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TECHNIQUES FOR MESH DENSITY CONTROL 
 
 

Yaoxin Zhang1, Yafei Jia2 and Sam S.Y. Wang3 
 
 
 
ABSTRACT 
 
Mesh generation is crucial in computational fluids dynamic (CFD) analysis, which solves a set of 
partial differential equations (PDE) based on a computational mesh. The success of solving these 
equations depends to a large extent on the mesh quality. In addition to the orthogonality and the 
smoothness, the mesh density distribution is the key to desirable mesh. The objective of the current 
research is to develop methods which make the control of mesh density simple, easy and effective. 
With these, the resulting mesh is near-orthogonal but more desirable for the numerical simulation.   

In this study, two new techniques for mesh density control are proposed. The first one is a 
three-parameter stretching function which can not only stretch the node in two directions but also 
control the location of the distribution. The second method is a modified RL system (Ryskin and 
Leal, 1983) in which the distortion function is evaluated by the averaged scale factors and the scale 
factors controlled by weighting functions. 
 
1. INTRODUCTION 
 
In addition to the orthogonality and the smoothness, the quality of a mesh is also determined by the 
mesh density distribution in the computational fluid dynamic analysis. Since the solution accuracy is 
proportional to the mesh density, the computational region with high gradient variations usually 
needs higher mesh density.  

To obtain the desired mesh density distribution, two kinds of methods have been developed. 
The first one is through the stretching function which can control the nodal distribution not only 
along the boundaries but also the interior grid. It is widely used in the algebraic mesh generation. 
Many stretching functions have been developed in the past. In Chuang (2002) and Thompson et al. 
(1985a), some of them were summarized. Eiseman (1979) used a two-parameter stretching function 
which can stretch nodes to one direction.  

The second method generates meshes by solving the P.D.Es and the nodal clustering is 
handled by the control functions.  One typical example is a Poisson equation system, proposed by 
Thompson et al. (1977), with a set of such functions which can control the nodal distribution 
effectively. Another example is a Laplacian variational system developed by Brackbill and Saltzman 
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(1982) for adaptive mesh generation, which can not only control the mesh density, but also the mesh 
orthogonality and smoothness. However, the formulation of the system is complicated, and it is 
difficult to use. 

In this paper, two methods are proposed for the density control. The first one is a three-
parameter stretching function which can control the nodal distribution along the boundary. In this 
stretching function, there are three parameters, namely, exponential parameter, deviation parameter, 
and scale parameter. The exponential parameter controls the contraction and repulsion of the 
distribution; the deviation parameter determines the location of the contraction and repulsion; and 
the scale parameter controls the effects of the distribution. The second method is based on the RL 
system (Ryskin and Leal, 1983) which is well-known for orthogonal mapping. In current study, this 
system is modified to generate meshes with density control. The distortion function is evaluated by 
the averaged scale factors and the scale factors controlled by weighting functions which are 
constructed according to variable distribution, such as water depth, bed slope, or transport 
concentration, etc.  With the averaged scale factors (mesh smoothness) and the weighted scale 
factors (mesh adptivity), the proposed system is able to produce meshes with a good combination of 
orthogonality, adaptivity and smoothness. The proposed methods are demonstrated by test example 
and application.  

 
2. STRETCHING FUNCTION 
 
The stretching function is widely used in the algebraic mesh generation. In this study, a more 
flexible and powerful two-direction stretching function EDS is proposed.  
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where sj is the relative location; j is the label of one point;  N is the total number of points along a 
mesh line; E (= -1, 0, 1) is the exponential parameter; D ( 10 ≤≤ D ) is the deviation parameter; S 
(>0) is the parameter used to control the degree of stretching, called scale parameter.  
 With this stretching function, the location of any node in one line AB (Figure 1) is calculated 
by    

             jABAj sxxxx ⋅−+= )(                                                                                    (2) 

 

1 Nj

A B
 

 
Figure 1 Nodal distributions on one line 

 
Figure 2 illustrates the effects of these three parameters, E, D, and S. The exponential 

parameter determines the characteristic of the distribution: contraction to a point, repulsion from a 
point, or uniformity. If E = -1, the distribution is contracting to the point; if E = 1, the distribution is 
repulsing from the point; and if E = 0, the distribution is uniform. The deviation parameter provides 
the relative location of this point along AB. For example, if D = 0.5, this point is located at the 
center. The scale parameter S controls the degree of stretching. The larger S is, the more the 
distribution is stretched. If S = 0, the distribution is uniform. Note that in this EDS stretching 
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function, the three parameters can be of any values. The reference values provided here would make 
it easy for using the function. 

E=1, D=0.00, S=3
E=1, D=0.25, S=3
E=1, D=0.50, S=3
E=1, D=0.75, S=3
E=1, D=1.00, S=3
E= 0
S = 0
E=-1, D=0.00, S=3
E=-1, D=0.25, S=3
E=-1, D=0.50, S=3
E=-1, D=0.75, S=3
E=-1, D=1.00, S=3

 
Figure 2 Effects of E, D, and S 

 

In the current study, the EDS stretching function is applied for the adaptive mesh generation. 
Because the deviation parameter D can control the relative location of the distribution, a 2D 
adaptive mesh for a natural river can be easily obtained. For example, to generate a mesh for a river 
channel with high nodal density distributed along the thalweg, in each transverse cross section, the 
mesh nodes should be contracted to the thalweg. The deviation parameter D can be calculated by 

j

z
j N

N
D min=                                                                                    (3) 

where minzN is the number of the node with the minimum bed elevation in the cross section j ; and 

jN is the total number of nodes in this cross section.  

An adaptive algebraic mesh generator can be established based on Equations (1), (2) and (3) 
with the help of the standard Laplacian smoothing technique described as follows: 
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where )( iPN  is the number of nodes around Pi; the superscript “n” means the new value. 



The 7th Int.  Conf. on Hydroscience and Engineering (ICHE-2006), Sep. 10 – Sep. 13, Philadelphia, USA 4 

The solution process is as follows: 

 Generate an initial mesh with E = 0 or S = 0. 

 Interpolate the bed elevation for all the mesh nodes. 

 Evaluate the deviation parameter D in each cross section using Equation (3). 

 Choose proper values for E and S. For contraction, E = -1; and for repulsion, E = 1. 

 Generate another mesh using the E, D, and S from the previous steps. 

 Smooth the mesh using the standard Laplacian smoothing scheme. 

 Interpolate the bed elevation for the final mesh. 

3. MODIFIED RL SYSTEM 
 
In the elliptic mesh generation system, the mesh density can be controlled through the control 
functions. Thompson et al. (1977) proposed a set of control functions which can control the grid 
clustering effectively. Another method---a Laplacian variational system was proposed by Brackbill 
and Saltzman (1982). In this paper, a simpler method based on the well-known orthogonal mapping 
system RL developed by Ryskin and Leal (1983) is proposed. 

In the RL system, the orthogonal mapping between the physical coordinates 
( 2,1),,( =≡ iyxxi ) and the computational coordinates ( 2,1),,( =≡ ii ηξξ ) is described using the 
following covariant Laplace equations: 
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where the distortion function f (also called aspect ratio) is defined as the ratio of the scale factors in 
ξ  and η  directions ( ξh  and ηh ): 
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and the metric tensor ijg  is defined as follows: 
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and, ξξ ∂∂= /xx  and so forth. 
 The RL system has been the objective of many researchers (see Zhang et al. (2004, 2006a, 
and 2006b)) and the focus of these researches was the determination of the distortion function f, 
which generally cannot be prescribed arbitrarily. Zhang et al. (2006b) proposed a method to 
directly control the distortion function using the averaged scale factors to improve the mesh 
smoothness. For one typical mesh node ( ji, ), their method can be described as follows: 
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where ih )( ξ  and jh )( η  are the global averaged scale factors at i=ξ  line and at j=η  line, 
respectively; iN  and jN  are the total number of mesh lines in ξ  and η  directions; and, ηs  and ξs  
are two adjustable parameters within the range of [0, 1] to control the ratio between the averaged 
scale factors and the local scale factors and further to control the local balance of mesh 
orthogonality and smoothness. 
 Since the scale factors ξh  and ηh are defined as the cell length in ξ  and η  directions, 
respectively, an intuitive idea is to calculate them using some weighting function, so the cell length 
and further the mesh density will be controlled. Thus, one can obtain: 
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where iL )( ξ  and 
j

L )( η  are the total length of lines at i=ξ  and at j=η , respectively; and, ξw  and 

ηw  are the weighting functions in ξ  and η  directions.  
 Note that Equation (9) can be used to control the mesh density only in a single direction. That 
is,  
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If the distortion function is evaluated by both Equations (9a) and (9b)---the weighted scale 
factors, their weighting effects will cancel each other, and in results, the mesh density cannot be 
controlled as expected. 

As pointed out in Zhang et al. (2004, 2006a and 2006b), the RL system is lack of emphasizes 
on mesh smoothness and serious mesh distortion and overlapping may occur in geometrically 
complex domains. To improve mesh smoothness, a simplified version of Equation (8) that the two 
parameters ηs  and ξs are assumed equal is adopted in the current study. Therefore, for mesh density 
controls, the distortion function is evaluated by 
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where ar  ( ξs=  or ηs ) is the smoothness parameter.  
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4. EXAMPLES 
 
The proposed two methods are demonstrated by two examples. For both methods, only the 

Dirichlet boundary condition is applied. The mesh quality is evaluated quantitatively by the standard 
academic criterions, such as Maximum Deviation Orthogonality (MDO), Averaged Deviation from 
Orthogonality (ADO), Maximum grid Aspect Ratio (MAR), and Averaged grid Aspect Ratio (AAR). 
ADO and MDO are used to measure the orthogonality, while AAR and MAR measure the global 
smoothness. These four indicators are defined as follows: 

)max( , jiMDO θ=                                                                                (12a) 
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where θ  is defined as 
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Rectangular Domain 

 
The first example is a rectangular domain, in which the control of mesh density using the 

EDS stretching function is illustrated. As shown in Figure 3, the mesh size in this domain is 35×35, 
and it is required that: (1) contraction or repulsion occurs at the node A, B, C, and D; (2) contraction 
or repulsion occurs at the line EF and GH. 

E

H

F

G

A

B C

D

 
Figure 3 Rectangular domain 

 
Each boundary is divided into four sections, and in each section the EDS stretching function 

is applied, so the nodes along the boundaries are not equally spaced. The parameters are shown in 
Tables 1 and 2. The ordering of the I and J indices is from left to right in x direction (I) and from top 
to bottom in y direction (J).  
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Table 1 Parameters of EDS stretching function for contraction 
  

Boundary Section  No. No. of Nodes E D S 
1 9 -1 1 2 
2 10 1 0.5 3 
3 10 1 0.5 3 

Left & right 

4 9 -1 0 2 
1 9 -1 1 2 
2 10 1 0.5 3 
3 10 1 0.5 3 

Top & bottom 

4 9 -1 0 2 
 
 
 
 

Table 2 Parameters of EDS stretching function for repulsion 
  

Boundary Section  No. No. of Nodes E D S 
1 9 -1 0 2 
2 10 -1 0.5 3 
3 10 -1 0.5 3 

Left & right 

4 9 -1 1 2 
1 9 -1 0 2 
2 10 -1 0.5 3 
3 10 -1 0.5 3 

Top & bottom 

4 9 -1 1 2 
 

Figure 4 shows the resulting meshes. The EDS stretching function works well to contract or 
repulse mesh lines with smooth transition. However, it can only be applied to one line because it is 
one-dimensional. 

 
   (a) Contraction                   (b) Repulsion 

 
Figure 4 Meshes using EDS stretching function 

 
 



The 7th Int.  Conf. on Hydroscience and Engineering (ICHE-2006), Sep. 10 – Sep. 13, Philadelphia, USA 8 

Natural River 
 
 The second example is a curved natural river with an island as shown in Figure 5. In this 
domain, the main channel needs more mesh lines than the floodplains. The EDS stretching function 
and the modified RL system are used to generate the depth-adaptive meshes for this channel. 
 For this case, only in ξ  direction (the transverse direction) the mesh lines are controlled, so 
Equation (11b) is used to calculate the distortion function. The modified RL system used the 
following weighting function for mesh generation. 

jiji

ji
ZZZ

w
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2
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1)(
−++
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ξ                                                                   (15) 

where ξξ ∂∂= /ZZ . 
 Figure 6 shows the comparisons of adaptive meshes using the EDS stretching function with 
different scale factor S. With the scale factor increasing, the mesh lines become more squeezed to 
the main channel. However, the island was not identified due to the fact that only one deviation 
point is provided along one line. To remedy this problem, the multi-block concept can be borrowed 
and the domain can be split into two blocks in the transversal direction. In each block, the EDS 
stretching function is applied. 
 

 

zs
45.3536
41.747
38.1403
34.5336
30.9269
27.3203
23.7136
20.1069
16.5002
12.8936

Bed Elevation

η

ξ

 

Figure 5 Natural river 
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 (a) S = 2.5                                   (b) S = 3.0 

       
 (c) S = 3.5                               (d) S = 4.0 
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(e) S = 4.5                               (f) S = 5.0 

Figure 6 Meshes using EDS stretching function 
 

Figure 7 shows the comparison of adaptive meshes using the modified RL system with 
different smoothness parameter ar and Table 3 summarizes the mesh quality.  As can be seen, 
serious mesh distortion exists in the domain, as shown in Figure 7(a), and with considering mesh 
smoothness ( ar  > 0), the overall mesh quality was significantly improved. The larger the smoothness 
parameter ar  is, the more mesh smoothness was gained.  

 
Table 3 Evaluation of Meshes Using Modified RL System 

 
Domain Case Size ADO MDO AAR MAR ar  

A 30×150 2.60 12.19 2.52 91.9 0 
B 30×150 2.61 10.36 2.17 13.56 0.1 
C 30×150 2.63 9.90 2.12 12.44 0.15 
D 30×150 2.64 9.72 2.09 11.61 0.2 
E 30×150 2.65 9.73 2.06 10.89 0.25 
F 30×150 2.67 9.82 2.04 10.04 0.3 
G 30×150 2.70 10.19 1.96 8.39 0.5 

Natural 
River 

H 30×150 2.71 10.41 1.88 7.10 0.7 
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(a) ra = 0.0                                                  (b)  ra = 0.1 

                                      
(c) ra = 0.15                                                  (d)  ra = 0.2 
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(e) ra = 0.25                                                  (f)  ra = 0.3 

 

                       
(g) ra = 0.5                                                  (h)  ra = 0.7 

 
Figure 7 Depth-adaptive meshes using modified RL 

 
 

5. CONCLUSIONS 
  

In this paper, a three-parameter stretching function and a modified RL system are proposed 
to control the mesh density. It is shown that this stretching function is more flexible and powerful; 
the modified RL system is capable of producing near-orthogonal mesh with the effective control of 
mesh density. The proposed methods are simple, effective and easy to use.  
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