

College of Engineering

Drexel E-Repository and Archive (iDEA)

http://idea.library.drexel.edu/

Drexel University Libraries
www.library.drexel.edu

The following item is made available as a courtesy to scholars by the author(s) and Drexel University Library and may
contain materials and content, including computer code and tags, artwork, text, graphics, images, and illustrations
(Material) which may be protected by copyright law. Unless otherwise noted, the Material is made available for non
profit and educational purposes, such as research, teaching and private study. For these limited purposes, you may
reproduce (print, download or make copies) the Material without prior permission. All copies must include any
copyright notice originally included with the Material. You must seek permission from the authors or copyright
owners for all uses that are not allowed by fair use and other provisions of the U.S. Copyright Law. The
responsibility for making an independent legal assessment and securing any necessary permission rests with persons
desiring to reproduce or use the Material.

Please direct questions to archives@drexel.edu

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Drexel Libraries E-Repository and Archives

https://core.ac.uk/display/190326668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.drexel.edu
http://idea.library.drexel.edu/
www.library.drexel.edu
mailto:archives@drexel.edu
http://www.drexel.edu/coe/

JANUARY • FEBRUARY 2007 1089-7801/07/$25.00 © 2007 IEEE Published by the IEEE Computer Society 31

A
ut

on
om

ic
 C

om
pu

ti
ng

Mianyu Wang,
Nagarajan Kandasamy,
Allon Guez, and Moshe Kam
Drexel University

Distributed Cooperative
Control for Adaptive
Performance Management
The authors’ distributed cooperative-control framework uses concepts from

optimal control theory to adaptively manage the performance of computer

clusters operating in dynamic and uncertain environments. Decomposing the

overall performance-management problem into smaller subproblems that

individual controllers solve cooperatively allows for the scalable control of large

computing systems. The control framework also adapts to controller failures and

allows for the dynamic addition and removal of controllers during system

operation. This article presents a case study showing how to manage the dynamic

power consumed by a computer cluster processing a time-varying Web workload.

W eb-based services such as online
banking and shopping are host-
ed on distributed computing sys-

tems comprising heterogeneous and
networked servers. To operate such sys-
tems efficiently while satisfying stringent
quality-of-service (QoS) requirements,
multiple performance-related parameters
must adapt to changing operating condi-
tions. The workload a system must pro-
cess, for example, might be time-varying,
and hardware and software resources
could fail or need replacing during sys-
tem operation. For service providers to
cope with growing scale and complexity,
such systems must become largely auto-
nomic — capable of managing themselves

with minimal human intervention.1 Key
management tasks that we can automate
in computing systems include power
management, load balancing, and
dynamic resource provisioning between
competing workload classes.

A promising method for automating
system management tasks is to formu-
late them as control problems in terms
of cost or performance metrics. This
approach offers some important advan-
tages over heuristic or rule-based poli-
cies in that we can design a generic
control framework — that is, it can
address a class of problems (such as
power management or resource provi-
sioning) using the same basic control

concepts. Moreover, we can verify such a control
scheme’s feasibility with respect to the perform-
ance goals prior to actual deployment.

Here, we describe a cooperative-control frame-
work that we developed to manage distributed
computing systems.2 We decomposed the overall
management task into a set of corresponding sub-
problems, mapping each to an underlying system
component. Controllers — implemented locally
within each component — solve their respective
subproblems cooperatively, satisfying the overall
system’s specified performance goals. To solve
optimization problems under uncertainty, each
local controller uses a receding horizon control
scheme in which the idea is to solve the optimal
control problem over a given time horizon and
then continuously extend this horizon forward.3

This scheme is robust with respect to environmen-
tal disturbances and can simultaneously solve for
multiple QoS objectives. We also present a case
study that demonstrates how to use this distributed
control framework to manage the power consumed
by a heterogeneous server cluster when processing
a dynamic Web workload.

Control-Based Performance-
Management Approaches
Researchers from academia and industry have
recently applied control theory to several system-
management tasks. They’ve used classical propor-
tional, integral, and derivative (PID) control in CPU
provisioning, load balancing, and power-manage-
ment problems in Web servers.4 Others have used
more advanced concepts from model-predictive
and optimal control to pose system performance
goals as optimization problems and help solve
them online under dynamic operating con-
straints.5,6 These techniques also accommodate
nonlinear system behaviors.

Controlling distributed computing systems with
multiple interacting components, however, is espe-
cially challenging because the number of available
tuning options is typically quite large, and the cor-
responding search space grows exponentially with
increasing system size. Also, the controller must
carefully manage inter-component interactions to
achieve system-wide performance goals and incor-
porate notions of uncertainty and risk to cope with
dynamic workload arrivals, component failures,
and unexpected changes to these goals. The result-
ing control problem is very complex, and a cen-
tralized controller implementation becomes

computationally intractable even for relatively
small systems.

The Optimal Control Problem
Our system architecture assumes a cluster of m
servers. A dispatcher routes incoming client re-
quests to individual servers, where they’re queued
and processed in a first-come, first-served fashion.
We assume heterogeneous servers in which the
processor operating frequency within each server
is a tunable control variable over a continuous
interval between some minimum and maximum
frequency values. The cluster’s overall power con-
sumption at any given time includes a constant
base cost for each operating server (due to the
energy requirements of its power supply, hard disk,
and so on) and the dynamic power consumed to
process the workload.

The cluster’s performance goal is to achieve
an average response time r* for the incoming
requests while minimizing dynamic power con-
sumption. We aim to achieve this goal using the
predictive or receding horizon control scheme
that Figure 1 illustrates. Here, we obtain the con-
trol actions governing system operation by opti-
mizing the forecast system behavior for the
performance metric over a limited prediction
horizon. The controller obtains the sequence of
control actions that results in the best system
behavior over this horizon and applies the first
action within this sequence as input during the
current time instant. It then discards the rest and
repeats this process each time step. Thus, in a pre-
dictive-control design, the controller optimizes
the performance metric at each sampling-time
instance, taking into account future variations in
the environment inputs and their effects on sys-
tem behavior.

We can provide an intuitive understanding of
receding horizon control using driving as an anal-
ogy.3 While driving, humans usually consider the
road several hundred yards ahead to anticipate
driving conditions and adjust speed and gear set-
tings accordingly. As the car moves along the road,
we can always see the next few hundred yards,
and we’re continuously picking up new informa-
tion from the far horizon and using it to update
our control decisions. Predictive control works
similarly: it always considers the predicted system
behavior over some time horizon into the future
and thus, at each successive sampling instant, pre-
dicts one further sample into the future. As new

32 www.computer.org/internet/ IEEE INTERNET COMPUTING

Autonomic Computing

information becomes available, the controller uses
it to modify the current trajectory.

Estimating Future Environment Inputs
The controller treats the time-varying environment
inputs — the number of HTTP requests and the per-
request processing time — as disturbances. Because
these inputs are usually stochastic, the system
model uses their online estimates to track future
behavior. A typical Web workload shows pro-
nounced time-of-day variations in which the
number of HTTP request arrivals can change con-
siderably in just a few minutes,7,8 so it’s necessary
to develop good predictive filters to obtain accu-
rate estimates for these environment inputs. We’ve
previously shown how to design and tune Kalman
filters to predict variations in Web workloads with
a good degree of accuracy.9

Tracking Future System Behavior
The dynamical system model uses the current sys-
tem state (the queue length), the estimated environ-
ment inputs, and the control set (the set of available
operating frequencies) to track the system’s evolu-
tion along the prediction horizon. Here, the system
model is a difference equation that captures the
relationship between the system variables relevant
to the performance metric — that is, the achieved
response time and the power consumption, as well
as the control inputs that influence these variables.
The response time a server achieves is a function of
the queue length and the per-request processing
time. As the server’s operating frequency is tuned,
the time needed to process a request scales linearly,
affecting both the queue length and the response
time. This type of difference equation adequately
models the server dynamics when the incoming
workload is CPU-intensive — that is, the processor
is the bottleneck resource.

Specifying the Performance Metric
We define the QoS goal for the cluster as a set-
point specification in which the controller aims to
operate the system within a close neighborhood of
the desired response time r*. We can also consider
control or transient costs as part of the system
operating requirements, indicating that certain tra-
jectories toward the desired state are preferable
over others in terms of their cost to the system. In
our case, we’d like each server to achieve the QoS
goal of r* while minimizing the corresponding
power consumption. We can specify this perform-

ance metric for each server using the multiobjec-
tive function

, (1)

where k denotes the sampling time instant, and
r(k) and f (k) denote the achieved response time
and operating frequency, respectively. The cost
function J captures the inherent trade-off
between achieving the desired set point of r* and
the corresponding power consumption cost,
given as (f (k)/fmax)2, where fmax is the server’s
maximum operating frequency. The weights s
and w denote these terms’ relative importance in
the overall cost function. To obtain a numerical
solution to the control problem, we require that
the function J have the quadratic form Equation
1 shows.

From a cluster operator’s viewpoint, a practical
problem with this multiobjective optimization func-
tion is how to determine the weights s and w to
achieve acceptable controller performance — an
iterative and somewhat time-consuming process.
Although we’ve used abstract weights in this article
to clearly illustrate the key control concepts, we can
assign an actual dollar amount to each term in the
function J — for example, dollars earned by achiev-
ing a response time (specified by the service-level
agreement) and the cost of operating the server
(dollars per kilowatt-hour consumed).

The overall control problem is to minimize the
performance metric J for all m servers over a pre-
diction horizon of length N. At each time instant
k, the optimal controller finds a sequence of fre-
quency settings for the m servers within the pre-
diction horizon [0, N] that drives the system along
a trajectory, minimizing the performance metric J.

J k s r k r w
f k
f

() = () − ∗() +
()⎛

⎝⎜
⎞
⎠⎟

1
2

1
2

2
2

max

JANUARY • FEBRUARY 2007 33

Distributed Cooperative Control

Figure 1. The receding horizon control scheme. In this scheme, we
obtain the control decisions that affect system behavior by optimizing
the forecast system behavior during a limited prediction horizon.

Environment inputs

Physical
system

System
model

Estimated inputs

Current state

Optimal input

Control
inputs

State
feedback

Performance metrics

Optimizer

Predictive
filter

The controller applies the first control input in this
sequence to the system and discards the rest. This
process repeats for the next time step.

The Distributed
Control Framework
We formulate the power-management task in a
server cluster as a cooperative distributed-control
problem. Before describing our approach, we must
note that not all control problems can be decom-
posed in a distributed fashion. However, it’s well
known that, given multiple subsystems whose
dynamics and operating constraints are uncoupled
and whose local cost functions are quadratic, sim-
ply having each subsystem independently optimize
its local cost function can potentially achieve the
global optimal.10,11 The power-management prob-
lem falls in this category, and we can decompose
it into subproblems for each server to solve such
that the summation of the local costs recovers the
centralized cost.

Figure 2 shows the distributed control architec-
ture for a cluster. Each server independently man-
ages its operation using a local cost function that
decides the optimal frequency settings and, there-
by, the fraction of requests to process from the
shared global queue. We can treat the set of self-
optimizing servers as noncommunicating agents,

in which each agent needn’t have information
about other agents’ exact behaviors.

Tracking System Behavior
In a distributed setting, each server must independ-
ently track the global queue’s dynamic growth.
From an individual server’s viewpoint, the global
queue’s length at a time instant k is given by the
number of requests arriving into the system a(k) and
the number of requests consumed from the queue
by other servers. The following difference equation
F can capture this dynamic on each server:

(2)

Here, q(k) denotes the global queue’s length
and f (k) and r(k) denote the operating frequency
and response time the server achieves, respective-
ly; and are the estimated number of
requests arriving into the system and their aver-
age processing time, respectively.

The variable , which each server esti-
mates independently, predicts the cumulative pro-
cessing capacity of all other servers (excluding
itself) in the cluster. Thus, represents the
implicit coupling between the various distributed

v̂ k()

v̂ k()

ĉ k()â k()

q k F q k f k a k c k v k

r k G q

+() = () () () () ()()
() =

1 , , ˆ , ˆ ˆ

kk c k() ()(),

34 www.computer.org/internet/ IEEE INTERNET COMPUTING

Autonomic Computing

Figure 2. Distributed cooperative-control structure. Here, Si denotes a server and Ci is its local controller.

A cluster with m heterogenous servers

Predicted values

Predicted workload

Distributed controller

v estimator

Server/controller unit

cm

�q

f(k–1) f(k)

…
Shared queue

Queue
managerWorkload Dynamic

optimization

c2

S1

S2

Sm

Observer

Predictive filter

c1

controllers via the shared system variable — the
global queue length. We compute it using the
change in the global queue length �q(k) = q(k) –
q(k –1), the number of requests arriving into the
system, and the number of requests that the serv-
er processes locally.

The Distributed Control Problem
Each server i minimizes the performance metric

(3)

to obtain a sequence of frequency settings along
the prediction horizon [0, N]. Given that servers
can be heterogeneous in terms of their processing
and power-consumption characteristics, the
weights in their local cost functions can differ.
Also, each controller must choose its server’s oper-
ating frequency under the following state and con-
trol-input constraints:

(4)

These constraints simply state that at each
point within the prediction horizon, the global
queue length must be greater than zero, and the
frequency setting must fall within the range [fmin,
fmax], where fmin and fmax denote the minimum and
maximum available frequencies, respectively.

The first term in Equation 3 penalizes the num-
ber of requests left over in the global queue at the
end of the prediction horizon. This is a terminal
cost added to improve controller stability. The sec-
ond term specifies the trade-off between achiev-
ing the set point (r – r*)2 and the corresponding
power consumption on the server. Finally, to deal
with an uncertain operating environment in which
the estimated system states become increasingly
inaccurate as we go deeper into the prediction
horizon, we use a discounting factor e–�k, � > 0,
with the cost function in Equation 3. Thus, states
further out in the prediction horizon have less
impact on current control action.

In Figure 2, a Kalman filter broadcasts arrival-
rate estimates to every controller for each step with-
in the N-step horizon. (We can also implement this
filter within each individual controller.) Using an

exponentially weighted moving-average filter, we
predict the average request-processing time for the
next N periods. Each controller maintains another
Kalman filter to locally estimate �, the aggregate
processing capacity of other servers in the system.
At each time step, every controller generates an opti-
mal sequence of frequency settings within the pre-
diction horizon and applies the first input in this
sequence. During the next sampling period, the sys-
tem updates the various filters with new information
(the queue size, request-arrival rate, and processing
time) and then repeats the whole control process.

The foregoing discussion demonstrates that the
control scheme incurs very little overhead when
adding new controllers to the distributed frame-
work. Because the controllers themselves are non-
communicating agents, the only overhead incurred
is in broadcasting the shared state and environment
variables — the queue size and arrival-rate estimate,
respectively — to the newly added controllers. Thus,
the control scheme is highly scalable.

Controller Stability
Finally, a key driver for using control-based
approaches is that we can verify the proposed
scheme’s feasibility with respect to the perform-
ance goals prior to deploying the system. This is
analogous to the concept of stability when con-
trolling mechanical systems. The bounded-input
bounded-state stability of the control scheme in
Figure 2 is easily shown; assuming a bound on the
request-arrival rate and processing time, we can
derive the conditions (the number of servers
required and their processing capacity) under
which the response time the system achieves
remains bounded. The mathematical details are
available elsewhere.2 Showing other forms of sta-
bility — such as asymptotic stability, in which the
achieved response time tracks the set point for all
time — is a topic of ongoing research.

Performance Evaluation
In our simulations, we assume that the system
designer has performed capacity planning to
ensure that enough servers are available to handle
the desired QoS requirements under the peak or
worst-case workload scenario. The online control
scheme is responsible for operating the cluster in
a power-efficient fashion while satisfying QoS
goals under a time-varying workload. Power has
become an important design constraint for dense-
ly packed clusters due to electricity costs and heat

q j

f f j f

() ≥
≤ () ≤

⎧
⎨
⎪

⎩⎪

0

min max .

J v q N

s r j r

w
f j
f

= ()⎡⎣ ⎤⎦ +

() − ∗⎡⎣ ⎤⎦

+
()⎡

1
2

1
2

1
2

2

2

max⎣⎣
⎢

⎤

⎦
⎥

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

⋅
=

−

∑
−

2
0

1

j

N
je α

JANUARY • FEBRUARY 2007 35

Distributed Cooperative Control

dissipation issues. To tackle this problem, many
modern processors allow their operating frequen-
cy and supply voltage to be dynamically tuned.12

To clearly explain the distributed control scheme’s
behavior, including fault-adaptive behavior, we
first analyze its performance on a small cluster of
four servers. Later, we’ll show that the control
structure can easily scale to a larger system proc-
essing a heavier workload.

Fault-Adaptive Behavior
In our simulations, the operating frequencies for
servers 1 and 3 range from 600 MHz to 1.8 GHz,
whereas those for servers 2 and 4 range from 800
MHz to 2.0 GHz. The controller can tune the fre-
quencies in discrete steps of 200 Hz within their
respective ranges. We can adapt the control solu-
tion developed in the previous section in a
straightforward fashion and apply it to a case in
which the controller must choose frequency set-
tings from a discrete set. We first formulate and
solve the problem assuming a continuous approx-
imation of the discrete domain and then map the
solution we obtain to the closest value within the
discrete set.

The average response time the cluster must
achieve for the incoming requests is set to r* = 4

seconds. Figure 3a shows the workload to be
processed in which we chose the processing times
for individual requests within the arrival
sequence from a uniform distribution between (4,
11) milliseconds (ms). The distribution of requests
within the arrival sequence follows Zipf’s law (a
few files are extremely popular whereas many
others are rarely requested). We set the prediction
horizon within each local controller to five look-
ahead steps, and the controller sampling interval
is one second.

Figure 3a also shows the workload predictions
we obtained via a Kalman filter. Each controller
acquires predictions for five look-ahead steps and
computes the sequence of frequency settings over
this receding horizon. The weights in the cost func-
tion (Equation 3) are set such that servers 1 and 2
aim to minimize their power consumption while sev-
ers 3 and 4 prioritize meeting the set response time.

Given this simulation set up, the system oper-
ates normally up to time step 120, with all four
servers operational. As Figure 3b shows, the con-
trollers cooperate well to maintain the response
time close to 4 seconds, the desired value. At time
steps 120 and 150, we simulate failures of servers
2 and 3, respectively. (In Figure 4, servers 2 and 3
suddenly drop their operating frequencies to zero.)
The response time the cluster achieves, however,
remains around the set point.

Figure 4 shows the reactions of servers 1 and 4
after servers 2 and 3 fail at k = 120 and k = 150,
respectively. The surviving servers increase their
frequencies to process the queuing backlog these
failures create. More important, servers 1 and 4
adapt without any explicit communication. The �
estimates that servers 1 and 4 compute independ-
ently and locally make them aware that the over-
all cluster throughput has suddenly decreased after
time steps k = 120 and k = 150. The servers thus
increase their respective processing rates. Of the
two survivors, server 4 processes more requests
than 1 because of the weightings within each serv-
er’s local cost function. Thus, server 4 is “altruis-
tic” and prioritizes the global response time the
cluster achieves, whereas server 1 is more “selfish”
and prioritizes its own power consumption.

Our simulations on a 2.4 GHz Pentium 4
processor indicate that for a 5-step prediction hori-
zon, the estimation and control computations take
about 7 ms on each server. Thus, for a sampling
interval of one second, the control overhead is
only 0.7 percent.

36 www.computer.org/internet/ IEEE INTERNET COMPUTING

Autonomic Computing

Figure 3. Average cluster-wide response time achieved by the
distributed control scheme. In our simulation, we used the Web
workload in (a) and obtained corresponding predictions using a
Kalman filter. (b) The cluster achieved an average response time
close to the desired set point of r* = 4 seconds.

100 150 200 250
Sampling time

50 100 150 200 250
Sampling time

r*=4 sec

50

N
um

be
r

of
 r

eq
ue

st
s

R
es

po
ns

e
tim

e
(s

ec
)

Actual
Estimated

Actual
Estimated

200

400

600

800

0

2

4

6

8

0
(a)

(b)

Effects of Parameter Tuning
We expected that increasing the controllers’ predic-
tion horizon N would result in better overall con-
trol performance. If a controller looks ahead further,
it can anticipate future workload demands and start
preparing accordingly at the current time step itself
— say, by slightly increasing the operating frequen-
cy. This typically lets it track the set point more
smoothly when compared to a situation in which
the controller reacts to workload changes, which
results in more abrupt oscillations around the set
point. Also, smoother set-point tracking reduces
power consumption. The dynamic power a server
consumes is quadratically related to its operating
frequency, and so an abrupt change to a higher fre-
quency is penalized more heavily than a smooth
ramp up. Increasing the prediction horizon, how-
ever, has its own problems — as N increases, so too
do errors in the estimated parameters, which can
lead to poor control quality. Thus, we must choose
N carefully by considering the trade-off between
look-ahead performance and estimation errors.

We consider an idealized case in which a clus-
ter has four identical servers with perfect arrival-
rate estimates and a constant request processing
time. We measure the control performance of a
single server as a member of the overall cluster.
Here, each server must still estimate cluster �’s
aggregate processing capacity to decide its oper-
ating frequency — a source of possible estimation
errors. Figure 5 shows the controller performance
as the prediction horizon N increases, in terms of
the mean square error (MSE) between the desired
and achieved response times. We see that MSE
decreases with the increasing prediction horizon
up to a point before the estimation errors start to
slowly degrade control performance.

Figure 5 also shows the controller behavior for
different values of �, the tunable parameter of the
discounting factor e–�k in Equation 3. We see that
small � values (for example, � = 0.2) decrease the
achieved MSE — which is desirable — but only
when the prediction horizon is also small. The con-
trol performance for � = 0.2 actually deteriorates

JANUARY • FEBRUARY 2007 37

Distributed Cooperative Control

Figure 4. Operating frequencies decided by the local controller on each server. We simulated failures on
servers 2 and 3 at time steps 120 and 150, respectively. Servers 1 and 4 react to these failures by
increasing their operating frequencies correspondingly to continue to achieve the set point.

50 100 150 200 250

500

1,000

1,500

2,000

Fr
eq

ue
nc

y
(M

H
z)

Sampling time

50 100 150 200 250

500

1,000

1,500

2,000

Fr
eq

ue
nc

y
(M

H
z)

Sampling time

50 100 150 200 250

500

1,000

1,500

2,000

Fr
eq

ue
nc

y
(M

H
z)

Sampling time

50 100 150 200 250

500

1,000

1,500

2,000

Fr
eq

ue
nc

y
(M

H
z)

Sampling time

(a)

(c)

(b)

(d)

for larger prediction horizons because e–0.2k can’t
sufficiently discount the large estimation errors
introduced in � as we go deeper into the predic-
tion horizon. Also, a larger prediction horizon will
increase the controller’s execution overhead.

To summarize the results of our tuning exper-
iments for this case study, a prediction horizon
between four to seven time steps and a low value
for the discounting factor seems appropriate for
balancing the trade-off between good look-
ahead performance, estimation errors, and con-
trol overhead.

We found that the controllers achieved a 55.5
percent reduction in power consumption when
compared to an uncontrolled system in which
each server operated at its maximum frequency
at all times.

Distributed Control Structure Scalability
The control framework easily scales to larger sys-
tems, as we demonstrated by applying it to a clus-
ter of 12 heterogeneous servers processing a much
heavier workload (see Figure 6a), derived using
HTTP requests made to the France World Cup Web
site on 26 June 1998. We set the desired response
time to two seconds; Figure 6b shows that the con-
trollers cooperate to keep the actual response time
close to this set point. As before, local controllers

incurred approximately 7 ms in overhead for a
prediction horizon of five steps.

W e are currently extending our framework to
allow servers to independently switch them-

selves on or off according to dynamic workload
intensity. Our proposed control solution is quite
general and can address other important system-
management tasks, such as differentiated service
and resource provisioning in server clusters in
which client arrivals are grouped into multiple
classes based on their service-level agreements.
We can formulate the optimal control problem to
tackle this more complex problem, in which the
controller must decide two variables at each time
instant: the operating frequency and the fraction
of processing capacity that each client queue
must receive.

Finally, many enterprise computing systems are
realized as multitier architectures comprising clus-
ters of Web, application, and database servers.
Such systems demand performance management
across multiple tiers in which client requests must
traverse multiple stages while satisfying a desired
end-to-end response time r*. We can decompose
this requirement across multiple clusters as time-
varying response times to be achieved by indi-
vidual clusters, implying that these clusters’
performance must now be coordinated.

One possible approach to achieving end-to-end
performance management of multitier systems is
to use a supervisory controller to coordinate the
activities of different clusters, each of which is
managed via the distributed architecture Figure 2
shows. If, for example, recent history suggests that
the application cluster has been achieving faster-
than-required response times at the expense of
increased power consumption, the supervisor can
slow the cluster down. The supervisory controller
can influence a subordinate cluster’s behavior by
tuning its cost function appropriately — specifical-
ly, the weights s and w in Equation 3, which spec-
ify the desired trade-off between the response time
achieved by a local controller and the correspon-
ding power consumption.

References

1. A.G. Ganek and T.A. Corbi, “The Dawn of the Autonom-

ic Computing Era,” IBM Systems J., vol. 42, no. 1, 2003,

pp. 5–18.

2. M. Wang et al., “Adaptive Performance Control of Comput-

38 www.computer.org/internet/ IEEE INTERNET COMPUTING

Autonomic Computing

Figure 5. The mean square error (MSE) between the achieved and
desired response times. The MSE initially decreases quickly as we
increase the length of the prediction horizon and then stabilizes,
indicating that the length of the prediction horizon does indeed
affect controller performance.

2 3 4 5 6 7 8 9 10
Prediction horizon length

M
ea

n
sq

ua
re

 e
rr

or

0.0

0.2

0.4

0.6

0.8

1.2

1.4

1.6

1.8

1.0

α = 0.2
α = 0.5
α = 0.8
α = 0.9

ing Systems via Distributed Cooperative Control: Applica-

tion to Power Management in Computing Clusters,” Proc.

3rd IEEE Int´l Conf. Autonomic Computing (ICAC), IEEE CS

Press, 2006, pp. 165–174.

3. J.A. Rossiter, Model-Based Predictive Control, CRC Press,

2003.

4. J.L. Hellerstein et al., Feedback Control of Computing Sys-

tems, Wiley-IEEE Press, 2004.

5. S. Abdelwahed, N. Kandasamy, and S. Neema, “Online Con-

trol for Self-Management in Computing Systems, Proc.

10th IEEE Real-Time and Embedded Technology and Appli-

cation Symp. (RTAS), IEEE CS Press, 2004, pp. 368–376.

6. X. Koutsoukos et al., “Hybrid Supervisory Control of Real-

Time Systems,” Proc. 11th IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS), IEEE CS

Press, 2005, pp. 12–21.

7. M. Arlitt and T. Jin, Workload Characterization of the 1998

World Cup Web Site, tech. report HPL-99-35R1, Hewlett-

Packard Labs, Sept. 1999.

8. D. Menascé et al., “In Search of Invariants for e-Business

Workloads,” Proc. ACM Conf. Electronic Commerce, ACM

Press, 2000, pp. 56–65.

9. N. Kandasamy, M. Khandekar, and S. Abdelwahed, “A Hier-

archical Optimization Framework for Autonomic Perfor-

mance Management of Distributed Computing Systems,”

Proc. 26th IEEE Int’l Conf. Distributed Computing Systems

(ICDCS), IEEE CS Press, 2006.

10. W.B. Dunbar and R.M. Murray, “Distributed Receding Hori-

zon Control for Multivehicle Formation Stabilization, Auto-

matica, vol. 42, no. 4, 2006, pp. 549–558.

11. A. Guez, I. Rusnak, and I. Bar Kana, “Multiple Objectives

Optimization Approach to Adaptive and Learning Control,”

Int’l J. Control, vol. 56, no. 2, 1992, pp. 469–482.

12. Intel, Enhanced Intel SpeedStep Technology for the Intel

Pentium M Processor, 2004; www.intel.com/design/intarch/

papers/30117401.pdf.

Mianyu Wang is a PhD student in the Department of Electrical

and Computer Engineering and an MS student in the

Department of Mathematics at Drexel University. His

research interests include autonomic computing and per-

formance management and optimization in distributed sys-

tems. Wang has a BS in control engineering from Zhejiang

University, China. He is a student member of the IEEE. Con-

tact him at jeremy@minerva.ece.drexel.edu.

Nagarajan Kandasamy is an assistant professor in the Depart-

ment of Electrical and Computer Engineering at Drexel

University. His current research interests include autonom-

ic systems, embedded systems, reliable and fault-tolerant

computing, and computer architecture. Kandasamy has a

PhD in computer engineering from the University of Michi-

gan, Ann Arbor. He is a member of the IEEE. Contact him at

kandasamy@ece.drexel.edu.

Allon Guez is a professor in the Department of Electrical and

Computer Engineering at Drexel University. His interests

lie in applying the principles of intelligent decision mak-

ing, adaptation, optimization, and control to automation,

robotics, business, and other areas. Guez has a PhD in elec-

trical engineering from the University of Florida. Contact

him at guezal@drexel.edu.

Moshe Kam is the Robert Quinn professor of electrical and com-

puter engineering at Drexel University, the director of

Drexel University’s NSA Center of Excellence in Informa-

tion Assurance Education, and technical coordinator of the

US Department of Defense-sponsored project Applied Com-

munications and Information Networking (ACIN). His pro-

fessional interests are in system theory, detection and

estimation, information assurance, robotics, navigation,

and control. Kam has a BS from Tel Aviv University and

an MSc and PhD from Drexel University, all in electrical

engineering. Contact him at kam@minerva.ece.drexel.edu.

JANUARY • FEBRUARY 2007 39

Distributed Cooperative Control

Figure 6. Performance evaluation of a 12-server cluster using a
heavier workload. We used the workload shown in (a) in our
simulations. (b) The cluster achieved an average response time
around the set point of 2 seconds.

50 100 150 200 250
Sampling time

50 100 150 200 250
Sampling time

2

4

6

8

10

12

14

0

1

2

3

4

5

N
um

be
r

of
 r

eq
ue

st
s

(t
ho

us
an

ds
)

R
es

po
ns

e
tim

e
(s

ec
)

Actual
Estimated

(a)

(b)

