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Evaluation and Application of a RBF Neural Network
for Online Single-Sweep Extraction of SEPs During

Scoliosis Surgery
Anna C. Merzagora*, Student Member, IEEE, Francesco Bracchi, Sergio Cerutti, Fellow, IEEE, Lorenzo Rossi,

Alberto Gaggiani, and Anna M. Bianchi, Member, IEEE

Abstract—A method for on-line single sweep detection of
somatosensory evoked potentials (SEPs) during intraoperative
neuromonitoring is proposed. It is based on a radial-basis function
neural network with Gaussian activations. In order to improve
its tracking capabilities, the radial-basis functions location is par-
tially learnt sweep-by-sweep; the training algorithm is effective,
though consistent with real-time applications. This new detection
method has been tested on simulated data so as to set the network
parameters. Moreover, it has been applied to real recordings
obtained from a new neuromonitoring technique which is based
on the simultaneous observation of the SEP and of the evoked
H-reflex elicited by the same electric stimulus. The SEPs have
been extracted using the neural network and the results have then
been compared to those obtained by ARX filtering and correlated
with the spinal cord integrity information obtained by the H-re-
flex. The proposed algorithm has been proved to be particularly
effective and suitable for single-sweep detection. It is able to track
both sudden and smooth signal changes of both amplitude and
latency and the needed computational time is moderate.

Index Terms—EP, H-reflex, neural network, neuromonitoring,
RBFNN, SEP, single sweep, single trial.

I. INTRODUCTION

THE use of somatosensory evoked potentials (SEPs) for
the intraoperative monitoring of the functionality of the

spinal cord is well known and its usefulness is confirmed by
the literature [1]–[3]. Recordings that diverge from normality
can be interpreted as manifestation of suffering of the spinal
cord. A prompt detection of these variations enables the surgeon
to modify or suspend the operative procedure accordingly, in
order to avoid temporary or permanent neurological deficits due
to accidental damage of the nervous tissue. For this reason, the
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single-sweep extraction of SEPs has been suggested as particu-
larly useful [4], [5]. In this paper, a method for the single-sweep
detection of SEPs is presented. “Wiener” filtering was among
the first algorithms to be used for single-trial SEP extraction,
because of its optimality in terms of mean square error. The
“Wiener” filtering, however, requires a priori knowledge about
the spectra of signal and noise and the signals are also sup-
posed to be stationary. Other traditional algorithms are based
on adaptive models. Their main drawback is that they assume
a linear signal generation model. The method presented is, in-
stead, based on the algorithm described in [4], [6] for visual
evoked potentials (VEPs) and brain-stem auditory evoked po-
tentials (BAEPs): it consists of a radial-basis function neural
network (RBFNN) with Gaussian activation functions. The new
method offers enhanced capability in tracking latency changes:
the innovation here proposed is the adaptivity of the Gaussian
functions centers, realized through a simple but quick and effec-
tive method. In this way, the latency and amplitude of the under-
lying SEP are better identified and their evaluation is more reli-
able. This method is applied in a recently proposed neuromon-
itoring technique that is based on the simultaneous observation
of the SEP (in particular its main peak occurring after about
30 ms, called P30) and of the evoked -reflex elicited by the
same electrical stimulus [5]. Like others combined neuromoni-
toring modalities [7]–[9], this technique capitalizes on the fact
that these two signals monitor different nervous pathways [10]
whose functionality can be altered by the same surgical maneu-
vers [11]. SEPs in fact investigate the sensory pathways, while
the -reflex investigates part of the sensory pathways, part of the
motor pathways (i.e., downward from where the reflex circuit is
located) and indirectly the facilitatory descending pathways.

II. METHOD

A. RBFNNs: General Principles

Radial-basis function neural networks represent a particular
category of unbiased feedforward neural networks with the fol-
lowing three layers:

— an input layer, consisting of an instant input vector
with elements;

— a hidden layer with neurons;
— an output layer, usually comprised of only one neuron.
A scheme of the network is shown in Fig. 1.
The input weights are generally set to 1, whereas weights

between the hidden layer and the output node are adaptively
learnt as the signal processing goes on.

0018-9294/$25.00 © 2007 IEEE
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Fig. 1. The RBFNN used for single-sweep detection of SEPs is a feed-forward
network with three layers and Gaussian activation functions for the hidden
nodes. N(C ; � ) indicates a Gaussian function with center in C and
spread � .

The activation function of the hidden layer is the same for
all its nodes and it is a function with radial symmetry. The
radial-basis function of the th node is characterized by a
center vector (with elements) and by a radius that rep-
resents the Euclidean distance between the generic instant input
vector and the center vector . The radial-basis func-
tion is maximum (usually equal to 1) when the radius is 0, i.e.,
when the input and the center of the node coincide, and should
decrease as the radius increases. The output of the th hidden
neuron is the value of the radial function evaluated for the ra-
dius : .

The responses of the hidden neurons feed the output unit,
which combines them in a weighted sum to form the global
network output in accordance with

(1)

where represents the weight between the th hidden node
and the output neuron.

The weights are learnt in a supervised way, which consists in
comparing the network output and a reference signal and mini-
mizing the difference between these two.

The most commonly used radial-basis function is the
Gaussian function [12], [13]

(2)

where is the spread and acts as a mean. Clearly, the
use of a Gaussian activation function makes the mapping from
the input layer to the hidden layer nonlinear. It is due to these
Gaussian functions that the RBFNN goes beyond the limits of
traditional adaptive filters and linear models [4], [6].

B. Specific Architecture for SEP Detection

For the specific application of RBFNNs to single-sweep de-
tection of SEPs, a particular configuration of the network is re-
quired. Fig. 1 shows the overall architecture of the considered
neural network. First of all, the instant input is not a vector but
a scalar: it is the discrete time, i.e., the number of the current
sample in the sweep, after the stimulus. So, if the acquired sweep
is formed by samples, the total input vector for each sweep

is , where 1 represents the stimulus delivery in-
stant and is the end of the single recording; the instant scalar
input, instead, is . The centers of the Gaussian functions
are no more located in a -dimensional space but are distributed
over the discrete time axis that goes from 1 to . Therefore, the
network output is computed as follows:

(3)

After the learning of the proper network parameters (as shown
in the next Section II-C), the output represents the th
sample of the detected SEP for the th sweep; is the current

weight between the th node and the output unit. is, instead,
the scalar center of the th neuron for that sweep.

Obviously, the performance in the single-sweep detection
of SEPs is tightly connected with the parameters that describe
the network in detail. In common applications such parameters
are fully learnt, but that would require a high computational
time, inconsistent with real-time applications. For this reason,
some simplifications have been proposed, though maintaining
the global learning capability of the network. In particular, the
following.

1) Number of Neurons: The number of hidden units depends
on the waveform of the signal to be detected and has to be ex-
perimentally found.

2) Centers of the Gaussian Functions: At the beginning, the
centers of the Gaussian functions are uniformly distributed over
the discrete time axis, as described by

(4)

However, the detection of the latency of the P30 peak is par-
ticularly important for intraoperative neuromonitoring and the
better a Gaussian function is centered on the P30 peak, the more
accurate is its latency identification. This can be achieved in two
ways: using a high number of unmoved Gaussian functions, i.e.,
of neurons (as suggested in [6]) or, with a lower number of neu-
rons, moving adaptively the Gaussian functions themselves. The
first solution requires a high computational time; for this reason,
it has been preferred to initialize the centers as described in (4)
and then adjust their locations adaptively sweep-by-sweep. In
order to keep the computational time moderate for real-time ap-
plications, the centers are not adapted independently one from
another, but the whole array is shifted till the best identification
of the SEP latency is achieved, as will be described in more de-
tail in Section II-C.

3) Spreads of the Gaussian Functions: In order to reduce the
computational time, the spreads are not learnt, but previously
fixed and kept unchanged. For further model simplification, the
spread is the same for all the hidden activation functions, as it
has been demonstrated that RBFNNs with such a characteristic
do not loose their universal approximation capability [12], [13].
Clearly, this spread is connected with the number of hidden units
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and with the number of samples to be spanned. Moreover, this
unique spread should obviously balance the abilities to follow
both the low-frequency and the high-frequency components of
the signal to be detected; this compromise is achieved through
the experimental parameter

(5)

C. Network Learning

The single-sweep detection of SEPs using this RBFNN is per-
formed by letting the network learn continuously the weights
and the centers’ location of the Gaussian functions that charac-
terize the hidden layer. In order to perform such adjustments,
some theoretical hypotheses regarding the signal to be processed
are required. Indeed, if considering the recording , in which
the underlying evoked signal is embedded in the electroen-
cephalographic noise , the hypotheses are mainly three: ad-
ditivity of signal and noise; noncorrelation of signal and noise;
null mean of the noise. Obviously, the hypotheses listed above
cannot be regarded as completely correct, in particular the non-
correlation of signal and noise, but they are commonly accepted
for other detection algorithms and for EP analysis [4], [14]–[18].

On the basis of these hypotheses, the sweep-by-sweep adap-
tation is performed through a supervised algorithm: the mini-
mization of the mean square error (mse) between the current
recording and the network output. At each trial the total network
output vector and the real recording vector (consisting
of the signal and the noise ) are compared and the mse
is computed as follows:

(6)

if and are thought uncorrelated, as previously stated.
Therefore, as can be regarded as independent of
the weight vector and of the centers location, the mse is
minimized when tends to .

More in detail, the adaptation follows two steps: the first is
connected with the learning of the centers location, the second is
connected instead with the learning of the weights. With regard
to the centers’ location, it is learnt iteratively; the aim is to shift
gradually the whole array of Gaussian functions in order to span
the interval between two centers as set in accordance with (4).
Maintaining the space relations between the centers prevents the
functions from being too distant one from another; moreover,
major differences between the real SEP and the estimated one
are concentrated at the beginning or at the end of the detected
signal (as Gaussian functions may leave a poorly covered signal
portion at the extremities), thus not affecting the identification
of the P30 peak. The iteration step is set to 1 sample (the time
resolution obviously depends on the acquisition settings).

Fig. 2. The trend of the mse obtained when shifting the centers array is smooth
and without local minima.

At the beginning the centers are distributed in accordance
with (4). The centers array is then shifted of one sample and
the mse is evaluated. In order to realize the adaptation, the algo-
rithm steps are the following:

— the mse is computed;
— if the current mse is smaller than that of the previous step,

the centers location is shifted of one more sample and the
algorithm restarts at the previous step; otherwise, if the
current mse is larger than that at the first step, the centers
location is shifted back of one sample and the algorithm
stops.

Obviously, the centers are, at most, shifted of as many steps
as the number of samples between two consecutive centers: the
algorithm does not proceed if the center is now where center

was at the beginning of the adaptation algorithm. Even if
it is possible, from the theoretical point of view, that the results
of this heuristics are not global minima, it has been found that
the error trend, when shifting over the interval between two con-
secutive centers, is generally smooth and without local minima,
as shown in Fig. 2.

As far as the adaptation of the weights is concerned, the con-
vergence to the optimal weights is achieved through the least
mean squares algorithm [19]

(7)

where the index denotes the th sweep. The parameter rep-
resents the convergence rate: it controls the speed of adaptation
and the convergence stability.

Thus, applying the described adaptation method, both the
weights and the centers location are learnt and the network
output is optimized.

D. Setting of the Network Parameters

The performance of the whole algorithm strongly depends on
the value of its parameters, i.e., the number of hidden neurons

, the spread factor and the convergence rate . The best
values for them have been set on the basis of simulations whose
concept is described in Section III-C. For the choice of each
parameter, the following two figures of merit were taken into
consideration:



MERZAGORA et al.: RBFNN FOR ONLINE SINGLE-SWEEP EXTRACTION OF SEPS DURING SCOLIOSIS SURGERY 1303

TABLE I
CHOICE OF THE NUMBER OF HIDDEN NEURONS

TABLE II
CHOICE OF THE SPREAD FACTOR

— the normalized mse (nmse), computed as

(8)

where is the simulated underlying signal in the recording
(i.e., the reference SEP) and is the network output;

— the correlation coefficient between the network output
and the reference SEP.

Now the single factors will be analyzed.
1) Number of Neurons: As expected, the simulation results

presented in Table I show that a high number of neurons al-
lows a better detection of the underlying signal, both in terms of
nmse and correlation coefficient. Nevertheless, the use of many
hidden neurons would obviously increase greatly the compu-
tational time. As the algorithm is meant for real-time applica-
tions, the computational time needed by the algorithm to pro-
duce the estimated evoked potential is a most important factor.
A good compromise between accuracy and velocity is obtained
with 30 neurons. Furthermore, it could be seen in Table I that
with 30 neurons the nmse has already decreased considerably
and the correlation coefficient has already reached an almost
stable value.

2) Spread Factor: The same evaluation methods as before
have been applied to the spread factor . On the basis of the
simulation results presented in Table II, 0.5 is the best value,
both in terms of nmse and correlation coefficient.

3) Convergence Rate: The simulation, whose results are
shown in Table III, suggests the use of a low convergence

TABLE III
CHOICE OF THE CONVERGENCE RATE

rate, because in this way the system is less affected by abrupt
changes and noise. Conversely, a high convergence rate enables
the system to better track the trial-to-trial variabilities. For this
reason, even if the results seem to be better with lower values
of , with such values the adaptivity of the network would be
seriously diminished and it would require a considerably longer
time to converge. For this reason, was chosen.

After the network parameters have been set, the weights have
been trained over a set of simulated sweeps in order to obtain
reasonable values for the initialization of the network. In this
way, the initial learning of the weights during real surgery is
faster and a lower number of sweeps is needed for initialization.

III. MATERIALS

A. Clinical Protocol

The analyzed data consist of electroencephalogram (EEG)
recordings (containing the evoked responses) and electromyo-
gram recordings (containing the -reflex responses) acquired
during 13 idiopathic scoliosis surgeries. The experimental
settings, used to elicit both the -reflex and the SEPs during
surgery and to acquire the two signals, are as follows:

1) Stimulation: The stimulated nerve is the posterior tibial
nerve at the popliteal fossa, where the nerve fibers run more su-
perficially: the cathode is at the popliteal fossa and the anode
over the patella. The electrical stimulus is a constant voltage
rectangular impulse with a duration set to 1 ms. The repeti-
tion frequency of the pulses is 0.1 Hz (the long interstimulus
interval is necessary to extinguish the transient spinal excita-
tory/inhibitory phenomena which last from 5 to 7 s after each
stimulus) [20]. The current intensity range for stimulation is be-
tween 3 and 50 mA; it is set for each patient to obtain a medium
amplitude -reflex wave. If necessary, it is varied during the
surgery.

2) Acquisition: The acquisition of SEPs is performed
through needle electrodes set on the scalp in Cz’, with a refer-
ence at the ear lobe. The reference electrode for the -reflex
recording is over the Achilles tendon and the filter used for the
SEPs before the analog-to-digital conversion is set as follows:
low cutoff frequency 1 Hz; high cutoff frequency 300 Hz. With
regard to the -reflex, the settings are: low cutoff frequency 30
Hz; high cutoff frequency 10 kHz. The sampling frequencies
for the SEPs and the -reflex are 2560 Hz and 10 240 Hz,
respectively. The duration of the sampled time interval is 125
ms for the SEP and 62.5 ms for the -reflex.
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TABLE IV
CLINICAL CASES DATA

In Table IV, data characterizing the 13 clinical cases are sum-
marized. The subjects’ mean age is 32.5 years and the standard
deviation is 17.5 years.

B. Analysis Protocol

Before data processing, the sweeps found to be corrupted
(e.g., because of the interference of the electrotome) have been
rejected. Then, an initial adaptation of the RBFNN weights
is necessary. At the beginning the weights are initialized
with standard values obtained as previously described (see
Section II-D). Their purpose is to improve the algorithm
performance, by reducing the time needed to converge to the
subject-specific weights. The first 50 sweeps are used for the
preliminary adaptation of the weights and to obtain a reference
SEP. That reference is used to evaluate the initial amplitude and
latency in order to asses the percentage variations throughout
the surgery. The SEPs are then detected and their amplitudes
and latencies analyzed along with those of the -reflex and
with the trend of the patient’s body temperature. The performed
statistical analyses regard the mean and standard deviation
of SEPs and -reflex, and the Pearson’s Product Moment
Correlation Coefficient ( ) between the trends of amplitudes
and latencies of the two monitored signals.

C. Simulation Protocol

The performance of the proposed method for the single-
sweep detection of SEPs has been studied and assessed by
processing real data and through ad hoc simulations. To this
purpose real recordings have been used to create fictitious
registrations. This is necessary because, in order to evaluate
the exactness of the signal estimated by the algorithm, the
underlying signal must be known. To avoid the stimulation
artifact, the first 4 ms of the recording after stimulus application
were not considered, thus obtaining vectors of 310 samples.

A reference SEP was then obtained by averaging a hundred
real records. The EEG had to be simulated: for this purpose
an autoregressive (AR) model was used [21], [22] and the op-
timal order was evaluated with the AIC method. The parameters
were estimated analyzing real EEG recordings; then the output
of this white-noise-driven AR process was band-passed with an
equiripple filter whose parameters complied with the real acqui-

sition filter. Adding the simulated EEG and the reference SEP,
complete registrations have been reproduced. The analysis of
the mse and of the correlation between the network output and
the reference SEP was performed.

The fine tuning of the network parameters based on the sim-
ulated recordings has already been presented in Section II-D.

IV. RESULTS

The method described in Section II has been applied to 13
cases and the results are summarized in Tables V and VI. In
particular, Table V provides the mean amplitude, the amplitude
standard deviation and the mean latency of both SEPs and HR
for each of the 13 cases. It also provides the Pearson’s Correla-
tion Coefficients ( ) between the amplitude of the HR and those
of the SEPs extracted with the RBFNN; the coefficient is com-
puted as follows:

(10)

where and denote two variables of interest at the th
sweep; and are the means of the variable of interest
across sweeps; the total number of sweeps.

Particular attention has also been paid to the effects of sur-
gical maneuvers on SEPs and HR. Fig. 3(a) and (b) shows the
monitored signal after the insertion of sublaminar hooks in two
different positions, i.e., under or close to where the -reflex cir-
cuit is located.

In order to better understand the information that can be ob-
tained from the combined monitoring system and from the ap-
plication of this new single-sweep extraction method, detailed
results obtained for one case (case 1) are presented.

In particular, the results found from this case using the
RBFNN have been compared with those found with the ARX
filtering [14], as it is particularly suitable for single-sweep
detection of SEPs. The ARX model was driven by a moving
average of the recorded sweeps weighted by an exponential
window with a forgetting factor 0.95 [5]; the optimal orders
found with the AIC method were . The total
number of available sweeps after the first rejection was 238, but
a further analysis due to the poor results of the ARX filtering
was necessary, so the actual number of sweeps was reduced
to 185. The reference SEPs obtained by the two algorithms
using the sweeps available before the first surgical maneuvers
(Fig. 4) have slightly different amplitudes and latencies one
from another: 5.99 and 31.73 ms, respectively using the
RBFNN and 5.34 and 32.03 ms using the ARX filter.
Fig. 5(a) shows the urine bladder temperature throughout the
surgery and a constant decrease can be seen. In Fig. 5(c), both
the detection algorithms indicate a latency increase. Finally,
Fig. 5(c) shows the amplitudes detected by the two algorithms
and they are related to the HR amplitudes.

Statistical values about the amplitudes and latencies obtained
by the RBFNN and the ARX filter in case 1 are summarized in
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TABLE V
STATISTICAL VALUES OF THE PROCESSED CLINICAL CASES

TABLE VI
COMPARISON BETWEEN RBFNN AND ARX.

Table IV. Particular stress is laid on the Pearson’s Correlation
Coefficients ( ) between the values found by the two algorithms.

For the considered degrees of freedom, the minimum values
in order to have a significant correlation at 95% and 99% of
confidence are 0.143 and 0.188, respectively [23].

V. DISCUSSION

The new method proposed for the single-sweep extraction of
SEPs has been evaluated through its application to 13 clinical
cases and the results are presented in Section IV. The first pa-
rameter that has been investigated is the Pearson’s Correlation
Coefficient between the amplitude trends of SEPs and HR. In-
deed, a good analysis can be performed comparing the extracted
SEPs with the trend of the HR when real underlying SEPs are
unknown. This is due to the fact that HR and SEPs monitor dif-
ferent pathways that are involved in the same surgical maneu-
vers [10], [11]. As shown in Table V, the Pearson’s Correla-
tion Coefficient offered by the RBFNN is significant in all the
13 considered cases in relation to the degrees of freedom [23].
The next crucial aspect to be considered was the responsiveness

Fig. 3. In (A) (top), the black lines (b) show the effects of the insertion of a
sublaminar hook at D8, while gray lines (a) display the waveforms before the
insertion. Both SEP and HR are affected. In (B) (bottom), the black lines (b)
show the effects of the insertion of a sublaminar hook at D1, while gray lines
(a) display the waveforms before the insertion. Only the SEP is affected, as the
maneuvers do not involve the H-reflex neural pathways.

of the RBFNN to the sudden changes caused by surgical ma-
neuvers performed on the column, such as hammer-strokes or
traction and the results strengthen the already stated need of a
combined neuromonitoring. In particular, it has been found that



1306 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 54, NO. 7, JULY 2007

Fig. 4. Reference SEPs extracted with RBFNN (top) and ARX filter (bottom).
In the RBFNN reference, the Gaussian functions that are summed to build the
output are also displayed.

the insertion of sublaminar hooks close to the reflex circuit lo-
cation affects both the SEPs and the -reflex [see Fig. 3(a)]; on
the contrary, when the hooks are inserted above the reflex cir-
cuit location, only the SEPs show an amplitude fall, as shown in
Fig. 3(b): in this case, in fact, the nervous fibers involved in the

-reflex generation are no more functionally affected by the ma-
neuver, so no decrement occurs. The aim of neuromonitoring, in
fact, is to detect a possible alteration of the spinal cord function-
ality through observation of excitability changes of the nervous
fibers involved in the generation of the monitored signals.

For a better insight of the usefulness of the proposed extrac-
tion algorithm, detailed results for one case have also been of-
fered. The total number of sweeps analyzed in the considered
case is 185, which represents a statistically significant number,
therefore strengthening the conclusions suggested on the basis
of the obtained results. When comparing the performances of
the RBFNN and the ARX model, the correlation between the
amplitude of the -reflex and that of the SEP is significant for
both methods, even if that obtained by the RBFNN is higher
( for RBFNN and for ARX) (see Table VI).
Moreover, the correlation between the amplitudes and latencies
found by both ARX and RBFNN are strong though slightly dif-
ferent (see Table VI). Thus, even if the network offers a better
correlation with the -reflex trends, the results of the ARX filter
are somewhat similar to those of the network.

Fig. 5(a) shows the urine bladder temperature trend, which
is a most important factor to be considered in correlation with
the latency trends shown in Fig. 5(b). The urine bladder tem-
perature gives information about the patient’s body temperature
and, when a wide portion of the vertebral column is exposed, it

Fig. 5. The graph at the top (a) shows the urine bladder temperature; the peaks
are due to interference caused by the electrosurgical equipment. The other two
graphs show the (b) SEP latencies and (c) amplitudes obtained by the two detec-
tion algorithms. In (c), the H-reflex amplitude is reported. Crucial maneuvers:
10:00 – sequence of hammer-strokes; 10:30 – column traction.

may have slightly different dynamics from the epidural temper-
ature for which, instead, an inverse relation to the SEP latency
has been proved [24]. Nonetheless, an overall latency increase
corresponds to an overall temperature decrease in Fig. 5. It is
also evident that the false latency identifications present in the
case of the ARX filtering are not shown using the RBFNN; prob-
lems in the identification remain only at the end of the surgery.
In Fig. 5(c), the amplitudes of the -reflex and those of the SEPs
detected by the two algorithms are plotted together. As it can be
seen from the evolutions of amplitudes and latencies throughout
the surgery, a strong relation between amplitude and latency is
present. It can be seen in Fig. 5(b) and (c) just after 10:00, as a
consequence of hammer-strokes, and between 10:30 and 11:00,
as a consequence of column traction: there is a latency increase
along with an amplitude fall.
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VI. CONCLUSION

The aim of this study was to investigate the applicability of
RBFNNs for on-line single sweep extraction of SEPs. The al-
gorithm has been tuned on simulated data; moreover, results are
provided about the algorithm application to real data.

With reference to the simulations and comparisons described
above, the conclusions that can be drawn are mainly three.

The first is that, after the comparison between the RBFNN
performance and that of the ARX filtering, the indications of-
fered by the two algorithms are quite similar. This provides
a cross-validation for both of them. The second conclusion is
that RBFNN enhanced by the centers adaptivity performs much
better than that with unmoved centers and is surely more suitable
for intraoperative SEP monitoring. In particular, that is proved
by the inverse relation between the trends of the latency and
of the urine bladder temperature: this relation would be absent
without the centers adaptivity. The third consideration is that the
RBFNN offers an excellent dynamics, as proved by the analysis
of Figs. 3 and 5. As a result, good tracking of both sudden and
slow changes of the SEP waveform is provided. In particular,
such capability shows a high statistical correlation between the
amplitude trends of the detected SEPs and of the -reflex, as ex-
pected because of the anatomical and physiological correlation
of the two signals. Not only are the falls and recoveries in am-
plitude or the latency peaks promptly detected, but also changes
in the whole waveform morphology. These changes would call
for more refined analyses. Moreover, the computational time re-
quired for the sweep-by-sweep learning is moderate, which is
obviously important for real-time processing.

In conclusion, the careful evaluation of the proposed algo-
rithm and the analysis of its results show that this RBFNN is
particularly suitable for the real-time single-sweep detection of
SEPs during intraoperative neuromonitoring and the advantages
it entails make it particularly preferable to other methods.
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