

Graph-based Interactive Bibliographic Information Retrieval Systems

A Thesis

Submitted to the Faculty

of

Drexel University

by

Yongjun Zhu

in partial fulfillment of the

requirements for the degree

of

Doctor of Philosophy

February 2017

 ii

Ó Copyright 2017

Yongjun Zhu. All Rights Reserved.

 iii

Acknowledgments

I would like to thank all the people who give me tremendous support and help to

make this thesis happen.

First I am deeply grateful to my advisors Dr. Erjia Yan and Dr. Il-Yeol Song, for their

generous time and devotion on supervision and guidance in the past years. Dr. Yan has

set up a great example for me as a successful information scientist and professor. I

appreciate all his contributions of time, ideas, and funding to make my Ph.D. experience

productive and stimulating. It has been an honor to be his first Ph.D. student. I thank Dr.

Song for his guidance and support as the co-advisor and the mentor for my career. His

keen insights and vision always helped me explore and study promising research fields

and ask important research questions. I always feel lucky to have Dr. Song as my co-

advisor. I would like to thank my thesis committee members, Dr. Christopher C. Yang,

Dr. Weimao Ke, and Dr. Chaojiang Wu, for their great feedback and suggestions on my

thesis. I have also benefited a lot from Dr. Yang and Dr. Ke’s courses on Research

Statistics and Information Retrieval. Dr. Wu has given me lots of valuable comments

during my proposal defense, which improved the thesis.

I would also like to thank my fellow students, including Meen Chul Kim, Hyewon

Kim, Qing Ping, Yuanyuan Feng, Bo Song, and Yizhou Zang, who have given me a lot

of help and support.

 iv

Finally and above all, I owe my deepest gratitude to my parents, my brother, and his

wife. I want to thank them for their endless and unreserved love, who have been

encouraging and supporting me all the time. This thesis is dedicated to them.

 v

Table of Contents

LIST OF TABLES ... ix

LIST OF FIGURES ...x

ABSTRACT .. xii

1 INTRODUCTION ...1

1.1 Motivation and Overview ..1

1.2 Research Questions ..3

1.3 Contributions ...4

1.4 Outline ..5

2 RELATED WORK ..6

2.1 Graph Models and Information Retrieval Systems ..6

2.1.1 Graph Models and Graph Data Stores ...7

2.1.2 Graph-based Information Retrieval Systems ...9

2.1.3 Bibliographic Information Retrieval Systems ...10

2.2 Search Interfaces ..12

2.2.1 Natural Language Interfaces ..12

2.2.2 Named Entity Recognition ...13

2.2.3 Syntactic Analysis ..14

2.2.4 Graph Query Interfaces ..15

2.3 Evaluation of Interactive Information Retrieval Systems16

2.3.1 Relationships of Interactive Information Retrieval Measures16

2.3.2 Work and Search Tasks ...17

 vi

2.3.3 Interactive Information Retrieval Evaluation Frameworks and Systems ..19

3 Methodology ..21

3.1 Form-based Bibliographic Information Retrieval System21

3.1.1 System Overview ...21

3.1.2 System Design ...22

3.1.2.1 System Architecture ...23

3.1.2.2 Query Generation ...24

3.1.2.3 Query Refinement ..25

3.1.2.4 Querying Graph Database ..27

3.2 Natural Language-based Bibliographic Information Retrieval System28

3.2.1 System Overview ...28

3.2.2 System Design ...28

3.2.2.1 System Architecture ...28

3.2.2.2 The Analysis of Natural Language Queries ...30

3.2.2.3 The Generation of Graph Queries ..32

3.2.2.4 The Translation of Graph Queries ...39

3.3 Visual Graph-based Bibliographic Information Retrieval System41

3.3.1 System Overview ...41

3.3.2 System Design ...42

3.3.2.1 Bibliographic Graph Queries ...42

3.3.2.2 System Architecture ...44

3.3.2.3 The Verification of Visual Graph Queries ...45

3.3.2.4 The Generation and Interpretation of Graph Queries49

 vii

4 Results ..53

4.1 Form-based Bibliographic Information Retrieval System53

4.1.1 A System Use Case ..53

4.1.2 Experiments ...55

4.1.2.1 Functional Limitations of Current Bibliographic Information Retrieval

Systems ..55

4.1.2.2 A Comparison between Graph Data Model and Relational Data Model57

4.2 Natural Language-based Bibliographic Information Retrieval System64

4.2.1 A System Use Case ..64

4.2.2 Experiments ...66

4.3 Visual Graph-based Bibliographic Information Retrieval System69

4.3.1 A System Use Case ..69

4.3.2 Experiments ...73

5 User-centered Evaluation ...76

5.1 Experimental Setup ..76

5.1.1 Overall Experimental Setup ...76

5.1.2 Tasks and Measures ...76

5.2 Results ..80

5.2.1 Participants’ Overall Experience ...80

5.2.2 Results of Performance Evaluation ..81

5.2.3 Results of Usability Evaluation ...84

6 Conclusion and Future Work ...89

6.1 Conclusion ...89

 viii

6.2 Future Work ...91

LIST OF REFERENCES ...94

APPENDIX A: NATURAL LANGUAGE QUERIES TESTED IN THE EXPERIMENT103

APPENDIX B: FIFTEEN QUERIES TESTED IN THE EXPERIMENT 106

VITA ..108

 ix

List of Tables

3.1 Tokenization without NER and with NER ...32

3.2 Dependency relations of the query “papers about information retrieval and data

mining” ..33

3.3 Dependency relations of the query “papers that were written by John”35

3.4 Graph nodes in the query “papers that were cited by papers that were written by

John” ..36

4.1 The number of bibliographic entities and relations in the dataset59

4.2 Meta-paths and example natural language queries ...60

4.3 The ratio of correctly answered queries ..67

4.4 The ratio of directly representable queries in each system74

5.1 Two examples of task situation used in the experiment ...78

5.2 Performance measures used in the experiment ...79

5.3 Results on the performance evaluation ...82

5.4 Results of the mixed-design ANOVA ..85

5.5 Results of pairwise t-test on system type ..86

5.6 Results of ANOVA and Tukey’s tests ..87

 x

List of Figures

3.1 A conceptual schema for bibliographic data ...22

3.2 The process flow of the form-based system ...23

3.3 A sample dataset ...25

3.4 An information retrieval example ...26

3.5 The flow chart of the natural language-based system ...29

3.6 The flow chart of selecting graph relations form dependency relations34

3.7 The check of connectedness and directions of the query “papers by happy university”

..37

3.8 The integration of cited and citing parts in the query “authors cited by John”39

3.9 The translation of the graph query “authors that were cited by John” into a graph

query language ...40

3.10 Four example visual graph queries ...43

3.11 Architecture of the visual graph-based bibliographic information retrieval system45

3.12 An algorithm for query semantics checking ...46

3.13 Examples of query correction and disambiguation ...47

3.14 An example of generating candidate graph queries ..50

3.15 Examples of translating visual graph queries into Cypher51

4.1 Generate Cypher query ...54

4.2 The search results for the example query ...56

4.3 An ER diagram for the relational database-based system ..58

4.4 Query execution time of queries of different groups ..61

 xi

4.5 Average query execution time of queries ...63

4.6 A natural language interface with an example query ..64

4.7 The analysis of a natural language query ..65

4.8 The search results of the example query ...66

4.9 The query execution time of queries with the number of named entities from two to

five ...68

4.10 The visual graph interface of the system ..70

4.11 Candidate graph queries and search results ..71

4.12 A semantically incorrect visual graph query ..72

4.13 Two candidate graph queries and search of the query ...73

5.1 Descriptive statistics for usability measures ...85

 xii

Abstract

Graph-based Interactive Bibliographic Information Retrieval Systems
Yongjun Zhu

Erjia Yan, Advisor, Ph.D.
Il-Yeol Song, Co-advisor, Ph.D.

In the big data era, we have witnessed the explosion of scholarly literature. This

explosion has imposed challenges to the retrieval of bibliographic information. Retrieval

of intended bibliographic information has become challenging due to the overwhelming

search results returned by bibliographic information retrieval systems for given input

queries. At the same time, users’ bibliographic information needs have become more

specific such that only information that best matches their needs is seen as relevant.

Current bibliographic information retrieval systems such as Web of Science, Scopus,

and Google Scholar have become an unalienable component in searching bibliographic

data. However, these systems have limited support of complex bibliographic queries. For

example, a query- “papers on information retrieval, which were cited by John’s papers

that had been presented in SIGIR” is an ordinary information need that researchers may

have, but is not appropriately representable in these systems. In addition, these systems

only support search for papers and do not support other bibliographic entities such as

authors and terms as the final search results.

Therefore, in this dissertation, we propose several bibliographic information retrieval

systems that can address complex bibliographic queries. We propose form-, natural

language-, and visual graph-based systems that allow users to formulate bibliographic

queries in a variety of ways. The form-based system allows users to formulate queries by

 xiii

selecting forms and input values in those selected forms. In the natural language-based

system, users formulate queries using a natural language. Users formulate queries by

drawing nodes and links in the visual graph-based system. These systems are based on a

graph model to enhance retrieval efficiency and provides interfaces for users to formulate

queries interactively.

Through a system-centered evaluation, we find that our graph-based system took less

time to process complex queries than a relational-entity-based system (two secs vs.

several mins on average). In addition, our visual graph-based system can deal with the

representation of advanced queries such as bibliographic coupling, paper co-citation, and

author co-citation, while current bibliographic information systems do not support these

queries. A user-centered evaluation reveals that participants rated the natural language-

based system the most useful, easy to use, and easy to learn. Participants also reported

that the form-based system was easier to learn than the visual graph-based system. Based

on the results of a usability evaluation, we find that the form-based system is preferred

for low-complexity tasks while the visual graph-based system is preferred for high-

complexity tasks. The strength of the natural language-based system is that no additional

effort is needed to formulate more complex queries. The proposed systems are effective

and efficient solutions for addressing complex bibliographic information needs. In

addition, we believe the experimental design and results shown in this paper can serve as

a useful guideline and benchmark for future studies.

	

 1

1. Introduction

1.1 Motivation and Overview

Journal articles and conference papers have proliferated in recent years. This is partly

due to online accessibility to scholarly literature. Online accessibility has shortened

publication cycles by enabling scholars to access others’ works before formal publication.

Thus, researchers are able to expedite their research activities and publish papers more

frequently. A natural concern is that it has become more challenging to find relevant

papers and discover knowledge from these papers.

Bibliographic information retrieval systems such as Web of Science, Scopus, and

Google Scholar have become an unalienable component in searching bibliographic data

(Chadegani et al., 2013). These systems continuously index ever-increasing scientific

literature, thus providing a source for scholars to learn, create, and represent new

knowledge (Jacso, 2005). However, with such a large amount of scientific literature,

sifting through them in hopes of excavating that one applicable nugget of information we

yearn for can be daunting and often frustrating—so much time consumed by mining so

many thousands of articles. It is a question of ascertaining relevancy. For example, a

query, “papers on information retrieval, which were cited by John’s papers that had been

presented in SIGIR” is an ordinary information need that researchers may have. Given

three pieces of background information: (a) SIGIR is a top venue for information

retrieval research; (b) John, a well-known researcher, has presented a few papers in

SIGIR; and (c) John’s papers were influenced by a number of other papers, researchers,

 2

who found John’s papers helpful, might also be interested in his cited papers. With the

dramatic increase of scientific literature, there is the pressing need of building effective

and efficient bibliographic information retrieval systems that support more granular and

complex bibliographic information needs.

A recent work by de Ribaupierre (2014) discussed a few important challenges

regarding bibliographic information retrieval in the big scholarly data area: the difficulty

of answering scholars’ precise bibliographic questions and the lack of techniques that

help scholars directly target their information needs. A follow-up interview showed that

researchers are interested in searching for papers as well as other entities such as authors

and keywords (de Ribaupierre, 2014). By exploring the current bibliographic information

retrieval systems, we found these systems have not mastered this. They have two main

limitations: (a) a limited support of entity types as the final search results; and (b) a lack

of support of complex queries as a way of representing information needs. Accordingly,

these systems are not adequate in addressing users’ more specific information needs and

impose a burden on them to use time consuming post hoc refinements and filtrations.

Motivated by addressing these limitations, we propose graph-based interactive

bibliographic information retrieval systems to provide more efficient and effective ways

of searching bibliographic information. The proposed systems are efficient because they

are based on the graph data model for fast retrieval. The systems are effective because

they provide novel ways of formulating bibliographic queries and satisfy specific

information needs that are not addressable in the current bibliographic information

retrieval systems. Users can develop their queries interactively by referencing the system-

generated graph queries.

 3

1.2 Research Questions

To address aforementioned limitations of current bibliographic information retrieval

systems, we aim to answer the following research questions.

1) How to design bibliographic information retrieval systems that support bibliographic

queries with complex relations of bibliographic entities?

To enable effective and efficient traversal through complex relations of bibliographic

entities, the choice of underlying data model is critical. The design of the overall

system framework that connects users’ bibliographic information needs with

bibliographic data serves an important research question.

2) How to design search interfaces that enable the representation of specific and

complex bibliographic queries?

Traditional search interfaces of bibliographic information retrieval systems are

limited in their capacity of representing complex bibliographic queries. How to

enable users to represent complex bibliographic queries through search interfaces and

interpret them is an integral part of the study.

3) How to implement and evaluate the systems using both system and user-centered

approaches?

Implementation of the back-ends of the systems, query analysis components, and

search interfaces is a way to validate the proposed systems. In addition, user-centered

evaluations of the systems provide empirical evidence on the applicability of the

systems in the real-world environment.

 4

1.3 Contributions

The proposed graph-based bibliographic information retrieval systems are scalable,

interactive, and time-efficient for retrieving bibliographic information. They have novel

features that outperform other systems: the designed systems support searching for

various types of bibliographic information such as papers, authors, affiliations, terms (e.g.,

keywords), and sources (e.g., journals or conferences); they provide interactive interfaces

for users to formulate complex and granular context-based queries; they allow users to

modify queries by showing graphical representations generated from users’ original

searches; and they expedite the all-important retrieval time by adopting the graph data

model.

The proposed systems can be used together with other bibliographic information

retrieval systems by utilizing each system’s advantages. Current bibliographic

information retrieval systems such as the Web of Science have advantages in providing

rich statistics such as citation, impact factor, and journal information. The rich

information can guide users to perform a more informed retrieval in our systems.

The systems can be used to aid researchers and practitioners by finding scholarly

literature more easily and quickly. Besides scientific literature, users can also identify

prominent researchers and top venues by forming naturally appropriate queries. They also

boost users’ efficiency in gathering information on researchers and research organizations

because they are capable of answering complex queries in a single step. This targeted

question-answering aspect satisfies a variety of users’ information needs in their

expedited quest for relevancy. The systems provide different user interfaces to cater

different user preferences.

 5

1.4 Outline

The remainder of this dissertation is organized as follows. Chapter 2 discusses

previous work related to our study. Chapter 3 introduces methodologies of the study and

present three bibliographic information retrieval systems. In Chapter 4, we present

system use cases and the results of a system-centered evaluation. In Chapter 5, we

evaluate three systems and report results of a user-centered evaluation. Finally, we

conclude this dissertation and introduce future research in Chapter 6.

 6

2. Related Work

This section introduces previous work related to various components of our study.

We first introduce fundamental and general knowledge on graph-based bibliographic

information retrieval systems such as graph models, graph data stores, graph-based

information retrieval systems, bibliographic information retrieval systems. We then

introduce several building blocks of the proposed systems such as natural language

interface, named entity recognition, syntactic analysis, and graph query interface. Finally,

we introduce related work on evaluation of interactive information retrieval systems.

2.1 Graph Models and Information Retrieval Systems

Graph data are prevalent in the real world as data from a variety of domains (e.g.,

physics, chemistry, biology, sociology, and computer science) can be represented by

graph data models (Aggarwal & Wang, 2010). Graph data models can represent relational

information and enable a number of applications by supporting efficient searching and

mining (Cook & Holder, 2006). Because of this, a few studies have investigated ways of

generating graphs from arbitrary data (e.g., Baeza-Yates, Brisaboa, & Larriba-Pey, 2010).

Bibliographic data are graph data in nature because they can be represented in the form of

interconnected papers, authors, terms, sources, and organizations. Recent bibliometric

studies, including searching bibliographic data, measuring scholarly impact (Yan & Ding,

2009), and mining bibliographic networks (Sun, Barber, Gupta, Aggarwal, & Han, 2011)

have taken the advantage of the graphical representation of bibliographic data. Regardless

 7

of the physical representations (e.g., relational databases) of graph data, efficient

searching of graph data is one of primary tasks for the information retrieval community

(e.g., Kacholia et al., 2005; Jiang, Wang, Yu, & Zhou, 2007; Yuan, Wang, Chen, &

Wang, 2013).

2.1.1 Graph Models and Graph Data Stores

Graph models have been widely used to represent data types that comprise entities

and relations among entities. Graph models have been adopted by various online social

networking services such as Facebook and Twitter to represent people and their relations

(Sakr & Pardede, 2012). A graph model is suitable to represent domains where many

complex relations exist and relations are extremely important to understand the domains

(Cook & Holder, 2006). Such domains include the World Wide Web, social networks,

biochemical networks, bibliographic information, and power grids. Graph models are

ideal to represent bibliographic networks of entities such as papers, authors, terms,

sources, and affiliations as well as relations such as cites (i.e., between papers), writes

(i.e., between authors and papers), has (i.e., between papers and terms), publishes (i.e.,

between sources and papers), and affiliated with (i.e., between authors and affiliations).

There are three main ways to represent a graph model, including relational databases,

triple stores, and graph databases. Relational databases, such as Oracle, allow users to

manage graph data by providing network data models. This type of relational database

stores connectivity information in a node table and a link table. Although relational

databases support a way of representing graph data, Aggarwal and Wang (2010) pointed

out that relational databases are fundamentally inadequate for supporting graph data. In

 8

relational databases, some operations such as graph traversal are costly to implement and

the situation becomes even worse as the graphs get larger. A triple store is another

popular data store for graph data. A triple store maintains triples and a triple comprises

subject, predicate, and object. A triple is generally represented by the Resource

Description Framework (RDF; Miller, 1998), which is a standard of W3C. Thus, a triple

store is often referred as a RDF store. Among triple stores, Apache Jena (Carroll et al.,

2004) and Sesame (Broekstra, Kampman, & Van Harmelen, 2002) are the popular ones.

Because triple stores are developed for graph data, they are more powerful than relational

databases. However, it is known that triple stores have scalability issues and the

performance of triple stores is negatively affected as the number of triples grows

(Aggarwal & Wang, 2010). Readers can refer to Rohloff and colleague’s study (2007) on

the comparisons of different triple store technologies.

Graph databases are the most recent development of graph data stores. It is a category

of the NoSQL system that is scalable and supports advanced features such as replication

and fault tolerance. Compared with triple stores, graph databases have these advantages

(Angles & Gutierrez, 2008): (a) graph databases support the representation of undirected

and weighted graphs whereas triple stores only support directed and unweighted graphs;

(b) graph databases do not require schema and have the so-called schema-free or schema-

less character whereas triple stores explicitly require schema; (c) graph databases are

suitable for managing big data. Because of these advantages, graph databases are more

suitable for real-world systems that deal with a large amount of data.

 9

2.1.2 Graph-based Information Retrieval Systems

Traditional information retrieval systems have adopted relational databases as the

primary way of managing data (Manning, Raghavan, & Schütze, 2008). In 2001,

Berners-Lee and colleagues proposed the concept of semantic web for effectively

utilizing web resources by adding meanings to web pages. Later, Guha and colleagues

(2003, p. 702) coined semantic search by defining it as “an application of the Semantic

Web to search which attempts to augment and improve traditional search results by using

data from the Semantic Web.” Because semantic web technologies are the core

component of semantic search, sematic search systems use triple stores as the underlying

database. Semantic search systems identify semantic entities from a keyword or natural

language-based query, match semantic entities with ontology resources, and then express

the meaning of the original query by supplementing it with additional semantic

information from an ontology physically represented in a triple store. Thus, queries can

be semantically interpreted to deliver more accurate and meaningful results. Among

many semantic search systems, SemSearch (Lei, Uren, & Motta, 2006), OntoLook (Li,

Wang, & Huang, 2007), SPARK (Zhou, Wang, Xiong, Wang, & Yu, 2007) as well as the

system proposed by Tran and colleagues (2007) are the most representative. They differ

in terms of query type (i.e., keyword-based vs. natural language-based), multiple

semantic matching (i.e., between semantic entities and ontology resources), connections

among semantic entities (i.e., direct connection vs. indirect connection), and multiple

properties (i.e., one property vs. multiple properties among semantic entities).

Although graph databases are another popular graph data store, to our best knowledge,

there lacks a fully designed and developed graph database-based information retrieval

 10

system. However, there are studies that explored issues of graph databases to improve the

quality of information retrieval. These issues include, notably, graph database indexing

(e.g., Williams, Huan, & Wang, 2007), pattern match query (e.g., Zou, Chen, & Özsu,

2009), subgraph mining (e.g., Huan, Wang, Prins, & Yang, 2004), and substructure

similarity search (e.g., Yan, Yu, & Han, 2005). Recently, Internet companies such as

Google, Twitter, and Facebook are adopting graph databases for efficient information

retrieval (Rajbhandari, Shah, & Agarwal, 2012). For example, Google has adopted

“Knowledge Graph”—a form of graph database—to provide better search results

(Singhal, 2012).

2.1.3 Bibliographic Information Retrieval Systems

Bibliographic information includes information such as papers, authors, terms (e.g.,

keywords), sources (e.g., journals, conferences), and affiliations. Google Scholar and the

Web of Science only support search for articles as the final search results. They may

return articles with metadata such as authors in the result page, but not authors as the

final search results (i.e., a list of authors). In order to retrieve all authors’ names, we have

to do download and extract metadata from articles in search results. This is labor-

intensive given the amount of articles in search results. In addition, other bibliographic

information such as “organization” or “keyword” is not directly available in Google

Scholar or the Web of Science. We need a bibliographic information retrieval system that

supports the search of all pertinent bibliographic information. If users become interested

in new, previously unnoticed, but necessary bibliographic information, the system should

also be scalable by supporting the search of other bibliographic information. For example,

 11

in some cases, users may want to get terms as the final search results to know which

terms are actively studied given a list of articles. Bibliographic information, such as

authors and organizations, are important in research evaluation and impact assessment.

This bibliographic information can be used to evaluate scientific productivity and impact

of authors or their organizations to appropriately make promotion decisions or allocate

research funds (e.g., Geuna & Martin, 2003).

Another important feature that bibliographic information retrieval systems need to

provide is searching bibliographic information by contexts. With contexts, we mean a

variety of ways in which we use related metadata to describe the target bibliographic

information. For example, in the case that we search for authors who are affiliated with

Happy University and wrote papers that were cited by papers in SIGIR, the system

should be able to provide a way in which we can express this context.

Through personal experiences as well as studies about the current bibliographic

information retrieval systems (e.g., Aghaei Chadegani et al., 2013; Falagas, Pitsouni,

Malietzis & Pappas, 2008; Jacso, 2005; Score, 2009), we found that these systems, such

as the Web of Science, Scopus, and Google Scholar only support articles as the final

search results. Additionally, these systems have limitations in representing complex

bibliographic queries. For example, searching for experts regarding specific terms within

an organization is not supported. This kind of query is closely related to many use cases.

A student whose research interest is information retrieval, and wants to apply to

“University A” may need to identify professors whose interest is also information

retrieved and affiliated with “University A.”

 12

2.2 Search Interfaces

2.2.1 Natural Language Interfaces

Natural language interfaces (NLI) are used to query structured information stored in

databases. Two types of NLI can be distinguished: one is natural language interfaces to

databases (NLIDB), in which a relational database is used to store structured information;

the other is natural language interfaces to knowledge bases (NLIKB) that use an ontology

to manage information (e.g., Habernal & Konopík, 2013; Abacha & Zweigenbaum, 2015).

While the two types of NLI use different database systems, they have common

components, including the interpretation of natural language queries and concept

mappings between entities in queries and databases (e.g., Cafarella & Etzioni, 2005;

Tablan et al., 2008).

The relational data model (Codd, 1970) proposed in the early 1970s had a major

impact on NLIDB research. NLIDB are highly portable and can be attached to existing

databases because relational databases are the norm of most traditional information

retrieval systems (Vicknair et al., 2010). Compared to NLIDB, NLIKB have a relatively

short history with the inception of semantic web (Berners-Lee et al., 2001). Databases in

this category deploy rich expressive power of ontologies represented in the resource

description framework (Miller, 1998), thus generally achieving higher performances (e.g.,

Kaufmann & Bernstein, 2010). Readers can refer to Androutsopoulos and colleagues’

work (1995) for a comprehensive review of NLIDB systems. Recent NLIKB systems

include PowerAqua (Fazzinga & Lukasiewicz, 2010), ORAKEL (Cimiano et al., 2008),

 13

FREyA (Damljanovic et al., 2010), PANTO (Wang et al., 2007), and NLP-Reduce

(Kaufmann et al., 2007).

Another type is NLI to graph databases (e.g., Roy & Zeng, 2013). Graph databases

have comparable expressive power with ontologies (i.e., triple stores), but a much higher

scalability, which are more suitable to real-world systems (Angles & Gutierrez, 2008).

Graph databases have been increasingly used in information retrieval systems (e.g., Park

& Lim, 2015). Graph databases excel relational databases in answerable questions due to

its advantage on representing complex relations among data given that natural language

queries are represented using complex relations among concepts.

2.2.2 Named Entity Recognition

Named entity recognition (NER) is a task of identifying names of things in texts.

These things include but not limited to persons, organizations, locations, and biomedical

entities (Nadeau & Sekine, 2007). Early NER systems used rule-based methods to

recognize named entities. In a rule-based NER system, patterns in a text are identified

and appropriate rules are handcrafted based on those patterns. Thus, a rule-based method

is mainly used in self-contained domains and has a limited applicability (e.g., Rau, 1991).

A dictionary-based NER system utilizes predefined dictionaries and performs a look-up

in texts (e.g., Ryu, Jang, & Kim, 2014; Mu, Lu, & Ryu, 2014). The method is widely

used in domains such as biomedicine, in which named entities are well recorded and

managed, for instance, in protein recognition (Tsuruoka & Tsujii, 2003) and drug

recognition (Rindflesch et al., 2000). Another popular category of NER is statistical NER

(e.g., Derczynski et al., 2015). Widely used statistical NER includes maximum entropy

 14

(ME)- (Chieu & Ng, 2002), hidden Markov models (HMM)- (Bikel et al., 1997), and

conditional random fields (CRF)-based (McCallum & Li, 2003) NER systems. Some

NER systems use more than one type of NER: for example, Stanford NER (Finkel et al.,

2005) provides both dictionary- and statistical-based NER through a gazette feature.

 Bibliographic data are relatively easy to obtain through well-known bibliographic

databases such as Web of Science and DBLP. Thus, in this dissertation, we used a

dictionary-based approach to recognize bibliographic named entities (i.e., authors, papers,

organizations, terms, and sources) from a natural language query. By recognizing

bibliographic named entities in a query, we are able to extract these entities as well as

their relations to learn and answer queries.

2.2.3 Syntactic Analysis

A classic way of parsing is to derive parses from a string of words based on a

structure grammar of prewritten phrases (i.e., context-free grammar) (e.g., Earley, 1980).

With the introduction of annotated data such as The Peen Treebank (Marcus et al., 1993),

a number of statistical parsers were proposed and became popular. Readers can refer to

Collins’ work (1997) for a more extensive review on statistical parsing models.

Two popular ways of representing syntactic structures are constituency and

dependency. For constituency, words in a sentence are organized into nested constituents;

while for dependency, dependent relations between words are shown (Klein & Manning,

2004). Dependency parses can be obtained from dependency parsers (e.g., Fersini et al.,

2014) or phrase structure parsers (i.e., constituency) by a conversion system (e.g., De

Marneffe et al., 2006). In this dissertation, we use a dependency structure to identify

 15

grammatical relations among words. Because we are interested in grammatical relations

among bibliographic named entities recognized in natural language queries, dependency

structures are more straightforward than constituency structures that also show relations

between phrases.

2.2.4 Graph Query Interfaces

Earlier studies on visual graph queries were carried out by taking a specific data

structure—XML in mind (e.g., Ceri et al.,1999; Erwig, 2003; Ni & Ling, 2003; Ykhlef &

Alqahtani, 2009). These studies proposed visual graph queries for querying and

restructuring XML data. As XML data are quite complex with multiple nested structures,

visual graph queries are seen as an efficient solution. Because the main goal of these

studies was to build efficient languages of visual graph queries by investigating the

structural aspects of XML documents, they are intended to be used by other systems but

not the end users.

Recent studies (Hogenboom, Milea, Frasincar, & Kaymak, 2010; Schweiger,

Trajanoski, & Pabinger,2014) proposed visual graph query interfaces for users to query

graph data. However, these visual graph queries were designed only to search for data

that are stored as Resource Description Framework (RDF) triples, which is a standard

data format of Semantic Web. Because SPARQL is the de facto standard RDF query

language, those visual graph queries were designed to be translated into SPARQL, which

limits their applicability. Gómez-Villamor and colleagues (2008) proposed a

bibliographic exploration tool based on a graph query engine. The tool employed visual

 16

graphs, while the actual queries are formulated by clicking one of three predefined

queries other than a graph.

2.3 Evaluation of Interactive Information Retrieval Systems

Evaluations of interactive information retrieval (IIR) systems have been discussed in

studies from earlier decades (e.g., Salton, 1970) to more recent years (e.g., Borlund,

2016). Kelly’s two seminal studies (Kelly, 2009; Kelly & Sugimoto, 2013) reviewed

extensive studies on this topic published before 2010. Readers may refer to the

abovementioned studies to get a detailed understanding of the field. In this section, we

provide a review of related work that was published after 2010 to deliver recent findings.

In the reviewed literature, we identified three main research themes: studies that explored

relationships among established IIR measures; studies that explored a variety of aspects

of work and search tasks; and studies that proposed IIR evaluation frameworks and

systems. In the following paragraphs, we synthesize the findings of these studies.

2.3.1 Relationships of Interactive Information Retrieval Measures

Al-Maskari and Sanderson (2010) examined the relationship between four factors (i.e.,

system effectiveness, user effectiveness, user effort, and user characteristics) and user

satisfaction to understand whether user satisfaction is influenced by these factors. The

authors found a strong correlation between user effectiveness and user satisfaction.

System effectiveness and user effort had weak correlations with user satisfaction.

However, their results showed no correlation between user characteristics and user

 17

satisfaction. In their subsequent study (Al-Maskari & Sanderson, 2011), the effect of user

characteristics on user effectiveness was investigated. User characteristics was measured

by users’ search experience and cognitive skills (i.e., perceptual speed). A few empirical

findings were reported: experienced users retrieved much more relevant documents than

inexperienced users and users received higher scores on the perceptual speed test took

much less time than users with lower scores to locate the first relevant document.

Smucker and Jethani (2010) examined the relationship between retrieval precision and

perceived difficulty. They showed that a higher retrieval precision reduced users’

perceived difficulty and their relationship was statistically significant.

2.3.2 Work and Search Tasks

Li and Belkin (2010) explored the relationship between work tasks and users’ search

behaviors in interactive information retrieval. Six types of work tasks were employed

based on their faceted classification scheme (Li & Belkin, 2008). They found that users

presented different patterns of search behavior in different types of work tasks. Key

findings include: in schoolwork-related tasks, users consulted library resources much

more often than search engines such as Google, and in decision-making work tasks, users

relied more on browsing than in schoolwork-related work tasks. Liu and colleagues (2010)

also explored search behaviors in different task types in journalism. They classified tasks

based on a modified version of Li’s classification scheme (2009) by adding a new facet.

Specifically, they examined the associations between search behaviors (e.g., task

completion time, number of pages visited, number of queries) and different facet values

(i.e., task product, task complexity, level, and task goal). A list of significant associations

 18

were reported in their study. Wildemuth and Freund (2012) reviewed 51 studies on

exploratory search tasks and provided a list of task characteristics in exploratory search.

Identified task characteristics were grouped into two categories: cognitive (e.g., learning

and investigation as goals, general rather than specific) and behavioral (e.g., open-ended,

target is multiple items). In a follow-up study, Wildemuth and colleagues (2014)

reviewed 106 studies to examine how search task complexity and difficulty were defined

and practiced. They identified three dimensions of task complexity including multiplicity

of subtasks, multiplicity of facets, and uncertainty. They showed that search task

difficulty can be measured both objectively and subjectively. Kelly and colleagues (2015)

examined search tasks using a cognitive complexity framework from education theory.

Search tasks were created and divided into five levels based on the framework to

understand the differences among tasks. They found that participants showed more search

activities in more cognitively complex tasks, but did not see more cognitively complex

tasks as more difficult. This finding showed that self-reported task difficulty was not in

line with physical effort (e.g., queries formulated, clicks, and time taken to complete

tasks). Borlund and Schneider (2010) reviewed 85 individual studies that applied the

concept of simulated work task introduced by her and Ingwersen (1997) to find how and

where it was used. The main goal was to understand how the three parts of

recommendations made in her earlier study of IIR evaluation model (Borlund, 2003)

were practiced. Results showed that those recommendations were not well applied and

studies varied in the way of reflecting and practicing the recommendations. A detailed

follow-up study was conducted in 2016 (Borlund, 2016). In addition to the previous

finings, the author showed that none of reviewed studies used pilot testing that is

 19

important to tune and refine simulated work task situations. Along with these findings,

recommendations were made regarding the design and the creation of simulated work

tasks. Clemmensen and Borlund (2016) studied order effect in IIR evaluation. They

examined nine IIR parameters of search behavior in a between-group design. Results

showed that order effect was evident in three parameters including website change, visit

of webpage, and formulation of queries.

2.3.3 Interactive Information Retrieval Evaluation Frameworks and Systems

A few frameworks and systems for IIR evaluations were proposed to aid researchers

to conduct systematic evaluations. Renaud and Azzopardi (2012) proposed a web-based

system that allows simple within-subjects experiments. The system includes a series of

experimental components such as participant registration, consent, surveys, and logging

information. While their system was particularly designed for undergraduate and

Master’s students as the authors stated, Hall and Toms (2013) proposed a framework that

provides a common baseline by including existing evaluation measures to enable cross-

study comparison. Another goal was to make the framework flexible and applicable to a

large number of experiments. To achieve this, the framework defined a standardized set

of questions and was designed to be easily integrated with existing systems. Zuccon and

colleagues (2013) proposed a method of evaluating IIR systems using a crowdsourcing

platform. The proposal was based on the motivation to address a few limitations of

traditional laboratory-based evaluations such as high cost and the lack of heterogeneity

among the user population. In the proposed method, evaluations of IIR systems including

task assignment and data collection are taken online. A case study was performed to

 20

compare the laboratory- and crowdsourcing-based evaluations. Results showed that the

two methods led to similar conclusions on the effectiveness of the studied IIR systems

while the crowdsourcing-based method could collect five times more data than

laboratory-based method with only half the cost. However, a few limitations of

crowdsourcing-based method were also pointed out. These limitations include

participants’ lack of interactions with systems (e.g., issue fewer queries, click fewer

documents), the control of data quality (e.g., data generated by bots), and the assessment

of the reliability of participants’ personal information. Recently, Wei and colleagues

(2014) proposed a new web-based system for IIR evaluation. The system enables

usability testing of different search task interfaces as well as different algorithms with the

same search task interface. One strength of the system is the rich support of eye-tracking

logging that includes automated recoding of interface element coordinates. Because the

system was primarily designed using JavaScript, it has a broad applicability in the web

environment.

 21

3. Methodology

 This section discusses methods of the study. We introduce system architectures and

components of the systems. Specifically, in the form-based system, we introduce methods

on query generation, query refinement, and querying graph database. In the natural

language-based system, methods on the analysis of natural language queries, the

generation of graph queries, and the translation of graph queries are discussed. Finally, in

the visual graph-based system, we discuss methods on the verification of visual graph

queries and the generation and interpretation of graph queries.

3.1 Form-based Bibliographic Information Retrieval System

3.1.1 System Overview

The form-based interface is widely used in current bibliographic information retrieval

systems including Web of Science and Scopus. In the form-based bibliographic

information retrieval systems, users first select fields (e.g., topic and author) and then

type appropriate values for each field. In the proposed form-based system, users

formulate queries by interacting with forms in a way similar to that of Web of Science.

The difference is that the system allows for the formulation of more complex queries that

involves citations. A user can select the bibliographic type he search and add additional

information to both the cited and citing sides. A graph query is generated based on the

form query and allows the user to validate the initial query. Users can modify form

queries interactively before sending them to the database.

 22

3.1.2 System Design

The form-based system is developed on the Spring Framework that uses a graph

database Neo4j for the management of bibliographic data and D3.js for visualization.

Bibliographic data are by nature a directed graph with nodes and links. For example, a

link named “WRITES” is a directed link, in which the source is an “Author” and the

target is a “Paper”. There are a variety of ways to model bibliographic data using graphs.

The one shown in Figure 3.1 shows a typical schema of bibliographic data with five

bibliographic entities. In the schema, “Source” denotes a journal or a conference in which

authors publish or present papers. “Term” denotes a keyword, a topic; or a concept that

describes a paper.

	

Figure 3.1: A conceptual schema for bibliographic data

 23

3.1.2.1 System Architecture

The system has three parts: query generation, query refinement, and querying graph

database. The general steps are shown in Figure 3.2: (a) users generate form queries

based on their information needs; (b) the system represents generated form queries in the

form of graph queries; (c) generated graph queries are sent back to users; (d) based on the

returned graph queries, users refine their queries if necessary; (e) after refinement

(optional), form queries are translated into graph database query languages; (f) the system

queries graph database; (g) graph database sends query results to the system; (h) the

system returns search results to users. The searching process is an interactive and iterative

process in which users proceed towards the right representation of their information

needs.

	
	

Figure 3.2: The process flow of the form-based system

 24

3.1.2.2 Query Generation

As shown in Figure 3.1, the system supports the search of five types of bibliographic

information: papers, authors, terms, sources, and organizations. The system can also

support other types of bibliographic information by simply adding and connecting them

with the existing entities in the schema. Each type has a property called name. First, the

user selects one target entity. Next, the user selects one or a few anchor types that restrict

the target entity by providing the values of name properties for each anchor type. For

example, when searching for papers, the user can choose a few anchor types such as

author and source to restrict the papers.

In scenarios that involve citations, the user needs to designate whether the target is at

the cited side or at the citing side. For example, if the user wants to search for authors in

the context of citations, the user needs to specify whether the authors are the authors of a

cited paper or a citing paper. Then, the user selects anchor types for the cited or citing

side. For example, a user who wants to search for authors who are affiliated with Happy

University and wrote papers that were cited by papers in SIGIR, needs to select authors

as the target type, specify its citation type as cited, add an anchor type—organization to

the cited side, and add another anchor type—source to the citing side.

After generating a form query by selecting target types and anchors types, and

providing values for anchor types, the form query is sent to the system to generate a

graph query.

 25

3.1.2.3 Query Refinement

The system generates graph queries based on users’ form queries. The purpose of

generating graph queries is to provide users an easy way of verifying their original

queries and make modifications if necessary. A graph query is a representation of a form

query using nodes and relations. It is generated directly from form queries and shows

graph representations of form queries. Figure 3.3 uses a sample data set to showcase the

functions of the system.

	

Figure 3.3: A sample dataset

Figure 3.4 shows the interface of a graph query page using the sample data set. As

shown in Figure 3.4, relations among various types of bibliographic entities are explicitly

shown. The target type is colored black, one or more anchor types with user-provided

 26

labels are colored red. Entities that are not specified by users, but necessary to connect

the target and anchors are in blue.

	

Figure 3.4: An information retrieval example

Based on graph queries, users can capture and verify the meaning of the generated

form queries. This process is interactive and users can refine their original queries

iteratively if necessary. The graph query component was developed by using D3.js. Using

forms to represent complex searching context may not be very intuitive; providing

interactive interface by showing graph queries can eliminate any confusion that may arise

during the formulation of form queries. The step of generating graph queries is optional,

 27

which means users can let the system directly generate graph query language based on

form queries.

3.1.2.4 Querying Graph Database

Once the user confirms form queries, the system translates form queries into the

graph query language. The system uses Neo4j as the database to represent networks of

bibliographic information and Cypher as the query language. Dominguez-Sal et al. (2010)

have compared Neo4j with other graph databases, and concluded that Neo4j is one of the

two most efficient graph databases with DEX (now known as Sparksee). Cypher is the

default query language of Neo4j, and a recent study performed by Holzschuher and Peinl

(2013) reported that Cypher has high readability, maintainability, as well as efficiency in

development time. Even though the system uses Cypher as a graph database query

language, other graph query languages such as SPARQL and Gremlin can be used as

long as the graph database in use supports these query languages.

The system translates form queries into Cypher by interconnecting provided

bibliographic entities based on the conceptual schema shown in Figure 3.1. When

translating form queries into graph query language, connections among bibliographic

entities that are not directly shown in the form query are explored and supplemented to

form a complete path of the graph query language. After translation, the generated

Cypher query is directly sent to Neo4j. Retrieved query results are then returned to the

user.

 28

3.2 Natural Language-based Bibliographic Information Retrieval System

3.2.1 System Overview

A natural language interface allows users to formulate queries expressed in natural

language. The natural language-based system interprets bibliographic queries expressed

in controlled natural language and returns relevant bibliographic data and relations.

Natural language queries supported in the system are restricted to complex nominal

phrases that describe bibliographic entities. A natural language-based system tailored for

bibliographic environment provides a new and effective way of searching bibliographic

data. In addition, from practical aspects, by enabling users to formulate bibliographic

information needs in natural language, it liberates users from learning cumbersome ways

of representing those needs. With ever-increasing bibliographic data, a natural language-

based system allows an effective retrieval of data by enabling the representation of

complex bibliographic information needs and simplifying the search process into a single

step without multiple refining procedures.

3.2.2 System Design

3.2.2.1 System Architecture

The system architecture is designed to take a natural language query as the input and

return correct answers as the output. This is achieved by translating the input into a

database query language. A natural language query is translated into a graph query

language because we use a graph database to manage bibliographic data. Multiple steps

 29

are involved in the translation, including finding answers to questions such as: 1) what is

being asked? 2) what entities should be used to constrain the answer? and 3) how does

the asked entity relate to other entities? Figure 3.5 uses a flow chart to describe how the

core components of the framework interact with each other.

	
Figure 3.5: The flow chart of the natural language-based system

	
	
	

The steps are as follows: 1) a user formulates a query expressed in natural language; 2)

bibliographic named entity recognition is performed by referencing predefined

dictionaries and recognized bibliographic named entities are then extracted; 3) a natural

language query is tokenized based on the result of bibliographic named entity recognition;

4) the tokenized natural language query is parsed to identify grammatical relations among

bibliographic named entities; 5) the grammatical relations are filtered and graph relations

are generated ; 6) a graph query is formulated by combining bibliographic named entities

and graph relations; 7) the graph query is translated into a graph query language; and 8) a

graph database is queried.

 30

3.2.2.2 The Analysis of Natural Language Queries

1) The formulation of natural language queries

Although the system is designed to process a natural language query, it is not a

question answering system. Thus, a complete sentence with an interrogative pronoun is

not supported in the system. Instead, noun phrases such as “papers that were written by

John” and “authors of papers that were published in SIGIR” are expected queries.

Because the interpretation of natural language queries depends on syntactic analysis,

queries are expected to have no grammatical error. In addition, relative pronouns, such as

“that”, are expected to be included in a query to guarantee that a syntactic parser parses

the query correctly. For example, a query “papers that were written by John” is the

preferred form of “papers written by John”.

2) The recognition and extraction of bibliographic named entities

We adopt a dictionary-based named entity recognition approach. We use a simple

map structure to construct a dictionary, in which keys are names of bibliographic entities

(e.g., “John”, “SIGIR”, and “information retrieval”) and values are their bibliographic

types (i.e., Paper, Author, Term, Source, and Organization). These five bibliographic

types are regarded as the most useful as shown in previous studies (e.g., Sun, Yu, and

Han, 2009). A dictionary is constructed by preprocessing the bibliographic dataset on

which we perform searches. Five types of bibliographic instances and their type

information are extracted from a self-explanatory dataset. Disambiguation is not

performed due to the lack of appropriate identification data. We also add five

bibliographic types as keys with annotations to show that they are bibliographic types.

For example, the entry <“paper”, “class_Paper”> is added to the dictionary so that the

 31

system recognizes words such as “paper” and “author” in natural language queries. An

additional annotation “class_” is added because we want to differentiate five entity types

with bibliographic entities.

An approximate string matching algorithm introduced in Gusfield’s work (1997) is

used to implement the NER algorithm. In the algorithm, a distance of 1 was assigned to

insertion, deletion, and substitution of a character. A maximum distance of 1 was allowed,

so that we can recognize plurals or singulars when we have only one form of the two of

bibliographic named entities. For example, “Information System” in a query could be

identified as a named entity when we only have the term “Information Systems” in our

dictionary.

3) The tokenization of natural language queries

We tokenize queries based on the results of named entity recognition to prepare

parsing in the next step. After recognizing named entities, we mark named entities of

multiples words as single tokens, and then feed queries into a standard tokenizer. This

supervised tokenization complements tokenizers’ shortage of domain knowledge on

technical terms. For example, without using the results of named entity recognition, terms

composed of multiple words such as “information retrieval” will be processed into two

different tokens. Tokenization based on the results of named entity recognition can avoid

this limitation because terms recognized as a single named entity are treated as one token.

Table 3.1 shows the difference between tokenization without NER and with NER using

an example query “papers about information retrieval and data mining”, in which tokens

are separated by pairs of parentheses.

 32

Table 3.1: Tokenization without NER and with NER

Query papers about information retrieval and data mining

Tokenization without NER (papers), (about), (information), (retrieval), (and), (data), (mining)

Tokenization with NER (papers), (about), (information retrieval), (and), (data mining)

3.2.2.3 The Generation of Graph Queries

1) The parsing of tokenized natural language queries and the extraction of grammatical

relations

We use Stanford parser (Klein & Manning, 2003) to parse queries. The output we

generate is the Stanford dependencies (De Marneffe et al., 2006) that use 56 grammatical

relations to represent binary relations among tokens. Grammatical relations are used to

find out which tokens depend on or modify other tokens. For a bibliographic natural

language query, parsing is used to find out grammatical relations among bibliographic

named entities represented by tokens. Table 3.2 shows the dependency relations of a

sample query “papers about information retrieval and data mining”. Readers can refer to

De Marneffe and colleague’s work (2006) for a detailed explanation of each dependency

relation.

 33

Table 3.2: Dependency relations of the query "papers about information retrieval and data
mining"

Order Subject Object Relation Code Relation Name

1 papers root root

2 information retrieval about case case marker

3 papers information retrieval nmod nmod_preposition

4 information retrieval and cc coordination

5 papers data mining nmod nmod_preposition

6 information retrieval data mining conj conj_collapsed

For queries that involve citations such as “papers about information retrieval that

were cited by papers that were written by John”, they are divided into two parts: a cited

part and a citing part. By doing so, we reduce the complexities and errors in interpreting

queries, because a long list of dependency relations may be error-prone. By dividing the

example query into two parts, we no longer need to consider grammatical relations

between “papers” in the cited part and “John” in the citing part. This is a practical way to

improve the performance of a parser, and thus, words such as “cited”, “cites”, “cite”, and

“citing” are used to divide a query into two parts. Parsing is separately applied to each

part, and the results are integrated in a later step to generate graph relations.

2) The generation of graph relations from dependency relations

A graph query is a graph representation of a natural language query, in which nodes

are recognized bibliographic named entities and links are relations of those entities.

Graph relations denote relations that are necessary for building complete graph queries

that represent natural language queries. Thus, graph relations are subsets of dependency

relations, and graph relations are selected from dependency relations. Irrelevant relations

 34

(i.e., relations among non-bibliographic named entities) that are included in dependency

relations are omitted in this process. The selection is performed by considering both the

patterns of queries and the database schema that is used to store bibliographic data.

Figure 3.6 shows the algorithm we use to select graph relations from dependency

relations. We build the heuristics by combing the test results of a list of expected queries

and the database schema. Thus, the heuristics introduced here are dependent on the

database schema we use (Figure 3.1) and subject to change if a different schema is

employed.

	

Figure 3.6: The flow chart of selecting graph relations from dependency relations

As shown in Figure 3.6, a relation is selected as a graph relation if both the subject

and the object of the relation are named entities. “conj” denotes “conjunct”, and it is used

 35

if two tokens are connected by a coordinating conjunction, such as “and” and “or”. In our

case, the relations do not play constructive role in building a graph query, and is thus

discarded. Accordingly, the third and fifth relations in Table 3.2 are selected as graph

relations while the sixth relation is not. Table 3.3 shows another dependency relations of

an example query “papers that were written by John”.

Table 3.3: Dependency relations of the query "papers that were written by John"

Order Subject Object Relation Code Relation Name

1 papers root root

2 written papers nsubjpass nominal passive subject

3 papers that ref referent

4 written were auxpass passive auxiliary

5 papers written acl:relcl relative clause modifier

6 John by case case marker

7 written John nmod nmod_preposition

Table 3.3 shows the case in which two bibliographic entities are not directly

connected by a dependency relation. It is a normal use case and the algorithm can deal

with such use cases. First, the fifth and seventh dependency relations are selected. Then,

the subject of fifth relation “papers” and the object of seventh relation “John” are

connected to form a new graph relation as shown in Figure 3.6. It is a repeated pattern in

bibliographic natural language queries that two relation types “acl”relcl” and “nmod” are

used to connect two bibliographic named entities.

 36

3) The conversion of bibliographic named entities to graph nodes

The conversion takes place in three steps. First, we identify the bibliographic named

entity that a query is asking. For example, in the query “papers that were written by

John”, the answer node is “papers”. The identification of an answer node is to locate the

object of a “root” relation in parsing results (e.g., “papers” in Table 3.3). Second, we

assign each bibliographic named entity a unique instance name that will be used when

generating a graph query language. This allows us to differentiate bibliographic named

entities with the same name and type the entity “papers” in the query “papers that were

cited by papers that were written by John”. Lastly, we identify bibliographic named

entities that constrain the answer node. For example, “information retrieval” in the query

“papers about information retrieval” constrains the answer node “papers” by adding a

condition. If the type of a bibliographic named entity does not contain the string “class_”,

the named entity is a constraint node. This explains the reason that we add the string

“class_” to the values of five bibliographic types when constructing the dictionary. Table

3.4 shows instance names, answer nodes, and one or more constraint nodes in the query

“papers that were cited by papers that were written by John”.

Table 3.4: Graph nodes in the query "papers that were cited by papers that were written
by John"

Named Entity Instance Answer Node Constraint Node

papers cited_Class_Paper_1 Yes No

papers citing_Class_Paper_2 No No

John citing_Author_3 No Yes

 37

Information shown in Table 3.4 is an important building block of a graph query

language used to query graph databases. It enables the construction of a graph query

language by providing all necessary information of nodes in a bibliographic graph.

4) The check of connectedness and directions of graph relations

Connectedness denotes whether two bibliographic named entities are directly

connected in a database schema. For example, two bibliographic named entities “papers”

and “happy university” in the query “papers by happy university” are not directly

connected in the schema: “Paper” is connected to “Author” and “Author” is connected to

“Organization”. Even though the parsing results suggest a dependency relation between

the two bibliographic named entities, the dependency relation should not be selected as a

graph relation because it does not conform to the database schema. Thus, we check every

dependency relation and add required nodes and relations to form a complete set of graph

relations (Figure 3.7).

	
Figure 3.7: The check of connectedness and directions of the query "papers by happy

university"

 38

After checking the connectedness of each graph relation and adding necessary new

nodes and relations, we check the direction of each graph relation to see whether the

source and target of each graph relation conforms to the database schema. In a graph

query language, we need to provide a set of graph relations with explicit definitions of

sources and targets. For example, the relation between “Paper” and “Author” can be

either modeled as “WRITES” or “IS_WRITEEN_ BY”, which have different directions.

In the above example, the graph relation (papers, Author) was converted into (Author,

papers) based on the schema we used.

5) The integration of cited and citing parts

As mentioned previously, we divide a query that involves citations into two parts to

reduce the complexities in interpreting natural language queries. These two parts are

parsed and converted into graph nodes and graph relations separately. To generate a

single graph query, we need to integrate both nodes and relations from two parts. The

integration of nodes is achieved by creating a new node set and moving all cited and

citing graph nodes to the set. The integration of relations is achieved by connecting two

bibliographic named entities with the type of “Paper” in cited and citing parts. If one or

two parts do not include a bibliographic named entity with the type of “Paper”, we add a

new graph node “Paper” to the part(s) and a graph relation that connects cited paper and

citing paper. For example, the query “authors cited by John” denotes authors whose

papers that were cited by papers written by John, but both the cited and citing part do not

have a bibliographic named entity with the type of “Paper”. Figure 3.8 shows the way to

handle such queries.

 39

	

Figure 3.8: The integration of cited and citing parts in the query "authors cited by John"

As shown in Figure 3.8, two “Paper” nodes are added to both cited and citing parts.

The nodes are then connected to the existing nodes “authors’ and “John”, respectively.

Finally, two “Paper” nodes are connected through a citation relation.

3.2.2.4 The Translation of Graph Queries

1) The translation of a graph query into a graph query language

In this step, we translate a graph query into a graph query language. Widely used

graph query languages such as Cypher, Germlin, and SPARQL have different syntaxes,

but have the same building blocks, i.e., patterns, constraints, and return types. Because

graph relations in a graph query are checked for connectedness and directions, and thus

 40

conform to the database schema, they can be directly translated into a graph query

language. Constraints and return types are also available as we identify an answer node

and constraint nodes in the previous step. Figure 3.9 shows how the graph query of a

natural language query “authors that were cited by John” is translated into a graph query

language. Four graph nodes derived from four named entities (NE1, NE2, NE3, and NE4)

and three relations (R1, R2, and R3) among these graph nodes are identified. These nodes

and relation are directly used to generate a graph query language.

	
	

Figure 3.9: The translation of the graph query "authors that were cited by John" into a
graph query language

Graph relations are used to derive patterns (i.e., paths), and a constraint is derived

from the constraint node (i.e., citing_Author_4). The return type in a graph query

 41

language is the answer node (i.e., cited_Author_1) in the graph query. With these three

building blocks, a query language can be generated.

2) The query of a graph database

The generated query is submitted to a graph database to retrieve bibliographic data.

Another option to query graph databases is to use embedded codes written in

programming languages such as Java and C++, as graph databases provide application

program interface (API) for data management. However, this approach would reduce the

compatibility of a system because graph databases have different APIs. Thus, the

framework is designed to translate a natural language query into a graph query language

that is supported by a number of graph databases (Holzschuher & Peinl, 2013).

3.3 Visual Graph-based Bibliographic Information Retrieval System

3.3.1 System Overview

Graph queries are a way of searching graph data by taking a graph pattern with a few

constraints over nodes and edges as input, which is a natural fit to graph data (He &

Singh, 2008). Graph queries are known to convey richer information than other forms of

queries and thus improve search performance (e.g., Zhou, Wang, Xiong, Wang, & Yu,

2007). In the visual graph-based system, users formulate bibliographic queries by

drawing nodes and their relations. A reference schema is provided so that users can

formulate visual graph queries based on it. The system includes a verification module and

guides users to formulate a syntactically and semantically correct queries.

 42

3.3.2 System Design

3.3.2.1 Bibliographic Graph Queries

Bibliographic graph queries can be formulated on the basis of the schema (Figure 3.1)

with the following additional information:

1) Node type

Every node in a graph query needs to be specified with a type (e.g., Paper). Node type

is essential for creating links among nodes because links are created by considering the

relations of the types of two nodes. For instance, a node with the type of “Organization”

is not linked with a node with the type of “Term”, while it can be linked with a node with

the type of “Author”.

2) Answer node

An answer node is the node that answers a visual graph query. For instance, in a

visual graph query “papers on information retrieval that were written by Salton”, the

answer node is “paper”, because the query is asking for returning papers as the final

search result. A visual graph query should have at least one answer node. This means that

we can retrieve bibliographic entities with more than one type by formulating proper

visual graph queries.

3) Constraint node

A constraint node denotes a node that constrains a visual graph query. In the above

example query, a node with the name “Salton” is a constraint node that restricts the query

to retrieve only papers written by “Salton”. A visual graph query includes one or more

constraint nodes.

 43

4) Node name

Unlike answer nodes, constraint nodes should have names in addition to types. Node

names are only assigned to constraint nodes because regular nodes do not need names to

constrain the query. Figure 3.10 shows four example bibliographic graph queries with

varying lengths (i.e., the number of nodes and links), in which the answer nodes are in

black and constraints nodes are in red. Regular nodes that connect answer nodes and

constraint nodes are in blue. Directions of the links are based on the schema shown in

Figure 3.1. As shown in Figure 3.10, bibliographic graph queries are visually represented,

and the proposed system is intended to process these visual bibliographic queries drawn

by users.

	

Figure 3.10: Four example visual graph queries

 44

3.3.2.2 System Architecture

The processing of visual graph queries begins with a verification stage because users

can create erroneous queries. The verification stage includes both syntax checking and

semantics checking. Syntax checking examines whether a visual graph query includes all

necessary constructs (i.e., node type, answer node, constraint node, and node name). A

syntactically correct graph query is not necessarily a meaningful query, and requires

semantics checking. Semantics checking examines whether a visual graph query is

answerable by checking the structure of the visual graph query. In this stage, incorrect

queries are corrected and ambiguous queries are identified. Possible interpretations of

ambiguous queries are sent back to users for their confirmation. Last, a verified visual

graph query is translated into a database query to search in a database. Figure 3.11 shows

the architecture of a visual graph query-based bibliographic information retrieval system.

In the following sections, we discuss in detail the methods involved in the verification of

visual graph queries, the generation of candidate graph queries, and the interpretation of

graph queries.

 45

	
	

Figure 3.11: Architecture of the visual graph-based bibliographic information retrieval
system

3.3.2.3 The Verification of Visual Graph Queries

To satisfy syntax checking requirements, 1) a visual graph query should be a single

graph with every single node having at least one relation with other nodes, 2) every node

should have a node type, 3) the visual graph query should have at least one answer node,

4) the visual graph query should have at least one constraint node, and 5) all constraint

nodes should have names.

 46

In regards to semantic checking, every semantically incorrect link can be divided into

three categories (i.e., shortest path equals to zero, shortest path equals to one, and shortest

path greater than one) based on the length of the shortest path between the source and the

target of the link. Shortest paths are obtained from the data schema of bibliographic data

(Figure 3.1). We apply the following algorithm (Figure 3.12) to a visual graph query for

semantics checking. We perform query correction and query disambiguation for

syntactically incorrect queries. We check every link of a visual graph query and perform

query correction and disambiguation on the basis of links.

	

Figure 3.12: An algorithm for query semantics checking

As shown in Figure 3.12, every link of a visual graph query is checked for the length

of shortest path between the source and the target. Any link that does not conform to the

 47

schema is then updated. Query correction is performed when the direction of a link is

incorrect (e.g., from a paper node to an author node) or two nodes are connected when

they are not directly related on the schema (e.g., a link from a paper node to an

organization node). While query correction is achieved for two of three categories (i.e.,

shortest path equals to one and shortest path greater than one); query disambiguation is

accomplished for all three categories to generate all possible candidate graph queries.

Figure 3.13 shows three examples of semantically incorrect links as well as how they

are corrected and disambiguated. Letters inside the nodes denotes node types (i.e., A for

author, P for paper, T for term, S for source, and O for organization). Names of constraint

nodes (red nodes) are shown under the table.

	
Figure 3.13: Examples of query correction and disambiguation

 48

If the source and the target of a link are the same, we treat the shortest path between

the source and the target as zero. In the first example, both the source and the target is

Author. This is semantically incorrect because there is no link between the two author

nodes based on the schema. Even though the first example is incorrect in semantics, it

could be formulated by users with a specific meaning, i.e., authors cited by John, which

should be authors who wrote papers that were cited by papers written by John. Thus, for a

link with shortest path equals to zero, we disambiguate the link by treating the link as a

citation relation and adding two additional Paper nodes as shown in the last column of the

first example. Two Paper nodes are connected with the source and target respectively by

finding their shortest paths from the source node and to the target node. Finally, two

paper nodes are connected with a link that has the same direction as the original link

because the direction of the original link is considered as the direction of the citation

relation. For the second example, the direction of the link is opposite to that of the

schema: in the schema, the link between a Paper and an Author is from an Author to a

Paper with the link label of WRITES. Thus, we correct the link by changing the direction

of the link. It is also possible that the user may mean papers cited John (i.e., papers cited

papers that were written by John). Thus, query disambiguation is performed by creating a

new graph query with the above meaning. Similarly, the third example can either mean

authors that presented papers in SIGIR or authors who wrote papers that cite papers that

were presented in SIGIR. Query correction and disambiguation are performed, and two

new paths are created. In this way, query correction and disambiguation helps users

formulate correct visual graph queries.

 49

3.3.2.4 The Generation and Interpretation of Graph Queries

1) The generation of candidate graph queries

 Candidate graph queries are the enriched version of visual graph queries, in which

links are added with labels. Candidate graph queries are generated as the results of the

verification of visual graph queries. If a user formulates a syntactically and semantically

correct visual graph query, there would be only one candidate graph query. Otherwise,

there would be more than one candidate graph query. As shown in Figure 3.13, a

semantically incorrect link resulted in one or two paths/links through the process of

semantics checking. Because a visual graph query comprises one or more links, if a

visual graph query includes two semantically incorrect links, there would be up to four

possible interpretations. If a query includes n incorrect links, the maximum number of

candidate graph queries would be 2n. Given a visual graph query, we generate all

possible candidate graph queries and return them back to the user who formulated the

visual graph query. The user then selects one that best represents his/her information

needs to proceed. Figure 3.14 shows a visual graph query with two semantically incorrect

links (dotted links) and candidate graph queries generated from the visual graph query.

 50

	

Figure 3.14: An example of generating candidate graph queries

As shown in Figure 3.14, each semantically incorrect link resulted in two possible

interpretations by ways of query correction and disambiguation. We combined all

possible interpretations and generated four candidate graph queries. The user can select

one to proceed. The next step is to translate the selected graph query into a database

query.

2) The translation of graph queries into Cypher commands

We show how graph queries can be translated into Cypher commands that can query

data stored in Neo4j (a graph database), which is implemented based on the property

graph model shown in Figure 3.1. Figure 3.15 shows four example graph queries and

 51

their translations into Cypher commands. The translation of graph queries to Cypher

commands is simple, because Cypher is itself a query language based on graph patterns.

Other graph database query languages such as SPARQL and Gremlin have similar

syntaxes with Cypher, and the general constructs are primarily the same. Readers can

refer to Holzschuher and Peinl’s work (2013) for a comparison of different graph query

languages.

	
Figure 3.15: Examples of translating visual graph queries into Cypher

	
	
	

The three main constructs of Cypher are MATCH, WHERE, and RETURN. We

specify graph patterns in a MATCH clause and set constraints to nodes in a WHERE

clause. A RETURN clause is for the data that we want to retrieve. A RETURN clause in

 52

Cypher corresponds to a SELECT clause in SQL, and both are for specifying data need to

be returned by the database. The WHERE clause in Cypher is much simpler than the one

in SQL. We only need to set values to the bibliographic entities that are designated as

constraint nodes when a user formulating a graph query. Constructing a MATCH clause

is straightforward, which is a textual representation of a graph query, with the same nodes

and relations with the same directions. The only thing we need to do is to set an arbitrary

and unique instance name for each node. Instance names can be simply strings

with/without numbers that can differentiate nodes from each other. An instance name of a

node (e.g., cited p) is accompanied by the node type (e.g., Paper), which guides the

traversal of the graph.

 53

4. Results

 This section discusses system use cases and reports results on system-centered

experiments. We show how to use the systems through example queries and present

experimental results on advanced features of the systems.

4.1 Form-based Bibliographic Information Retrieval System

4.1.1 A System Use Case

In this section, we show an example of our system and test various features. The

sample data set (Figure 3.3) comprises five articles (in blue), five authors (in red), seven

terms (in purple), three sources (in green), and three affiliations (in yellow). It shows 23

entities and their relations. Links between a pair of papers (i.e., citation relations) have

directions whereas other links do not.

The example natural language query is “authors who are affiliated with Happy

University and wrote papers that were cited by papers on NoSQL published in VLDB.”

As shown in Figure 3.4, we specified citation type as “cited” because the target we want

to search is at the cited side. Then, we added anchor types to both sides. Because the

authors are affiliated with “Happy University,” we added an anchor type—Organization

at the cited side and put the value— “Happy University.” Similarly, we added two anchor

types—term and source to the citing side, and put values— “NoSQL” and “VLDB.”

 54

Then, by clicking “Generate Graph Query,” the system generated a graph query

which is shown in Figure 3.4. Black node is the target—author, red nodes are the

anchors— Organization, Term, and Source. Figure 4.1 shows the Cypher query generated

by the system.

	

Figure 4.1: Generated Cypher query

	

The last step is to translate form queries into Cypher and return search results. The

search results included two authors— “Linda” and “Mary,” which are relevant answers

based on the information provided in Figure 3.3.

 55

4.1.2 Experiments

In this section, we evaluate the proposed system in two aspects: (a) we show the

functional limitations of the current bibliographic information retrieval systems to

highlight the functionalities of the proposed system; (b) we compare two different

database models to highlight the performance of the graph data model.

4.1.2.1 Functional Limitations of Current Bibliographic Information Retrieval
Systems

We chose the Web of Science as a representative system to show two functional

limitations of the current bibliographic information retrieval systems: a limited support of

entity types as the final search results and a limited support of complex queries. As

previously mentioned, current bibliographic information retrieval systems only provide

articles as the final search results. Thus, these systems cannot appropriately answer a

query like “terms of papers that were written by author A (e.g., Lutz Bornmann) and

published in journal A (e.g., JASIST).” This example query might be useful to identify

important terms/keywords of an author’s seminar research given that journals in the

query codify seminar research. In order to answer this query, one can first retrieve an

author’s papers that were published in JASIST by designating “Publication Name” as the

“Journal of the Association for Information Science and Technology” and set the “Author”

field as, for instance, “Bornmann L.” Nonetheless, we cannot retrieve terms because the

search results only contain papers. Even though some metadata (e.g., Research Areas and

Organizations) are available as categories for refining the search results, these metadata

just serve to support the retrieval of articles. On the other hand, the proposed system can

 56

answer the example query as shown in Figure 4.2. Taking various entity types into

consideration and enabling the search for these entities is a desired function of modern

bibliographic information retrieval systems.

	

Figure 4.2: The search results for the example query

The Web of Science provides a way of representing complex queries under

“Advanced Search” through the use of filed tags and Boolean operators, but this is

limited to queries without citation. While the Web of Science also supports “Cited

Reference Search,” which is a function of retrieving citing articles given a cited article or

author, one cannot search for cited articles under this function. Thus, there is the need to

support representing complex queries by integrating advanced search, citing article

 57

search, and cited article search. To address this, the proposed system supports the

composition of complex queries and search for both cited and citing articles—both citing

and cited entities that include authors, affiliations, papers, sources, and terms can be

retrieved through a one-step operation (i.e., by filling forms and querying databases). The

proposed system thus enables a search such as “papers on information retrieval, which

were cited by John’s papers that had been presented in SIGIR” and “authors or sources

that cited a particular JASIST paper.”

4.1.2.2 A Comparison between Graph Data Model and Relational Data Model

In order to test the performance of the proposed system, in particular, the use of the

graph database, we constructed another system which has the same interface and features,

but uses a relational database as the underlying infrastructure. The two systems have the

same query generation and refinement components with the only difference being the

data storage layer. Thus, in this section, we compare the performance of a graph database

and a relational database. Because a relational database uses a relational data model, a

completely different conceptual model is needed. Figure 4.3 shows a conceptual model

(i.e., ER diagram) for the relational database. This conceptual model was later physically

implemented in the MySQL database.

 58

	
	

Figure 4.3: An ER diagram for the relational database-based system

	
	
	
 As for the experiment data set, we used a data set provided by Tang et al. (2008). This

data set includes information on papers, titles, authors, publication venues, abstracts, and

cited references. The original data set does not contain information on terms and

organizations. We randomly assigned 1,000 universities to authors, that is, from

“University1” to “University1000” for each author. We tokenized titles of papers based

on space, and considered those tokens as key terms of papers. Some papers have

references that are not included in the data set, and we removed these references in order

to maintain consistency. This text-based data set was parsed and populated into Neo4j

and MySQL by following their respective schemas. Table 4.1 shows the number of each

bibliographic entity used in this study.

 59

Table 4.1: The number of bibliographic entities and relations in the dataset

Entities Count Relations Count

Paper 629,814 Paper-Paper 632,751

Author 595,775 Paper-Author 1,312,057

Source 12,609 Paper-Source 531,219

Term 291,109 Paper-Term 5,270,539

Affiliation 1,000 Author-Affiliation 595,775

A few queries were constructed for the experiment. Queries can be divided into

several groups based on the number of nodes (i.e., bibliographic entities) in a query.

Queries involving many nodes are inherently more complex than queries that include

only a few nodes. We constructed four groups of queries, that is, from a query with two

nodes to a query with five nodes. Queries made up of four or five nodes are the ones with

citation relations. Each group includes a few meta-paths. We selected one meta-path for

each group by considering their universality—we selected meta-paths that seemed to

appear frequently in search cases. Table 4.2 shows selected meta-paths and examples of

natural language queries.

	
	
	
	
	
	
	
	

 60

Table 4.2: Meta-paths and example natural language queries

Nodes Meta-path Example Natural Language Query

2 Paper-Author Papers written by “Author”.

3 Source-Paper-Author Sources (i.e., conferences/journals) published

papers written by “Author”.

4 Affiliation-Author-Paper1-Paper2 Affiliations of authors of papers cite/cited by

“Paper”.

5 Afiiliation-Author-Paper1-Paper2-Term Affiliation of authors of papers cite/cited by

papers about “Term”.

Because the two systems use the same interface, we tested the query execution time

which is the duration between the point of sending queries and that of finishing retrieving

items. Given the characteristic of metadata search like the proposed system, the results

are always correct as long as we provide correct information. Query execution time is an

optimal measure because we can leave out human factors (e.g., the time a user spends

generating queries) and focus on system-intrinsic elements given that the two systems

have the same query generation and refinement interfaces. For each meta-path listed in

Table 3.2, we constructed 10 queries and recorded the query execution time at the system

level by the embedded time checker. The test environment is a desktop PC with a

Windows 7, 64-bit operating system, an Intel Core i7-3770 CPU, and 20GB RAM.

Figure 4.4 shows the query execution time for the tested queries in both systems.

 61

	

Figure 4.4: Query execution time of queries of different groups

	
	
	

As shown in Figure 4.4, the relational database (i.e., MySQL) performed better in

executing queries with two nodes. The relational database executed all queries in less

than 0.4 second while the graph database spent about 1 second to process most queries.

However, as queries became more complex, the graph database (i.e., Neo4j)

outperformed the relational one. The execution time of the relational database increased

from less than 4 seconds for queries with three nodes to about 30 minutes for five-node

queries. One reason that affected the execution time is the join operations used in

relational databases. Join is a SQL operation used in relational databases to combine

records from two or more tables to get final records (Mishra & Eich, 1992). As queries

involve more nodes, more join operations are needed. In terms of processing a query with

five nodes, the relational database processed five join operations. Because a table has

 62

many records (e.g., the paper table has 629,814 records), processing these operations is

very time-consuming. Another reason is attributed to the time used to retrieve indexed

items. Relational databases use indices to presort data in order to facilitate fast retrieval

(Lahdenmaki & Leach, 2005). Although indices are useful to locate data quickly, we still

need additional time to traverse the indexed data to discover their relations. This is

because relations between two records are not explicit, and traversal is needed to find out

the existing connections.

In graph databases, joins and traversals (in terms of finding relations) are not an issue.

Graph databases are not made up of tables; thus, graph databases do not require time-

consuming join operations. For this reason, the query execution time of different query

groups in the graph database was not affected by the number of nodes in queries. As a

result, the query execution times of different query groups are practically the same

(Figure 4.5) while the performance of the relational database varies significantly. In

addition, graph databases have the property of “index-free adjacency” (Robinson,

Webber, & Eifrem, 2013). In graph databases, traversals among relations are not required

because a node physically keeps information of the connected nodes. This means as long

as we locate a node, other nodes that have relations with this node are immediately shown,

and no other effort is needed to locate relations. Thus, graph databases benefits from

traversals and this benefit becomes more apparent as the number of relations between

records increases.

 63

	

Figure 4.5: Average query execution time of queries

The experiment results showed that the relational database-based system spent more

than 30 minutes in processing five-node queries. In reality, a system with such a

performance would not be practical. This could be partly ameliorated by dividing a query

into several short queries and refining search results accordingly—an approach practiced

by current bibliographic information retrieval systems such as the Web of Science. Thus,

the comparison of the execution time of five-node queries highlights the applicability of

the proposed graph database-based bibliographic information retrieval system.

 64

4.2 Natural Language-based Bibliographic Information Retrieval System

4.2.1 A System Use Case

Figure 4.6 shows the graphical interface for users to formulate natural language

queries. The example query is “Papers about classification, which were cited by Asoke K.

Nandi 's papers that had been presented in Pattern Recognition”.

	

Figure 4.6: A natural language interface with an example query

After typing the natural language query and clicking the “Search” button, the system

analyzes the natural language query. Recognized bibliographic named entities,

dependency relations of the query, graph nodes, graph relations, and a graph query are

shown in Figure 4.7.

 65

	

Figure 4.7: The analysis of a natural language query

	
	
	

Figure 4.7 shows how the example query was analyzed. First, bibliographic named

entities such as Papers, classification, Asoke K. Nandi, papers, and Pattern Recognition

were recognized. As mentioned previously, these bibliographic named entities were

extracted from the dataset we used in the experiment and stored into a dictionary.

Dependency relations among all tokens in the query are also shown as the result of a

syntactic analysis. Nodes were then obtained from bibliographic named entities while

relations were selected from dependency relations. By integrating graph nodes and graph

relations, the system generated a graph query to visualize the results of the natural

language query. As an interactive information retrieval system, users can modify or

proceed with the current natural language query by referencing the analysis of the graph

query. The final search results are obtained by clicking the “Results” button (Figure 4.8).

 66

	

Figure 4.8: The search results of the example query

	
	
	

Figure 4.8 shows the final search results, which are the correct answers for the

example query. In the system, we used Cypher as the graph query language, which is the

default query language of Neo4j. Search results showed that there are three entries that

matched the natural language query.

4.2.2 Experiments

The effectiveness of the system is evaluated as the ratio of correctly answered queries

and query execution time, as practiced in related research (e.g., Li & Jagadish, 2014;

Tablan et al., 2008). We tested both the ratio of correctly answered queries and query

execution time by forming four groups of queries based on the number of bibliographic

named entities in a query, which ranges from two-named entities to five-named entities.

 67

Ten queries for each group were tested. When formulating test queries, we considered a

variety of meta-paths and included as many meta-paths as possible. For example, for two-

node queries, we included meta-paths such as “AuthoràPaper”, “AuthoràOrganization”,

“SourceàPaper”, “PaperàTerm”, and “PaperàPaper”. As the number of named entities

in a query increases, the number of meta-paths also grows. Therefore, we selected 10

meta-paths that are representative in bibliographic searching based on our domain

knowledge. Forty tested queries are listed in the Appendix A. The ratio of correctly

answered queries for each group is shown in Table 4.3.

Table 4.3: The ratio of correctly answered queries

The number of named entities 2 3 4 5

The ratio of correctly answered queries 10/10 10/10 9/10 10/10

As shown in Table 4.3, we did not see a correlation between the number of named

entities in a query and the ratio of correctly answered queries. The example query that our

framework processed incorrectly is “Authors who are affiliated with University007 and

wrote Papers about clustering”. The reason of the misinterpretation is that the parser

misidentified “wrote” as the root of the query, which should be “authors”. Our system

performed 100% correctly for all other test queries.

Query execution time includes the time of interpreting a natural language query (i.e.,

recognizing named entities and parsing) and the time of answering the query in a graph

database. Time spent in formulating a query is not considered to leave out human factors

and to focus on the performance of the system. The test environment is a laptop PC with

 68

a Windows 7 64-bit operating system, an Intel Core i5-3320M CPU, and 16GB RAM.

The execution time for each query and average execution time in each group are shown

in Figure 4.9. The query that was incorrectly interpreted was excluded from the

calculation.

	
Figure 4.9: The query execution time of queries with the number of named entities from

two to five

Query execution time is affected by the length of a query as well as the number of

items in the search result that matched the query. A long natural language query need

more time to be interpreted than a short query as the time spent on recognizing named

entities in the query and parsing the query increases. Query execution time also increases

if there are many items that matched the query. The average execution time is 4.8

 69

seconds for two-named entity query, 5.6 seconds for three-named entity query, 6.5

seconds for four-named entity query, and 7.8 seconds for five-named entity query. The

longest time taken to process a query is about ten seconds. Nonetheless, an industry-scale

systems use more powerful servers, we believe the execution time should be reduced in

real-world use cases.

4.3 Visual Graph-based Bibliographic Information Retrieval System

4.3.1 A System Use Case

Figure 4.10 shows the visual graph-based system. The visual graph query interface is

composed of two panels: the configuration panel (left) and the graph query panel(right).

The configuration panel has three sections: a node configuration section, a schema

section, and an instructions section. As shown in the instructions section, users can create

a node, drag between nodes to add a link, and change the direction of the link by pressing

the Z key. Deleting a node or a relation can be done by pressing the Delete key after

selecting a node or a relation. The visual graph query shown in Figure 4.10 has five nodes

and each node has an id from zero to four. Attributes are shown next to the nodes; for

example, node 1 has a string value of “Type: Author | ANSWER: Y | CONSTRAINT: N |

Name: N/A”. It means that the type of node 1 is Author, and it is an answer node. In

addition, the node is not a constraint node and does not have a name. Users can select a

node (e.g., node 4) to set and change attributes of the node. Node 4 is a constraint node

and it has the name of “Communications of the ACM”. The visual graph query shown in

 70

Figure 4.10 denotes “authors of papers that were cited by papers that were written by

Gerard Salton and published in Communications of the ACM”.

	

Figure 4.10: The visual graph interface of the system

By clicking the search button, candidate graph queries are shown (Figure. 4.11(a)).

Only one candidate graph query is shown because the formulated graph query is

syntactically and semantically correct. As shown in Figure 4.11, all links are added with

labels and each node is filled with appropriate colors (i.e., black for the answer node, red

for constraint nodes, and blue for regular nodes). Search results of the candidate graph

query is shown in Figure 4.11(b).

 71

	

Figure 4.11: Candidate graph queries and search results

Next, we show how a semantically incorrect visual graph query is corrected and

disambiguated. Figure 4.12 shows an example query, in which the link from node 0 to

node 2 is incorrect. The direction of the link is opposite to the schema, and thus needs to

be further analyzed to identify all possible interpretations.

 72

	

Figure 4.12: A semantically incorrect visual graph query

As shown in Figure 4.13, two candidate graph queries are formulated from the above

visual graph query for users to select. The visual graph query can be interpreted as either

“authors of papers that were written by Peter Hancock and published in	 IEEE Intelligent

Systems” (for finding co-authors of Peter Hancock) or “authors of papers that were

published in IEEE Intelligent Systems and cited papers that were written by Peter

Hancock”. The two candidate graph queries resulted in different search results.

 73

	

Figure 4.13: Two candidate graph queries and search of the query

4.3.2 Experiments

Due to the lack of readily available complied resources, twenty test queries were

handcrafted by the authors. The twenty test queries were constructed and divided into

four groups based on the number of bibliographic nodes (i.e., from two to five) in a query.

Because creating queries is an open problem, we were not able to apply standard

measures such as inter-coder reliability, but performed several rounds of discussions to

exclude subjectivity as much as possible. As a follow-up examination, we consulted three

researchers to review the test queries. Researchers were asked to rank those queries that

best match their everyday bibliographic information needs, and recommend additional

queries that were not included in the original test queries. We selected top 10 queries

ranked by the researchers (referred to as regular queries in Table 4.4). In addition, we

 74

included five advanced queries of common bibliometric tasks such as bibliographic

coupling, paper co-citation, author co-citation, co-author, and co-word. The final 15 test

queries are shown in Appendix B. We benchmarked our system’s representability of

these queries in relation to three major bibliographic information retrieval systems (i.e.,

Web of Science, Scopus, and Google Scholar). We measure the extent to which these

queries are representable in one query and directly answerable without initiating other

search tasks. For fair comparisons, we included the add-on features of the major systems

(e.g., “Analyze Results” of Web of Science) and treated them as integrated components

of the search tasks. Table 4.4 shows the ratio of queries that can be represented in each

system with unanswerable queries listed in parentheses.

Table 4.4: The ratio of directly representable queries in each system

Test queries Web of Science Scopus Google

Scholar

Our

system

Regular queries

(unanswerable queries)

7/10

(No. 4, 5, & 10)

7/10

(No. 4, 5, & 10)

3/10

(No. 3, 4,

5,7,8, 9, and

10)

10/10

(None)

Advanced

queries

Bibliographic

coupling
N N N Y

Paper co-citation N N N Y

Author co-

citation
N N N Y

Co-author Y Y Y Y

Co-word Y Y N Y

 75

As shown in Table 4.4, existing systems have limitations in directly representing the

information included in the test queries, despite the fact that we took their additional add-

on features into consideration. Google Scholar did not fulfill majority of the tasks

because it is not designed to retrieve entity types other than papers and does not explicitly

manage metadata. Web of Science and Scopus performed better than Google Scholar, but

were not able to represent a few test queries directly (i.e., bibliographic coupling, paper

co-citation, and author co-citation). We were able to retrieve entity types other than

papers by using their add-on features (e.g., “Analyze Results”) in Web of Science and

Scopus, but the two systems do not support a feature where users can conduct a follow-up

search through the add-on options. For example, items (e.g., authors) displayed in the

“Analyze Results” feature are only used to refine the previous search results. Using the

fourth test query as an example (“Papers of authors who wrote Term-weighting

Approaches in Automatic Text Retrieval”), a general solution to this query involves

getting author names of the paper and retrieving papers written by those papers. Web of

Science supports getting author names by providing the title of the paper; however, it

does not support the retrieval of papers written by those papers (though one can manually

record the author names and initiate another round of search). For the advanced queries,

the strength of our system is more evident. Our system was able to represent all the

queries that are common for bibliometric tasks.

 76

5. User-centered Evaluation

5.1 Experimental Setup

5.1.1 Overall Experimental Setup

The experimental setting is a laboratory study employing a mixed design (between-

group and within subjects). Twenty participants were recruited using a convenience

sampling method. A pilot-test was conducted to adjust the research setting. For example,

through interviews with potential participants, we found that undergraduate students use

academic information retrieval systems infrequently. This is probably due to their lack of

research experience. Thus, the recruit is limited to people who have a Master’s or a more

advanced degree. Among the 20 participants, 10 are male and the other 10 are female.

Nineteen participants are at the age of 25 to 34 while one participant falls in the range of

35 to 44. There are four Master’s students, 13 doctoral students, two postdoctoral

researchers, and one professor. Twelve participants are majored in Information Science,

followed by Linguistics (three), Computer Science (three), and Biomedical Engineering

(two).

5.1.2 Tasks and Measures

Tasks were designed as a known-item search, in which users were provided with

partial information to perform a search. Known-item searches are a common type of

bibliographic searches. For example, users search for papers with partial information

 77

such as keywords and authors. Simulated work tasks (Borlund & Ingwersen, 1997) were

employed to create the tasks in this study. As Borlund (2003) discussed, a simulated work

task is a short cover story that describes situations where information needs arise.

Because the three systems to be evaluated provide different ways of representing

information needs, simulated situations are a good fit that helps us better understand how

users formulate queries using different mechanisms. Overall, two task sets of simulated

situations with varying task complexity (low and high) were created. The level of task

complexity was decided based on the amount of effort needed to solve a problem.

Participants were equally (i.e., ten for each set) divided into the two task sets. Each task

set has three tasks (one for each system). To reduce the variance of using different tasks

in each set, balanced task sets (e.g., Käki & Aula, 2008) were created. Specifically, tasks

in each task set were made as similar as possible by only modifying terms (e.g., author

name) in the description. This helps reduce learning effects and variance of task

complexity within each task set. A factorial design with six conditions (three system

types by two levels of task complexity) was used. Therefore, each system was tested

under the condition of both complexity levels of tasks and each complexity level of tasks

was tested with all system types. Table 5.1 shows two example task situations (one in

each level of task complexity). Questionnaires were used to elicit data from the

participants. Both closed and open questions were asked in the questionnaires. Closed

questions were largely based on a seven-point Likert scale. Five questionnaires: a

background, three post-task, and an exit were used. A background questionnaire was used

to elicit background information about the participants. Three post-task questionnaires

 78

were administered after completing each of three tasks. The exit questionnaire was used

to elicit overall cross-system comparisons and ratings.

Table 5.1: Two examples task situation used in the experiment

Example 1 (low-complexity task) Example 2 (high-complexity task)

• John is a first-year doctoral student who is

interested in Information Retrieval. His

adviser asked him to find a few seminal

papers and do a literature review. John

knows Gerard Salton is one of the

prominent researchers in the field. Among

many journals, he plans to take a look at

Communications of the ACM.

• Please use the form-based system and find

papers that were written by Gerard Salton

and published in Communications of the

ACM.

• James is a first-year doctoral student who

is interested in Data Mining. His advisor

asked him to find a few seminal papers

and do a literature review. James knows

Jiawei Han is one of the prominent

researchers in the field. After reviewing

Jiawei Han’ papers, James find that he is

specifically interested in a subarea of

Data Mining called clustering. James

wants to find out more researchers who

cited Jiawei Han’s papers and do

research on clustering.

• Please use the natural language-based

system and find out authors who wrote

papers on clustering that cited papers that

were written by Jiawei Han.

For evaluation measures, we adopted notions discussed in Kelly’s study (2009). As

discussed by Kelly, in IIR, unlike HCI research, performance is seen as a separate

concept from usability and usability is usually evaluated based on self-report measures.

 79

In this study, we evaluated the systems in terms of performance and usability.

Performance was measured by a set of objective measures while usability was examined

by analyzing data elicited from questionnaires. Performance was defined as system’s

ability of helping users resolve bibliographic information retrieval tasks. Table 5.2 shows

measures of performance and their operational definitions.

Table 5.2: Performance measures used in the experiment

Category Measure Description

Relevance-based Success rate A binary measure (i.e., success or not) represents completion of each task.

Interaction-based
Search time Time taken to complete a search task

Query size The number of issued queries to complete a search task.

Success rate is used to measure participants’ performance on retrieving relevant

search results. Participants’ answers are matched against correct answers to see whether

they are identical. Used synthetically, it shows the fraction of participants who complete

the search tasks. A larger fraction shows that the participants perform better with one

system than another. Search time measures the time a participant uses to complete a task.

It largely depends on the time a user spends on formulating a query because the time used

by the background processes (e.g., interpreting queries, querying the database) are almost

identical to the extent that we can ignore the differences across the three systems. Shorter

search time represents better performance. Query Size measures the number of queries a

participant formulates to finish a task. Participants might formulate more than one query

 80

to finish a task due to a lack of experience. A smaller query size denotes that the

participants perform better in terms of formulating queries correctly.

 ISO’s definition of usability (ISO 9241-11, 1998) has three dimensions: effectiveness,

efficiency, and satisfaction as shown in the following list (p. 2):

• Effectiveness is the “accuracy and completeness with which users achieve

specified goals.”

• Efficiency is the “resources expended in relation to the accuracy and

completeness with which users achieve goals.”

• Satisfaction is the “freedom from discomfort, and positive attitudes of the user to

the product.”

Kelly (2009) discussed that measures for effectiveness and efficiency used in HCI

(e.g., Hornbæk, 2006) typically overlap with the performance measures in IIR (e.g.,

precision and time taken to complete a task). Thus, in this paper, we test usability by

measuring satisfaction with three additional measures including ease of use, ease of

learning, and usefulness. We use the USE questionnaire (Lund, 2011) to measure the

above four dimensions of usability, in which each item is measured using a seven-point

Likert scale.

5.2 Results

5.2.1 Participants’ Overall Experience

Through a background questionnaire, we collected information on participants’

general experience on academic search systems. Among the 20 participants, eight

 81

participants reported that they use academic search systems more than seven times in a

week, followed by seven participants (one to two times), four participants (three to four

times), and one participant (five to six times). About one third are active users of

academic search systems; one third use academic search systems less frequently; and the

remaining represent a moderate user group. As for the primarily used search system, 13

participants selected Google Scholar, five participants selected Web of Science, and two

participants selected other systems (e.g., Microsoft Academic Search). Participants were

also asked to rate their ability of using academic search systems through a five point

Likert scale. Eleven participants responded by selecting average, followed by proficient

(eight) and very proficient (one). In terms of the motivation of using academic search

systems, six participants responded that they usually have specific information needs in

mind before searching while three participants responded that their main purpose is

exploring. Eleven participants responded with both choices. Given this, we argue that

most participants use academic search systems with specific information in mind. In a

question that asked current academic search systems’ support of bibliographic

information needs, 14 participants responded that they are not powerful enough in terms

of representing complex bibliographic information need, and some of their bibliographic

information needs are not representable in the current systems while six participants were

satisfied with them.

5.2.2 Results of Performance Evaluation

Table 5.3 shows the overall results of the performance evaluation. We can see how

two groups of participants performed for each of the three systems. As mentioned

 82

previously, 10 were assigned to the low-complexity task and the other 10 were assigned

to the high-complexity task. We show how many participants in each group successfully

completed the tasks (success rate), and how long they spent on completing the tasks

(search time, in seconds), and how many queries they formulated to represent information

needs.

Table 5.3: Results on the performance evaluation

Task

complexity
Measure

System type

Form-based Natural language-based Visual graph-based

Low

Success rate 10/10 10/10 10/10

Search time
Max: 58, Min: 10

Mean: 26, Median: 22

Max: 61, Min: 12

Mean: 33, Median: 30

Max: 91, Min: 30

Mean: 61, Median: 58

Query Size
Max: 3, Min: 1

Mean: 1.5, Median: 1

Max: 5, Min: 1

Mean: 2.3, Median: 2

Max: 4, Min: 1

Mean: 1.7, Median: 1

High

Success rate 9/10 10/10 7/10

Search time
Max: 150, Min: 20

Mean: 70, Median: 64

Max: 90, Min: 21

Mean: 53, Median: 48

Max: 191, Min: 90

Mean: 135, Median: 131

Query size
Max: 3, Min: 1

Mean: 1.3, Median: 1

Max: 5, Min: 1

Mean: 2, Median: 1

Max: 5, Min: 1

Mean: 1.7, Median: 1

For the low-complexity task set, all participants completed the tasks using all the

systems while for the high-complexity task set, one participant failed the task for the

form-based system and three participants failed for the visual graph-based system. A

reasonable explanation is that the natural language-based system requires no additional

 83

knowledge to use. On the other hand, users need to learn how to use the other two

systems, which requires additional time and effort. Because the participants have never

used a visual graph interface to formulate bibliographic queries, the visual graph-based

system is less familiar to them. Thus, compared with the form-based system, which has

been widely adopted by major academic search systems, the visual graph-based system

has more features to be learned and the participants performed worse with the system

than with the other systems.

The participants spent the least time (i.e., 26 secs) with the form-based system in the

low-complexity task set while for the high-complexity task set, the least time (i.e., 53

secs) was achieved with the natural language-based system. We can see that, for simple

tasks, the form-based system is the fastest way to formulate queries, probably due to its

simplicity and users’ familiarity with the system. As information needs become more

complex, the natural language-based system proves to be a faster solution because one

just needs to write down natural language queries without repeating mouse and keyboard

operations such as selecting items and inputting values. In both task sets, the participants

spent the most time with the visual graph-based system. This was expected because the

visual graph-based system is specifically designed to answer complex bibliographic

queries (e.g., bibliographic coupling and author co-citation), and it requires every single

node in a query to be manually specified with properties.

Query size reveals the magnitude of errors made by the participants. In both task sets,

the participants formulated the smallest number of queries (i.e., 1.5 and 1.3) with the

form-based systems and the largest number of queries (2.3 and 2) with the natural

language-based system. Typographical errors might be the factor that affected the

 84

participants’ query size in the natural language-based system. Before the evaluation, we

expected that the largest query size would be recorded with the visual graph-based

system because it is the most complex system among the three. However, in both task

sets, the query size was between the other two systems. It is partly due to its query

verification module that automatically corrects misrepresented queries and recommends

new ones.

5.2.3 Results of Usability Evaluation

Figure 5.1 shows the bar charts of the four usability measures (i.e., usefulness, ease of

use, ease of learning, and satisfaction). In the figure and tables following below, F

denotes the form-based system, NL denotes the natural language-based system, and VG

denotes the visual graph-based system. For each measure, the means and error bars of the

two groups (high-complexity group vs. low-complexity group) are shown.

 85

	

Figure 5.1: Descriptive statistics for usability measures

To further explore any statistically significant differences, we run a 2*3 mixed-design

ANOVA because the task complexity is a between-group variable and system type is a

repeated-measure variable. Table 5.4 shows the results.

Table 5.4: Results of the mixed-design ANOVA

Effect Usefulness Ease of Use Ease of Learning Satisfaction
Main effect of

Task complexity
𝐹 1, 78 = 	1.41,
𝑝 = .24, 	𝜂- = .007

𝐹 1, 78 = 	 .025,
𝑝 = .87, 	𝜂- < .001

𝐹 1, 78 = 	 .53,
𝑝 = .47, 	𝜂- = .004

𝐹 1, 78 = 	 .3,
𝑝 = .58, 	𝜂- = .002

Main effect of
System type

𝐹 2, 156 = 	7.48,
𝒑 <. 𝟎𝟎𝟏, 	𝜂- = .05

𝐹 2, 156 = 	28.65,
𝒑 <. 𝟎𝟎𝟏, 	𝜂- = .16

𝐹 2, 156 = 	52.05,
𝒑 <. 𝟎𝟎𝟏, 	𝜂- = .21

𝐹 2, 156 = 	 .42,
𝑝 = .65, 	𝜂- = .002

Interaction
between the two

𝐹 2, 156 = 	9.75,
𝒑 <. 𝟎𝟎𝟏, 	𝜂- = .07

𝐹 2, 156 = 	7.57,
𝒑 <. 𝟎𝟎𝟏, 	𝜂- = .05

𝐹 2, 156 = 	11.81,
𝒑 <. 𝟎𝟎𝟏, 	𝜂- = .06

𝐹 2, 156 = 	4.7,
𝒑 =. 𝟎𝟏	𝜂- = .03

 86

As shown in Table 5.4, there is no significant difference between ratings of the two

groups of task complexity. However, we see participants rated the three systems

differently when evaluating their usefulness, ease of use, and ease of learning (i.e., all of

them are significant at the 0.001 level). Interactions between task complexity and system

type are shown to be significant in all the four measures. Pairwise t-test with Bonferroni

correction was performed to see how differently participants rated the systems (Table

5.5). However, because of the existence of the interaction effects between task

complexity and system types, the ratings could also had been partly affected by task

complexity. Satisfaction was not included because it is not significant in Table 5.4.

Table 5.5: Results of pairwise t-test on system type

Usefulness Ease of Use Ease of Learning
 F NL F NL F NL

NL 0.0168* - NL <0.0001*** - NL <0.0001*** -
VG 1.00 0.0021** VG 0.12 <0.0001*** VG 0.0069** <0.0001***

Based on Table 5.5 and Figure 5.1, we see that the participants rated the natural

language-based system more useful than the other two systems. It was also rated as the

system that is the most easy to use and learn. The participants also reported that the form-

based system was easier to learn than the visual graph-based system. In terms of

usefulness and ease to use, we do not see any significant difference between the form-

and visual graph-based systems. Finally, simple effects analysis was performed to

understand the interaction between task complexity and system type. The datasets of four

measures were further split into three subsets. Then, ANOVA and Tukey’s tests were

 87

performed to see whether significant differences exist between the two complexity

groups upon each of the three system types. The results are shown in Table 5.6.

Table 5.6: Results of ANOVA and Tukey's tests

System type Usefulness Ease of Use Ease of Learning Satisfaction
F (Low vs. High) 0.3594 0.0227* 0.0341* 0.3594
NL (Low vs. High) 0.8267 0.5567 0.0058** 0.8267
VG (Low vs. High) 0.0068** 0.0345* 0.038* 0.0068**

Combining the result shown in Table 5.6 with that of Figure 5.1, we see that

participants assigned to the high-complexity tasks rated the visual graph-based system

higher than the participant group of low-complexity task in usefulness and satisfaction.

This shows that participants thought the visual graph-based system is more useful and

satisfactory for high-complexity tasks. For the form-based system, the participant group

of low-complexity tasks rated it higher than its counterparts in terms of ease of use and

learning. The natural language-based system was reported with similar ratings on ease of

use by the two groups. This is the strength of the natural language-based system that no

additional effort is needed to formulate more complex queries, and there is no significant

difference of effort between formulating low- and high-complexity queries. A seemingly

contradictory result is that participants assigned to the high-complexity tasks rated both

the natural language- and visual graph-based systems higher than the participant group of

low-complexity task in easy of learning. Because participants in the high-complexity task

group interacted with all the three systems, who felt the form-based system hard to learn

(e.g., due to its unsuitability to high-complexity task) might feel the other two systems

 88

relatively easies to learn. Overall, the interaction effect is the most significant in the

visual graph-based system and least significant in the natural language-based system.

 89

6. Conclusion and Future Work

6.1 Conclusion

In the dissertation, we proposed, implemented, and evaluated three graph-based

interactive bibliographic information retrieval systems. Compared with current well-

known bibliographic information retrieval systems, our system has several advantages: (a)

they support searching for various types of bibliographic information and deliver these

types as end search results; (b) they support easy ways of representing complex

bibliographic queries, which is not readily available in existing bibliographic information

retrieval systems; (c) they provide interactive user interfaces for users to refine queries;

and (d) they expedite the query time by adopting a graph data model.

The study also recruited 20 participants to compare three systems from a variety of

aspects such as success rate, search time, query size, usefulness, ease of use, ease of

learning, and satisfaction. We employed a mixed-design experiment to understand how

task complexity and system type affect users’ performance and usability ratings.

The form-based system needed the least time (i.e., 26 secs for the low-complexity

tasks) to formulate simple bibliographic queries and allowed the participants to make the

least mistakes (i.e., the average query size 1.5 and 1.3 for low- and high-complexity

tasks). Participants stated that “The form-based system makes everything clear, so it is

easy for me to handle each part of my query”, “The form-based system is kind of fun and

may come into handy pretty fast”. One weakness of the system is that, with complex

queries, participants feel that it is not as easy to use as it is with simple queries. The

 90

participant group of low-complexity task rated higher than its counterparts in terms of

ease of use and learning. A participant assigned to high-complexity tasks stated that “The

form-based (system) needs users to take more logic consideration and have more

clicking.”

The natural language-based system needed the least time (i.e., 53 secs) to formulate

high-complexity bibliographic queries and was rated as the most useful, easy-to-use, and

easy-to-learn system. Participants stated that “Using natural language for searching

bibliographic information would be the most intuitive way”, “As long as my query is in

good grammar, the system does everything automatically and transforms it into a

graphical query, which is quite cool, and time-efficient”. Flexibility was reported as the

main weakness of the system. A participant stated that “The natural language-based

system is easy to use, but it didn't allow too much flexibility on how to express a query

by natural language”. This was expected because the system requires users to input

queries without grammatical errors and state-of-the-art NLP parsers can sometimes make

mistakes even though the input queries are correct.

The visual graph-based system did not get the best ratings in any of the measures.

However, its strengths lie in the support of complex queries as shown that it got better

ratings of usefulness and satisfaction by the high-complexity task group. Participants

stated that “The visual graph-based system is a very flexible one. It seems everything is

within my control. I felt comfortable to use this tool”, “The visual system seems a little

bit more complex than the other two systems, but it is actually the most powerful one that

can answer lots of, almost every query that I can imagine.” As stated by a participant-

“The visual graph-based system has a learning curve and requires some learning costs in

 91

the beginning”, one weakness of the system is that the system requires more effort than

the other two systems to get familiar with it. The participants rated the system as the most

hard-to-learn system.

Based on the evaluation results, we conclude that each system has their own strengths

and weaknesses. In the background questionnaire, 14 out of 20 participants stated that

current bibliographic search systems are not powerful enough in terms of representing

and answering complex bibliographic information need. It is clear that there is no single

answer to address this limitation, and different approaches have different values as shown

in the evaluation results. Our contribution lies in the design, implementation, and

evaluation of these kinds of systems. We believe the proposed systems are effective and

efficient solutions for addressing complex bibliographic information needs. In addition,

we believe the experimental design and results shown in this paper can serve as a useful

guideline and benchmark for future studies.

6.2 Future Work

 Designing bibliographic information retrieval systems for complex bibliographic

queries is a new research field. There are many unexplored territories and challenging

research issues. Here we illustrate a few of them.

1) Unified Evaluation Frameworks for Complex Bibliographic Information Retrieval

 Complex bibliographic information retrieval has not been widely studied. Even

though we contributed test queries and a few benchmarks to the filed, there is a lack of

unified evaluation frameworks that facilitates evaluation and comparison of peer systems.

 92

Researchers can build evaluation frameworks by collecting a larger number of test

queries using crowdsourcing and providing unified application interface.

2) Personalized Bibliographic Information Retrieval

In general, a user is only interested in a small portion of the entire bibliographic data.

For example, a user who does research on social science rarely looks for papers about

quantum physics. Even in one domain, a user is mostly interested in a few research topics.

It is both efficient and effective to provide personalized bibliographic information

retrieval in which the system learns about users based on their previous search history.

Personalized bibliographic information retrieval is time-efficient because we can detect

and search through only a subset of the original dataset that might be the interest of a

specific user. It is also effective in may cases. For example, assume there are multiple

people with the name- “John” and a user entered a query “papers by John”, then

personalized bibliographic information retrieval can detect which John the users is

searching for based on the user’s previous history such as domain and research interests.

Therefore, analyzing previous queries generated by a user and providing personalized

search results is an important research issue.

3) Dynamic Clustering of Search Results

 Search results of complex bibliographic information retrieval are more specific than

that of traditional bibliographic information retrieval. Traditional information retrieval

systems provide predefined categories to classify and refine search results. However, this

approach is not very efficient in complex bibliographic information retrieval because

most categories are meaningless due to relatively small number of search results and the

specificity of search results. Dynamic clustering denotes cluster search results by

 93

dynamically applying cluster criteria. For example, the search results of the query

“papers on information retrieval” can be clustered based on collaboration among

researchers and produce results of so-called “school of thought”. However, the same

criteria cannot be effectively applied to the case of “papers by John”, because all the

papers in the search results are written by the same author. Here, we need to apply

different criteria. Therefore, dynamic clustering of search results is an ideal approach for

complex bibliographic information retrieval.

 94

List of References

Abacha, A. B., & Zweigenbaum, P. (2015). MEANS: A medical question-answering

system combining NLP techniques and semantic web technologies. Information
Processing & Management, 51(5), 570-594. doi:10.1016/j.ipm.2015.04.006

Aggarwal, C. C., & Wang, H. (Ed.). (2010). Managing and mining graph data (Vol. 40).
New York: Springer.

Aghaei Chadegani, A., Salehi, H., Yunus, M. M., Farhadi, H., Fooladi, M., Farhadi, M.,
& Ale Ebrahim, N. (2013). A comparison between two main academic literature
collections: Web of Science and Scopus databases. Asian Social Science, 9(5), 18–26.

Al-Maskari, A., & Sanderson, M. (2010). A review of factors influencing user
satisfaction in information retrieval. Journal of the American Society for Information
Science and Technology, 61(5), 859-868. doi:10.1002/asi.21300

Al-Maskari, A., & Sanderson, M. (2011). The effect of user characteristics on search
effectiveness in information retrieval. Information Processing and Management, 47(5),
719-729. doi:10.1016/j.ipm.2011.03.002

Androutsopoulos, I., Ritchie, G. D., & Thanisch, P. (1995). Natural language interfaces to
databases–an introduction. Natural language engineering, 1(01), 29-81.

Angles, R., & Gutierrez, C. (2008). Survey of graph database models. ACM Computing
Surveys (CSUR), 40(1), 1.

Baeza-Yates, R., Brisaboa, N., & Larriba-Pey, J. (2010). A model for automatic
generation of multi-partite graphs from arbitrary data. (pp. 49-60). Berlin, Heidelberg:
Springer Berlin Heidelberg. doi:10.1007/978-3-642-16720-1_5

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific
American, 284(5), 28-37.

Bikel, D. M., Miller, S., Schwartz, R., & Weischedel, R. (1997). Nymble: a high-
performance learning name-finder. In Proceedings of the fifth conference on applied
natural language processing (pp. 194-201). Association for Computational Linguistics.

Borlund, P. (2003). The IIR evaluation model: A framework for evaluation of interactive
information retrieval systems. Information Research-an International Electronic
Journal, 8(3), 152.

Borlund, P. (2016). A study of the use of simulated work task situations in interactive
information retrieval evaluations: A meta-evaluation. Journal of Documentation, 72(3),
394-413.

Borlund, P., & Ingwersen, P. (1997). The development of a method for the evaluation of
interactive information retrieval systems. Journal of Documentation, 53(3), 225-250.
doi:10.1108/EUM0000000007198

 95

Borlund, P., & Schneider, J. (2010, August). Reconsideration of the simulated work task
situation: A context instrument for evaluation of information retrieval interaction.
Paper presented at the Third Information Interaction in Context Symposium (IIiX),
155-164. doi:10.1145/1840784.1840808

Broekstra, J., Kampman, A., & Van Harmelen, F. (2002). Sesame: A generic architecture
for storing and querying RDF and RDF schema. In The Semantic Web—ISWC 2002
(pp. 54–68). Berlin Heidelberg:Springer, doi:10.1007/3-540-48005-6_7.

Cafarella, M. J., & Etzioni, O. (2005, May). A search engine for natural language
applications. In Proceedings of the 14th international conference on World Wide Web
(pp. 442-452). ACM.

Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., & Wilkinson, K.
(2004). Jena: Implementing the semantic web recommendations. In Proceedings of the
13th international World Wide Web conference on Alternate track papers & posters
(pp. 74–83). New York: ACM.

Ceri, S., Comai, S., Damiani, E., & Fraternali, P. (1999). XML-GL: A graphical language
for querying and restructuring XML documents. Computer Networks,31(11–16), 1171.

Chadegani, A. A., Salehi, H., Yunus, M. M., Farhadi, H., Fooladi, M., Farhadi, M., &
Ebrahim, N. A. (2013). A comparison between two main academic literature
collections: Web of science and Scopus databases. Asian Social Science, 9(5), 18-26.

Chieu, H. L., & Ng, H. T. (2002). Named entity recognition: a maximum entropy
approach using global information. In Proceedings of the 19th international conference
on Computational linguistics-Volume 1 (pp. 1-7). Association for Computational
Linguistics.

Cimiano, P., Haase, P., Heizmann, J., Mantel, M., & Studer, R. (2008). Towards portable
natural language interfaces to knowledge bases – The case of the ORAKEL system.
Data and Knowledge Engineering, 65(2), 325–354.

Clemmensen, M. L., & Borlund, P. (2016). Order effect in interactive information
retrieval evaluation: An empirical study. Journal of Documentation, 72(2), 194-213.
doi:10.1108/JD-04-2015-0051

Codd, E. F. (1970). A relational model of data for large shared data banks.
Communications of the ACM, 13(6), 377-387.

Collins, M. (1997). Three generative, lexicalised models for statistical parsing. In
Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics and Eighth Conference of the European Chapter of the Association for
Computational Linguistics (pp. 16-23). Association for Computational Linguistics.

Cook, D. J., & Holder, L. B. (Eds.). (2006). Mining graph data. John Wiley & Sons,
Hoboken, New Jersey.

Damljanovic, D., Agatonovic, M., & Cunningham, H. (2010). Natural language
interfaces to ontologies: Combining syntactic analysis and ontology-based lookup
through the user interaction. In The semantic web: Research and applications (pp. 106-
120). Springer Berlin Heidelberg.

 96

De Marneffe, M. C., MacCartney, B., & Manning, C. D. (2006). Generating typed
dependency parses from phrase structure parses. In Proceedings of LREC (Vol. 6, No.
2006, pp. 449-454).

de Ribaupierre, H. (2014). Precise information retrieval in semantic scientific digital
libraries (Doctoral dissertation). University of Geneva, Geneva, Switzerland.

Derczynski, L., Maynard, D., Rizzo, G., Erp, M. v., Gorrell, G., Troncy, R., Bontcheva,
K. (2015). Analysis of named entity recognition and linking for tweets. Information
Processing & Management, 51(2), 32-49. doi:10.1016/j.ipm.2014.10.006

Dominguez-Sal, D., Urbón-Bayes, P., Giménez-Vanó, A., Gómez-Villamor, S.,
Martínez-Bazan, N., & Larriba-Pey, J. L. (2010, July). Survey of graph database
performance on the hpc scalable graph analysis benchmark. In International
Conference on Web-Age Information Management (pp. 37-48). Springer Berlin
Heidelberg.

Earley, J. (1970). An efficient context-free parsing algorithm. Communications of the
ACM, 13(2), 94-102.

Erwig, M. (2003). Xing: A visual XML query language. Journal of Visual Languages and
Computing, 14(1), 5–45.http://dx.doi.org/10.1016/S1045-926X(02)00074-5

Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of
PubMed, Scopus, web of science, and Google scholar: Strengths and weaknesses. The
FASEB Journal, 22(2), 338–342.

Fazzinga, B., & Lukasiewicz, T. (2010). Semantic search on the web. Semantic Web,
1(1–2), 89–96.

Fersini, E., Messina, E., Felici, G., & Roth, D. (2014). Soft-constrained inference for
named entity recognition. Information Processing & Management, 50(5), 807-819.
doi:10.1016/j.ipm.2014.04.005

Finkel, J. R., Grenager, T., & Manning, C. (2005). Incorporating non-local information
into information extraction systems by gibbs sampling. In Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics (pp. 363-370).
Association for Computational Linguistics.

Geuna, A., & Martin, B. R. (2003). University research evaluation and funding: An
international comparison. Minerva, 41(4), 277–304.

Gómez-Villamor, S., Soldevila-Miranda, G., Giménez-Va˜nó, A., Martínez-Bazan, N.,
Muntés-Mulero, V., & Larriba-Pey, J. (2008). BIBEX: A bibliographic exploration
tool based on the DEX graph query engine. Proceedings of the 11th international
conference on Extending database technology: Advances in database technology, 735–
739. http://dx.doi.org/10.1145/1353343.1353439

Guha, R., McCool, R., & Miller, E. (2003). Semantic search. In Proceedings of the 12th
International Conference on World Wide Web (pp. 700–709). ACM, New York, NY.

Gusfield, D. (1997). Algorithms on strings, trees, and sequences: Computer science and
computational biology. New York; Cambridge [England];: Cambridge University
Press.

 97

Habernal, I., & Konopík, M. (2013). SWSNL: Semantic web search using natural
language. Expert Systems with Applications, 40(9), 3649-3664.

Hall, M. M., & Toms, E. (2013, September). Building a Common Framework for IIR
Evaluation. Paper presented at the Forth International Conference of the Cross-
Language Evaluation Forum for European Language, 17-28. doi: 10.1007/978-3-642-
40802-1_3

He, H., & Singh, A. K. (2008). Graphs-at-a-time: Query language and access methods for
graph databases. In Proceedings of the 2008 ACM SIGMODinternational conference
on Management of data (pp. 405–418).

Hogenboom, F., Milea, V., Frasincar, F., & Kaymak, U. (2010). RDF-GL: A SPARQL-
based graphical query language for RDF. In Emergent web intelligence: advanced
information retrieval. pp. 87–116. London: Springer

Holzschuher, F., & Peinl, R. (2013). Performance of graph query languages: Comparison
of cypher, gremlin and native access in Neo4j. In Proceedings of the Joint
EDBT/ICDT 2013 Workshops (pp. 195–204). ACM, New York, NY.

Hornbæk, K. (2006). Current practice in measuring usability: Challenges to usability
studies and research. International Journal of Human - Computer Studies, 64(2), 79-
102. doi:10.1016/j.ijhcs.2005.06.002

Huan, J., Wang, W., Prins, J., & Yang, J. (2004). Spin: Mining maximal frequent
subgraphs from graph databases. In Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (pp. 581–586).
ACM, New York, NY.

ISO 9241-11 (1998). Ergonomic Requirements of Office Work with Visual Display
Terminals (VDTs): Part II: Guidance on usability. International Organization for
Standardization

Jacso, P. (2005). As we may search-Comparison of major features of the Web of Science,
Scopus, and Google Scholar citation-based and citation-enhanced databases.
CURRENT SCIENCE-BANGALORE-, 89(9), 1537.

Jiang, H., Wang, H., Yu, P. S., & Zhou, S. (2007). Gstring: A novel approach for
efficient search in graph databases. In IEEE 23rd international conference on data
engineering, 2007. ICDE 2007 (pp. 566–575).

Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., & Karambelkar, H.
(2005). Bidirectional expansion for keyword search on graph databases. In
Proceedings of the 31st international conference on very large data bases (pp. 505–
516).

Käki, M., & Aula, A. (2008). Controlling the complexity in comparing search user
interfaces via user studies. Information Processing and Management, 44(1), 82-91.
doi:10.1016/j.ipm.2007.02.006

Kaufmann, E., & Bernstein, A. (2010). Evaluating the usability of natural language query
languages and interfaces to Semantic Web knowledge bases. Web Semantics: Science,
Services and Agents on the World Wide Web, 8(4), 377-393.

 98

Kaufmann, E., Bernstein, A., & Fischer, L. (2007). NLP-reduce: A ‘‘naïve’’ but domain
independent natural language interface for querying ontologies. In 4th European
Semantic Web Conference (ESWC 2007) (pp. 1–2).

Kelly, D. (2009). Methods for evaluating interactive information retrieval systems with
users. Foundations and Trends in Information Retrieval, 3(1—2), 1-224.
doi:10.1145/2808194.2809465

Kelly, D., Arguello, J., Edwards, A., & Wu, W. C. (2015, September). Development and
evaluation of search tasks for IIR experiments using a cognitive complexity
framework. Paper presented at the ACM SIGIR International Conference on the
Theory of Information Retrieval (ICTIR), 101-110

Kelly, D., & Sugimoto, C. R. (2013). A systematic review of interactive information
retrieval evaluation studies, 1967–2006. Journal of the American Society for
Information Science and Technology, 64(4), 745-770. doi:10.1002/asi.22799

Klein, D., & Manning, C. D. (2003). Accurate unlexicalized parsing. In Proceedings of
the 41st Annual Meeting on Association for Computational Linguistics-Volume 1 (pp.
423-430). Association for Computational Linguistics.

Klein, D., & Manning, C. D. (2004). Corpus-based induction of syntactic structure:
Models of dependency and constituency. In Proceedings of the 42nd Annual Meeting
on Association for Computational Linguistics (p. 478). Association for Computational
Linguistics.

Lahdenmaki, T., & Leach, M. (2005). Relational database index design and the
optimizers. John Wiley & Sons, Hoboken, New Jersey.

Lei, Y., Uren, V., & Motta, E. (2006). Semsearch: A search engine for the semantic web.
In Managing knowledge in a world of networks (pp. 238–245). Berlin Heidelberg:
Springer, doi:10.1007/11891451_22.

Li, F., & Jagadish, H. V. (2014). Constructing an interactive natural language interface
for relational databases. Proceedings of the VLDB Endowment, 8(1), 73-84.

Li, Y. (2009). Exploring the relationships between work task and search task in
information search. Journal of the American Society for Information Science and
Technology, 60(2), 275-291. doi:10.1002/asi.20977

Li, Y., & Belkin, N. J. (2008). A faceted approach to conceptualizing tasks in information
seeking. Information Processing and Management, 44(6), 1822-1837.
doi:10.1016/j.ipm.2008.07.005

Li, Y., & Belkin, N. J. (2010). An exploration of the relationships between work task and
interactive information search behavior. Journal of the American Society for
Information Science and Technology, 61(9), 1771-1789. doi:10.1002/asi.21359

Li, Y., Wang, Y., & Huang, X. (2007). A relation-based search engine in semantic web.
IEEE Transactions on Knowledge and Data Engineering, 19(2), 273–282.

Liu, J., Cole, M., Liu, C., Bierig, R., Gwizdka, J., Belkin, N., Zhang, J., & Zhang, X.
(2010, June). Search behaviors in different task types. Paper presented at the Joint
Conference on Digital Libraries (JCDL), 69-78. doi:10.1145/1816123.1816134

 99

Lund, A. M. (2011). Measuring usability with the USE questionnaire. Usability Interface,
8(2), 3-6.

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information
retrieval (Vol. 1, p. 496). Cambridge: Cambridge university press.

Marcus, M. P., Marcinkiewicz, M. A., & Santorini, B. (1993). Building a large annotated
corpus of English: The Penn Treebank. Computational linguistics, 19(2), 313-330.

McCallum, A., & Li, W. (2003). Early results for named entity recognition with
conditional random fields, feature induction and web-enhanced lexicons. In
Proceedings of the seventh conference on Natural language learning at HLT-NAACL
2003-Volume 4 (pp. 188-191). Association for Computational Linguistics.

Miller, E. (1998). An introduction to the resource description framework. Bulletin of the
American Society for Information Science and Technology, 25(1), 15–19.

Mishra, P., & Eich, M. H. (1992). Join processing in relational databases. ACM
Computing Surveys (CSUR), 24(1), 63–113.

Mu, X., Lu, K., & Ryu, H. (2014). Explicitly integrating MeSH thesaurus help into health
information retrieval systems: An empirical user study. Information Processing &
Management, 50(1), 24-40. doi:10.1016/j.ipm.2013.03.005

Nadeau, D., & Sekine, S. (2007). A survey of named entity recognition and classification.
Lingvisticae Investigationes, 30(1), 3-3. doi:10.1075/li.30.1.03nad

Ni, W., & Ling, T. W. (2003). GLASS: A graphical query language for semi-structured
data. In Eighth international conference on database systems for advanced applications.
(DASFAA 2003) (pp. 363–370).

Park, C., & Lim, S. (2015). Efficient processing of keyword queries over graph databases
for finding effective answers. Information Processing & Management, 51(1), 42.

Rajbhandari, P., Shah, R. C., & Agarwal, S. (2012). Graph database model for querying,
searching and updating. In International Conference on Software and Computer
Applications (ICSCA).

Rau, L. F. (1991). Extracting company names from text. In Artificial Intelligence
Applications, 1991. Proceedings. Seventh IEEE Conference on (Vol. 1, pp. 29-32).
IEEE.

Renaud, G., & Azzopardi, L. (2012, August). SCAMP: A tool for conducting interactive
information retrieval experiments. Paper presented at the Fourth Information
Interaction in Context Symposium (IIiX), 286-289. doi:10.1145/2362724.2362776

Rindflesch, T. C., Tanabe, L., Weinstein, J. N., & Hunter, L. (2000). EDGAR: extraction
of drugs, genes and relations from the biomedical literature. In Pac Symp Biocomput
(Vol. 5, pp. 514-25).

Robinson, I., Webber, J., & Eifrem, E. (2013). Graph databases. O’Reilly Media, Inc,
Sebastopol, CA.

Rohloff, K., Dean, M., Emmons, I., Ryder, D., & Sumner, J. (2007). An evaluation of
triple-store technologies for large data stores. In On the move to meaningful internet

 100

systems 2007: OTM 2007 Workshops (pp. 1105–1114). Berlin Heidelberg: Springer,
doi:10.1007/978-3-540-76890-6_38.

Roy, S., & Zeng, W. (2013). Cognitive canonicalization of natural language queries using
semantic strata. ACM Transactions on Speech and Language Processing (TSLP),
10(4), 1-30. doi:10.1145/2539053

Ryu, P., Jang, M., & Kim, H. (2014). Open domain question answering using wikipedia-
based knowledge model. Information Processing & Management, 50(5), 683-692.
doi:10.1016/j.ipm.2014.04.007

Sakr, S., & Pardede, E. (2012). Graph data management: Techniques and applications.
Hershey, PA: Information Science Reference.

Salton, G. (1970). Evaluation problems in interactive information retrieval. Information
Storage and Retrieval, 6(1), 29-44. doi:10.1016/0020-0271(70)90011-2

Schweiger, D., Trajanoski, Z., & Pabinger, S. (2014). SPARQLGraph: A web-based
platform for graphically querying biological semantic web databases.
BMCBioinformatics, 15(1), 279. http://dx.doi.org/10.1186/1471-2105-15-279Sun

Score, S. C. (2009). Web of Science and Scopus: A comparative review of content and
searching capabilities. The Charleston Advisor, 11, 5–18.

Singhal, A. (2012). Introducing the knowledge graph: Things, not strings. Official
Google Blog, Retrieved at https://googleblog.blogspot.com/2012/05/introducing-
knowledge-graph-things-not.html.

Smucker, M. D., & Jethani, C. P. (2010, August). Impact of retrieval precision on
perceived difficulty and other user measures. Paper presented at the Fourth
Symposium on Human-Computer Interaction and Information Retrieval (HCIR), 20-
23.

Sun, Y., Barber, R., Gupta, M., Aggarwal, C. C., & Han, J. (2011). Co-author
relationship prediction in heterogeneous bibliographic networks. In 2011international
conference on advances in social networks analysis and mining (ASONAM) (pp. 121–
128).

Sun, Y., Yu, Y., & Han, J. (2009). Ranking-based clustering of heterogeneous
information networks with star network schema. Paper presented at the 797-806.
doi:10.1145/1557019.1557107

Tablan, V., Damljanovic, D., & Bontcheva, K. (2008). A natural language query interface
to structured information. (pp. 361-375). Berlin, Heidelberg: Springer Berlin
Heidelberg. doi:10.1007/978-3-540-68234-9_28

Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., & Su, Z. (2008). Arnetminer: Extraction
and mining of academic social networks. In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (pp. 990–998).
ACM, New York, NY.

Tran, T., Cimiano, P., Rudolph, S., & Studer, R. (2007). Ontology-based interpretation of
keywords for semantic search (pp. 523–536). Berlin Heidelberg: Springer.

 101

Tsuruoka, Y., & Tsujii, J. I. (2003). Boosting precision and recall of dictionary-based
protein name recognition. In Proceedings of the ACL 2003 workshop on Natural
language processing in biomedicine-Volume 13 (pp. 41-48). Association for
Computational Linguistics.

Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., & Wilkins, D. (2010). A
comparison of a graph database and a relational database: a data provenance
perspective. In Proceedings of the 48th annual Southeast regional conference (p. 42).
ACM.

Wang, C., Xiong, M., Zhou, Q., & Yu, Y. (2007). Panto: A portable natural language
interface to ontologies. In The Semantic Web: Research and Applications (pp. 473-
487). Springer Berlin Heidelberg.

Wei, X., Zhang, Y., & Gwizdka, J. (2014, August). YASFIIRE: Yet another system for
IIR evaluation. Paper presented at the Fifth Information Interaction in Context
Symposium (IIiX). 316-319. doi:10.1145/2637002.2637051

Wildemuth, B., & Freund, L. (2012, October). Assigning search tasks designed to elicit
exploratory search behaviors. Paper presented at the Sixth Symposium on Human-
Computer Interaction and Information Retrieval (HCIR), 1-10.
doi:10.1145/2391224.2391228

Wildemuth, B., Freund, L., & Toms, E. (2014). Untangling search task complexity and
difficulty in the context of interactive information retrieval studies. Journal of
Documentation, 70(6), 1118-1140. doi:10.1108/JD-03-2014-0056

Williams, D. W., Huan, J., & Wang, W. (2007). Graph database indexing using
structured graph decomposition. In Data engineering, 2007. ICDE 2007. IEEE 23rd
International Conference on (pp. 976–985). IEEE, Piscataway, New Jersey.

Yan, E., & Ding, Y. (2009). Applying centrality measures to impact analysis: A
coauthorship network analysis. Journal of the American Society for Information
Science and Technology, 60(10), 2107–2118.

Yan, X., Yu, P. S., & Han, J. (2005). Substructure similarity search in graph databases. In
Proceedings of the 2005 ACM SIGMOD international conference on Management of
data (pp. 766–777). ACM, New York, NY.

Ykhlef, M., & Alqahtani, S. (2009). GQLX: A new graphical query language for XML
data. Proceedings of the 11th international conference on information integration and
web-based applications & services, 201–208.

Yuan, Y., Wang, G., Chen, L., & Wang, H. (2013). Efficient keyword search on
uncertain graph data. IEEE Transactions on Knowledge and Data Engineering, 25(12),
2767–2779.

Zhou, Q., Wang, C., Xiong, M., Wang, H., & Yu, Y. (2007). SPARK: Adapting keyword
query to semantic search (pp. 694–707). Berlin Heidelberg: Springer.

Zou, L., Chen, L., & Özsu, M. T. (2009). Distance-join: Pattern match query in a large
graph database. Proceedings of the VLDB Endowment, 2(1), 886–897.

 102

Zuccon, G., Leelanupab, T., Whiting, S., Yilmaz, E., Jose, J. M., & Azzopardi, L.
(2013;2012;). Crowdsourcing interactions: Using crowdsourcing for evaluating
interactive information retrieval systems. Information Retrieval, 16(2), 267-305.
doi:10.1007/s10791-012-9206-z

 103

Appendix A: Natural Language Queries Tested in the Experiment

1. Papers by Gerard Salton

2. Michael Lawrence’s papers

3. Papers that were written by Sangjun Lee

4. Papers about ontology

5. Authors of Automatic text structuring experiments

6. Papers that were cited by Energy-Aware and Time-Critical Geo-Routing in Wireless

Sensor Networks

7. Terms of Opacity generalised to transition systems

8. Organization of Johann Eder

9. Sources that published The Effect of Faults on Network Expansions

10. Papers that were published in Theoretical Computer Science

11. Papers about classification and DNA

12. Papers that were written by John R. Mick and published in ACM SIGMICRO

Newsletter

13. Papers cites papers that were written by Braham Barkat

14. Papers about modulation which were published in Neural Networks

15. Authors of University713 who wrote A control word model for detecting conflicts

between microoperations

16. Sources that published Zesheng Chen's papers

17. Authors whose papers were published in AI Communications

18. Authors who wrote papers that were about simulation

 104

19. Terms of Junghyun Nam's papers

20. Organizations of authors of A New Quadtree Decomposition Reconstruction Methods

21. Papers about survey, semantic, and retrieval

22. Authors of papers that were cited by papers that were published in Decision Support

Systems

23. Papers that cite papers that were written by Rainer Engelke and published in

Microsystem Technologies

24. Nina Yevtushenko’s papers that were cited by papers that were written by Sergey

Buffalov

25. Sources that published papers about genome and mining

26. Terms of Rafae Bhatti’s papers that were published in Communications of the ACM

27. Sources that published Tomasz Jurdzinski’s papers which are about automata

28. Terms of papers that were written by authors at University123

29. Organizations of authors whose papers were published in Journal of Multivariate

Analysis

30. Authors who are affiliated with University007 and wrote papers about clustering

31. Papers about classification, which were cited by Asoke K. Nandi 's papers that had

been presented in Pattern Recognition

32. Authors of papers that were cited by papers that were written by Changqiu Jin and

published in Journal of Computational Physics

33. Terms of papers that were cited by papers about kernel and regression

34. Sources that published papers cited papers about middleware and embedded

 105

35. Organizations of authors whose papers were cited by papers that were published in

Journal of Robotic Systems

36. Organizations of authors who wrote paperson similarity and bayesian

37. Papers about bayesian and electron which were written by authors at University170

38. Sources of papers, which were about eigenvalue and written by authors at

University40

39. Authors at University899, who wrote papers that were about classifier, which were

published in Applied Intelligence

40. Terms of papers that were published in Cybernetics and Systems Analysis and written

by authors at University362

 106

Appendix B: Fifteen queries tested in the experiment

1. Regular queries

2. Papers written by Gerard Salton

3. Papers on the topic of Human-Computer Interaction

4. Papers that were cited by “Introduction to Modern Information Retrieval”

5. Papers of authors who wrote “Term-weighting Approaches in Automatic Text

Retrieval”

6. Papers on the topics of “The Hadoop distributed file system”

7. Papers that were written by Christopher D Manning and published by Association for

Computational Linguistics

8. Authors at CMU, who presented papers in SIGCHI

9. Authors who wrote papers on the topic of information seeking behavior, which were

presented in SIGIR

10. Topics of papers that were presented in SIGKDD

11. Conferences that presented papers on the topics discussed in “MapReduce: simplified

data processing on large clusters”

Advanced queries

1. Bibliographic coupling (papers that were cited by “MapReduce: simplified data

processing on large clusters” and “TheHadoop distributed file system”)

2. Paper co-citation (papers that cited both “MapReduce: simplified data processing on

large clusters” and “The Hadoopdistributed file system”)

 107

3. Author co-citation (papers that cited both Gerard Salton and James Allan)

4. Co-author (authors who co-authored with Gerard Salton)

5. Co-word (keywords that co-occurred with big data)

 108

Vita

Yongjun Zhu

Education

• Ph.D. in Information Studies, Drexel University, 2013-2017

• M.S. in Industrial Engineering, Yonsei University, 2010-2012

• B.S. in Economics, Yanbian University of Science and Technology, 2005-2009

Research Areas

Information Retrieval, Data Mining, Science of Science, Health Informatics

Publications

• Yan, E. & Zhu, Y. (2017). Adding the dimension of knowledge trading to source
impact assessment: Approaches, indicators, and implications. Journal of the
Association for Information Science & Technology.

• Zhu, Y., Kim, M.C., & Chen, C. (2017). An investigation of the intellectual
structure of opinion mining research. Information Research.

• Zhu, Y. & Yan, E. (2016). Searching bibliographic data using graphs: A visual
graph query interface. Journal of Informetrics, 10(4), 1092-1107.

• Choi, N., Song, I.-Y., & Zhu, Y. (2016). A Model-based Method for Information
Alignment: A Case Study on Educational Standards. Journal of Computing
Science and Engineering, 10(3), 85-94.

• Zhu, Y., Yan, E., & Song, M. (2016). Understanding the evolving academic
landscape of library and information science through faculty hiring data.
Scientometrics, 108(3), 1461-1478.

• Zhu, Y., Song, M., & Yan, E. (2016). Identifying Liver Cancer and Its Relations
with Diseases, Drugs, and Genes: A Literature-based Approach. PLoS ONE,
11(5), e0156091.

• Zhu, Y., Yan, E., & Song, I.-Y. (2016). The use of a graph-based system to
improve bibliographic information retrieval: System design, implementation, and
evaluation. Journal of the Association for Information Science & Technology

• Kim, M.C., Zhu, Y., & Chen, C. (2016). How are they different? A quantitative
domain comparison of information visualization and data visualization (2000-
2014). Scientometrics, 107(1), 123-165.

• Song, I.-Y. & Zhu, Y. (2015). Big data and data science: what should we teach?
Expert Systems, 33(4), 364-373.

 109

• Yan, E. & Zhu, Y. (2015). Identifying entities from scientific publications: A
comparison of vocabulary- and model-based methods. Journal of Informetrics,
9(3), 455–465.

• Zhu, Y. & Yan, E. (2015). Dynamic subfield analysis of disciplines: An
examination of the trading impact and knowledge diffusion patterns of computer
science. Scientometrics, 104(1), 335-359.

• Kim, H., Zhu, Y., Kim, W., & Sun, T. (2014). Dynamic faceted navigation in
decision making using Semantic Web technology. Decision Support Systems, 61,
59-68.

