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Abstract 
An epigenetic role for Tip60 in APP mediated neuronal processes 

Sheila K. Pirooznia 
 
 
 
 

Dynamic epigenetic regulation of neurons is emerging as a fundamental mechanism by 

which neurons adapt their transcriptional responses to specific developmental and environmental 

cues. Recent studies bolster the concept that age associated aberrant changes to the epigenetic 

modification code within the genome of  the brain, specifically histone acetylation, cause gene 

misregulation that drive cognitive decline.  Tip60 is a histone acetyltransferase (HATs) enzyme 

that is involved in the transcriptional regulation of genes enriched for neuronal function and 

control of synaptic plasticity. Accordingly, Tip60 has been implicated in the neurodegenerative 

disorder Alzheimer’s disease (AD) via transcriptional regulatory complex formation with the AD 

linked amyloid precursor protein (APP) intracellular domain (AICD). As such, misregulation of 

neuronal target genes by the Tip60/AICD complex is thought to lead to neurotoxicity associated 

with AD. However, a direct and causative epigenetic based role for Tip60 HAT activity in 

mediating such gene expression changes in vivo remains unclear and is thus the subject of this 

study. Chapter 1 reviews the role of specific HATs including Tip60 in mediating neuronal 

survival and high order brain functions like learning and memory. The pros and cons of using 

HDACi as therapeutic strategies and the beneficial effects of modulating the function of specific 

HATs in neurodegenerative diseases is also discussed. Chapter 2 demonstrates a functional 

interaction between Tip60 and APP during neurogenesis using a transgenic AD fly model that 

was uniquely adapted to induce varying levels of Tip60 HAT activity and describes the 

neuroprotective role Tip60 HAT activity exhibits towards AD neurodegenerative pathology. 

Chapter 3 demonstrates that Tip60 HAT activity in conjunction with APP mediates axonal 
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growth of the Drosophila pacemaker cells, the sLNvs, and their production of the neuropeptide 

PDF to stabilize Drosophila sleep–wake cycles. The study provides novel insight into 

epigenetic-based regulation of sleep disturbances observed in neurodegenerative diseases like 

AD. Chapter 4 describes the effects Tip60 plays in mediating gene expression changes that 

underlie memory formation in Drosophila via the mushroom body encompassing neural circuit. 

Together, these studies add dTip60 to the growing list of HAT chromatin regulators critical for 

nervous system function.  
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CHAPTER 1: BACKGROUND AND SIGNIFICANCE 

The human genome encodes approximately 30,000 genes - but can this relatively 

fixed genome explain who we are or how we act? A wealth of accumulating evidence 

suggests that there is much more to the human genome than its linear sequence of 3 

billion basepairs. In fact, an additional level of “instructive” information superimposed 

on the DNA double helix in the form of a nucleoprotein entity termed ‘chromatin’ defines 

the three dimensional structure of the genome in the cell nucleus. The core unit of 

chromatin is the nucleosome, which consists of 147 bp of DNA folded around histone 

octomers consisting two each of the histone proteins H2A, H2B, H3 and H4 [1]. Changes 

in the chromatin structure allow (or forbid) specific transcriptional regulator complexes 

to access DNA sequences and subsequently lead to enduring effects on gene expression 

and cellular function [2]. Such changes in chromatin structure are mediated by stable and 

heritable modifications of both the DNA and its associated histone proteins that are 

independent of the underlying DNA sequence and together constitute the ‘epigenome’ 

(‘epi’ – derived from Greek for ‘over’ or ‘above’). Only a few years ago, the epigenome 

was primarily viewed in the context of cell division and early development wherein it 

serves to choreograph the myriad cellular and molecular events that distinguish the 

various cell types that share a genome within an individual. At first glance, this seemed to 

bear little relevance to the adult brain that is composed of a large proportion of post-

mitotic and highly differentiated cells [3]. However, recent explorations of the brain 

epigenome are providing unprecedented insights into the importance of specific 

epigenetic modification patterns in controlling gene expression not only in early brain 

development, but in adult brain functions as well, calling into place a ‘reprogramming 
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process’ that allows for plasticity at many levels of the neural circuitry in response to 

environmental cues [4].  Together with reports implicating disordered chromatin 

organization and function in several neurodegenerative diseases, this has in turn ignited 

enormous interest in examining how the course of normal maturation and aging affect the 

brain epigenome. While age related accumulation of somatic mutations and structural 

changes to the DNA are likely irreversible, most if not all of the epigenetic modification 

marks studied to date are in fact reversible. Thus targeting the neural epigenome appears 

to be a promising strategy for neuroprotection and/or neuroregeneration both early in 

development as well as during the aging process [3]. This chapter will summarize the 

recent progress in research linking epigenetic mechanisms, specifically histone 

acetylation to pathogenesis associated with age related neurodegenerative disorders. I 

will also discuss how this knowledge could be translated into suitable therapeutic 

strategies to treat these devastating conditions. 

Epigenetic mechanisms in the brain 

 Epigenetics is historically defined as “the study of mitotically and/or meiotically 

heritable changes in gene function that cannot be explained by changes in DNA 

sequence”. This definition, however, is not particularly well suited for the nervous system 

where there is overall absence of mitosis. Thus, a more recent definition for epigenetics 

would be “the structural adaptation of chromosomal regions that allows to register, 

signal, or perpetuate altered activity states” [5]. Such effects are primarily mediated via 

three major levels of epigenetic changes: 1) chemical modifications at the level of 

nucleotides that include DNA methylation and RNA interference (RNAi); 2) post-

translational modifications (PTMs) of histone proteins and incorporation of histone 
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variants; and 3) nucleosome remodeling, referring to ATP dependent processes that 

regulate the accessibility of nucleosomal DNA [4].  Histones are covalently modified at 

their amino terminal tails that extend beyond the globular core and undergo numerous 

PTMs which include in addition to the well studied acetylation and methylation, 

phosphorylation, ADP-ribosylation, sumoylation, ubiquitination and proline 

isomerization [6]. Remarkable progress has been made in characterizing the regulatory 

molecules that elicit such PTMs on the histone tails. Conceptually, these include the 1) 

Writers, enzymes that modify specific substrates by adding functional moieties like 

phosphate, acetyl or methyl groups; 2) Readers, regulatory proteins that share unique 

domains implicated in recognizing acetyl or methyl groups; 3) Erasers, enzymes that 

directly remove PTMs [4]. Most PTMs target specific amino acid residues in the histone 

tails. For instance, phosphorylation is directed to serine and theronine residues, and 

methylation to arginines. However, lysines are targets for most modifications including 

acetylation and methylation. Covalent histone modifications, histone variants, or 

chromatin remodeling complexes work together to alter the chromatin fiber, causing 

subtle but meaningful differences in chromatin compaction that correlate with 

“euchromatin” (open) versus “heterochromatin” (closed) states [7,8]. These states often, 

but not always align with “active” versus “inactive” states of gene expression, 

respectively [1]. Moreover, covalently modified histones alone or in combination 

generate distinct docking sites and orchestrate the recruitment of multiprotein nuclear 

protein complexes that mediate cell- and promoter-specific gene expression. Histones are 

often concurrently modified on several residues and there is also a dynamic interplay 

between histone modifications and DNA modifications (such as DNA methylation), thus 
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creating staggering combinatorial possibilities for gene regulation [9]. For example, the 

combination of histone H4 Lys8 acetylation, histone H3 Lys14 acetylation, and histone 

H3 Ser10 phosphorylation is often associated with transcriptional activation. On the other 

hand, tri-methylation of histone H3 Lys9 and the lack of histone H3 and H4 acetylation is 

associated with transcriptional repression [6]. These findings suggest that the controlled 

addition and removal of specific PTMs result in unique combinations that correspond to 

distinct physiological states and genomic functions.  

Decoding the epigenetic language 

 Recent high resolution genomic profiling studies reveal that ‘epigenomes’ are 

highly organized and strikingly nonrandom with respect to histone and DNA 

modifications [10]. For example, high levels of H3 and H4 acetylation and H3 Lys4 

methylation are generally present in promoter regions of active genes [11]. In contrast, 

elevated levels of H3 Lys27 methylation correlate with polycomb protein mediated gene 

repression [12]. Interestingly, such epigenetic patterns vary in different cell types or 

during different stages of development [12-14]. More recently, specific chromatin 

signatures were also found at gene promoters, enhancers [15] and even exons [16-19]. 

Moreover, individual PTMs can favor or inhibit consequent modifications on nearby 

residues of the same tail and examples of PTMs that influence modifications on different 

tails have also been reported [20,21]. For instance, H3 Lys4 methylation facilitates 

subsequent H3 and H4 acetylation [22], whereas histone deacetylation and methylation of 

H3 Lys9 represses transcription [23]. Another example is phosphorylation of Ser-10 on 

H3, a positive signal for subsequent acetylation at K14 on the same tail [24]. As lysines 

can be modified in various manners, it is the competition between various PTMs for the 
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same residue that may determine functional outcomes [25]. For example, the lysine 9 

residue of the H3 tail can be acetylated or methylated ; while acetylation of this residue is 

associated with transcriptional activation, methylation is associated with silencing [26]. 

In addition, the same modification may be linked to totally opposite functions: histone H3 

and H4 lysine or arginine methylation can promote both transcriptional activation and 

repression [27]. Since distinct histone PTMs correlate with specific transcriptional states, 

it is conceivable that distinct histone modifications patterns on one or more tails are likely 

read like a molecular bar code to recruit chromatin remodeling complexes that drive gene 

expression profiles required for particular cellular events, a paradigm referred to as the 

‘histone-code hypothesis’ [8,28,29].  

Accumulating evidence also indicates that there also exists a ‘histone code’ that 

regulates gene expression profiles for distinct brain functions. For instance, histone H3 

phosphorylation is regulated in the hippocampus during induction and consolidation of 

contextual fear conditioning memory [30]. In this paradigm, a peak in H3 

phosphorylation, acetylation and phosphor-acetylation occurs an hour after training, 

corresponding to the period when rapid hippocampal gene induction occurs [31]. Thus, it 

seems like these epigenetic marks may serve as part of a histone code that is subsequently 

interpreted as a pattern of gene expression specific to this form of long-term ‘fear’ 

memory. Recent studies have also implicated DNA methylation, once thought to be a 

static process after cellular differentiation, to dynamically regulate hippocampal memory 

formation in conjunction with H3 acetylation [32,33]. But, how can such combinatorial 

histone modifications affect memory formation? [9] proposed that histone modifications 

may gate a burst of transcription for a specific set of plasticity effector and regulator 
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genes that then change the response properties of individual neurons in a network. 

Histone modifications may also mediate persistent changes in the expression of key 

plasticity effector or regulator genes required for maintenance of changes in neuronal 

behavior. It is likely that transient histone modifications may act downstream of signaling 

cascades to integrate multiple signals and ensure that a cascade of gene expression is 

activated only after a particular stimulus pattern (either spatially or temporally) is 

generated [34]. Under such conditions, histone modifications may act to integrate 

information about the activation and regulate recruitment of process specific transcription 

factors. Thus, specific histone modification patterns not only serve to alter the chromatin 

structure but also provide an interaction interface for transcriptional co-activators or co-

repressors that bind modified histone tails to regulate specific transcription events [9]. 

However, studies aimed at deciphering the “epigenetic indexing code” specific for high-

order brain functions like memory formation are still in their infancy. An increased 

understanding of chromatin function and epigenetic tagging may further help delineate 

the role of particular epigenetic mechanisms in brain functions in more molecular detail. 

Epigenetics based plasticity in brain function 

 Phenotype is the net result of continued gene – environment interactions. 

Environmentally regulated intracellular signals ‘program’ regulated expression of very 

specific gene sets that are required for the development and function of specific cell 

lineages [19]. In the nervous system, the mechanisms by which extracellular signals 

regulate gene expression have just begun to be characterized. Indeed, epigenetic 

modifications such as DNA methylation and PTMs of histone proteins are emerging as 

fundamental mechanisms by which neurons adapt their transcriptional response to 
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developmental and environmental cues. The implicit hypothesis is that environmental 

signals alter such chromatin modifications, allowing for the transcriptional ‘plasticity’ 

that in turn mediates sustained variation in neural function [35]. For instance, [36] 

reported that spontaneous synaptic transmission in hippocampal neurons is regulated by 

alterations in DNA methylation that occur in response to synaptic activity. Sensory 

experiences in the form of neuronal activity also have differential effects on synaptic 

plasticity at excitatory or inhibitory synapses, leading to either long term potentiation 

(LTP) or long term depression (LTD), whereby the efficacy of synaptic transmission is 

up- or downregulated, respectively [4]. Certain forms of LTP and LTD require long-

lasting changes in gene expression and a growing body of evidence suggests that histone 

PTMs may be involved in these processes. In an elegant study using sensory motor 

neurons of Aplysia, [37] showed that an increase and decrease of acetylated histones 

might constitute the switch between LTP and LTD at the same synapses. In the 

hippocampus, various signaling pathways involving dopaminergic, acteylcholinergic, and 

glutamatergic signaling have been implicated in synaptic plasticity. Stimulation of each 

of these pathways is accompanied by increased H3S10 phosphorylation and H3K14 

acetylation. The mitogen-activated protein kinase (MAPK) pathway is yet another 

signaling cascade implicated in different forms of memory and synaptic plasticity. 

Interestingly, changes in H3 phosphorylation patterns parallel those of a member of the 

MAPK pathway, namely, extracellular regulated kinase (ERK) [30,38-40]. Activation of 

ERK through the protein kinases PKC and PKA also increases H3K14 acetylation; while 

activation of N-methyl D-aspartate (NMDA) receptors results in a similar increase of 

acetylated H3, an effect that could be blocked by inhibition of the ERK signaling [15]. 
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These studies provided the first evidence that intracellular signaling pathways interact 

with the epigenetic machinery to modulate synaptic plasticity. With identification of 

nuclear enzymes that regulate histone PTMs (like acetylation, lysine/argine methylation, 

phosphorylation, deamination, ubiquitination), it is conceivable that most, if not all, 

chromatin modifying enzymes are targeted by signaling pathways that directly link 

environmental cues to gene expression [9]. Nevertheless, the complete repertoire of 

extracellular signals and corresponding intracellular pathways that mediate dynamic 

regulation of histone modifications in neurons remains poorly understood.  

Alterations to the brain epigenome as part of aging and in neurodegenerative 

diseases 

 An increasing body of evidence indicates that substantial reorganization of the 

brain epigenome occurs during aging and such age related epigenetic drift could further 

exacerbate an individual’s vulnerability to aging related cognitive decline [11]. This 

notion that aging is associated with epigenetic changes in the brain is not unsubstantiated, 

with studies reporting widespread age-related changes in gene expression in the cerebral 

cortex, including downregulation of many neuronal genes [41,42]. Recent studies have 

also reported global loss of DNA methylation in aging, or the hypermethylation of 

regulatory regions (promoters) of genes associated with accelerated aging [43-45]. In 

addition, dynamic changes to the epigenetic landscapes of PTMs can also occur and are 

characterized by loss of markings associated with active gene expression, such as 

monomethylation of H4 Lys20 and trimethylation of H3 Lys36, in conjunction with 

robust increase in the repressive mark H3 Lys27me3 [46]. Likewise, in the hippocampi of 

16 month old wild type mice, genomic regions associated with actively expressed genes 
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shows a decline in acetylated H4Lys12, a PTM linked to transcription elongation (Peleg 

et al., 2010). It is likely that such age-related drifts in brain epigenomes negatively affect 

neuronal and oligodendroglial transcriptomes, thereby leading to a decline in signaling 

capacity of nerve cells [47-49]. With regards to specific neurophysiological processes, it 

is well-established that memory and synaptic plasticity processes in the cognitively 

healthy adult require transcription of immediate-early genes (IEGs), including Arc 

(activity-regulated cytoskeletal gene), zif268 (also known as nerve growth factor 

inducible-A), and bdnf (brain-derived neurotrophic factor) [50-52]. While blocking the 

expression of these genes in adult animals prevents the consolidation of memory [50,53], 

decreased IEG expression is also prevalent in many models of memory disorders [54-56] 

and as a result of the normal aging process [57-59]. Accumulating evidence indicates that 

epigenetic mechanisms play a key role in dynamically regulating memory associated 

gene transcription in the adult CNS and are thus integral to long term memory formation 

[40,60]. In light of studies reporting a decline in the transcription of key memory-

promoting genes during aging [45,48,57] it has been hypothesized that such changes 

could be mediated by dysregulation of epigenetic control mechanisms over the lifespan of 

an individual. Consequently, accumulation of aberrant epigenetic marks within brain 

regions vulnerable to the aging process may result in age-related cognitive deficits and 

are also manifested in the form of neurodegenerative diseases [61].   

Aging-related neurodegenerative disorders such as Alzheimer's disease (AD), 

Parkinson disease (PD), amyotrophic lateral sclerosis (ALS) and others are multifactorial 

illnesses in which many as yet poorly understood pathways are affected serially and in 

parallel resulting in pathologic phenotypes like cognitive decline. Recent studies have 
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linked phenotypic as well as mechanistic features common to many neurodegenerative 

diseases to epigenetic defects [62]. Although both familial and sporadic forms of AD, PD 

and ALS are known to occur, familial forms represent only a minority of the cases and 

the vast majority of cases occur as sporadic forms that are likely to result from complex 

interactions between genetic and environmental factors that superimpose on the slow, 

sustained neuronal dysfunction due to aging [63]. In fact, ‘synucleopathies’ such as 

Parkinson’s disease and dementia with Lewy bodies are associated with dysregulation of 

DNA methylation at the promoters of several disease-associated genes [64]. Histone 

modifying enzymes have also been implicated in neurodegenerative diseases. For 

example, the pathological sequestration of transcription factors vital for neuronal health, 

such as the cAMP response element-binding protein CREB and its binding partner CBP, 

a histone acetyltransferase (HAT), has been linked to the beta amyloid plaques seen in 

the brains of individuals with Alzheimer’s disease (AD) [65-67] and the polyglutamine 

aggregates and nuclear inclusions in Huntington’s chorea [68]. Likewise, misregulation 

of the HAT, Tip60 that transcriptionally regulates neuronal genes has been implicated in 

AD pathogenesis [69].The interaction of Tip60 with ataxin 1 protein has also been 

reported to contribute to cerebellar degeneration associated with Spinocerebellar ataxia 

(SCA1), a neurodegenerative disease caused by polyglutamine tract expansion [70].  

Furthermore, excessive H3Lys9 methylation [71] and increased expression of macro 

H2A1, a variant histone broadly associated with repressive chromatin [72], have been 

observed in blood and brain tissues from individuals with Huntington’s disease in brains 

regions like the striatum and cerebral cortex which are heavily affected by the disease 

associated neurodegenerative process [3]. Despite the growing number of studies, much 
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of the evidence linking histone modifying enzymes to neurodegenerative diseases has 

been correlative and thus warrants further investigation. Nevertheless, these studies 

highlight the fact that epigenetic mechanisms may be crucial to advancing our 

understanding of how individual differences modulate susceptibility to neurodegenerative 

diseases. Originally thought to be stable and irreversible, epigenetic mechanisms have 

been demonstrated by several recent studies to be dynamic and reversible even in fully 

differentiated brain cells. This reversibility further confers on epigenetic mechanisms the 

potential of being targeted by pharmacological interventions to alleviate or reverse the 

symptoms resulting from their dysfunctions [73].  

 

Histone acetylation: a key epigenetic modification for neuronal survival and 

function 

HAT: HDAC imbalance in the etiology of neurodegenerative diseases 

 In neurons, histone acetyltransferases (HATs) and histone deacetylases (HDACs) 

are among the best characterized chromatin modifying enzymes and represent distinct 

classes that, respectively, catalyze forward and reverse reactions of lysine residue 

acetylation in specific histone substrates. HATs function enzymatically by transferring an 

acetyl group from acetyl-coenzyme A to the ϵ-amino groups of histone lysine residues 

thereby creating an appropriate ‘histone code’ for chromatin modification and enhanced 

DNA accessibility of transcription factors. Contrarily, HDACs attenuate the transcription 

process at particular sites by deacetylating such lysine targets [74]. Under normal 

conditions, HAT and HDAC levels are maintained in a highly harmonized state of 
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balance. Such equilibrium is crucial for neuronal homeostasis and is also responsible for 

regulated gene expression essential for normal neurophysiological outputs like long-term 

potentiation, learning and memory [75]. Treatment of neurons with HDAC inhibitors like 

trichostatin A (TSA) in normal conditions induces neuronal apoptosis [76]. Similarly, 

overexpression of CBP in resting cerebellar granule neurons under prosurvival conditions 

leads to chromatin condensation and cell death [77]. Neuronal overexpression of Tip60 

also leads to increased apoptosis and lethality in Drosophila [78]. Such lethal effects are 

likely mediated by skewing the HAT/HDAC balance towards increased acetylation that 

in turn brings about alterations in the chromatin structure that leads to activation/de-

repression of genes that are quiescent under basal conditions. On the other hand, in vitro 

models of neuronal apoptosis such as cultured cerebellar neurons subjected to 

neurotrophic deprivation exhibit H3 and H4 deacetylation that precedes neuronal death 

and is also accompanied by loss of CBP [77].  Together, these studies support the 

maintenance of optimal HAT/HDAC balance for neuronal survival, notably in 

differentiated adult neurons that have to maintain their functional status and homeostasis 

throughout their lifetime.   

 Remarkably, altered levels of histone acetylation have also been observed in 

several models of neurodegenerative diseases. For instance, toxic accumulation of α-

synuclein in the nucleus of dopaminergic neurons induces neurotoxicity by promoting H3 

deacetylation through direct association with histones thereby shielding residues targeted 

for acetylation [79]. A similar histone ‘masking’ mechanism is thought to be involved in 

transcriptional repression mediated by the polyglutamine disease protein ataxin-3 [80]. 

Expression of the polyglutamine-containing domain of the pathogenic Huntington (htt) 



13 
 

protein in cultured cells (PC12) also leads to H3 and H4 deacetylation [81]. In cultured 

cortical neurons, modulation of APP dependent calcium/calmodulin protein kinase-IV 

signaling pathway results in reduced histone acetylation [82]. In an ALS mouse model 

(SOD1 G86R), H3 hypoacetylation has been observed in cholinergic motor neurons from 

the lumbar spinal cord [77](Rouaux et al., 2003).While these studies identify histone 

deacetylation as a common feature of neurotoxicity under pathological conditions, as 

mentioned above, histone hyperacetylation can also be fatal to neurons. In a study by 

[83], it was reported that Dieldrin, a neurotoxic peptide implicated in the etiopathogenesis 

of PD, induces a time dependent accumulation of CBP, resulting in increased H3 and H4 

acetylation in dopaminergic neurons. Together, this series of studies strongly point 

towards a loss of neuronal acetylation homeostasis during neurodegeneration.  But how 

can impairment of acetylation homeostasis lead to neuronal loss? The clue to this 

question revolves around the theory of ‘transcriptional dysfunction’ that attributes the 

degenerative fate of neurons to altered transcription profiles resulting from complex 

changes in the chromatin landscape that differs sharply from activity dependent normal 

transcription patterns. As a result, expression of survival-associated genes is likely 

attenuated by altered acetylation and expression of pro-apoptotic genes is stimulated, 

consequently leading to neuronal cell death, a major pathological hallmark of many 

neurodegenerative diseases [75]. However, neuronal cell death and activation of 

apoptotic pathways associated with loss of neurons is a late event in the disease 

associated pathogenesis [84]. In fact, accumulating evidence indicate that the clinical 

symptoms associated with neurodegenerative diseases are the result of neuronal 

dysfunction that precedes cell demise and manifested through loss of synaptic 
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connectivity. For instance, in AD, synaptic degeneration appears to be an early event in 

pathogenesis with synapse loss evident in patients with early AD and mild cognitive 

impairment [85,86].  Accordingly, it has been proposed that synapse loss underlies 

memory impairment evident in the early phase of AD [87]. Recent studies propose that 

changes in histone acetylation levels may be involved in the altered synaptic function and 

memory associated with AD [88,89]. Consistent with this hypothesis, pre-clinical studies 

in APP/PS1 mouse model of AD have reported differences in histone acetylation levels 

during associative memory formation wherein levels of hippocampal acetylated histone 

H4 in APP/PS1 mice were about 50% lower than in wild-type littermates after fear 

conditioning training [90]. Likewise, in HD, there is now considerable evidence that early 

cognitive deficits appear in patients before the onset of the characteristic motor 

disturbances [91]. Early impairment of long-term spatial and recognition memory in 

heterozygous HD knock-in mutant mice (HdhQ7/Q111) is also associated with reduced 

hippocampal expression of CBP and diminished levels of histone H3 acetylation with 

concomitant reduction in expression of memory related genes [92].These studies further 

suggest that disruption of acetylation homeostasis can lead to early widespread synaptic 

dysfunction that in turn impairs neuronal connectivity. Such progressive damage of the 

neural network is likely followed by eventual neuronal apoptosis. However, whether 

histone acetylation changes are a cause or consequence of neuronal dysfunction requires 

further investigation.  
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HAT: HDAC interplay in memory formation 

A number of recent studies have identified histone acetylation as an essential 

mechanism for formation of long-term memories [40]. Associative learning in rats 

induces a transient increase in hippocampal acetylation of histone H3 but not H4 [31], 

suggesting that this type of memory formation leads to very specific re-organization of 

the chromatin structure. Importantly, these changes in histone acetylation are transient 

and observed 1hr but not 24hrs after training. Such transient changes in histone 

acetylation have also been observed in other hippocampus-dependent learning paradigms 

(reviewed in [5]). Subsequent studies in mice have shown that memory formation also 

leads to transient increase in acetylation of various lysine residues within histones H2A, 

H3 and H4 [93,94]. Intriguingly, altered histone acetylation in the hippocampus has been 

associated with aging associated memory disturbances. A recent study using a 

hippocampus dependent associative learning paradigm, reported that in aged mice, the 

onset of memory disturbances correlated with a lack of learning-induced acetylation of 

histone H4 at lysine12 (H4K12), while there was no effect on other histone modifications 

[94]. Furthermore, the specific lack of H4K12 acetylation correlated with a severely 

impaired hippocampal gene expression program required for memory formation. By 

analyzing the distribution of H4K12 acetylation in young and aged mice during learning, 

this study found that decreased H4K12 acetylation was selectively associated with the 

coding regions of genes that are normally upregulated during learning. Together, these 

studies provide convincing evidence in favor of a casual role for histone acetylation in 

mediating gene expression changes associated with memory consolidation as well as age-

associated memory impairment.  
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 Recent studies have also identified specific HATs and HDACs that are required 

for memory formation and deregulation of such enzymes have also been linked to age-

associated memory impairment [49]. To this end, several genetic studies have identified 

the HAT CBP as a major contributor to memory formation [95]. Mice haploinsufficient 

for CBP (cbp+/−) exhibit reduced acetylation, defects in hippocampal late long-term 

potentiation (L-LTP), and some forms of long-term memory (LTM) deficits [96]. 

Importantly, the HAT activity of CBP was shown to be required for these processes [97]. 

In addition, other HATs like the E1A-binding protein p300 (p300) and p300/CBP-

associated factor (PCAF), have also been implicated in memory processes [98,99]. PCAF 

homozygous knock-out mice are viable and display short term memory impairments at 

adolescent age (2 months) and gradually increasing learning and memory deficits with 

progressive age (6 and 12 months) [99]. In addition, learning induced upregulation of 

CBP, p300 and PCAF has also been associated with elevated H2B and H4 acetylation 

during spatial memory consolidation [100]. This is consistent with previous studies that 

showed that learning increases hippocampal H2B and H4 acetylation [93,94]. Together, 

these studies suggest that HATs exhibit certain substrate specificity during memory 

formation in the adult brain and mediate dynamic acetylation of such substrates. 

Interestingly, histone acetylation seems to occur in a sequential manner. For instance, the 

vast majority of H4K16 sites appear to be acetylated at basal levels while other sites like 

H4K5 and H4K12 are acetylated at low levels [101]. Yeast Gcn5 bromodomain has been 

shown to bind to acetylated H4K16 in vitro which leads to subsequent acetylation of 

other nearby lysine residues [102]. Interestingly, H4K16 is the only histone modification 

that is not regulated during memory consolidation, while exposure of mice to associative 
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learning increases hippocampal H4K5, H4K8 and H4K12 acetylation [94]. Thus, H4K16 

is likely at the base of the pyramid of H4 acetylation and in turn mediates acetylation of 

nearby lysine substrates in a process specific manner [103]. A recent study reported that 

HATs like CBP, p300 and PCAF that all harbor a bromodomain are upregulated during 

spatial memory formation while the HAT Tip60 that lacks a bromodomain was not 

upregulated [100]. Similarly, in a recent gene array study, the bromodomain containing 

HATs, Taf1/Kat4, Gcn5/Kat2a were found to be upregulated one hour after a fear 

conditioning stimulus [94]. Together, these findings suggest a model wherein a stimulus 

driven upregulation of bromodomain containing HATs induce histone acetylation that is 

required for transcription of plasticity-related genes [103].  

Histone acetylation is mediated by the concerted actions of HATs and HDACs 

[74]. The mammalian genome encodes 11 HDAC proteins consisting of the class I 

(HDACs 1, 2, 3 and 8), class II (HDACs 4, 5, 6, 7, 9 and 10), class III sirtuins (SIRT 1, 2, 

3, 4, 5, 6 and 7) and class IV (HDAC 11) HDACs [104]. With regards to memory 

formation, HDAC2 was recently shown to be associated with promoters of genes 

implicated in synaptic plasticity including Egr1 (also known as zif268), Bdnf, Fos, and 

Creb. Accordingly, neuron-specific overexpression of HDAC2, but not that of HDAC1, 

decreased dendritic spine density, synaptic plasticity and memory formation, indicating 

that HDAC2 negatively regulates memory formation [105]. Conversely, HDAC2 knock-

out mice exhibit enhanced memory formation that correlated with elevated H4K12 

acetylation which as mentioned above has been implicated in gene expression programs 

required for memory formation. Similar to HDAC2, specific deletion of HDAC3 in the 

dorsal hippocampus of mice leads to enhanced long term memory and elevated 
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expression of Nr4a2, a gene associated with long term memory formation [106]. 

However, not all HDACs have memory related functions [105]. For instance, deletion of 

HDAC1 in mice has no obvious phenotype. However, HDAC1 activity seems to be rather 

neuroprotective [107]. Likewise, loss of HDAC7 in a HD mouse model has no detectable 

phenotype either [108]. This series of studies identifying the role of specific HATs and 

HDACs in memory formation highlight the crucial dependency of long term memory 

formation on these key epigenetic players.  

Targeting histone acetylation: epigenetic strategy for neurodegenerative diseases 

The above studies identifying a critical role for histone acetylation in promoting 

cell survival and memory formation have in turn led to the discovery that deregulated 

histone acetylation might be involved in the pathogenesis of various neurodegenerative 

diseases [103]. In light of these studies, the use of histone deacetylase inhibitors 

(HDACi) as a therapeutic tool for neurodegenerative disorders has been examined with 

great interest in the last decade [109]. This section will review some of the recent data 

linking dysregulation of specific HATs and HDACs to neurodegenerative diseases as 

well as the promising effects observed with HDACi in preventing cell death and 

alleviating disease associated pathological symptoms.  

Huntington’s disease 

Huntington’s disease (HD) is an inherited genetic disorder, caused by an 

abnormally expanded and unstable CAG repeat (polyglutamine or polyQ expansion) 

within the coding region of the gene encoding the huntington (htt) protein. One of the 

models for mutant huntington protein induced toxicity is based on the finding that 
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abnormal htt directly binds the acetyltransferase domains of CBP and PCAF. This 

appears to sequester these acetyltransferases, resulting in globally reduced H3 and H4 

acetylation levels, and altered gene expression [81]. Overexpression of the expanded HD 

constructs has been shown in different cellular models to cause redistribution of CBP in 

nuclear or cytoplasmic inclusions. This phenomenon is accompanied by inhibition of 

HAT activity of CBP, further leading to global deacetylation and cell death [110]. 

Mutated polyQ-expanded htt has also been shown to selectively enhance ubiquitylation 

and degradation of CBP [111,112]. Further supporting the notion that HD is a disease of 

aberrantly reduced histone acetylation are observations that treatment with HDAC 

inhibitors (HDACi) rescue histone acetylation levels and improve neurodegeneration and 

pathological symptoms in cellular, Drosophila and mouse models of HD [81,113,114]. 

Administration of the pan-HDACi, suberoylanilide hydroxamic acid (SAHA) has been 

shown to increase histone acetylation and improve motor impairment in the R6/2 

transgenic HD mouse model [115]. In the same model, presymptomatic intraperitoneal 

administration of another pan-HDACi, sodium butyrate extended survival and prevented 

striatal neuronal atrophy with resultant improvement in motor performance [116].  A 

novel pimelic diphenylamide HDACi, 4b, has also shown beneficial effects on disease 

phenotype and transcriptional abnormalities in an HD mouse model [117]. Recent studies 

also highlight a novel therapeutic approach for HD using a combination of class I and 

class III HDAC inhibitors [113]. While these studies point to deregulation of histone 

acetylation in HD associated pathogenesis, the precise molecular mechanisms that 

mediate these effects remain to be investigated.  
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Parkinson’s disease 

Parkinson's disease (PD) is a progressive neurodegenerative disorder, 

characterized by degeneration and death of dopaminergic (DA) neurons in the substantia 

nigra pars compacta (SNc) of the ventral midbrain [118]. The initial link between PD 

and deregulation of histone acetylation came from observations that the PD linked 

presynaptic protein, α-synuclein, binds histones to inactivate HATs like CBP, p300 and 

PCAF, causing apoptosis in human neuroblastoma cells [79]. More recently, the ability of 

Valproic acid to increase histone acetylation in a rat model of Parkinson’s disease was 

associated with prevention of neuronal death in the substantia nigra, decrease of the PD 

marker, α-synuclein and an increase in tyrosine hydroxylase in both the substantia nigra 

and striatum [119]. Class III HDACs (sirtuins) are known to participate in an array of 

cellular functions related to aging. [120] reported that inhibition of sirtuin 2 (SIRT2) in a 

cellular model of PD abates α-synuclein toxicity, altered inclusion morphology, and 

protects against DA cell death. In addition, genetic inhibition of SIRT2 via small 

interfering RNA (siRNA) also reverses α-synuclein toxicity. Together, these studies 

provide a link between α-synuclein activity, histone deacetylation, neurodegeneration and 

aging as well as identify HDACi as potential targets for therapeutic intervention in PD. 

Amylotrophic lateral sclerosis (ALS) 

The efficacy of restoring histone acetylation levels has also been investigated in 

Amylotrophic lateral sclerosis (ALS) using HDACi treatments as transcriptional 

dysregulation is thought to play a role in the disease pathophysiology. ALS an adult-onset 

neurodegenerative disease characterized by progressive loss of motor neurons in the 
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brain, brain stem, and spinal cord, resulting in generalized weakness, muscle atrophy, 

paralysis, and eventual mortality [121,122]. ALS has been attributed to gain-of-function 

mutations in the gene encoding Cu/Zn superoxide dismutase 1 (SOD1) [123]. In a SOD1 

point mutation mouse model of ALS, ALS symptoms were molecularly accompanied by 

reduced CBP levels in motorneurons [77]. Treatment of SOD1 mutant mice with HDACi 

like VPA and TSA has been shown to restore the resulting histone acetylation deficits 

together with the motor deficits back to baseline [124]. Similarly, treating SOD1 mutant 

mice with 4-phenylbutyrate starting before or shortly after onset of symptoms extends 

survival and improves pathological phenotypes [125]. This study also found that 4-

phenylbutyrate treatment ameliorated hypoacetylation, upregulated Bcl-2, NF-κB, p50 

and phospho-IκB, and downregulated cytochrome c caspases in the spinal tissues of 

treated mice. Additionally, Rouaux and colleagues found that, in SOD1 mutant mice, 

VPA treatment maintained normal levels of histone acetylation, restored the loss of CBP 

and significantly suppressed the death of motor neurons, although it did not prolong 

survival [124]. Further evidence for a deregulation of histone acetylation in ALS comes 

from a recent human post mortem. Comparing the protein expression levels of all class I, 

II, and IV HDACs in the ALS brain and spinal cord, this study found that HDAC2 and 

HDAC11 were up- and downregulated, respectively [126]. The functional consequences 

in terms of histone acetylation changes and resulting gene expression changes however, 

remain unclear. 

Alzheimer’s disease 

Alzheimer’s disease (AD) is the most common form of neurodegenerative 

disorder and dementia in the elderly. AD arises on the pathological background of 
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amyloid beta (Aβ) plaques, neurofibrillary tangles (NFTs) resulting from intraneuronal 

aggregates of the microtubule-associated protein, tau, and neuronal cell death. Aβ 

plaques consist of extracellular aggregates of small Aβ peptides, which are generated 

from sequential endo-proteolytic cleavage of the type 1 trans-membrane glycoprotein, β-

amyloid precursor protein APP via the action of β secretase- and γ-secretase [127]. β-site 

APP cleaving enzyme 1 (BACE1) is the β-secretase in vivo and γ-secretase is a 

membrane-protein aspartic protease composed of at least four subunits—presenilin (PS1 

or PS2), nicastrin (Nct), APH-1 (APH-1aL, APH-1aS, or APH-1b), and PEN-2 (Mattson, 

2004). In AD patients, increased propensity towards generation of the more toxic Aβ42 

peptide is observed [128]. The precise mechanism by which Aβ eventually contributes to 

synaptic dysfunction and neuronal loss is still an area of intense research. The current 

view is that during AD pathogenesis, Aβ peptides start to form aggregates that affect 

neuronal integrity through multiple mechanisms [128-130]. Similar to Aβ pathology, 

current data suggest that soluble forms of tau protein rather than the insoluble NFTs, at 

least initially, lead to cognitive decline [131,132]. Accumulating evidence also suggests 

that Aβ and tau pathology are linked and that the presence of tau is critical for Aβ 

pathology [132]. While promising progress has been made at identifying therapeutic 

approaches targeting either the amyloid cascade or tau pathology, an effective therapy is 

still not available.  

  Growing evidence suggests that the cognitive impairment in AD as well as 

signaling between neurons is interrupted at early stages of the disease [133]. Recent 

studies point to dysregulation of epigenetic control mechanisms and the resultant aberrant 

epigenetic marks as contributing factors to such cognitive dysfunction [15,134]. A 
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number of different epigenetic abnormalities including histone acetylation have also been 

reported in AD [134]. Further evidence linking histone acetylation and cognitive decline 

in AD stems from the observation that histone acetylation declines in mouse models for 

AD. For example, decreased acetylation of H4 but not H3 has been observed in tg2576 

mice, a model for amyloid pathology [135]. Interestingly, administration of the pan-

HDACi phenylbutyrate has been reported to reinstate associative memory and synaptic 

plasticity in 6- and 16- month old tg2576 mice [136]. Similarly, administration of various 

pan-HDACi also reinstates associative memory in APP/PS1Δ9 mice, also a mouse model 

for amyloid pathology [137]. The pan-HDACi TSA has also been reported to restore 

associative memory function in hippocampal LTP in another mouse model for AD-like 

amyloid pathology (APP/PS1) that exhibit impaired H4 acetylation upon exposure to a 

learning stimulus [90].  

Recent studies have also implicated specific HATs and HDACs in AD associated 

pathophysiology. [138] showed that over-expression of SIRT1, the NAD+-dependent 

deacetylase in a mouse model of AD reduces the production of Aβ and formation of 

plaques via activation of transcription of the gene encoding α-secretase, ADAM10 that 

cleaves APP at a site with the Aβ domain and thus preempts the formation of Aβ . 

Presenelin 1 (PS1) which is part of the γ-secretase complex has been reported to have an 

inhibitory role on the HAT CBP through proteasomal degradation, and mutations in PS1 

found in hereditary AD result in aberrantly high CBP activity [90,139]. Additionally, 

p25/Cdk5, a kinase complex implicated in AD and other neurodegenerative disorders 

inhibits HDAC1, rendering neurons susceptible to DNA damage, cell cycle reentry, and 

ultimately cell death [140]. Remarkably, overexpression of HDAC1 rescues such 
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p25/Cdk5-mediated DNA damage and neurotoxicity [107]. While these findings suggest 

that AD could be a disease of aberrantly increased histone acetylation, a substantial body 

of evidence also supports the notion that inhibition of HDACs can be protective and 

beneficial in AD. In fact, APP overexpression in cultured cortical neurons leads to H3 

and H4 hypoacetylation, and is paralleled by decreased CBP levels (Rouaux et al., 2003). 

Loss of function mutations in genes coding for PS1 and PS2 has been shown to reduce 

expression of CBP and CBP/CREB target genes such as c-fos and BDNF with negative 

effects on synaptic plasticity, spatial and contextual memory [141]. Moreover, in the 

p25/Cdk5 model of neurodegeneration, treatment with the broad HDACi sodium butyrate 

not only increased H3 and H4 acetylation levels, but also resulted in the reestablishment 

of learning abilities, as well as access to long-term memories that had been ablated by 

prior hyperactivation of p25/Cdk5 [142]. Similarly, both general and class I-selective 

HDAC inhibitors have been shown to ameliorate cognitive defects in transgenic AD 

mouse harboring hereditary AD mutation [136,137]. 

The sequential processing of APP by β- and γ-secretases generates an intracellular 

fragment, the APP intracellular domain (AICD) that is released into the cytosol [143]. 

AICD has been shown to interact with the HAT Tip60 via the scaffolding protein Fe65 

[144]. It has been demonstrated that this complex is recruited to the promoters of certain 

target genes where it acts to acetylate select histone proteins to epigenetically regulate 

gene transcription [144-146]. Importantly, aberrant expression of some of these genes 

like LRP1, GSK-3B, KAI-1 has been linked to AD pathophysiology [147-149]. Based on 

these findings, it has been proposed that the inappropriate AICD/Tip60 complex 

formation and/or recruitment may contribute or lead to AD pathology via misregulation 
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of target genes required for neuronal functions. The APP intracellular domain was 

recently shown to lower the sensitivity of neuronal cells to toxic stimuli and 

transcriptionally activate genes involved in signaling pathways that are not active under 

basal conditions [150]. We recently reported that co-expression of APP with HAT 

activity deficient Tip60 leads to misregulation of a number of pro-apoptotic genes in a 

Drosophila AD model with a resultant increase in neuronal apoptotic cell death. 

Contrarily, expressing HAT competent wild type Tip60 in conjunction with APP led to 

induction of pro-survival genes like Drosophila Bcl-2 with a concomitant reduction in 

neuronal apoptosis. These findings point to the fact that Tip60 may play a 

neuroprotective role during disease progression via its histone acetylase function. By 

complexing with the AICD region of APP, Tip60 may epigenetically regulate 

transcription of genes essential for tipping the cell fate control balance from apoptotic 

cell death towards cell survival under APP induced neurodegenerative conditions [78].  

Together, these studies suggest that the overall misregulation of histone acetylation 

characteristic of AD is complex. While the beneficial effects observed with general or 

partially selective HDACi are promising, it is essential to identify the specific HATs and 

HDACs that can be targeted for therapeutic interventions.  

Perspectives on use of HDAC inhibitors for treatment of neurodegenerative diseases 

 As described above, the promising effects observed with the use of small 

molecule HDAC inhibitors has ignited enormous interest in their therapeutic potential for 

various neurodegenerative conditions. However, most HDAC inhibitors that have been 

tested in the context of neurodegenerative diseases are non-selective, inhibit multiple 

HDAC proteins, and the observed therapeutic effects likely result from increased 
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“global” acetylation levels and potentially HDAC inhibitor dependent genetic programs 

[151]. These issues have in turn raised widespread speculation about the target specificity 

of HDAC inhibitors [152]. Recent targeted gene deletion studies indicate that HDACs 

serve very distinct functions within the adult brain. Cellular localization and tissue-

specific expression for different HDACs also vary [49]. [153] recently reported that 

under native conditions, all HDACs are expressed in the adult rodent brain. However, 

expression level of HDAC10 is very low under native conditions and can be detected 

only in the hippocampal formation.  In some instances, interactions between different 

HDAC classes are required to activate their deacetylase function. For example, HDACs 

4, 5 and 7 (class II HDACs) lack the ability to deacetylate histones independently and 

require interaction with HDAC 3 (class I) to be active [154]. Contrarily, while class I 

HDACs 1 and 2 form complexes with each other and are often found in the same protein 

complexes, they appear to serve distinct functions. Global loss of HDAC1 leads to early 

lethality, suggesting that HDAC2 cannot compensate for the absence of HDAC1 [155]. In 

neurons, however, deletion of HDAC1 or HDAC2 individually has no apparent effect on 

neuronal development while loss of both HDAC 1 and 2 leads to loss of neuronal 

differentiation. Thus, in addition to their distinct roles in the adult brain, HDAC 1 and 2 

appear to have important redundant functions during neuronal development [156]. 

Distinct as well as complementary roles for HDAC 1 and 2 have also been observed with 

regards to synapse development. In immature hippocampal neurons, a targeted 

knockdown of HDAC 1 and 2 increased synaptic activity and synapse numbers. 

However, in mature neurons, the knockdown of HDAC2 alone decreased synaptic 

activity, whereas the loss of HDAC1 had no effect [157]. Thus, inhibition of HDAC1 and 
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2 during development, and HDAC2 in mature brain, may have potential unexpected 

neurological side effects. HDAC2 knockout in mice has also been shown to enhance 

learning and memory and synaptic plasticity (Guan et al., 2009). Although targeting 

specific class of HDACs has been perceived as a suitable therapeutic avenue for some 

neurodegenerative diseases, it can lead to very different and potentially opposing clinical 

implications.  For example, activation and/or overexpression of HDACs 2 and 3 is 

associated with neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) 

and neural cell toxicity [126,158], while inhibition of HDAC 1 has been found to lead to 

neurodegeneration [107,159]. Moreover, subcellular localization of HDACs and thus, 

their ability to repress gene targets is controlled by synaptic activity in neurons. For 

instance, localization of class II HDACs 4 and 5 is dynamic and signal-regulated in 

cultured hippocampal neurons wherein nuclear export of HDAC4 is initiated by 

spontaneous electrical activity and HDAC5 translocation to nucleus is induced by 

stimulation of calcium flux through synaptic NMDA receptors [160]. Such activity 

dependent regulation of HDAC function further necessitates a clearer understanding of 

specific activating stimuli if pharmacological interventions targeting these HDACs are to 

be developed. Thus, in light of these studies demonstrating opposing as well as redundant 

functions of members of class I HDACs and their requirement for activation of other 

HDACs suggest that targeting specific HDACs might be more beneficial than class 

specific modulation of HDAC activity.  

 Another issue to consider in terms of HDAC based therapeutic efficacy is that 

although HDAC inhibitors are generally considered to promote neuronal growth and 

differentiation, they also exhibit toxicity in various cell types of the central nervous 
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system. For instance, there is evidence that they could have potentially detrimental effects 

on the orderly maturation of astrocytes and oligodendrocytes [161-163]. There is also 

evidence that neuroprotection can result from non-enzymatic activity of HDACs, as was 

demonstrated in the case of a mutated inactive form of SIRT1 that prevents apoptosis 

when overexpressed in cerebellar granule neurons (CGNs) [164]. Moreover, like their 

counterparts, the HATs – class I, II and III of HDACs also regulate lysine acetylation of 

non-histone proteins that exert neuroprotective effects [165]  adding  a further layer of 

complexity to the interpretation of therapeutic potentials of currently available broad 

spectrum or even class specific HDAC inhibitors for neurodegenerative diseases.  Thus, 

the specificity and side-effect profiles of inhibitors of HDACs require additional 

investigation to fully gauge their neuroprotective abilities.   Further exploration of 

isoform-selective HDAC inhibitors that are also region-specific may provide a 

therapeutic advantage in targeting specific cell and tissue functions under pathological 

conditions. 

Modulating HAT function: a promising therapeutic option for neurodegenerative 

diseases? 

It has become increasingly clear that chromatin acetylation status can be impaired 

during the lifetime of neurons through loss of function of specific HATs with deleterious 

consequences on neuronal function [152]. Once the acetylation balance is disturbed by 

the loss of HAT dose, the HAT: HDAC ratio tilts in favor of HDACs in terms of 

availability and enzymatic functionality, a fact highlighted by amelioration of several 

neurodegenerative conditions by various HDAC inhibitors [130]. In fact, a clue to explain 

the net deacetylation observed during neurodegeneration came with the finding that dying 
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neurons exhibit progressive loss of HAT activity and/or expression, particularly that of 

CREB binding protein (CBP) and to a lesser extent p300.  Notably, overexpression of 

CBP under apoptotic conditions delays neuronal cell death, an event that was dependent 

on the HAT function of CBP [123,166]. We recently reported that neuronal misregulation 

of Tip60’s HAT function in Drosophila via overexpression of wild type Tip60 or the 

HAT defective mutant Tip60 leads to apoptotic cell death, an effect predominantly 

mediated through transcriptional dysregulation of pro-apoptotic genes as well as genes 

required for normal development [78]. Specific HATs are also emerging as regulators 

that gate access to genes regulating specific neuronal processes that are essential for 

maintaining neuronal health and for mediating higher order brain functions. Notably, 

such processes are also affected in neurodegenerative conditions and significantly 

contribute to pathological consequences. For instance, CBP has been shown to mediate 

specific forms of hippocampal long term potentiation, a form of synaptic plasticity 

thought to underlie memory storage [167]. In contrast, the HAT p300 has been shown to 

constrain synaptic plasticity in the prefrontal cortex and reduced function of this HAT is 

required for formation of fear extinction memory [168].   Importantly, overexpression of 

p300 but not HDAC inhibition has been shown to promote axonal regeneration in mature 

retinal ganglion cells following optic nerve injury, an effect mediated by p300 induced 

hyperacetylation of histone H3 and p53 that consequently leads to increased expression 

of selected pro-axonal outgrowth genes [169].  Overexpression of Tip60 under APP 

induced neurodegenerative conditions also induces intrinsic axonal arborization of the 

Drosophila small ventrolateral neurons, a well characterized model system for studying 

axonal growth [170].  
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It is important to note that modulation of specific HAT levels and/or activity may 

alter the expression of many genes or “cassettes” of specific genes that act together 

produce a neuroprotective effect. In fact, in the case of Tip60, overexpression of wild 

type Tip60 but not the HAT defective mutant increases survival in a Drosophila AD 

model, an effect that is mediated via enhanced repression of a “cassette” of pro-apoptotic 

genes and induction of pro-survival factors like Bcl-2 [78]. With regards to non-

chromatin associated cellular processes, the acetyltransferase Elp3 known to acetylate 

microtubules has been shown to be involved in the regulation of synaptic bouton 

expansion during neurogenesis [171] and recent studies suggest that regulation of 

microtubule acetylation by the ELP3 might be commonly affected in neurological 

diseases making it a potential target for acetylation modulator based therapies (reviewed 

in [172]). Tip60 has also been recently shown to play a causative role in synaptic 

plasticity partly through acetylation of microtubules [173]. Together, these studies raise 

the possibility that modulation of expression levels and/or activity of specific HATs such 

as Tip60 could be an alternative therapeutic option for neurological conditions. 

Importantly, targeting HATs rather than HDACs can also be beneficial because unlike 

HDACs, HATs have non-redundant functions under physiological conditions and thus 

the presence of these specific modulators can have more direct effects. In a study by 

[174], it was reported that the total protein amount and activity of various HDACs is not 

altered by mutant huntington protein expression in primary cortical neurons. Thus, the 

neurodegeneration associated tilt in HAT: HDAC does not appear to include 

augmentation of HDAC protein level. Therefore, activation of specific HATs may restore 

acetylation balance in addition to activating specific gene expression programs that 
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consequently have neuroprotective effects.   In fact, a number of recent studies conclude 

that HDAC inhibitor induced hyperacetylation alone may not be sufficient to produce 

beneficial effects. In a study by [175], it was reported that HDAC inhibition mediated 

enhancement of synaptic plasticity and hippocampus dependent memory formation 

requires the presence of at least one wild type allele of cbp highlighting the requirement 

of HATs like CBP for site specific acetylation and the recruitment of the basal 

transcriptional machinery. However, increasing neuronal dosage of specific HATs to 

reinstate acetylation homeostasis calls for the same concern as does the utilization of 

HDAC inhibitors. Non-specific enhancement of HAT levels and/or activity may lead to 

further complications by skewing the acetylation balance in the neighboring cell 

population towards hyperacetylation.   Therefore, in order to reap the full potential of 

specific HAT activators, it is also essential to quantify HAT-HDAC dose in specific cell 

populations that are vulnerable to different degenerative etiologies [75]. 

Conclusion 

 In summary, histone acetylation is now recognized as one of the key mechanisms 

that regulate gene expression programs critical for high-order brain functions like 

learning and memory. While dynamic yet controlled regulation of histone acetylation and 

deacetylation is crucial for these functions, deregulation of the system may lead to 

complex changes in the epigenetic landscape that impairs cognitive functions. Chronic 

deregulation of the acetylation machinery can ultimately lead to neuronal death and brain 

atrophy as manifested in neurodegenerative diseases. Clearly, more research is required 

to fully understand the precise mechanism(s) by which this system impacts neuronal 

survival and mediates memory functions. This knowledge can then be translated to novel 
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HAT/HDAC based therapeutic strategies for the treatment of neurodegenerative diseases. 

However, a major challenge with utilization of modifiers of cellular acetylation levels is 

the identification of bona fide targets of HATs and HDACs and the integration of histone 

and transcription factor acetylation into a broader context of neuronal, and importantly, 

cellular homeostasis [38]. Although still in its infancy, the neuroprotective effects 

displayed by HATs like CBP, p300 and Tip60 and specificity of these effects for 

particular neuronal processes appears more promising than currently available non-

selective HDAC inhibitors. However, determining the genes or “cassettes” of genes that 

are regulated by such HATs and characterizing the survival or degenerative effects such 

genes have would subsequently facilitate the development of novel drugs and specific 

therapeutic strategies with lower adverse side effects than those currently available.  
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CHAPTER 2: TIP60 HAT ACTIVITY MEDIATES APP INDUCED LETHALITY 
AND APOPTOTIC CELL DEATH IN THE CNS OF A DROSOPHILA 

ALZHEIMER’S DISEASE MODEL 

 

ABSTRACT  

Histone acetylation of chromatin promotes dynamic transcriptional responses in 

neurons that influence neuroplasticity critical for cognitive ability.   It has been 

demonstrated that Tip60 histone acetyltransferase (HAT) activity is involved in the 

transcriptional regulation of genes enriched for neuronal function as well as the control of 

synaptic plasticity.   Accordingly, Tip60 has been implicated in the neurodegenerative 

disorder Alzheimer’s disease (AD) via transcriptional regulatory complex formation with 

the AD linked amyloid precursor protein (APP) intracellular domain (AICD).  As such, 

inappropriate complex formation may contribute to AD-linked neurodegeneration by 

misregulation of target genes involved in neurogenesis; however, a direct and causative 

epigenetic based role for Tip60 HAT activity in this process during neuronal 

development in vivo remains unclear.   Here, we demonstrate that nervous system 

specific loss of Tip60 HAT activity enhances APP mediated lethality and neuronal 

apoptotic cell death in the central nervous system (CNS) of a transgenic AD fly model 

while remarkably, overexpression of Tip60 diminishes these defects.   Notably, all of 

these effects are dependent upon the C-terminus of APP that is required for 

transcriptional regulatory complex formation with Tip60.  Importantly, we show that the 

expression of certain AD linked Tip60 gene targets critical for regulating apoptotic 

pathways are modified in the presence of APP.   Our results are the first to demonstrate a 

functional interaction between Tip60 and APP in mediating nervous system development 
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and apoptotic neuronal cell death in the CNS of an AD fly model in vivo, and support a 

novel neuroprotective role for Tip60 HAT activity in AD neurodegenerative pathology.     

 

INTRODUCTION 

Epigenetic regulation of chromatin structure via histone acetylation promotes 

coordinated and dynamic transcriptional responses in neurons that influence the 

neuroplasticity critical for cognitive ability [73]. Tip60 is a cellular acetyltransferase 

protein that was originally identified by its interaction with the HIV-1 transactivator 

protein Tat [176].  As such, a role for Tip60 in transcription regulation has been 

investigated intensively with accumulating data linking Tip60 to diverse processes 

including cell signaling, DNA damage repair, cell cycle and checkpoint control and 

apoptosis [177].  Recent work from our laboratory demonstrates that the HAT activity of 

Tip60 is required for the transcriptional regulation of genes enriched for neuronal 

function [69]  as well as the regulation of synaptic plasticity  [173].   Consistent with 

these findings, Tip60 has been implicated in the neurodegenerative disorder Alzheimer’s 

disease (AD) via its formation of a transcriptional regulatory complex with the AD linked 

amyloid precursor protein (APP) intracellular domain (AICD).  It has been demonstrated 

that this complex is recruited to the promoters of certain target genes where it acts to 

acetylate select histone proteins to epigenetically regulate gene transcription [144-

146,149].   Importantly, aberrant expression of some of these genes has been linked to 

AD pathophysiology [143,147,148].    Based on these findings, it has been proposed that 

inappropriate complex formation and/or recruitment may contribute or lead to AD 
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pathology via misregulation of target genes required for neurogenesis.   Growing 

evidence suggests that the cognitive impairment in AD as well as signaling between 

neurons is interrupted at early stages of the disease [133]. It has also been hypothesized 

that dysregulation of epigenetic control mechanisms and the resultant aberrant epigenetic 

marks may contribute to such cognitive dysfunction [61]. However, a direct and causative 

epigenetic based role for Tip60 HAT activity misregulation in disrupting APP mediated 

neuronal processes linked to AD during nervous system development in vivo remains to 

be tested.  

    Apoptosis or programmed cell death is crucial in guiding the physiological 

development of individual cells and organs and is particularly important for CNS 

development [77].  Misregulation of this process leads to inappropriate induction of 

neuronal specific apoptotic cell death that has been shown to be a hallmark of certain 

progressive neurodegenerative diseases, one of which is AD.    Importantly, Tip60 and 

AICD have each been shown to play separate and critical roles in the induction of 

apoptosis.  For example, Tip60 plays a central role as a primary cell cycle mediator by 

modulating the direction of p53-dependent cell fate towards either cell cycle arrest or 

apoptotic induction.  Tip60 carries out this role by first sensing the level of irrepairable 

DNA damage, and then inducing the appropriate p53-dependant response pathway via its 

HAT activity [178].  Interestingly, the Tip60 interacting  γ-secretase derived APP 

intracellular C-terminal domain (AICD) fragment has also been shown to trigger p53-

dependent cell death by increasing p53 expression and activity in human brain and 

neuronal cell models [179].   Additionally, ectopic expression of AICD in H4 

neuroglioma cells leads to dramatic nuclear localization and apoptosis [180].   Moreover, 
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mutations in the presenilin proteins of the AICD generating γ-secretase complex are also 

linked to neurodegeneration and AD progression [181-184].  However, despite the 

convincing evidence that Tip60 and APP are each separately involved in promoting 

neuronal apoptotic induction, a functional interaction between Tip60 and APP in the 

control of this process remains to be explored, and an in vivo model to test this hypothesis 

has yet to be generated. 

      In this report, we test the hypothesis that Tip60 HAT activity mediates APP 

induced lethality and apoptotic neuronal cell death in the central nervous system (CNS) 

using a transgenic AD fly model that we uniquely adapted to express varying levels of 

Tip60 HAT activity.  We demonstrate that nervous system specific loss of Tip60 HAT 

activity enhances APP mediated lethality and neuronal apoptotic cell death in the 

developing central nervous system (CNS) of these transgenic flies while remarkably, 

overexpression of Tip60 counteracts these defects.   Notably, all of these effects are 

dependent upon the APP C-terminal domain that is required for transcriptional regulatory 

complex formation with Tip60.   Importantly, we show that the expression of certain AD 

linked Tip60 gene targets critical for regulating apoptotic pathways are modified in the 

presence of APP.   Our findings are the first to show a functional interaction between 

Tip60 HAT activity and APP in mediating both nervous system development and 

apoptosis linked neuronal cell death in the CNS of an AD fly model in vivo, and point to 

a novel neuroprotective role for Tip60 HAT activity in AD neurodegenerative pathology.  
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MATERIALS AND METHODS 

Drosophila Genetics 

Drosophila stocks were maintained at 25°C on standard cornmeal/agar/molasses 

medium supplemented with yeast. The w1118 line served as the genetic background 

control. The generation and characterization of the dominant negative HAT mutant 

dTIP60E431Q lines A and B is described in [69].  Transgenic UAS lines carrying human 

APP 695 isoform (UAS-APP) and APP lacking the C-terminus (UAS-APP dCT) were 

obtained from Drosophila Stock Center (Bloomington, IN, USA). Stocks carrying 

dTIP60E431Q lines A or B were introduced into UAS-APP and UAS-APP dCT 

backgrounds using standard genetic techniques. As previously described [69], transgenic 

UAS fly lines that would allow for expression of varying levels of wild type Drosophila 

Tip60 (dTip60WT) were generated and crossed into both UAS-APP and UAS-APP dCT 

backgrounds using standard genetic techniques. The ubiquitously expressed 337-Gal4 

driver and the nervous system specific 179y-Gal4 driver were obtained from Drosophila 

Stock Center (Bloomington, IN, USA). Viability analysis was performed using newly 

eclosed age matched virgin females. For ubiquitous expression of the different transgenic 

lines, ten virgin females from each of the lines were crossed to seven 337-Gal4 males. 

The crosses were maintained at 25oC and transferred to fresh food every 24 hrs for 3 

days. Each transfer was counted as day 1. The crosses were monitored daily and the 

developmental stage at which lethality (if any) occurred was recorded. The number of 

flies that eclosed were counted daily starting on day 10 for a period of ten days at which 

point all the F1 progeny had either eclosed or died as pupae. The average number of flies 
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for the three days was calculated. For each transgenic line, three replicate crosses were 

done as described above and the developmental stage at which lethality occurs as well as 

average number of eclosed flies were reported. The same was repeated for nervous 

system specific expression of the different transgenes using ten newly eclosed age 

matched 179y-Gal4 females and seven males from each of the transgenic lines.  

Quantitative Real Time RT-PCR 

Quantification of RNA transcript levels of dTip60E431Q or dTip60WT in the different 

double transgenic lines was done by crossing the respective fly lines to 337-Gal4 driver at 

25oC as described earlier. As a control, W1118 flies were crossed to 337-Gal4 flies. Staged F1 

second instar larvae that resulted from the cross were used for RNA extraction.   Total RNA 

was isolated using Trizol (Invitrogen Corporation, Carlsbad, CA, USA) and treated twice with 

DNase II (Ambion, Austin, TX) to remove DNA.  Complementary DNA (cDNA) was 

synthesized from 1ug total RNA and oligo-dT primers using Superscript II Reverse 

Transcriptase (Invitrogen Corporation, Carlsbad, CA,USA).  Real-time quantitative PCR was 

performed on an ABI 7500 Real Time PCR System (Applied Biosystems, Poster City, CA, 

USA) using the Power SYBR Green PCR master mix (Applied Bioystems, Poster City, CA, 

USA).  Real time RT-PCR reactions were carried out in triplicate in 20ul reaction volumes 

containing 1ng cDNA template and 1.5uM each of forward and reverse primer. Transgene 

induced expression of exogenous dTip60E431Q or dTip60WT for each line was determined as 

described in Lorbeck et al (2010) by amplifying total dTip60 mRNA using primers designed 

to amplify a non-conserved region within both the endogenous dTip60 and exogenous 

transgene induced dTip60, and comparing the relative fold change in mRNA expression levels 
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to just the endogenous dTip60 mRNA level that was determined using primers that amplify 

the endogenous 5’UTR dTip60 region that is lacking in the exogenously expressed dTip60. 

Forward and reverse primer sets designed to amplify a 97 bp nonconserved region of dTIP60 

were 5’GACGGCTCACAAACAGGC 3’and 5’GGTGTTGCGGTGATGTAGG 3’, 

respectively. Forward and reverse primers designed to amplify a 105 bp region within the 

5’UTR region of endogenous dTIP60 were 5’CAGTTGTGGTT CACAATTACCC 3’ and 

5’GTGCGCAGAAAGTTATACAGC 3’, respectively.  PCR was carried out by 40 cycles at 

95°C for 45 sec, 55°C for 45 sec, and 72°C for 1 min with plate readings recorded after each 

cycle.  Threshold cycle (Ct) values were obtained, and the ΔΔCT method [185] was used to 

calculate the fold change in transcript level of the sample relative to the control.  RP49 which 

encodes the Drosophila  ribosomal protein L32 was used as an internal standard and reference 

gene using forward and reverse primer pairs 5’CTGCTCATGCAGAACCGCGT 3’and 

5’GGACCGACAGCTGCTTGGCG 3’, respectively. 

Semi-quantitative RT-PCR analysis 

The presence of UAS-APP or UAS-APP dCT constructs in the double transgenic lines 

was verified by semi-quantitative RT-PCR. Total RNA and cDNA preparation from staged 

second instar larvae was done as before. PCR amplification was done in 20ul reactions using 

forward and reverse primer pairs 5’-GCCGTGGCATTCTTTTGGGGC-3’ and 5’- 

GTGGTCAGTCCTCGGTCGGC-3’, respectively that amplify a 100 bp region in the APP N-

terminus region. The PCR reaction mixture contained reaction buffer (10 mM Tris-HCl [pH 

9.0], 50 mM KCl, 3mM MgCl2 and 0.01% Triton X-100), 200 uM dNTPs, 1.5uM of each 

primer, 1.25U DNA polymerase (Qiagen, Hilden), and cDNA template. Thermal cycling 
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conditions consisted of an initial melting step at 95oC for 1 min, followed by 39 cycles of 

melting at 95oC for 45 s, annealing at 55oC for 45 s and extension at 72oC for 60 s. PCR 

products were visualized by agarose gel (2%) electrophoresis containing ethidium bromide.  

TUNEL Staining for Apoptosis  

Third instar larval brains were carefully dissected and fixed in 4% 

Paraformaldehyde.  Brains were washed 3 times in 1X PBST (0.1% Triton X) for 15 

minutes and incubated for 15 minutes in block solution (5% normal goat serum, 0.1% 

Triton X).  Detection of apoptotic neuronal cells was performed using the Fluorescein 

Cell Death Kit (Roche, Mannheim, Germany) following the manufacturer’s instructions.  

The reaction mixture was made using enzyme solution and label solution (1:9) and brains 

were incubated for 90 minutes at 37°C.  Samples were then washed three times in 1X 

PBST and mounted in Vectashield anti-fade mounting medium. Confocal microscopy 

was performed using Olympus Microscope with fluoview software.  For each genotype 

including the wild type control, the replicate samples were dissected, fixed and stained on 

the same day using aliquots of enzyme reaction mixtures prepared from the same 

buffer/enzyme stock. The samples were protected from light and were also imaged within 

24 hrs of preparing the slides to avoid loss of signal. Confocal imaging of whole-CNS 

was done by maintaining PMT voltage, offset, and laser power settings the same for the 

replicate samples in each case. Larval brain images were displayed as projections of 1uM 

serial Z sections and represent whole compressed Z-stacks of the larval central nervous 

system.  
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Microarray experiment 

The experimental condition that was compared in the microarray experiment was 

wild type (WT) versus dTip60 E431Q B.  As described previously (Lorbeck et al., 2011), 

respective flies were crossed to 337-Gal4 driver to allow for ubiquitous expression of the 

transgene. In each case, two samples of thirty-five staged three day old whole larvae 

progeny were used for RNA extraction and probing two separate microarray chips on the 

GeneChip Drosophila 2.0 Array (Affymetrix, Santa Clara, CA) following a standard 

Affymetrix protocol.  

Microarray data analysis 

GeneChip CEL files were generated using the Affymetrix GeneChip operating 

system (GCOS). The CEL files are available at NCBI GEO (GEO Acc num. GSE25635). 

The open source packages in R and bioconductor were used for data analysis. The data 

were imported into R and after a series of pre-processing analysis (background correction 

and mean scaling), the data was normalized. The RMA normalization [186] which has 

been shown to have high efficiency for Affymetrix data normalization was chosen to 

minimize the systematic variation in the experiment. Limma (Linear Models for 

Microarray Data) package was used for detection of differentially expressed genes by 

fitting a linear model to the expression data for each gene. This package fully models the 

systematic part of the data and creates a design matrix. Each row of the design matrix 

corresponds to an array in the experiment and each column corresponds to a 

coefficient.  In Affymetrix analysis, the linear modeling implemented by Limma is much 
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the same as ordinary ANOVA or multiple regression except that a model is fitted for 

every gene. A list of the top genes which show evidence of differential expression 

between the dTip60 E431Q B and WT was then generated by estimating the fold change of 

dTip60 E431Q B over WT. The results of the linear model were then summarized, and the 

p-values for multiple testing adjusted using a FDR (Benjamini and Hochberg’s method) 

threshold of 0.05.  The genes whose P-value of the log ratio are over 95% were 

categorized as 'no-change' in gene expression and the genes with expression levels that 

have a significant difference between the dTip60 E431Q B and WT (P<0.05) are either 'up 

or down-regulated'. Thus genes which have positive log ratios of dTip60 E431Q B/WT are 

up-regulated in dTip60 E431Q B while genes with negative log ratios are down-regulated in 

dTip60 E431Q B. The misregulated genes were analyzed using Gene Ontology 

(www.geneontology.com) and the panther protein classification system 

(www.pantherdb.org) to identify apoptosis related genes that were significantly enriched 

in the microarray dataset.  

Quantitative RT-PCR analysis of microarray targets 

Apoptosis related genes that were found to be significantly misregulated in 

response to loss of Tip60 HAT activity in the microarray analysis were further validated 

by quantitative RT-PCR in the following transgenic fly lines: dTip60E431Q, dTip60WT, 

APP; dTip60E431Q, APP; dTip60WT. In each case, F1 second instar larvae resulting from a 

cross between each of these transgenic fly line and 337-Gal4 driver were used for cDNA 

preparation. Wild type w1118 flies crossed to 337-Gal4 driver were used as control. Primer 

sets were designed using NCBI/Primer-BLAST (www.ncbi.nlm.nih.gov/tools/primer-

http://www.geneontology.com/
http://www.pantherdb.org/
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blast/). Primer sequences are available upon request. Fold change of the respective 

transcript level in the sample was calculated relative to the control by the ΔΔCT method 

using RP49 as internal control.  

RESULTS 

Tip60 and APP functionally interact to mediate both general and nervous system 

specific development.   

To create an in vivo multicellular model system suitable for investigating a 

functional link  between Tip60 HAT activity  and APP in neuronal function  in vivo, we 

generated transgenic flies expressing  either our previously characterized HAT-defective 

dominant negative Tip60 transgene (dTIP60E431Q) or  additional copies of wild-type 

Tip60 transgene (dTip60WT)  in a well characterized AD fly model [187,188] that 

overexpresses either full-length human APP (APP) or human APP lacking the Tip60-

interacting C-terminal domain (APP dCT) under the control of the UAS promoter.  

Double transgenic lines were generated for two independent dTip60E431Q lines expressing 

low and high levels of the HAT activity defective mutant dTip60 (dTip60E431Q A and 

dTip60E431Q B, respectively) (Table 1). Similarly, double transgenic lines for three 

independent dTip60WT lines expressing varying levels of wild type dTip60 (dTip60WT A, 

dTip60WT B, and dTip60WT C, respectively) were generated (Table 1). Expression levels 

for the exogenously expressed dTip60E431Q or dTip60WT from each of these transgenic 

lines were quantitatively assessed using quantitative RT-PCR to allow for selection of 

lines that had comparable levels of exogenous Tip60E431Q and Tip60WT expression for 
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further analysis (Figure 1A and Figure 2A).   Comparable levels of APP and APP dCT 

transgene expression were previously characterized [188] and presence of each of these 

transgenes in the APP; dTip60 fly lines was confirmed using semi-quantitative PCR 

(Figure 1B and Figure 2B).    

 To determine whether  Tip60 and APP functionally  interact during general  

Drosophila development, we first expressed each of the transgenes  

(dTip60E431Q , dTip60WT , APP, APP-dCT) separately  at the normal physiological 

temperature of 25°C using GAL4 driver line 337, that  induces robust and ubiquitous 

GAL4 expression beginning during  late embryogenesis and continuing  into adulthood.   

The crosses were monitored daily to examine if the expression of the different transgenes 

affects development. In cases where the transgene expression induced lethality, the 

developmental stage at which lethality occurred was recorded (Table 2). In cases where 

the F1 progeny progressed through normal development and eclosed, the number of flies 

that eclosed over a ten day period were counted (Figure 3). The w1118 fly line crossed to 

337-GAL4 served as a control.   As we previously reported, induction of Tip60E431Q for 

both independent lines A and B reduced fly viability to 0%, with the majority of lethality 

occurring during the late third instar larval stage.   Moreover, ubiquitous induction of 

APP resulted in 60% lethality that occurred in the pupal stage, with the remaining 40% of 

progeny surviving only 2-5 days after eclosion (Table 2, Figure 3).    Co-expression of 

dTip60E431Q   and APP using both APP; dTip60E431Q line A and APP; dTip60E431Q line B 

resulted in 0% viability, with lethality occurring during the early second instar larval 

stage (Table 2).  Additionally, hatching of 100% of these larvae was delayed by 24-48 

hours.   Thus, co-expression of both APP and Tip60E431Q resulted in a much more severe 
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developmental phenotype as it induced lethality approximately 3 days earlier in 

development than when compared to either APP or dTip60E431Q expressed alone.  The 

genetic enhancement of lethal effects observed in the double mutants compared to when 

either APP or dTip60E431Q  is expressed alone is indicative of a synergistic interaction 

between Tip60 and APP. 

To determine whether the genetic enhancement we observed between APP and 

dTip60 was dependent upon the C-terminal domain of APP that is required for interaction 

with dTip60, we co-expressed the dTip60E431Q transgene with APP dCT, a version of 

APP lacking the C-terminal domain.     Ubiquitous expression of APP dCT alone with the 

337-GAL4 driver at 25oC  did not cause any observable developmental phenotype 

although there was a non-significant decrease in the number of F1 progeny that eclosed 

(Table 2, Figure 3).  However, unlike the APP eclosed flies that survived only 2-5 days 

(Table 2), the eclosed APP dCT adult progeny in this case did not exhibit any early 

lethality.  This finding indicates that the decrease in viability in response to APP 

overexpression is dependent upon the C-terminus domain of APP.   Moreover, co-

expression of dTip60E431Q with APP dCT using both APP dCT; dTip60E431Q line A and 

APP dCT; dTip60E431Q line B resulted in a phenotype identical to that of dTip60E431Q 

alone (Table 2).  These results indicate that the synergistic interaction between 

dTip60E431Q and APP is dependent upon the Tip60 interacting C-terminal domain of APP. 

We also examined the effect of overexpressing varying levels of wild type dTip60 

using dTip60 WT lines A, B and C using the ubiquitous 337-Gal4 driver.  As shown in 

Table 2, ubiquitous expression of each of these transgenes did not affect development per 
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se but the number of F1 progeny that eclosed in each case was significantly less than the 

wild type control (Figure 3).  Although these dTip60 WT lines express varying levels of 

the wild type dTip60, there was no significant difference in the number of surviving F1 

progeny between dTip60 WT lines A, B and C indicating that the observed effect is not 

dose dependent.   In contrast, co-expression of dTip60WT with APP using lines APP; 

dTip60WT A, B and C rescued the APP induced loss of viability in a dose dependent 

fashion, as indicated by the increase in the number of surviving F1 progeny in the double 

mutants compared to flies expressing APP alone (Figure 3). However, the number of F1 

progeny was still less than the wild type control in all three cases indicating only a partial 

rescue of the APP induced lethality. Notably, with APP; dTip60WT line C that co-

expresses APP with the highest level of wild type Tip60, the number of F1 progeny that 

eclosed was significantly more than that observed in the respective single mutant 

dTip60WT lines (Figure 3). Thus, co-expression of APP with additional levels of Tip60 

not only counteracts the lethal effects induced by APP but also alleviates the effect that 

overexpression of Tip60 has on viability. Lack of similar effects in the APP dCT; 

dTip60WT C flies (Figure 3) suggest that the observed rescue phenotype was mediated 

through interaction of Tip60 with the APP C-terminal domain. Together, our findings 

indicate that while loss of Tip60 HAT activity enhances the APP induced lethal effects, 

additional levels of Tip60 suppress such lethal effects, further supporting a synergistic 

interaction between Tip60 and APP. 

APP and Tip60 are each neuronally expressed and are both required for nervous 

system function [4, 27].   Thus, the phenotypic enhancement we observed between APP 

and Tip60 during general development prompted us to ask whether this interaction was 
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also specific for nervous system development and function.    To investigate whether 

Tip60 and APP genetically interact in the nervous system, we carried out the same 

crosses as above, this time using the pan-neuronal 179y- GAL4 driver line which induces 

robust pan- neuronal GAL4 expression at 25oC (Table 2).   Again, we observed the same 

pattern of lethality as for general development for the stronger fly line APP; Tip60E431Q B 

in that lethality caused  by APP overexpression was enhanced by reduction of Tip60 

HAT activity, supporting the specificity of the Tip60 and APP genetic interaction (Table 

2) in nervous system development.  As before, this nervous system specific interaction 

was dependent upon the Tip60 interacting C-terminal domain of APP (Table 3).   In 

contrast, when Tip60E431Q A was expressed in the nervous system in combination with 

APP or APP dCT, it resulted in partial lethality wherein only a fraction of the F1 progeny 

in each of these cases died as second and third instars, respectively similar to that seen in 

APP; Tip60E431Q B and APP dCT; Tip60E431Q B flies. However, the majority of F1 

progeny did not have any lethal developmental effect (Table 2). This milder effect 

observed with Tip60E431Q A expressing flies is likely due to the low level of dTip60 HAT 

mutant that is expressed in these flies. Similar to the effects we observed with ubiquitous 

expression, pan neuronal expression of dTip60WT with APP suppressed the APP induced 

lethality in a dose dependent fashion (Figure 3).  Furthermore, with APP; dTip60WT line 

C, the number of F1 progeny that eclosed were significantly more than that observed in 

the respective single mutant dTip60WT lines (Figure 3). Taken together, our results 

demonstrate that Tip60 and APP functionally interact to mediate both general and 

nervous system specific development and that this interaction is dependent upon the 
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Tip60 interacting C-terminal domain of APP.  These data further support an epigenetic 

based role for Tip60 HAT activity in mediating APP induced developmental effects.               

Tip60 HAT activity is required for the transcriptional regulation of genes linked to 

a variety of distinct apoptotic pathways. 

The above findings indicating a functional interaction between APP and Tip60 in 

mediating general and nervous system specific lethality prompted us to ask whether a 

potential mechanistic basis for this lethal phenotype was via induction of an apoptotic 

response in these flies. We recently reported a microarray analysis comparing global 

changes in gene expression in response to ubiquitous induction of Tip60E431Q in the fly 

[69]. While this study reported misregulation of genes linked to diverse neuronal 

functions, the identity of genes that function in specific neuronal processes was not 

explored.  To address this and to examine the causative mechanism that mediates the 

Tip60/APP induced lethal phenotype, we wanted to further analyze our previously 

published microarray gene expression data with specific focus on genes that are known to 

function in apoptosis related pathways. Towards this end, we performed pathway analysis 

by first identifying canonical apoptotic pathways and their respective genes from online 

databases like Gene Ontology and the PANTHER classification system. The 

dTip60E431Q microarray data set was then examined to see if genes linked to such 

apoptotic pathways were misregulated in response to loss of Tip60’s HAT activity.  Our 

analysis identified 53 such unique genes that are involved in 17 different apoptotic 

pathways to be misregulated in the dTip60E431Q data set (Table 3).   Intriguingly, the 

identified pathways included those that are associated with Alzheimer’s, Parkinson’s and 
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Huntington’s diseases, all neurodegenerative disorders in which massive neuronal death 

due to apoptosis is a common characteristic.    Importantly, the p53 mediated pathway 

and Wnt signaling pathway were among the most highly represented pathways, consistent 

with previous reports implicating Tip60 in a p53 mediated apoptotic response.   To 

validate our microarray results, we carried out quantitative RT-PCR analysis of nine 

genes that encoded protein products with known functions involved in inducing an 

apoptotic response (Figure 4A and 4B) and were representative of a particular pathway 

(Table 3).  Of the genes that were upregulated in response to Tip60 HAT loss was 

Calpain, a calcium dependent enzyme that mediates proteolytic cleavage of proteins like 

APP and tau. Abnormal activation of Calpain has also been reported to initiate 

degradation of proteins essential for neuronal survival [133].  Among the other confirmed 

targets that were upregulated were genes with established roles in the induction of the 

p53 mediated apoptotic pathway such as TRAF4 and CG9418 (High mobility group 

protein 1/2).  The wingless protein (wg) and Frizzled (Fz), a transmembrane protein that 

functions as Wg receptor were two confirmed upregulated targets critical in the Wnt 

signaling pathway involved in regulating apoptosis.   Also upregulated in the microarray 

data was ALiX (apoptosis linked gene 2 interacting X), a calcium dependent ubiquitously 

expressed protein involved in neuronal cell death.  Consistent with this finding, 

upregulation of endogenous ALiX has also been reported to correlate with cell death in 

vivo [189,190].  Myc proteins are essential regulators of cellular growth and proliferation 

during normal development.  Recently, the ability of overexpressed Myc to induce cell-

autonomous apoptosis has been shown to be evolutionarily conserved in Drosophila Myc 

[191].  Interestingly, we too found Myc to be upregulated in response to loss of Tip60 
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HAT activity.  Our identification of these target genes that are affected by loss of Tip60 

HAT activity further support an as yet unidentified putative role for Tip60 in the 

respective cellular pathways in which such targets function.   Among the genes 

downregulated in response to loss of Tip60 HAT activity was the  apoptosis related 

protein, Programmed Cell Death 5 (PDCD5) that has also been reported to interact with 

Tip60 to mediate DNA damage induced apoptosis [192].   In summary, our identification 

of misregulated apoptosis related pathways and their respective genes in response to 

Tip60 HAT loss further support a regulatory role for Tip60 in multiple pathways linked to 

apoptotic control.   

 In order to examine if expression of these genes that are misregulated in 

dTip60E431Q are also altered due to overexpression of wild type dTip60, we performed 

qPCR analysis of the above mentioned nine genes in dTip60WT second instar larvae, as 

this was the developmental stage used for dTip60E431Q microarray analysis (Table 4). 

While loss of Tip60 HAT activity induced expression of genes like Frizzled, Wingless 

and dMyc, Tip60 overexpression had the converse effect resulting in marked 

downregulation of these genes. Significant differential regulation was also observed 

between dTip60E431Q and dTip60WT flies for PDCD5 expression.  Similar to that observed 

in the Tip60 HAT mutants, expression of genes like Buffy, ALiX, CalpA, TRAF4 was 

also induced under Tip60 overexpressing conditions (Table 4). 

Since Tip60 forms a transcriptionally active complex with the APP C-terminal 

domain, we also wished to examine how these gene expression changes are modified by 

APP in the dTip60E431Q or dTip60WT background.  We therefore performed qPCR 
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analysis of these nine genes in APP; dTip60E431Q and APP; dTip60WT double mutant lines 

to identify genes that are differentially regulated between these lines and their respective 

single mutants (Table 4).  Notably, while Tip60 HAT loss in dTip60E431Q fly lines 

induced expression of the genes Buffy, CalpA, TRAF4, Frizzled, Wingless, dMyc, co-

expression of APP with dTip60E431Q had a repressive effect on each of these genes.   

Similar differential regulation was observed with PDCD5 wherein presence of APP with 

dTip60E431Q relieved the repressive effect on PDCD5 that expression of dTip60E431Q 

alone had.  With respect to APP; dTip60WT flies, CalpA, TRAF4 and Dmel\CG9418 each 

exhibited differential regulation in comparison to flies expressing dTip60WT alone.  While 

CalpA and TRAF4 were upregulated in dTip60WT flies, they were downregulated in APP; 

dTip60WT flies.  Although Dmel\CG9418 was upregulated in dTip60WT flies, its fold 

increase was much higher in APP; dTip60WT flies.   Finally, Buffy was significantly 

upregulated in the APP;dTip60WT flies when compared to flies expressing 

dTip60WT alone (Table 4).  Taken together, these results indicate that Tip60 target gene 

expression profiles can be modified in the presence of APP.  

 

TIP60 and APP functionally interact to mediate apoptotic cell death in the 

Drosophila CNS.     

Our finding that Tip60 and APP genetically interact to specifically mediate 

nervous system development prompted us to ask what specific neuronal processes might 

be regulated by this interaction.  Targeted overexpression of APP in the Drosophila 

nervous system was previously shown to induce neuronal apoptosis in the CNS at 29oC, 
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[187], however whether this phenotype can be induced at normal physiological 

temperature as well as the mechanism underlying such apoptotic induction remain to be 

elucidated.   Moreover, and in agreement with previous reports, here we show that Tip60 

HAT activity controls apoptotic pathways via the transcriptional regulation of apoptosis 

linked genes.    These findings prompted us to ask whether dTip60 and APP genetically 

interact to mediate apoptotic neuronal cell death in the Drosophila CNS.    

To first determine whether misregulation of dTip60 levels causes neuronal 

specific apoptosis, Tip60E431Q and Tip60 WT fly lines were crossed to the 179y-GAL4 

pan-neuronal driver flies at 25°C.  The w1118 fly line crossed to 179y-GAL4 served as a 

control.   Third instar larval brains were dissected from the progeny of these crosses and 

tested for apoptosis using dUTP nick end labeling (TUNEL) staining.   As seen in Figure 

5B and 5C,  moderate levels of apoptotic induction were observed in larval brains of 

transgenic lines expressing either dTip60E431Q  A or dTip60E431Q  B while higher levels of 

apoptotic death were found for flies expressing comparable levels of  Tip60WT (Figure 5 

compare B, C and D; Figure 5K).  These results indicated that appropriate regulation of 

Tip60 levels play a critical role in controlling the balance of neuronal apoptotic cell death 

in the larval brain and that overexpression of Tip60 may be more detrimental than Tip60 

HAT loss in this process.   TUNEL staining of third instar larval brains from APP and 

APP dCT flies crossed to 179y-GAL4 at 25°C were also assessed to determine whether 

APP overexpression induces neuronal apoptosis at physiological temperature and 

whether APP induced cell death is dependent upon its C-terminal domain, respectively.  

As shown in Figure 5E, moderate levels of apoptotic death were observed for APP 

overexpression at 25oC while no apoptosis was detected for flies expressing equivalent 
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levels of APP dCT (Figure 5F).  Furthermore, the extent of apoptosis induced by APP 

overexpression was comparable to that observed in both dTip60E431Q A and dTip60E431Q 

B flies (Figure 5K). These results indicated that APP overexpression induces neuronal 

apoptosis at physiological temperature, and that this phenotype is dependent upon its C-

terminal domain, consistent with previous findings [187].        

Given that Tip60 and APP each separately induced neuronal apoptosis in the 

Drosophila CNS, and that APP induced cell death was dependent upon its Tip60 

interacting C-terminal domain, we predicted that Tip60 and APP might functionally 

interact to induce apoptosis mediated neurodegeneration when misregulated.  To test this 

possibility, we first performed TUNEL assays in larval brains co-expressing either 

Tip60E431Q and APP or Tip60E431Q and APP dCT under the control of the pan-neuronal 

179y-GAL4 driver.   For these studies, we used our lower expressing APP; Tip60E431Q 

line A and APP dCT; Tip60E431Q line A fly lines (Figure 1A), as co-expression of higher 

expressing Tip60E431Q line B and APP induced lethality at the second instar larvae stage 

which was too early to assess by TUNEL stain.   Indeed, as shown in Figure 5G, co-

expression of Tip60E431Q and APP resulted in a marked induction of apoptosis that was 

more robust than either Tip60E431Q or APP alone (Figure 5K), indicative of a synergistic 

interaction between Tip60 and APP in neuronal apoptotic induction.    Importantly, and 

as we predicted, this interaction was dependent upon the C-terminus of APP that interacts 

with Tip60 (Cau and Sudhoff, 2001) as co-expression of Tip60E431Q and APP dCT 

resulted in only a moderate level of neuronal apoptosis induction that was approximately 

equivalent to that observed for Tip60E431Q alone (Figure 5H and 5K).     To determine 

whether additional Tip60 levels would suppress the APP induced neuronal apoptotic 
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phenotype as well as to confirm the specificity of the interaction, we performed TUNEL 

assays in larval brains co-expressing Tip60WT with APP using APP; Tip60WT line C. This 

line was selected because line Tip60WT C expressed the highest levels of wild type 

dTip60 for all of our dTip60WT lines (Figure 2A) and also displayed the highest level of 

rescue for APP induced lethality (Figure 3).  Remarkably, we found that additional levels 

of Tip60 partially rescued APP induced apoptotic cell death as evidenced by a visible 

reduction of the presence of TUNEL-positive cells in these brains when compared to 

APP alone (Figure 5I, compare 5E and 5I; Figure 5K).  Co-expression of dTip60WT and 

APP also appeared to suppress neuronal apoptosis induced by Tip60 overexpression 

alone, as we observed less TUNEL-positive cells in brains co-expressing dTip60WT and 

APP  when compared with brains expressing equivalent levels of Tip60WT alone (Figure 

5, compare D and I ).   Interestingly, rescue of cell death appeared more prominent in the 

proximal central brain of APP; dTip60WT flies, as we consistently observed virtually no 

apoptotic cell death in this area (Figure 5I), where vital structures like the Drosophila 

learning and memory center, mushroom body are located. Importantly, and as we 

predicted, partial rescue of APP induced neuronal apoptosis by Tip60 was dependent 

upon the Tip60 interacting C-terminus  of APP, as brains co-expressing both Tip60WT 

and APP dCT showed no rescue as shown by the equivalent number of TUNEL positive 

cells  in these brains compared to those expressing Tip60WT alone (Figure 5J and 5K).  

Taken together, our results demonstrate that Tip60 and APP functionally interact to 

regulate neuronal apoptotic cell death in the Drosophila CNS and that this interaction is 

dependent upon the C-terminus of APP.    
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DISCUSSION 

In this study, we have generated a unique transgenic Drosophila model system 

suitable for investigating a functional link between Tip60 HAT activity and APP in 

neuronal development, in vivo.   We demonstrate that Tip60 and APP functionally 

interact in both general and nervous system development in Drosophila, in vivo and that 

this interaction specifically mediates apoptotic  neuronal cell death in the CNS, a process 

that when misregulated is linked to AD pathology [193].  Remarkably, Tip60 appears to 

display a neuroprotective function in that Tip60 overexpression can rescue both loss of 

viability and neuronal apoptosis induction in a Drosophila AD model.    While a number 

of in vitro studies supporting the transcription regulatory role of the Tip60/AICD 

complex in gene control have been reported, our work is the first to demonstrate a 

functional interaction between Tip60 HAT activity and APP in nervous system 

development in vivo.  

Here we show that misexpression of Tip60 induces neuronal apoptotic cell death 

in the Drosophila CNS, and that this process is mediated via a functional interaction 

between Tip60 and APP C-terminal domain.  Since disruption of Tip60 HAT activity 

induced neuronal cell death, we examined whether there was specific misregulation of 

apoptosis linked genes due to loss of Tip60 HAT activity.   Pathway analysis of our 

previously reported microarray data set of genome wide changes in gene expression 

induced in the fly in response to Tip60 HAT loss [69] revealed genes functioning in 17 

different apoptotic pathways to be enriched,  many of which were associated with the p53 

apoptotic pathway.   Our findings are consistent with previous studies demonstrating a 

role for Tip60 as a p53 co-activator in p53 mediated apoptotic pathways [194].   Recent 
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studies have found Tip60 to be required for activation of proapoptotic genes through 

acetylation of p53 DNA binding domain [178,194].   TRAF4, one such p53 regulated 

pro-apoptotic gene [195] that responds to cellular stress was one of the genes that we 

found to be significantly upregulated in response to Tip60 HAT loss.   The Myc family of 

transcription factors presents another instance of proteins involved in inducing apoptosis 

that are directly acetylated and stabilized by Tip60 [191] and accordingly, Drosophila 

dMyc was found to be significantly upregulated in response to Tip60 HAT loss.   Thus it 

is possible that the pro-apoptotic genes enriched in our dataset may represent both direct 

targets regulated by Tip60 epigenetic function as well as indirect targets of apoptosis 

regulators such as p53 that are controlled via their acetylation by Tip60.   Misregulation 

of these pro-apoptotic genes in response to disruption of Tip60 HAT activity is also 

consistent with our observation that nervous system specific expression of dTip60E431Q 

induces apoptotic cell death in the CNS of dTi60E431Q larvae.  This finding is in contrast 

to previous studies wherein cells expressing mutated Tip60 lacking HAT activity were 

reported to be resistant to apoptosis.  However, these studies examined a role for Tip60 in 

DNA damage repair following cellular stress using the H4 neuroglioma cells in vitro.   

WhileTip60 HAT activity is vital for DNA repair competency as well as for the ability to 

signal the presence of damaged DNA to the apoptotic machinery [196], how Tip60 HAT 

activity regulates differential gene expression profiles to prevent unwanted neuronal cell 

death during organismal development remains unclear.   A number of mammalian studies 

have indicated that Tip60 can function not only as a coactivator, but also as a corepressor 

[197,198] and as such, Tip60 has been shown to repress a vast array of developmental 

genes during ESC differentiation to maintain ESC identity [199].   Consistent with these 
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findings, the majority of pro-apoptotic genes we identified that were misregulated in 

response to disruption of Tip60 HAT activity were upregulated, highlighting the crucial 

role Tip60 HAT activity plays in repression of apoptotic genes during neurogenesis that 

when misregulated,  likely contribute to dTip60E431Q induced apoptosis.    

 Interestingly, we find that overexpression of wild type Tip60 in the nervous 

system also induced apoptosis in the CNS.  Furthermore, overexpressing Tip60 was 

found to induce expression of pro-apoptotic genes such as ALiX and CalpA while 

downregulating others like Wingless, Frizzled and dMyc that have multiple essential 

functions during Drosophila development. These bidirectional gene expression changes 

suggest that increasing Tip60 mediated acetylation can also lead to complex changes in 

the chromatin landscape resulting in inappropriate activation and/or repression of 

apoptosis competent genes as well as those crucial for development.  Accumulating 

evidence shows that hyperacetylation can be fatal to neurons.   Under normal conditions, 

increasing hyperacetylation by treating neurons with a general HDAC inhibitor like 

trichostatin A has been found to induce neuronal apoptosis [200,201]. Similarly, 

increasing acetylation levels by overexpressing the HAT CBP in resting neurons has been 

reported to enhance chromatin condensation and neuronal death [77].   In order to 

maintain cellular homeostasis, HAT/HDAC equilibrium and therefore histone acetylation 

is strictly regulated as it is essential to maintain the functional status of neurons [152].  

Based on these findings, we can speculate that overexpression of Tip60 disrupts the 

acetylation balance, thus skewing the neuronal survival pathway towards apoptosis and 

ultimately cell death.   In support of this concept, altered levels of global histone 
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acetylation have been observed in many in vivo models of neurodegenerative diseases 

[166,202]. 

Another striking feature of our apoptotic microarray gene enrichment search was 

our identification of apoptosis linked pathways associated with neurodegenerative 

diseases like Parkinson’s, Huntington’s and Alzheimer’s disease.  These diseases are also 

characterized by neuronal cell death that increases over time and underlies an array of 

symptoms that depend on the function of the lost neuronal population [152]. It has been 

proposed that in AD, in addition to the deposition of toxic β-amyloid plaques in the brain, 

neurodegeneration may also be caused via γ-secretase cleavage of APP that generates 

AICD carboxy terminal fragments that are toxic to neurons [180].   Accordingly, ectopic 

expression of AICD in rat pheocytoma cells and cortical neurons [203] and H4 

neuroglioma cells [180] has been shown to induce apoptosis upon nuclear translocation. 

Consistent with these reports, we too observe induction of apoptosis when APP is 

expressed in the nervous system of Drosophila in vivo at physiological temperatures and 

that this phenotype is dependent upon the C-terminal domain of APP.   Interestingly, APP 

C-terminal domain induced apoptosis has previously been reported  to be mediated via 

Tip60 HAT activity in vitro, such that induction of  apoptosis in neuroglioma cells 

transfected with APP C-terminal domain  is enhanced by co-transfection of wild type 

Tip60 and decreased by a dominant negative version of Tip60 lacking HAT activity 

[180].   In contrast, here we demonstrate that nervous system specific co-expression of 

APP and HAT defective mutant Tip60 increases apoptosis while overexpression of wild-

type Tip60 with APP counteracts this effect and that these phenotypes are dependent 

upon the Tip60 interacting C-terminus of APP.  Such differences may be accounted for 
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by the fact that we are carrying out our studies in a developmental model system, in vivo. 

However, the effects we show on neuronal apoptosis are also consistent with the effects 

we observed in the viability assay wherein lethality caused by neuronal overexpression of 

APP was enhanced by reduction of Tip60 HAT activity and suppressed by additional 

Tip60 levels. Importantly, this finding, in conjunction with our previously published 

reports supporting a causative role for Tip60 in the control of synaptic plasticity [5] and 

the transcriptional regulation of genes enriched for neuronal function [69], support the 

concept that misregulation of Tip60 HAT activity can lead to aberrant gene expression 

within the nervous system that contributes to the AD associated neurodegenerative 

process. 

 Tip60 has been implicated in AD via its transcriptional complex formation with 

AICD [144,149].   Thus, we carried out experiments to determine whether the expression 

of specific genes that are misregulated by dTip60E431Q or dTip60WT are modified by the 

presence of APP.  Intriguingly, we found a number of these genes to be differentially 

regulated under APP expressing conditions.  Two such genes, Wingless and Frizzled, 

which are upregulated in dTip60E431Q flies and repressed in dTip60WT flies are 

particularly interesting.  Wingless, the Drosophila segment polarity gene and its 

membrane receptor Frizzled are known to be required for specification and formation of 

various neurons in the CNS [204] and belong to the Wnt signaling pathway.   In addition 

to Wingless and Frizzled being important for the disease process, they are also crucial for 

normal growth and development.  Intriguingly, we find that co-expressing APP with 

either the Tip60 HAT mutant or in the Tip60 overexpressing background has a repressive 

effect on these essential genes. Recent evidence supports a neuroprotective role for the 
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Wnt signaling pathway [205,206]  and a sustained loss of Wnt signaling function is 

thought to be involved in aβ induced neurodegeneration [207].   Drosophila Myc is a 

regulator of rRNA synthesis and is necessary for ribosome biogenesis during larval 

development [208] and is another instance of a vital gene that exhibited reduced 

expression under APP expressing conditions.   Thus misregulation of such 

developmentally required genes in conjunction with the other pro-apoptotic genes in our 

data set likely contributed to the observed enhanced apoptotic cell death in the CNS of 

APP;dTip60E431Q larvae.   In contrast, we find the Drosophila homolog of Bcl-2 protein, 

Buffy to be repressed in the APP; dTip60E431Q flies that displayed an increase in 

apoptosis.  Consistent with our findings, recent studies have reported that Buffy has anti-

apoptotic functions in vivo [209] and intriguingly, we find its expression to be 

significantly induced in the APP; dTip60WT flies that also exhibited a marked reduction 

in apoptosis induced cell death when compared to flies expressing dTip60WT alone.  

These findings suggest that induction of such pro-survival factors could mediate the 

dTip60 induced rescue of APP mediated defects that we observe in these flies. We 

observe differential regulation of the microarray targets between flies that express 

dTip60E431Q alone and in conjunction with APP, in that the majority of genes we tested 

are repressed in the APP;dTip60E431Q double mutants and activated in dTip60E431Q flies.  

These results indicate that the presence of APP can modulate the transcriptional 

regulatory potential of Tip60.   The APP intracellular domain was recently shown to 

lower the sensitivity of neuronal cells to toxic stimuli and transcriptionally activate genes 

involved in signaling pathways that are not active under basal conditions [150]. APP 

could mediate such effects either by sequestering Tip60 away from its typical target 
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promoters or by displacing another factor in the complex that is also required for 

regulating transcription.   Additionally, Tip60 has been shown to function as a negative 

regulator of gene expression.  In fact, overexpression of Tip60 but not its HAT deficient 

mutant has been reported to function as co-repressor for gene repression mediated by 

transcription factors like STAT3 and FOX3, an effect that is mediated through 

association with specific histone deacetylases [210,211]. This could partly account for the 

repressive effects that we observe due to overexpression of wild type Tip60 either alone 

or in conjunction with APP.   Tip60 can also function as a co-activator of gene 

transcription via displacement of co-repressors on the promoters of specific genes.  For 

instance, in a study by Baek et al [147], it was reported that following IL-1 stimulation, 

recruitment of a wild type Tip60 containing co-activator complex leads to activation of 

p50 target genes like KAI1/CD82 through displacement  of a specific NCoR co-repressor 

complex.   Intriguingly, the Tip60-FE65-AICD containing complex was shown to 

similarly displace the NCoR complex and derepress such targets, suggesting a potential 

transcription activation strategy that underlies the gene expression changes we observe 

under APP overexpressing conditions.   Since loss of Tip60 HAT activity enhances APP 

induced lethal effects in the nervous system and overexpression of wild type Tip60 

diminishes these defects, we hypothesize that the Tip60-AICD containing complex may 

mediate these rescue effects either via regulation of a subset of gene targets different 

from those targeted by either APP or Tip60 alone or by differentially regulating the same 

gene pool such as that seen in the case of the anti-apoptotic gene Buffy.   Thus, although 

the repertoire of genes that we tested include both mediators as well as inhibitors of 

apoptosis, taken together our data support a model by which Tip60 HAT activity plays a 
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neuroprotective role in disease progression by complexing with the AICD region of APP 

to epigenetically regulate transcription of genes essential for tipping the cell fate control 

balance from apoptotic cell death towards cell survival under neurodegenerative 

conditions such as excess APP.    We therefore propose a neuroprotective role for Tip60 

in AD linked induction of apoptotic cell death.   Future investigation into the mechanism 

by which Tip60 regulates these processes may provide insight into the utility of specific 

HAT activators as therapeutic strategies for neurodegenerative disorders. 
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CHAPTER 3: EPIGENETIC REGULATION OF AXONAL GROWTH OF 
DROSOPHILA PACEMAKER CELLS BY HISTONE ACETYLTRANSFERASE 

TIP60 CONTROLS SLEEP 
 

ABSTRACT 

Tip60 is a histone acetyltransferase (HAT) enzyme that epigenetically regulates 

genes enriched for neuronal functions through interaction with the amyloid precursor 

protein (APP) intracellular domain.  However, whether Tip60 mediated epigenetic 

dysregulation affects specific neuronal processes in vivo and contributes to 

neurodegeneration remains unclear.   Here, we show that Tip60 HAT activity mediates 

axonal growth of the Drosophila pacemaker cells, termed small ventrolateral neurons 

(sLNvs), and their production of the neuropeptide pigment dispersing factor (PDF) that 

functions to stabilize Drosophila sleep-wake cycles. Using genetic approaches, we show 

that loss of Tip60 HAT activity in the presence of the Alzheimer’s disease (AD) 

associated amyloid precursor protein (APP) affects PDF expression and causes retraction 

of the sLNv synaptic arbor required for presynaptic release of PDF.   Functional 

consequence of these effects is evidenced by disruption of sleep-wake cycle in these flies.  

Notably, overexpression of Tip60 in conjunction with APP rescues these sleep-wake 

disturbances by inducing overelaboration of the sLNv synaptic terminals and increasing 

PDF levels, supporting a neuroprotective role for dTip60 on sLNv growth and function 

under APP induced neurodegenerative conditions.   Our findings reveal a novel 

mechanism for Tip60 mediated sleep-wake regulation via control of axonal growth and 

PDF levels within the sLNv encompassing neural network and provide insight into 
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epigenetic based regulation of sleep disturbances observed in neurodegenerative diseases 

like Alzheimer’s disease. 

 

INTRODUCTION 

Chromatin remodeling through histone-tail acetylation is critical for epigenetic 

regulation of transcription and has been recently identified as an essential mechanism for 

normal cognitive function [142].  Altered levels of global histone acetylation have been 

observed in several in vivo models of neurodegenerative diseases and are thought to be 

involved in the pathogenesis of various memory related disorders [103] .   Chromatin 

acetylation status can become impaired during the lifetime of neurons through loss of 

function of specific histone acetyltransferases (HATs) with negative consequences on 

neuronal function [152].  In this regard, the HAT Tip60 is a multifunctional enzyme 

involved in a variety of chromatin-mediated processes that include transcriptional 

regulation, apoptosis and cell-cycle control, with recently reported roles in nervous 

system function [177,212].   Work from our laboratory demonstrated that Tip60 HAT 

activity is required for nervous system development via the transcriptional control of 

genes enriched for neuronal function [69].  We have also shown that Tip60 HAT activity 

controls synaptic plasticity and growth [173] as well as apoptosis in the developing 

Drosophila central nervous system (CNS) [78].   Consistent with our findings, studies 

have implicated Tip60 in pathogenesis associated with different neurodegenerative 

diseases.   The interaction of Tip60 with ataxin 1 protein has been reported to contribute 

to cerebellar degeneration associated with Spinocerebellar ataxia (SCA1), a 

neurodegenerative disease caused by polyglutamine tract expansion [70].  Tip60 is also 
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implicated in Alzheimer’s disease (AD) via its formation of a transcriptionally active 

complex with the AD associated amyloid precursor protein (APP) intracellular domain 

(AICD) [144,149].  This complex increases histone acetylation [213] and co-activates 

gene promoters linked to apoptosis and neurotoxicity associated with AD [180].  

Additionally, misregulation of certain putative target genes of the Tip60/AICD complex 

has been linked to AD related pathology [147,214].  These findings support the concept 

that inappropriate Tip60/AICD complex formation and/or recruitment early in 

development may contribute or lead to AD pathology via epigenetic misregulation of 

target genes that have critical neuronal functions.   In support of this concept, we recently 

reported that Tip60 HAT activity exhibits neuroprotective functions in a Drosophila 

model for AD by repressing AD linked pro-apoptotic genes while loss of Tip60 HAT 

activity exacerbates AD linked neurodegeneration [78].   However, whether 

misregulation of Tip60 HAT activity directly disrupts selective neuronal processes that 

are also affected by APP in vivo and the nature of such processes remains to be 

elucidated.    

  In Drosophila, the small and large ventrolateral neurons (henceforth referred to as 

sLNv and lLNv, respectively) are part of the well characterized fly circadian circuitry 

[215]. Recent studied have implicated the l-and s-LNvs as part of the “core” sleep 

circuitry in the fly, an effect that is predominantly coordinated via the neuropeptide 

pigment dispersing factor (PDF) [216,217] that serves as the clock output, mediating 

coordination of downstream neurons [218,219]. PDF is thought to be the fly equivalent of 

the mammalian neurotransmitter orexin/hypocretin because of its role in promoting 

wakefulness and thus stabilizing sleep-wake cycles in the fly [220]. Within this circuit, 
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the sLNvs are a key subset of clock neurons that exhibit a simple and stereotypical axonal 

pattern that allows high resolution studies of axonal phenotypes using specific expression 

of an axonally transported reporter gene controlled by the Pdf-Gal4 driver or by 

immunostaining for the Pdf neuropeptide that is distributed throughout the sLNv axons 

[221].  These features make the sLNvs an excellent and highly characterized model 

neural circuit to study as they are amenable to cell type specific manipulation of gene 

activity to gain molecular insight into factors and mechanisms involved in CNS axonal 

regeneration as well as those that mediate behavioral outputs like sleep-wake cycle.   

Importantly, the Drosophila ventrolateral neurons (LNvs) have been previously used as a 

well characterized axonal growth model system to demonstrate that the AD linked 

amyloid precursor protein (APP) functions in mediating the axonal arborization 

outgrowth pattern of the sLNv [221].   Based on these results, and our previous studies 

reporting that Tip60 HAT activity itself is required for neural function [69,173] and 

mediates APP induced lethality and CNS neurodegeneration in an AD fly model [78], we 

hypothesized that APP and Tip60 are both required to mediate selective neuronal 

processes such as sLNv morphology and function that when misregulated, are linked to 

AD pathology.    

In the present study, we test this hypothesis by utilizing the sLNvs as a model 

system to examine whether Tip60 mediated epigenetic dysregulation under 

neurodegenerative conditions such as that induced by APP overexpression leads to 

axonal outgrowth defects and if there is a corresponding effect on sLNv function in sleep 

regulation, a process that is also affected in neurodegenerative diseases like AD.  
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In this report, we show that Tip60 is endogenously expressed in both the sLNv and 

lLNvs.   Specific loss of Tip60 or its HAT activity causes reduction of PDF expression 

selectively in the sLNvs and not the lLNv and shortening of the sLNv distal synaptic 

arbors which are essential for the pre-synaptic release of PDF from these cells.  The 

functional consequence of these effects is evidenced by the disruption of the normal 

sleep-wake cycle in these flies, possibly through disruption of PDF mediated signaling to 

downstream neurons.  By using transgenic fly lines that co-express full length APP or 

APP lacking the Tip60 interacting C-terminus with a dominant negative HAT defective 

version of Tip60, we demonstrate that the APP C-terminus enhances the susceptibility of 

the sLNvs and exacerbates the deleterious effects that the loss of Tip60 HAT activity has 

on axon outgrowth and PDF expression.  Importantly, our studies identify the 

neuropeptide PDF as a novel target of Tip60 and APP, that when misregulated results in 

sleep disturbances reminiscent to those observed in AD.   Remarkably, overexpression of 

wild type Tip60 with APP rescues these sleep defects by increasing PDF expression and 

inducing overelaboration of the sLNv synaptic arbor area.  Taken together, our findings 

support a neuroprotective role for Tip60 on sLNv growth and function under APP 

induced neurodegenerative conditions.  Our data also reveal a novel mechanism for PDF 

control via Tip60 and APP that provide insight into understanding aspects of sleep 

dependent mechanisms that contribute to early pathophysiology of AD. 
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MATERIALS AND METHODS 

 

Drosophila Stocks 

The generation and characterization of fly lines carrying the GAL4 responsive 

dTip60RNAi or the dTip60RNAi Control construct is described in [222]. Fly lines carrying the 

dominant negative HAT mutant dTip60E431Q (UAS- dTip60E431Q, line B) or wild type 

dTip60WT (UAS- dTip60WT, line C) or dTip60Rescue (UAS-dTip60Rescue, line B) construct 

are described in [69]. Fly lines expressing dTip60E431Q or dTip60WT with UAS-APP 

(UAS-APP; dTip60E431Q, UAS-APP; dTip60WT , line C in both cases)  or UAS-APP dCT 

(UAS-APP dCT; dTip60E431Q , UAS-APP dCT; dTip60WT, line C in both cases)  are 

described in [78]. Transgenic UAS lines carrying human APP 695 isoform (UAS-APP) 

and APP 695 lacking the C-terminus (UAS-APP dCT) were obtained from Drosophila 

Stock Center (Bloomington, IN, USA). Stocks carrying both Pdf-Gal4 and UAS-mCD8-

GFP were obtained from B Hassan (University of Leuven, Belgium). R6-Gal4, Mai 179-

Gal4 and UAS-Pdfrnai lines were obtained from O Shafer (University of Michigan, US). 

The w1118 line served as the genetic background control. Experimental crosses were 

carried out at the normal physiological temperature of 25oC as higher temperature 

changes have been reported to induce non-specific physiological and developmental 

alterations [223].  

 

Immunohistochemistry 

Third instar larvae or adult brains were dissected in PBS, fixed in 4% 

paraformaldehyde in PBS, washed thrice in PBS containing 0.1%Triton X-100, blocked 
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for 1 hr at RT in PBT containing 5% normal goat serum, and incubated with primary 

anti-GFP (Millipore, CA), anti-Tip60 (Open Biosystems, Rockford, IL) and anti-PDF 

(Developmental studies hybridoma bank, University of Iowa, IA) antibodies in blocking 

solution overnight at 4 C. Samples were washed thrice in PBT at RT, and secondary 

antibodies (Jackson Immunoresearch, PA ) were applied in blocking solution for 2 hr at 

RT. After washing thrice in PBS, samples were mounted in Vectashield (Vector 

Laboratories, CA).  

 

Imaging and quantifications 

Larval and adult brain preparations were imaged using GFP, Tip60 or PDF 

antibodies. Anti-GFP immunostaining was visualized using Alexa-Fluor 488. Alexa-

Fluor 568 and Alexa-Fluor 647 was used for anti-PDF and anti-Tip60, respectively. 

Imaging experiments were performed at Drexel University’s Cell Imaging Center. 

Confocal microscopy was performed using Olympus Microscope with fluoview 

acquisition software (Olympus, Center Valley, PA). Images were displayed as projections 

of 1uM serial Z- sections.  Quantitative analysis of sLNv axon length was performed 

using NIH ImageJ software by measuring axon length from the base of the cell body to 

the distal tip of the axon in the different genotypes. Quantification of the two dimensional 

area of the sLNv terminal axonal arbor was done as described in [221] using NIH ImageJ 

software. Briefly, the sLNv axon stem on either half of the brain hemisphere was marked 

by a straight vertical line followed by a horizontal line between the points that mark the 

sLNv axon. The outline of the axonal processes dorsal to the horizontal line was traced, 

and the area inside was measured. The distance between the vertical lines was used as a 
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measure for brain size (Figure S2). Area measurements were normalized for brain size by 

scaling the distance between the dorsal projections to the median of the distance as a 

correction factor. The resulting corrected area is represented in the graphs. Student’s t-

tests were used to calculate the significance in difference between the mean axon lengths 

and arbor areas, as indicated by the P-values in the graphs.  

Confocal imaging of whole-CNS PDF expression was done by determining PMT voltage, 

offset, and laser power settings for the control line and maintaining the same for the 

experimental genotype, making sure that there was no saturation effect in either the s- or 

l-LNvs. Gain was always maintained at 1.0x. The mean pixel intensity of cytoplasmic 

PDF was quantified using Fluoview software (Olympus, Center Valley, PA), with the 

cytoplasmic region of interest determined by GFP expression. Sequential scans were used 

to avoid bleed-through. Mean background pixel intensity was also measured in a region 

surrounding each neuron and this value was subtracted from each cytoplasmic value. To 

compare somatic PDF expression in the different genotypes, the average, background 

subtracted mean pixel intensity of PDF immuno-reactivity (IR) was calculated from 10-

15 brains for each genotype, with four l- and s-LNvs measured in each brain.  

 

Behavioral recording and analysis 

Activity assay:  

Locomotor activity of individual flies was recorded at 25oC using the Drosophila 

Activity Monitoring (DAM) system (Trikinetics, Waltham, MA) as per manufacturer’s 

instructions. Briefly, individual F1 female progeny in each case were collected upon 

eclosion and allowed to acclimate to 12 : 12 h light/dark cycle at 25oC for 4 days after 



71 
 

eclosion. The significant difference observed between the control and each of the 

different experimental groups was determined using a Student’s t-tests for each time 

point (n = 24).  

 

Digital video monitoring:  

Individual F1 female progeny (n=28) in each case were collected upon eclosion 

and allowed to acclimate to 12 : 12 h light/dark cycle at 25oC for 4 days after eclosion. 

Video recording of sleep in these flies was done on day 5 (after eclosion). On day 4, 

individual flies were anesthetized and transferred to Corning Pyrex Glass tubes (65 mm 

length, 5 mm diameter) containing Drosophila media at one end and capped with a cotton 

plug at the other end. Movements were monitored at 25oC and recorded every 5 secs by 

use of digital video recording.  Total sleep, sleep bout number and mean sleep bout 

duration were calculated from video data using custom software as previously described 

[224].  
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RESULTS 

Tip60 immunolocalization in the Drosophila ventrolateral neurons (LNvs)  

Immunostaining using anti-Tip60 antisera was used to determine whether Tip60 is 

endogenously expressed in the Drosophila Tip60 ventrolateral neurons (LNvs) and to 

examine the pattern of dTip60 expression in these cells in the third instar larval and adult 

brains.   In the adult brains, the large and small subset of LNvs revealed different patterns 

of dTip60 localization. While strong dTip60 immunoreactivity was observed in the lLNv, 

relatively weaker expression was observed in the sLNvs (Figure 1A’).   Tip60 expression 

was not detected in the larval sLNvs, the only LNv subgroup found in larvae.  

Experiments examining Tip60 levels at Zeitgeber time (ZT) 2 and 14, corresponding to 

two and 14 hours after lights on respectively, suggest that the protein levels do not 

undergo circadian oscillation (data not shown).  

 

HAT defective Tip60 negatively affects axonal growth of sLNv in the Drosophila 

brain 

To determine whether Tip60 has an effect on sLNv axon growth and morphology, 

we specifically knocked down Tip60 in these cells by utilizing the GAL4/UAS targeted 

gene expression system. Flies carrying the LNv specific Pdf-Gal4 driver were crossed to 

our previously characterized UAS-dTip60RNAi lines [222] to induce the RNAi response.  

LNv specific knock-down of Tip60 was confirmed by lack of Tip60 expression in the 

lLNv and sLNv as assessed by Tip60 immunostaining (Figure 1D and 1E).  The effects 

on sLNv axonal outgrowth were then examined by confocal microscopy using specific 
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expression of the UAS-mCD8-GFP membrane marker transgene. Structurally, the sLNv 

axons display a well characterized and stereotypical migration pattern.    During larval 

and pupal development, the axon stem that projects from the sLNv cell body grows 

dorsally, bends towards the center of the brain and sprouts into branches forming the 

terminal synaptic arbor in the adult animals (Figure 2A and 2A’).   Induction of the Tip60 

RNAi response in the LNv did not have any effect on the early development of the axonal 

pattern of these cells as evident from the intact axonal pattern seen in the third instar larva 

(Figure 2B).   In contrast, in the adult brains, expression of dTip60RNAi results in 

shortening of the sLNv terminal synaptic arbor, evident in the complete lack of the 

medially projecting axonal branches (Figure 2B’).  As a control for the Tip60 RNAi 

experiments, we used a corresponding UAS-dTip60RNAi control construct [222].  As 

expected, LNv specific expression of dTip60RNAi control  did not affect Tip60 levels in the 

lLNv and sLNvs (Figure 1D and 1E) and had no effect on sLNv axon morphology in the 

third instar larval or adult brains (Figure 2C and 2C’), confirming the specificity of the 

dTip60RNAi induction. 

We next wanted to examine if the observed effects on sLNv axon growth due to 

loss of Tip60 were specifically mediated by Tip60 HAT activity. To determine whether 

Tip60 HAT activity affects sLNv axonal growth, we misregulated Drosophila Tip60 

(dTip60) in these cells by utilizing well characterized transgenic flies [69] that carry Gal4 

responsive transgenes for either a dominant negative HAT defective version of dTip60 

(dTip60E431Q), or wild-type dTip60 (dTip60WT).  Quantification of Tip60 levels in flies 

overexpressing either dTip60WT or dTip60E431Q in the LNvs revealed a significant 

increase in Tip60 compared to the control flies (Pdf-Gal4/ UAS-mCD8-GFP /+) (Figure 



74 
 

1A’, 1B’, 1C’, 1D and 1E).   Tip60 levels in the lLNv were significantly higher than the 

sLNv (Figure 1D and 1E), likely due to the higher levels of endogenous dTip60 

expressed in the lLNvs compared to the sLNvs.   However and importantly, comparison 

of Tip60 levels in the lLNv and sLNv between dTip60WT and dTip60E431Q flies revealed 

equivalent levels of exogenous dTip60 in the respective neurons (Figure 1D and 1E).   

Similar to the effects we observed in the dTip60RNAi  flies, targeted expression of 

dTip60 E431Q in the LNv leads to shortening  of the outward projecting sLNv axon 

terminals in the adult brains without a marked effect on the larval sLNv axon morphology 

(Figure 2D, 2D’ and 2G).   In contrast, overexpression of wild type dTip60 (dTip60WT) 

showed no significant effect on either the larval or adult sLNv axonal architecture 

compared to the control flies (Figure 2E and 2E’).   To confirm these results, we 

measured the sLNv axon length and also quantified the synaptic arbor area as described 

in [221] (Figure S2, Figure 2G and 2H).   Since the effects we observed in the 

dTip60E431Q flies indicate that the HAT activity of Tip60 is crucial for establishing the 

normal sLNv axon morphology, we wanted to examine if additional levels of HAT 

competent Tip60 could rescue dTip60E431Q mediated effects on sLNv axonal growth to 

confirm that such defects were specifically caused by loss of dTip60 function. For this 

purpose, we utilized our previously characterized UAS-dTip60Rescue line [69] that allows 

overexpression of equivalent levels of wild type dTip60 in the dTip60E431Q background.   

GFP analysis revealed normal sLNv axon morphology in the dTip60Rescue flies similar to 

the control flies (Pdf-Gal4/ UAS-mCD8-GFP / +) (Figure 2F and 2F’), indicating that the 

axonal defects induced by the mutant dTip60E431Q can be counteracted by the presence of 

additional levels of HAT competent Tip60. Taken together, these results further 
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demonstrate that dTip60 HAT activity is crucial for establishing appropriate sLNv axon 

morphology.  

 

Co-expression of dTip60 modulates APP mediated effect on sLNv axonal growth 

that is dependent on the APP C-terminus 

 

Expression of the neuronal isoform of human APP (APP695) in the sLNv at 28oC 

using the LNv specific Pdf-Gal4 driver has been shown to induce increased axonal 

extension and extensive arborization of the sLNv axon terminals [221].   Our observation 

that the dTip60 HAT mutant affects sLNv axon growth prompted us to examine how 

depletion of Tip60 HAT activity affects sLNv morphology under APP overexpressing 

conditions.  Although expression of human APP (APP) in the sLNv at 25oC (Figure 3B, 

3B’, 3H and 3I) did not have the drastic effect that has been reported at 28oC, co-

expression of APP along with the Tip60 mutant construct (APP; dTip60 E431Q) at 25oC 

was found to exacerbate the negative effect that dTip60 E431Q alone had on the sLNv 

axonal growth, resulting in drastic shortening of the axons (Figure 3D, 3D’and 3H).  

Since the APP C-terminus is required for interaction with Tip60, we also examined the 

effects of expressing a truncated version of APP lacking the C-terminus alone (APP dCT) 

as well as with the HAT defective Tip60 mutant (APP dCT; dTip60 E431Q).  Expression of 

APP dCT alone did not affect the sLNv axon morphology and was not different from that 

seen in the control (Pdf-Gal4/ UAS-mCD8-GFP/ +) (Figure 3C, 3C’, 3H and 3I). In 

contrast, expression of APP dCT; dTip60 E431Q in the sLNv exhibited a less severe effect 

than that  induced by APP; dTip60 E431Q in that the axon length was almost identical to 
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that seen when dTip60 E431Q was expressed alone (compare Figure 2D’ and Figure 3E’). 

Since co-expression of APP with dTip60E431Q resulted in a phenotypic enhancement of 

the dTip60E431Q induced shortening of the sLNv axon, we examined the effect of 

overexpressing wild type dTip60 along with APP or APP lacking the C-terminus to gain 

insight into the nature of the functional interaction under these conditions.   Targeted 

overexpression of dTip60 along with APP (APP; dTip60WT) in the LNv resulted in a 

large increase in the area of the sLNv axonal arbor in the adult flies although there was 

no significant effect on the early development of sLNv axonal pattern (Figure 3F, 3F’, 3H 

and 3I). Most of the sLNv axons grew along the right path, but further extended and 

arborized over a larger area than those seen in control flies or in flies that overexpressed 

dTip60 alone (compare Figure 2E’ and Figure 3F’ ).   In contrast, overexpression of 

dTip60WT along with APP lacking C-terminus (APP dCT; dTip60WT) did not have any 

significant effect and resulted in the normal axonal pattern seen in control flies (Figure 

3G, 3G’, 3H and 3I).  Thus, co-expression of APP with dTip60 enhances the normal 

sLNv axonal arborization phenotype observed for overexpression of dTip60 alone, 

further supporting a synergistic interaction between APP and dTip60 that is dependent on 

the APP C-terminus.  

 

LNv specific expression of dTip60 or APP leads to selective decrease in pigment 

dispersing factor (PDF) immunoreactivity in small LNv, but not in the large LNv 

  

The LNv specific neuropeptide PDF is required for circadian behavioral 

rhythmicity and is expressed in both the large LNv and small LNv subset of cells. 
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Typically, there are 4-5 PDF positive lLNvs and four sLNvs in wild type flies. PDF is 

also periodically released from the lLNv varicosities and the sLNv terminal synaptic 

arbor in the dorsal brain [225,226] .  Our observation that loss of dTip60 or expression of 

the HAT defective dTip60 mutant abolished the formation of these sLNv axon terminals 

prompted us to examine whether PDF expression and/or transport along the axons was 

also affected.  Anti-PDF immunocytochemical analysis was performed on whole brains 

dissected from 4-7 day old flies resulting from a cross between Pdf-Gal4 driver and either 

w1118 (Pdf-Gal4/ UAS-mCD8-GFP/ +), dTip60RNAi (Pdf-Gal4/ UAS-mCD8-GFP/ UAS-

dTip60RNAi) or dTip60 E431Q (Pdf-Gal4/ UAS-mCD8-GFP/ UAS-dTip60 E431Q) flies that 

were maintained under standard light/dark (LD) conditions.  GFP expression was used as 

a marker to locate the l- and s- LNvs.  Examination of the l- and s-LNv soma for PDF 

imunoreactivity (IR) in flies expressing either dTip60RNAi or dTip60 E431Q revealed a 

partial loss of PDF IR in the sLNv of adult flies (Figure 4B’ and 4D’) although PDF 

could still be detected in the soma as well as along the axons indicating that dTip60 

specifically affects PDF expression although its transport along the axons is unaffected. 

Quantification of PDF intensity also revealed a significant reduction of PDF IR in the 

sLNv in the dTip60RNAi and dTip60E431Q flies (Figure 4I). However, PDF expression was 

unaffected in the larval sLNvs in both cases. PDF expression in the lLNv soma and 

varicosities was also unaffected (Figure 4J). GFP expression in both cell types was 

unaffected indicating that the observed effects are specifically on PDF expression (Figure 

4B and 4D).    The persistence of similar effects due to loss of dTip60 protein and 

expression of the HAT defective dTip60E431Q indicate that the observed effects on PDF 

are primarily mediated by Tip60’s HAT activity. On the other hand, while targeted 
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overexpression of dTip60WT in the LNvs did not affect PDF IR in the lLNv (Figure 

4E’and 4J), it resulted in significant increase (P < 0.05) in PDF IR in the sLNv, compared 

to the control flies (Pdf-Gal4/ UAS-mCD8-GFP / +) (Figure 4E’ and 4I). Since 

dTip60E431Q leads to a decrease in sLNv PDF and overexpression of wild type Tip60 had 

the converse effect and increased PDF levels in the sLNv, we hypothesized that co-

expression of the HAT competent Tip60 with dTip60E431Q in the dTip60Rescuse flies would 

counteract the effects of the latter. Consistent with our hypothesis, PDF levels in the 

sLNv but not the lLNv of dTip60Rescue flies was significantly greater (P < 0.05) than that 

observed in the dTip60E431Q flies as well as the control flies (Figure 4F’, 4I and 4J). 

However, the sLNv PDF level in this case was much less than that observed in flies 

overexpressing wild type dTip60 alone (P < 0.001) (Figure 4I). This indicates that when 

co-expressed in equivalent amounts, dTip60E431Q and dTip60WT counteract their 

respective effect on PDF expression. 

Finally, we examined whether LNv directed expression of APP had any effect on 

PDF expression.  Similar to the dTip60RNAi and dTip60 E431Q flies, APP expression did 

not have any observable effect on PDF IR in the lLNv (Figure 4J) but specifically 

affected PDF IR in the sLNv, resulting in partial reduction of PDF IR in sLNv soma 

(Figure 4G’ and 4I).   In contrast, APP lacking C-terminus (APP dCT) did not have any 

significant effect on PDF IR in the sLNv or the lLNv (Figure 4H’, 4I and 4J). These 

observations suggest that dTip60 and APP selectively affect PDF expression in the 

sLNvs, and that the effects are dependent upon APP C-terminus.  Moreover, the observed 

effect on PDF levels due to dTip60E431Q or APP and the lack of any significant effect with 
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APP lacking C-terminus which is required for interaction with Tip60 suggests that PDF is 

a potential target of the Tip60/APP containing complex.  

 

dTip60 and APP functionally interact to regulate PDF expression in sLNv 

 

Our observation that expression of either dTip60 E431Q or APP each affected PDF 

IR in the sLNv prompted us to ask whether dTip60 and APP functionally interact to 

mediate the sLNv specific effect on PDF expression.  We therefore measured PDF IR in 

the sLNv soma in flies co-expressing APP or APP dCT with either Tip60WT or HAT 

defective mutant Tip60E431Q.   Although PDF IR in the lLNv remained largely unaffected 

(Figure 5G), significant effects on sLNv PDF IR were observed in all fly lines.   

APP;Tip60E431Q expressing flies exhibited the most drastic effect, with APP expression 

exacerbating the effects of Tip60E431Q expression alone,  thereby resulting in complete 

loss of PDF IR in the sLNv (Figure 5B’ and 5F).  Although PDF IR was absent in the 

sLNv soma, these cells could still be located using GFP expression (Figure 4B). 

Importantly, the observed effect on sLNv PDF in the APP; dTip60E431Q flies is similar to 

the phenotypic enhancement we observed on the sLNv axon growth in these flies. We 

therefore examined if the degenerative effects on sLNv axon and PDF expression in the 

APP; dTip60E431Q flies was due to induction of an apoptotic response. To address this, we 

performed TUNEL assays using whole mount brains of 4-7 day old adult flies that 

resulted from a cross between the Pdf-Gal4 driver and w1118 or APP; dTip60E431Q flies. 

However, we did not detect any TUNEL specific signal in the sLNvs or in other regions 

of the adult brain for this age group in either the APP; dTip60E431Q or the control flies 
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(data not shown). This indicates that co-expression of dTip60E431Q with APP leads to 

neuronal dysfunction, likely via a mechanism distinct from apoptosis.  

In contrast to the above, flies that expressed APP lacking the C-terminus with 

dTip60E431Q (APP dCT; dTip60E431Q) resulted in only a partial loss of PDF IR in the 

sLNv, identical to that observed when dTip60E431Q was expressed alone (Figure 5C’ and 

5F), indicating that the APP C-terminus is required for the Tip60E431Q/APP mediated 

negative effects on PDF expression.   Remarkably, overexpression of wild type dTip60 

with APP appeared to rescue the APP mediated negative effects on PDF expression as 

APP; Tip60WT expressing flies had significantly increased PDF IR in the sLNv in 

comparison to control flies (Pdf-Gal4; UAS-mCD8-GFP / +)  (Figure 5D’ and 5F).  

Quantification of PDF IR however, revealed a small but significant decrease in PDF in 

sLNv in the APP; dTip60WT flies compared to flies expressing dTip60WT alone (p < 0.05) 

(Figure 4I and 5F). Similar to dTip60WT flies, an increase in PDF levels was also 

observed in the sLNvs of flies co-expressing both Tip60WT and APP lacking the C-

terminus (Figure 5E’ and 5F), suggesting that the increase in PDF expression is 

predominantly mediated by Tip60. Together these findings suggest that Tip60 and APP 

functionally interact to regulate PDF expression in the sLNvs. However, the effect on 

PDF expression seems to be critically dependent upon the HAT activity of Tip60.  

 

dTip60 E431Q flies exhibit night time sleep deficits with an increase in day time sleep 

  

The PDF neuropeptide is implicated as the principal transmitter of the LNv group, 

as flies lacking Pdf function exhibit phenotypes similar to ablation of the PDF positive 
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LNv. These phenotypes include loss of morning anticipatory behavior and advanced 

evening behavior in LD and locomotor arhythmicity in DD [227].   Our observation that 

LNv targeted expression of dTip60E431Q and APP results in selective disruption of PDF 

levels specifically in the sLNv prompted us to ask whether biphasic locomotor rhythm in 

these flies was also affected.   Towards this end, we first examined locomotor behavior in 

Pdf-Gal4/ UAS-mCD8-GFP/ dTip60E431Q flies using the Drosophila Activity Monitor 

(DAM) in standard LD condition for 2 days followed by constant darkness for 5 days. 

Pdf-Gal4/ UAS-mCD8-GFP/ + and UAS-dTip60E431Q /+ flies were used as controls for 

the DAM assay.   Inspection of averaged locomotor activity of control and experimental 

dTip60 E431Q flies showed similar gradual increases in activity in anticipation of morning 

and evening, coinciding with lights-on and lights-off in standard 12 h:12 h LD cycles 

(Figure 6A).  The dTip60E431Q flies also maintained rhythmicity in constant darkness 

similar to the control flies (Figure 6B). However, dTip60 E431Q flies exhibited 

significantly less locomotor activity during the day compared to the controls with a 

concomitant increase in night time activity, both under LD and DD conditions (Figure 6A 

and 6B), suggestive of sleep defects in these flies.   

 

Recent studies have demonstrated that PDF expressing LNvs are the target of 

GABA (γ-aminobutyric acid)-ergic sleep-promoting cells and that their activation 

promotes arousal through release of the neuropeptide PDF [216,225,228]. Flies mutant 

for pdf or its receptor are hypersomnolent, exhibit more daytime sleep (Parisky et al., 

2008) as well as reduced sleep consolidation at night [228].     Our observation that loss 

of dTip60 HAT activity in the LNvs reduced sLNv PDF expression prompted us to 
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examine whether there was also a corresponding effect on sleep in these flies.   Although 

the DAMS assay is widely used to assess both circadian and sleep behavior [229], it has 

certain limitations for specifically studying sleep wherein it is insensitive to small fly 

movements which occur outside of the path of the infrared beam and thus affects the 

identification of actual quiescent sleep behavior [224]. We therefore used digital video 

analysis to monitor if LNv specific expression of dTip60 E431Q leads to sleep disturbances 

using single staged, 4-7 day old female dTip60 E431Q flies (Pdf-Gal4/ UAS-GFP/ 

dTip60E431Q). Behavioral recording of fly sleep were carried out for 3 days at 25oC in 

standard LD condition.   LNv specific expression of dTip60 E431Q was found to 

specifically disrupt nocturnal sleep without a marked variation in total sleep within a LD 

cycle compared to control flies (Pdf-Gal4/ UAS-mCD8-GFP / + and UAS-dTip60E431Q/+) 

(Figure 6B).   Similar sleep defects were observed in the dTip60RNAi flies that exhibited a 

partial reduction in sLNv PDF IR (Figure 6B). Interestingly, the night time sleep in both 

cases was characterized by increased sleep bout number and decreased duration of sleep 

bout (Figure 6B’ and 6B”).   The number and duration of sleep bout are used to assess 

consolidation of sleep [230].   Changes in these sleep parameters with the dTip60RNAi and 

dTip60 E431Q flies indicate that sleep becomes highly fragmented during the night.    

Additionally, the dTip60RNAi and dTip60 E431Q expressing flies slept more during the day 

(Figure 6C) with an increase in both sleep bout number and duration of sleep bout 

(Figure 6C’ and 6C”). Taken together, these sleep data indicate that flies expressing 

dTip60RNAi or dTip60 E431Q exhibit night time sleep disruption and fragmentation as well 

as daytime sleepiness, reminiscent of sundown syndrome exhibited by human AD 

patients.  PDF has also been reported to have a wake promoting effect in the fly and as a 
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result is thought to function as a stabilizer of sleep-wake cycle [220].   Since 

overexpression of wild type Tip60 in the LNvs increased PDF expression in the sLNv, 

we wanted to examine how sleep is affected under these conditions. In contrast to 

dTip60E431Q and dTip60RNAi expressing flies, the dTip60WT flies did not exhibit any 

significant effect on daytime sleep (Figure 6C), likely due to increased expression of PDF 

in the sLNv.  However, these flies exhibited reduced consolidation of sleep during the 

night resulting in a significant decrease in night sleep (Figure 6B and 6B”). We also 

examined the sleep pattern in the dTip60Rescue flies as the effect on sLNv PDF expression 

in these flies was different from either the dTip60E431Q or dTip60WT flies. Intriguingly, 

there was no observable effect on sleep in the dTip60Rescue flies even though these flies 

exhibited a moderate increase in sLNv PDF level compared to the control flies (Figure 

6B and 6C). However, the lack of any effect on sleep in the dTip60Rescue flies indicate that 

the observed sleep defects in the dTip60E431Q and dTip60WT flies are mediated through 

misregulation of Tip60’s HAT function.  

 

Knockdown of PDF in the sLNv replicates dTip60E431Q mediated effects on sleep 

 

Our observations that dTip60E431Q induced selective disruption of PDF expression 

in the sLNv soma as well as features of sleep interference similar to Pdf null mutants 

prompted us to ask whether it was the lack of PDF that contributed to these sleep 

phenotypes.   Towards this end, we used a Pdf-RNAi approach to knockdown PDF 

specifically in the sLNv and monitored how this affects sleep.   PDF knockdown was 

carried out using Mai179-Gal4 and R6-Gal4 drivers, well characterized drivers that 
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predominantly express Gal4 in the sLNv [231,232].   Mai179-Gal4 mediated knockdown 

of PDF in the sLNv reduced sleep during the night with a concomitant increase in 

daytime sleep (Figure 7A and 7B, respectively) similar to that observed with dTip60 E431Q 

flies. The night time sleep was also highly fragmented as evident from increase in bout 

number and decreased duration of sleep bout (Figure 7A’ and 7A”).  Similar effects were 

observed with R6-Gal4 driven knockdown of PDF (Figure 8A and 8B, respectively).   

Taken together, these data demonstrate that knockdown of PDF in the sLNv affects sleep 

consolidation and suggests that reduction of PDF is responsible for the sleep disturbances 

observed in the dTip60E431Q flies. 

  

Tip60 and APP functionally interact to mediate PDF expression and sleep-wake 

cycles in the fly.   

 

Since the selective reduction of PDF IR in the sLNv by dTip60E431Q was 

accompanied by sleep defects reminiscent of those seen in AD, we wished to examine 

how APP expression in the LNv affects sleep as sLNv PDF expression was affected in 

these flies as well.   Similar to dTip60 E431Q flies, APP expression significantly decreased 

night time sleep (Figure 9A) with concomitant increase in daytime sleep (Figure 9B).   

Expression of APP dCT in the LNv did not have a significant effect on sleep (Figure 9A 

and 9B), consistent with its lack of effect on sLNv PDF expression, indicating that the C-

terminus of APP mediates the sleep effects seen in the APP flies. Our observation that 

dTip60 and APP functionally interact to regulate PDF expression in the sLNv, prompted 

us to ask whether this interaction also mediates the effects we observed on day and night 
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time sleep when either of these constructs were expressed alone.  Using video monitoring 

assessment, we found that the APP; dTip60E431Q and APP dCT; dTip60E431Q flies that 

displayed complete and partial loss of PDF in the sLNv respectively, also exhibited 

significant decrease in night time sleep with a concomitant increase in day sleep (Figure 

9A and 9B).  Taken together, these data suggest that the sleep defects are primarily due to 

dTip60E431Q and APP mediated effects on PDF expression in the sLNv.  

  

Overexpression of wild type dTip60 rescues APP induced sleep deficits. 

 

The increase in PDF expression in sLNv due to dTip60WT overexpression 

prompted us to examine how sleep was affected in APP; dTip60WT and APP dCT; 

dTip60WT flies as these flies exhibited a similar increase in sLNv PDF.  Although 

overexpression of wild type dTip60 (dTip60WT) decreased night time sleep (Figure 8A), 

co- expression of dTip60WT with APP rescued the nighttime sleep defects we observed 

for dTip60WT or APP alone (Figure 9A).   Co-expression of Tip60WT with APP lacking 

the Tip60 interacting C-terminal domain did not rescue Tip60WT induced decrease in 

night sleep, indicating that an interaction between Tip60 and APP is required for the 

rescue of the night sleep deficits (Figure 9A).  In addition, neither of these fly lines 

exhibited any significant effects on the day sleep, and their sleep pattern was similar to 

wild type controls (Figure 9B).   Taken together, these data indicate that dTip60 and APP 

functionally interact to mediate sleep in the fly and that the sleep phenotypes we observe 

are dependent upon the APP C-terminus.   Moreover, overexpression of Tip60 appears to 

rescue both day and night sleep defects that are induced by APP alone, indicating that 
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under APP expressing conditions, Tip60 HAT activity alleviates the sleep deficits that are 

reminiscent of sundown syndrome seen in AD patients.  

 

DISCUSSION 

 

Selective vulnerability of specific neuronal populations to degeneration even 

before disease symptoms are seen is a characteristic feature of many neurodegenerative 

diseases.     Consistent with these studies, here we show that when induction of the 

dTip60 RNAi response or expression of the dTip60 HAT mutant was directed to both the 

small and large LNvs, only the sLNvs were susceptible to the mutant effects induced 

under these conditions while the lLNvs were spared.   The lack of any morphological 

effect on the lLNvs in the dTip60E431Q flies could stem from the fact that compared to the 

sLNvs, these neurons express higher levels of endogenous Tip60 that counteracts the 

mutant dTip60E431Q protein.   However, induction of the RNAi response causes complete 

loss of Tip60 expression in both the lLNv and sLNv (Figure 1), and yet only the sLNvs 

are affected while the lLNv are spared, similar to our findings with dTip60E431Q 

expression.   This suggests that the sLNvs may be more susceptible to misregulation of 

Tip60 or its HAT activity.   Of note, the dTip60WT flies did not have any marked effect 

on the lLNv either, likely because these neurons are not susceptible to the moderate 

increase in Tip60 levels in the lLNvs induced under these conditions compared to the 

sLNvs. Developmentally, the sLNvs are known to differentiate much earlier than the 

large cells [233] and this developmental difference may also in part account for the 

selective vulnerability of the sLNvs.  In many neurodegenerative diseases, axon 
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degeneration is known to involve protracted gradual ‘dying-back’ of distal synapses and 

axons that can precede neuron cell body loss and contribute to the disease symptoms 

[234,235].   Importantly, loss of synapses and dying back of axons are also considered as 

early events in brain degeneration in AD [236].   While APP overexpression in the LNvs 

did not have any observable effect on the sLNv axon growth at normal physiological 

temperatures, co-expression of the dTip60 HAT mutant with APP C-terminus appears to 

cause the sLNv axons in the adult animals to retract.   The lack of any effect on the sLNv 

axon in the third instar larva in this case indicates that the axons grow to their full 

potential in the larval stage, but undergo degeneration post-mitotically in a process 

similar to ‘dying-back’.     

 

A functional interaction between Tip60 and the amyloid precursor protein (APP) 

intracellular domain (AICD) has been shown by us and others to epigenetically regulate 

genes essential for neurogenesis [78,147,180].   Such an effect is thought to be mediated 

by recruitment of the Tip60/AICD containing complex to certain gene promoters in the 

nervous system that are then epigenetically modified by Tip60 via site specific 

acetylation and accordingly activated or repressed. While the E431Q mutation in our 

dominant negative HAT defective version of Tip60 (dTip60E431Q) reduces Tip60 HAT 

activity, it should not interfere with its ability to assemble into a protein complex 

[69,237].  Thus, dTip60E431Q likely exerts its dominant negative action over endogenous 

wild-type Tip60 via competition with the endogenous wild-type Tip60 protein for access 

to the Tip60/AICD complex and/or additional Tip60 complexes, with subsequent 

negative consequences on chromatin histone acetylation and gene regulation critical for 
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nervous system function.     Here, we show that co-expression of HAT defective Tip60 

(dTip60E431Q) with APP in the APP; dTip60E431Q flies exacerbates the mutant effects that 

either of these interacting partners has on the sLNv axon growth and Pdf expression when 

expressed alone.    In contrast, co-expression of additional dTip60WT with APP alleviates 

these effects and this rescue is dependent upon the presence of the AICD region of APP.  

Thus, Tip60 HAT activity appears to display a neuroprotective effect on axonal 

outgrowth, Pdf expression, with concomitant alleviation of sleep defects under APP 

expressing neurodegenerative conditions.    We propose that Tip60 might exert this 

neuroprotective function either by itself or by complexing with other peptides such as 

AICD for its recruitment and site specific acetylation of specific neuronal gene promoters 

to redirect their expression and function in selective   neuronal processes such as sLNv 

morphology and function.   Such a neuroprotective role for Tip60 is consistent with our 

previous work demonstrating that excess dTip60WT production under APP expressing 

neurodegenerative conditions in the fly rescues APP induced lethality and CNS 

neurodegeneration and that dTip60 regulation of genes linked to AD is altered in the 

presence of excess APP [78]. We speculate that the degenerative effects we observe in 

the APP; dTip60E431Q flies may result from formation of  Tip60E431Q/AICD complexes  

that ultimately cause activation or de-repression of factors that promote axonal 

degeneration while excess Tip60/AICD complex formation in the APP;dTip60WT 

expressing flies promote gene regulation conducive for sLNv outgrowth and Pdf 

expression.    
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   Sleep or wake promoting neurons in the hypothalamus or brainstem are known to 

undergo degeneration in a number of  neurodegenerative diseases resulting in sleep 

dysregulation [238]. In AD, such sleep disturbances are characterized by excessive 

daytime sleepiness and disruption of sleep during the night. These features resemble the 

symptoms of narcolepsy, a sleep disorder caused by general loss of the neurotransmitter 

hypocretin/orexin [239].   Hypocretin is involved in consolidation of both nocturnal sleep 

and diurnal wake [240] and loss of hypocretin levels have been correlated with sleep 

disturbances observed in AD [241]. While the neuropathological changes in AD may 

contribute to hypocretin disturbances, a direct and causative role for APP in regulating 

hypocretin expression is not yet known. The LNv specific neuropeptide PDF is 

postulated to be the fly equivalent of hypocretin [220] and has been shown to promote 

wakefulness in the fly.  Consistent with these reports, our data demonstrating somnolence 

during the light phase due to knock-down of PDF in the sLNv further supports a wake-

promoting role for PDF.   Accordingly, we observed that overexpression of APP in the 

LNvs results in reduction of sLNv PDF expression as well as sleep disturbances that 

intriguingly, have been associated with AD pathology.  The presence of similar effects on 

PDF and sleep due to loss of dTip60 HAT activity supports a role for both APP and 

Tip60 in controlling the PDF mediated sleep-wake regulation pathway.   Previous studies 

have reported that the circadian modulators CLOCK and CYCLE regulate PDF 

expression in the sLNvs but not in the lLNvs [242].   We also observe a similar sLNv 

specific regulation of PDF by dTip60 in the adult flies. However, there was no effect on 

PDF expression in sLNvs in the larvae when Tip60 levels are undetectable. This is also 

consistent with the sLNv axonal defects that persist only in the adult flies. This suggests 
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that the sLNvs may be subject to differential regulation during development as well as a 

temporal requirement for Tip60 in these cells in the adult flies. A recent study reported 

persistence of morning anticipation and morning startle response in LD in the absence of 

functional sLNv that were ablated due to expression of the pathogenic Huntington protein 

with poly glutamine repeats (Q128) [243].  Consistent with this study, we did not observe 

any marked effect on the morning and evening anticipatory behavior in LD in the 

dTip60E431Q flies that exhibit a partial reduction in sLNv PDF. However, while the Q128 

expressing flies were arrhythmic under constant darkness, dTip60E431Q flies maintain 

rhythmicity in DD indicating that the sLNvs are still functional in these flies. The 

remarkable cell specificity of PDF regulation indicates the presence of additional as yet 

unidentified clock relevant elements or developmental events that distinguish between the 

two cell types. 

 

Recent evidence indicates that LNvs are light responsive and that their activation 

promotes arousal through release of PDF. Furthermore, PDF signaling to PDF receptor 

(PDFR) expressing neurons outside the clock, such as those found in the ellipsoid body 

that directly control activity, is thought to be important in translating such arousal signals 

into wakefulness [216]. Since PDF is released from the sLNv axon terminals, the 

retraction of the sLNv axon terminals induced by the Tip60 HAT mutant can interfere 

with PDF mediated interaction of the sLNvs with downstream circuits.   In the case of 

APP overexpression, while sLNv axon structure is unaffected, PDF expression is 

reduced; we speculate that the decrease in PDF under these conditions is responsible for 

the abnormal sleep phenotype observed.   In support of this theory, we find that 
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expression of APP lacking the C-terminus that also has no observable effect on the sLNv 

axon growth or PDF expression did not have any effect on sleep behavior.   Thus our 

results indicate that the degenerative effect on the sLNv axons and/or the effect on PDF 

expression could both contribute to the observed sleep disturbances. Likewise, co-

expression of the dTip60 HAT mutant with full length APP or APP lacking the C-

terminus affected both the sLNv axon growth and PDF expression and consequently 

resulted in similar sleep disturbances.  

 

In addition to the wake promoting role, the LNvs also express GABAA receptors 

[216,228] and are thus subject to inhibition by sleep promoting GABAergic inputs, 

analogous to those from the mammalian basal forebrain that regulate hypocretin neurons 

[244].  The current consensus view is that sleep regulation is mediated by mutually 

inhibitory interactions between sleep and arousal promoting centers in the brain 

[245,246]. The normal release of PDF from LNvs is part of the arousal circuitry in the fly 

and determines the duration of the morning and evening activity peaks [215,219] while 

inhibition of these neurons  and thus reduction in PDF  release is necessary for normal 

sleep [228]. Current models of sleep regulation suggest that the drive to sleep has two 

components, the first component is driven by the circadian clock and the second 

component is homeostatic in nature and the strength of this drive is based upon the 

amount of time previously awake  [247].  PDF release from sLNvs axon terminals 

exhibits diurnal variation [242] and its release increases the probability of wakefulness by 

activating arousal promoting centers [216].  However, the homeostatic drive for sleep that 

accumulates during the wake period eventually inhibits such arousal centers to promote 
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sleep [248].  Consistent with these reports, the reduction of PDF we observe due to either 

dTip60E431Q expression alone or co-expression of dTip60E431Q with APP that leads to flies 

sleeping more during the day may also lead to a decrease in their homoeostatic drive for 

sleep, thus resulting in the less consolidated sleep patterns we observe for these flies 

during the night.   Conversely, we found that overexpression of sLNv PDF due to dTip60 

overexpression induces wakefulness and arousal.  Additionally, these flies exhibit 

impaired ability to maintain sleep at night that may be mediated through inappropriate 

activation of arousal circuits due to PDF overexpression. Similar effects have been 

reported in a Zebrafish model due to hypocretin overexpression that results in 

hyperarousal and dramatic reduction in ability to initiate and maintain a sleep-like state at 

night [249].   Despite the moderate increase in sLNv PDF levels in the dTip60Rescue flies, 

we did not observe a marked effect on sleep-wake cycle in these flies. Extracellular levels 

of PDF and its signaling at synapses is thought to be regulated by neuropeptidases like 

neprilysin. In fact, neprilysin mediated cleavage of PDF has been shown to generate 

metabolites that have greatly reduced receptor mediated signaling [250]. Thus, we 

speculate that the lack of any corresponding effect on sleep in the Tip60Rescue flies could 

be because such small increases in PDF might be regulated by endopeptidases like 

neprilysin.   

 

Although overexpression of wild type dTip60 with full length APP increased PDF 

expression in the sLNv compared to the normal levels that persist in the control flies, it 

did not result in the sleep defects that were observed when Tip60WT was overexpressed 

alone or with APP lacking the C-terminus.  The absence of any observable effects on 
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sleep under these conditions suggests the presence of other sleep promoting 

compensatory mechanisms that counteract the sleep defects mediated by PDF 

overexpression.   Intriguingly, significant exacerbation of axonal arborization was only 

observed as a result of co-expression of APP and Tip60WT, and not when Tip60WT was 

expressed alone or with APP lacking the C-terminus and this may account for the 

differences in sleep phenotypes between these two genotypes.  Consistent with this 

notion, recent electron microscopy studies indicate the presence of sparsely distributed 

input synapses at the sLNv axon terminals in addition to the PDF positive output 

synapses.  This indicates that the sLNvs may also receive additional neural inputs directly 

through such synaptic connections in the dorsal protocerebrum [251].   The sLNv axon 

terminals have also been reported to express post-synaptic GABAB receptors and thus 

receive slow inhibitory GABAergic input through the dorsal terminals.   Incidentally, 

GABAergic neurons have also been observed in the vicinity of the sLNv axon terminals 

in the adult CNS [252].   These observations suggest that the sLNv can also integrate 

signals from GABAergic or other sleep promoting neurons via their axon terminals. 

Indeed, the firing rate of sLNv is thought to be dependent on a finely balanced interaction 

of cholinergic, GABAergic and glutamate signaling [253].   Based on these studies, we 

propose a model by which the overelaborated sLNv synaptic arbors observed in flies co-

expressing Tip60WT and APP may provide additional input sites for signals from sleep 

promoting neurons in the vicinity that counteract the arousing effect of PDF 

overexpression on nocturnal sleep (Figure 10).   
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Light mediated release of PDF from the lLNvs has been reported to modulate 

arousal and wakeful behavior as well as sleep stability. Thus, it has been suggested that 

the lLNvs may be part of an arousal circuit that is physiologically activated by light and 

borders with, but is distinct from the sLNvs and downstream sleep circuits [217]. 

However, other studies have suggested that both LNv sub-groups promote wakeful 

behavior and that the lLNv act upstream of the sLNv [216,254]. Our observation of sLNv 

directed effects on PDF expression and the persistence of sleep-wake disturbances 

suggest that the sLNvs may be part of the neural circuitry that regulates sleep 

downstream of the lLNvs via a PDF dependent mechanism. In this regard, the sLNvs may 

participate in the communication between the lLNvs and other brain regions to promote 

light mediated arousal. It has been proposed by [254] that the lLNvs may promote neural 

activity of the Ellipsoid body (EB) in the central complex (CC), a higher center for 

locomotor behavior that expresses the PDF receptor [219]. However, we observe 

disruption of sleep-wake cycles even in the absence of any marked effect on the lLNv 

morphology or PDF expression. While no direct projections from the lLNvs to the EB 

have been detected, the sLNv axonal projections are relatively closer to the CC and thus 

may promote PDF receptor mediated signaling in such regions that control activity.  

Sleep disturbances, while prominent in many neurodegenerative diseases are also thought 

to further exacerbate the effects of a fundamental process leading to neurodegeneration 

[255].   For these reasons, optimization of sleep-wake pattern could help alleviate the 

disease symptoms and slow the disease progression. In this regard, the modulatory effects 

that Tip60 HAT activity (dTip60E431Q versus dTip60WT) has on the sLNvs, the fly 

counterpart of the mammalian pacemaker cells, under APP overexpressing conditions, 
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may provide novel mechanistic insights into epigenetic regulation of neural circuits that 

underlie behavioral symptoms like the “sundowners syndrome” in AD.   Future 

investigation into the downstream mechanism by which Tip60 regulates the sleep-wake 

cycle may further provide insight into the utility of specific HAT activators as therapeutic 

strategies for sleep disturbances observed in AD. 
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CHAPTER 4: TIP60 MEDIATED NEURONAL GENE EXPRESSION CHANGES 
UNDERLIE MEMORY FORMATION IN DROSOPHILA 

 

ABSTRACT 

Epigenetic mechanisms are not only essential for stable molecular changes 

required for establishment of cellular identity, but also for dynamic intracellular 

processes that translate environmental stimuli into modifications in gene expression. 

Recent studies also highlight the importance of epigenetic mechanisms in the CNS in 

regulating transcriptional programs linked to synaptic plasticity and cognition. Histone 

acetylation is one of the best characterized epigenetic mechanisms essential for regulating 

neuronal gene expression related to learning and memory, although specific HATs and 

HDACs that mediate these effects are yet to be fully characterized. In this study, we have 

investigated a role for the HAT Tip60 in memory formation in Drosophila. We show that 

misregulation of Tip60 HAT activity in the Drosophila mushroom body (MB) leads to 

defects in immediate recall memory. Furthermore, disruption of Tip60 HAT activity 

leads to abnormal development of the axonal lobes in the MB, resulting in thinner and 

shorter lobes. We also show that Tip60 is endogenously expressed in the Kenyon cells, 

the intrinsic neurons of the MB as well as in the MB lobes. Together, our studies identify 

essential roles for Tip60 in establishing the stereotypical MB structure during 

development as well as a transcription regulatory function in mediating gene expression 

changes that underlie memory formation via the MB encompassing neural circuit.  
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INTRODUCTION 

Epigenetic marking of chromatin in the brain is emerging as a pivotal molecular 

mechanism underlying certain forms of synaptic plasticity and cognition [256]. While 

conferring nerve cells the ability to establish and maintain their identity, epigenetic 

modifications of chromatin also allow nerve cells to respond to environmental stimuli and 

modulate their gene expression profiles [257]. The best-studied form of chromatin 

modification in the learning and memory field is histone acetylation [258], which is 

regulated by the antagonistic activities of histone acetyltransferases (HATs) and histone 

deacetylases (HDACs) [74].  Blocking histone acetylation has been reported to impair 

both long lasting synaptic plasticity as well as behavioral performance [97]. Notably, 

inhibition of histone deacetylase activity rescues these deficits and improves memory 

formation [31,97], thus highlighting the importance of histone acetylation for memory 

formation.  

Cognitive decline is also a debilitating feature of most neurodegenerative diseases 

of the central nervous system including Alzheimer’s disease (AD). Cognitive capacities 

in the neurodegenerating brain are thought to be constrained by an epigenetic blockade of 

gene transcription that is potentially reversible [259]. Several recent studies have reported 

sporadic cases of reduced histone acetylation in animal models of neurodegeneration that 

are characterized by cognitive decline, including models of AD. Accordingly, 

pharmacological treatments aimed at increasing histone acetylation levels have shown 

promising effects in reversing cognitive deficits in such models [151]. However, little is 

known about HATs that modify the neural epigenome by laying down specific epigenetic 

marks required for proper cognition and thus, likely serve as causative agents of memory 
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impairing histone acetylation changes. A promising candidate is the HAT Tip60, that has 

been implicated in Alzheimer’s disease (AD) owing to its role in epigenetically 

regulating gene expression via complex formation  with the  amyloid precursor protein 

(APP) intracellular domain (AICD) [144,260].  

Tip60 (Tat interactive protein, 60KDa) is a multifunctional HAT that has been 

shown by us and others to epigenetically regulate genes essential for neurogenesis 

[69,78]. Such an effect is thought to be mediated through recruitment of Tip60 containing 

protein complexes to target gene promoters in the nervous system that are then 

epigenetically modified via site-specific acetylation and accordingly activated or 

repressed. We have recently reported that the histone acetylase function of Tip60 

promotes neuronal and organismal survival in a Drosophila model of AD by activating 

pro-survival factors while concomitantly repressing activators of cell death [78]. 

Overexpression of Tip60 also promotes axonal growth of the Drosophila circadian 

neurons, the small ventrolateral neurons (sLNvs) under APP overexpressing conditions 

[170]. While these effects support a neuroprotective role for Tip60 under degenerative 

conditions such as those induced by neuronal overexpression of APP, an epigenetic role 

for Tip60 in mediating gene expression changes that underlie memory formation remains 

to be elucidated.   

Drosophila is an attractive model for studies aimed at molecular dissection of 

components of memory formation due to the availability of reproducible memory assays 

and genetic tools that enable restricting gene expression to specific subregions of the 

brain for instance, by using appropriate GAL4 drivers [261]. In this study, we focused on 

the Drosophila mushroom body (MB) to investigate a role for Tip60’s epigenetic HAT 
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function in memory formation. The Drosophila MB is deemed as the learning and 

memory center, analogous to the mammalian hippocampus as it is known to regulate a 

range of behavioral and physiological functions that range from olfactory learning, 

courtship conditioning to decision making under uncertain conditions [262]. Courtship 

conditioning in Drosophila is a complex behavioral learning paradigm  that requires 

multimodal sensory input, involving chemosensory, mechanosensory, visual and 

olfactory pathways and is thus well suited to study experience dependent synaptic 

plasticity [263]. In this report, we show that misregulation of Tip60 HAT activity in the 

MB leads to courtship memory deficits suggesting potential Tip60 mediated gene 

expression changes that underlie these memory defects. Immunohistochemical analysis of 

brains from adult flies expressing a dominant negative mutant form of Tip60 defective in 

its HAT activity in the MB revealed dramatic effects on the axonal fields of the MB 

lobes, suggesting a possible anatomical mechanism for the observed behavioral defects.   

METHODS 

Drosophila Stocks  

Flies were reared on standard medium (cornmeal/sugar/yeast) at 25 degrees with a 

12-h light/dark cycle. Canton S flies were used as wildtype controls. OK107-GAL4 and 

UAS-GFP stocks were obtained from the Bloomington Drosophila stock center (Indiana 

University). The generation and characterization of UAS-dTip60E431Q and UAS-

dTip60WT flies are described in [69] and [262], respectively. Double transgenic lines 

carrying the UAS-GFP and either UAS-dTip60E431Q or UAS-dTip60WT constructs were 

generated according to standard procedures.  
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Courtship Suppression Assay 

Assays were performed as described in [264]. Briefly, virgin males of the 

appropriate genotype were collected within 6 hr of eclosion, and reared in individual food 

vials at 25°C in 12:12 LD for 5 days prior to behavioral training and testing. Virgin wild 

type Canton S females were collected and kept in groups in food vials. Mated Canton S 

females used for training were 5 days old and observed to have mated with a Canton S 

male the evening prior to training. Virgin Canton S females used for testing were 5 days 

old. All experiments were conducted during light phase. All behavior was digitally 

recorded using a Sony DCR-SR47 Handycam with Carl Zeiss optics. The total time that a 

male performed courtship activity was subsequently measured and scored. The courtship 

index was calculated as the total time observed performing courting behavior divided by 

the total time assayed.  

On the day of training (day 5), male flies were assigned to random groups, and the 

assay set up with the experimenter blind to the genotype of the test males. Male flies 

were transferred without anesthesia to one half of a partitioned mating chambers from 

Aktogen (http://www.aktogen.com) that contained a previously mated Canton S female in 

the other partitioned half. Males were allowed to acclimate for 1 min, then the partition 

between the male and female was removed. Male flies were then trained for 60 min. 

After 60 min, male flies were transferred within 2 min without anesthesia to one half of a 

clean partitioned mating chamber that contained a virgin Canton S female in the other 

partitioned half. The partition was removed and behavior of the flies was recorded for 10 

min. During the testing phase, untrained males of the appropriate genotype were assayed 

alongside the trained males to serve as controls. To determine the significance between 
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different measures of the same genotype, a two-tailed paired Student’s t-test was 

performed. Significance was determined at the 95% confidence interval. 

Immunohistochemistry and antibodies 

Third instar larvae or adult brains were dissected in PBS, fixed in 4% 

paraformaldehyde in PBS, washed thrice in PBS containing 0.1%Triton X-100, blocked 

for 1 hr at RT in PBT containing 5% normal goat serum, and incubated with primary 

antibodies in blocking solution overnight at 4 C. Anti-Tip60 (1:400) was generated by 

Open Biosystems (Rockford, IL), Anti-Fasciclin (mAb1D4; 1:10), anti-Trio(mAb9.4A; 

1:4), anti-ELAV (1:400) were obtained from the Developmental Studies Hybridoma 

Bank (DSHB, University of Iowa, IA). Anti-GFP (1:100) was obtained from Millipore 

(CA). Samples were washed thrice in PBT at RT, and secondary antibodies (Jackson 

Immunoresearch, PA ) were applied in blocking solution for 2 hr at RT. After washing 

thrice in PBS, samples were mounted in Vectashield (Vector Laboratories, CA). 

Imaging and quantification 

 Larval and adult brain preparations were imaged using the appropriate secondary 

antibodies. Anti-GFP and anti-Tip60 immunostaining were visualized using Alexa-Fluor 

488 and Alexa-Fluor 647, respectively. Anti-Elav, anti-Fasciclin, anti-Trio were 

visualized using Alexa-Fluor 568. Confocal microscopy was performed using Olympus 

Microscope with fluoview acquisition software (Olympus, Center Valley, PA). Images 

were displayed as projections of 1uM serial Z- sections. Area of the mushroom body 

lobes in the different genotypes was measured using NIH ImageJ software,  
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RESULTS 

Tip60 is expressed throughout the adult fly brain including the mushroom body  

 Tip60 expression in the adult fly brain was characterized by 

immunohistochemistry on whole mount Canton S adult brains with an anti-Drosophila 

Tip60 antibody. We found that Tip60 was widely expressed throughout the adult brain 

with an expression pattern similar to the pan-neuronal ELAV protein including the 

mushroom body (MB) lobes (Figure 1, A-C). In order to examine Tip60 expression in the 

MB, immunohistochemistry for Tip60 was performed on brains expressing mCD8-GFP 

under control of OK107-GAL4. In the MB neurons, called Kenyon cells, mCD8-GFP 

expression was observed in the cytoplasm surrounding the Tip60 positive nuclei and 

Tip60 was detected in all cells that expressed mCD8-GFP (Figure 1, E-F).  

During development, the Kenyon cells of the MB undergo an ordered 

differentiation process into three types of neurons, namely, the α/α’ neurons, β/β’ neurons 

and γ neurons [265]. Each neuron projects dendrites that contribute to a large dendritic 

field in the calyx and an axon that travels anteroventrally, forming a tightly bundled 

peduncle before branching dorsally to form the α/α’ lobes and medially to form the β/β’ 

and γ lobes. In addition to the Kenyon cells, Tip60 was also detected in the α/α’, β/β’ and 

γ lobes (Figure 2A and 2D). Specific MB lobes were unambiguously identified 

immunohistochemically by co-staining with markers specific for each of the lobes. 

Fasciclin II (Fas II) is a cell adhesion molecule that participates in axonal pathfinding 

[266] and is expressed strongly in the α/ β lobes (Figure 2B) [267].  Drosophila Trio is a 

Dbl family protein that participates in patterning of axons by regulating their directional 
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extension and is expressed strongly in the α’/β’ lobes (Figure 2E) [268]. Both markers are 

expressed weakly in the γ lobe as well (Figure 2B and 2E) [269]. Tip60 expression in the 

α/ β and α’/β’ lobes followed the expression pattern of Fas-II and Trio, respectively 

(Figure 2C and 2F).  

Tip60 HAT activity is required for immediate recall memory 

Since Tip60 is endogenously expressed in the adult MB, we wanted to examine if 

Tip60 epigenetically regulates memory formation using the conditioned courtship 

suppression assay [270]. This assay is an associative conditioning procedure that 

measures both learning and memory in individual flies [271]. The conditioning aspect of 

the assay is based on the observation that male courtship behavior is modified by 

exposure to a previously mated female that is unreceptive to courting [270,272]. Thus, 

after a one hour training session with a mated female, wild type males suppress their 

courtship behavior even towards subsequent receptive virgin females, an effect that 

decays after 1-3 hrs [273].   

In order to examine the effect of Tip60 HAT function on learning and memory, 

we misregulated Drosophila Tip60 in the mushroom body by utilizing our previously 

reported transgenic lines that carry GAL4 responsive transgenes for either a dominant 

negative HAT defective version of dTip60 (dTip60E431Q), or wild-type dTip60 

(dTip60WT) [69,270]. Expression of the respective transgenes was achieved continuously 

during development using the GAL4 driver, OK107. This driver is expressed in discrete 

neuronal populations in the adult fly brain that includes high expression in the Kenyon 

cells, the intrinsic neurons of the MB as well as in the pars intercerebralis, 
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suboesophageal ganglion and optic lobes [274].To determine the effects on learning, 

male flies were placed in a courtship chamber with a previously mated (unreceptive) 

wild-type female for 60 min. The amount of time the male spent performing courtship 

behavior was assessed during the initial 10 min of this training and compared with the 

final 10 min of the training period. Male control flies (OK107-GAL4/+) show a 

significant drop in courtship behavior in the final 10 min of training when compared with 

the initial 10 min (Figure 3A), indicative of an appropriate learning response. Similar 

effect was observed in the UAS background control flies (UAS-dTip60E431Q/+ and UAS-

dTip60WT/+) and in the wild type Canton S flies (Figure 3A). Male flies expressing either 

the Tip60 HAT mutant (dTip60E431Q) or additional copies of wild type Tip60 (dTip60WT) 

also showed a significant decrease in courtship behavior in the final 10 min of the 

training period compared with the initial 10 (Figure 3A). This indicates that 

misregulation of Tip60 HAT activity in the MB does not interfere with the successful 

perception and interpretation of sensory stimuli required in this assay and that these flies 

are capable of altering their behavior appropriately (learn) in response to this training.  

Different phases of memory have been defined in Drosophila and include 

immediate recall (0–2 min post-training), short-term memory (up to 1 h post-training), 

medium-term memory (up to 6 h), anesthesia-resistant memory (up to 2 days) and long-

term memory (up to 9 days) [275,276]. In order to test for the earliest phase of memory 

first, we assayed male flies expressing either the Tip60 HAT mutant (dTip60E431Q) or 

wildtype Tip60 (dTip60WT) by transferring the respective trained males to clean mating 

chambers and pairing with a receptive virgin female within two mins of training, 

following which, their courtship behavior was monitored for 10 mins. Trained male 
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control flies (OK107-GAL4/+) showed a marked decrease in their courtship activity 

compared to untrained male flies (Sham) that were assayed in parallel (Figure 3B). 

Similar effect was observed in the UAS background control flies (UAS-dTip60E431Q/+ 

and UAS-dTip60WT/+) and in the wild type Canton S flies (Figure 3B). This indicates a 

change in behavior in these flies that is consistent with normal immediate recall memory 

of training. However, such a decrease in courtship behavior was not observed in flies 

expressing either the Tip60 HAT mutant (dTip60E431Q) or additional copies of the HAT 

competent wild type Tip60 (dTip60WT) (Figure 3B). Since these flies were capable of 

normal sensory perception and were also able to alter their behavior in response to their 

experience during the learning component of the assay, their inability to effectively 

suppress courtship behavior during the second component of the assay indicates that 

these flies are defective in immediate recall memory of this form of learning.  

 

Tip60 is required for formation of normal mushroom body structure in adult brains 

 Development of precise axonal connectivity and plasticity in their connectivity 

are required for maintenance of functional neural circuits that facilitate learning and 

memory [277]. Accordingly, degeneration of neural circuits essential for learning and 

memory may lead to impaired behavioral plasticity. We have recently reported that 

Tip60’s HAT function promotes axonal growth of the Drosophila small ventrolateral 

neurons (sLNv), a well characterized model system for axonal growth [170]. We 

therefore wanted to examine if the observed memory deficits in the Tip60 mutant flies 

were accompanied by axonal growth defects in the MB. In order to examine the Tip60 
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mediated anatomical effects in the MB, we generated GAL4 responsive transgenic fly 

lines carrying a membrane bound mCD8-GFP construct with either the dominant 

negative Tip60 HAT mutant (UAS-mCD8-GFP; UAS-dTip60E431Q) or wild type Tip60 

(UAS-mCD8-GFP; UAS-dTip60WT). Expression of the respective transgenes was 

directed by the OK107-GAL4 driver. MB structural phenotypes under the different 

conditions were identified by immunostaining for GFP in whole brains dissected from 

adult animals.   

 In the third instar larvae and adult control flies (OK107-GAL4/US-GFP), 

confocal microscopy revealed GFP immunolabeling of α/β neurons along the peduncles 

as well as distally as their axons bifurcate and project dorsally into the α/α’ lobes and 

medially into the β/β’ and γ lobes (Figure 4A and 4A’). The stereotyped morphology of 

the MB lobes was detected in third instar brain of flies expressing either the HAT mutant 

dTip60E431Q or the wild type dTip60WT (Figure 4B and 4C). However, GFP staining of 

adult brains from the dTip60E431Q mutants revealed dramatic reduction of the MB axonal 

fields resulting in α/α’ lobes that were much thinner than those in the control flies (Figure 

4B’ and 4D). Additionally, severe reduction in the area of the β/β’ and γ lobes was also 

observed in these flies (Figure 4B’ and 4D). Thinner α and β lobes were observed in both 

sides of the brain in the dTip60E431Q mutants, indicating that the axonal defects are 

common to both the brain hemispheres. Developing axons of α/β neurons normally 

bifurcate at the base of the lobes, and the resulting sister branches subsequently extend in 

diverging directions: one dorsally to the α lobe and the other medially to the β lobe. 

Similarly, α’/β’ neurons also develop dorsal (α’) and medial (β’) lobes. In order to 

examine which particular lobe(s) were specifically affected in the dTip60E431Q flies, area 
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measurements of the different MB lobes were carried out by co-staining with anti-Fas II 

or anti-Trio antibodies that exhibit weak expression in the γ-lobe while strongly labeling 

α/β and α’/β’ lobes, respectively. Fas II staining (Figure 5B and 5B’) was used for 

quantification of α/β and γ-lobes while Trio staining (Figure 6B and 6B’) was used for 

quantification of area of α’/β’ lobes. Quantification using these lobe specific markers 

revealed a marked decrease in the area of all the MB lobes in the dTip60E431Q flies 

compared to the control flies (OK107-GAL4; UAS-GFP) (Figure 4D). On the contrary, 

adult brains from the dTip60WT flies did not exhibit any significant effect on α/β, α’/β’ 

and γ lobes on either side of the brain as revealed by GFP (Figure 4C’ and 4D), Fas II 

(Figure 5C’) and Trio labeling (Figure 6C’). Thus, the expression of Tip60 within the MB 

lobes and the axonal growth defects observed due to disruption of Tip60’s HAT function 

together suggest that Tip60 HAT activity may play essential roles in MB axonal 

development.  

 

DISCUSSION 

 Transcription of genes involved in synaptic plasticity is a highly regulated process 

and it is becoming increasingly clear that HATs and HDACs are key regulators in this 

process [278,279]. Here, we provide evidence that the HAT Tip60 plays an integral role 

in memory formation in Drosophila. Inducing expression of dominant negative mutant 

form of Tip60 using the OK107-GAL4 driver that drives expression in all the lobes of the 

MB results in defects in immediate recall memory while there is no effect on learning. 

These memory defects are also accompanied by axonal growth defects that are evident in 
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dorsal α/ α’ and medial β/ β’ and γ lobes of the adult MB in these flies with no marked 

effect on the larval MB structure. We have recently reported a similar effect in the axons 

of Drosophila small ventrolateral neurons (sLNv), a well characterized model system for 

studying axonal growth, wherein disruption of Tip60’s HAT function affects sLNv axon 

growth in the adult flies although there was no effect in the third instar larva [170].  

The α, β, and γ neurons composing the mushroom body undergo considerable 

structural reorganization during embryonic, larval and pupal development. The γ neurons 

are the earliest born and develop during first instar larval stages while development of 

α’/β’ axons and α/β axons takes place during the third instar larval and pupal stages, 

respectively [280]. Although the α/β lobes appear much later in development than the 

α’/β’ lobes, the dramatic effects we observe on both these lobes in the dTip60E431Q adult 

flies indicate that Tip60’s HAT activity may be crucial for development of α/β lobes as 

well as for maintaining branch stability in the larval born α’/β’ lobes as development 

proceeds. During metamorphosis, the γ neurons undergo a stereotypical process of axon 

elimination wherein the dorsal and medial segments of its axon are pruned back 

[281,282]. The γ axons subsequently re-extend medially during pupal remodeling. 

Tip60’s HAT activity likely mediates regeneration of γ axons as well during pupal 

development as evidenced by the severe reduction of these axons in the adult flies that 

express the HAT defective dTip60E431Q mutant. While these effects suggest that Tip60 

HAT activity is required for mediating MB axonal growth metamorphic development, the 

precise developmental window of Tip60 requirement needs further investigation.   

Outgrowth and stabilization of axons during development of the nervous system 

and reorganization of axonal connections in the adult are based on the dynamic 
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rearrangement of the cytoskeleton [283,284]. Axon growth and elongation depends, 

among other factors, on microtubules polymerization [285] and acetylation of α-tubulin 

has been reported to stabilize microtubules and promote polymerization [286]. Tip60 has 

also been reported to partially acetylate microtubules in the larval neuromuscular 

junction, an effect that was dependent on its HAT function [173]. Our analysis also 

reveals that Tip60 is localized to all the lobes of the mushroom body which raises the 

possibility that Tip60 may promote axonal growth by modulating cytoskeletal dynamics 

in the MB through direct binding and acetylation of cytoskeletal proteins that function to 

promote and stabilize axon growth. In addition, localization of Tip60 in the Kenyon cell 

nuclei also suggests a transcriptional regulatory function that is dependent on its HAT 

activity. The E431Q mutation in the HAT-defective version of Tip60 (dTip60E431Q) while 

reducing Tip60 HAT activity, does not interfere with its ability to assemble into a protein 

complex [69,237]. Thus, the mutant dTip60E431Q protein likely exerts its dominant 

negative action over endogenous wild-type Tip60 via competition with the wild-type 

Tip60 protein for access to native protein complexes, with subsequent negative 

consequences on histone acetylation and gene regulation critical for mediating axonal 

growth and memory formation. 

While considerable evidence supports a crucial role for MBs in immediate recall 

memory (i.e. 0-2 mins memory) in the odor avoidance paradigm [287-289], MBs have 

been reported to be dispensable for immediate recall memory pertaining to courtship 

conditioning [290]. However, besides the MBs, several other brain regions have been 

identified to be important for courtship and courtship learning. In fact, basic courtship 

involves communication between the projection neurons from the antennal glomeruli 
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with higher centers in the lateral protocerebrum and mushroom bodies [263]. Recent 

studies using cobalt labeling and ectopic expression of the ATP receptor P2X2 in the MB 

Kenyon cells also suggest the existence of functional feedback from MBs to the antennal 

lobes, a process crucial for sensory processing [291,292]. Furthermore, such functional 

feedbacks from the Kenyon cells are thought to be mediated by the β and γ lobes [292] 

which are also severely affected in the dTip60E431Q flies. Changes in neuronal 

connectivity in the central nervous system are also thought to contribute to behavioral 

defects in several Drosophila learning mutants that alter cAMP signaling [293]. Thus, we 

speculate that the axonal growth defects we observe in the dTip60E431Q flies may result in 

disruption of synaptic connectivity between the MB and neural circuits in the 

protocerebrum essential for sensory processing, subsequently leading to the observed 

memory impairment. Intriguingly, although overexpression of wild type Tip60 

(dTip60WT) did not have any marked effect on the MB structure per se, the dTip60WT 

expressing flies exhibit defects in immediate recall memory similar to the dTip60E431Q 

flies. Overexpression of wild type Tip60 in the Drosophila nervous system has been 

reported to induce bidirectional changes in expression genes that are enriched for 

neuronal functions [69,285]. Thus, it is likely that increasing Tip60 mediated acetylation 

in the MB can also lead to complex changes in the chromatin landscape resulting in 

misregulation of genes that are induced following patterned synaptic stimulation, such as 

behavioral experiences and play a critical role in transformation of activity in neural 

circuits into accessible memories in the brain.  

Together, these data support an epigenetic role for Tip60 in the development of all 

three subtypes of MB neurons by regulating axon extension and branching in the later 
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stages of brain development during pupal metamorphosis. Drosophila MBs manifest not 

only developmental reorganization [265,294], but also experience-dependent plasticity 

[295-297]. The memory effects that we observe due to misregulation of Tip60’s HAT 

activity in the MB, a highly plastic brain region that is also well known for its role in 

multimodal sensory integration and associative learning further identifies a transcription 

regulatory function for Tip60 in promoting expression of genes that are essential for 

experience dependent associative memory. Identification of the repertoire of genes 

regulated by Tip60 and mapping the exact mechanism by which Tip60 mediates the 

observed effects on the MB structure and function will be the subject of future studies.  
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WORK IN PROGRESS 

Genome-wide profiling of target genes regulated by Tip60 using ChIP-Seq 

 Chromatin immunoprecipitation (ChIP) has become an important assay for the 

genome-wide study of protein-DNA interactions and gene regulation [298]. A typical 

ChIP experiment involves treating cells with a cross-linking agent like formaldehyde to 

preserve protein-DNA interactions. The DNA is then sheared into small, relatively 

uniform fragments using either sonication or enzymatic digestion, and specific protein-

DNA complexes are immunoprecipitated with an antibody that targets the DNA binding 

protein of interest. Following immunoprecipitation, the cross-linking is reversed, proteins 

digested and DNA is recovered. The DNA can then be analyzed by a number of different 

methods to determine which DNA fragments were in complex with the protein of 

interest. Standard PCR methods are often employed to measure the relative abundance of 

a particular DNA sequence enriched by immunoprecipitation using the protein of interest 

versus an immunoprecipitation with a non-specific antibody control or no antibody 

control. Alternatively, genome wide analysis of protein binding sites can be acheived by 

hybridization of the DNA pool to a tiling array (ChIP-chip) or by end sequencing the 

precipitated DNA (ChIP-Seq) [299].  

 Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) is emerging 

as a powerful technique to generate genome wide read-out of the protein binding sites 

and is achieved by end sequencing millions of different DNA fragments [300]. Owing to 

the tremendous progress in next-generation sequencing technology, ChIP–seq offers the 

feasibility of generating higher resolution genome-wide profiling of DNA-binding 
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proteins with less background noise and greater coverage and has thus become an 

indispensable tool for studying gene regulation and epigenetic mechanisms. Nearly all 

ChIP–seq data to-date have been generated through the Illumina Genome Analyzer, 

although other platforms, such as Applied biosystems’ SOliD and the Helicos platform, 

are now available [301]. ChIP-Seq data analyses typically generate regions of high 

sequencing read density, referred to as “peaks” that evoke the visual impression of many 

reads mapping to a specific region. In other words, peaks are genomic regions that are 

enriched by the antibody of interest in comparison to fewer reads mapping to the 

observed non-enriched genomic background. 

 In order to generate high resolution whole genome profiles of genes regulated by 

Tip60, chromatin immunoprecipitation (ChIP) assays were carried out using Drosophila 

Schneider 2 (S2) cells, the details of which are described below. 

Cell culture 

Drosophila S2 cells (Invitrogen, Carlsbad, CA ) were grown at 22°C in 

Schneider's Drosophila Medium (Invitrogen, Carlsbad, CA) supplemented with 10% heat 

inactivated Fetal Bovine serum (SAFC Biosciences, Lenexa, KS) and Penicillin-

Streptomycin (Invitrogen, Carlsbad, CA). 

 

Chromatin immunoprecipitation  

Chromatin precipitation assays were performed using ChIP-IT Express Kit 

(Active Motif, Carlsbad, CA), following the manufacturer’s protocol. Briefly, protein 

from 1-5 x 107 cells was cross-linked to DNA using 1% formaldehyde for 10 mins at 
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room temperature. Cross-linking was quenched by adding 2.5M glycine to a final 

concentration of 0.125M. Quenching was performed at room temperature for 10 minutes 

with constant agitation. The cells were the pelleted by centrifugation for 10 mins at 2500 

rpm at 4oC. The cells were washed with 1 mL of 1X PBS, pelleted by centrifugation for 

10 mins at 2500 rpm at 4oC. The pellet was then resuspended in 1 mL of Cell Lysis 

Buffer supplemented with 5uL each of protease inhibitor cocktail (PIC) and PMSF. The 

cells were transferred to an ice cold douncer and dounced on ice to aid in release of 

nuclei. Lysed cells were transferred to a 1.7ml centrifuge tube and centrifuged for 10 min 

at 5000 rpm at 4oC to pellet the nuclei. The supernatant was removed and the pelleted 

nuclei were resuspended in 350 ul of Shearing Buffer supplemented with 1.75ul each of 

PIC and PMSF. The nuclei were sonicated at 30% output using Sonic dismembrator 

(Fischer Scientific, Pittsburg, PA) on ice for 40 seconds. Sonication was carried out for a 

total of 3 times with 2 min intervals on ice. The sheared chromatin was centrifuged at 

15000 rpm for 10 mins at 4oC. The supernatant containing the sheared chromatin was 

transferred to a fresh 1.7 ul centrifuge tube.  In order to check the shearing efficiency, a 

50 ul aliquot of the sheared chromatin was reverse cross-linked by incubating at 65oC 

overnight. Thereafter, the sheared chromatin sample was treated with 10 ul of proteinase 

K by incubating at 37oC for 15 mins and DNA was precipitated using phenol:chloroform. 

10 ul of the sheared chromatin was loaded on a 1% agarose gel and electrophoresed at 

100V for 45 mins. Optimal sonication shearing resulted in a 150 bp – 1500 bp smear 

(Figure 1).   

Chromatin immunoprecipitation (ChIP) was carried out with 50ug of sheared 

chromatin using three different antibodies: A) 10 ug of RNA Pol II antibody (Abcam, 



115 
 

Cambridge, MA); B) 10 ug of Tip60 antibody that targets residues 450-513 in the C-

terminus of Tip60 (Abcam, Cambridge, MA); C) 10 ug of Tip60 antibody that targets 

residues 500-513 in the C-terminus of Tip60 (Open Biosystem, Huntsville, AL). Each 

ChIP reaction was set up in 1.7 ul centrifuge tubes by adding 25 ul of protein G magnetic 

beads, 20 uL ChIP buffer I, 2 ul of PIC to 50 ug of chromatin and 10 ug of the respective 

antibody in a total reaction volume of 200 ul. A mock reaction containing all reagents 

except the antibody was also set up as a control. The tubes were incubated at 4oC 

overnight on end-to-end rotator. Following this incubation, the beads were washed once 

with ChIP buffer I and twice with ChIP buffer II. The washed beads were then 

resuspended in 50 ul Elution Buffer AM2 and incubated at room temperature on an end-

to-end rotator. 50ul of Reverse Cross-linking Buffer was added to the eluted chromatin 

and mixed by pipetting up and down. The beads were then allowed to pellet and the 

supernatant containing precipitated DNA (ChIP’d) was transferred to a fresh centrifuge 

tube. A small aliquot (usually 10 ul) of the sheared chromatin was also processed to serve 

as “Input” DNA. To 10 ul of the Input DNA sample, 88 ul of ChIP Buffer II and 2 ul of 

5M NaCl were added. The ChIP’d DNA and Input DNA samples were incubated at 95oC 

for 15 mins to reverse cross-linking and the treated with 2 ul proteinase K by incubating 

at 37oC for 1.5 hrs. Proteinase K digestion was stopped by adding 2 ul of Stop Buffer at 

room temperature.  

Quantitative PCR analysis 

Following the final elution, cross-link reversal and proteinase K digestion of the 

immunoprecipitated chromatin, the ChIP’d DNA and Input DNA samples were analyzed 

by quantitative PCR analysis. Prior to PCR, the Input DNA was diluted a 100 fold in TE. 
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PCR reactions were carried out in triplicate in 20 ul reaction volumes containing 10 ul of 

SYBR green PCR master mix (Applied Bioystems, Poster City, CA, USA), 2 ul of DNA 

template and 1.5 uM each of forward and reverse primer. Quantitative PCR was 

performed on an ABI 7500 Real Time PCR System (Applied Biosystems, Poster City, 

CA, USA). PCR was carried out by 40 cycles at 95oC for 45 sec, 55oC for 45 sec, and 

72oC for 1 min with plate readings recorded after each cycle. Drosophila primer sets that 

amplify each of the following genes were used for the PCR analysis: GAPDH1 (Active 

Motif, Carlsbad, CA), Tip60 and LRP1. For each primer, fold enrichment was calculated 

using the slope of a standard curve generated from serial 10 fold dilutions of the Input 

DNA. First, the Ct values were used to estimate DNA quantity of the ChIP and No 

antibody control samples. Fold enrichment was then calculated as a ratio of the DNA 

quantity in the ChIP and No antibody control. Figure 2 illustrates significant fold 

enrichment of each of the above mentioned genes in DNA samples that were 

immunoprecipitated with the RNA Pol II or Tip60 antibodies.  

Sequencing ChIP samples 

ChIP-DNA library generation and sequencing 

Sequencing of ChIP DNA samples will be performed using the Illumina 

HiSeq2000 platform. In order to allow massive parallel sequencing, ChIP samples have 

to be first converted into DNA libraries using Illumina recommendations. DNA library 

preparation and sequencing will be carried out at the DRC/IDOM Functional Genomics 

Core, University of Pennsylvania. Briefly, Illumina library generation involves 

introducing oligonucleotide adapters at the ends of the ChIP DNA fragments that were 
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bound by the protein of interest. These adapters allow hybridization of the sample to a 

flowcell containing a lawn of primers which is used for subsequent cluster generation and 

sequencing-by-synthesis.  

During Illumina library preparation, the sheared ChIP DNA is end repaired. A 

single adenosine base (“A”) is added to the 3’end of both strands, preparing them for 

ligation to the sequencing adapters. This is followed by annealing and ligation to the 

double stranded adapter containing a “T” overhang.  A short PCR amplification (15-17 

cycles) with primers annealing to the adapter sequence is performed to generate a 

population of adapter-ChIP DNA fragments termed the library. In order to enable 

sequencing of multiple sample libraries, barcoded Illumina libraries will be generated by 

replacing the above adapter sequences with “indexed” adapter sequences that contain 

adapter sequences followed by a nucleotide tag of at least two bases (called the barcode 

or index) and terminated by a “T” for annealing and ligation to the end repaired DNA 

containing an “A” overhang. Size selection on a 2% agarose gel allows isolation of the 

amplified DNA library between 150 and 350 bp. This is the optimal range of fragment 

size for hybridization to the flowcell and cluster generation (according to Illumina’s 

recommendations).  

ChIP-Seq data analysis plan 

Genome Alignment 

Following sequencing on the Illumina HiSeq2000 platform, Illumina Analysis 

Pipeline will be used for primary data acquisition, determining base calls and confidence 

scores from the fluorescent signals on the Genome Analyzer. Reads (sequence tags) that 
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are 35 bases long and have less than 5 ambiguous bases will be collected along with their 

corresponding quality tracks from the “Bustard” base calling module of Illumina 

Analysis Pipeline [302]. The reads will then be transformed into FASTQ format [303]. 

Input reads will be iteratively mapped to the Drosophila melanogaster genome (BDGP 

Release 5) using Bowtie alignment program [304] with default mismatches and indels 

allowance settings and the best genomic mapping site(s) will be reported.  

Identification of enriched regions 

After sequenced reads are aligned to the genome, the next step is to identify 

regions that are enriched in the ChIP sample relative to the control with statistical 

significance [301]. This can be achieved by ‘peak callers’ that scan along the genome to 

identify the enriched regions that are then visually represented as a ‘peak’ in 

corresponding regions of the genome. For the current ChIP-Seq data analysis, enriched 

regions in the target data will be identified using CisGenome, an integrated software 

system for analyzing ChIP-seq data [305,306]. CisGenome’s peak calling algorithm uses 

a sliding window approach to scan the genome. For each window, the number of reads in 

the ChIP and the control sample will be counted. A binomial distribution will then be 

estimated from the data to calculate the probability of finding reads by chance within a 

genomic region. Using this estimation, a false discovery rate (FDR) for each window will 

be determined. Windows with a FDR smaller than a specified cutoff will be reported as 

‘peak call’ and thus represent significant binding regions. For each ChIP-Seq dataset, the 

final ChIP-Seq read output will be recorded into files in wiggle track format (WIG) and 

browser extensible format (BED) for viewing the data in the UCSC Genome Browser.  
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Downstream Analysis 

In order to gain insight into the biological implications of the ChIP-Seq data, the 

following follow-up analyses will be performed.  

Motif discovery: 

In order to identify potential regulatory sequences in the genome that are bound 

by Tip60 containing complexes, the ChIP-Seq data will be further analyzed to identify 

binding sequence motifs. This will be done by employing the recently published software 

tool, Peak-Motifs [307]. Peak-Motifs uses peak sequences generated from ChIP-Seq 

experiments to identify key binding motifs. It further compares the identified motifs with 

transcription factor binding motifs from various databases, predicts the location of 

binding sites within the peaks and exports them in a format suitable for visualization in 

the UCSC Genome Browser 

Relationship to gene structure: 

 Another basic analysis that can be performed with the Tip60 ChIP-Seq data is to 

annotate the location of the peaks on the genome in relation to known genomic features, 

such as the transcriptional start site (TSS), exon-intron boundaries and the 3’ end of 

genes. This will be done as described by [308]. Briefly, genomic co-ordinates of TSS, 

transcription end points, exon-intron junctions, intron-exon junctions will be collected 

from Drosophila melanogaster annotation database R5.5 (ftp://ftp. flybase.net/releases). 

Genes identified in the different experimental groups will be annotated by aligning them 

in the same direction at the TSSs, at the mid-points of gene bodies and transcription end 

points, respectively.  
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In vivo gene expression analysis of target genes identified from ChIP-Seq  

A) Functional annotation of target genes   

Following identification of target genes that exhibit significant enrichment in the 

Tip60 ChIP-Seq data, functional annotation of the genes will be carried out using DAVID 

annotation tool [309]. A subset of genes that map to synaptic plasticity, learning and 

memory related pathways will be further analyzed as below.  

B) Quantitative RT-PCR analysis  

 In order to gain insight into the mechanism underlying the learning and memory 

defects observed in the Tip60 mutant flies, the ChIP-Seq target genes that map to 

synaptic plasticity and/or learning/memory pathways will be examined by quantitative 

RT-PCR analysis to determine whether misregulation of such genes contribute to the 

observed memory defects. This will be done by preparing cDNA from whole adult flies 

that ubiquitously express either the HAT defective Tip60 mutant (dTip60E431Q) or 

additional copies of the wild type Tip60 (dTip60WT). Expression of the respective 

transgenes will be driven using the pan-neuronal ELAV-GAL4 driver. Canton S flies will 

serve as controls for this analysis. Gene expression changes will then be analyzed by 

quantitative RT-PCR analysis using gene specific primers.   
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CHAPTER 5: PROSPECTS FOR FUTURE RESEARCH 

The field of neuroepigenetics is evolving at a rapid pace. It is also becoming an 

enticing area of research as increasing number of studies bolster the concept that 

epigenetic dysregulation of gene expression and chromatin architecture could play a 

prominent role in the pathophysiology of age related memory disorders. Recent evidence 

indicates that chromatin remodeling via histone acetylation plays a crucial role in 

regulating synaptic and cognitive function [40] [310]. However, further studies are 

needed to identify specific HATs that mediate these effects and to determine the precise 

sites of histone acetylation alterations, key genes affected, and associated signaling 

changes involved in this regulatory mechanism. Understanding how specific HATs 

impacts gene expression changes in vivo  has been greatly aided by chromatin 

immunoprecipitation studies coupled with high throughput sequencing technologies. 

While the current Tip60 based ChIP-Seq studies will aid in mapping protein binding sites 

across the genome and provide spatial and temporal resolution of protein-DNA binding 

events, further genetic and experimental manipulation studies are required to place the 

ChIP data in a meaningful biological context. A starting point in this regard would be to 

examine how specific gene targets identified by the Tip60 ChIP-Seq studies are affected 

by misregulation of Tip60’s HAT function, for instance in flies expressing dTip60E431Q or 

dTip60WT. Furthermore, ChIP using specific histone antibodies followed by qPCR using 

gene specific primers will help identify specific histone proteins and lysine residues that 

are targeted by Tip60 for gene specific transcriptional regulation and provide mechanistic 

insight into how such target genes are affected by misregulation of Tip60’s HAT activity.  
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Histone acetylation has been reported to play a role in synaptic plasticity, 

experience-dependent neural plasticity, learning and memory and neuroprotection 

[311,312]. A number of recent studies have also demonstrated a cognitive role for sleep 

in various animal models including humans [313]. While some researchers believe that 

sleep promotes global synaptic downscaling [314,315], others propose that sleep also 

triggers experience-dependent synaptic upscaling able to consolidate recently acquired 

memories [316,317]. Consistent with this notion, flies increase sleep both after exposure 

to an enriched social environment and after courtship conditioning that induce long-term 

memory [318]. Increased sleep after social enrichment has also been reported to be 

dependent upon genes that are required for learning and memory, including genes that 

alter cyclic adenosine monophosphate signaling [319]. In order to examine if Tip60 plays 

a role in experience-dependent gene expression changes that underlie neural plasticity, 

specific Tip60 regulated genes (identified by ChIP-Seq studies) that have memory related 

functions can be examined in flies raised in isolation versus flies raised in groups 

(socially enriched). Furthermore, the effect of sleep deprivation on regulation of such 

gene targets and on memory formation in the dTip60E431Q and dTip60WT flies can be 

examined to gain insight into whether Tip60 also plays a role in sleep dependent 

mechanisms of neural plasticity that underlie memory formation. While our studies thus 

far have identified a neuroprotective role for Tip60 under neurodegenerative conditions, 

Tip60 seemingly operates in a highly complex and multifunctional manner at a large 

number of genomic loci as evidenced by the multitude of genes bidirectionally regulated 

by Tip60 [69]. Therefore, it will be important to examine and clarify precisely which of 

these genomic loci impacted have degenerative effects when misregulated by Tip60 as 
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well as identify Tip60 regulated neuroprotective factors. Such studies will help pinpoint 

the specific roles such gene targets play in a particular neuronal process and may thus 

serve as better targets for epigenetic based therapeutic interventions.  

It is becoming increasingly clear that in response to signaling events, the three 

dimensional organization of the genome influences recruitment of cis-acting regulatory 

elements and chromatin modifying enzymes to transcriptional hotspots [320]. For 

instance, recent three dimensional reconstruction analyses show that the nuclei of 

hippocampal neurons undergo infolding and changes in chromatin organization in 

response to short bursts of synaptic activity. Such nuclear infolding events were initiated 

by intrasynaptic NMDA receptors that lead to transcriptional activation mediated by Ca2+ 

and ERK-MAPK signaling [321].  However, for many known post-translational 

modifications that recruit chromatin regulatory enzymes, the signaling mechanisms that 

link them to environmental cues remains obscure [2].  With regards to Tip60, 

identification of signaling pathways that modulate its activity will greatly enhance our 

understanding of how Tip60 mediated neuronal transcriptional programs respond to 

environmental changes. It is also vital to understand if and how Tip60 interplays with 

other chromatin modifiers to regulate gene expression.  

Given the essential roles Tip60 plays during development as well as in 

maintaining the functional status of differentiated neurons in the adult brain, it is essential 

to distinguish such roles. For instance, the morphological effects observed due to 

misregulation of Tip60 in the mushroom body could be induced either by developmental 

and/or degenerative defects in the axons. Developmental abnormalities in axonal growth, 

branching, or guidance or degeneration leading to axon loss could result in the shortening 
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and thinning of MB lobes observed in the dTip60E431Q mutants. The MB γ-axons are the 

earliest born and develop as early as in the first instar larva while the α’/β’ and α/β axons 

are third instar larval and pupal born, respectively.  Although no obvious phenotype was 

observed in the dTip60E431Q third instar larva, to differentiate between developmental and 

degenerative effects, wild type control and mutant brains can be analyzed during the 

pupal stage when the α/β axons are still developing. Wild type, control and mutant brains 

can be examined one day after puparium and four days after puparium.  If the MB 

phenotype is observed in the early pupal brains, persistence of the same throughout pupal 

development without exacerbation in the adult flies would indicate that the observed MB 

phenotype in the dTip60E431Q flies is the consequence of developmental defects rather 

than age related retraction of these axons.  

Additionally, to examine if the observed MB phenotypes are induced post-

developmentally, the temporal and regional gene expression targeting (TARGET) system 

[322] can be utilized. In the TARGET system, the conventional GAL4-UAS system is 

combined with a temperature sensitive GAL80 molecule (GAL80ts), which represses 

GAL4 transcriptional activity at permissible temperatures, thus providing temporal 

control over GAL4 activity. The system can be induced at any time during development 

or adulthood. One to several copies of the P[tubP-GAL80ts] (GAL80ts fused to tubulin 

promoter and thus expressed ubiquitously) construct can be introduced into a fly line 

carrying the OK107- GAL4 driver. Double transgenic lines carrying OK107-GAL4 and 

P[tubP-GAL80ts] can then be crossed to either the UAS-GFP; UAS-dTip60E431Q or UAS-

GFP; UAS-dTip60WT flies. F1 progeny resulting from each of these crosses can be raised 

to adulthood at lower temperatures (18oC) to repress GAL4 mediated expression of the 
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respective transgenes. The GAL4-UAS system can then be induced by exposing the F1 

progeny after eclosion to elevated temperatures (e.g. 30oC) and MB phenotypes 

examined using GFP expression. The presence of MB axonal growth defects in the adult 

flies would then indicate that the observed MB phenotypes are a consequence of 

degenerative effects induced post-developmentally by misregulation of Tip60’s HAT 

activity. 

If the observed MB phenotypes in the dTip60E431Q and dTip60WT flies are verified 

by the above experiments to be developmental defects rather than post-developmental 

effects, it is likely that such anatomical effects contributed to the memory defects 

observed in these flies or could be induced independently by impacting specific memory 

related neural circuits. This can be examined by utilizing the TARGET system described 

above. F1 progeny resulting from a cross between P[tubP-GAL80ts]; OK107-GAL4 and 

either UAS-dTip60E431Q or UAS-dTip60WT can be raised at 18oC to adulthood and then 

transferred to 30oC to induce GAL4 mediated transgene expression specifically in the 

adult flies. Memory defects can then be assessed with the Drosophila courtship 

suppression assay using F1 male progeny expressing either dTip60E431Q or dTip60WT. The 

presence of memory defects in these flies similar to the ones observed when the 

transgenes are expressed throughout development would indicate that the memory defects 

are induced post-developmentally independent of the MB phenotypes.  

Taken together, our studies thus far demonstrate yet another example of the 

importance of HAT function during nervous system development, regulation of certain 

neuronal genes associated with various forms of behavioral outputs like sleep, learning, 

memory and synaptic function and add dTip60 to the growing list of HAT chromatin 
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regulators critical for nervous system function. Future investigation into the molecular 

mechanisms underlying Tip60 HAT function in specific neuronal processes in the fly, 

particularly those associated with learning and memory, should enhance our 

understanding into the link between acetylation, cognitive aging and age-related 

neurodegenerative disorders and may further provide insight into the utility of specific 

HAT activators as therapeutic strategies. 
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CHAPTER 6: TABLES AND FIGURES 

 

Chapter 2 Tables  

Table 1.  Transgenic fly lines used for this study. 

Transgenic fly lines 
a Source 

b 
UAS-dTip60

E431Q
 A Lorbeck et al., 2011 

UAS-APP; dTip60
E431Q

 A              
           This study UAS-APP dCT: dTip60

E431Q
 A 

UAS-dTip60
E431Q

 B Lorbeck et al., 2011 
UAS-APP; dTip60

E431Q
 B 

            This study 

UAS-APP dCT; dTip60
E431Q

 B 
UAS-dTip60

WT
 A 

UAS-dTip60
WT

 B 
UAS-dTip60

WT
 C 

UAS-APP; dTip60
WT

 A 
UAS-APP; dTip60

WT
 B 

UAS-APP; dTip60
WT

 C 
UAS-APP dCT; dTip60

WT
 A 

UAS-APP dCT; dTip60
WT

 B 
UAS-APP dCT; dTip60

WT
 C 

 

a The Tip60 P-element insertion is located on chromosome 3 and the APP P-element 
insertion is located on chromosome 2.  
b Indicates where the transgenic fly lines were generated. 
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Table 2. Developmental stage at which expression of the different transgenes 

induces lethality.  

Transgenic fly lines 
a Developmental Stage of Lethality

b 
Ubiquitous expression

c Pan-neuronal expression
d 

Wild type (w
1118

) Not lethal Not lethal 
APP Pupae / Adult Pupae / Adult 
APP dCT Not lethal Not lethal 
dTip60 

E431Q
 A Late 3

rd
 instar Late 3

rd
 instar* 

APP; dTip60 
E431Q

 A Early 2
nd

 instar 
(hatching delayed by 24 - 48 hrs) Early 2

nd
 instar* 

APP  dCT; dTip60 
E431Q

 A Late 3
rd

 instar Late 3
rd

 instar* 
dTip60 

E431Q
 B Late 3

rd
 instar Late 3

rd
 instar 

APP; dTip60 
E431Q

 B Early 2
nd

 instar 
(hatching delayed by 24 - 48 hrs) Early 2

nd
 instar 

APP dCT; dTip60 
E431Q

 B Late 3
rd

 instar Late 3
rd

 instar 
dTip60

WT 
 lines  A, B, C Partially lethal Partially lethal 

APP; dTip60
WT

  lines  A, B, 
C Partially lethal Partially lethal 
APP dCT; dTip60

WT  
lines  A, 

B, C Partially lethal Partially lethal 
 

a Ten female virgin flies homozygous for the indicated transgene or control w1118 were 
crossed to seven males homozygous for the Gal4 driver. All crosses were carried out in 
triplicate at 25o C.  

 b The crosses were monitored daily and the developmental stage at which lethality 
occurred was scored. 
C The 337-Gal4 was used to drive ubiquitous expression of transgenes. 
d The 179-Gal4 driver located on the X-chromosome was used to drive pan-neuronal 
expression of transgenes. * Neuronal expression of low expressing independent fly line 
dTip60 HAT mutant (dTip60E431Q A) alone or in conjunction with APP/APP dCT 
induced lethality in a fraction of the respective F1 progeny at the indicated developmental 
stage while the remainder of F1 progeny did not exhibit any lethal effect.    
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Table 3.  Apoptosis pathways significantly misregulated in response to dTip60 HAT 
loss.   

Apoptosis related pathway Number of genes 
Alzheimer disease – presenilin pathway 11 
Angiogenesis 28 
Apoptosis signaling pathway 19 
ATP synthesis 3 
Denovo purine biosynthesis 15 
Denovo pyrimidine deoxyribonucleotide biosynthesis 7 
Denovo pyrimidine ribonucleotide biosynthesis 6 
EGF receptor signaling pathway 26 
FAS signaling pathway 8 
FGF signaling pathway 28 
Huntington disease 37 
Integrin signaling pathway 32 
Notch signaling pathway 4 
Oxidative stress response 11 
P53 pathway 33 
Parkinson disease 15 
Wnt signaling pathway 46 
 

  



130 
 

Table 4: Gene expression changes of dTip60E431Q misregulated target genes in the 

different transgenic lines 

Gene Name 
a 

Transgenic Fly Line (Relative Fold Change) 
b 

dTip60
E431Q dTip60

WT APP; 

dTip60
E431Q APP; dTip60

WT 
Buffy 

§, ǂ 1.4 1.6 -1.5 3.5 
ALiX 1.4 2.1 1.5 2.3 

CalpA 
§, ǂ 1.5 3.5 -2.1 -1.8 

TRAF4 
§, ǂ 1.7 3.9 -1.5 -1.7 

Frizzled 
§ 2.3 -1.5 -2.1 -1.5 

Wingless 
§ 2.4 -1.7 -1.9 -1.5 

dMyc 
§ 3.8 -3.2 -2.5 -2.3 

PDCD5 
§ -4.7 2 1 1.8 

Dmel\CG9418  
ǂ 1193.4 14.8139954 824.094897 2472.348951 

 

a Quantitative RT-PCR analysis was performed for the indicated target genes 
b Staged second instar larvae ubiquitously expressing the indicated transgene(s) were 
used for cDNA preparation. Quantitative RT-PCR reactions were carried out in triplicate 
and the relative fold change was calculated using the 2-ΔΔCT method using RP49 as 
control. § Genes that were differentially regulated between flies expressing the Tip60 
HAT mutant dTip60E431Q alone and in conjunction with APP. ǂ Gene that were 
differentially regulated between flies overexpressing dTip60WT alone or together with 
APP. 
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Chapter 2 Figures 

 

Figure 1.   Generation and characterization of dTip60E431Q containing APP or APP-
dCT double transgenic flies. The dominant negative HAT defective lines dTip60E431Q A 
or dTip60E431Q B were introduced into an APP or APP dCT background using standard 
genetic techniques.  (A) Histogram depicting qPCR analysis of exogenous levels of 
dTip60E431Q  in staged F1 second instar larval progeny resulting from a cross between the 
ubiquitous driver 337 and either dTip60E431Q (lines A and B), APP; dTip60E431Q (lines A 
and B) or APP dCT; dTip60E431Q  (lines A and B). 337-Gal4 crossed to w1118 served as a 
control. Quantification of the exogenously expressed dTip60E431Q mRNA levels relative 
to endogenously expressed dTip60 mRNA was done using the comparative CT method 
with RP49 as internal control as described in (Lorbeck et al, 2011).   Asterisks (*)  
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Figure 1 (Continued) 

indicate significant fold change between the lines A and B for each genotype with values 
of p<0.05; n = 3. Error bars represent standard error of the mean. (B) Semiquantitative 
RT-PCR analysis of APP or APP dCT expression in the different transgenic lines to 
confirm APP transgene presence.  cDNA was prepared as before from staged second 
instar larvae ubiquitously expressing dTip60E431Q with APP or APP dCT (lines A or B in 
each case) and PCR amplified using primers that flank a 100 bp region in the N-terminal 
portion of APP.   PCR products were visualized using 2% agarose gel containing 
ethidium bromide. Staged second instar larvae ubiquitously expressing APP or APP dCT 
were used as controls. 

 

  



133 
 

 

 

 

 

 

Figure 2. Generation and characterization of dTip60WT containing APP or APP-
dCT double transgenic flies. Flies expressing varying levels of wild type dTip60 (low, 
medium and high) were generated and then each introduced into APP or APP dCT 
background using standard genetic techniques.  (A) The amount of wild type dTip60 that 
is exogenously induced relative to endogenous dTip60 was quantified by RT-PCR 
analysis of staged F1 second instar larvae resulting from the a cross between the 
ubiquitous driver 337 and either dTip60WT (lines A, B and C), APP; dTip60WT (lines A, B 
and C) or APP dCT; dTip60WT (lines A, B and C). 337-Gal4 crossed to w1118 was used as 
control. The relative fold change in mRNA expression levels between exogenous and  
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Figure 2 (Continued) 

endogenous dTip60 was measured as described before using the comparative CT method 
with RP49 as the internal control, and these results are summarized in the histogram. The 
amount of exogenously induced wild type dTip60 levels is significantly different between 
lines A, B and C in each case with values of p<0.05; n = 3. Error bars represent standard 
error of the mean. (B) Semi-quantitative RT-PCR analysis of APP or APP dCT 
expression in the different dTip60WT containing transgenic lines to confirm APP 
transgene presence.   cDNA was prepared as before from staged second instar larvae 
ubiquitously expressing dTip60WT with APP or APP dCT (lines A, B or C in each case) 
and PCR amplified using primers that flank a 100 bp region in the N-terminal portion of 
APP. PCR products were visualized using 2% agarose gel containing ethidium bromide. 
Staged second instar larvae ubiquitously expressing APP or APP dCT were used as 
controls. 
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Figure 3: Viability analysis indicates genetic interaction between Tip60 and APP in 
Drosophila. The indicated transgene was expressed ubiquitously in the fly using 337-
Gal4 driver or pan-neuronally using 179y-Gal4 driver. The number of F1 progeny that 
eclosed were counted daily. The percentage of eclosed flies was calculated relative to the 
wild type control (w1118).   All crosses were carried out in triplicate at 25o C. 
Overexpression of APP drastically reduced viability to < 10% while no effect was 
observed due to expression of truncated version of APP lacking its C-terminal domain. 
Overexpression of varying levels of wild type dTip60 (dTip60WT) also reduced viability 
in a dose independent manner. However, co-expression of dTip60WT with APP partially 
rescued the lethal effects induced by APP expression in a dose dependent manner with 
the maximum effect observed with high levels of dTip60WT. In the presence of APP 
lacking the C-terminus, overexpression of dTip60WT had similar effects seen in flies that 
overexpressed dTip60WT alone. 
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Figure 4. Quantitative RT-PCR validation of selected apoptosis related genes 
identified by microarray analysis. (A) Histogram showing relative fold change in 
expression level of apoptosis related target genes in flies expressing dTip60E431Q A.  
Staged second instar larvae were used for cDNA preparation. RT-PCR reactions were 
carried out in triplicate and the fold change was calculated using the 2-ΔΔCT method 
using RP49 as control. (B) List of selected apoptosis related target genes identified by 
microarray analysis and validated in the dTip60E431Q A line using quantitative RT-PCR. 
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Figure 5.  dTip60 mediates APP induced apoptotic neuronal cell death in the 
Drosophila  central nervous system.  Representative confocal images of  neuronal 
apoptosis visualized by TUNEL staining of  brains from staged third instar larvae 
expressing indicated transgenes driven by pan-neuronal driver 179-GAL4 .  The w1118 
larvae used as genetic background control showed no apoptosis (A).  Pan neuronal  
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Figure 5 (Continued) 

expression of dTip60E431Q induces apoptosis in a dose independent manner as evident 
from comparable levels of apoptosis seen in fly lines expressing low (B) or high (C) 
levels of dTip60E431Q.  Overexpression of wild type dTip60 increased neuronal cell death 
due to apoptosis (D).   The C-terminal domain of APP induces apoptosis as evident from 
TUNEL positive apoptotic cells in flies overexpressing APP (E) while no apoptosis was 
observed in flies expressing a truncated version of APP lacking the C-terminal domain 
(F). Co-expression of APP with low levels of dTip60E431Q (dTip60E431Q  A) enhances the 
severity of apoptosis phenotype in a synergistic manner (G) that is dependent on the APP  
C-terminal domain.  Co-expression of APP lacking C-terminus with dTip60E431Q A 
exhibited apoptosis that was comparable to that seen when dTip60E431Q  A was expressed 
alone (H). Overexpression of wild type dTip60 in the APP overexpressing background 
partially rescued the apoptosis phenotype (I) but in the presence of APP lacking C-
terminus exerted similar severity seen in flies overexpressing wild type dTip60 alone. 
Images shown represent projections of 1 um confocal slices. Apoptotic cells in the 
different genotypes were quantified by counting the number of TUNEL positive cells in 
the entire fly brain (K). 
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Chapter 3 Figures 

 

Figure 1. Tip60 immunolocalization in the Drosophila ventrolateral neurons (LNvs). 
Representative confocal image of LNvs in adult brain from Pdf-Gal4/ UAS-mCD8-
GFP/+ (control) flies stained with anti-Tip60 antibody showing strong Tip60 
immunoreactivity in lLNv (arrow) and relatively weaker expression in sLNv 
(arrowhead). GFP is shown in green (A’) and Tip60 in yellow (A’). Scale bar, 10uM. 
GFP and Tip60 staining of LNvs in adult brains of Pdf-Gal4/ UAS-mCD8-GFP/UAS-
dTip60E431Q flies (B and B’) and Pdf-Gal4/ UAS-mCD8-GFP/UAS-dTip60WT flies (C 
and C’). Quantification of Tip60 levels in LNvs (D and E, * P < 0.05 compared to 
Control) expressing dTip60RNAi, dTip60RNAi Control, overexpressing HAT mutant 
dTip60E431Q or wild type dTip60WT.  
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Figure 2. Loss of dTip60 HAT activity decreases axonal arborization in the adult 
sLNv.  Representative confocal images of sLNv axon morphology in the Control (Pdf-
Gal4/UAS-mCD8-GFP/+) third instar larval brain (A) and in the adult brain (A’), 
showing dorsally projecting axons (arrowhead) and terminal synaptic arbors (arrow). 
LNv specific induction of Tip60 RNAi response (dTip60RNAi)or expression of the HAT 
defective dominant negative dTip60 (dTip60E431Q) has no effect on sLNv morphology in 
third instar larva (B and D) but leads to collapse of synaptic arbor in the adult brain (B’ 
and D’). Expression of corresponding Tip60 RNAi control construct (dTip60RNAi Control) 
or overexpression of wild type dTip60 (dTip60WT) in the LNvs has no significant effect 
on sLNv axonal growth in the third instar larva (C and E) or the adult (C’and E’).  
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Figure 2 (Continued) 

 
Expression of equivalent levels of wild type dTip60 in the dTip60E431Q background does 
not affect the sLNv axons in the third instar larva (F) but rescues the HAT mutant 
induced retraction of sLNv axons in the adult brains (F’). Quantification of sLNv axon 
length (G, *** P<0.001 compared to Control) and synaptic arbor area (H) was done using 
NIH ImageJ software, ND – not determined. Error bars represent the 95% confidence 
interval. 
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Figure 3.  dTip60  modulates APP mediated effects on sLNv axonal growth post 
developmentally in the Drosophila CNS.  Representative images of sLNv axons in adult 
Drosophila brains expressing UAS-mCD8-GFP reporter gene at 25oC in conjunction with 
each of the different GAL4 responsive transgenes under the control of the PDF-Gal4 
driver.  sLNv axonal arborization pattern in Control (Pdf-Gal4/ UAS-mCD8-GFP/ +)  (A) 
third instar larval brain and (A’) adult, respectively.  LNv specific expression of neuronal 
isoform of (B,B’) APP or  (C,C’) APP lacking the C-terminus (APP dCT) has no 
observable effect on sLNv axon structure in both third instar larvae and adult.  (D) Co- 
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Figure 3 (Continued) 

 
expression of full length APP with HAT activity deficient mutant dTip60 (dTip60E431Q) 
has no effect in third instar larvae stage but  (D’) causes severe retraction of the sLNv 
synaptic arbor in the adult brain resulting in much shorter axons. (E) Co-expression of 
APP dCT with dTip60E431Q causes no effects in third instar larvae (E’) but causes 
shortening of the sLNv similar to shortening observed for dTip60E431Q alone.   
Overexpression of APP with wild type dTip60 (dTip60 WT) causes (F) no effect in third 
instar larvae but (F’) in adult brain causes the sLNv axons to extend further and arborize 
over a larger area, an effect that was dependent on the Tip60 interacting APP C-terminus 
as seen from the lack of any significant effect due to expression of APP dCT with 
dTip60WT (G, G’). Histogram showing quantification of the sLNv axon length shows 
significant reduction of sLNv axons in flies co-expressing dTip60E431Q with APP or APP 
dCT (* P<0.05 compared to Control) (H) and quantification of two dimensional area of 
the terminal axonal arbor using NIH Image J shows robust increase in flies co-expressing 
APP and dTip60WT (I, ***P<0.001 compared to Control). Error bars represent 95% 
confidence interval.   
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Figure 4.   dTip60 or APP expression in the LNv subsets selectively affects PDF 
immunoreactivity (IR) in the sLNv and not the lLNv.   Representative images of anti-
GFP or anti-PDF staining in lLNv (arrow) and sLNv (arrow head) soma in adult flies 
expressing each of the different transgenes (indicated next to each panel) under the 
control of the Pdf-Gal4 driver.  Panels (A-H) show anti-GFP staining used as marker to 
localize the lLNv and sLNv in the adult brains. Scale bar = 20 microns.   (A’) shows anti-
PDF staining in lLNv (arrow) and sLNv (arrow head) soma in control flies (Pdf-Gal4/ 
UAS-mCD8-GFP/ +).  (B’) LNv specific induction of dTip60RNAi results in partial loss of 
PDF IR in sLNv while (C’) expression of the corresponding dTip60RNAi Control has no  
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Figure 4 (Continued) 

 
effect on PDF. (D’) Expression of HAT activity defective dTip60E431Q results in partial 
loss of PDF IR in sLNv while (E’) overexpression of wild type dTip60 (dTip60WT) 
significantly increases PDF IR in the sLNv. (F’) Expressing equivalent amounts of wild 
type Tip60 with mutant dTip60E431Q rescues dTip60E431Q induced loss of PDF IR in sLNv 
in the dTip60Rescue flies. (G’) Expression of APP also resulted in partial reduction in 
sLNv PDF IR, an effect dependent on its C-terminus as seen from (H’) lack of any 
observable effect on PDF IR due to expression of APP lacking the C-terminus (APP 
dCT).   PDF expression in lLNv was largely unaffected in each of the different 
genotypes. Quantification of PDF-IR in sLNv (I) and in the lLNv (J). Values represent 
average of four sLNvs and four lLNv PDF-IR from 15 brains for each genotype. A 
student t-test revealed significant decrease in sLNv PDF-IR in flies expressing 
dTip60E431Q or APP compared to control (* P<0.05). Error bars represent 95% confidence 
interval.  
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Figure 5.  dTip60 and APP functionally interact to regulate PDF expression in the 
sLNv.   Representative images of anti-GFP or anti-PDF staining of lLNv (arrow) and 
sLNv (arrowhead) in adult flies expressing the different transgenes under the control of 
the Pdf-Gal4 driver as indicated above each column.   Panels (A-D) show anti-GFP 
staining used as marker to localize the lLNv and sLNv in the adult brains.   Scale bar = 20 
microns.   (A’) shows anti-PDF staining in lLNv (arrow) and sLNv (arrow head) soma in 
control flies (Pdf-Gal4/ UAS-mCD8-GFP/ +).  (B’) Co-expression of APP with HAT 
activity defective dTip60E431Q resulted in selective loss of PDF immunoreactivity (IR) in 
the sLNv although PDF-IR in the lLNv was not affected.   (C’) dTip60E431Q in the 
presence of APP dCT resulted in only a partial reduction of sLNv PDF IR similar to that 
observed when only dTip60E431Q was expressed in the LNvs.   (D’) Expressing full length  
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Figure 5 (Continued) 

 
APP or (E’) APP lacking the C-terminus with wild type dTip60WT both increased sLNv 
PDF IR but had no effect on PDF IR in the lLNv.  Quantification of PDF IR in the sLNv 
(F) and the lLNv (G) revealed significant difference in PDF expression in the different 
genotypes compared to control (*P<0.05). Error bars represent 95% confidence interval. 
Scale bar = 20 microns.  
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Figure 6.  LNv specific modulation of dTip60 HAT activity has no effect on 
generation of biphasic locomotor rhythm but leads to sleep defects in Drosophila.  
Locomotor activity records of control (Pdf-Gal4/ UAS-mCD8-GFP/ + and UAS-
dTip60E431Q/ +) and HAT mutant dTip60E431Q (Pdf-Gal4/ UAS-mCD8-GFP/ UAS-
dTip60E431Q) flies show persistence of morning and evening anticipatory behavior in both 
(A) Light:Dark (LD) and (A’) Dark:Dark (DD) conditions.  Under LD conditions, 
dTip60E431Q flies are less active during the day but also exhibit increased activity during 
the night (A). Similar activity pattern persists during the subjective day (SD) and  
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Figure 6 (Continued) 

 
subjective night (SN) in DD (A’).  (B) Digital video analysis of sleep in LD in flies 
expressing dTip60RNAi or HAT mutant dTip60E431Q and flies overexpressing 
dTip60WT revealed marked decrease in sleep during the night compared to control flies 
(Pdf-Gal4/ UAS-mCD8-GFP/ +) (n=28) while dTip60Rescue flies did not have any effect 
on night sleep.  Sleep assessment was based on behavioral immobility lasting 5 mins or 
longer. Night time sleep in dTip60RNAi and dTip60E431Q flies was characterized by 
increased bout number (B’) and decrease in bout duration (B’’) indicating fragmentation 
of sleep during the night.  dTip60WT flies also exhibited reduced consolidation of night 
sleep as seen from the decrease in night bout duration (B’’).  Flies expressing dTip60RNAi 
or dTip60E431Q displayed increase in daytime sleep although dTip60WT overexpressing 
flies and dTip60Rescue flies did not have any observable effect on daytime sleep (C). 
Daytime sleep in dTip60RNAi and dTip60E431Q flies was characterized by an increase in 
both bout number (C’) and bout duration (C’’).  ***P<0.001; *P<0.05 compared to 
control as determined by student t-test. Error bars represent 95% confidence interval.  
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Figure 7. RNAi knock down of Pdf in the sLNv recapitulates dTip60E431Q mediated 
sleep deficits.   (A) Mai-179-Gal4 driven knock down of Pdf in the sLNv (Mai-179 Gal4/ 
UAS-Pdf RNAi)  results in marked decrease in sleep during the night compared to the 
controls (Mai-179 Gal4/ + and UAS-Pdf RNAi/ +).   (A’) Night sleep was highly 
fragmented as inferred from the increase in bout number and (A’’) decrease in bout 
duration. The night time sleep deficit was accompanied by (B) increase in sleep during 
the day that was characterized by (B’) increase in bout number and (B’’) bout duration 
(n=28). *P<0.05 compared to control flies (Mai179-Gal4/+ and UAS-Pdf RNAi/ +). 
Error bars represent 95% confidence interval.   
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Figure 8. R6-Gal4 driven RNAi knock down of Pdf in the sLNv also results in sleep 
defects similar to dTip60E431Q. (A) Pdf knock down flies exhibit significant reduction in 
sleep during the night with (A’) marked decrease in bout duration, indicative of defects in 
sleep maintenance. This was accompanied by (B) increase in daytime sleepiness with 
(B’) significant increase in both bout number and (B’’) bout duration. Sample size n=28. 
*P<0.05 compared to control (R6-Gal4/+). Error bars represent 95% confidence interval. 
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Figure 9.  dTip60 and APP functionally interact to mediate day and night time sleep.   
(A) dTip60 and APP functionally interact to mediate night time sleep deficits.   Adult 
flies were entrained to cycles of 12 hr LD, and their sleep was monitored for 3 days in 12 
hr LD.  Shown is a histogram depicting the average sleep during the dark period in 
control (Pdf-Gal4/ UAS-mCD8-GFP/ +) and flies expressing each of the different 
transgenes under the control of Pdf-Gal4 driver (dark blue bars). Shown in light blue bars 
is the average sleep during the night in the respective UAS controls for each transgenic 
line (UAS-transgene/ +).   Asterisks indicate the values that are statistically different from 
those of control flies (Pdf-Gal4/ UAS-mCD8-GFP/ + and the respective UAS control), 
*P<0.05. All data bars represent mean ± SEM.   (B)  Night time sleep defects in  
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Figure 9 (Continued) 
 
dTip60RNAi, dTip60E431Q and APP flies are accompanied by an increase in daytime sleep.  
Digital video analysis of sleep for 3 days in adult flies entrained to cycles of 12 hr LD. 
Shown is a histogram depicting the average sleep during the light period in flies 
expressing each of the different transgenes under the control of Pdf-Gal4 driver (dark 
blue bars) and the respective UAS control (light blue bar).   Asterisk indicates statistically 
significant values compared to control flies (Pdf-Gal4/ UAS-mCD8-GFP/ + and the 
respective UAS controls), *P<0.05.  All data bars represent mean ± SEM.  
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Figure 10.  Schematic representation of proposed events for sleep/wake cycle rescue by 
Tip60 under APP overexpressing conditions.  Significant exacerbation of axonal arborization  
in APP;dTip60WT flies may serve as sites for neural inputs that counteract  PDF mediated sleep 
disruption through activation of compensatory sleep promoting mechanisms.  Since sLNv axon 
terminals in the protocerebrum express post-synaptic GABAB receptor, neural input from sleep 
promoting GABAergic cells in the vicinity may be such a compensatory mechanism. 
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Chapter 4 Figures 

 

 

 
Figure 1: Tip60 expression in the adult Drosophila brain. Frontal view of a wild type 
(Canton S) adult Drosophila brain stained with an antibody to Tip60 (red) and 
counterstained with anti-ELAV antibody (green). Tip60 is widely expressed in the adult 
fly brain (A) including the mushroom body lobes (A, arrow), with an expression pattern 
similar to the pan-neuronal ELAV protein (B and C). (A-C) are whole brain 
reconstruction of individual confocal image slices, scale bar 100uM. A single confocal 
plane through the mushroom body at the level of the calyx (approximately center of the Z 
stack) in flies that express mCD8-GFP under the control of OK107-GAL4 driver shows 
Tip60  expression in Kenyon cell (KC) nuclei with a halo of GFP expression in the cell 
membrane and calyx (dendritic processes) (E-G). 
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Figure 2. Tip60 is expressed in the mushroom body lobes. Adult mushroom body 
lobes in wild type (Canton S) Drosophila brain stained with Tip60 antibody (A and D) 
and co-stained with antibodies to either Fasciclin II (Fas II) (B) or Trio (E) antibodies, 
scale bar 10 uM. Fas II is a cell adhesion molecule that is expressed strongly in the 
mushroom body α/β lobes and weakly in the γ-lobe. Trio is a Dbl family protein that 
activiates Rho family GTPases and is expressed strongly in the α’/β’ lobes and weakly in 
the γ-lobe. Tip60 is expressed in all the lobes of the mushroom body and co-localizes 
with Fas II and Trio in the α/β (C) and α’/β’ (F) lobes, respectively. Tip60 also co-
localizes with Fas II and Trio in the γ-lobes (C and F). 
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Figure 3: Misregulation of Tip60 in Drosophila MB does not affect learning but 
leads to defects in immediate learning memory. Panel (A) denotes learning during the 
initial 10 mins (blue columns) and final 10 minutes (red columns) of the training phase 
during the courtship suppression assay. Genotypes are indicated. Flies expressing either 
the mutant Tip60 defective in its HAT activity (dTip60E431Q) or additional copies of wild 
type Tip60 (dTip60WT) exhibit marked decrease in courtship index during final 10 mins 
compared to the initial 10 mins, indicative of normal learning response. This is 
comparable to response observed in wild type (Canton S) flies as well as the 
corresponding GAL4 and UAS background controls.  Panel (B) denotes immediate recall 
memory (0-2 mins post training) of trained males compared to untrained (sham) males of 
the same genotype. dTip60E431Q and dTip60WT flies show no significant difference 
between trained and sham males, indicative of no immediate recall of training. Error bars 
represent 95% confidence interval. In panel (A), single asterisk indicates P < 0.05 and 
double asterisk indicates P < 0.001 compared with initial 10 mins. In panel (B), single  
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Figure 3 (Continued) 

 

asterisk indicates P < 0.05 and double asterisk indicates P < 0.001 compared with sham 
males, n=20 for trained and untrained males in each genotype. 
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Figure 4: Tip60 is required for normal structures of the adult mushroom body. 
Larval and adult mushroom body visualized with mCD8-GFP driven by pan-MB driver, 
OK107-GAL4.  Third instar larval brain in control flies (A). Scale bar 10 uM. Flies 
expressing mutant Tip60 defective in its HAT activity (dTip60E431Q) (B) or additional 
copies of wild type Tip60 (dTip60WT) (C) show no effect on mushroom body structure in 
the third instar larva. GFP labeling shows similar widths of and α/β lobes in (A’) adult 
control brains (OK107-GAL4; UAS-GFP), whereas adult flies expressing mutant 
dTip60E431Q display severe reduction in length and width of both α and β lobes (arrow) 
(B’) while overexpressing dTip60WT did not have any effect on the MB in the adult flies 
(C’), scale bar 10 uM. (D) Quantification of area in the different genotypes in adult flies, 
quantification of α/β and γ lobe lobes was done using Fas II labeling. Trio labeling was 
used for α’/β’ lobes quantification(n=20). Error bars represent 95% confidence interval. 
Single asterisk indicates P < 0.05 and double asterisk indicates P < 0.001 compared to 
respective MB lobes in the control. 
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Figure 5. Fasciclin II labeling in the mushroom body.  OK107-GAL4  driver carrying 
GFP construct was used to drive expression of dTip60E431Q or dTip60WT and effect on 
mushroom body structure was visualized using GFP and Fas II staining. Compared to 
control brains (UAS-mCD8-GFP; OK107-GAL4), dTip60E431Q flies exhibit marked 
decrease in α/β and γ lobes. dTip60WT flies did not exhibit any significant effect on the 
MB lobes. Scale bar 10 uM. Fas II labeling was used for quantifying area measurements 
in the different genotypes. 
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Figure 6. Trio labeling in the mushroom body.  OK107-GAL4  driver carrying GFP 
construct was used to drive expression of dTip60E431Q or dTip60WT and effect on 
mushroom body structure was visualized using GFP and Trio staining. Compared to 
control brains (UAS-mCD8-GFP; OK107-GAL4), dTip60E431Q flies exhibit marked 
decrease in α’/β’ while dTip60WT flies did not exhibit any marked effect on these lobes. 
Scale bar 10 uM. Trio labeling was used for quantifying area measurements in the 
different genotypes.  
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Work in Progress Figures 

 

 

 

 

Figure 1: Gel analysis of chromatin prepared by sonication. Drosophila S2 cells were 
fixed for 10 mins with 1% formaldehyde and chromatin was prepared using the ChIP-IT 
Express kit (Active Motif). Chromatin was sheared by sonication on ice. The sheared 
chromatin was subjected to cross-link reverasl, treated with Proteinase K and Rnase A. 
DNA was then precipitated by phenol-chloroform extracted. Samples were 
electrophoresed through 1% agarose gel to check for optimal shearing that yields 
fragments that range in size between 150 -1500 bp. Lanes 1 and 4 contain 100bp and 1 
Kb ladders. Lanes 2 and 3 contain 10 ul of sheared chromatin prepared from replicate 
Drosophila S2 cells.  
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Figure 2: ChIP enrichment of target genes by RNA Polymerase II and Tip60 
antibodies. Drosophila S2 cells were fixed for 10 mins using 1% formaldehyde and 
chromatin was prepared by sonication. ChIP was performed using ChIP-IT Express kit 
(Active Motif) using RNA polymerase II (RNA Pol II) and two different Tip60 
antibodies that target the C-terminus of Tip60. A mock reaction containing no antibody 
was used as control. Real-time PCR was performed on DNA purified from each of the 
ChIP reactions using primer pairs specific for Drosophila GAPDH, Tip60 and low 
density LRP1 (lipoprotein receptor related protein 1) genes. Fold enrichment of the 
respective genes was calculated relative to the mock control. These results demonstrate 
that ChIP performed using the RNA pol II and Tip60 antibodies enriched for the target 
genes. 
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APPENDIX A: MODULATING EPIGENETIC HAT ACTIVITY: A PROMISING 
THERAPEUTIC OPTION FOR NEUROLOGICAL DISEASE? 

 

The epigenome (epi- derived from Greek for ‘over’ or ‘above’) with its rich cache of 

highly regulated structural modifications to the DNA, histone residues and histone variants, 

defines the three-dimensional structure of chromatin, the genetic material within the eukaryotic 

cell nucleus,  and serves as the molecular bridge between transcriptional gene control and our 

environment [3].   Only a few years ago, such epigenetic gene control mechanisms were primarily 

viewed in the context of cell division and  fate specification  as they were thought  to function 

primarily in maintaining “cell memory” as the cell steers through elaborate pathways during early 

development and differentiation, and seemed to bear little relevance to adult brain function, as the 

mature brain is primarily composed of post-mitotic and already highly differentiated neuronal 

cells committed to specialized functions that collectively determine neuronal responses to 

external stimuli.   However, recent explorations of the brain epigenome are providing 

unprecedented insights into the importance of specific epigenetic modification patterns in 

controlling gene expression not only in early brain development, but in adult brain function as 

well, calling into place a ‘reprogramming process’ that allows for plasticity at many levels of the 

neural circuitry in response to environmental cues [4].  One issue to consider with reference to the 

mature brain and cognitive disorders is how the course of normal maturation as well as aging 

affects the brain epigenome.   Indeed, an increasing body of evidence indicates that substantial 

reorganization of the brain epigenome occurs during aging and such age related epigenetic drift 

could further exacerbate an individual’s vulnerability to neurodegenerative diseases.   However, 

unlike age related accumulation of somatic mutations and structural changes to the DNA that are 

likely irreversible, most if not all of the epigenetic modification marks studied to date are in fact 

reversible, making targeting of the neural epigenome a promising strategy for neuroprotection 

and/or neuroregeneration both early in development as well as during the aging process [3]. 
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Cognitive decline, particularly in memory capacity, is a normal part of aging and has 

been associated with aberrant changes in gene expression in the brain’s hippocampus and frontal 

lobe [323].  Of the epigenetic modifications identified so far in the nervous system, histone 

acetylation, mediated by the counteractive effects of histone acetyltransferases (HATs) and 

histone deacetylases (HDACs) have  been unequivocally  associated  with the transcriptional 

control of genes that facilitate learning and memory [31,324].   An emerging hypothesis is that 

age related accumulation of aberrant epigenetic marks in chromatin in the adult brain cause gene 

misregulation that drives cognitive decline and memory impairment.  Over the past decade, 

several studies have also reported reduced histone acetylation in animal models of 

neurodegeneration that exhibit cognitive decline, including models for Alzheimer’s disease (AD) 

[259].  Accordingly, pharmacological treatments using non-selective HDAC inhibitors like 

valproic acid, trichostatin A and Sodium Butyrate have been demonstrated to have promising 

effects in reversing such cognitive deficits in some of these models likely by increasing “global” 

acetylation levels and potentially HDAC inhibitor dependent genetic programs [151]. Similarly, 

restoring acetylation status through HDAC inhibition has been shown to ameliorate disease 

progression in models of Parkinson’s and Huntington’s disease [115,119,120,325]. These studies 

in turn have ignited enormous interest in the therapeutic potential of HDAC inhibitors for various 

neurodegenerative conditions.   However, there is also widespread speculation about the target 

specificity of HDAC inhibitors as HDACs function as classes of proteins with individual 

members being able to compensate for each other’s functions [152].   Thus, the current use of 

pan-HDAC inhibitors that act by increasing global acetylation levels can also disrupt cellular 

acetylation homeostasis with subsequent negative consequences.   Moreover, targeting a 

particular class of HDACs or individual members is currently an arduous task as the causative 

agents of memory impairing histone acetylation changes and hence, the best targets for 

pharmacological strategies, remain unknown [259].   Additionally, class-specific modulation of 

HDAC activity may lead to very different and potentially opposing clinical implications.  For 
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example, activation and/or overexpression of class I HDACs 2 and 3 is associated with 

neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and neural cell toxicity 

[126,158], while inhibition of another member of this class, HDAC 1 has been found to lead to 

neurodegeneration [107,159].    Another issue to consider in terms of HDAC based therapeutic 

efficacy is that although HDAC inhibitors are generally considered to promote neuronal growth 

and differentiation, they also exhibit toxicity in various cell types of the central nervous system. 

For instance, there is evidence that they could have potentially detrimental effects on the orderly 

maturation of astrocytes and oligodendrocytes [161-163]. Moreover, like their counterparts, the 

HATs – class I, II and III of HDACs also regulate lysine acetylation of non-histone proteins that 

exert neuroprotective effects [165,326] adding  a further layer of complexity to the interpretation 

of therapeutic potentials of currently available broad spectrum or even class specific HDAC 

inhibitors for neurodegenerative diseases.  Thus, the specificity and side-effect profiles of 

inhibitors of HDACs require additional investigation to fully gauge their neuroprotective abilities.   

Further exploration of isoform-selective HDAC inhibitors that are also region-specific may 

provide a therapeutic advantage in targeting specific cell and tissue functions under pathological 

conditions. 

It has become increasingly clear that chromatin acetylation status can be impaired during 

the lifetime of neurons through loss of function of specific HATs with negative consequences on 

neuronal function [152].  Once the acetylation balance is disturbed by the loss of HAT dose, the 

HAT: HDAC ratio tilts in favor of HDAC in terms of availability and enzymatic functionality, a 

fact highlighted by amelioration of several neurodegenerative conditions by various HDAC 

inhibitors [75]. In fact, a clue to explain the net deacetylation observed during neurodegeneration 

came with the finding that dying neurons exhibit progressive loss of HAT activity and/or 

expression, particularly that of the HAT CREB binding protein (CBP) and to a lesser extent the 

HAT p300.  Notably, overexpression of CBP under apoptotic conditions delays neuronal cell 
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death, an event that was dependent on the HAT function of CBP [77,166]. CBP overexpression 

has also been shown to protect neurons from polyglutamine induced toxicity in Huntington’s 

disease [111,327,328]. We have also reported a similar effect for Tip60, a multifunctional HAT 

that forms a transcriptionally active complex with the AD associated amyloid precursor protein 

(APP) intracellular domain (AICD). Neuronal loss of the histone acetylase activity of Tip60 

under APP induced neurodegenerative conditions enhances apoptotic neuronal cell death in a 

Drosophila AD model, an effect predominantly mediated through transcriptional dysregulation of 

pro-apoptotic and essential genes. Remarkably, overexpression of the HAT competent Tip60 

leads to a marked decrease in APP induced apoptosis highlighting a neuroprotective role for 

Tip60 HAT function in AD associated pathogenesis [78].   Specific HATs are also emerging as 

regulators that gate access to genes regulating specific neuronal processes that are essential for 

maintaining neuronal health and for mediating higher order brain functions. Such processes are 

also affected in neurodegenerative conditions with detrimental consequences. For instance, CBP 

has been shown to mediate specific forms of hippocampal long term potentiation, a form of 

synaptic plasticity thought to underlie memory storage [167].  In contrast, the HAT p300 has been 

shown to constrain synaptic plasticity in the prefrontal cortex and reduced function of this HAT is 

required for formation of fear extinction memory [168].   Importantly, overexpression of p300 but 

not HDAC inhibition has been shown to promote axonal regeneration in mature retinal ganglion 

cells following optic nerve injury, an effect mediated by p300 induced hyperacetylation of histone 

H3 and p53 that consequently leads to increased expression of selected pro-axonal outgrowth 

genes [169].  Overexpression of Tip60 under APP induced neurodegenerative conditions also 

induces intrinsic axonal arborization of the Drosophila small ventrolateral neurons, a well 

characterized model system for studying axonal growth [329]. The acetyltransferase Elp3 known 

to acetylate microtubules has been shown to be involved in the regulation of synaptic bouton 

expansion during neurogenesis [171] and recent studies suggest that regulation of microtubule 

acetylation by the ELP3 might be commonly affected in neurological diseases making it a 
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potential target for acetylation modulator based therapies (reviewed in [172]). Tip60 has also 

been recently shown to play a causative role in synaptic plasticity partly through acetylation of 

microtubules [173]. Together, these studies raise the possibility that modulation of expression 

levels and/or activity of specific HATs such as Tip60 could be an alternative therapeutic option 

for neurological conditions. Targeting HATs can also be beneficial because unlike HDACs, 

HATs have non-redundant functions under physiological conditions and thus the presence of 

specific modulators can have more direct effects. In a study by [174], it was reported that the total 

protein amount and activity of various HDACs is not altered by mutant huntington protein 

expression in primary cortical neurons. Thus, the neurodegeneration associated tilt in HAT: 

HDAC does not appear to include augmentation of HDAC protein level. Therefore, activation of 

specific HATs may restore acetylation balance in addition to activating specific gene expression 

programs that consequently have neuroprotective effects.   In fact, a number of recent studies 

conclude that HDAC inhibitor induced hyperacetylation alone may not be sufficient to produce 

beneficial effects. In a study by [330], it was reported that HDAC inhibition mediated 

enhancement of synaptic plasticity and hippocampus dependent memory formation requires the 

presence of at least one wild type allele of cbp highlighting the requirement of HATs like CBP 

for site specific acetylation and the recruitment of the basal transcriptional machinery. However, 

increasing neuronal dosage of specific HATs to reinstate acetylation homeostasis calls for the 

same concern as does the utilization of HDAC inhibitors. Non-specific enhancement of HAT 

levels and/or activity may lead to further complications by skewing the acetylation balance in the 

neighboring cell population towards hyperacetylation.   Therefore, in order to reap the full 

potential of specific HAT activators, it is also essential to quantify HAT-HDAC dose in specific 

cell populations that are vulnerable to different degenerative etiology [75]. 

Canonically, HATs have been associated with active and HDACs with inactive genes. 

However, recent genome wide mapping of HATs and HDACs binding on chromatin indicates 
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that the majority of HDACs in the human genome are associated with active genes, and only a 

minor fraction are detected in silent genes. A major function of HDACs at active genes appears to 

be the removal of acetyl groups added by high levels of HATs during the process of 

transcriptional initiation and elongation and reset the chromatin structure required for the next 

round of transcription. Notably, HATs also transiently and frequently bind inactive genes to 

acetylate histones and HDACs remove the acetyl groups to keep the genes inactive [331]. 

Excessive acetylation in transcribed regions can destabilize chromatin and increase cryptic 

initiation of transcription. Given the dynamic cycling between acetylation and deacetylation by 

transient HAT/HDAC binding, it is likely that excessive acetylation  induced by HDAC inhibitor 

treatment not only destabilizes the chromatin architecture at active genes but also at genes that are 

repressed under basal conditions. Thus, it is important to realize that modulation of HAT/HDAC 

levels and/or activity may alter the expression of many genes. While the induction of expression 

of some genes may constitute a “cassette” of neuroprotective agents, it is likely that there is also 

induction or de-repression of genes that have detrimental effects. In fact, in the case of the HAT 

Tip60, overexpression of wild type Tip60 but not the HAT defective mutant increases survival in 

a Drosophila AD model, an effect that was mediated via enhanced repression of pro-apoptotic 

genes and induction of pro-survival factors like Bcl-2. This indicates that Tip60’s HAT activity 

exerts a neuroprotective effect by tipping the cell fate control balance in favor of cell survival 

[78]. Similar mechanisms may underlie the neuroprotective effects observed with other HATs 

like CBP and p300.  

A major challenge with utilization of modifiers of cellular acetylation levels is the identification 

of bona fide targets of HATs and HDACs and the integration of histone and transcription factor 

acetylation into a broader context of neuronal, and importantly, cellular homeostasis [175]. 

Although still in its infancy, the neuroprotective effects displayed by HATs like CBP, p300 and 

Tip60 and specificity of these effects for particular neuronal processes is much more promising 
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that currently available non-selective HDAC inhibitors. However, determining the genes or 

“cassettes” of genes that are regulated by such HATs and characterizing the survival or 

degenerative effects such genes have would subsequently facilitate the development of novel 

drugs and specific therapeutic strategies with lower adverse side effects than those currently 

available. 
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APPENDIX B: A HAT FOR SLEEP? – EPIGENETIC REGULATION OF SLEEP 
BY TIP60 IN DROSOPHILA 

ABSTRACT 

Sleep disturbances are a major and early hallmark of age- related 

neurodegenerative diseases such as Alzheimer’s disease (AD), and are thought to drive 

neuronal cell death and cognitive decline.    Unfortunately, how AD is mechanistically 

linked with interference of the body’s natural sleep rhythms remains unclear.     Our 

recent findings provide insight into this question by demonstrating that sleep disruption 

associated with AD is driven by epigenetic changes mediated by the histone 

acetyltransferase (HAT) Tip60.   In this study, we show that Tip60 functionally interacts 

with the AD associated amyloid precursor protein (APP) to regulate axonal growth of 

Drosophila small ventrolateral neuronal (sLNv) pacemaker cells, and their production of 

neuropeptide pigment dispersing factor (PDF) that stabilizes appropriate sleep-wake 

patterns in the fly.   Loss of Tip60 HAT activity under APP neurodegenerative conditions 

causes decreased PDF production, retraction of the sLNv synaptic arbor required for PDF 

release and disruption of sleep-wake cycles in these flies.  Remarkably, excess Tip60 in 

conjunction with APP fully rescues these sleep-wake disturbances by inducing 

overelaboration of the sLNv synaptic terminals and increasing PDF levels, supporting a 

neuroprotective role for Tip60 in these processes.     Our studies highlight the importance 

of epigenetic based mechanisms underlying sleep disturbances in neurodegenerative 

diseases like AD. 
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Neurons, while being subjected to a variety of stimuli, are also able to convert 

such cues into higher order functions such as controlling behavior, storing memories and 

decision making. These unique properties are based on the highly flexible nature of 

neurons, a characteristic that is regulated by networks of extrinsic and intrinsic molecular 

pathways that together orchestrate precise gene expression profiles required for neuronal 

plasticity. Epigenetic control, which largely involves events of chromatin remodeling, 

appears to be one way in which transcriptional regulation of gene expression can be 

controlled in neurons [4]. Of the epigenetic modifications identified so far in the nervous 

system, histone acetylation mediated by the antagonistic activities of histone 

acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes [74],  has been 

unequivocally shown to play a crucial role in regulating neuronal gene expression 

profiles critical for neuronal functions [94,332]. HATs generally promote chromatin 

decondensation by catalyzing the transfer of an acetyl group from acetyl-CoA to the ε-

amino group of specific lysine residues within the N-terminal tails of nucleosomal 

histones. This modification weakens histone–DNA as well as neighboring nucleosomal 

contacts to promote chromatin disruption that, in turn, facilitates factor binding and 

transcriptional activation. HATs also exhibit distinct substrate preference for specific 

histone, lysine, and gene targets and thereby generate different acetylation patterns within 

the genome [333,334]. Such HAT generated acetylation patterns together with other 

DNA and histone modifications is thought to serve as a  molecular bar code to recruit 

chromatin remodeling complexes and downstream regulatory factors that drive gene 

expression profiles required for particular cellular events, a paradigm referred to as the 

‘histone-code hypothesis’[26,335,336]. As such, loss of function of specific HATs with 
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vital neuronal functions has been reported to impair neuronal acetylation status and 

contribute to degenerative effects in various cellular and animal models of 

neurodegenerative diseases [103,152,337]. 

The HAT Tip60 (Tat interactive protein, 60 KDa) is a member of the MYST 

family of proteins that are related by a ~300 aminoacid domain containing atypical zinc 

finger and HAT domains [338]. The HAT activity of Tip60 exerts pleiotropic cellular 

effects that include a variety of chromatin mediated processes such as transcription 

regulation, cell cycle check-point control, DNA damage repair and apoptosis to name a 

few (reviewed in [177]). In 2007, we first isolated the Drosophila homologue of Tip60 

and further demonstrated an essential role for Tip60 during multicellular development 

[222].   Subsequent work from our laboratory has demonstrated that Tip60 is robustly 

produced in the developing embryonic nervous system as well as in specific regions of 

the adult fly brain.   Moreover, our studies further revealed that Tip60’s HAT activity is 

critical for nervous system development and function, an effect primarily mediated via 

transcriptional regulation of genes enriched for a variety of specific neuronal 

functions[69]. Accordingly, we found that Tip60’s HAT activity controls synaptic 

plasticity [173] and regulates apoptosis to prevent unwanted cell death in the developing 

Drosophila central nervous system (CNS) [78]. Consistent with our findings, Tip60 has 

been implicated in neurodegenerative diseases such as spinocerebellar ataxia (SCA1) [70] 

and the age-related neurodegenerative Alzheimer’s disease (AD) [144].  Tip60’s role in 

the latter stems from observations that Tip60 forms a transcriptionally active complex 

with a cytosolic fragment derived from proteolytic processing of the AD-associated 

amyloid precursor protein (APP), termed the APP intracellular domain (AICD)[144,149].   
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The Tip60/AICD complex has been shown to increase histone acetylation [213] and 

coactivate gene promoters which are linked to apoptosis and neurotoxicity associated 

with AD [180].   Moreover, misregulation of certain putative target genes of the 

Tip60/AICD complex has been linked to AD related pathology [147,214].  More 

recently, our laboratory has demonstrated that Tip60 and APP functionally interact to 

mediate lethality and apoptotic mediated neurodegeneration in the central nervous system 

(CNS) of an AD fly model, in vivo [78].     Together, these studies support the concept 

that neuropathology associated with AD is due, at least in part, to epigenetic 

dysregulation, Tip60 being a likely candidate mediating such effects.  However, little is 

known about how aberrant alterations of the neural epigenome by Tip60 in particular, 

affect specific neural circuits under AD linked neurodegenerative conditions.   

Sleep abnormalities are a major and early feature of neurodegenerative diseases 

like AD that are also characterized by cognitive decline. While the causes of such sleep 

disturbances are unknown, they are thought to further exacerbate the effects of a 

fundamental process leading to neurodegeneration [255]. Sleep dependent mechanisms of 

neural plasticity are believed to contribute to memory consolidation and thus are likely 

critical for learning and memory [339,340]. As such, analysis of sleep disturbances may 

offer important insights into the pathological mechanisms underlying such 

neurodegenerative diseases. Drosophila has become a well-accepted behavioral model 

for sleep research as it shares many features with mammalian sleep [341,342] and is thus 

well suited to examine the fundamental functions of sleep, and the mechanisms that 

regulate it [343,344]. In Drosophila, the small- and large- ventrolateral neurons (LNv) 

(henceforth referred to as sLNv and lLNv, respectively) are part of the well-characterized 
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fly circadian circuitry [215] as well as the “core” sleep circuitry in the fly [216,217]. Both 

the circadian and sleep regulatory effects of the LNvs are mediated via the neuropeptide 

pigment dispersing factor (PDF) that serves as the main functional output from the LNvs 

to coordinate neural circuits that operate downstream of the LNvs [218,219].   A limited 

number of other fly brain regions have been proposed to contribute to sleep.   These 

include the mushroom body and pars intercerebralis in the central brain and importantly, 

are both regions thought to receive rhythmic signal from the sLNv axon terminals [345]. 

These features bear resemblance to the regulatory effects that the mammalian pacemaker, 

the suprachiasmatic nucleus (SCN) has on controlling sleep-wake cycles as well as 

coordinating this with other brain areas to enhance behavioral adaptation [346].   All of 

these features make the Drosophila LNv sleep circuit a powerful model to study the 

mechanisms underlying sleep regulation.    

In the study by [170], we set out to test the hypothesis that APP and Tip60 are 

both required to mediate selective neuronal processes such as sLNv morphology and 

function that when misregulated, are linked to AD pathology.  We found that that both 

sLNv and lLNv cell types endogenously express Tip60 and disruption of the epigenetic 

HAT function of Tip60 (Tip60mut)  in the LNvs causes sleep disturbances consisting of 

fragmented night sleep and daytime sleepiness, reminiscent of those observed in AD.   

Furthermore, our analysis revealed that the sLNvs are particularly susceptible to loss of 

Tip60’s HAT activity and exhibit diminished expression of PDF as well as retraction of 

the sLNv axon terminals that are required for pre-synaptic release of PDF in the dorsal 

protocerebrum. These neuroanatomical defects likely contributed to the sleep 

disturbances by disrupting PDF-mediated interaction of the sLNvs with downstream 
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circuits. Intriguingly, disruption of Tip60 HAT activity under APP induced 

neurodegenerative conditions (APP; Tip60mut) was found to exacerbate retraction of the 

sLNv axonal terminals and further caused complete loss of PDF, although the sleep 

disturbances were same as in flies exhibiting only loss of Tip60 HAT activity in their 

sLNvs.   Importantly, the anatomical defects we observed were dependent on the 

presence of the C-terminus of APP that is required for generation of the Tip60 interacting 

AICD fragment.   While the pathogenesis of sleep disturbances associated with AD is 

unclear, neurodegeneration in brain regions that are involved in sleep regulation are 

thought to be linked to sleep abnormalities.   In this regard, the degenerative effects we 

observe specifically in the sLNvs suggest that Tip60 mediated epigenetic dysregulation 

can render selective neuronal populations more vulnerable to APP induced 

neurodegeneration with detrimental consequences on associated behavioral outputs.   

In light of these observations, we hypothesized that overexpression of HAT 

competent Tip60 under APP overexpressing conditions would override APP mediated 

neurodegenerative effects and alleviate the observed sleep disturbances.   LNv directed 

overexpression of Tip60 (Tip60OE) enhanced PDF expression in the sLNv with no 

marked effect on the sLNv axon growth.  These flies also exhibit impaired ability to 

maintain sleep at night, an effect we speculate could be mediated through untimely 

activation of downstream arousal promoting neural circuits by the excess PDF.   

Overexpression of wild type Tip60 in the LNvs in conjunction with APP containing its C-

terminus (APP; Tip60OE) also increased sLNv PDF expression.   Additionally, these flies 

also exhibited extensive arborization of the sLNv axon terminals in the dorsal 

protocerebrum.   However, despite these anatomical changes, co-expression of Tip60 
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along with APP that contained its C-terminus restored the normal sleep-wake cycle, 

consistent with our hypothesis.    

So how can Tip60 overexpression in conjunction with APP rescue the night time 

sleep disruption and day time sleepiness we observe in AD model flies or when Tip60 

itself is misregulated?  A clue to this question may come from our observation that 

significant exacerbation of axonal arborization and normal sleep-wake patterns were only 

observed as a result of co-expression of wild type Tip60 and APP, and not when Tip60 

was overexpressed alone.   Based on these findings, we propose a model by which such 

APP/Tip60 induced axonal overelaboration could play a role in restoring the sleep-wake 

cycles by increasing growth of the sLNv axon terminals into the dorsal protocerebrum.  

These additional synaptic terminals might provide additional neural input sites for sleep 

promoting signals.   Consistent with this model, the sLNv axon terminals have been 

reported to express postsynaptic GABAB receptors and GABAergic sleep promoting 

neurons have also been observed in the vicinity of the sLNv axon terminals in the adult 

CNS [252], suggesting that the sLNvs might receive slow inhibitory GABAergic input 

from such neurons in the vicinity through the dorsal terminals.   Furthermore, recent 

electron microscopy studies also indicate the presence of sparsely distributed input 

synapses at the sLNv axon terminals [251] that could also play a role in transducing sleep 

promoting neural signals. 

Accumulating evidence indicates that axonal dysfunction and degeneration in AD 

may persist long before the disease related neuropathologies are detectable, and it is 

believed that these early axonal dystrophies in the affected neurons may significantly 

contribute to disease symptoms [277].   In this regard, our observation that loss of Tip60 
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HAT activity causes retraction and loss thereof of sLNv axonal synaptic terminals and/or 

PDF signaling suggests that disruption of neuronal connectivity within this particular 

axonal circuit may be an early event in the AD process, accounting for the sleep 

abnormalities that occur in AD patients long before pathophysiological manifestation of 

the disease sets in. Together, our data demonstrating the modulatory effects that Tip60 

HAT activity or lack thereof have on the sLNvs under APP induced neurodegenerative 

conditions provides novel mechanistic insights into epigenetic regulation of neural 

circuits that underlie the sleep abnormalities that AD patients experience early in the 

disorder.   Future investigation into the downstream mechanism by which Tip60 regulates 

axonal growth as well as its apparent neuroprotective role in maintaining normal sleep-

wake cycles under APP induced neurondegenerative conditions should serve as the 

groundwork when exploring the utility of specific HAT activators as early intervention 

therapeutic strategies to prevent or delay the progression of age-linked neurodegenerative 

disorders. 
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