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Abstract 
 

Graph-based Interactive Bibliographic Information Retrieval Systems 
Yongjun Zhu 

Erjia Yan, Advisor, Ph.D. 
Il-Yeol Song, Co-advisor, Ph.D. 

 
 
 
 

In the big data era, we have witnessed the explosion of scholarly literature. This 

explosion has imposed challenges to the retrieval of bibliographic information. Retrieval 

of intended bibliographic information has become challenging due to the overwhelming 

search results returned by bibliographic information retrieval systems for given input 

queries. At the same time, users’ bibliographic information needs have become more 

specific such that only information that best matches their needs is seen as relevant.  

Current bibliographic information retrieval systems such as Web of Science, Scopus, 

and Google Scholar have become an unalienable component in searching bibliographic 

data. However, these systems have limited support of complex bibliographic queries. For 

example, a query- “papers on information retrieval, which were cited by John’s papers 

that had been presented in SIGIR” is an ordinary information need that researchers may 

have, but is not appropriately representable in these systems. In addition, these systems 

only support search for papers and do not support other bibliographic entities such as 

authors and terms as the final search results.  

Therefore, in this dissertation, we propose several bibliographic information retrieval 

systems that can address complex bibliographic queries. We propose form-, natural 

language-, and visual graph-based systems that allow users to formulate bibliographic 

queries in a variety of ways. The form-based system allows users to formulate queries by 



 xiii 

selecting forms and input values in those selected forms. In the natural language-based 

system, users formulate queries using a natural language. Users formulate queries by 

drawing nodes and links in the visual graph-based system. These systems are based on a 

graph model to enhance retrieval efficiency and provides interfaces for users to formulate 

queries interactively.   

Through a system-centered evaluation, we find that our graph-based system took less 

time to process complex queries than a relational-entity-based system (two secs vs. 

several mins on average). In addition, our visual graph-based system can deal with the 

representation of advanced queries such as bibliographic coupling, paper co-citation, and 

author co-citation, while current bibliographic information systems do not support these 

queries. A user-centered evaluation reveals that participants rated the natural language-

based system the most useful, easy to use, and easy to learn. Participants also reported 

that the form-based system was easier to learn than the visual graph-based system. Based 

on the results of a usability evaluation, we find that the form-based system is preferred 

for low-complexity tasks while the visual graph-based system is preferred for high-

complexity tasks. The strength of the natural language-based system is that no additional 

effort is needed to formulate more complex queries. The proposed systems are effective 

and efficient solutions for addressing complex bibliographic information needs. In 

addition, we believe the experimental design and results shown in this paper can serve as 

a useful guideline and benchmark for future studies. 
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1. Introduction 
 
 
 
 
1.1    Motivation and Overview 
 
 

Journal articles and conference papers have proliferated in recent years. This is partly 

due to online accessibility to scholarly literature. Online accessibility has shortened 

publication cycles by enabling scholars to access others’ works before formal publication. 

Thus, researchers are able to expedite their research activities and publish papers more 

frequently. A natural concern is that it has become more challenging to find relevant 

papers and discover knowledge from these papers.  

Bibliographic information retrieval systems such as Web of Science, Scopus, and 

Google Scholar have become an unalienable component in searching bibliographic data 

(Chadegani et al., 2013). These systems continuously index ever-increasing scientific 

literature, thus providing a source for scholars to learn, create, and represent new 

knowledge (Jacso, 2005). However, with such a large amount of scientific literature, 

sifting through them in hopes of excavating that one applicable nugget of information we 

yearn for can be daunting and often frustrating—so much time consumed by mining so 

many thousands of articles. It is a question of ascertaining relevancy. For example, a 

query, “papers on information retrieval, which were cited by John’s papers that had been 

presented in SIGIR” is an ordinary information need that researchers may have. Given 

three pieces of background information: (a) SIGIR is a top venue for information 

retrieval research; (b) John, a well-known researcher, has presented a few papers in 

SIGIR; and (c) John’s papers were influenced by a number of other papers, researchers, 
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who found John’s papers helpful, might also be interested in his cited papers. With the 

dramatic increase of scientific literature, there is the pressing need of building effective 

and efficient bibliographic information retrieval systems that support more granular and 

complex bibliographic information needs. 

A recent work by de Ribaupierre (2014) discussed a few important challenges 

regarding bibliographic information retrieval in the big scholarly data area: the difficulty 

of answering scholars’ precise bibliographic questions and the lack of techniques that 

help scholars directly target their information needs. A follow-up interview showed that 

researchers are interested in searching for papers as well as other entities such as authors 

and keywords (de Ribaupierre, 2014). By exploring the current bibliographic information 

retrieval systems, we found these systems have not mastered this. They have two main 

limitations: (a) a limited support of entity types as the final search results; and (b) a lack 

of support of complex queries as a way of representing information needs. Accordingly, 

these systems are not adequate in addressing users’ more specific information needs and 

impose a burden on them to use time consuming post hoc refinements and filtrations. 

Motivated by addressing these limitations, we propose graph-based interactive 

bibliographic information retrieval systems to provide more efficient and effective ways 

of searching bibliographic information. The proposed systems are efficient because they 

are based on the graph data model for fast retrieval. The systems are effective because 

they provide novel ways of formulating bibliographic queries and satisfy specific 

information needs that are not addressable in the current bibliographic information 

retrieval systems. Users can develop their queries interactively by referencing the system-

generated graph queries. 
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1.2    Research Questions 
 
 

To address aforementioned limitations of current bibliographic information retrieval 

systems, we aim to answer the following research questions. 

1) How to design bibliographic information retrieval systems that support bibliographic 

queries with complex relations of bibliographic entities? 

To enable effective and efficient traversal through complex relations of bibliographic 

entities, the choice of underlying data model is critical. The design of the overall 

system framework that connects users’ bibliographic information needs with 

bibliographic data serves an important research question. 

2) How to design search interfaces that enable the representation of specific and 

complex bibliographic queries? 

Traditional search interfaces of bibliographic information retrieval systems are 

limited in their capacity of representing complex bibliographic queries. How to 

enable users to represent complex bibliographic queries through search interfaces and 

interpret them is an integral part of the study.    

3) How to implement and evaluate the systems using both system and user-centered 

approaches? 

Implementation of the back-ends of the systems, query analysis components, and 

search interfaces is a way to validate the proposed systems. In addition, user-centered 

evaluations of the systems provide empirical evidence on the applicability of the 

systems in the real-world environment. 
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1.3    Contributions 
 
 

The proposed graph-based bibliographic information retrieval systems are scalable, 

interactive, and time-efficient for retrieving bibliographic information. They have novel 

features that outperform other systems: the designed systems support searching for 

various types of bibliographic information such as papers, authors, affiliations, terms (e.g., 

keywords), and sources (e.g., journals or conferences); they provide interactive interfaces 

for users to formulate complex and granular context-based queries; they allow users to 

modify queries by showing graphical representations generated from users’ original 

searches; and they expedite the all-important retrieval time by adopting the graph data 

model.  

The proposed systems can be used together with other bibliographic information 

retrieval systems by utilizing each system’s advantages. Current bibliographic 

information retrieval systems such as the Web of Science have advantages in providing 

rich statistics such as citation, impact factor, and journal information. The rich 

information can guide users to perform a more informed retrieval in our systems. 

The systems can be used to aid researchers and practitioners by finding scholarly 

literature more easily and quickly. Besides scientific literature, users can also identify 

prominent researchers and top venues by forming naturally appropriate queries. They also 

boost users’ efficiency in gathering information on researchers and research organizations 

because they are capable of answering complex queries in a single step. This targeted 

question-answering aspect satisfies a variety of users’ information needs in their 

expedited quest for relevancy. The systems provide different user interfaces to cater 

different user preferences. 
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1.4    Outline 
 
 

The remainder of this dissertation is organized as follows. Chapter 2 discusses 

previous work related to our study. Chapter 3 introduces methodologies of the study and 

present three bibliographic information retrieval systems. In Chapter 4, we present 

system use cases and the results of a system-centered evaluation. In Chapter 5, we 

evaluate three systems and report results of a user-centered evaluation. Finally, we 

conclude this dissertation and introduce future research in Chapter 6. 
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2. Related Work 
 
 
 
 

This section introduces previous work related to various components of our study. 

We first introduce fundamental and general knowledge on graph-based bibliographic 

information retrieval systems such as graph models, graph data stores, graph-based 

information retrieval systems, bibliographic information retrieval systems. We then 

introduce several building blocks of the proposed systems such as natural language 

interface, named entity recognition, syntactic analysis, and graph query interface. Finally, 

we introduce related work on evaluation of interactive information retrieval systems. 

 
  
2.1    Graph Models and Information Retrieval Systems  
 
 

Graph data are prevalent in the real world as data from a variety of domains (e.g., 

physics, chemistry, biology, sociology, and computer science) can be represented by 

graph data models (Aggarwal & Wang, 2010). Graph data models can represent relational 

information and enable a number of applications by supporting efficient searching and 

mining (Cook & Holder, 2006). Because of this, a few studies have investigated ways of 

generating graphs from arbitrary data (e.g., Baeza-Yates, Brisaboa, & Larriba-Pey, 2010). 

Bibliographic data are graph data in nature because they can be represented in the form of 

interconnected papers, authors, terms, sources, and organizations. Recent bibliometric 

studies, including searching bibliographic data, measuring scholarly impact (Yan & Ding, 

2009), and mining bibliographic networks (Sun, Barber, Gupta, Aggarwal, & Han, 2011) 

have taken the advantage of the graphical representation of bibliographic data. Regardless 
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of the physical representations (e.g., relational databases) of graph data, efficient 

searching of graph data is one of primary tasks for the information retrieval community 

(e.g., Kacholia et al., 2005; Jiang, Wang, Yu, & Zhou, 2007; Yuan, Wang, Chen, & 

Wang, 2013).  

 
 
2.1.1 Graph Models and Graph Data Stores 
 
 

Graph models have been widely used to represent data types that comprise entities 

and relations among entities. Graph models have been adopted by various online social 

networking services such as Facebook and Twitter to represent people and their relations 

(Sakr & Pardede, 2012). A graph model is suitable to represent domains where many 

complex relations exist and relations are extremely important to understand the domains 

(Cook & Holder, 2006). Such domains include the World Wide Web, social networks, 

biochemical networks, bibliographic information, and power grids. Graph models are 

ideal to represent bibliographic networks of entities such as papers, authors, terms, 

sources, and affiliations as well as relations such as cites (i.e., between papers), writes 

(i.e., between authors and papers), has (i.e., between papers and terms), publishes (i.e., 

between sources and papers), and affiliated with (i.e., between authors and affiliations). 

There are three main ways to represent a graph model, including relational databases, 

triple stores, and graph databases. Relational databases, such as Oracle, allow users to 

manage graph data by providing network data models. This type of relational database 

stores connectivity information in a node table and a link table. Although relational 

databases support a way of representing graph data, Aggarwal and Wang (2010) pointed 

out that relational databases are fundamentally inadequate for supporting graph data. In 
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relational databases, some operations such as graph traversal are costly to implement and 

the situation becomes even worse as the graphs get larger. A triple store is another 

popular data store for graph data. A triple store maintains triples and a triple comprises 

subject, predicate, and object. A triple is generally represented by the Resource 

Description Framework (RDF; Miller, 1998), which is a standard of W3C. Thus, a triple 

store is often referred as a RDF store. Among triple stores, Apache Jena (Carroll et al., 

2004) and Sesame (Broekstra, Kampman, & Van Harmelen, 2002) are the popular ones. 

Because triple stores are developed for graph data, they are more powerful than relational 

databases. However, it is known that triple stores have scalability issues and the 

performance of triple stores is negatively affected as the number of triples grows 

(Aggarwal & Wang, 2010). Readers can refer to Rohloff and colleague’s study (2007) on 

the comparisons of different triple store technologies. 

Graph databases are the most recent development of graph data stores. It is a category 

of the NoSQL system that is scalable and supports advanced features such as replication 

and fault tolerance. Compared with triple stores, graph databases have these advantages 

(Angles & Gutierrez, 2008): (a) graph databases support the representation of undirected 

and weighted graphs whereas triple stores only support directed and unweighted graphs; 

(b) graph databases do not require schema and have the so-called schema-free or schema-

less character whereas triple stores explicitly require schema; (c) graph databases are 

suitable for managing big data. Because of these advantages, graph databases are more 

suitable for real-world systems that deal with a large amount of data. 

 
 
 
 



 9 

2.1.2 Graph-based Information Retrieval Systems  
 
 

Traditional information retrieval systems have adopted relational databases as the 

primary way of managing data (Manning, Raghavan, & Schütze, 2008). In 2001, 

Berners-Lee and colleagues proposed the concept of semantic web for effectively 

utilizing web resources by adding meanings to web pages. Later, Guha and colleagues 

(2003, p. 702) coined semantic search by defining it as “an application of the Semantic 

Web to search which attempts to augment and improve traditional search results by using 

data from the Semantic Web.” Because semantic web technologies are the core 

component of semantic search, sematic search systems use triple stores as the underlying 

database. Semantic search systems identify semantic entities from a keyword or natural 

language-based query, match semantic entities with ontology resources, and then express 

the meaning of the original query by supplementing it with additional semantic 

information from an ontology physically represented in a triple store. Thus, queries can 

be semantically interpreted to deliver more accurate and meaningful results. Among 

many semantic search systems, SemSearch (Lei, Uren, & Motta, 2006), OntoLook (Li, 

Wang, & Huang, 2007), SPARK (Zhou, Wang, Xiong, Wang, & Yu, 2007) as well as the 

system proposed by Tran and colleagues (2007) are the most representative. They differ 

in terms of query type (i.e., keyword-based vs. natural language-based), multiple 

semantic matching (i.e., between semantic entities and ontology resources), connections 

among semantic entities (i.e., direct connection vs. indirect connection), and multiple 

properties (i.e., one property vs. multiple properties among semantic entities).  

Although graph databases are another popular graph data store, to our best knowledge, 

there lacks a fully designed and developed graph database-based information retrieval 
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system. However, there are studies that explored issues of graph databases to improve the 

quality of information retrieval. These issues include, notably, graph database indexing 

(e.g., Williams, Huan, & Wang, 2007), pattern match query (e.g., Zou, Chen, & Özsu, 

2009), subgraph mining (e.g., Huan, Wang, Prins, & Yang, 2004), and substructure 

similarity search (e.g., Yan, Yu, & Han, 2005). Recently, Internet companies such as 

Google, Twitter, and Facebook are adopting graph databases for efficient information 

retrieval (Rajbhandari, Shah, & Agarwal, 2012). For example, Google has adopted 

“Knowledge Graph”—a form of graph database—to provide better search results 

(Singhal, 2012). 

 
 
2.1.3 Bibliographic Information Retrieval Systems 
 
 

Bibliographic information includes information such as papers, authors, terms (e.g., 

keywords), sources (e.g., journals, conferences), and affiliations. Google Scholar and the 

Web of Science only support search for articles as the final search results. They may 

return articles with metadata such as authors in the result page, but not authors as the 

final search results (i.e., a list of authors). In order to retrieve all authors’ names, we have 

to do download and extract metadata from articles in search results. This is labor-

intensive given the amount of articles in search results. In addition, other bibliographic 

information such as “organization” or “keyword” is not directly available in Google 

Scholar or the Web of Science. We need a bibliographic information retrieval system that 

supports the search of all pertinent bibliographic information. If users become interested 

in new, previously unnoticed, but necessary bibliographic information, the system should 

also be scalable by supporting the search of other bibliographic information. For example, 
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in some cases, users may want to get terms as the final search results to know which 

terms are actively studied given a list of articles. Bibliographic information, such as 

authors and organizations, are important in research evaluation and impact assessment. 

This bibliographic information can be used to evaluate scientific productivity and impact 

of authors or their organizations to appropriately make promotion decisions or allocate 

research funds (e.g., Geuna & Martin, 2003). 

Another important feature that bibliographic information retrieval systems need to 

provide is searching bibliographic information by contexts. With contexts, we mean a 

variety of ways in which we use related metadata to describe the target bibliographic 

information. For example, in the case that we search for authors who are affiliated with 

Happy University and wrote papers that were cited by papers in SIGIR, the system 

should be able to provide a way in which we can express this context. 

Through personal experiences as well as studies about the current bibliographic 

information retrieval systems (e.g., Aghaei Chadegani et al., 2013; Falagas, Pitsouni, 

Malietzis & Pappas, 2008; Jacso, 2005; Score, 2009), we found that these systems, such 

as the Web of Science, Scopus, and Google Scholar only support articles as the final 

search results. Additionally, these systems have limitations in representing complex 

bibliographic queries. For example, searching for experts regarding specific terms within 

an organization is not supported. This kind of query is closely related to many use cases. 

A student whose research interest is information retrieval, and wants to apply to 

“University A” may need to identify professors whose interest is also information 

retrieved and affiliated with “University A.”  
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2.2    Search Interfaces 
 
 
2.2.1 Natural Language Interfaces  
 
 

Natural language interfaces (NLI) are used to query structured information stored in 

databases. Two types of NLI can be distinguished: one is natural language interfaces to 

databases (NLIDB), in which a relational database is used to store structured information; 

the other is natural language interfaces to knowledge bases (NLIKB) that use an ontology 

to manage information (e.g., Habernal & Konopík, 2013; Abacha & Zweigenbaum, 2015). 

While the two types of NLI use different database systems, they have common 

components, including the interpretation of natural language queries and concept 

mappings between entities in queries and databases (e.g., Cafarella & Etzioni, 2005; 

Tablan et al., 2008).  

The relational data model (Codd, 1970) proposed in the early 1970s had a major 

impact on NLIDB research. NLIDB are highly portable and can be attached to existing 

databases because relational databases are the norm of most traditional information 

retrieval systems (Vicknair et al., 2010). Compared to NLIDB, NLIKB have a relatively 

short history with the inception of semantic web (Berners-Lee et al., 2001). Databases in 

this category deploy rich expressive power of ontologies represented in the resource 

description framework (Miller, 1998), thus generally achieving higher performances (e.g., 

Kaufmann & Bernstein, 2010). Readers can refer to Androutsopoulos and colleagues’ 

work (1995) for a comprehensive review of NLIDB systems. Recent NLIKB systems 

include PowerAqua (Fazzinga & Lukasiewicz, 2010), ORAKEL (Cimiano et al., 2008), 
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FREyA (Damljanovic et al., 2010), PANTO (Wang et al., 2007), and NLP-Reduce 

(Kaufmann et al., 2007). 

Another type is NLI to graph databases (e.g., Roy & Zeng, 2013). Graph databases 

have comparable expressive power with ontologies (i.e., triple stores), but a much higher 

scalability, which are more suitable to real-world systems (Angles & Gutierrez, 2008). 

Graph databases have been increasingly used in information retrieval systems (e.g., Park 

& Lim, 2015). Graph databases excel relational databases in answerable questions due to 

its advantage on representing complex relations among data given that natural language 

queries are represented using complex relations among concepts. 

 
  

2.2.2 Named Entity Recognition 
 
 

Named entity recognition (NER) is a task of identifying names of things in texts. 

These things include but not limited to persons, organizations, locations, and biomedical 

entities (Nadeau & Sekine, 2007). Early NER systems used rule-based methods to 

recognize named entities. In a rule-based NER system, patterns in a text are identified 

and appropriate rules are handcrafted based on those patterns. Thus, a rule-based method 

is mainly used in self-contained domains and has a limited applicability (e.g., Rau, 1991). 

A dictionary-based NER system utilizes predefined dictionaries and performs a look-up 

in texts (e.g., Ryu, Jang, & Kim, 2014; Mu, Lu, & Ryu, 2014). The method is widely 

used in domains such as biomedicine, in which named entities are well recorded and 

managed, for instance, in protein recognition (Tsuruoka & Tsujii, 2003) and drug 

recognition (Rindflesch et al., 2000). Another popular category of NER is statistical NER 

(e.g., Derczynski et al., 2015). Widely used statistical NER includes maximum entropy 
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(ME)- (Chieu & Ng, 2002), hidden Markov models (HMM)- (Bikel et al., 1997), and 

conditional random fields (CRF)-based (McCallum & Li, 2003) NER systems. Some 

NER systems use more than one type of NER: for example, Stanford NER (Finkel et al., 

2005) provides both dictionary- and statistical-based NER through a gazette feature. 

 Bibliographic data are relatively easy to obtain through well-known bibliographic 

databases such as Web of Science and DBLP. Thus, in this dissertation, we used a 

dictionary-based approach to recognize bibliographic named entities (i.e., authors, papers, 

organizations, terms, and sources) from a natural language query. By recognizing 

bibliographic named entities in a query, we are able to extract these entities as well as 

their relations to learn and answer queries. 

  
 
2.2.3 Syntactic Analysis 
 
 

A classic way of parsing is to derive parses from a string of words based on a 

structure grammar of prewritten phrases (i.e., context-free grammar) (e.g., Earley, 1980). 

With the introduction of annotated data such as The Peen Treebank (Marcus et al., 1993), 

a number of statistical parsers were proposed and became popular. Readers can refer to 

Collins’ work (1997) for a more extensive review on statistical parsing models.  

Two popular ways of representing syntactic structures are constituency and 

dependency. For constituency, words in a sentence are organized into nested constituents; 

while for dependency, dependent relations between words are shown (Klein & Manning, 

2004). Dependency parses can be obtained from dependency parsers (e.g., Fersini et al., 

2014) or phrase structure parsers (i.e., constituency) by a conversion system (e.g., De 

Marneffe et al., 2006). In this dissertation, we use a dependency structure to identify 



 15 

grammatical relations among words. Because we are interested in grammatical relations 

among bibliographic named entities recognized in natural language queries, dependency 

structures are more straightforward than constituency structures that also show relations 

between phrases. 

 
 
2.2.4 Graph Query Interfaces 
 
 

Earlier studies on visual graph queries were carried out by taking a specific data 

structure—XML in mind (e.g., Ceri et al.,1999; Erwig, 2003; Ni & Ling, 2003; Ykhlef & 

Alqahtani, 2009). These studies proposed visual graph queries for querying and 

restructuring XML data. As XML data are quite complex with multiple nested structures, 

visual graph queries are seen as an efficient solution. Because the main goal of these 

studies was to build efficient languages of visual graph queries by investigating the 

structural aspects of XML documents, they are intended to be used by other systems but 

not the end users. 

Recent studies (Hogenboom, Milea, Frasincar, & Kaymak, 2010; Schweiger, 

Trajanoski, & Pabinger,2014) proposed visual graph query interfaces for users to query 

graph data. However, these visual graph queries were designed only to search for data 

that are stored as Resource Description Framework (RDF) triples, which is a standard 

data format of Semantic Web. Because SPARQL is the de facto standard RDF query 

language, those visual graph queries were designed to be translated into SPARQL, which 

limits their applicability. Gómez-Villamor and colleagues (2008) proposed a 

bibliographic exploration tool based on a graph query engine. The tool employed visual 
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graphs, while the actual queries are formulated by clicking one of three predefined 

queries other than a graph.  

 
 
2.3    Evaluation of Interactive Information Retrieval Systems  
 
 

Evaluations of interactive information retrieval (IIR) systems have been discussed in 

studies from earlier decades (e.g., Salton, 1970) to more recent years (e.g., Borlund, 

2016). Kelly’s two seminal studies (Kelly, 2009; Kelly & Sugimoto, 2013) reviewed 

extensive studies on this topic published before 2010. Readers may refer to the 

abovementioned studies to get a detailed understanding of the field. In this section, we 

provide a review of related work that was published after 2010 to deliver recent findings. 

In the reviewed literature, we identified three main research themes: studies that explored 

relationships among established IIR measures; studies that explored a variety of aspects 

of work and search tasks; and studies that proposed IIR evaluation frameworks and 

systems. In the following paragraphs, we synthesize the findings of these studies. 

 
 
2.3.1 Relationships of Interactive Information Retrieval Measures  
 
 

Al-Maskari and Sanderson (2010) examined the relationship between four factors (i.e., 

system effectiveness, user effectiveness, user effort, and user characteristics) and user 

satisfaction to understand whether user satisfaction is influenced by these factors. The 

authors found a strong correlation between user effectiveness and user satisfaction. 

System effectiveness and user effort had weak correlations with user satisfaction. 

However, their results showed no correlation between user characteristics and user 
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satisfaction. In their subsequent study (Al-Maskari & Sanderson, 2011), the effect of user 

characteristics on user effectiveness was investigated. User characteristics was measured 

by users’ search experience and cognitive skills (i.e., perceptual speed). A few empirical 

findings were reported: experienced users retrieved much more relevant documents than 

inexperienced users and users received higher scores on the perceptual speed test took 

much less time than users with lower scores to locate the first relevant document. 

Smucker and Jethani (2010) examined the relationship between retrieval precision and 

perceived difficulty. They showed that a higher retrieval precision reduced users’ 

perceived difficulty and their relationship was statistically significant. 

 
 
2.3.2 Work and Search Tasks 
 
 

Li and Belkin (2010) explored the relationship between work tasks and users’ search 

behaviors in interactive information retrieval. Six types of work tasks were employed 

based on their faceted classification scheme (Li & Belkin, 2008). They found that users 

presented different patterns of search behavior in different types of work tasks. Key 

findings include: in schoolwork-related tasks, users consulted library resources much 

more often than search engines such as Google, and in decision-making work tasks, users 

relied more on browsing than in schoolwork-related work tasks. Liu and colleagues (2010) 

also explored search behaviors in different task types in journalism. They classified tasks 

based on a modified version of Li’s classification scheme (2009) by adding a new facet. 

Specifically, they examined the associations between search behaviors (e.g., task 

completion time, number of pages visited, number of queries) and different facet values 

(i.e., task product, task complexity, level, and task goal). A list of significant associations 
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were reported in their study. Wildemuth and Freund (2012) reviewed 51 studies on 

exploratory search tasks and provided a list of task characteristics in exploratory search. 

Identified task characteristics were grouped into two categories: cognitive (e.g., learning 

and investigation as goals, general rather than specific) and behavioral (e.g., open-ended, 

target is multiple items). In a follow-up study, Wildemuth and colleagues (2014) 

reviewed 106 studies to examine how search task complexity and difficulty were defined 

and practiced. They identified three dimensions of task complexity including multiplicity 

of subtasks, multiplicity of facets, and uncertainty. They showed that search task 

difficulty can be measured both objectively and subjectively. Kelly and colleagues (2015) 

examined search tasks using a cognitive complexity framework from education theory. 

Search tasks were created and divided into five levels based on the framework to 

understand the differences among tasks. They found that participants showed more search 

activities in more cognitively complex tasks, but did not see more cognitively complex 

tasks as more difficult. This finding showed that self-reported task difficulty was not in 

line with physical effort (e.g., queries formulated, clicks, and time taken to complete 

tasks). Borlund and Schneider (2010) reviewed 85 individual studies that applied the 

concept of simulated work task introduced by her and Ingwersen (1997) to find how and 

where it was used. The main goal was to understand how the three parts of 

recommendations made in her earlier study of IIR evaluation model (Borlund, 2003) 

were practiced. Results showed that those recommendations were not well applied and 

studies varied in the way of reflecting and practicing the recommendations. A detailed 

follow-up study was conducted in 2016 (Borlund, 2016). In addition to the previous 

finings, the author showed that none of reviewed studies used pilot testing that is 
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important to tune and refine simulated work task situations. Along with these findings, 

recommendations were made regarding the design and the creation of simulated work 

tasks. Clemmensen and Borlund (2016) studied order effect in IIR evaluation. They 

examined nine IIR parameters of search behavior in a between-group design. Results 

showed that order effect was evident in three parameters including website change, visit 

of webpage, and formulation of queries. 

 
 
2.3.3 Interactive Information Retrieval Evaluation Frameworks and Systems 
 
 

A few frameworks and systems for IIR evaluations were proposed to aid researchers 

to conduct systematic evaluations. Renaud and Azzopardi (2012) proposed a web-based 

system that allows simple within-subjects experiments. The system includes a series of 

experimental components such as participant registration, consent, surveys, and logging 

information. While their system was particularly designed for undergraduate and 

Master’s students as the authors stated, Hall and Toms (2013) proposed a framework that 

provides a common baseline by including existing evaluation measures to enable cross-

study comparison. Another goal was to make the framework flexible and applicable to a 

large number of experiments. To achieve this, the framework defined a standardized set 

of questions and was designed to be easily integrated with existing systems. Zuccon and 

colleagues (2013) proposed a method of evaluating IIR systems using a crowdsourcing 

platform. The proposal was based on the motivation to address a few limitations of 

traditional laboratory-based evaluations such as high cost and the lack of heterogeneity 

among the user population. In the proposed method, evaluations of IIR systems including 

task assignment and data collection are taken online. A case study was performed to 
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compare the laboratory- and crowdsourcing-based evaluations. Results showed that the 

two methods led to similar conclusions on the effectiveness of the studied IIR systems 

while the crowdsourcing-based method could collect five times more data than 

laboratory-based method with only half the cost. However, a few limitations of 

crowdsourcing-based method were also pointed out. These limitations include 

participants’ lack of interactions with systems (e.g., issue fewer queries, click fewer 

documents), the control of data quality (e.g., data generated by bots), and the assessment 

of the reliability of participants’ personal information. Recently, Wei and colleagues 

(2014) proposed a new web-based system for IIR evaluation. The system enables 

usability testing of different search task interfaces as well as different algorithms with the 

same search task interface. One strength of the system is the rich support of eye-tracking 

logging that includes automated recoding of interface element coordinates. Because the 

system was primarily designed using JavaScript, it has a broad applicability in the web 

environment. 
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3. Methodology 
 
 
 
 
 This section discusses methods of the study. We introduce system architectures and 

components of the systems. Specifically, in the form-based system, we introduce methods 

on query generation, query refinement, and querying graph database. In the natural 

language-based system, methods on the analysis of natural language queries, the 

generation of graph queries, and the translation of graph queries are discussed. Finally, in 

the visual graph-based system, we discuss methods on the verification of visual graph 

queries and the generation and interpretation of graph queries.   

 
 
3.1    Form-based Bibliographic Information Retrieval System 
 
 
3.1.1 System Overview 
 

The form-based interface is widely used in current bibliographic information retrieval 

systems including Web of Science and Scopus. In the form-based bibliographic 

information retrieval systems, users first select fields (e.g., topic and author) and then 

type appropriate values for each field. In the proposed form-based system, users 

formulate queries by interacting with forms in a way similar to that of Web of Science. 

The difference is that the system allows for the formulation of more complex queries that 

involves citations. A user can select the bibliographic type he search and add additional 

information to both the cited and citing sides. A graph query is generated based on the 

form query and allows the user to validate the initial query. Users can modify form 

queries interactively before sending them to the database.  
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3.1.2    System Design 
 
 

The form-based system is developed on the Spring Framework that uses a graph 

database Neo4j for the management of bibliographic data and D3.js for visualization. 

Bibliographic data are by nature a directed graph with nodes and links. For example, a 

link named “WRITES” is a directed link, in which the source is an “Author” and the 

target is a “Paper”. There are a variety of ways to model bibliographic data using graphs. 

The one shown in Figure 3.1 shows a typical schema of bibliographic data with five 

bibliographic entities. In the schema, “Source” denotes a journal or a conference in which 

authors publish or present papers. “Term” denotes a keyword, a topic; or a concept that 

describes a paper.  

 
 

	

Figure 3.1: A conceptual schema for bibliographic data 
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3.1.2.1    System Architecture 
 
 

The system has three parts: query generation, query refinement, and querying graph 

database. The general steps are shown in Figure 3.2: (a) users generate form queries 

based on their information needs; (b) the system represents generated form queries in the 

form of graph queries; (c) generated graph queries are sent back to users; (d) based on the 

returned graph queries, users refine their queries if necessary; (e) after refinement 

(optional), form queries are translated into graph database query languages; (f) the system 

queries graph database; (g) graph database sends query results to the system; (h) the 

system returns search results to users. The searching process is an interactive and iterative 

process in which users proceed towards the right representation of their information 

needs. 

 
 
 

	
	

Figure 3.2: The process flow of the form-based system 
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3.1.2.2    Query Generation 
 
 

As shown in Figure 3.1, the system supports the search of five types of bibliographic 

information: papers, authors, terms, sources, and organizations. The system can also 

support other types of bibliographic information by simply adding and connecting them 

with the existing entities in the schema. Each type has a property called name. First, the 

user selects one target entity. Next, the user selects one or a few anchor types that restrict 

the target entity by providing the values of name properties for each anchor type. For 

example, when searching for papers, the user can choose a few anchor types such as 

author and source to restrict the papers. 

In scenarios that involve citations, the user needs to designate whether the target is at 

the cited side or at the citing side. For example, if the user wants to search for authors in 

the context of citations, the user needs to specify whether the authors are the authors of a 

cited paper or a citing paper. Then, the user selects anchor types for the cited or citing 

side. For example, a user who wants to search for authors who are affiliated with Happy 

University and wrote papers that were cited by papers in SIGIR, needs to select authors 

as the target type, specify its citation type as cited, add an anchor type—organization to 

the cited side, and add another anchor type—source to the citing side. 

After generating a form query by selecting target types and anchors types, and 

providing values for anchor types, the form query is sent to the system to generate a 

graph query. 
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3.1.2.3    Query Refinement 
 
 

The system generates graph queries based on users’ form queries. The purpose of 

generating graph queries is to provide users an easy way of verifying their original 

queries and make modifications if necessary. A graph query is a representation of a form 

query using nodes and relations. It is generated directly from form queries and shows 

graph representations of form queries. Figure 3.3 uses a sample data set to showcase the 

functions of the system.  

 
 
 

	
 

Figure 3.3: A sample dataset 

 
 
 

Figure 3.4 shows the interface of a graph query page using the sample data set. As 

shown in Figure 3.4, relations among various types of bibliographic entities are explicitly 

shown. The target type is colored black, one or more anchor types with user-provided 



 26 

labels are colored red. Entities that are not specified by users, but necessary to connect 

the target and anchors are in blue. 

 
 

	
 

Figure 3.4: An information retrieval example 

 
 
 

Based on graph queries, users can capture and verify the meaning of the generated 

form queries. This process is interactive and users can refine their original queries 

iteratively if necessary. The graph query component was developed by using D3.js. Using 

forms to represent complex searching context may not be very intuitive; providing 

interactive interface by showing graph queries can eliminate any confusion that may arise 

during the formulation of form queries. The step of generating graph queries is optional, 
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which means users can let the system directly generate graph query language based on 

form queries. 

 
 
3.1.2.4    Querying Graph Database 
 
 

Once the user confirms form queries, the system translates form queries into the 

graph query language. The system uses Neo4j as the database to represent networks of 

bibliographic information and Cypher as the query language. Dominguez-Sal et al. (2010) 

have compared Neo4j with other graph databases, and concluded that Neo4j is one of the 

two most efficient graph databases with DEX (now known as Sparksee). Cypher is the 

default query language of Neo4j, and a recent study performed by Holzschuher and Peinl 

(2013) reported that Cypher has high readability, maintainability, as well as efficiency in 

development time. Even though the system uses Cypher as a graph database query 

language, other graph query languages such as SPARQL and Gremlin can be used as 

long as the graph database in use supports these query languages. 

The system translates form queries into Cypher by interconnecting provided 

bibliographic entities based on the conceptual schema shown in Figure 3.1. When 

translating form queries into graph query language, connections among bibliographic 

entities that are not directly shown in the form query are explored and supplemented to 

form a complete path of the graph query language. After translation, the generated 

Cypher query is directly sent to Neo4j. Retrieved query results are then returned to the 

user. 
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3.2    Natural Language-based Bibliographic Information Retrieval System 
 
 
3.2.1 System Overview 
 
 

A natural language interface allows users to formulate queries expressed in natural 

language. The natural language-based system interprets bibliographic queries expressed 

in controlled natural language and returns relevant bibliographic data and relations. 

Natural language queries supported in the system are restricted to complex nominal 

phrases that describe bibliographic entities. A natural language-based system tailored for 

bibliographic environment provides a new and effective way of searching bibliographic 

data. In addition, from practical aspects, by enabling users to formulate bibliographic 

information needs in natural language, it liberates users from learning cumbersome ways 

of representing those needs. With ever-increasing bibliographic data, a natural language-

based system allows an effective retrieval of data by enabling the representation of 

complex bibliographic information needs and simplifying the search process into a single 

step without multiple refining procedures.  

 
 
3.2.2 System Design 
 
 
3.2.2.1    System Architecture 
 
 

The system architecture is designed to take a natural language query as the input and 

return correct answers as the output. This is achieved by translating the input into a 

database query language. A natural language query is translated into a graph query 

language because we use a graph database to manage bibliographic data. Multiple steps 
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are involved in the translation, including finding answers to questions such as: 1) what is 

being asked? 2) what entities should be used to constrain the answer? and 3) how does 

the asked entity relate to other entities? Figure 3.5 uses a flow chart to describe how the 

core components of the framework interact with each other.  

 
 
 

	
Figure 3.5: The flow chart of the natural language-based system 

	
	
	

The steps are as follows: 1) a user formulates a query expressed in natural language; 2) 

bibliographic named entity recognition is performed by referencing predefined 

dictionaries and recognized bibliographic named entities are then extracted; 3) a natural 

language query is tokenized based on the result of bibliographic named entity recognition; 

4) the tokenized natural language query is parsed to identify grammatical relations among 

bibliographic named entities; 5) the grammatical relations are filtered and graph relations 

are generated ; 6) a graph query is formulated by combining bibliographic named entities 

and graph relations; 7) the graph query is translated into a graph query language; and 8) a 

graph database is queried. 
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3.2.2.2    The Analysis of Natural Language Queries 
 
 
1) The formulation of natural language queries 

Although the system is designed to process a natural language query, it is not a 

question answering system. Thus, a complete sentence with an interrogative pronoun is 

not supported in the system.  Instead, noun phrases such as “papers that were written by 

John” and “authors of papers that were published in SIGIR” are expected queries. 

Because the interpretation of natural language queries depends on syntactic analysis, 

queries are expected to have no grammatical error. In addition, relative pronouns, such as 

“that”, are expected to be included in a query to guarantee that a syntactic parser parses 

the query correctly. For example, a query “papers that were written by John” is the 

preferred form of “papers written by John”.   

2) The recognition and extraction of bibliographic named entities 

We adopt a dictionary-based named entity recognition approach. We use a simple 

map structure to construct a dictionary, in which keys are names of bibliographic entities 

(e.g., “John”, “SIGIR”, and “information retrieval”) and values are their bibliographic 

types (i.e., Paper, Author, Term, Source, and Organization). These five bibliographic 

types are regarded as the most useful as shown in previous studies (e.g., Sun, Yu, and 

Han, 2009). A dictionary is constructed by preprocessing the bibliographic dataset on 

which we perform searches. Five types of bibliographic instances and their type 

information are extracted from a self-explanatory dataset. Disambiguation is not 

performed due to the lack of appropriate identification data. We also add five 

bibliographic types as keys with annotations to show that they are bibliographic types. 

For example, the entry <“paper”, “class_Paper”> is added to the dictionary so that the 
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system recognizes words such as “paper” and “author” in natural language queries. An 

additional annotation “class_” is added because we want to differentiate five entity types 

with bibliographic entities. 

An approximate string matching algorithm introduced in Gusfield’s work (1997) is 

used to implement the NER algorithm. In the algorithm, a distance of 1 was assigned to 

insertion, deletion, and substitution of a character. A maximum distance of 1 was allowed, 

so that we can recognize plurals or singulars when we have only one form of the two of 

bibliographic named entities. For example, “Information System” in a query could be 

identified as a named entity when we only have the term “Information Systems” in our 

dictionary. 

3) The tokenization of natural language queries 

We tokenize queries based on the results of named entity recognition to prepare 

parsing in the next step. After recognizing named entities, we mark named entities of 

multiples words as single tokens, and then feed queries into a standard tokenizer. This 

supervised tokenization complements tokenizers’ shortage of domain knowledge on 

technical terms. For example, without using the results of named entity recognition, terms 

composed of multiple words such as “information retrieval” will be processed into two 

different tokens. Tokenization based on the results of named entity recognition can avoid 

this limitation because terms recognized as a single named entity are treated as one token. 

Table 3.1 shows the difference between tokenization without NER and with NER using 

an example query “papers about information retrieval and data mining”, in which tokens 

are separated by pairs of parentheses. 
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Table 3.1: Tokenization without NER and with NER 

Query papers about information retrieval and data mining 

Tokenization without NER (papers), (about), (information), (retrieval), (and), (data), (mining) 

Tokenization with NER (papers), (about), (information retrieval), (and), (data mining) 

 
 
 
3.2.2.3    The Generation of Graph Queries 
 
 
1) The parsing of tokenized natural language queries and the extraction of grammatical 

relations 

We use Stanford parser (Klein & Manning, 2003) to parse queries. The output we 

generate is the Stanford dependencies (De Marneffe et al., 2006) that use 56 grammatical 

relations to represent binary relations among tokens. Grammatical relations are used to 

find out which tokens depend on or modify other tokens. For a bibliographic natural 

language query, parsing is used to find out grammatical relations among bibliographic 

named entities represented by tokens. Table 3.2 shows the dependency relations of a 

sample query “papers about information retrieval and data mining”. Readers can refer to 

De Marneffe and colleague’s work (2006) for a detailed explanation of each dependency 

relation. 
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Table 3.2: Dependency relations of the query "papers about information retrieval and data 
mining" 

Order Subject Object Relation Code Relation Name 

1  papers root root 

2 information retrieval about case case marker 

3 papers information retrieval nmod nmod_preposition 

4 information retrieval and cc coordination 

5 papers data mining nmod nmod_preposition 

6 information retrieval data mining conj conj_collapsed 

 
 
 

For queries that involve citations such as “papers about information retrieval that 

were cited by papers that were written by John”, they are divided into two parts: a cited 

part and a citing part. By doing so, we reduce the complexities and errors in interpreting 

queries, because a long list of dependency relations may be error-prone. By dividing the 

example query into two parts, we no longer need to consider grammatical relations 

between “papers” in the cited part and “John” in the citing part. This is a practical way to 

improve the performance of a parser, and thus, words such as “cited”, “cites”, “cite”, and 

“citing” are used to divide a query into two parts. Parsing is separately applied to each 

part, and the results are integrated in a later step to generate graph relations. 

2) The generation of graph relations from dependency relations 

A graph query is a graph representation of a natural language query, in which nodes 

are recognized bibliographic named entities and links are relations of those entities. 

Graph relations denote relations that are necessary for building complete graph queries 

that represent natural language queries. Thus, graph relations are subsets of dependency 

relations, and graph relations are selected from dependency relations. Irrelevant relations 
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(i.e., relations among non-bibliographic named entities) that are included in dependency 

relations are omitted in this process. The selection is performed by considering both the 

patterns of queries and the database schema that is used to store bibliographic data.  

Figure 3.6 shows the algorithm we use to select graph relations from dependency 

relations. We build the heuristics by combing the test results of a list of expected queries 

and the database schema. Thus, the heuristics introduced here are dependent on the 

database schema we use (Figure 3.1) and subject to change if a different schema is 

employed.   

 
 

	
 

Figure 3.6: The flow chart of selecting graph relations from dependency relations 

 
 
 

As shown in Figure 3.6, a relation is selected as a graph relation if both the subject 

and the object of the relation are named entities. “conj” denotes “conjunct”, and it is used 
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if two tokens are connected by a coordinating conjunction, such as “and” and “or”. In our 

case, the relations do not play constructive role in building a graph query, and is thus 

discarded. Accordingly, the third and fifth relations in Table 3.2 are selected as graph 

relations while the sixth relation is not. Table 3.3 shows another dependency relations of 

an example query “papers that were written by John”. 

 
 
 

Table 3.3: Dependency relations of the query "papers that were written by John" 

Order Subject Object Relation Code Relation Name 

1  papers root root 

2 written papers nsubjpass nominal passive subject 

3 papers that ref referent 

4 written were auxpass passive auxiliary 

5 papers written acl:relcl relative clause modifier 

6 John by case case marker 

7 written John nmod nmod_preposition 

 
 
 

Table 3.3 shows the case in which two bibliographic entities are not directly 

connected by a dependency relation. It is a normal use case and the algorithm can deal 

with such use cases. First, the fifth and seventh dependency relations are selected. Then, 

the subject of fifth relation “papers” and the object of seventh relation “John” are 

connected to form a new graph relation as shown in Figure 3.6. It is a repeated pattern in 

bibliographic natural language queries that two relation types “acl”relcl” and “nmod” are 

used to connect two bibliographic named entities.  
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3) The conversion of bibliographic named entities to graph nodes 

The conversion takes place in three steps. First, we identify the bibliographic named 

entity that a query is asking. For example, in the query “papers that were written by 

John”, the answer node is “papers”. The identification of an answer node is to locate the 

object of a “root” relation in parsing results (e.g., “papers” in Table 3.3). Second, we 

assign each bibliographic named entity a unique instance name that will be used when 

generating a graph query language. This allows us to differentiate bibliographic named 

entities with the same name and type the entity “papers” in the query “papers that were 

cited by papers that were written by John”. Lastly, we identify bibliographic named 

entities that constrain the answer node. For example, “information retrieval” in the query 

“papers about information retrieval” constrains the answer node “papers” by adding a 

condition. If the type of a bibliographic named entity does not contain the string “class_”, 

the named entity is a constraint node. This explains the reason that we add the string 

“class_” to the values of five bibliographic types when constructing the dictionary. Table 

3.4 shows instance names, answer nodes, and one or more constraint nodes in the query 

“papers that were cited by papers that were written by John”. 

 
 
 

Table 3.4: Graph nodes in the query "papers that were cited by papers that were written 
by John" 

Named Entity Instance Answer Node Constraint Node 

papers cited_Class_Paper_1 Yes No 

papers citing_Class_Paper_2 No No 

John citing_Author_3 No Yes 
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Information shown in Table 3.4 is an important building block of a graph query 

language used to query graph databases. It enables the construction of a graph query 

language by providing all necessary information of nodes in a bibliographic graph.    

4) The check of connectedness and directions of graph relations 

Connectedness denotes whether two bibliographic named entities are directly 

connected in a database schema. For example, two bibliographic named entities “papers” 

and “happy university” in the query “papers by happy university” are not directly 

connected in the schema: “Paper” is connected to “Author” and “Author” is connected to 

“Organization”. Even though the parsing results suggest a dependency relation between 

the two bibliographic named entities, the dependency relation should not be selected as a 

graph relation because it does not conform to the database schema. Thus, we check every 

dependency relation and add required nodes and relations to form a complete set of graph 

relations (Figure 3.7). 

 
 
 

	
Figure 3.7: The check of connectedness and directions of the query "papers by happy 

university" 
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After checking the connectedness of each graph relation and adding necessary new 

nodes and relations, we check the direction of each graph relation to see whether the 

source and target of each graph relation conforms to the database schema. In a graph 

query language, we need to provide a set of graph relations with explicit definitions of 

sources and targets. For example, the relation between “Paper” and “Author” can be 

either modeled as “WRITES” or “IS_WRITEEN_ BY”, which have different directions. 

In the above example, the graph relation (papers, Author) was converted into (Author, 

papers) based on the schema we used. 

5) The integration of cited and citing parts 

As mentioned previously, we divide a query that involves citations into two parts to 

reduce the complexities in interpreting natural language queries. These two parts are 

parsed and converted into graph nodes and graph relations separately. To generate a 

single graph query, we need to integrate both nodes and relations from two parts. The 

integration of nodes is achieved by creating a new node set and moving all cited and 

citing graph nodes to the set. The integration of relations is achieved by connecting two 

bibliographic named entities with the type of “Paper” in cited and citing parts. If one or 

two parts do not include a bibliographic named entity with the type of “Paper”, we add a 

new graph node “Paper” to the part(s) and a graph relation that connects cited paper and 

citing paper. For example, the query “authors cited by John” denotes authors whose 

papers that were cited by papers written by John, but both the cited and citing part do not 

have a bibliographic named entity with the type of “Paper”. Figure 3.8 shows the way to 

handle such queries. 
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Figure 3.8: The integration of cited and citing parts in the query "authors cited by John" 

 
 
 

As shown in Figure 3.8, two “Paper” nodes are added to both cited and citing parts. 

The nodes are then connected to the existing nodes “authors’ and “John”, respectively. 

Finally, two “Paper” nodes are connected through a citation relation. 

 
 
3.2.2.4    The Translation of Graph Queries 
 
 
1) The translation of a graph query into a graph query language  

In this step, we translate a graph query into a graph query language. Widely used 

graph query languages such as Cypher, Germlin, and SPARQL have different syntaxes, 

but have the same building blocks, i.e., patterns, constraints, and return types. Because 

graph relations in a graph query are checked for connectedness and directions, and thus 
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conform to the database schema, they can be directly translated into a graph query 

language. Constraints and return types are also available as we identify an answer node 

and constraint nodes in the previous step. Figure 3.9 shows how the graph query of a 

natural language query “authors that were cited by John” is translated into a graph query 

language. Four graph nodes derived from four named entities (NE1, NE2, NE3, and NE4) 

and three relations (R1, R2, and R3) among these graph nodes are identified. These nodes 

and relation are directly used to generate a graph query language. 

 
 
 

	
	

Figure 3.9: The translation of the graph query "authors that were cited by John" into a 
graph query language 

 
 
 

Graph relations are used to derive patterns (i.e., paths), and a constraint is derived 

from the constraint node (i.e., citing_Author_4). The return type in a graph query 
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language is the answer node (i.e., cited_Author_1) in the graph query. With these three 

building blocks, a query language can be generated.  

2) The query of a graph database 

The generated query is submitted to a graph database to retrieve bibliographic data. 

Another option to query graph databases is to use embedded codes written in 

programming languages such as Java and C++, as graph databases provide application 

program interface (API) for data management. However, this approach would reduce the 

compatibility of a system because graph databases have different APIs. Thus, the 

framework is designed to translate a natural language query into a graph query language 

that is supported by a number of graph databases (Holzschuher & Peinl, 2013). 

 
 
3.3    Visual Graph-based Bibliographic Information Retrieval System 
 
 
3.3.1 System Overview 
 
 

Graph queries are a way of searching graph data by taking a graph pattern with a few 

constraints over nodes and edges as input, which is a natural fit to graph data (He & 

Singh, 2008). Graph queries are known to convey richer information than other forms of 

queries and thus improve search performance (e.g., Zhou, Wang, Xiong, Wang, & Yu, 

2007). In the visual graph-based system, users formulate bibliographic queries by 

drawing nodes and their relations. A reference schema is provided so that users can 

formulate visual graph queries based on it. The system includes a verification module and 

guides users to formulate a syntactically and semantically correct queries.  
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3.3.2 System Design 

 
 
3.3.2.1    Bibliographic Graph Queries 
 
 

Bibliographic graph queries can be formulated on the basis of the schema (Figure 3.1) 

with the following additional information: 

1) Node type 

Every node in a graph query needs to be specified with a type (e.g., Paper). Node type 

is essential for creating links among nodes because links are created by considering the 

relations of the types of two nodes. For instance, a node with the type of “Organization” 

is not linked with a node with the type of “Term”, while it can be linked with a node with 

the type of “Author”. 

2) Answer node 

An answer node is the node that answers a visual graph query. For instance, in a 

visual graph query “papers on information retrieval that were written by Salton”, the 

answer node is “paper”, because the query is asking for returning papers as the final 

search result. A visual graph query should have at least one answer node. This means that 

we can retrieve bibliographic entities with more than one type by formulating proper 

visual graph queries. 

3) Constraint node 

A constraint node denotes a node that constrains a visual graph query. In the above 

example query, a node with the name “Salton” is a constraint node that restricts the query 

to retrieve only papers written by “Salton”. A visual graph query includes one or more 

constraint nodes. 
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4) Node name 

Unlike answer nodes, constraint nodes should have names in addition to types. Node 

names are only assigned to constraint nodes because regular nodes do not need names to 

constrain the query. Figure 3.10 shows four example bibliographic graph queries with 

varying lengths (i.e., the number of nodes and links), in which the answer nodes are in 

black and constraints nodes are in red. Regular nodes that connect answer nodes and 

constraint nodes are in blue. Directions of the links are based on the schema shown in 

Figure 3.1. As shown in Figure 3.10, bibliographic graph queries are visually represented, 

and the proposed system is intended to process these visual bibliographic queries drawn 

by users. 

 
 
 

	
 

Figure 3.10: Four example visual graph queries 
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3.3.2.2    System Architecture 
 
 

The processing of visual graph queries begins with a verification stage because users 

can create erroneous queries. The verification stage includes both syntax checking and 

semantics checking. Syntax checking examines whether a visual graph query includes all 

necessary constructs (i.e., node type, answer node, constraint node, and node name). A 

syntactically correct graph query is not necessarily a meaningful query, and requires 

semantics checking. Semantics checking examines whether a visual graph query is 

answerable by checking the structure of the visual graph query. In this stage, incorrect 

queries are corrected and ambiguous queries are identified. Possible interpretations of 

ambiguous queries are sent back to users for their confirmation. Last, a verified visual 

graph query is translated into a database query to search in a database. Figure 3.11 shows 

the architecture of a visual graph query-based bibliographic information retrieval system. 

In the following sections, we discuss in detail the methods involved in the verification of 

visual graph queries, the generation of candidate graph queries, and the interpretation of 

graph queries. 
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Figure 3.11: Architecture of the visual graph-based bibliographic information retrieval 
system 

 
 
 
3.3.2.3    The Verification of Visual Graph Queries 
 
 

To satisfy syntax checking requirements, 1) a visual graph query should be a single 

graph with every single node having at least one relation with other nodes, 2) every node 

should have a node type, 3) the visual graph query should have at least one answer node, 

4) the visual graph query should have at least one constraint node, and 5) all constraint 

nodes should have names. 
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In regards to semantic checking, every semantically incorrect link can be divided into 

three categories (i.e., shortest path equals to zero, shortest path equals to one, and shortest 

path greater than one) based on the length of the shortest path between the source and the 

target of the link. Shortest paths are obtained from the data schema of bibliographic data 

(Figure 3.1). We apply the following algorithm (Figure 3.12) to a visual graph query for 

semantics checking. We perform query correction and query disambiguation for 

syntactically incorrect queries. We check every link of a visual graph query and perform 

query correction and disambiguation on the basis of links. 

 
 
 

	
 

Figure 3.12: An algorithm for query semantics checking 

 
 
 

As shown in Figure 3.12, every link of a visual graph query is checked for the length 

of shortest path between the source and the target. Any link that does not conform to the 
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schema is then updated. Query correction is performed when the direction of a link is 

incorrect (e.g., from a paper node to an author node) or two nodes are connected when 

they are not directly related on the schema (e.g., a link from a paper node to an 

organization node). While query correction is achieved for two of three categories (i.e., 

shortest path equals to one and shortest path greater than one); query disambiguation is 

accomplished for all three categories to generate all possible candidate graph queries. 

Figure 3.13 shows three examples of semantically incorrect links as well as how they 

are corrected and disambiguated. Letters inside the nodes denotes node types (i.e., A for 

author, P for paper, T for term, S for source, and O for organization). Names of constraint 

nodes (red nodes) are shown under the table. 

 
 
 

	
Figure 3.13: Examples of query correction and disambiguation 
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If the source and the target of a link are the same, we treat the shortest path between 

the source and the target as zero. In the first example, both the source and the target is 

Author. This is semantically incorrect because there is no link between the two author 

nodes based on the schema. Even though the first example is incorrect in semantics, it 

could be formulated by users with a specific meaning, i.e., authors cited by John, which 

should be authors who wrote papers that were cited by papers written by John. Thus, for a 

link with shortest path equals to zero, we disambiguate the link by treating the link as a 

citation relation and adding two additional Paper nodes as shown in the last column of the 

first example. Two Paper nodes are connected with the source and target respectively by 

finding their shortest paths from the source node and to the target node. Finally, two 

paper nodes are connected with a link that has the same direction as the original link 

because the direction of the original link is considered as the direction of the citation 

relation. For the second example, the direction of the link is opposite to that of the 

schema: in the schema, the link between a Paper and an Author is from an Author to a 

Paper with the link label of WRITES. Thus, we correct the link by changing the direction 

of the link. It is also possible that the user may mean papers cited John (i.e., papers cited 

papers that were written by John). Thus, query disambiguation is performed by creating a 

new graph query with the above meaning. Similarly, the third example can either mean 

authors that presented papers in SIGIR or authors who wrote papers that cite papers that 

were presented in SIGIR. Query correction and disambiguation are performed, and two 

new paths are created. In this way, query correction and disambiguation helps users 

formulate correct visual graph queries. 
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3.3.2.4    The Generation and Interpretation of Graph Queries 
 
 
1) The generation of candidate graph queries 

 Candidate graph queries are the enriched version of visual graph queries, in which 

links are added with labels. Candidate graph queries are generated as the results of the 

verification of visual graph queries. If a user formulates a syntactically and semantically 

correct visual graph query, there would be only one candidate graph query. Otherwise, 

there would be more than one candidate graph query. As shown in Figure 3.13, a 

semantically incorrect link resulted in one or two paths/links through the process of 

semantics checking. Because a visual graph query comprises one or more links, if a 

visual graph query includes two semantically incorrect links, there would be up to four 

possible interpretations. If a query includes n incorrect links, the maximum number of 

candidate graph queries would be 2n. Given a visual graph query, we generate all 

possible candidate graph queries and return them back to the user who formulated the 

visual graph query. The user then selects one that best represents his/her information 

needs to proceed. Figure 3.14 shows a visual graph query with two semantically incorrect 

links (dotted links) and candidate graph queries generated from the visual graph query.  
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Figure 3.14: An example of generating candidate graph queries 

 
 
 

As shown in Figure 3.14, each semantically incorrect link resulted in two possible 

interpretations by ways of query correction and disambiguation. We combined all 

possible interpretations and generated four candidate graph queries. The user can select 

one to proceed. The next step is to translate the selected graph query into a database 

query. 

 

2) The translation of graph queries into Cypher commands 

  

We show how graph queries can be translated into Cypher commands that can query 

data stored in Neo4j (a graph database), which is implemented based on the property 

graph model shown in Figure 3.1. Figure 3.15 shows four example graph queries and 
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their translations into Cypher commands. The translation of graph queries to Cypher 

commands is simple, because Cypher is itself a query language based on graph patterns. 

Other graph database query languages such as SPARQL and Gremlin have similar 

syntaxes with Cypher, and the general constructs are primarily the same. Readers can 

refer to Holzschuher and Peinl’s work (2013) for a comparison of different graph query 

languages. 

 
 
 

	
Figure 3.15: Examples of translating visual graph queries into Cypher 

	
	
	

The three main constructs of Cypher are MATCH, WHERE, and RETURN. We 

specify graph patterns in a MATCH clause and set constraints to nodes in a WHERE 

clause. A RETURN clause is for the data that we want to retrieve. A RETURN clause in 
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Cypher corresponds to a SELECT clause in SQL, and both are for specifying data need to 

be returned by the database. The WHERE clause in Cypher is much simpler than the one 

in SQL. We only need to set values to the bibliographic entities that are designated as 

constraint nodes when a user formulating a graph query. Constructing a MATCH clause 

is straightforward, which is a textual representation of a graph query, with the same nodes 

and relations with the same directions. The only thing we need to do is to set an arbitrary 

and unique instance name for each node. Instance names can be simply strings 

with/without numbers that can differentiate nodes from each other. An instance name of a 

node (e.g., cited p) is accompanied by the node type (e.g., Paper), which guides the 

traversal of the graph. 
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4. Results 

 
 
 
 
 This section discusses system use cases and reports results on system-centered 

experiments. We show how to use the systems through example queries and present 

experimental results on advanced features of the systems.  

 
 
4.1    Form-based Bibliographic Information Retrieval System 

 
 

4.1.1 A System Use Case 
 

 
In this section, we show an example of our system and test various features. The 

sample data set (Figure 3.3) comprises five articles (in blue), five authors (in red), seven 

terms (in purple), three sources (in green), and three affiliations (in yellow). It shows 23 

entities and their relations. Links between a pair of papers (i.e., citation relations) have 

directions whereas other links do not. 

The example natural language query is “authors who are affiliated with Happy 

University and wrote papers that were cited by papers on NoSQL published in VLDB.” 

As shown in Figure 3.4, we specified citation type as “cited” because the target we want 

to search is at the cited side. Then, we added anchor types to both sides. Because the 

authors are affiliated with “Happy University,” we added an anchor type—Organization 

at the cited side and put the value— “Happy University.” Similarly, we added two anchor 

types—term and source to the citing side, and put values— “NoSQL” and “VLDB.” 
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Then, by clicking “Generate Graph Query,” the system generated a graph query 

which is shown in Figure 3.4. Black node is the target—author, red nodes are the 

anchors— Organization, Term, and Source. Figure 4.1 shows the Cypher query generated 

by the system. 

 
 
 

	
 

Figure 4.1: Generated Cypher query 

 
 
	

The last step is to translate form queries into Cypher and return search results. The 

search results included two authors— “Linda” and “Mary,” which are relevant answers 

based on the information provided in Figure 3.3. 
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4.1.2 Experiments 
 
 
In this section, we evaluate the proposed system in two aspects: (a) we show the 

functional limitations of the current bibliographic information retrieval systems to 

highlight the functionalities of the proposed system; (b) we compare two different 

database models to highlight the performance of the graph data model. 

 
 

4.1.2.1    Functional Limitations of Current Bibliographic Information Retrieval 
Systems 
 
 

We chose the Web of Science as a representative system to show two functional 

limitations of the current bibliographic information retrieval systems: a limited support of 

entity types as the final search results and a limited support of complex queries. As 

previously mentioned, current bibliographic information retrieval systems only provide 

articles as the final search results. Thus, these systems cannot appropriately answer a 

query like “terms of papers that were written by author A (e.g., Lutz Bornmann) and 

published in journal A (e.g., JASIST).” This example query might be useful to identify 

important terms/keywords of an author’s seminar research given that journals in the 

query codify seminar research. In order to answer this query, one can first retrieve an 

author’s papers that were published in JASIST by designating “Publication Name” as the 

“Journal of the Association for Information Science and Technology” and set the “Author” 

field as, for instance, “Bornmann L.” Nonetheless, we cannot retrieve terms because the 

search results only contain papers. Even though some metadata (e.g., Research Areas and 

Organizations) are available as categories for refining the search results, these metadata 

just serve to support the retrieval of articles. On the other hand, the proposed system can 
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answer the example query as shown in Figure 4.2. Taking various entity types into 

consideration and enabling the search for these entities is a desired function of modern 

bibliographic information retrieval systems. 

 
 
 

	
 

Figure 4.2: The search results for the example query 

 
 
 

The Web of Science provides a way of representing complex queries under 

“Advanced Search” through the use of filed tags and Boolean operators, but this is 

limited to queries without citation. While the Web of Science also supports “Cited 

Reference Search,” which is a function of retrieving citing articles given a cited article or 

author, one cannot search for cited articles under this function. Thus, there is the need to 

support representing complex queries by integrating advanced search, citing article 
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search, and cited article search. To address this, the proposed system supports the 

composition of complex queries and search for both cited and citing articles—both citing 

and cited entities that include authors, affiliations, papers, sources, and terms can be 

retrieved through a one-step operation (i.e., by filling forms and querying databases). The 

proposed system thus enables a search such as “papers on information retrieval, which 

were cited by John’s papers that had been presented in SIGIR” and “authors or sources 

that cited a particular JASIST paper.” 

 
 
4.1.2.2    A Comparison between Graph Data Model and Relational Data Model 
 
 

In order to test the performance of the proposed system, in particular, the use of the 

graph database, we constructed another system which has the same interface and features, 

but uses a relational database as the underlying infrastructure. The two systems have the 

same query generation and refinement components with the only difference being the 

data storage layer. Thus, in this section, we compare the performance of a graph database 

and a relational database. Because a relational database uses a relational data model, a 

completely different conceptual model is needed. Figure 4.3 shows a conceptual model 

(i.e., ER diagram) for the relational database. This conceptual model was later physically 

implemented in the MySQL database. 
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Figure 4.3: An ER diagram for the relational database-based system 

	
	
	
 As for the experiment data set, we used a data set provided by Tang et al. (2008). This 

data set includes information on papers, titles, authors, publication venues, abstracts, and 

cited references. The original data set does not contain information on terms and 

organizations. We randomly assigned 1,000 universities to authors, that is, from 

“University1” to “University1000” for each author. We tokenized titles of papers based 

on space, and considered those tokens as key terms of papers. Some papers have 

references that are not included in the data set, and we removed these references in order 

to maintain consistency. This text-based data set was parsed and populated into Neo4j 

and MySQL by following their respective schemas. Table 4.1 shows the number of each 

bibliographic entity used in this study. 
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Table 4.1: The number of bibliographic entities and relations in the dataset 

Entities Count Relations Count 

Paper 629,814 Paper-Paper 632,751 

Author 595,775 Paper-Author 1,312,057 

Source 12,609 Paper-Source 531,219 

Term 291,109 Paper-Term 5,270,539 

Affiliation 1,000 Author-Affiliation 595,775 

 
 
 
 

A few queries were constructed for the experiment. Queries can be divided into 

several groups based on the number of nodes (i.e., bibliographic entities) in a query. 

Queries involving many nodes are inherently more complex than queries that include 

only a few nodes. We constructed four groups of queries, that is, from a query with two 

nodes to a query with five nodes. Queries made up of four or five nodes are the ones with 

citation relations. Each group includes a few meta-paths. We selected one meta-path for 

each group by considering their universality—we selected meta-paths that seemed to 

appear frequently in search cases. Table 4.2 shows selected meta-paths and examples of 

natural language queries. 
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Table 4.2: Meta-paths and example natural language queries 

Nodes Meta-path Example Natural Language Query 

2 Paper-Author Papers written by “Author”. 

3 Source-Paper-Author Sources (i.e., conferences/journals) published 

papers written by “Author”. 

4 Affiliation-Author-Paper1-Paper2 Affiliations of authors of papers cite/cited by 

“Paper”. 

5 Afiiliation-Author-Paper1-Paper2-Term Affiliation of authors of papers cite/cited by 

papers about “Term”. 

 
 
 
 

Because the two systems use the same interface, we tested the query execution time 

which is the duration between the point of sending queries and that of finishing retrieving 

items. Given the characteristic of metadata search like the proposed system, the results 

are always correct as long as we provide correct information. Query execution time is an 

optimal measure because we can leave out human factors (e.g., the time a user spends 

generating queries) and focus on system-intrinsic elements given that the two systems 

have the same query generation and refinement interfaces. For each meta-path listed in 

Table 3.2, we constructed 10 queries and recorded the query execution time at the system 

level by the embedded time checker. The test environment is a desktop PC with a 

Windows 7, 64-bit operating system, an Intel Core i7-3770 CPU, and 20GB RAM. 

Figure 4.4 shows the query execution time for the tested queries in both systems. 
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Figure 4.4: Query execution time of queries of different groups 

	
	
	

As shown in Figure 4.4, the relational database (i.e., MySQL) performed better in 

executing queries with two nodes. The relational database executed all queries in less 

than 0.4 second while the graph database spent about 1 second to process most queries. 

However, as queries became more complex, the graph database (i.e., Neo4j) 

outperformed the relational one. The execution time of the relational database increased 

from less than 4 seconds for queries with three nodes to about 30 minutes for five-node 

queries. One reason that affected the execution time is the join operations used in 

relational databases. Join is a SQL operation used in relational databases to combine 

records from two or more tables to get final records (Mishra & Eich, 1992). As queries 

involve more nodes, more join operations are needed. In terms of processing a query with 

five nodes, the relational database processed five join operations. Because a table has 
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many records (e.g., the paper table has 629,814 records), processing these operations is 

very time-consuming. Another reason is attributed to the time used to retrieve indexed 

items. Relational databases use indices to presort data in order to facilitate fast retrieval 

(Lahdenmaki & Leach, 2005). Although indices are useful to locate data quickly, we still 

need additional time to traverse the indexed data to discover their relations. This is 

because relations between two records are not explicit, and traversal is needed to find out 

the existing connections. 

In graph databases, joins and traversals (in terms of finding relations) are not an issue. 

Graph databases are not made up of tables; thus, graph databases do not require time-

consuming join operations. For this reason, the query execution time of different query 

groups in the graph database was not affected by the number of nodes in queries. As a 

result, the query execution times of different query groups are practically the same 

(Figure 4.5) while the performance of the relational database varies significantly. In 

addition, graph databases have the property of “index-free adjacency” (Robinson, 

Webber, & Eifrem, 2013). In graph databases, traversals among relations are not required 

because a node physically keeps information of the connected nodes. This means as long 

as we locate a node, other nodes that have relations with this node are immediately shown, 

and no other effort is needed to locate relations. Thus, graph databases benefits from 

traversals and this benefit becomes more apparent as the number of relations between 

records increases. 
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Figure 4.5: Average query execution time of queries 

 
 
 

The experiment results showed that the relational database-based system spent more 

than 30 minutes in processing five-node queries. In reality, a system with such a 

performance would not be practical. This could be partly ameliorated by dividing a query 

into several short queries and refining search results accordingly—an approach practiced 

by current bibliographic information retrieval systems such as the Web of Science. Thus, 

the comparison of the execution time of five-node queries highlights the applicability of 

the proposed graph database-based bibliographic information retrieval system. 
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4.2    Natural Language-based Bibliographic Information Retrieval System 
 
 
4.2.1 A System Use Case 
 
 

Figure 4.6 shows the graphical interface for users to formulate natural language 

queries. The example query is “Papers about classification, which were cited by Asoke K. 

Nandi 's papers that had been presented in Pattern Recognition”. 

 
 
 

	
 

Figure 4.6: A natural language interface with an example query 

 
 
 

After typing the natural language query and clicking the “Search” button, the system 

analyzes the natural language query. Recognized bibliographic named entities, 

dependency relations of the query, graph nodes, graph relations, and a graph query are 

shown in Figure 4.7. 
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Figure 4.7: The analysis of a natural language query 

	
	
	

Figure 4.7 shows how the example query was analyzed. First, bibliographic named 

entities such as Papers, classification, Asoke K. Nandi, papers, and Pattern Recognition 

were recognized. As mentioned previously, these bibliographic named entities were 

extracted from the dataset we used in the experiment and stored into a dictionary. 

Dependency relations among all tokens in the query are also shown as the result of a 

syntactic analysis. Nodes were then obtained from bibliographic named entities while 

relations were selected from dependency relations. By integrating graph nodes and graph 

relations, the system generated a graph query to visualize the results of the natural 

language query. As an interactive information retrieval system, users can modify or 

proceed with the current natural language query by referencing the analysis of the graph 

query. The final search results are obtained by clicking the “Results” button (Figure 4.8). 
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Figure 4.8: The search results of the example query 

	
	
	

Figure 4.8 shows the final search results, which are the correct answers for the 

example query. In the system, we used Cypher as the graph query language, which is the 

default query language of Neo4j. Search results showed that there are three entries that 

matched the natural language query. 

 
 
4.2.2 Experiments 
 
 

The effectiveness of the system is evaluated as the ratio of correctly answered queries 

and query execution time, as practiced in related research (e.g., Li & Jagadish, 2014; 

Tablan et al., 2008). We tested both the ratio of correctly answered queries and query 

execution time by forming four groups of queries based on the number of bibliographic 

named entities in a query, which ranges from two-named entities to five-named entities. 
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Ten queries for each group were tested. When formulating test queries, we considered a 

variety of meta-paths and included as many meta-paths as possible. For example, for two-

node queries, we included meta-paths such as “AuthoràPaper”, “AuthoràOrganization”, 

“SourceàPaper”, “PaperàTerm”, and “PaperàPaper”. As the number of named entities 

in a query increases, the number of meta-paths also grows. Therefore, we selected 10 

meta-paths that are representative in bibliographic searching based on our domain 

knowledge. Forty tested queries are listed in the Appendix A. The ratio of correctly 

answered queries for each group is shown in Table 4.3.  

 
 
 

Table 4.3: The ratio of correctly answered queries 

The number of named entities 2 3 4 5 

The ratio of correctly answered queries 10/10 10/10 9/10 10/10 

 
 
 

As shown in Table 4.3, we did not see a correlation between the number of named 

entities in a query and the ratio of correctly answered queries. The example query that our 

framework processed incorrectly is “Authors who are affiliated with University007 and 

wrote Papers about clustering”. The reason of the misinterpretation is that the parser 

misidentified “wrote” as the root of the query, which should be “authors”. Our system 

performed 100% correctly for all other test queries.  

Query execution time includes the time of interpreting a natural language query (i.e., 

recognizing named entities and parsing) and the time of answering the query in a graph 

database. Time spent in formulating a query is not considered to leave out human factors 

and to focus on the performance of the system. The test environment is a laptop PC with 
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a Windows 7 64-bit operating system, an Intel Core i5-3320M CPU, and 16GB RAM. 

The execution time for each query and average execution time in each group are shown 

in Figure 4.9. The query that was incorrectly interpreted was excluded from the 

calculation. 

 
 
 

	
Figure 4.9: The query execution time of queries with the number of named entities from 

two to five 

 
 
 

Query execution time is affected by the length of a query as well as the number of 

items in the search result that matched the query. A long natural language query need 

more time to be interpreted than a short query as the time spent on recognizing named 

entities in the query and parsing the query increases. Query execution time also increases 

if there are many items that matched the query. The average execution time is 4.8 
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seconds for two-named entity query, 5.6 seconds for three-named entity query, 6.5 

seconds for four-named entity query, and 7.8 seconds for five-named entity query.  The 

longest time taken to process a query is about ten seconds. Nonetheless, an industry-scale 

systems use more powerful servers, we believe the execution time should be reduced in 

real-world use cases. 

 
 
4.3    Visual Graph-based Bibliographic Information Retrieval System 
 
 
4.3.1 A System Use Case 
 
 

Figure 4.10 shows the visual graph-based system. The visual graph query interface is 

composed of two panels: the configuration panel (left) and the graph query panel(right). 

The configuration panel has three sections: a node configuration section, a schema 

section, and an instructions section. As shown in the instructions section, users can create 

a node, drag between nodes to add a link, and change the direction of the link by pressing 

the Z key. Deleting a node or a relation can be done by pressing the Delete key after 

selecting a node or a relation. The visual graph query shown in Figure 4.10 has five nodes 

and each node has an id from zero to four. Attributes are shown next to the nodes; for 

example, node 1 has a string value of “Type: Author | ANSWER: Y | CONSTRAINT: N | 

Name: N/A”. It means that the type of node 1 is Author, and it is an answer node. In 

addition, the node is not a constraint node and does not have a name. Users can select a 

node (e.g., node 4) to set and change attributes of the node. Node 4 is a constraint node 

and it has the name of “Communications of the ACM”. The visual graph query shown in 
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Figure 4.10 denotes “authors of papers that were cited by papers that were written by 

Gerard Salton and published in Communications of the ACM”.  

 
 
 

	
 

Figure 4.10: The visual graph interface of the system 

 
 
 

By clicking the search button, candidate graph queries are shown (Figure. 4.11(a)). 

Only one candidate graph query is shown because the formulated graph query is 

syntactically and semantically correct. As shown in Figure 4.11, all links are added with 

labels and each node is filled with appropriate colors (i.e., black for the answer node, red 

for constraint nodes, and blue for regular nodes). Search results of the candidate graph 

query is shown in Figure 4.11(b). 
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Figure 4.11: Candidate graph queries and search results 

 
 
 

Next, we show how a semantically incorrect visual graph query is corrected and 

disambiguated. Figure 4.12 shows an example query, in which the link from node 0 to 

node 2 is incorrect. The direction of the link is opposite to the schema, and thus needs to 

be further analyzed to identify all possible interpretations. 
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Figure 4.12: A semantically incorrect visual graph query 

 
 
 

As shown in Figure 4.13, two candidate graph queries are formulated from the above 

visual graph query for users to select. The visual graph query can be interpreted as either 

“authors of papers that were written by Peter Hancock and published in	 IEEE Intelligent 

Systems” (for finding co-authors of Peter Hancock) or “authors of papers that were 

published in IEEE Intelligent Systems and cited papers that were written by Peter 

Hancock”. The two candidate graph queries resulted in different search results. 
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Figure 4.13: Two candidate graph queries and search of the query 

 
 
 
4.3.2 Experiments 
 
 

Due to the lack of readily available complied resources, twenty test queries were 

handcrafted by the authors. The twenty test queries were constructed and divided into 

four groups based on the number of bibliographic nodes (i.e., from two to five) in a query. 

Because creating queries is an open problem, we were not able to apply standard 

measures such as inter-coder reliability, but performed several rounds of discussions to 

exclude subjectivity as much as possible. As a follow-up examination, we consulted three 

researchers to review the test queries. Researchers were asked to rank those queries that 

best match their everyday bibliographic information needs, and recommend additional 

queries that were not included in the original test queries. We selected top 10 queries 

ranked by the researchers (referred to as regular queries in Table 4.4). In addition, we 
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included five advanced queries of common bibliometric tasks such as bibliographic 

coupling, paper co-citation, author co-citation, co-author, and co-word. The final 15 test 

queries are shown in Appendix B. We benchmarked our system’s representability of 

these queries in relation to three major bibliographic information retrieval systems (i.e., 

Web of Science, Scopus, and Google Scholar). We measure the extent to which these 

queries are representable in one query and directly answerable without initiating other 

search tasks. For fair comparisons, we included the add-on features of the major systems 

(e.g., “Analyze Results” of Web of Science) and treated them as integrated components 

of the search tasks. Table 4.4 shows the ratio of queries that can be represented in each 

system with unanswerable queries listed in parentheses. 

 
 
 

Table 4.4: The ratio of directly representable queries in each system 

Test queries Web of Science Scopus Google 

Scholar 

Our 

system 

Regular queries 

(unanswerable queries) 

7/10 

(No. 4, 5, & 10) 

7/10 

(No. 4, 5, & 10) 

3/10 

(No. 3, 4, 

5,7,8, 9, and 

10) 

10/10 

(None) 

Advanced 

queries 

Bibliographic 

coupling 
N N N Y 

Paper co-citation N N N Y 

Author co-

citation 
N N N Y 

Co-author Y Y Y Y 

Co-word Y Y N Y 
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As shown in Table 4.4, existing systems have limitations in directly representing the 

information included in the test queries, despite the fact that we took their additional add-

on features into consideration. Google Scholar did not fulfill majority of the tasks 

because it is not designed to retrieve entity types other than papers and does not explicitly 

manage metadata. Web of Science and Scopus performed better than Google Scholar, but 

were not able to represent a few test queries directly (i.e., bibliographic coupling, paper 

co-citation, and author co-citation). We were able to retrieve entity types other than 

papers by using their add-on features (e.g., “Analyze Results”) in Web of Science and 

Scopus, but the two systems do not support a feature where users can conduct a follow-up 

search through the add-on options. For example, items (e.g., authors) displayed in the 

“Analyze Results” feature are only used to refine the previous search results. Using the 

fourth test query as an example (“Papers of authors who wrote Term-weighting 

Approaches in Automatic Text Retrieval”), a general solution to this query involves 

getting author names of the paper and retrieving papers written by those papers. Web of 

Science supports getting author names by providing the title of the paper; however, it 

does not support the retrieval of papers written by those papers (though one can manually 

record the author names and initiate another round of search). For the advanced queries, 

the strength of our system is more evident. Our system was able to represent all the 

queries that are common for bibliometric tasks. 

 
 

 
  



 76 

5. User-centered Evaluation 
 
 
 
 
5.1    Experimental Setup 
 
 
5.1.1 Overall Experimental Setup 
 
 

The experimental setting is a laboratory study employing a mixed design (between-

group and within subjects). Twenty participants were recruited using a convenience 

sampling method. A pilot-test was conducted to adjust the research setting. For example, 

through interviews with potential participants, we found that undergraduate students use 

academic information retrieval systems infrequently. This is probably due to their lack of 

research experience. Thus, the recruit is limited to people who have a Master’s or a more 

advanced degree. Among the 20 participants, 10 are male and the other 10 are female. 

Nineteen participants are at the age of 25 to 34 while one participant falls in the range of 

35 to 44. There are four Master’s students, 13 doctoral students, two postdoctoral 

researchers, and one professor. Twelve participants are majored in Information Science, 

followed by Linguistics (three), Computer Science (three), and Biomedical Engineering 

(two). 

 
 
5.1.2 Tasks and Measures 
 
 

Tasks were designed as a known-item search, in which users were provided with 

partial information to perform a search. Known-item searches are a common type of 

bibliographic searches. For example, users search for papers with partial information 
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such as keywords and authors. Simulated work tasks (Borlund & Ingwersen, 1997) were 

employed to create the tasks in this study. As Borlund (2003) discussed, a simulated work 

task is a short cover story that describes situations where information needs arise. 

Because the three systems to be evaluated provide different ways of representing 

information needs, simulated situations are a good fit that helps us better understand how 

users formulate queries using different mechanisms. Overall, two task sets of simulated 

situations with varying task complexity (low and high) were created. The level of task 

complexity was decided based on the amount of effort needed to solve a problem. 

Participants were equally (i.e., ten for each set) divided into the two task sets. Each task 

set has three tasks (one for each system). To reduce the variance of using different tasks 

in each set, balanced task sets (e.g., Käki & Aula, 2008) were created. Specifically, tasks 

in each task set were made as similar as possible by only modifying terms (e.g., author 

name) in the description. This helps reduce learning effects and variance of task 

complexity within each task set. A factorial design with six conditions (three system 

types by two levels of task complexity) was used. Therefore, each system was tested 

under the condition of both complexity levels of tasks and each complexity level of tasks 

was tested with all system types. Table 5.1 shows two example task situations (one in 

each level of task complexity). Questionnaires were used to elicit data from the 

participants. Both closed and open questions were asked in the questionnaires. Closed 

questions were largely based on a seven-point Likert scale. Five questionnaires: a 

background, three post-task, and an exit were used. A background questionnaire was used 

to elicit background information about the participants. Three post-task questionnaires 
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were administered after completing each of three tasks. The exit questionnaire was used 

to elicit overall cross-system comparisons and ratings. 

 
 
 

Table 5.1: Two examples task situation used in the experiment 

Example 1 (low-complexity task) Example 2 (high-complexity task) 

• John is a first-year doctoral student who is 

interested in Information Retrieval. His 

adviser asked him to find a few seminal 

papers and do a literature review. John 

knows Gerard Salton is one of the 

prominent researchers in the field. Among 

many journals, he plans to take a look at 

Communications of the ACM. 

• Please use the form-based system and find 

papers that were written by Gerard Salton 

and published in Communications of the 

ACM. 

• James is a first-year doctoral student who 

is interested in Data Mining. His advisor 

asked him to find a few seminal papers 

and do a literature review. James knows 

Jiawei Han is one of the prominent 

researchers in the field. After reviewing 

Jiawei Han’ papers, James find that he is 

specifically interested in a subarea of 

Data Mining called clustering. James 

wants to find out more researchers who 

cited Jiawei Han’s papers and do 

research on clustering. 

• Please use the natural language-based 

system and find out authors who wrote 

papers on clustering that cited papers that 

were written by Jiawei Han. 

 
 
 
 

For evaluation measures, we adopted notions discussed in Kelly’s study (2009). As 

discussed by Kelly, in IIR, unlike HCI research, performance is seen as a separate 

concept from usability and usability is usually evaluated based on self-report measures. 
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In this study, we evaluated the systems in terms of performance and usability. 

Performance was measured by a set of objective measures while usability was examined 

by analyzing data elicited from questionnaires. Performance was defined as system’s 

ability of helping users resolve bibliographic information retrieval tasks. Table 5.2 shows 

measures of performance and their operational definitions. 

 
 
 

Table 5.2: Performance measures used in the experiment 

Category Measure Description 

Relevance-based Success rate A binary measure (i.e., success or not) represents completion of each task. 

Interaction-based 
Search time Time taken to complete a search task  

Query size The number of issued queries to complete a search task. 

 
 
 

Success rate is used to measure participants’ performance on retrieving relevant 

search results. Participants’ answers are matched against correct answers to see whether 

they are identical. Used synthetically, it shows the fraction of participants who complete 

the search tasks. A larger fraction shows that the participants perform better with one 

system than another. Search time measures the time a participant uses to complete a task. 

It largely depends on the time a user spends on formulating a query because the time used 

by the background processes (e.g., interpreting queries, querying the database) are almost 

identical to the extent that we can ignore the differences across the three systems. Shorter 

search time represents better performance. Query Size measures the number of queries a 

participant formulates to finish a task. Participants might formulate more than one query 
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to finish a task due to a lack of experience. A smaller query size denotes that the 

participants perform better in terms of formulating queries correctly. 

 ISO’s definition of usability (ISO 9241-11, 1998) has three dimensions: effectiveness, 

efficiency, and satisfaction as shown in the following list (p. 2): 

• Effectiveness is the “accuracy and completeness with which users achieve 

specified goals.”  

• Efficiency is the “resources expended in relation to the accuracy and 

completeness with which users achieve goals.”  

• Satisfaction is the “freedom from discomfort, and positive attitudes of the user to 

the product.”  

Kelly (2009) discussed that measures for effectiveness and efficiency used in HCI 

(e.g., Hornbæk, 2006) typically overlap with the performance measures in IIR (e.g., 

precision and time taken to complete a task). Thus, in this paper, we test usability by 

measuring satisfaction with three additional measures including ease of use, ease of 

learning, and usefulness. We use the USE questionnaire (Lund, 2011) to measure the 

above four dimensions of usability, in which each item is measured using a seven-point 

Likert scale. 

 
 
5.2    Results 
 
 
5.2.1 Participants’ Overall Experience 
 
 

Through a background questionnaire, we collected information on participants’ 

general experience on academic search systems. Among the 20 participants, eight 
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participants reported that they use academic search systems more than seven times in a 

week, followed by seven participants (one to two times), four participants (three to four 

times), and one participant (five to six times). About one third are active users of 

academic search systems; one third use academic search systems less frequently; and the 

remaining represent a moderate user group. As for the primarily used search system, 13 

participants selected Google Scholar, five participants selected Web of Science, and two 

participants selected other systems (e.g., Microsoft Academic Search). Participants were 

also asked to rate their ability of using academic search systems through a five point 

Likert scale. Eleven participants responded by selecting average, followed by proficient 

(eight) and very proficient (one). In terms of the motivation of using academic search 

systems, six participants responded that they usually have specific information needs in 

mind before searching while three participants responded that their main purpose is 

exploring. Eleven participants responded with both choices. Given this, we argue that 

most participants use academic search systems with specific information in mind. In a 

question that asked current academic search systems’ support of bibliographic 

information needs, 14 participants responded that they are not powerful enough in terms 

of representing complex bibliographic information need, and some of their bibliographic 

information needs are not representable in the current systems while six participants were 

satisfied with them. 

 
 

5.2.2 Results of Performance Evaluation 
 
 

Table 5.3 shows the overall results of the performance evaluation. We can see how 

two groups of participants performed for each of the three systems. As mentioned 
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previously, 10 were assigned to the low-complexity task and the other 10 were assigned 

to the high-complexity task. We show how many participants in each group successfully 

completed the tasks (success rate), and how long they spent on completing the tasks 

(search time, in seconds), and how many queries they formulated to represent information 

needs. 

 
 
 

Table 5.3: Results on the performance evaluation 

Task 

complexity 
Measure 

System type 

Form-based Natural language-based Visual graph-based 

Low 

Success rate 10/10 10/10 10/10 

Search time 
Max: 58, Min: 10 

Mean: 26, Median: 22 

Max: 61, Min: 12 

Mean: 33, Median: 30 

Max: 91, Min: 30 

Mean: 61, Median: 58 

Query Size 
Max: 3, Min: 1 

Mean: 1.5, Median: 1 

Max: 5, Min: 1 

Mean: 2.3, Median: 2 

Max: 4, Min: 1 

Mean: 1.7, Median: 1 

High 

Success rate 9/10 10/10 7/10 

Search time 
Max: 150, Min: 20 

Mean: 70, Median: 64 

Max: 90, Min: 21 

Mean: 53, Median: 48 

Max: 191, Min: 90 

Mean: 135, Median: 131 

Query size 
Max: 3, Min: 1 

Mean: 1.3, Median: 1 

Max: 5, Min: 1 

Mean: 2, Median: 1 

Max: 5, Min: 1 

Mean: 1.7, Median: 1 

 
 
 

For the low-complexity task set, all participants completed the tasks using all the 

systems while for the high-complexity task set, one participant failed the task for the 

form-based system and three participants failed for the visual graph-based system. A 

reasonable explanation is that the natural language-based system requires no additional 
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knowledge to use. On the other hand, users need to learn how to use the other two 

systems, which requires additional time and effort. Because the participants have never 

used a visual graph interface to formulate bibliographic queries, the visual graph-based 

system is less familiar to them. Thus, compared with the form-based system, which has 

been widely adopted by major academic search systems, the visual graph-based system 

has more features to be learned and the participants performed worse with the system 

than with the other systems. 

The participants spent the least time (i.e., 26 secs) with the form-based system in the 

low-complexity task set while for the high-complexity task set, the least time (i.e., 53 

secs) was achieved with the natural language-based system. We can see that, for simple 

tasks, the form-based system is the fastest way to formulate queries, probably due to its 

simplicity and users’ familiarity with the system. As information needs become more 

complex, the natural language-based system proves to be a faster solution because one 

just needs to write down natural language queries without repeating mouse and keyboard 

operations such as selecting items and inputting values. In both task sets, the participants 

spent the most time with the visual graph-based system. This was expected because the 

visual graph-based system is specifically designed to answer complex bibliographic 

queries (e.g., bibliographic coupling and author co-citation), and it requires every single 

node in a query to be manually specified with properties. 

Query size reveals the magnitude of errors made by the participants. In both task sets, 

the participants formulated the smallest number of queries (i.e., 1.5 and 1.3) with the 

form-based systems and the largest number of queries (2.3 and 2) with the natural 

language-based system. Typographical errors might be the factor that affected the 



 84 

participants’ query size in the natural language-based system. Before the evaluation, we 

expected that the largest query size would be recorded with the visual graph-based 

system because it is the most complex system among the three. However, in both task 

sets, the query size was between the other two systems. It is partly due to its query 

verification module that automatically corrects misrepresented queries and recommends 

new ones. 

 
 
5.2.3 Results of Usability Evaluation 
 
 

Figure 5.1 shows the bar charts of the four usability measures (i.e., usefulness, ease of 

use, ease of learning, and satisfaction). In the figure and tables following below, F 

denotes the form-based system, NL denotes the natural language-based system, and VG 

denotes the visual graph-based system. For each measure, the means and error bars of the 

two groups (high-complexity group vs. low-complexity group) are shown. 
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Figure 5.1: Descriptive statistics for usability measures 

 
 
 

To further explore any statistically significant differences, we run a 2*3 mixed-design 

ANOVA because the task complexity is a between-group variable and system type is a 

repeated-measure variable. Table 5.4 shows the results. 

 
 
 

Table 5.4: Results of the mixed-design ANOVA 

Effect Usefulness Ease of Use Ease of Learning Satisfaction 
Main effect of  

Task complexity 
𝐹 1, 78 = 	1.41, 
𝑝 = .24, 	𝜂- = .007 

𝐹 1, 78 = 	 .025, 
𝑝 = .87, 	𝜂- < .001 

𝐹 1, 78 = 	 .53, 
𝑝 = .47, 	𝜂- = .004 

𝐹 1, 78 = 	 .3, 
𝑝 = .58, 	𝜂- = .002 

Main effect of  
System type 

𝐹 2, 156 = 	7.48, 
𝒑 <. 𝟎𝟎𝟏, 	𝜂- = .05 

𝐹 2, 156 = 	28.65, 
𝒑 <. 𝟎𝟎𝟏, 	𝜂- = .16 

𝐹 2, 156 = 	52.05, 
𝒑 <. 𝟎𝟎𝟏, 	𝜂- = .21 

𝐹 2, 156 = 	 .42, 
𝑝 = .65, 	𝜂- = .002 

Interaction  
between the two 

𝐹 2, 156 = 	9.75, 
𝒑 <. 𝟎𝟎𝟏, 	𝜂- = .07 

𝐹 2, 156 = 	7.57, 
𝒑 <. 𝟎𝟎𝟏, 	𝜂- = .05 

𝐹 2, 156 = 	11.81, 
𝒑 <. 𝟎𝟎𝟏, 	𝜂- = .06 

𝐹 2, 156 = 	4.7, 
𝒑 =. 𝟎𝟏	𝜂- = .03 
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As shown in Table 5.4, there is no significant difference between ratings of the two 

groups of task complexity. However, we see participants rated the three systems 

differently when evaluating their usefulness, ease of use, and ease of learning (i.e., all of 

them are significant at the 0.001 level). Interactions between task complexity and system 

type are shown to be significant in all the four measures. Pairwise t-test with Bonferroni 

correction was performed to see how differently participants rated the systems (Table 

5.5). However, because of the existence of the interaction effects between task 

complexity and system types, the ratings could also had been partly affected by task 

complexity. Satisfaction was not included because it is not significant in Table 5.4. 

 
 
 

Table 5.5: Results of pairwise t-test on system type 

Usefulness Ease of Use Ease of Learning 
 F NL  F NL  F NL 

NL 0.0168* - NL <0.0001*** - NL <0.0001*** - 
VG 1.00 0.0021** VG 0.12 <0.0001*** VG 0.0069** <0.0001*** 
 
 
 

Based on Table 5.5 and Figure 5.1, we see that the participants rated the natural 

language-based system more useful than the other two systems. It was also rated as the 

system that is the most easy to use and learn. The participants also reported that the form-

based system was easier to learn than the visual graph-based system. In terms of 

usefulness and ease to use, we do not see any significant difference between the form- 

and visual graph-based systems. Finally, simple effects analysis was performed to 

understand the interaction between task complexity and system type. The datasets of four 

measures were further split into three subsets. Then, ANOVA and Tukey’s tests were 
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performed to see whether significant differences exist between the two complexity 

groups upon each of the three system types. The results are shown in Table 5.6. 

 
 
 

Table 5.6: Results of ANOVA and Tukey's tests 

System type Usefulness Ease of Use Ease of Learning Satisfaction 
F (Low vs. High) 0.3594 0.0227* 0.0341* 0.3594 
NL (Low vs. High) 0.8267 0.5567 0.0058** 0.8267 
VG (Low vs. High) 0.0068** 0.0345* 0.038* 0.0068** 

 
 
 

Combining the result shown in Table 5.6 with that of Figure 5.1, we see that 

participants assigned to the high-complexity tasks rated the visual graph-based system 

higher than the participant group of low-complexity task in usefulness and satisfaction. 

This shows that participants thought the visual graph-based system is more useful and 

satisfactory for high-complexity tasks. For the form-based system, the participant group 

of low-complexity tasks rated it higher than its counterparts in terms of ease of use and 

learning. The natural language-based system was reported with similar ratings on ease of 

use by the two groups.  This is the strength of the natural language-based system that no 

additional effort is needed to formulate more complex queries, and there is no significant 

difference of effort between formulating low- and high-complexity queries. A seemingly 

contradictory result is that participants assigned to the high-complexity tasks rated both 

the natural language- and visual graph-based systems higher than the participant group of 

low-complexity task in easy of learning. Because participants in the high-complexity task 

group interacted with all the three systems, who felt the form-based system hard to learn 

(e.g., due to its unsuitability to high-complexity task) might feel the other two systems 
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relatively easies to learn. Overall, the interaction effect is the most significant in the 

visual graph-based system and least significant in the natural language-based system. 
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6. Conclusion and Future Work 
 
 
 
 

6.1    Conclusion 
 
 
In the dissertation, we proposed, implemented, and evaluated three graph-based 

interactive bibliographic information retrieval systems. Compared with current well-

known bibliographic information retrieval systems, our system has several advantages: (a) 

they support searching for various types of bibliographic information and deliver these 

types as end search results; (b) they support easy ways of representing complex 

bibliographic queries, which is not readily available in existing bibliographic information 

retrieval systems; (c) they provide interactive user interfaces for users to refine queries; 

and (d) they expedite the query time by adopting a graph data model. 

The study also recruited 20 participants to compare three systems from a variety of 

aspects such as success rate, search time, query size, usefulness, ease of use, ease of 

learning, and satisfaction. We employed a mixed-design experiment to understand how 

task complexity and system type affect users’ performance and usability ratings. 

The form-based system needed the least time (i.e., 26 secs for the low-complexity 

tasks) to formulate simple bibliographic queries and allowed the participants to make the 

least mistakes (i.e., the average query size 1.5 and 1.3 for low- and high-complexity 

tasks). Participants stated that “The form-based system makes everything clear, so it is 

easy for me to handle each part of my query”, “The form-based system is kind of fun and 

may come into handy pretty fast”. One weakness of the system is that, with complex 

queries, participants feel that it is not as easy to use as it is with simple queries. The 
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participant group of low-complexity task rated higher than its counterparts in terms of 

ease of use and learning. A participant assigned to high-complexity tasks stated that “The 

form-based (system) needs users to take more logic consideration and have more 

clicking.”  

The natural language-based system needed the least time (i.e., 53 secs) to formulate 

high-complexity bibliographic queries and was rated as the most useful, easy-to-use, and 

easy-to-learn system. Participants stated that “Using natural language for searching 

bibliographic information would be the most intuitive way”, “As long as my query is in 

good grammar, the system does everything automatically and transforms it into a 

graphical query, which is quite cool, and time-efficient”. Flexibility was reported as the 

main weakness of the system. A participant stated that “The natural language-based 

system is easy to use, but it didn't allow too much flexibility on how to express a query 

by natural language”. This was expected because the system requires users to input 

queries without grammatical errors and state-of-the-art NLP parsers can sometimes make 

mistakes even though the input queries are correct.  

The visual graph-based system did not get the best ratings in any of the measures. 

However, its strengths lie in the support of complex queries as shown that it got better 

ratings of usefulness and satisfaction by the high-complexity task group. Participants 

stated that “The visual graph-based system is a very flexible one. It seems everything is 

within my control. I felt comfortable to use this tool”, “The visual system seems a little 

bit more complex than the other two systems, but it is actually the most powerful one that 

can answer lots of, almost every query that I can imagine.” As stated by a participant- 

“The visual graph-based system has a learning curve and requires some learning costs in 
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the beginning”, one weakness of the system is that the system requires more effort than 

the other two systems to get familiar with it. The participants rated the system as the most 

hard-to-learn system.  

Based on the evaluation results, we conclude that each system has their own strengths 

and weaknesses. In the background questionnaire, 14 out of 20 participants stated that 

current bibliographic search systems are not powerful enough in terms of representing 

and answering complex bibliographic information need. It is clear that there is no single 

answer to address this limitation, and different approaches have different values as shown 

in the evaluation results. Our contribution lies in the design, implementation, and 

evaluation of these kinds of systems. We believe the proposed systems are effective and 

efficient solutions for addressing complex bibliographic information needs. In addition, 

we believe the experimental design and results shown in this paper can serve as a useful 

guideline and benchmark for future studies. 

 
 
6.2    Future Work 
 
 
 Designing bibliographic information retrieval systems for complex bibliographic 

queries is a new research field. There are many unexplored territories and challenging 

research issues. Here we illustrate a few of them. 

1) Unified Evaluation Frameworks for Complex Bibliographic Information Retrieval 

 Complex bibliographic information retrieval has not been widely studied. Even 

though we contributed test queries and a few benchmarks to the filed, there is a lack of 

unified evaluation frameworks that facilitates evaluation and comparison of peer systems. 
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Researchers can build evaluation frameworks by collecting a larger number of test 

queries using crowdsourcing and providing unified application interface. 

2) Personalized Bibliographic Information Retrieval 

In general, a user is only interested in a small portion of the entire bibliographic data. 

For example, a user who does research on social science rarely looks for papers about 

quantum physics. Even in one domain, a user is mostly interested in a few research topics. 

It is both efficient and effective to provide personalized bibliographic information 

retrieval in which the system learns about users based on their previous search history. 

Personalized bibliographic information retrieval is time-efficient because we can detect 

and search through only a subset of the original dataset that might be the interest of a 

specific user. It is also effective in may cases. For example, assume there are multiple 

people with the name- “John” and a user entered a query “papers by John”, then 

personalized bibliographic information retrieval can detect which John the users is 

searching for based on the user’s previous history such as domain and research interests. 

Therefore, analyzing previous queries generated by a user and providing personalized 

search results is an important research issue. 

3) Dynamic Clustering of Search Results 

 Search results of complex bibliographic information retrieval are more specific than 

that of traditional bibliographic information retrieval. Traditional information retrieval 

systems provide predefined categories to classify and refine search results. However, this 

approach is not very efficient in complex bibliographic information retrieval because 

most categories are meaningless due to relatively small number of search results and the 

specificity of search results. Dynamic clustering denotes cluster search results by 



 93 

dynamically applying cluster criteria. For example, the search results of the query 

“papers on information retrieval” can be clustered based on collaboration among 

researchers and produce results of so-called “school of thought”. However, the same 

criteria cannot be effectively applied to the case of “papers by John”, because all the 

papers in the search results are written by the same author. Here, we need to apply 

different criteria. Therefore, dynamic clustering of search results is an ideal approach for 

complex bibliographic information retrieval. 
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Appendix A: Natural Language Queries Tested in the Experiment 
 

 
 
 
1. Papers by Gerard Salton  

2. Michael Lawrence’s papers 

3. Papers that were written by Sangjun Lee 

4. Papers about ontology  

5. Authors of Automatic text structuring experiments 

6. Papers that were cited by Energy-Aware and Time-Critical Geo-Routing in Wireless 

Sensor Networks 

7. Terms of Opacity generalised to transition systems 

8. Organization of Johann Eder 

9. Sources that published The Effect of Faults on Network Expansions 

10. Papers that were published in Theoretical Computer Science 

11. Papers about classification and DNA 

12. Papers that were written by John R. Mick and published in ACM SIGMICRO 

Newsletter 

13. Papers cites papers that were written by Braham Barkat 

14. Papers about modulation which were published in Neural Networks 

15. Authors of University713 who wrote A control word model for detecting conflicts 

between microoperations 

16. Sources that published Zesheng Chen's papers 

17. Authors whose papers were published in AI Communications 

18. Authors who wrote papers that were about simulation 
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19. Terms of Junghyun Nam's papers 

20. Organizations of authors of A New Quadtree Decomposition Reconstruction Methods 

21. Papers about survey, semantic, and retrieval 

22. Authors of papers that were cited by papers that were published in Decision Support 

Systems 

23. Papers that cite papers that were written by Rainer Engelke and published in 

Microsystem Technologies 

24. Nina Yevtushenko’s papers that were cited by papers that were written by Sergey 

Buffalov 

25. Sources that published papers about genome and mining 

26. Terms of Rafae Bhatti’s papers that were published in Communications of the ACM 

27. Sources that published Tomasz Jurdzinski’s papers which are about automata 

28. Terms of papers that were written by authors at University123 

29. Organizations of authors whose papers were published in Journal of Multivariate 

Analysis 

30. Authors who are affiliated with University007 and wrote papers about clustering 

31. Papers about classification, which were cited by Asoke K. Nandi 's papers that had 

been presented in Pattern Recognition 

32. Authors of papers that were cited by papers that were written by Changqiu Jin and 

published in Journal of Computational Physics 

33. Terms of papers that were cited by papers about kernel and regression 

34. Sources that published papers cited papers about middleware and embedded 
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35. Organizations of authors whose papers were cited by papers that were published in 

Journal of Robotic Systems 

36. Organizations of authors who wrote paperson similarity and bayesian 

37. Papers about bayesian and electron which were written by authors at University170 

38. Sources of papers, which were about eigenvalue and written by authors at 

University40 

39. Authors at University899, who wrote papers that were about classifier, which were 

published in Applied Intelligence 

40. Terms of papers that were published in Cybernetics and Systems Analysis and written 

by authors at University362 
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Appendix B: Fifteen queries tested in the experiment 
 
 
 
 
1. Regular queries 

2. Papers written by Gerard Salton 

3. Papers on the topic of Human-Computer Interaction 

4. Papers that were cited by “Introduction to Modern Information Retrieval” 

5. Papers of authors who wrote “Term-weighting Approaches in Automatic Text 

Retrieval” 

6. Papers on the topics of “The Hadoop distributed file system” 

7. Papers that were written by Christopher D Manning and published by Association for 

Computational Linguistics 

8. Authors at CMU, who presented papers in SIGCHI 

9. Authors who wrote papers on the topic of information seeking behavior, which were 

presented in SIGIR 

10. Topics of papers that were presented in SIGKDD 

11. Conferences that presented papers on the topics discussed in “MapReduce: simplified 

data processing on large clusters” 

 

Advanced queries 

1. Bibliographic coupling (papers that were cited by “MapReduce: simplified data 

processing on large clusters” and “TheHadoop distributed file system”) 

2. Paper co-citation (papers that cited both “MapReduce: simplified data processing on 

large clusters” and “The Hadoopdistributed file system”) 
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3. Author co-citation (papers that cited both Gerard Salton and James Allan) 

4. Co-author (authors who co-authored with Gerard Salton) 

5. Co-word (keywords that co-occurred with big data) 
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