, which is the fraction of the task that is enhanced with
partitioning and parallelization, increases as well. So, for larger

489

20000

25000 —
20000 D e
2 15000 — i
pal 4 el v
& 10000 | 4
@ Read-In
5000
0 T . —
= L x =
2 3 8 E:
g £ g 2
e =
Fig. 3. Total run times with Xgrid on large circuits.
2000
1500 1
3 O Scheduling
g 1000 ! o
3 M Fartiticning
500 [|2ran
o . S —

Conwentional Sequential Parallel

Fig. 4. Run time breakdown for s38584.

size circuits, higher speedups are expected through partitioning
and parallelization.

The complete tool operation has three main steps, Read-
in, Partitioning and Scheduling. The scheduling step (in this
work) consists of the first step of iterative application of the
clock skew scheduling method. Figure 3 illustrates the relative
run times of each step for three larger ISCAS’89 circuits and
the industrial circuit industrialil for the parallel application
of clock skew scheduling.

The breakdown of run times to the three steps of a complete
tool is shown for the three largest circuits, 38584, 838417
and Industriall in Figures 4, 5 and 6 respectively. The run
times for three application methods—conventional, sequential
and parallel application—are shown. The run times for each
step is shown with color codes, listed as read-in, partitioning
and scheduling steps from bottom to top for each data bar.
Partitioning step is not required in the conventional application
method, thus is not shown in Figures 4, 5 and 6 for the
“conventional” application methods. Even for methods where
partitioning is necessary, the partitioning stages of the run
time bars are indistinguishable, because the run times for the
partitioning process are relatively very short.

The run times of the read-in and partitioning (where applied)
steps are identical in all three application methods. The run
time of the clock skew scheduling step is improved through
partitioning and application of clock skew scheduling in par-
allel. These improvements lead to an overall speedup.

V1. CONCLUSIONS

In this paper, a heuristic methodology for the application of
clock skew scheduling to VLSI circuits in a parallel computing
environment is described. Partitioning is used to efficiently
process larger circuits by generating smaller partitions for
faster timing analysis. The method is applied to four-partition
ISCAS’89 circuit systems on a parallel cluster of four com-
puting clients, leading to speedups of 2.6X on average.

10000

B000

O Scheduling]
M Fartiticnin
[Eead-In

000

Seconds

4000 ——

2000 —— ‘ |

=3

Conventional Sequential Parall=l

Fig. 5. Run time breakdown for s38417.

40000
35000
30000
25000
20000
15000
10000

5000

[Scheduling]
M Fartiticnin
mEead-In

Seconds

Sequential Parallel

Fig. 6. Run time breakdown for industriall.

REFERENCES

[1] 1. S. Kourtev and E. G. Friedman, Timing Optimization Through Clock
Skew Scheduling. Kluwer Academic Publishers, 2000.

[2] 1. P. Fishburn, “Clock skew optimization,” IEEE Transactions on Com-
paters, vol. C-39, no. 7, pp. 945-951, Tuly 1990.

[3] B. Taskin and I. S. Kourtev, “Linearization of the timing analysis
and optimization of level-sensitive digital synchronous circuits,” IEEE
Transantions on Very Large Scale Integration (VLSI) Systems, vol. 12,
no. 1, pp. 12-27, JTanuary 2004,

[4] K. Ravindran, A. Kuehlmann, and E. Sentovich, “Multi-domain clock
skew scheduling,” in Proceedings of the IEEE/ACM International Con-
Jference on Computer-Aided Design, November 2003, pp. 801-808.

[5]1 S. Held, B. Korte, I. Massberg, M. Ringe, and J. Vygen, “Clack
scheduling and clockiree construction for high performance asics.”
FProceedings of the IEEE/ACM International Conference on Computer-
Alded Design, pp. 232-239, November 2003.

[6] K. A. Sakallah, T. N. Mudge, and O. A. Olakotun, “checkT, and
mind; : Timing verification and optimal clocking of synchronous digital
circuits,” Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pp. 552-555, November 1990,

[7]1 R. B. Deokar and S. 5. Sapatnekar, “A graph-theoretic approach to

clock skew optimization,” in Proceedings of the ILEE International

Svmposium on Circuits and Systems, vol. 1, May-Tune 1994, pp. 407

410.

N. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Graph

algorithms for clock schedule optimization” Proceedings of the

IEEE/ACM International Conference on Compuler—Aided Design, pp.

132-136, November 1992,

[9] 1. 5. Kourtev and E. G. Friedman, “A quadratic programming approach
to clock skew scheduling for reduced sensitivity to process parameter
variations,” in Proceedings of the 1999 IEEE ASIC/SOC Conference,
1999.

[10] R. Mader, E. G. Friedman, A. Litman, and I. S. Kourtev, “Large
scale clock skew scheduling techniques for improved reliability of
digital synchronous circuits,” in Proceedings of the IEEE International
Svmposium on Circuits and Systems, vol. 1, May 2002, pp. 357-360.

[11] Tlog, “Private communication,” 2004, iLOG Inc.

[12] T. Wood, T. Edwards, and S. Lipa, ‘Rotary traveling-wave oscillator

arrays: a new clock technology,” IEEE Journal of Solid-State Circuits,

vol. 36, no. 11, pp. 1654-1665, November 2001.

I. Wood, “Electronic circuitry,” United States Patent Application Number

20030128075, July 2003.

[14] B. Hendrickson and R. Leland, “The chaco user’s gnide: Version 2.0,”
Sandia National Laboratories, Albuquerque, NM, Tech. Rep., Jul 1995.

[15] Xgrid Guide, Apple Inc., Advanced Computing Group, 2004.

[16] GLFPK (GNU Linear Programming Kit), Free Software Foundation
(FSE), http:/Awww.gnu.org/software/glpk/glpk html, 2005, version 4.8.

&

=

[13]

490

