

The following item is made available as a courtesy to scholars by the author(s) and Drexel University Library and may
contain materials and content, including computer code and tags, artwork, text, graphics, images, and illustrations
(Material) which may be protected by copyright law. Unless otherwise noted, the Material is made available for non
profit and educational purposes, such as research, teaching and private study. For these limited purposes, you may
reproduce (print, download or make copies) the Material without prior permission. All copies must include any
copyright notice originally included with the Material. You must seek permission from the authors or copyright
owners for all uses that are not allowed by fair use and other provisions of the U.S. Copyright Law. The
responsibility for making an independent legal assessment and securing any necessary permission rests with persons
desiring to reproduce or use the Material.

Please direct questions to archives@drexel.edu

Drexel University Libraries
www.library.drexel.edu

University Archives and Special Collections:

http://www.library.drexel.edu/archives/

http://www.drexel.edu/

Department of Computer Science
Drexel University College of Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Drexel Libraries E-Repository and Archives

https://core.ac.uk/display/190326322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.drexel.edu
mailto:archives@drexel.edu
www.library.drexel.edu
http://www.library.drexel.edu/archives/
http://www.drexel.edu/
http://www.cs.drexel.edu/
http://www.drexel.edu/coe/

A Hierarchy of Dynamic Software Views:
from object-interactions to feature-interactions

Maher Salah and Spiros Mancoridis
Department of Computer Science

College of Engineering
Drexel University

3141 Chestnut Street, Philadelphia, PA 19104, USA
msalah@cs.drexel.edu, Spiros.Mancoridis@drexel.edu

Abstract

This paper presents a hierarchy of dynamic views that
is constructed using tools that analyze program execution
traces. At the highest-level of abstraction are the feature-
interaction and implementation views, which track the inter-
feature dependencies as well as the classes that implement
these features. At the middle-level is the class-interaction
view, which is an abstract view of the object-interactions.
The object-interaction view is the base view for all the
views, and captures the low-level runtime interactions be-
tween objects. Two case studies are used to demonstrate
the effectiveness of our work.

1 Motivation

An important, but difficult, problem in software compre-
hension is the identification of program features, and the
traceability of these features to program source code. This
problem has been studied extensively [6, 24, 25], with an
emphasis on techniques for mapping program features to
source code. In this paper, we complement these efforts by
providing a set of views that not only associates features to
code but also establishes feature-interactions automatically.

Over two thirds of software maintenance efforts are spent
on non-corrective maintenance activities, mainly perfective
and adaptive maintenance [18, 23]. Perfective maintenance
is performed on software to meet new users requirements.
Adaptive maintenance is performed in response to modifi-
cations in the environment. Perfective or adaptive mainte-
nance activities typically involve the study and analysis of
specific portions of the system to fix bugs, add new features,
or modify existing features.

To perform a maintenance activity, a developer’s initial
task is to study and analyze the source code and its doc-

umentation. For example, the task may be to modify the
‘print’ feature of a word processing application. The devel-
oper studies the source code to locate the portions that are
related to the ‘print’ feature. For many software systems,
this task is difficult and time consuming, since the imple-
mentation of a feature may involve multiple classes or mod-
ules. More than half of a typical developer’s effort is spent
on reading and analyzing the source code to understand the
system’s logic and behavior [16, 18].

A developer can take an alternative approach to this
maintenance task by instrumenting the application’s code,
and exercising the subject feature using a profiler, and
then analyzing the execution traces to determine which
portions of the code were exercised by the feature. An
execution trace is a sequence of runtime events (e.g.,
object creation/deletion, method invocation, thread cre-
ation/termination) that describes the dynamic behavior of
a running program. With adequate tool support, this ap-
proach is more effective, because it reduces the complexity
of the task by allowing the developer to locate the code of
interest quickly. This approach is suitable for many prac-
tical settings, since change requests are usually written in
plain langauge with explicit references to identifiable pro-
gram features. A developer can start from the change re-
quest, then execute the application in a profiling mode, and
finally exercise the desired features to locate the portions of
the source code, instead of starting with the code and trying
to map it to features manually.

Dynamic analysis is a powerful technique for identifying
the portions of the code that need to be changed. Specifi-
cally, the developer can execute the system and mark execu-
tion traces of interest. This paper describes a set of software
views and tools that support this approach to software un-
derstanding. The approach is centered around the concept
of marked execution traces, which developers use to define
program features. In our technique, a feature is defined as

a functionality, or a usage scenario of a program, that can
be represented as a sequence of runtime events. Features
are specified by the developer in terms of marked-traces. A
marked-trace is established manually during the execution
of the program by specifying the start and the end of the
trace using a trace-marker utility that is part of the profiler.

The set of views provides various levels of detail that
the developer can explore. The tools support the navigation
among the different views as well as the expanding of the
nodes and edges of the graphs of the views to allow the de-
veloper to view specific detailed information that is encoded
in the nodes and edges. Depending on the view, a node can
be a feature, a thread, a class, an object, or a method. Simi-
larly, an edge encodes the relationship type, and the objects
and classes that are participating in the relationship.

The organization of the rest of the paper is as follows:
Section 2 describes related research and the architecture of
the tools used, Section 3 describes the dynamic views, and
Section 4 describe the case study.

2 Background

This work is related to two research areas. Namely dy-
namic analysis and program feature analysis. The work also
depends on our earlier research pertaining to the design of
a software comprehension framework.

2.1 Dynamic analysis

Dynamic analysis is used to study the behavior of soft-
ware systems. There are three methods for collecting run-
time data. The first method is source code instrumentation.
Bruegge et al. designed the BEE++ system [3] as a frame-
work for monitoring (e.g., function calls, variable modifi-
cations) systems written in C/C++. In this system, runtime
event generation is achieved by instrumenting the program
source code. Another system that uses source code instru-
mentation is SCED [10]. This system uses runtime data to
create models of object-oriented programs, which are visu-
alized as state diagrams or state charts. SCED only collects
data from stand-alone applications, while BEE++ can also
collect data from distributed applications.

The second method for collecting runtime data involves
the instrumentation of complied code. This method is
widely used to instrument Java bytecode [11]. The third
runtime data collection method is based on debugging and
profiling. In this method, code instrumentation is not re-
quired. Modern development frameworks provide inter-
faces to facilitate the collection of runtime data. Exam-
ples of such interfaces include JVMDI and JVMPI for Java
[21, 22], CLR Profiling Services for Microsoft .NET [14],
and COM+ instrumentation services for COM+ applica-
tions [13]. Debuggers have been used to emulate profiling

interfaces by automatically inserting breakpoints and ma-
nipulating the stack frame of the executing program. For ex-
ample, Drexel University’s GDBProfiler [5] uses the GNU
debugger interface to profile C programs.

2.2 Program feature analysis

The objective of feature analysis is to correlate program
features with implementation artifacts found in the source
code. In this context, a feature usually refers to a usage
scenario of the program [6] or a test case [25].

Eisenbarth et al. use dynamic and static analysis to as-
sociate features to components [6]. Dynamic profiling is
used to identify the subprograms that are exercised when a
specific feature is executed. Concept analysis is then used
to analyze the relationships between features and subpro-
grams. Concept analysis results are combined with static
analysis to refine the classification of subprograms as well
as to establish the dependencies between subprograms with
respect to a given set of features.

Wong et al. used program execution slices to identity the
portions of the code that implement a given feature or a set
of features [25].

Wilde and Scully developed a technique for locating pro-
gram features by analyzing the execution traces of test cases
[24]. The technique uses two sets of test cases, one set that
executes the feature, and a second set that does not. A com-
parison of the execution traces of each set is used to identify
the subprograms that implement a given feature.

Chen and Rajlich [4] have developed a technique for
identifying program features from an abstract system de-
pendencies graph (ASDG). The ASDG is derived from the
source code, and it describes source code entities (e.g.,
procedures, types, variables) and the relationships between
them. The identification of features is performed manually
by traversing the graph.

Our work, contributes to the state-of-the-art by creating
the feature-interaction view, which identifies the dependen-
cies between features and the creation of tools that automate
the creation of feature-interaction views.

2.3 Software comprehension environment

Next is a brief introduction to the software comprehen-
sion environment used to create the set of software views
described in this paper. Further details about the environ-
ment are described elsewhere [19, 20]. Figure 1 illustrates
the architecture of the software comprehension environ-
ment. The main subsystems are: data gathering, repository,
and analysis/visualization subsystems.

The data gathering subsystem defines the interfaces
and data formats of the data collection tools (i.e., static ana-
lyzers and dynamic profilers). In our experiments, we used

JDBC Compliant
Database

(SQL Server)

SQL
(JDBC)

SMQL

Data Gathering Subsystem

Analysis/Visualization
SubsystemRepository Subsystem

Data Collection
Manager

Trace Marker

Java Static Analyzer
JSA

Java Dynamic Analyzer
JVPROF XML Documents

Software
Program(s)

SMQL Filters

Visualization
(Presentation)

Source
code

Execution
 Traces

Figure 1. Architecture of the software comprehension environment

both static and dynamic analyzers. The static analyzer is
JSA, which is a Java extractor implemented using the BCEL
[7] package. The dynamic analyzer is JVPROF, which is a
profiler implemented using the JVMDI and JVMPI inter-
faces [21, 22]. We have enhanced JVPROF to allow users
to mark runtime execution traces by providing a wizard that
enables users to mark the beginning and the end of a trace.
The data collection manager is the common facility that all
data extractors use to store the collected data into the repos-
itory. In the case of the JSA, it connects directly to the data
collection manager, while in the case of JVPROF, it stores
data as an XML document, which is later exported to the
repository.

The repository subsystem defines the data and meta-
data models, as well as the data manipulation and query
language. The data repository stores the program enti-
ties, relationships, and runtime events that are gathered
from the subject system. The repository is manipulated us-
ing standard SQL and is queried using either SQL or our
own SMQL query langauge [19]. The repository uses any
JDBC-compliant database.

SMQL (Software Modelling Query Language) simpli-
fies the data retrieval and analysis of program data to create
software views. Even though the repository can be queried
using SQL, designing queries for comprehending software
systems using SQL is cumbersome. Many of the queries
that are of interest to an engineer, for example queries that
involve the transitive closure of a relation, are not supported
directly by SQL. SMQL is a set-based language that facil-
itates the definition of queries about entities, relations, and
events by translating the SMQL code into SQL query state-
ments. SMQL provides a built-in closure function as
well as binary operators such as union, intersection, and
join. SMQL is similar to grok [9] for manipulating bi-

nary relational algebra expressions. Unlike grok, SMQL
can be extended to support additional operations that are
implemented in Java.

The analysis and visualization subsystem is respon-
sible for the creation and visualization of software views.
Analysis is performed using SMQL analyzers, which are
SMQL extensions that are implemented in Java. Software
views are visualized either as a tree or as a graph. The graph
visualization is performed using JGraph [2], graph layout is
performed by dot [8], and the clustering feature uses Bunch
[12]. Software views are implemented as SMQL extensions
written in Java.

3 Dynamic views

This section describes a hierarchy of views that captures
the dynamic behavior of programs from execution traces.
There are different levels of abstraction in the hierarchy.
The lowest level represents the runtime events that are gen-
erated during the execution of the marked-traces. The sec-
ond level of abstraction includes runtime objects and the re-
lationships between them. This level is the basis for higher-
level views. The third level includes classes and the runtime
relationships between them. The highest level of the hierar-
chy represents program features and feature-interactions. In
this context, a program feature refers to an externally visible
functionality of the program, and is identified as a marked-
trace. The set of the views are described below and are
outlined in Figure 2:

1. Object-interaction view. This view is constructed
from the execution traces of the program. It serves
as the basis for higher level views such as the class-
interaction and feature-interaction views.

Feature-implementation ViewRuntime Events Object-interaction View Feature-interaction View

Class-interaction View

Using Marked Traces

Figure 2. Hierarchy of Views

2. Class-interaction view. This view is an abstraction of
the object-interaction view, where sets of objects are
represented by their corresponding classes. However,
the interactions between the classes in this view repre-
sent the dynamic relationships derived from the object-
interaction view.

3. Feature-interaction view. This view illustrates the in-
teractions between program features. Features are de-
fined by users in terms of marked-traces. A marked-
trace is established manually during the execution of
the program by specifying the start and the end of the
trace. Feature interactions are derived from the object-
interaction view automatically.

4. Feature implementation view. This view is a map-
ping between program features and the classes that im-
plement these features.

The creation of the aforementioned views requires iden-
tifying various sets of runtime objects (objects are identified
by their unique runtime references). For features, these sets
are defined as follows:

Local
���������

Set of objects created and used by
feature

� �
only

Import
��� � ���

Set of objects used by feature
� �

and
created by feature

�
	��������
Export

��� � ���
Set of objects created by feature

� �
and used by feature

�
	��������

These sets allow us to define the following two relations,
which are used to describe the views in the next subsections:

������������� � � � ���!	"�#�
I
� � � ��$

E
���!	��
�%���&�

�('*),+-�-� � � � ���!	"�#�
I
� � � ��$

I
� �!	��
�%�����

In the
�,�.�*�����/� � � � ���!	0�

relation, feature
� �

used objects
that were created during the execution of feature

�1	
. While

in the
�('*)�+(�-� � � � �2�!	��

relation, both
� �

and
�!	

features
used the same set of objects that were not created by

�3�
nor� 	

features.

3.1 Object-interaction view

This view shows the creation and method invocation re-
lationships between objects. Field accesses of primitive
data types (e.g., int, char) are not included in the analy-
sis. This view provides information about the collaboration
between objects based on the depends and shares relations
described above. This view is very detailed and not suit-
able for program comprehension. However, it serves as the
base view for deriving higher level views such as those de-
scribed in the following subsections. The object-interaction
view can be summarized by clustering the object-interaction
graph. An example of this view is shown in Figure 10.

The object-interaction view highlights threads that exe-
cute concurrently and share objects. The view isolates ob-
jects that can be examined for potential concurrency issues
such as race conditions or deadlock. As shown in Figure 3,
the edges in the view encode information about the shared
objects, and the user can view these objects by double-
clicking on specific edges.

The object-interaction view also highlights the commu-
nication endpoints between the modules of a distributed
systems. Further details have been described in our pre-
viously published work [19].

3.2 Class-interaction view

The class-interaction view is an abstract view of the
object-interaction view, where objects are grouped by their
class type. Figure 4 shows the class-interaction view of the
KWIC (keyword in context) algorithm. There are two types
of relationships in the view: creates (represented as an ar-
row with dotted-tail) and uses (represented as a normal ar-
row) relationships derived from the depends and shares re-
lations of object-interactions view. The creates relationship
between two classes 415 and 4!6 implies that an instance of475 created and possibly used an object instance of type 416 .
The uses relationship between 415 and 4!6 implies that an
instance of 475 used (e.g., invoked a method) an instance
of 4!6 that was not created by 475 . This view is essentially
a hybrid static/dynamic view as the entities are static (e.g.,
classes) and the relationships are dynamic (e.g., invokes and

Thread-2 Thread-3

Thread-1
 Class-1

 Object-1

 Class-2

 Object-2

 Class-3
 Object-3
 Object-4

Figure 3. Inter-thread Interaction

kwic.KwicOutput

kwic.KwicSimpleTextLine

kwic.KwicController

kwic.KwicCircularShift

kwic.KwicAlphabetizer

kwic.KwicInput

kwic.KwicDefaultInputParser

kwic.KwicComparator

kwic.KwicMultiFileStream

kwic.pipefilter.KwicPipe

kwic.KwicKeyValuePair

kwic.Main

Figure 4. Class-interaction view of KWIC program

creates). The content of this view is similar to the inter-
class call matrix and histogram of instances grid developed
by De Pauw et al. [17]. This view is far less detailed than
the object-interaction view and can be used by developers
for program comprehension.

3.3 Feature-interaction view

The feature-interaction view captures relationships be-
tween features. This view is derived from the object-
interaction view by grouping objects based on where a given
object is created or used. Features in our analysis are iden-
tified in terms of marked-traces, which the user specifies
during the execution of a program using a utility to mark
the start or the end of each execution trace.

Figure 5 shows a features-to-classes grid. The filled rect-
angles in the diagram are objects that are created during the
execution of the respective feature; unfilled rectangles are
objects that are used during the execution of the feature but
created by another feature. The content of Figure 5 is de-
scribed as follows:

Feature
� 5 uses objects 8-9:5 � 9�6 � 9<;-= �

Feature
� 6 uses objects 8-9<6 � 91> � 9<?-= �

Feature
� ; uses objects 8-9:5 � 91> � 9<@-= �

Feature
� > uses objects 8-9�> � 9�A�= �

Class 4 5 instantiates objects 8(9 5 � 9 6 = �
Class 4 6 instantiates objects 8(9 ; � 9 > � 9 ? � 9 @ = �

Class 4 ; instantiates object 8-9 A =
9 5 is created during the execution of

� 5 and is used by
� ; .

9 6 is created during the execution of
� 5 and is used by

� 5 .
9 > is created during the execution of

� 6 and is used by
� ;

and
� > . The feature-interaction diagram, in Figure 6(a), is

constructed as follows:

1. Identify the Import
���B�

and Export
� �C�

sets for each
feature:

E
��� 5 ��� 8(9 5 � 9 6 =

I
��� 5 ��� D

E
��� 6 ��� 8(9�>�=

I
��� 6 ��� 8(9<6�=

E
��� ; ��� D

I
��� ; ��� 8(9:5 � 91>�=

E
��� > ��� D

I
��� > ��� 8(9 > =

2. Identify the depends and shares relations between each
pair of features using the E and I sets (empty sets are
excluding):�,�.�*�����/� � � 6 ��� 5 ���

E
� � 5 �%$

I
� � 6 �E� 8-9�6�=�,�.�*�����/� � � ; ��� 5 ���

E
� � 5 �%$

I
� � ; �E� 8-935(=�,�.�*�����/� � � ; ��� 6 ���

E
� � 6 �%$

I
� � ; �E� 8-9 > =�,�.�*�����/� � � > ��� 6 ���

E
� � 6 �%$

I
� � > �E� 8-9 > =�('F)�+-�-� ��� ; ��� > ���

I
� � ; ��$

I
��� > �E� 8(9 > =

Feature
F1

Feature
F2

Object
O4

Object
O5

Object
O1

Object
O2

Object
O2

Feature
F3

Object
O4

Object
O6

Object
O1

Uses

Uses

uses

Object
O3

Class
C1

Class
C2

Object
O7

Class
C3

Feature
F4

Object
O4

uses

Figure 5. Feature-interaction grid

Feature-2

Feature-3

Feature-1

Feature-4

 Class-1

 Object-1

(a) Feature-interaction graph

Feature F2

Feature F3

Feature F1

Feature F4

Class C1

Class C2

Class C3

(b) Feature-implementation graph

Figure 6. Feature-interaction and implementation views

3. Draw an edge between
� 	

and
���

if the�,�.���"���/� � � 	 �2���-�
set is not empty. The depends

edge is represented as a solid-arrow, where the arrow
head points to the feature that created the object(s)
participating in the depends relationship.

4. Draw an edge between
�7	

and
� �

if the�('F)�+-�-� ���!	��2� � �
set is not empty. The shares

edge is represented as a dotted-line.

The data combined from the class-interaction and the
feature-interaction views is used to produce the feature-
implementation view (Figure 6(b)), which identifies the
classes that are used to implement a given feature. This
view provides a simple mapping between features and
implementation-level classes. This view is not unique to
our work, several research efforts [4, 6, 24, 25] have iden-
tified this kind of mapping. The view is represented as a

graph, where the nodes represent features and classes, and
edges represent instantiation relations between features and
classes.

4 Case study

Table 1 outlines the systems that were analyzed as part
of our case study. The counts in the table exclude common
packages such as java.* and javax.*. The two case
studies are Jext [1], a programmer’s text editor, and Jetty
[15], a web server. Jext is a feature-rich application, whose
externally visible features corresponds to a set of marked-
traces. Jetty is a software system whose features are not
clearly visible to the user. The marked-traces for Jetty cap-
ture how a developer interacts with a client application (web
browser) to locate portions of the server code.

// Events from JEXT Editor

EventSet JextEvents
 {

caption = "Event (JEXT) " ;
type = {"method-entry",

 "method-exit",
 "endpoint",
 "thread-start",
 "thread-end",
 "module-load",
 "process-start",
 "object-create",
 "process-end"} ;

include (project) = {"jext"} ;
include (trace) = {"*"} ; // all traces
exclude (trace) = {"startup", "shutdown"};
exclude (name) = {"finalize"} ;
exclude (container) = {"java.*",

 "javax.*", "gnu.*"} ;
 }

// Get java.net.* events (Network events)
EventSet NetEvents
 {

caption = "Net Event (JEXT) " ;
type = {"method-entry",

 "method-exit",
 "endpoint",

"thread-start",
 "thread-end",
 "module-load",
 "object-create"
 } ;

include (project) = {"jext"} ;
include (trace) = {"*"} ;
exclude (trace) = {"startup", "shutdown"};
exclude (name) = {"finalize"} ;
include (container) = {"java.net.*"} ;

 }

// Compute the union of JextEvents & NetEvents
AllEvents = JextEvents + NetEvents ;

// Apply the event-analyzer
results = AnalyzeEvents (AllEvents) ;

Figure 7. Jext: SMQL code

Project Classes Methods Objects Events
jext 538 2,893 55,624 334,852
jetty 189 2,088 940 36,367

Table 1. Systems analyzed

4.1 The Jext text editor

Jext is a programmer’s text editor, written in Java, that
supports many languages (e.g., C/C++, Java, XSLT, TEX).
In our study, we marked traces to identify a subset of the
Jext features. The scenarios used to mark the selected traces
are: (a) opening three different documents (a Java source
file, an HTML file from the web, and a Java source file
from bookmarks), (b) performing edit activities (copy, cut,
paste) on the Java documents, (c) searching for a string in
the Java documents, (d) searching and replacing, (e) adding
bookmarks, and (f) e-mailing the opened Java documents.
Table 2 shows the number of objects used, the number of
objects created, and the number of events generated during
the execution for each of the marked traces.

The SMQL code used to derive the software views from
the runtime events is listed in Figure 7. First, we de-
fine two sets of events (EventSet): JextEvents and
NetEvents. In the JextEvents set, we include events
that were created during the execution of the marked-traces,
but we exclude events created from the standard packages
such as java.* and javax.*. We also exclude events

Feature Obj. used Obj. created Events
bookmark-add 68 16 1,866
bookmark-open-doc 4,321 2421 31,872
edit-copy 33 4 4,719
edit-cut 50 6 1,973
edit-paste 132 104 5,545
email-doc 2,691 43 10,889
file-open-doc 12,470 9,552 113,452
search 47 16 9,013
search-replace 3,171 89 121,433
url-open-doc 2,457 2,414 28,254

Table 2. Jext: Objects and events per feature

that were created during startup and shutdown of the appli-
cation.

The second event set is NetEvents, here we are only
interested in java.net.* events to identify data pertain-
ing to remote method invocations of a distributed applica-
tion. The finalize() method is excluded to prevent the
mis-identification of interactions, since this method is in-
voked by the garbage collector and the JVM does not guar-
antee which thread will invoke this method. The union of
the two event sets is computed using the “+” operator.

Finally, we invoke the event analyzer (EventAnalyzer)
to create the dynamic views from the input event set. The
returned value results is a set of sets, where each ele-
ment (set) represents a RelationSet that defines a view or a
part of a view.

bookmark-open-doc

file-open-doc

bookmark-add

search-replace search

edit-paste
url-open-doc

email-doc

edit-cut

edit-copy

(a) Feature-interaction view

edit-cut

org.jext.JextTextArea
org.jext.JextTextArea$2

org.jext.JextTextArea$CaretHandler
org.jext.JextTextArea$FocusHandler

org.jext.project.ProjectEvent

org.jext.event.JextEvent

edit-paste

file-open-doc
org.jext.gui.JextMenu

org.jext.gui.EnhancedMenuItem

org.jext.gui.ModifiedCellRenderer

org.jext.JavaSupport$1
org.jext.JextFrame$DnDHandler

AutoExpander

org.jext.JextTextArea$1

org.jext.xinsert.XTreeNode

org.jext.scripting.python.PythonLogWindow
org.jext.scripting.AbstractLogWindow$1

org.jext.scripting.python.PythonLogWindow$1
org.jext.scripting.python.PythonLogWindow$2

org.jext.scripting.python.PythonLogWindow$MouseHandler
org.jext.misc.FindAccessory

org.jext.misc.FindAccessory$FindAction
org.jext.misc.FindAccessory$FindTabs

org.jext.misc.FindByName
org.jext.misc.FindByDate

org.jext.misc.FindAccessory$FindResults
org.jext.misc.FindAccessory$FindResults$FindResultsCellRenderer

org.jext.misc.FindAccessory$1
org.jext.misc.FindAccessory$FindControls

org.jext.gui.JextHighlightButton
org.jext.gui.JextHighlightButton$MouseHandler

edit-copy

(b) Feature-implementation view

Figure 8. Jext: Feature-interaction and implementation views

Figure 8 shows the feature-interaction view and feature-
implementation view for Jext. In Figure 8(a), arrows repre-
sent interaction relationships between features. The dom-
inant features are file-open-doc and bookmark-
open-doc, where a new document (JextTextArea) is
created and initialized from the source files. It is expected
that other features such as editing, searching and e-mailing
will reference the open documents of a text editor. We also
observe that the search-replace feature uses objects
that were created by the search feature. This is also ex-
pected for a search/replace feature, since the search func-
tion is needed before the replace function is applied. The
view provides a developer with useful information to rea-
son about the impact of changes without the need to read
the source code. For example modifying the replace part of
search/replace feature may not have an impact on the
search feature, while modifying search will have di-
rect impact on the search/replace feature. Similarly,
modifying the file-open-docwill have a direct impact
on all the other features.

Figure 8(b) shows a partial mapping of features to
classes. The arrows point to the classes that were exercised

during the execution of a given feature.

4.2 The Jetty web server

The SMQL code for the Jetty [15] web server is similar
to that for the Jext example. In our case study, we marked
four traces. The scenarios used were designed to exer-
cise features such as: servlet support, session management
and cookies management. The server traces were marked
while interacting with servlet examples (part of Jetty distri-
bution package) via a web browser. The feature-interaction
view is shown in Figure 9(a), and the feature implemen-
tation is shown in 9(b). The dominant feature is http-
request, which is responsible for accepting and process-
ing http requests. Note that the sessions and cookies
features are independent of each other, but both depend on
the servlets features.

Figure 10 shows a clustered object-interaction view. In
the diagram, the cluster labels are the names of the dominant
component of the clusters. To keep the diagram simple, we
only expanded one cluster, which is CL-5. The other clus-
ters are represented as filled octagons. This view is con-

sessions

servlets

http-request

cookies

(a) Feature-interaction view

CookieExample

org.mortbay.http.HttpInputStream$ClosedStream
org.mortbay.http.HttpHandler

SessionExample
listeners.SessionListener

java.net.Socket
org.mortbay.http.HttpRequest

org.mortbay.http.SocketListener
org.mortbay.http.HttpConnection
org.mortbay.http.HttpResponse

org.mortbay.http.HttpInputStream
org.mortbay.http.PathMap

org.mortbay.http.HttpOutputStream
org.mortbay.http.NullableOutputStream

java.net.SocketOutputStream
org.mortbay.http.HashUserRealm

org.mortbay.http.BufferedOutputStream
org.mortbay.http.NCSARequestLog

java.net.SocketInputStream
org.mortbay.http.HttpContext$CachedMetaData

cookies

filters.ExampleFilter
org.mortbay.http.HttpOutputStream$HttpWriter

org.mortbay.http.ChunkingOutputStream

http-request

org.mortbay.http.ContextLoader

HelloWorldExample
RequestInfoExample

RequestHeaderExamplesessions

servlets

(b) Feature-implementation view

Figure 9. Jetty: Feature-interaction and implementation views

structed by clustering the object-interaction using Bunch
[12], then the objects within each cluster are grouped based
on their type (or class) to simplify the diagram (as in CL-
5 cluster). Edges represent either uses or creates relation-
ships, and nodes represent classes (rectangles) and clusters
(octagons).

Using our tools, a user can navigate between different
views as well as expand nodes and edges in the diagram
to view the encoded information in the nodes and edges.
For example, a user can double-click on a feature to view
the object-interaction and class-interaction views of a given
feature, or a user can double-click on an edge to reveal the
objects and classes involved in a given relationship.

5 Conclusions and future work

In this paper we describe a hierarchy of dynamic views,
which includes feature-interaction, feature-implementation,
class-interaction, and object-interaction views. We describe
the environment used to construct these views. Through two
case studies, we demonstrate the ability of the environment
to collect dynamic data, analyze the data, and visualize it
as a set of views. We believe that the software views and

the tools described are helpful for maintenance tasks that
require a detailed understanding of specific parts of a soft-
ware system.

Our work contributes to the state-of-the-art by creating a
set of views with various levels of abstraction and the design
of tools to automate the creation of these views.

Future efforts will focus on two areas. First, we are plan-
ning to conduct a more extensive study to evaluate the prac-
tical effectiveness of the views and the tools. Second, we
would like to improve the performance of the profiler and
view generator.

References

[1] Jext: Source code editor. http://www.jext.org/.
[2] G. Alder. Design and Implementation of the JGraph Swing

Component, 2003. http://www.jgraph.com.
[3] B. Bruegge, T. Gottschalk, and B. Luo. A framework

for dynamic program analysis. In Conference on Object-
Oriented Programming Systems, Languages, and Applica-
tions (OOSLA93), Washington, USA, September 1993.

[4] K. Chen and V. Rajlich. Case study of feature location using
dependence graph. In Proceedings of the 8th International

CL-5: org.mortbay.http.HttpOutputStream

CL-1: org.mortbay.http.HttpConnection

CL-3: org.mortbay.http.HashUserRealm

CL-4: org.mortbay.http.HttpConnection

org.mortbay.http.HttpOutputStream

org.mortbay.http.HttpResponse

org.mortbay.http.HttpOutputStream$HttpWriter

SessionExample

RequestParamExample

org.mortbay.http.ChunkingOutputStream

org.mortbay.http.NullableOutputStream

org.mortbay.http.BufferedOutputStream

Figure 10. Jetty: Clustered object-interaction view

Workshop on Program Comprehension, Limerick, Ireland,
June 2000.

[5] C. Dahn and J. Penrose. GDBProfiler for GNU C/C++.
http://serg.mcs.drexel.edu/gdbprofiler.

[6] T. Eisenbarth, R. Koschke, and D. Simon. Aiding program
comprehension by static and dynamic feature analysis. In In-
ternational Conference on Software Maintenance, Florence,
Italy, November 2001. IEEE.

[7] Free Software Foundation. Byte Code Engineering Library
(BCEL). http://jakarta.apache.org/bcel.

[8] E. Gansner, E. Koutsofios, and S. C. North. Drawing graphs
with dot. AT&T Bell Laboratories, Murray Hill, NJ, Febru-
ary 2002.

[9] R. C. Holt. Binary relational algebra applied to software
architecture. Technical Report CSRI-345, University of
Toronto, March 1996.

[10] K. Koskimies, T. Männistö, T. Systä, and J. Tuomi. SCED:
A tool for dynamic modelling of object systems. Technical
Report A-1996-4, Department of Computer and Information
Sciences, University of Tampere, Finland, 1996.

[11] H. Lee and B. Zorn. BIT: Bytecode Instrumenting Tool.
http://www.cs.colorado.edu/ hanlee/BIT.

[12] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner.
Bunch: A clustering tool for the recovery and maintenance
of software system structures. In International Conference
on Software Maintenance, pages 50–59. IEEE Computer So-
ciety Press, 1999.

[13] Microsoft Corporation. COM+ SDK Documentation:
COM+ Instrumentation, 1999.

[14] Microsoft Corporation. .NET Framework: Runtime profil-
ing, 2001.

[15] Mort Bay Consulting. Jetty Web Server and Servlet Con-
tainer. http://jetty.mortbay.org.

[16] M. R. Olsem. Reengineering technology report. Techni-
cal Report Volume 1, Software Technology Support Center
(STSC), October 1995.

[17] W. D. Pauw, D. Kimelman, and J. M. Vlissides. Modelling
object-oriented program execution. In 8th European Confer-
ence on Object-Oriented Programming (ECOOP), Bologna,
Italy, July 1994.

[18] T. M. Pigoski. Practical Software Maintenance: Best Prac-
tices Managing Your Software Investment. John Wiley &
Sons, 1997.

[19] M. Salah and S. Mancoridis. Toward an environment for
comprehending distributed systems. In Proceedings of Tenth
Working Conference on Reverse Engineering (WCRE), Vic-
toria, Canada, November 2003. IEEE.

[20] T. Souder, S. Mancoridis, and M. Salah. Form: A frame-
work for creating views of program executions. In Interna-
tional Conference on Software Maintenance, Florence, Italy,
November 2001.

[21] Sun Microsystems, Inc. Java Platform Debugger Architec-
ture, 1999.

[22] Sun Microsystems, Inc. Java Virtual Machine Profiler In-
terface (JVMPI), 1999.

[23] B. Swanson and C. M. Beath. Departmentalization in soft-
ware development and maintenance. Communication of the
ACM, 33(6), June 1990.

[24] N. Wilde and M. Scully. Software reconnaissance: Mapping
program features to code. journal of Software Maintenance:
Research and Practice, 7(1), January 1995.

[25] E. Wong, S. Gokhale, J. Horgan, and K. Trivedi. Locating
program features using execution slices. In Proceedings of
Application Specific Software Engineering and Technology
(ASSET 99), Dallas, TX, March 1999.

