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Abstract— Autonomous marine vehicles (AMVs) are typically
deployed for long periods of time in the ocean to monitor
different physical, chemical, and biological processes. Given
their limited energy budgets, it makes sense to consider motion
plans that leverage the dynamics of the surrounding flow field
so as to minimize energy usage for these vehicles. In this paper,
we present two graph search based methods to compute energy
optimal paths for AMVs in two-dimensional (2-D) time-varying
flows. The novelty of the proposed algorithms lies in a unique
discrete graph representation of the 3-D configuration space
spanned by the spatio-temporal coordinates. This enables a
more efficient traversal through the search space, as opposed
to a full search of the spatio-temporal configuration space.
Furthermore, the proposed strategy results in solutions that
are closer to the global optimal when compared to greedy
searches through the spatial coordinates alone. We demonstrate
the proposed algorithms by computing optimal energy paths
around the Channel Islands in the Santa Barbara bay using
time-varying flow field forecasts generated by the Regional
Ocean Model System. We verify the accuracy of the computed
paths by comparing them with paths computed via an optimal
control formulation.

I. INTRODUCTION

Scientific activities in aquatic environments that were
traditionally performed manually, are increasingly being au-
tomated using autonomous marine vehicles (AMVs). These
vehicles could either be surface vehicles or underwater
vehicles. Examples include characterizing the dynamics of
plankton assemblages [3], measurement of temperature pro-
files [5], and monitoring of harmful algae blooms [15]. In
these and similar environmental monitoring applications in
the ocean, AMVs are often deployed over long periods while
operating with limited energy budgets. As such, researchers
have to design motion strategies that are energy efficient to
make maximum use of the capabilities of these autonomous
platforms.

While the high inertia environment of the ocean couples
the environmental dynamics to the marine vehicle dynamics,
it presents a unique opportunity for vehicles to exploit the
surrounding flows for more efficient navigation. As such,
there is a substantial amount of recent work on determining
optimal paths in flow fields. Existing work on planning
optimal paths for marine vehicles mostly focus on time
invariant flows. While, some work has been reported on
planning energy optimal paths in time-varying flows, these
work mostly focus on planning time optimal paths.
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Examples include the work by Garau et al.[6] where they
used a graph search method to plan time optimal paths in
time invariant flows. Graph search methods have also been
proposed for computing energy optimal paths in flow fields
in [9, 14, 11], however these works only address planning in
time-invariant flows. Alternatives to graph search methods
include [10, 17] for determining energy optimal paths in
time-varying flows. However, these methods run the risk
of producing a path that is only a local minimum [4] and
require optimizations at several levels. Eichorn [4] presented
a graph search based method to compute time optimal paths
in time-varying flows. Lolla et al.[12, 13] presented a level
set expansion method to find time optimal paths in time-
varying flows and Subramani et al.[16] extended this method
to compute energy optimal paths from amongst these time
optimal paths. Unfortunately, all these methods cannot be
extended to compute optimal energy paths in time-varying
flows.

To the best of our knowledge, no graph search based
method has been proposed for planning optimal energy
paths in time-varying flow fields. Though most exist graph
search methods for time-invariant flows can theoretically be
extended to time-varying flows, the extension is not trivial
in practice. Different from time-invariant flows where the
energy cost is solely a function of the spatial coordinates,
both the traversal time and the energy cost of travel from one
vertex to an adjacent vertex depend on the time of departure
from the first vertex making the cost and traversal times
functions of both time and space in time varying flows. Thus,
to compute optimal energy paths in time-varying flow fields,
the search space must explicitly consider the time dimension.
However, if the time dimension is not handled with care,
the search will become very inefficient and return inaccurate
results. Furthermore, the design of the search algorithm must
also consider additional complexities such as sampling rates,
and the effects of flow and actuation constraints on the
accessible configuration space.

In this paper, we present two graph search based methods
that could be used to obtain energy optimal paths in time-
varying flow fields. The rationale for developing these graph
search methods are 1) they are simpler to implement than
existing energy optimal path planning methods for time-
varying flows, 2) it is easier to incorporate the effects of
actuation constraints and the effects of static and dynamic
obstacles to graph search based methods and 3) they can
be easily extended to include topological constraints such
as homotopy classes [2, 8] which have applications in envi-
ronmental exploration and monitoring. Both of the proposed
methods result in trajectories that are significantly closer to
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Fig. 1. The net velocity of the vehicle is the vector sum of the flow velocity
and the vehicle’s still-water velocity.

the true optimal than trajectories obtained from searches in
spatial coordinates alone. Additionally, the proposed methods
are significantly more efficient than direct searches using
a straight forward discretized representation of the spatio-
temporal configuration space. Our experimental analysis
show that depending on the flow field, one method may
outperform the other with respect to computation efficiency
or how close the computed trajectory is to the true optimal.
While only energy optimal paths are addressed in this paper,
the presented methods are general enough to accommodate
arbitrary cost functions.

The remainder of the paper is organized as follows. The
problem, assumptions and the cost functions are presented in
section II and the graph search methods used are described
in section III. In section V we present simulation results and
we conclude with a discussion of our findings in section VI.

II. PROBLEM FORMULATION

A. Assumptions

In this paper, we consider an aquatic environment W ⊆
R2, subject to a time-varying flow field Vf (x, t), where
x = [x, y]T ∈ W denotes the coordinates of a point in W
expressed in an inertial frame, and t ∈ [ts, tf ] ⊂ R+ denotes
time. In the remainder of the paper it is assumed that this
flow description is known beforehand or a reliable forecast
is available. We assume a holonomic kinematic model for
the autonomous marine vehicle (AMV). This is a reasonable
assumption when the dimensions of the AMV are small when
compared with the dimensions of the flow structures [6].
Thus, the net velocity of a vehicle with respect to the inertial
frame is given by Vnet(x, t) = Vf (x, t) + Vstill(x, t),
where Vstill is the velocity of the AMV with respect to
the flow. To achieve a given velocity Vnet, the AMV speed
with respect to the flow needs to be

Vstill =
√

(Vnet − Vf cos θ)2 + (Vf sin θ)2 (1)

where Vnet = ‖Vnet‖, Vf = ‖Vf‖, Vstill = ‖Vstill‖
and θ is the angle between Vf and Vnet as shown in
Fig. 1. We further assume that that the actuation capability
of the vehicle is limited and the vehicle speed is slower
than the surrounding flow i.e., Vstill(x, t) < Vmax < Vfm
where Vfm = maxx∈W, t∈[tstf ] Vf (x, t) is the maximum
flow speed encountered in the domain.

In this work we use graph search methods to find energy
optimal paths for AMVs in two-dimensional (2D) time-
varying flows. We consider the total energy consumed by

the vehicle as Etotal = Ehotel + Edrag where Ehotel is
the energy consumed to operate the vehicle’s computing and
sensor systems independent of propulsion [7], and Edrag is
the energy expended to overcome drag forces exerted by the
fluid. Assuming constant power usage by the computing and
sensor systems gives Ehotel =

∫ t

t0
Khdt and assuming a

linear drag model gives Edrag =
∫ t

t0
Kd‖Vstll‖2dt. Thus,

for infinitesimal path segments, [dx, dy]T , traversed in time
dt, we can write,

dE =
(
Kh +KdV

2
still

)
dt (2)

where Vstill is given by (1). The implicit assumption made
is that Vf remains constant within dx, dy and dt. Note that,
Kh and Kd can also be thought of as weighting parameters
between minimum time paths and minimum energy paths.
If a minimum time path is required, we could set Kd = 0
and proceed, and vice versa. If exact energy minimization is
required, actual values for Kh and Kd should be used.

B. Problem Statement

Given the above energy cost function, the objective is to
find a path that minimizes the total cost. As such, we propose
to find a trajectory Γ : [ts, tg] 7→ W, that satisfies the
following optimization problem:

min
Γ

∫
Γ

dE (3)

subject to Γ(ts) = xs,

Γ(tg) = xg,

Vstill ≤ Vmax.

Here, xs and xg are the desired start and goal positions.
In this work, we propose a graph based search strategy

for computing the optimal path Γ? that satisfies the problem
stated in (3). Recall that an admissible heuristic function
is a function (of the search coordinates) that gives a lower
bound for the actual cost (in the graph) to the goal, and is
fundamental to implementing an efficient search algorithm
such as A*. To find an admissible heuristic function for
determining the shortest path from a location xt = [xt, yt]

T

to the goal node xg = [xg, yg]T , we consider an idealized
flow condition between xt and xg where the flow is always
directed towards xg and the flow speed is at the maximum
possible value Vfm as the vehicle travels between xt and xg .
Thus from (1), Vnet = Vstill + Vfm with θ = 0 since Vf is
always assumed to be along Vnet and the travel time given
by ∆t = ∆x/Vnet where ∆x = ‖xt − xg‖. Using (2), the
cost of travel from xt to xg is thus given by

dE =
(
Kh +KdV

2
still

) ∆x

Vstill + Vfm
.

It can be shown that this cost is minimized when,

Vstill = Vstillm = −Vfm +
√
V 2
fm +Kh/Kd.

Thus, the heuristic for energy expenditure to travel from xt

to xg is given by

h =
(
Kh +Kdv

2
sel

)
∆t (4)



where vsel = min(Vmax, Vstillm) and ∆t = ∆x
Vfm+vsel

. In
the derivation of (4), we select the minimum between Vmax

and Vstillm as the vehicle speed to account for the vehicle
actuation constraint. If we ignore the actuation constraint
given by Vstill < Vmax, the heuristic will still be admissible
but will result in a further underestimation of the travel cost
and lead to more nodes being expanded during the search.

III. METHODOLOGY

Existing graph search methods for energy optimal path
planning in flow fields consider time-invariant flows. In these
methods, the graph is constructed by uniformly discretizing
W. The cost of any edge is considered to be the minimum or
optimal energy cost to travel between the two corresponding
vertices. Finding the optimal energy path consists of piecing
together these optimal path segments from start to goal such
that the total cost is minimized and can be done using graph
search methods like Dijkstra or A*. This approach is possible
since the traversal time from a node xi to an adjacent node
xj , as well as the corresponding energy cost of travel, is
independent of the time of departure from node xi. However,
in the case of time-varying flows, both the traversal time and
the energy cost of travel from xi to xj , are dependent on the
time of departure from xi. Thus, in time-varying flows, it is
possible to travel to an intermediate node in a suboptimal
manner in order to encounter a favorable current towards the
destination later on that results in minimizing the overall cost
of the path. Hence, greedy strategies that may be suitable
for time-invariant flows are no longer valid. As such, the
search space needs to explicitly take into account the time
dimension when computing optimal paths in time-varying
flow fields.

In this work, we present two methods, the Multi Timestep
Search (MTS) method and the Single Timestep Search
(STS) method, that can be used to plan paths in time-
varying flow fields. These methods allow searching across
different actuation speeds in order to compute the global
optimum trajectory. In the MTS method, we discretize the 3-
D space (spanned by the X-Y-Time coordinates) to construct
a uniformly discretized grid such that each point on the
grid is represented by a node in the graph. Edges between
a vertex and its neighbors exist in this graph if the neigh-
boring vertices are reachable while respecting the actuation
constraints. Whereas in the STS method, only the temporal
coordinate has a fixed, uniform discretization, and the spatial
coordinates of the vertices in the graph are determined on-
the-fly based on prevalent flow conditions as we explore the
space. In both methods, the graph expansion is guided by
the A* algorithm. At each iteration, the vertex to expand is
obtained from a priority queue (Q) that is sorted by the f
values of the vertices, where f = cost+ heuristic and the
cost and heuristic values are computed using (2) and (4)
respectively..

A. The Multi-Timestep Search (MTS)

In this method (see Algorithm 1), the 3-D space is
discretized uniformly with increments ∆x,∆y,∆t in each

of the x, y, t directions respectively. The discretized space
is represented by a vertex set V3D where each vertex qi ∈
V3D is identified by the pair (xi, ti). Each qi also has a
set of tentative neighbors N (qi), where each qj ∈ N (qi)
satisfies max(|xj − xi|/∆x, |yj − yi|/∆y) ≤ NsHops and
0 < (tj − ti)/∆t ≤ NtHops (see Fig. 2(a)). NsHops defines
the number of spatial hops considered as neighbors, and its
value is typically set to a small integer in MTS in order to
keep the average degree of the vertices in the graph low.
If NsHops = 1, only the immediate spatial neighbors are
considered and if NsHops = 2 then 2-hop spatial neighbors
are also considered. For a given qi, with associated flow
speed Vfi , the required still-water speed and the associated
traversal cost to go to any qj ∈ N (qi) with a given spatial
coordinate x depend primarily on δtij = tj − ti. The cost to
reach x will decrease as δtij increases (see Fig. 2(a)).

The main idea behind the MTS method is to search
through all of these path segments to find the least cost
path from start to goal. Naturally, low cost paths can be
obtained by setting NtHops to a large value, because it allows
transitions between two adjacent spatial locations, xi and xj,
albeit over a long period of time (δtij = NtHops × ∆t).
However, such a transition breaks the assumption that the
flow velocity Vfi remains constant between two vertices, qi
and qj , in practice since flow conditions are more likely to
change over the large the transition time δtij . Thus, NtHops

should be selected such that the underlying flow remains
relatively constant during NtHops×∆t. In this paper, NtHops

is set such that NtHops×∆t < Ts, where Ts is the sampling
period of the available data.

Furthermore, only a subset of the tentative neighbors
N (qi) is accessible due to actuation constraints, and only
those accessible vertices are considered in the construc-
tion of the search graph G3D (line 23 in Algorithm 1).
Specifically, qj ∈ N (qi) is considered to be a neighbor
of qi only if the required still-water speed, Vstillreq =√

(Vnet − Vfi cos θ)2 + (Vfi sin θ)2 < Vmax (where, Vnet =
‖xj−xi‖/(δtij) and Vfi = ‖Vf (xi, ti)‖). The A* algorithm
is used to guide the construction and expansion of G3D, and
to obtain the minimum cost path.

The main highlights of this method are:
• given a node qi = (xi, ti), for every location xj who is

a neighbor of qi in the spatial domain, multiple vertices
with tj = [ti + ∆t, ti + 2∆t, ..., ti + NtHops∆t] are
considered as neighbors in the 3-D graph (see Fig. 2(a)).

• actuation constraints (maximum possible still-water
speed) and prevalent flow conditions are explicitly con-
sidered to determine which neighboring vertices are
reachable and which edges are to be constructed during
the graph search.

Since multiple time steps are considered at each spatial
neighbor, this method is called the “Multi Timestep Search
(MTS)” method.

B. The Single-Timestep Search (STS)

In the MTS method, all the vertices that can be accessed in
a given time step might not be considered due to the NsHops



(a) (b) (c)

Fig. 2. (a) The construction of the MTS graph for Nhops = 1. Only a portion of the neighbor set is shown. For each spatial neighbor xj , multiple
neighbors are considered along the time axis. (b) The construction of the STS graph. In contrast to the MTS method, only one timestep is considered at
each node, and all possible points that can be reached are considered as neighbors. All neighbors have the same time coordinate. (c) The lattice structure
with n = 3 used to construct the set of accessible neighbors N (qi) from qi.

Algorithm 1: Multi Timestep Search (MTS) to compute
optimal paths in time-varying flows

Input : Vertex set V3D , Start vertex qs = (xs, ts), Goal xg

Output: Optimal cost path Γ
1 foreach qi ∈ V3D do
2 qi.f =∞, qi.cost =∞, qi.parent = ∅
3 qi.heuristic = getHeuristic(qi,xg)
4 qi.expanded = false
5 end
6 Q = ∅, G3D = ∅
7 qs.f = 0, qs.cost = 0
8 Q.insert(qs), G3D.addNode(qs)
9 while (Q! = ∅) do

10 qi = Q.extractMin()
11 qi.expanded = true
12 [Vfi , θ] = getFlow(qi) // get velocity at qi
13 if (xi == xg) then // goal is reached
14 while qi! = ∅ do // retrieve path
15 Γ.push(qi)
16 qi = qi.parent
17 end
18 break;
19 end
20 foreach qj ∈ N (qi) do // for each neighbor
21 Vnet = ‖xj −xi‖/δtij// required net speed
22 Vstillreq =

√
(Vnet − Vfi cos θ)2 + (Vfi sin θ)2

// Vstill required to reach qj
23 if

(
Vstillreq < Vmax

)
then

24 continue;
25 end
26 cost =

(
Kh +KdV

2
stillreq

)
δtij // cost of

edge qiqj
27 if qj ∈ G3D then
28 if (!qj .expanded & qj .cost > qi.cost+ cost)

then
29 qj .cost = qi.cost+ cost
30 qj .parent = qi
31 qj .f = qj .cost+ qj .heuristic
32 Q.update(qj)
33 end
34 else
35 qj .cost = qi.cost+ cost
36 qj .parent = qi
37 qj .f = qj .cost+ qj .heuristic
38 Q.insert(qj), G3D.addNode(qj)
39 end
40 end
41 end
42 return Γ

Algorithm 2: Single Timestep Search (STS) to compute
optimal paths in time-varying flows

Input : Start vertex qs = (xs, ts), Goal xg , ∆t, n
Output: Optimal cost path Γ

1 Q = ∅, G3D = ∅
2 ∆x = Vmax∆t/n
3 [Xlattice, Clattice] = getLattice(∆x, n) // precompute
Lattice structure

4 qs.f = 0, qs.cost = 0 qs.parent = ∅
5 Q.insert(qs), G3D.addNode(qs)
6 while (Q! = ∅) do
7 qi = Q.extractMin()
8 qi.expanded = true
9 Vfi = getFlow(qi) // get flow velocity at qi

10 if (‖xi − xg‖ < ∆x/2) then // goal is reached
11 while qi! = ∅ do // retrieve path
12 Γ.push(qi)
13 qi = qi.parent
14 end
15 break;
16 end
17 for j = 1 to m do // for each vertex in

lattice
18 xj = xi + Vfi∆t+ Xlattice(j) // spatial

coordinates of qj
19 tj = ti + ∆t
20 qj = (xj, tj)
21 cost = Clattice(j) // cost of edge qiqj
22 if qj ∈ G3D then
23 if (!qj .expanded & qj .cost > qi.cost+ cost)

then
24 qj .cost = qi.cost+ cost
25 qj .parent = qi
26 qj .f = qj .cost+ qj .heuristic
27 Q.update(qj)
28 end
29 else
30 qj .cost = qi.cost+ cost
31 qj .parent = qi
32 qj .heuristic = getHeuristic(qj ,xg)
33 qj .f = qj .cost+ qj .heuristic
34 Q.insert(qj), G3D.addNode(qj)
35 end
36 end
37 end
38 return Γ



hops restriction. Thus, in some cases, all possible paths to the
goal may not be considered since vertices that are accessible
due to prevalent flow conditions are not included in the
search since they are farther away than NsHops hops. Thus
the results can be suboptimal. To overcome this, the Single
Timestep Search (STS) considers all possible vertices that
could be accessed in a single time step from a given vertex
as its neighbors. However, the spatial locations of these
accessible vertices depend on the flow conditions prevalent
at the time at that location. As such, in the STS method,
the spatial locations of the vertices are determined on-the-
fly based on prevalent flow conditions, as we explore the
space. Since only one time step is considered from each
neighbor, we refer to this method as the “Single Timestep
Search (STS)” method (see Algorithm 2).

Similar to the MTS, each vertex qi is identified by the
pair (xi, ti). The spatial location of the vertex that could
be reached from qi in a single time step ∆t with zero
vehicle speed is x = xi +Vfi∆t. Thus the accessible spatial
region from qi in a single time step ∆t, is a circle of radius
Vmax∆t centered at x. In the STS method, this accessible
region is represented by a hexagonal lattice centered at x
with 2n+ 1 vertices on the major axis (see Fig. 2(c)). Thus
there will be m = 3n2 + 3n + 1 number of vertices in
the neighbor set N (qi) of qi, and the inter-vertex spacing
would be ∆x = Vmax∆t/n. The relative position of each
of the vertices in the lattice with respect to x, and the cost
required to reach them from x are the same for any x. Thus
these values are precomputed in arrays Xlattic and Clattice

respectively (line 3 in Algorithm 2), to save computational
resources. The actual spatial coordinate of each neighbor is
calculated (line 18) using these precomputed values and the
flow velocity at qi. All the vertices in N (qi) have the same
time coordinate tj = ti + ∆t (line 19). Furthermore, no
additional accessibility check is required (as in the MTS
method), since all vertices are guaranteed to be accessible.
A* algorithm is used to search for the optimal path in this
graph as its built. In the termination condition in line 10, it is
assumed that the goal location is reached when the distance
to the goal location is less than ∆x/2. This same condition
is used when searching the graph in line 22 to find if a vertex
already exists in the graph.

IV. TIME COMPLEXITY ANALYSIS
In our analysis, we assume that the priority queue Q

is implemented as a min-priority queue using a heap data
structure in both algorithms. Thus, for a queue of length
nq , each of the extractMin(), update(qj), & insert(qj)
operations has a worst case running time of O(log nq). We
also assume that all other value assignment operations can be
performed in constant time. The qj ∈ G3D operation (lines
20 and 17 in Algorithms 1 and 2 respectively) can also be
performed in constant time by using a hash table. Thus, we
only consider the extractMin(), update(qj), & insert(qj)
operations contained inside the while loop, in our analysis
since all other operations can be done in constant time.

Lets assume that N nodes are expanded by each algorithm
to find a path Γ, and m neighbors are considered at each

TABLE I
PERFORMANCE VALUES OF THE PATHS SHOWN IN FIG. 3 AND FIG. 4

Path1 Path2
Kh = 0.0005, Kd = 1 Kh = 0.05, Kd = 1
cost (Nm) mE (m) cost (Nm) mE (m)

STS 3526 497 12603 556
MTS 3873 477 12819 515

Optimal Path 3787 - 12533 -

node, i.e., m = ‖N (qi)‖. In both algorithms, for each node
expanded, the extractMin() operation is performed exactly
once, and one of the update(qj) or insert(qj) operations
is performed at the most m times. Furthermore, in the
worst case, there are Nm number of nodes in the priority
queue Q. As such, the worst case running time of both
algorithms is O(Nm logNm) (since altogether Nm number
of insert(qj)/update(qj) operations are carried out on a
queue of length Nm in the worst case).

In the STS method, N and m depend only on the dis-
cretization ∆x,∆t, while in the MTS method, N and m
would depend on the discretization ∆x,∆y,∆t, as well as
on NsHops and NtHops. Therefore, the N and m values that
are required by the two methods to compute a path with a
given accuracy (in comparison to the true optimal path), will
be different for the two methods. Thus, in order to compare
the running times of the two methods, we need to compare
the Nm product required by each method. The method that
computes the path with a smaller Nm value will be faster.
This is analyzed through simulations in Section V.

V. SIMULATION RESULTS

In this section, the performance of the methods presented
in the section III are evaluated in simulations. Flow data
generated by the Regional Ocean Model System (ROMS) for
the Santa Barbara Bay area off the coast of southern Califor-
nia were used in these simulations. The Southern California
Coastal Ocean Observing System (SCCOOS) generates these
hourly ocean current forecasts everyday and each forecast is
for 72 hours [1]. The the data generated on July 7 and July
8 2016 were used for the simulations. The maximum flow
speed was Vfm = 0.73m/s and as such Vmax was selected
to be 0.5m/s. All the simulations were run on a Core I-7
3.4GHz PC with 16GB of RAM.

The accuracy of the paths computed by the two methods
is evaluated by comparing them against a path obtained by
solving the corresponding optimal control problem. Let Γ∗ :
[ts, tg] 7→W be the baseline path obtained from the optimal
control or optimal trajectory generation formulation, and let
Γ : [ts, tg] 7→ W be the path computed by any one of the
proposed methods. The mean error (mE) between Γ∗ and
Γ, defined by

mE =

∫ tg

ts

‖Γ∗(t)− Γ(t)‖
tg − ts

dt (5)

is used to evaluate the relative accuracy of a given path.
Fig. 3 shows the time evolution of the paths computed by

the MTS and STS methods against that of the optimal path



(a) t=13.3 hrs (b) t=22.5 hrs

(c) t=40.8 hrs (d) t=50.3 hrs
Fig. 3. Comparison of optimal paths computed by the two methods against the optimal path computed from optimal control theory for Kh = 0.0005
and Kd = 1. Paths try to follow the flow at all times

(a) t=6.67 hrs (b) t=13.6 hrs

(c) t=20.6 hrs (d) t=26.9 hrs
Fig. 4. Comparison of optimal paths computed by the two methods against the optimal path computed from optimal control theory for Kh = 0.05 and
Kd = 1. Paths take a more direct route towards the goal.

Γ∗(t), for Kh = 0.0005 and Kd = 1. In this case, more
prominence is given to minimizing the energy expended to
overcome drag (since Kh << Kd). As such, the computed

paths try to follow the direction of the flow at all times to
reduce the relative speed between the flow and the vehicle.
This results in loop structures (in space) as can be seen in the



TABLE II
COMPARISON OF RUNNING TIMES OF THE TWO METHODS TO COMPUTE PATHS WITH SIMILAR ACCURACY VALUES BETWEEN THE SAME END POINTS.

Kd = 1 FOR ALL PATHS.

Start Goal STS Path MTS Path
Path (km) (km) Kh Accuracy Nodes × neighbors Running Time Accuracy Nodes × neighbors Running Time

mE (m) Nm (/ 106) O(Nm log Nm) (/ 109 ) mE (m) Nm (/ 106) O(Nm log Nm) (/ 109 )

1 [20, 50]T [50, 40]T 0.0005 497 1859 57.2 477 457 13.2
2 [20, 50]T [50, 40]T 0.05 556 59.2 1.53 515 72.0 1.89
3 [20, 50]T [25, 45]T 0.0005 335 185 5.08 322 657 19.2
4 [20, 50]T [25, 45]T 0.05 181 14.8 0.353 188 354 10.0

figure. Fig. 4 shows the time evolution of the paths for the
same start and end locations, but with Kh = 0.05 and Kd =
1. In this case, more prominence is given to minimizing the
the hotel load (

∫
Khdt). Thus the paths try to minimize time

spent to complete the path, and as a result, the computed
paths tend to take a more direct route to the destination while
also trying to align with the flow as much as possible. From
the performance parameters for the two cases given in Table
I, it can be seen that the mean error (mE) for the paths
computed by both methods is low.

As described in section IV, both N (number of nodes
expanded) and m (the number of neighbors), that is required
to produce a path with a given accuracy, would be different
for the two algorithms. Furthermore, the time complexity of
both algorithms is O(Nm logNm), i.e., grows with Nm.
Thus, in order to compare the performance of the two
algorithms, the Nm product required by the two methods to
produce paths with similar accuracy values were compared
(see Table II. The method with the lower Nm value will
compute the path faster).

From the results, it can be seen that the MTS method
seems to take longer than the STS method to compute a
path with similar accuracy. However, exceptions to this rule
(e.g. Path 1) were also found, indicating that the actual
relative computation speed of the two methods also depends
on the flow field prevalent in the region at the time of
interest. Furthermore, it can be seen that both methods take
considerably less time to compute paths between the same
end points when Kh is larger. This is is expected because
the number of nodes that are expanded (N ) by each method
to produce a solution depends on the effectiveness of the
heuristic function. It can be seen from the derivation 4 that
the heuristic h → 0 as Kh/Kd → 0. Thus when Kh is
small (as in Paths 1 and 3), the effectiveness of the heuristic
is reduced and more nodes are expanded.

In graph search based methods used to compute optimal
paths in time invariant flows [9, 6, 11], in which only spatial
coordinates are considered, the accuracy of the computed
paths increase as the resolution of the discretization is
increased. However, it was observed that this is not generally
true for time-varying flows. Table III shows the variation of
the accuracy values for a path computed using MTS, as the
resolution used to discretize the 3D space is varied. Going
from Path1 to Path2 and from Path3 to Path4, where ∆t is
held constant, the accuracy is increased (mE is reduced)
as ∆x is reduced. However, for Paths 4-6, the accuracy

TABLE III
THE VARIATION OF THE PATH ACCURACY WITH DISCRETIZATION

RESOLUTION FOR THE MTS METHOD. FOR THE CONSIDERED PATH

xs = [20, 50]km, xs = [50, 40]km, Kh = 0.0005 AND Kd = 1.

Path1 Path2 Path3 Path4 Path5 Path6
∆t(s) 1000 1000 500 500 500 500

∆x(m) 200 150 250 200 150 100
NtHops 3 3 6 6 6 6
NsHops 3 3 3 3 3 3
mE 887 610 639 477 522 832

TABLE IV
THE VARIATION OF THE PATH ACCURACY WITH DISCRETIZATION

RESOLUTION FOR THE STS METHOD. FOR THE CONSIDERED PATH

xs = [20, 50]km, xs = [50, 40]km, Kh = 0.0005 AND Kd = 1.

Path1 Path2 Path3 Path4 Path5 Path6
∆t(s) 1000 1000 1000 2000 2000 500
n 3 4 5 3 6 2

∆x(m) 167 125 100 333 167 125
mE(m) 896 1533 497 1010 901 1540

decreases (mE increases) as ∆x is reduced (as the dis-
cretization is made finer). Table IV shows the corresponding
measures for the STS method. When comparing Path 1 with
Path2, it can be seen that the accuracy decreases as ∆x is
reduced, whereas comparing Path1 with Path3, the accuracy
increases as ∆x is reduced. Thus, the relationship between
the accuracy and the discretization resolution for both meth-
ods is not entirely clear at this point. Interestingly, the STS
method seems to produce paths with similar accuracy values
when the same ∆x is used (compare Path1 with Path 5, and
Path2 with Path6). However, such a conclusion is preliminary
and needs to be further investigated.

VI. CONCLUSIONS
In this paper two methods for generating optimal en-

ergy paths in time varying-flows were presented. The MTS
method considers the possibility of traveling to each spatial
neighbor in multiple time steps, where as the STS method
considers traveling to all possible spatial locations in a single
time step. The time complexity of both algorithms was found
to be O(Nm logNm). The accuracy of the two methods
was verified by comparing the computed paths with those
obtained through optimal control theory.

While we only considered the generation of optimal en-
ergy paths, the presented methods are general enough to
optimize any cost function in a time-varying flow. Both
methods explicitly consider the time dimension in the graph
construction, and thus computes trajectories that are signif-



icantly closer to the true optimal than trajectories obtained
from search in spatial coordinates alone. In addition, it is not
necessary to search through the whole time dimension due
to the way that the graphs are constructed, and as a result
the paths are computed significantly more efficiently than
than searches in a full-blown discrete representation of the
spatio-temporal configuration space.

It was found that the accuracy of the computed paths were
dependent on the discretization used for the configuration
space. However, in stark contrast to searches in spatial cor-
rdinates alone (such as the ones used in time-invariant flow
scenarios), increasing the discretization resolution sometimes
resulted in reduced accuracy. To obtain the best accuracy, the
discretization has to match the spatio-temporal scales of the
underlying flow field. Finding this “sweet spot” remains a
challenge and is a direction for future work.
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