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DENSITY EVOLUTION FOR EXPECTATION PROPAGATION

John MacLaren Walsh, Ph. D.

Drexel University
Department of Electrical & Computer Engineering

Philadelphia, PA 19104

ABSTRACT

Expectation propagation (EP) [1, 2, 3, 4] is a theoretical extension of
the belief propagation family of message passing algorithms [5, 6]
for statistical inference which allows for efficient handling of models
with continuous random variables as well as second or higher order
correlation via the use of standard exponential families of probability
measures [7, 8, 9]. Here we provide theoretically rigorous justifica-
tions for the use of density evolution [10, 11] to analyze the conver-
gence and performance behavior of the family of algorithms in the
large system regime by extending and expanding on the correspond-
ing results for belief propagation decoding and turbo decoding.

Index Terms— expectation propagation, Bayes procedures, dis-
tributed iterative decoding and estimation, belief propagation

1. INTRODUCTION AND NOTATION

In this paper we will mathematically study the performance and con-
vergence behavior of a family of iterative algorithms for Bayesian
statistical inference known as expectation propagation (henceforth
EP) [1, 2]. These algorithms extend belief propagation [5, 6] to effi-
ciently handle continuous random variables and to allow for second
and higher order statistical dependence among the random variables.
Due to the rich family of algorithms which can be considered as
special cases of belief propagation and thus EP, e.g. the turbo de-
coder/equalizer [13], the LDPC decoder [14], the Kalman filter, and
the forward backward algorithm, a wealth of literature exists study-
ing the performance and convergence properties of instances of EP.

One such body of convergence and performance analysis work
which has had incredible theoretical impact is called density evo-
lution [15, 11, 10]. Density evolution studies the performance and
convergence of the turbo and LDPC decoders in the limit that the
block length grows arbitrarily large. Of particular interest in this pa-
per is the extension of the ideas of density evolution [15, 11, 10] from
the decoding of turbo and LDPC codes to EP. With this in mind, we
provide a review of EP in section 2, followed by a list of conditions
under which density evolution can be applied to EP in section 3. The
paper concludes with a list of possible practical applications of this
theoretical work.

2. EXPECTATION PROPAGATION

EP is a distributed iterative method for statistical inference, which
approximates the a posteriori distribution for some high-dimensional
vector of parameters θ given observations r. The parameters θ are
known to be members of the setQ which is the Cartesian product of
the sets {Qi}

Q = Q1 ×Q2 × · · · × QK

so that θ is a vector θ = [θ1, θ2, . . . , θK], with θi ∈ Qi for all
i ∈ {1, . . . , K}. We will assume that Q has been endowed with
a measure dθ that is a product of measures dθi on the Qis. Typi-
cally, dθi will be a counting measure ifQi is countable, and will be
Lebesgue measure otherwise.

In statistical inference problems to which EP may be applied,
there is a multiplicative factoring of the Radon Nikodym derivative
of the joint probability distribution for r and θ with respect to dθ,

pr,θ(r, θ) :=

A�
a=1

fa,r(θa), θa ⊂ θ

where θa ⊂ θ indicates that θa is the (smaller dimensional) vector
created by removing some of the elements of θ. EP exploits this mul-
tiplicative factoring in order to approximate pθ|r(θ|r) with the prod-
uct of minimal standard exponential family densities g

a,λ
(k)
a (r)

(θa)

pθ|r(θ|r) ≈ c(λ(k))

A�
a=1

g
a,λ

(k)
a (r)

(θa) (1)

Here λ(k) :=
�
λ

(k)
1 , . . . , λ

(k)
a , . . . , λ

(k)
A

�
is a vector of adjustable

parameters which EP iteratively refines over time k to improve the
approximation in (1) for a particular observed value r = r. Also, c
is a normalization constant defined by

c(λ(k)) :=

��
Q

A�
a=1

exp
�
λ(k)
a,r · ta(θa)

�
dθ

�−1

and the gs are standard exponential family probability densities [7, 8]

g
a,λ

(k)
a (r)

(θa) := exp
�
ta(θa) · λ(k)

a (r)− ψta(λ
(k)
a (r))

�
with the log partition function defined by

ψta(λ
(k)
a (r)) := log

	�
exp(ta(θa) · λ(k)

a (r))dθa




EP attempts to choose the best approximation in (1) by iteratively
refining the λa,rs by solving the equations�

ta(θa) exp(λa,r · ta(θa))
�

c �=a exp (tc(θc) · λc,r) dθ�
exp(λa,r · ta(θa))

�
c �=a exp (tc(θc) · λc,r) dθ

=

�
ta(θa)fa(θa)

�
c �=a exp (tc(θc) · λc,r) dθ�

fa(θa)
�

c �=a exp (tc(θc) · λc,r) dθ
(2)

for λa,r in terms of {λc,r |c �= a}. The order in which these equa-
tions are solved is referred to as scheduling, and there are several
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Fig. 1. A parameter basis factor graph.

possibilities. In parallel scheduling, (2) is solved to get λ
(k+1)
a,r

from λ
(k)
c,r, c �= a for each a. In serial scheduling, (2) is solved

to get λ
(k+1)
a,r from λ

(k)
c,r, λ

(k+1)

c′,r , c < a, c′ > a for each a. Finally,
in random scheduling, (2) is solved to update λa,r from the most
recently updated values of λc,r, c �= a.

In this article, we will focus on parallel scheduling since we wish
to emphasize the distributed, parallelized, nature of EP. In fact, under
some additional assumptions, solving (2) iteratively can be equated
to a message passing algorithm on a statistics factor graph. Situ-
ations in which these assumptions are satisfied will constitute the
cases of interest for this article, so we wish to highlight them now.

As. 1 (Sufficiency): The factors fa,r(θa) depend on the param-
eters only through ta(θa), so that fa,r(θa) = f̂a,r(ta(θa)) for all
θa.

Assumption 1 refocuses our interest on the functions {ta(θa)}
which the factors depend on the parameters through. Typically, the
same function ti(θi) will appear in several vector functions ta (i.e.
with different as). Take each element ti of the vectors {ta|a ∈
{1, . . . , A}} and collect them without repetition into the vector t,
so that ta ⊂ t for all a. Next, break t up into the disjoint concate-
nation of the vectors vj with j ∈ {1, . . . , S}, in such a way so that
ti, tl ∈ vj and tl ∈ ta implies that ti ∈ ta. We call the vjs elemen-
tary basis functions. Finally, denote the vector of arguments of vj by
ϑj, so that ϑj ⊂ θ, and ϑj ⊂ θa for all a such that vj ⊂ ta.

We may now depict the interdependence between the parameters
{θi}, the elementary basis functions {vj}, and the factors fa with a
tri-partite graph called a parameter basis factor graph. In this graph,
the left nodes are the parameters {θi}, the middle nodes are the el-
ementary basis functions {vj}, and the right nodes are the factors
fa. An edge connects θi with vj if and only θi ∈ ϑj. Similarly,
an edge connections vj with fa if and only if vj ⊂ ta. In the fol-
lowing development, we will denote the indices a ∈ {1, . . . , A} of
factor nodes which share an edge with the basis node vj by F(j).
Furthermore, we will denote the indices j ∈ {1, . . . , S} of the basis
nodes which share an edge with the factor node fa by S(a). We shall
call the bipartite subgraph formed by only the basis and factor nodes
and edges between them the basis factor graph. An example of a
parameter basis factor graph is shown in figure 1.

As. 2 (Reciprocity): There is a product measure dt =
�

i dvi
on t(Q) such that the Radon Nikodym derivative μ of the in-

duced measure via the inverse image t−1(A) from dθ, with
respect to the dt measure ofA factors into the product of func-
tions of vj, i.e. μ(t) =

�
j μj(vj).

Perhaps the easiest way to satisfy assumption 2 is to have each
parameter θi appear in only one ϑj, so that the parameter nodes in
the parameter basis factor graph all have degree one. This is the
situation depicted in Figure 1.

Under as. 1 and 2, EP can be shown to be equivalent to a mes-
sage passing algorithm on the basis factor graph. In particular, these
assumptions imply that (2) simplifies to

�
vj(ϑj)fa(θa) exp

�
� �

l∈S(a)

vl(ϑl) ·ml→a

�
� dθa

�
fa(θa) exp

�
� �

l∈S(a)

vl(ϑl) ·ml→a

�
� dθa

=

�
vj(ϑj) exp (vj(ϑj) · (na→j + mj→a)) dϑj�

exp (vj(ϑj) · (na→j + mj→a)) dϑj

(3)

where we have introduced the left going messages na→j = [λa,r]j,
that are the components of λa,r multiplying the elements vj in ta.
Equation (3) also introduces the right going messages

mj→a =
�

c∈F(j)\{a}
na→j (4)

Emphasizing again the sequential aspects of the algorithm, under the
parallel scheduling, for each a ∈ {1, . . . , A} equation (3) is solved
to update na→j for all j ∈ S(a). Then, for each j ∈ {1, . . . , S}
equation (4) is solved to update mj→a for all a ∈ F(j). This two
step sequence is then repeated either for a fixed number of iterations
or until convergence is reached.

3. DENSITY EVOLUTION FOR HOMOGENOUS EP

Here we provide an extension of density evolution analysis from be-
lief propagation decoding [10] and turbo decoding [12, 11] to gen-
eral EP. To simplify the results, we consider some special cases of
EP which satisfy some additional assumptions, which collectively
we will refer to as the homogeneity assumptions.

As. 3 (Regular Parameter Nodes): Each parameter in the param-
eter basis factor graph has degree one. In other word, each
parameter θi appears as an argument of only one elementary
basis vector vj.

As. 4 (Regular Basis Nodes): Each elementary basis vector vj
appears in 1 degree 1 factor node (fj) and dp degree df factor
nodes, and is made of the same function, so that vj(ϑj) =
v(ϑj) for all ϑj for some vector function v.

As. 5 (Symmetry): For the purposes of characterizing the per-
formance and convergence of the particular instance of EP, it
suffices to condition on θ = θ0 ∈ R where

R :=
�
θ0 |ϑj = ϑl∀j, l ∈ {1, . . . , S}	
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Assumption 5 is equivalent to the assumption that the all zero
code word was transmitted in error control/correction decoding prob-
lems. In estimation problems, it relies on symmetry of the per-
formance of the algorithm by requiring, say, that the distribution
of the messages passed to vj after k iterations be the same when
θ = θ0 ∈ R as when θ = θ1 not a member ofR but ϑ0

j = ϑ1
j .

As. 6 (Marginal Messages): The marginal a posteriori density�
fa(ra, θa)

�
i∈S(a)\{j} exp (v(ϑi) · γi) dθc \ ϑj�

fa(ra, θa)
�

i∈S(a)\{j} exp (v(ϑi) · γi) dθc

is a minimal standard exponential family with sufficient statis-
tics v(·).

As. 7 (Independent Factors): The factors of degree df depend
on different observations which are conditionally independent
given θ = θ, so that the observation vector r can be broken
down into the disjoint1 concatenation and reordering of smaller
vectors {ra|a ∈ {S + 1, . . . , A}}, which are conditionally i.i.d.
given θ = θ0

pr|θ(r|θ) =

A�
a=1

pra|θa
(ra|θa)

with fa,r a function of only ra and θa, i.e. fa,r(θa) = fa,ra(θa),
and pra|θa

(ra|θa) = h(ra|θa)∀ra, θa for all a ∈ {S + 1, . . . , A}.

As. 8 (Regular Factor Nodes): Each degree 1 factor node is the
same function, so that

fa,ra(θa) = wra(θa), f̂a,ra(ta) = ŵra(ta)

for all a ∈ {1, . . . , S}. Furthermore, each degree df factor fa is
the same function, so that

fa,ra(θa) = fra(θa), f̂a,ra(ta) = f̂ra(ta)

for some functions f and f̂ for all a. Also, the functions f and f̂
are insensitive to the ordering of the elementary basis vectors,
so that

fra(πθ(θa)) = fra(θa), f̂ra(πv(ta)) = f̂ra(ta)

where πθ is a permutation on the elementary basis vector or-
dering of θa, i.e. πθ([ϑ1, ϑ2, . . . , ϑSa ]) =

�
ϑj1 , ϑj2 , . . . , ϑjSa

�
and πv([v1, v2, . . . , vSa ]) =

�
vj1 , vj2 , . . . , vjSa

�
for (j1, . . . , jSa)

is any reordering of the integers from 1 to Sa.

As. 9 (Randomly Chosen Edges): The subset of edges in the
basis factor graph connected to degree df factor nodes are
chosen by picking randomly from G(N, K, dp, df), the set of bi-
partite graphs with N left nodes each of degree dp and K right
nodes each of degree df.

To highlight the purpose of these assumptions we must first be-
come acquainted with some terminology. Define the computation
neighborhood of a basis node {vj}2 Ck(vj) of depth k to be sub-
graph of the basis factor graph of nodes and edges no more than k
edges away from vj. An example of a computation neighborhood is
shown in Fig. 2.

1Note that the degree 1 factor nodes have indices a ∈ {1, . . . , S} while
the degree df factor nodes have indices a ∈ {S + 1, . . . , A}.

2This is adapted from the term decoding neighborhood from [10] because
we wish to consider estimation problems as well as decoding problems.
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Fig. 2. The computation neighborhood of v1 of length 2.

The computation neighborhood is an important concept in EP
because C2k(vj) contains all of the factor nodes which influence the
estimate of the a posteriori density provided by the EP algorithm
after k iterations.

As we shall prove in the upcoming theorem, As. 3-9 see to it
that, with probability → 1 as the size of the parameter basis factor
graph K → ∞, for each k, the messages passed in the basis factor
graph during the kth iteration are identically distributed according to
a single probability distribution. Furthermore, again with probability
→ 1 as K → ∞, at any given iteration k all of the incoming mes-
sages to any particular basis node vj (i.e. all incoming messages at
the root of the computation neighborhood Ck(vj)) are independent.
This allows one to determine the performance of EP at any given
parameter node by keeping track of the way a single probability dis-
tribution evolves over iterations.

To state this result mathematically, it is necessary to introduce
the operators

�dp−1, y⊗, Fθ0 which we presently define. Given a
probability density function g, we will denote by

�dp−1 g the dp−1
fold convolution of g with itself. Furthermore, denote by y⊗ convo-
lution with the probability density, given θ = θ0 ∈ R, for the vector

Λ−1
v (λ)

��
v(ϑj)w(rj, ϑj)dϑj�

w(rj, ϑj)dϑj

�

where w was the function for the degree one factor nodes. Here,
we have introduced the canonical transformation from the theory of
statistical exponential families [7] which is bijective for minimal suf-
ficient exponential families

Λvj(λ) :=

�
vj(ϑj) exp(vj(ϑj) · λ)dϑj�

exp(vj(ϑj) · λ)dϑj

Finally, denote by Fa→j,θ0 the map which takes the probability den-
sity gλ to the probability density, given θ = θ0 ∈ R, for the vector

Λ−1
vj

	


�

�
Qa

vj(ϑj)fa,r(θa)

�
i∈S(a)\{j}

exp (v(ϑi) · λi) dθa

�
Qa

fa,r(θa)

�
i∈S(a)\{j}

exp (v(ϑi) · λi) dθa

�
�
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where λi, i ∈ S(a) \ {j} are i.i.d. samples from the probability
distribution gλ .

With these definitions we are now ready to prove that density
evolution is a viable way of assessing the performance and conver-
gence of EP under the As. 3-9 in an asymptotic sense.

Thm. 1 (Density Evolution for EP): Let the number of parame-
ters and observations grow in such a way that As. 3-9 are all
satisfied for each K as K → ∞. Then, with probability → 1 as
K → ∞, at any given iteration k, given θ = θ0 ∈ R, the in-
coming messages {na→j|a ∈ F(j)} to any basis node vj are
independent and identically distributed samples from a proba-
bility distribution qk obeying the recursion

qk+1 =

�
�Fθ0 ◦ y ⊗ ◦

dp−1�
�
� qk (5)

where Fθ0 can be chosen as any Fa→j,θ0 .

Proof: It was shown in [10] that for any fixed k, the assump-
tion 9 gaurantees that the computation neighborhood Ck(vj) is a tree
with probability→ 1 as K→∞. Only those factor nodes which are
in the computation tree C2k(vj) affect those messages passed to vj
during the kth iteration. Furthermore, As. 5 and 7 require the ob-
servations ra included in this computation tree to be independently
and identically distributed given θ = θ0 ∈ R. This gives that the
message passed at the top edges of the computation tree (to vj) are
independent. As. 3,4, and 8 which guarantee that all of the factors
and basis functions, and thus the message creating functions at the
factor nodes, are the same, then imply that not only are these incom-
ing messages to any basis node vj independent, but they are also
identically distributed. Thus, the probability density for the message
at the output of the factor node can be calculated by taking the prob-
ability distribution corresponding to df − 1 i.i.d. samples from the
input message distribution, and putting it through the factor message
update (3). Solving (3) is then equivalent to calculating Ha→j(r, λ)
where λ are the samples from the incoming message probability dis-
tribution.

At the basis node, the message passing rules (4) require that all
but one of the incoming messages be summed to create each output
message. Since we have just proved that these messages are inde-
pendent and identically distributed, this operation creates an outgo-
ing (to the factor nodes) message with probability density that is the
convolution of the incoming distribution with itself dp− 1 times and
then with the degree one factor node message density. �

Cor. 1 (Parameter Distribution Estimate): Given θ = θ0 ∈ R, the
estimate p̂k

ϑj|r provided by EP for the a posteriori distribution
pϑj|r after k iterations is given by

p̂j

ϑj|r = exp (v(ϑj) · λ − ψv(λ))

where λ is distributed according to the probability density func-
tion hj defined by hk :=

�dp qk and qk is defined by the recur-
sion (5).

Theorem 1 and Corollary 1 are immensely useful, because they
show that determining the performance and convergence of EP under
the homogeneity As. 3-9 is equivalent to studying the convergence
properties of the iterated map (5). This is, in essence, the theory of
density evolution.

4. CONCLUSIONS

This paper showed that density evolution style analysis can be ap-
plied to general expectation propagation under some homogeneity
and symmetry assumptions. Future work will then apply density
evolution to determine the performance of particular instances of
expectation propagation, for example ones used for distributed es-
timation in sensor networks.
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