
Bridging the Gap between Software Architecture and Maintenance
Quality

A Dissertation

Submitted to the Faculty

of

Drexel University

by

Lu Xiao

in partial fulfillment of the

requirements for the degree

of

Doctoral of Philosophy in Computer Science

2016

c© Copyright 2016
Lu Xiao. All Rights Reserved.

ii

Acknowledgement

On my Ph.D. journey, many wonderful people have helped and influenced me. I

have been extremely fortunate to have them in my life and I am deeply grateful to

them.

First and foremost, I would like to express my deepest gratitude to my advisor,

Dr. Yuanfang Cai. She is a passionate researcher, a hard worker, and a role model.

Without her encouragement, patience, and selfless support, I would not have been

able to achieve my goals. Throughout my years as a Ph.D. student in the Computer

Science Department at Drexel University, Dr. Cai has generously given me advice in

research and in life, mentoring me to become an independent researcher as well as an

academic writer and presenter. Her guidance will continue to influence me beyond

my Ph.D. education. The greatest advice I received from her is, “Do what you love

and love what you do.” I hope to impart this wisdom to my future students.

I am also grateful to have had the honor of working closely with an outstanding

scholar and mentor, Dr. Rick Kazman, who is also one of my committee members. I

am truly grateful for his wisdom, kindness, and support. As a prestigious researcher,

he has given me detailed guidance in my research. He has also patiently explained to

me, for whom English is a second language, the meaning of idioms like “a needle in

a haystack”.

Likewise, thanks are due to my other committee members, Dr. Spiros Mancoridis,

Dr. Jeff Popyack, and Dr. Colin S. Gordon. They have encouraged me to think more

critically and outside the box. I appreciate their support and thoughtful discussion

iii

of my research.

I also owe my gratitude to Dr. Sunny Wong, my advisor’s first Ph.D. student.

This dissertation is enlightened by and built upon his work.

I would like to sincerely thank my Ph.D. buddies who have accompanied me on this

journey. Thank you Ran Mo and Qiong Feng, for being excellent team-mates. Thank

you Alex Duff, Bander Alsulami, Brandon Packard, and everyone in the department

for your camaraderie and friendship. Thank you my dear friends, Linchuan Meng,

Xiaoyu Chu, Lin Jiang and Handong Yang for bringing fun to my life in Philadelphia.

Thank you to my parents Duncai Xiao and Taozhi Liu. Thank you for your

love, trust, and sacrifices in allowing me to pursue my career as a researcher in a

faraway country. Thanks to my dear sister, Jing Xiao, for your love, support, and

encouragement.

I also offer my deepest gratitude to my best friend and “long-suffering” husband,

Zhan Zhang. His companionship through every second and minute, and through the

ups and downs of this journey, has been invaluable to me. His abiding love and

support have seen me through difficult times.

To all these wonderful people, and to the many others for whom space does not

allow, I express my deepest appreciation to you all. Because of you, I could accomplish

this challenging, yet rewarding journey.

iv

Table of Contents

LIST OF TABLES . vi
LIST OF FIGURES . vii

I Introduction 1

II Related Work 9
1. Software Architecture . 11

1.1 Software Architecture Description Language (ADL) . 11
1.2 Software Architecture Reverse Engineering . 13
1.3 Software Architecture Analysis . 15

2. Bug Prediction . 17
2.1 Prediction based on Complexity Metrics . 17
2.2 Prediction based on Project History . 18
2.3 Prediction based on Combined Information . 19

3. Technical Debt . 21
3.1 Technical Debt Origin . 21
3.2 Technical Debt Definition and Categorization . 21
3.3 Technical Debt Identification . 22

III Background Concepts and Techniques 23
4. Design Rule Theory . 25
5. Design Structure Matrix (DSM) . 26
6. Design Rule Hierarchy (DRH) . 28
7. Modularity Violation . 30

IV Our Methodology 31
8. Design Rule Space (DRSpace) Model . 33

8.1 DRSpace Definition . 35
8.2 DRSpace Model Illustration . 37

8.2.1 Polymorphism DRSpace . 39
8.2.2 Aggregation DRSpace . 40
8.2.3 Dependency DRSpace . 41
8.2.4 Pattern DRSpace . 42
8.2.5 Hybrid DRSpace . 43

8.3 Tool Support . 43
8.4 Usefulness of DRSpace Modeling . 48

8.4.1 Bug-prone DRSpaces . 50
8.4.2 Problematic Relations . 53

v

8.5 Limitations and Threats . 56
8.6 Summary . 57

9. Architectural Root (ArchRoot) Detection . 59
9.1 Architectural Roots of Bugginess . 60
9.2 Detection Algorithm . 63
9.3 Tool Support . 65
9.4 ArchRoots Analysis . 67

9.4.1 Concentration of Bug-proneness . 68
9.4.2 Long-lived ArchRoots . 71
9.4.3 Architectural Flaws. 73

9.5 Limitations and Threats . 76
9.6 Summary . 77

10. Architectural Debt (ArchDebt) . 80
10.1 ArchDebt Definition . 82
10.2 Identifying and Quantifying ArchDebts . 83

10.2.1 Crawling: Selecting High-maintenance DRSpaces 85
10.2.2 Indexing: Identify ArchDebt Candidates . 85
10.2.3 Modeling: Build Regression Model . 93
10.2.4 Ranking: Identify High-maintenance ArchDebt. 98

10.3 Evaluation . 99
10.3.1 Subjects . 99
10.3.2 Evaluation Results. 100

10.4 Discussion . 104
10.4.1 The Interest Rate of ArchDebt . 105
10.4.2 Architectural Debt Evolution . 105

10.5 Limitations and Threats . 108
10.6 Summary . 109

V Conclusions 111
11. Conclusions . 112
12. Future Directions . 114
Bibliography . 117
Vita. 123

vi

List of Tables

8.1 Summary of Evaluation Projects . 50

8.2 DRSpaces with a Bug-prone Leading File . 53

9.1 Loc Coverage (LC) by the Top Five ArchRoots . 71

9.2 Long-lived ArchRoots for Bug30% . 79

10.1 Subject Projects . 100

10.2 Top 5 Debt:#Files vs Churn. 104

10.3 Debt Costs Model Distribution . 107

vii

List of Figures

5.1 MIJ DSM in Package Cluster . 27

6.1 MIJ Inherit DRSPace . 28

8.1 MIJ DSM in Package Cluster . 37

8.2 MIJ Polymorphism DRSpace . 39

8.3 MIJ Aggregation DRSpace. 40

8.4 MIJ Depend DRSpace. 41

8.5 MIJ Visitor Pattern DRSpace . 42

8.6 MIJ Hybrid DRSpace . 44

8.7 The DRSpace Viewer - Titan Graphic User Interface. 45

8.8 Hadoop FileSystem Inherit DRSpace . 55

9.1 Titan Tool Chain . 66

9.2 Cassandra ArchRoots Coverage . 69

9.3 Architectural Flaws in a Root in Cassandra . 74

10.1 Approach Framework. 84

10.2 Generate HPC Matrix . 87

10.3 Hub . 89

10.4 Anchor Submissive . 90

10.5 Anchor Dominant. 91

10.6 Modularity Violation . 92

10.7 4 Types of Regression Model . 95

viii

10.8 Debt Churn Consumption (HBase) . 101

10.9 Top 5 Debts File Size Distribution (Cassandra) . 104

10.10Camel Hub Debt Evolution-Anchor ProcessorDefinition . 106

ix

Abstract

Software architecture is generally recognized as the most critical determinant in

achieving the functional and quality attribute requirements of a software system. Poor

architecture can be the root cause of quality problems such as bug-proneness and re-

lated maintenance difficulties. Software practitioners need to identify architectural

flaws and make informed decisions so that they can correct such flaws and funda-

mentally improve software quality. However, in the past there was no systematic way

to model, analyze, and monitor the architecture of a software system with respect

to addressing maintenance quality concerns. Consequently, there was a serious gap

between software architecture and maintenance quality.

This dissertation offers a methodology to bridge the gap between software archi-

tecture and maintenance quality problems. Our proposed methodology consists of

three parts: (1) a new architecture model, called the DRSpace model, which simul-

taneously captures the modular structure and maintenance “penalties” of a software

system; (2) an Architecture Root detection algorithm that automatically identifies

the most problematic design spaces, aggregating bug-prone files in a software system;

and (3) a formal definition of Architectural Debt and an approach that automatically

identifies such debts, and quantifies the “costs” and “interest rates” of such debts.

Our studies have shown that this methodology has great potential in helping software

practitioners identify and understand the architectural root causes of bug-proneness

and related high maintenance costs. Ultimately this supports informed refactoring

decisions to fundamentally improve software maintenance quality.

1

Part I

Introduction

2

Software architecture is critical throughout the entire life cycle of a software

project. Bug-proneness and high maintenance costs, two major quality concerns, can

be the results of poor architecture. To fundamentally reduce software bug-proneness

and improve the maintainability, software practitioners should diagnose architectural

flaws that permit the existence of the maintenance quality problems, and make in-

formed refactoring decisions to correct such flaws. For example, if a set of files form

a dependency cycle, whenever one of the files in the cycle is revised to fix bugs, it is

highly likely that the change will propagate to other files in the cycle. This makes the

bugs involving these files hard to eradicate and thus the related maintenance costs

will keep increasing over time. Hence, to eradicate bugs and prevent the maintenance

costs from keep growing, the developers should identify and cut the cycle.

However, to the best of our knowledge, in the past there was no systematic way to

model, analyze, and monitor software architecture with respect to addressing mainte-

nance quality concerns. Consequently, the relationship between software architecture

and maintenance quality in terms of bug-proneness and high maintenance costs has

not been adequately investigated. Many pertinent questions have not been fully an-

swered. For example, what are the common architectural flaws that contribute to

bug-proneness and high maintenance costs? How much effort, time and money have

these flaws cost in a software project and how much more will they cost in the future?

Whether, when, and where should the developer team invest in refactoring to funda-

mentally reduce the bug rates and increase the maintainability of a software system in

the long run? A major challenge in answering these questions is the lack of a method-

ology that automatically and effectively analyzes software architecture with respect

to addressing maintenance quality problems. Existing work (such as Schwanke et al.

[2013]; Maranzano et al. [2005]; Kazman et al. [1994, 1999]) that analyzes software

architecture to address quality concerns is largely labor-intensive, experience-based,

3

and anecdotal. In a word, there has been a serious gap between software architecture

and maintenance quality in terms of bug-proneness and high maintenance costs.

Thus, the goal of this dissertation is bridging this gap. To achieve this goal, we

contribute a methodology, consisting of three parts:

• First, a novel architecture model, called the Design Rule Space (DRSpace)

model, that captures the modular structure of software architecture and the

maintenance “penalties” simultaneously.

• Second, an Architectural Root (ArchRoot) detection algorithm that automat-

ically identifies the most problematic aspects (DRSpaces) of a system’s archi-

tecture, which aggregates the bug-prone files.

• Third, an formal definition of Architectural Debt (ArchDebt), and an approach

that identifies such “debts” and quantifies their “costs” and “interest rates” to

support the refactoring decision-making.

DRSpace Modeling As the first step to bridging the gap, we first propose a new

architecture insight, the DRSpace modeling, to simultaneously capture the modular

structure of a software system’s architecture and the maintenance “penalties” on the

source files in the form of change-/bug-proneness.

Based upon the design rule theory of Baldwin and Clark [2000], we propose to rep-

resent a software system’s architecture as multiple, overlapping Design Rule Spaces

(DRSpaces). Each DRSpace is composed of certain leading files—the design rules of

the DRSpace—and modules that depend on and decoupled by the leading files. Each

DRSpace represents a cohesive aspect of the architecture. In addition, the evolution-

ary couplings among files are treated as a special form of architectural connections.

We use the number of times two files are changed in the same commits in the revi-

sion history to reflect the stength of their evolutionary coupling. By simultaneously

4

expressing the modular structure and the evolutionary couplings among files of a

software system, the DRSpace modeling helps to reveal architectural flaws that 1)

violate common design principles and 2) have incurred maintenance “penalties” in

the form of high co-changes.

The DRSpace modeling provides a perspective for inspecting software architec-

ture as multiple overlapping spaces, instead of as an expansive and complex view.

In the study of 15 projects of various characteristics, we found that if the leading

file of a DRSpace is bug-prone, a large number of the files in the DRSpace will also

be bug-prone. Therefore, high-impact and bug-prone design rules should be given

higher priority than average files in bug-fixing activities. We also observed various

architectural flaws among bug-prone files, such as unstable key interfaces and modu-

larity violations, among the bug-prone files. The developers should be aware of such

flaws because they make bugs hard to eradicate. Our DRSpace modeling increases

such awareness by providing a perspective for revealing these flaws.

ArchRoot Detection Given the new architecture insight, to further bridge the

gap, we propose an algorithm to automatically identify a list of DRSpaces that con-

centrate the bug-prone files in a software system. We call these DRSpaces the Archi-

tectural Roots (ArchRoots) of bug-proneness. An architecture analyst should focus on

the top few ArchRoots with the highest concentration of bug-prone files to facilitate

the identification of architectural flaws.

The analysis of ArchRoots identified in 15 projects advanced our understanding of

the impacts of software architecture on maintenance quality. We found that the top

few (usually five) ArchRoots aggregate a significant percentage (up to 91%) of the top

30% most bug-prone files in these projects. This indicates that the bug-prone files

seldom exist alone. Instead, they are likely to be architecturally connected in only a

few groups (ArchRoots). In each project, we observed long-lasting ArchRoots with

5

enduring impacts on the bug-proneness: their leading files kept aggregating a large

number of bug-prone files over time. In addition, each root contains multiple, recur-

ring architectural flaws, including unstable interfaces, modularity violations, cyclic

dependencies, and unhealthy inheritance. We believe that these flaws can be the root

causes of maintenance difficulties, because they can propagate changes among files

and consequently keep incurring high maintenance costs over time. Software practi-

tioners should identify and fix these flaws in order to fundamentally reduce the bug

rates and increase the maintainability of a software system.

ArchDebt Quantification As long as the flawed architectural connections are

not fixed, maintenance costs on files will keep increasing, just as penalties would keep

accumulating until the debts were paid off. Hence, we formally define a special form

of Technical Debt1, an Architectural Debt (ArchDebt), as a group of files that keep

incurring high maintenance costs due to their flawed architectural connections. The

developer team can pay off such “debts” by refactoring, which is to fundamentally

fix the high-maintenance architectural flaws. But this will likely delay the planned

project progress. Or they can choose not to invest in refactoring immediately, but they

are subject to the risk of future higher maintenance “penalties”. Given this dilemma,

software practitioners need to make informed decisions in terms of whether, when,

and where to refactor. Hence, we propose an approach to automatically identify

such “debts” and quantify their “costs” and “interest rates” to support informed

refactoring decision-making.

We propose an approach to automatically identify which and how files are involved

in ArchDebts. This approach identifies ArchDebts by matching four typical archi-

tectural flaw patterns. These patterns cover all possible combinations of structural

1Technical Debt is a metaphor used to refer to the long-term consequences of shortcuts taken in
software development to achieve immediate goals. This concept was first proposed by Cunningham
[1992].

6

dependencies and evolutionary couplings among files. To better model the evolution-

ary couplings among files, we develop a novel History Coupling Probability (HCP)

matrix. The HCP matrix captures the probability of bug propagation from one file to

another. We use the probabilities to replace the co-change numbers between files in

the original DRSpace modeling. Each ArchDebt, matching one of the four patterns,

is a potential refactoring opportunity. To further help software practitioners make

informed refactoring decisions, we quantify the “cost” and the “interest rate” on each

ArchDebt. Since the actual cost (in terms of time and money) of an ArchDebt can

not be measured directly, we use the revised lines of code to fix the bugs involving

the files in an ArchDebt to approximate its cost. We also monitor the evolution of

each ArchDebt and model the growing trend of the maintenance cost over time to

calculate the “interest rate”. We use four types of regression models to describe four

typical types of interest rates: the linear, logarithmic, exponential, and polynomial

regression models represent stable, decreasing, increasing, and fluctuating interest

rates, respectively.

In seven software projects with four to eight years of revision history, we iden-

tified true debts that generate and grow significant (up to the 85% of the total)

maintenance penalties. Interestingly, the most high-impact and expensive type of

ArchDebts involve groups of files without any direct structural dependencies but fre-

quently changing together in revision history. This indicates the lack of sufficient

design to encapsulate change-/bug-prone concepts shared among files in the projects.

In addition, we monitored how an initially trivial architectural flaw evolved over time

into a high-impact and expensive “debt” (shown by the example in section 10.4.2).

We believe that our approach is able to identify architectural flaws in their early

stages as refactoring opportunities. Ultimately, it helps software practitioners make

informed refactoring decisions, based on the “cost” and “interest rate” of each “debt”,

7

rather than based on one’s intuition or experience.

In summary, the contribution of this dissertation in bridging the gap between

software architecture and maintenance quality is a systematic methodology to model,

analyze, and monitor software architecture. To evaluate the potential of this method-

ology, we applied it on a variety of software projects, including dozens of open source

projects and several commercial projects from Siemens, ABB, SoftServ, and Huawei.

Given the different characteristics of these projects, our methodology has consistently

shown great potential in identifying the architectural root causes of maintenance dif-

ficulties and in supporting informed refactoring decision-making to fundamentally

improve maintenance quality. We strongly believe that our methodology will change

the way software architecture is analyzed, monitored, and maintained for addressing

maintenance quality concerns in practice.

The take-away messages of our studies include the following. First, when devel-

opers are trying to fix bugs, they should treat bug-prone files as connected groups,

instead of isolated individuals, because the majority of bug-prone files are architec-

turally connected. Second, the flawed architectural connections among bug-prone

files could be the root causes of bug-proneness and ever-accumulating maintenance

“penalties”. Developers should be aware of such flaws and their consequences when

they are revising their codes, particularly if they decide not to immediately fix these

flaws through refactoring. Finally, the flawed architectural connections among files,

which are like debts, can generate and grow significant maintenance “penalties” in a

software project. Software practitioners should identify and monitor such “debts” as

early as possible. Ultimately they should make informed refactoring decisions to pay

off the “debts” when necessary.

The following of this dissertation is organized as follows. Part II presents the

state of art in related fields. Part III introduces the background theories, concepts,

8

and techniques of this dissertation. Part IV introduces and evaluates the three parts

of our methodology: the DRSpace modeling, the ArchRoot detection algorithm, and

the ArchDebt quantification approach. Part V summaries this dissertation and briefly

discusses future directions.

9

Part II

Related Work

10

This dissertation is mainly related to the research in the fields of software architec-

ture, bug prediction, and technical debt. This chapter briefly goes through each field

and discusses how this dissertation distinguishes from and supplements to existing

work.

In chapter 1, we introduce the research in software architecture, including archi-

tecture description languages, architecture reverse-engineering techniques, and archi-

tecture related analysis.

In chapter 2, we introduce a variety of techniques in bug prediction. Related work

lies in three major categories: 1) bug prediction based on the source code complexity

metrics, 2) bug prediction based on project revision history information, and 3) bug

prediction based on the combination of the prior two types of data.

In chapter 3, we will introduce the state of art in Technical Debt (TD) research,

including the origin of the concept, the most up-to-date definition and categorization

of TD, as well as existing identification approaches.

11

1. Software Architecture

Software architecture is the high level structure of a software system, reflected in

its components and their connections. A software system’s architecture is probably

the most critical determinant in attaining required functions as well as non-functional

attributes throughout different phases of a project (Garlan et al. [2010]). Hence, the

research in software architecture has drawn significant attention in the software engi-

neering community. There are a large amount of literature devoting to the description,

documentation, recovering, and analysis of software architecture. In this chapter, we

will briefly go through these literature and discuss how this dissertation supplements

to the state of art.

1.1 Software Architecture Description Language (ADL)

To communicate software architecture for addressing different concerns, stake-

holders require a language that can be understood and documented. The work in

ADLs provides tools for parsing, displaying, analyzing, or simulating architectural

descriptions written in their associated languages. An ADL could be any form of

formal representation to describe software architecture. It could be in either graphic

or syntax representation. It describes software entities, such as processes, threads,

data, and their interactions. Garlan [2003] summarized from related literature that

ADLs provide notations and concrete syntax for modeling software architecture as

components, connectors, and events.

There has been various types of ADLs. Each has different focus. For example,

Terry et al. [1994] contributed a suit of supporting tools to help specify, design, vali-

date, package, and deploy distributed intelligent control and management (DICAM)

12

applications, in the domain of vehicle management systems. Newton and Browne

[1992] developed a graphic parallel programming system that models parallel archi-

tectures. Palsberg et al. [1995] implemented a Demeter system that can be used to

design and automatically generate adaptive programs specified by a so-called prop-

agation pattern. Jahanian and Mok [1994] proposed a specification language for

real-time systems called Modechart. Stephen H. Edwards and Weide [1994] proposed

RESOLVE to describe a conceptual module as a RESEOLVE unit that specified an

abstract component by defining its context and its interface structure and behavior

for designing reusable components. Shaw et al. [1995] sketched and implemented a

model called UniCon for defining architectures as different types of components and

different ways these components can interact. Allen and Garlan [1994] proposed a

model called Wright to distinguish between ”implementation” and ”interaction” rela-

tionships between modules. To help architecture understanding, Aldrich et al. [2002]

contributed an extension to Java, called ArchJava, that aimed at keeping architecture

and implementation consistent.

Clements [1996] reviewed and compared the pros and cons of different types of

ADLs. They claimed that a glaring commonality among different ADLs was the lack

of in-depth experience and real-world application. In addition, they claimed that

none of the ADLS could capture the design rationale and/or evolution history of

architecture.

In comparison, this dissertation aims at providing a general architecture model

and systematic analysis techniques to discover poor architectural decisions that are

responsible for quality problems related to bug-proneness and high maintenance costs.

Our work is different from the work in ADL in the following aspects: 1) ADLs are

mainly used in design, while our work is to retrospectively analyze and monitor the

evolution of software architecture for addressing concerns related to maintenance

13

quality; and 2) none of the ADLs captures the evolution history of a system’s ar-

chitecture, while in our DRSpace modeling, we express evolutionary coupling among

source files as a special form of architectural connection to support the diagnosing of

architectural flaws; (3) ADLs were not designed to directly support the analysis of a

software system’s architecture, while the ArchRoot and ArchDebt approach in this

dissertation can automatically identify the architectural root causes of bug-proneness,

and suggest refactoring opportunities.

1.2 Software Architecture Reverse Engineering

This dissertation is also related to software architecture recovery. In reality, the

ground truth of a software system’s architecture is usually missing due to the absence

of an up-to-date and accurate document. Over the past decades there has been a

considerable amount of research devoted to this problem. Researchers have been

trying to provide more precise ways to recover a software system’s architecture, while

the development is going on. According to Kruchten [1995] and Bass et al. [2012], a

software system has different architecture views from different perspectives. Hence,

various reverse-engineering techniques have been developed to produce the high-level

architecture with different foci.

Schwanke and Hanson [1994] proposed a tool to model the modularization of a

software system as nearest-neighbor clustering and classification. The tool learns from

human architects by performing back propagation on a neural network. Tzerpos and

Holt [1997] presented the Orphan Adoption problem in architecture maintenance.

The Orphan Adoption problem refers to the accommodation of newly introduced

resource, such as variables or source files, to the existing architecture view. They

proposed an algorithm to recover an up-to-date and accurate architecture view to

reflect the newly added “orphans”. Mancoridis et al. [1999] developed a clustering

14

tool call Bunch to produce high-level system decomposition descriptions from the

low-level structures present in the source code. Their approach was featured by the

integration of designer knowledge about the system into an otherwise fully automatic

clustering process. Tzerpos and Holt [2000] proposed a clustering algorithm helps

to improve program comprehension based on subsystem patterns. Similar to the

DRSpace modeling in this dissertation, Sangal et al. [2005] also utilized the DSM and

hierarchical clustering based on the design rule theory to manage complex software

architecture. Garcia et al. [2013] attempted to recover the ground-truth software

architecture of four open source projects, using a combinations of techniques and

resources, such as available documentation, structural dependencies between code-

level entities, domain knowledge of the systems, and certification from the authority.

They were able to recover the ground-truth architecture of software projects. They

claimed that a single system can have multiple architecture views depending on the

perspective the recovery of architecture was approached. Bavota et al. [2014] proposed

an approach to recover the modular structure by analyzing underlying latent topics

in source code and structural dependencies.

The above automated or semi-automated techniques recover the high-level archi-

tecture of a software system from the low-level implementation based on similarity,

data sharing, domain knowledge, and call graphs. The goal of these techniques is

to enhance the comprehensibility of a software system’s architecture to help software

developers to understand and finish their development tasks in hand.

In this dissertation, the DRSpace modeling utilizes reverse-engineering technique

to recover the modular structure of software architecture. We first generate a call

graph describing the static references among files. Then we use the Design Rule

Hierarchy clustering algorithm proposed by Huynh et al. [2008a,b] (we will discuss

this algorithm in greater detail in Part III) to represent software architecture as design

15

rules and modules. The most distinctive aspects of our DRSpace modeling, from the

architecture models created by existing reverse-engineering techniques, are that (1)

we model software architecture as multiple overlapping spaces, instead of a general

view generated by the above techniques; (2) the maintenance “penalties” in terms

of change-/bug-proneness on software entities are directly captured in the DRSpace

modeling, which are not considered in any of the above techniques.

In addition, the ultimate goal of this dissertation is not just to correctly recovering

a software system’ architecture views. Architecture recovering serves to facilitating

maintenance quality related analysis. Our approach supports automatic and system-

atic analysis of software architectural flaws that are responsible for quality concerns.

None of the recovering technique directly supports such analysis.

1.3 Software Architecture Analysis

One of the important goals of software architecture reverse-engineering is, of

course, to support different analysis. Software architecture has been utilized in anal-

ysis for addressing concerns related to various aspects of software development, such

as software evolution, development parallelism, and quality.

MacCormack et al. [2006] used Design Structure Matrix (DSM), which is also

used in our work, to map dependencies between a software system’s design elements

and their relationship. They used this representation to compare the design of two

large scale projects: Mozilla and Linux. They also tracked the evolution of these

projects and identified “re-design” effort undertaken with the intention of improving

the “modular” structure. Parnas [1972] discussed the modularization as a mechanism

for improving flexibility and efficiency of the development of a software system. Ac-

cording to their discussion, software architecture should be designed as composing of

independent modules to support parallel implementation, instead of as composing of

16

sub-routines. Along this line, Wong et al. [2009] presented a software system’s archi-

tecture as a Design Rule Hierarchy (DRH), which is composed of design rules and

independent modules. The DRH reflects and supports the analysis of the parallelism

in software development tasks. Robillard [2008] analyzed the topology of software

dependencies to guide developers’ navigation to find potentially relevant code to a

change task. Kouroshfar et al. [2015] studied the role of software architecture in the

evolution and quality of software. They found that changes made across different

architectural modules are more likely to be error-inducing. But their work doesn’t

provide in-depth insight in terms of how and why such changes are error-inducing.

As shown above, software architecture has been used to aid analysis for addressing

different concerns. However, none of the above work has directly linked software

architectural with maintenance quality. No in-depth answers have been given to

answer the question, whether and how software architecture is related to maintenance

quality problems. Existing studies attempting to relate software architecture and

quality concerns have either focused on questionnaires (Maranzano et al. [2005]) or

scenarios (Kazman et al. [1994, 1999, 2001]). These methods are labor-intensive

and their success depends heavily on the skill of the analysts. To the best of our

knowledge, the methodology introduced in this dissertation is the first in automatically

and directly linking software architecture and maintenance quality concerns.

17

2. Bug Prediction

Software bugs consume a considerable amount of efforts to discover, test and fix.

To improve the efficiency of such activities, ample techniques have been proposed to

predict the location of future bugs. Researchers build predicting models to locate

bugs in a software system based on three categories of data: the complexity metrics,

history bug fixing information, and a combination of the prior two types of data.

In this chapter, we will briefly go through existing work in bug prediction field and

discuss how our work distinguishes from and supplements to the bug prediction field.

2.1 Prediction based on Complexity Metrics

Different complexity metrics have been proposed to measure the structure of soft-

ware architecture. The most basic complexity metrics include the number of files

and the lines of code (LOC) in a software project. Researchers, such as McCabe

[1976], Henry and Kafura [1981], Chidamber and Kemerer [1994], Basili et al. [1996],

Bansiya and Davis [2002], and Ran Mo and Feng [2016], proposed a variety of com-

plexity metrics based on different criterions. For example, McCabe [1976] proposed

the Cyclomatic complexity to measure the number of linearly independent paths in

a program’s source code. Chidamber and Kemerer [1994] proposed a suite of metrics

based on the object-oriented design principles. Most recently, Ran Mo and Feng [2016]

proposed a Decoupling Level to measure how well software architecture is decoupled

into independent modules.

Researchers in the bug prediction field have used different metrics to predict soft-

ware entities/modules that are most likely to be bug-prone. Selby and Basili [1991]

used the coupling and strength to identify error-prone system structure. Ohlsson

18

and Alberg [1996], Nagappan et al. [2006], and Ohlsson and Alberg [1996] collected

various complexity metrics, such as McCabe’s cyclomatic complexity, fan-in and fan-

out, to build their prediction models. Nagappan et al. [2006] investigated eighteen

complexity metrics as bug predictors, in a case study of five major Microsoft software

components. These studies have shown that different complexity metrics work best

for different projects. Bansiya and Davis [2002] and Briand et al. [2000] assessed the

relationship between various object-oriented design metrics, such as coupling and co-

hesion, with the quality attributes, such as reusability, flexibility, understandability,

etc.. Zimmermann and Nagappan [2008] built their prediction models based on mea-

sures derived from the network analysis of the dependency graph. These studies have

shown the usefulness of various complexity metrics in predicting bug-proneness. Men-

zies et al. [2007] argued that how complexity attributes are used to build predictors

is much more important than which particular attributes are used.

2.2 Prediction based on Project History

A project’s revision repositories, including the version control system and the bug

tracking database, are also valuable sources for bug prediction. Researchers extracted

a variety of history predictors, such as artifact ownership and number of changes made

to file, for bug-proneness.

T.L. Graves and Siy [2000] proposed a weighted time damp model, which computes

the fault potential of modules in software system, based on the changes made to each

module in revision history. They explored the extent to which measurements based on

the change history were more useful in predicting fault rates than complexity metrics.

They found, for example, the number of times code had been changes was better

indication of bug-proneness than its length. Jones et al. [2002] visualized the test

information to assist fault localization. Ostrand et al. [2004] built a negative binomial

19

regression model using information from previous releases, such as file age and file

change, to predict the number of faults with each file in a large industrial inventory

system. Nagappan and Ball [2005] used relative code churn measures to predict

system defect density. Kim et al. [2007] built a model, called FixCache, using cached

bug information to predict future bug locations with high accuracy. Moha et al.

[2008] introduced an approach to automate the generation of design defect detection

algorithm from the existing textual descriptions of defects. Eaddy et al. [2008] found

that crosscutting concerns can cause defects. D’Ambros et al. [2009] analyzed the

relationship between change coupling, in terms of co-changes among software artifacts,

and software defects. Hassan [2009] argued that a complex code change process

negative effects on the system. They claimed that complexity of code changes is

better predictors of fault compared to other well-known historical predictors, such as

prior modifications and prior faults. More recently, Posnett et al. [2013] predict bug-

proneness based on both the developer focus and artifact ownership. They found that

developers in charge of greater number of files were more likely to introduce defects

than developers in charge of fewer number of files. In the meanwhile, files revised and

reviewed by more developers were less likely to contain defects than other files.

2.3 Prediction based on Combined Information

Some researchers build their prediction modules based on combined history and

complexity metric predictors. For example, Fenton and Ohlsson [2000] tested a ranges

of predictors based on revision history and complexity metrics. They found that mod-

ules with most of the pre-release faults also contained most of the faults discovered

in operation. They also reported that there was no found evidence to support previ-

ous claims that complexity metrics are good fault predictors. Ostrand et al. [2005]

successfully predicted 80% of the faults using file size and file change information for

20

two large industrial systems. Cataldo et al. [2009] examined the impact of syntactic,

logical, and work dependencies (in terms of workflow dependencies and coordination

requirements) on the failure proneness of a software system. The results of their study

suggested that re-architecting held promise for reducing defects.

In summary, the goal of bug prediction is to efficiently and economically predict

bug locations to facilitate testing and bug fixing activities. It has been shown, and

as we have discussed above, that history bug information could be a good source for

bug prediction, meaning files that are buggy in the past tend to remain buggy in the

future. In the one hand, this is good news for developers because history bug fixing

information can provide insight in where to find bugs in the future. On the other

hand, however, this indicates that bugs are seldom entirely fixed by the developers,

otherwise, how could past bug information be used to predict future bugs? Based

on the reasoning, a more important question that has not been addressed by bug

prediction is why bugs are hard to eradicate in software systems. Or in other words,

what are the root causes that contribute to the bug-proneness?

Leszak et al. [2000] attempted to answer this question by manually inspecting the

bug tickets in the bug tracking database, and categorizing bugs into different types.

In this dissertation, we attempt to approach this problem from the perspective of

software architecture. The underlining assumption is that poor software architecture

design could make bugs hard to eradicate. We argue that, instead of predicting future

bug locations, software practitioners should fix the root causes of bug-proneness to

fundamentally reduce bug-fixing effort.

21

3. Technical Debt

3.1 Technical Debt Origin

Since Cunningham [1992] first coined the term up in 1992, Technical Debt (TD)

has been used to describe the consequences of shot-cuts taken in software projects

to achieve intermediate goals. During the past decade, TD has drawn increasing

attention in the software engineering community (Brown et al. [2010]; Kruchten et al.

[2012]; Shull et al. [2013]; Falessi et al. [2014]; Seaman et al. [2015]).

3.2 Technical Debt Definition and Categorization

Li et al. [2015] conducted a mapping study on different categories of TD based

on related literature published between 1992 and 2013. They classified ten coarse-

grained TD types according to the phases of the software development life-cycle, such

as requirements, architectural, and code. They found that Code TD is the most well

studied type, and Architectural TD has also received significant attention. They fur-

ther categorized Architectural TD into seven sub-categories, including architectural

smells (Mo et al. [2013]), architectural anti-patterns (Griffith and Izurieta [2014] and

Peters [2014]), complex architectural behavioral dependencies (Brondum and Zhu

[2012]), violations of good architectural practices (Curtis et al. [2012]), architectural

compliance issues (Kazman and Carriere [1999]), system-level structural quality is-

sues, and all others. TD can compromise both functional and quality requirements,

such as performance, security, usability, and modifiability.

Alves et al. [2014] organized 13 types of TD and their key indicators, includ-

ing Architectural TD. They described Architectural TD as “problems encountered

in software architecture”, and referred to issues in software architecture, structure

22

dependencies/analysis, and modularity violations as indicators of Architectural TD.

Their work focused on building the ontology of TD rather than focusing on resolving

a specific type of TD.

3.3 Technical Debt Identification

Maldonado and Shihab [2015] proposed an approach to identify different types of

“self-admitted” TD in software projects, by reviewing the comments left by develop-

ers. They identified five types of self-admitted TD: design, requirement, defect, test,

and documentation TD. According to their study, the most common types of TD are

design and requirement. But as the name “self-admitted” suggests, the TD identified

in their work was limited to ones that the developers are aware of. There are forms

of TD introduced unwittingly by developers.

Martini and Bosch [2015] conceptualized two patterns of Architectural TD: con-

tagious debt and vicious circle. Contagious debt leads to ripple effects in projects.

Vicious circle refers to a more severe contagious debt where the ripple effects form

a loop. Their work has two limitations. First, it intensively relies on interviewing

developers to identify these problems. As stated above, it is possible the developers

are not aware of all the TD existing in their project. Furthermore, this approach is

labor-intensive and relies highly on the expertise of the analyst. Second, this only

identifies two anti-patterns, and these overlap with each other.

Given the substantial research literature, it is surprising that definitions of the

types of TD are still largely informal. In fact, the identification of TD relies heavily

on interviews or reviewing developers’ revision comments, and these are only problems

that the developers are aware of. Many questions in TD research remain open. For

example, how to precisely define the forms of TD, how to automatically identify these

forms of TD, and how to measure TD: its costs and interest rates.

23

Part III

Background Concepts and

Techniques

24

This part introduces concepts and techniques that serve as the foundation of this

dissertation. The content is organized as follows.

In chapter 4, we introduce the design rule theory proposed by Baldwin and Clark

[2000]. According to this theory, any complex system can be interpreted as design

rules—the high level design decision, and modules that are decoupled by the design

rules. Our DRSpace modeling embraces this theory.

Chapter 5 introduces the Design Structure Matrix (DSM) representation proposed

by Baldwin and Clark [2000]. DSM is a compact matrix representation for modeling

and visualizing system entities and their relationships. In this dissertation, we use

the DSM to represent and visualize the DRSpace modeling.

Chapter 6 introduces the Design Rule Hierarchy (DRH) algorithm proposed by

Huynh et al. [2008a,b]. DRH is a DSM-based clustering algorithm that automatically

captures the design rules and modules of a system. The algorithm will arrange the

design rules and modules in a hierarchical manner, such that the dependencies among

entities will form a lower triangle in the DSM representation. We use the DRH

algorithm to calculate the hierarchy of design rules and modules in each DRSpace.

Chapter 7 discusses modularity violation proposed by Wong et al. [2011]. Modu-

larity violation refers to the phenomenon that structurally independent modules keep

changing together in revision history. In this dissertation, the ArchDebt quantifica-

tion approach quantifies the maintenance consequences brought by such violations.

In addition, the DRSpace modeling can directly visualize modularity violations and

their maintenance consequences.

25

4. Design Rule Theory

The design rule theory, proposed by Baldwin and Clark [2000], allows for both

independence of structure and integration of function in large and complex systems.

Design rules are important design decisions that decouple the other design parameters

in a system into mutually independent modules. Design rules facilitate interdepen-

dence within and independence across modules. The design and implementation of a

module can be held independent from another module, as long as established design

rules are obeyed. Baldwin and Clark [2000] claim that any complex modern system

can be interpreted as consisting of design rules and modules.

In this dissertation, we advocate Baldwin and Clark [2000]’s design rule theory.

We believe, the architecture of any complex modern software system can also be

interpreted as design rules and modules. In modern programming languages following

object-oriented philosophy, like Java, the interfaces or abstract classes usually play

the role of design rules. For example, in the abstract factory pattern1 (Gamma et al.

[1994]; Meyer [1988]), the abstract factory interface is the design rule, which decouples

concrete factories and the clients of the factories into independent modules. As long

as the abstract factory interface remains stable, the implementation of a concrete

factory should be independent from the implementation of other concrete factories

and from that of the clients.

The DRSpace modeling is based on the design rule theory. We propose to represent

a software system’s architecture as multiple overlapping design rule spaces. Each

space is composited of certain design rules, and modules that are decoupled by the

design rules. Each space represents a cohesive aspect of the architecture.

1Abstract factory pattern provides an interface for creating families of related or dependent
objects without specifying their concrete classes.

26

5. Design Structure Matrix (DSM)

Design Structure Matrix (DSM) is a powerful tool for presenting the architecture

of a software system. The design decisions and their interdependences in a complex

system can be compactly mapped into a square matrix (the DSM). The rows and

columns can represent the source files, arranged in the same order. The off-diagonal

cells show the dependency from the file on the row to the file on the column. The

diagonal cells imply self-dependencies of each file. Since self-dependencies are not im-

perative for architecture analysis, the diagonal cells are marked by the order numbers

of files instead for the sake of readability.

For example, Figure 5.1 is the DSM of a simple Java program , reversed-engineered

from the source code. In the DSM, the left-most column shows the list of source files.

The top-most row shows the order numbers of these files as arranged on the left-

most column. The mark on cell [r6:c7] indicates the file on row 6 (mij.ast.FuncExpr)

depends on the file on column 7 (mij.ast.Node). We use rectangles within the matrix

to show groups of files clustered together based on a certain criteria. In this particular

case, files are group together according to their directory structure. A DSM can also

be clustered in other methods, such as the design rule hierarchy algorithm, which will

be introduced in Chapter 6.

In this dissertation, we leverage the DSM representation to model and visualize

software architecture. Each DRSpace can be represented and viewed as a separate

DSM. In order to facilitate the diagnosing of architectural flaws that violate com-

mon design principles and indeed incurred maintenance consequences, we develop

two types of DSM. The first is a structure DSM, which models the structural depen-

dencies among files. In the cells of a DSM, we distinguish various types of structural

dependencies, such as “inherit” and “depend”. The second type is a history DSM,

27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

1 mij.Console (1) x x x x x x x x x x x x x x x x

2 mij.FilterException (2)

3 mij.Filter x (3)

4 mij.Interpreter x x (4) x x x x x x x x x x x x

5 mij.Repository (5)

6 mij.ast.FuncExpr (6) x x x

7 mij.ast.Node (7) x x

8 mij.ast.Number x (8) x x

9 mij.ast.OperExpr x (9) x x

10 mij.ast.TreeVisitor x x x (10) x x

11 mij.ast.UnaryOperExpr x x (11) x

12 mij.ast.Variable x x (12) x

13 mij.bnf.AddExpr (13) x x x x

14 mij.bnf.ExponExpr (14) x x x x

15 mij.bnf.GrammarType (15)

16 mij.bnf.LexExpr x (16) x x

17 mij.bnf.MultExpr x x x (17) x

18 mij.bnf.Node x (18)

19 mij.bnf.ParamExpr x x x x (19)

20 mij.bnf.UnaryExpr x x x (20) x

21 mij.bnf.ValueExpr x x x x x (21)

22 mij.io.InputPipe (22) x

23 mij.io.MemoryBuffer (23)

24 mij.io.MemoryInputPipe x x (24)

25 mij.io.MemoryOutputPipe x (25) x

26 mij.io.OutputPipe (26) x

27 mij.io.Pipe (27)

28 mij.io.ReaderInputPipe x (28)

29 mij.io.WriterOutputPipe x (29)

30 mij.lex.LexType (30)

31 mij.lex.Lexeme x (31)

32 mij.lex.Lexer x x x x x x x (32)

33 mij.parse.Convert x x x x x x x x x x x x x x x x (33)

34 mij.parse.Parser x x x x x x x x x x x x x x (34)

Figure 5.1: MIJ DSM in Package Cluster

which models how files change together in revision history. Each cell represents the

number of times the file on the row and the file on the column change together. We

can stack a structural DSM and an evolutionary DSM together to visualize the mod-

ular structure and the change-proneness of files simultaneously. We will illustrate this

in greater detail in Section 8.2.

28

6. Design Rule Hierarchy (DRH)

Huynh et al. [2008a,b] proposed a DSM based clustering algorithm, call the Design

Rule Hierarchy (DRH) algorithm. The algorithm automatically distinguishes the

architecture roles of source files as design rules and modules in a DSM. A DSM

clustered by the DRH algorithm has 3 key features: (1) the design rules and modules

are arranged in hierarchical levels, with design rules on the upper levels, while the

modules decoupled by the design rules on lower levels; (2) the modules in lower levels

depend on the modules in higher levels, but not vice versa; (3) modules in the same

level are mutually independent from each other.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
1 mij.bnf.Node (1)
2 mij.io.Pipe (2)
3 mij.ast.Node (3)
4 mij.Filter (4)
5 mij.io.InputPipe ext (5)
6 mij.io.OutputPipe ext (6)
7 mij.io.WriterOutputPipe Impl (7)
8 mij.io.MemoryOutputPipe Impl (8)
9 mij.io.ReaderInputPipe Impl (9)

10 mij.io.MemoryInputPipe Impl (10)
11 mij.ast.TreeVisitor (11)
12 mij.Interpreter Impl Impl (12)
13 mij.parse.Parser Impl (13)
14 mij.lex.Lexer Impl (14)
15 mij.parse.Convert Impl (15)
16 mij.ast.Variable ext (16)
17 mij.ast.Number ext (17)
18 mij.ast.OperExpr ext (18)
19 mij.ast.FuncExpr ext (19)
20 mij.ast.UnaryOperExpr ext (20)
21 mij.bnf.ValueExpr ext (21)
22 mij.bnf.AddExpr ext (22)
23 mij.bnf.ParamExpr ext (23)
24 mij.bnf.UnaryExpr ext (24)
25 mij.bnf.LexExpr ext (25)
26 mij.bnf.ExponExpr ext (26)
27 mij.bnf.MultExpr ext (27)

Figure 6.1: MIJ Inherit DRSPace

Figure 6.1 shows a DSM (formed by ”extend” and ”implement” relationships)

29

with 3 levels. The first level (row 1 to row 4) contains 4 files that are the super

classes or interfaces recognized as the design rules. The second level (row 5 to row

6) contains 2 files that “extend” mij.io.Pipe on the first level. The third level (row

7 to row 27) contains 21 files that extend/implement files in the first 2 levels. Level

3 is decoupled into 6 mutually independent modules, each module follows a specific

design rule in the top 2 levels.

In this dissertation, we apply the DRH algorithm on each DRSpace to automati-

cally capture the leading files and modules of each DRSpace.

30

7. Modularity Violation

Wong et al. [2011] use the term modularity violation to refer to the phenomenon

in software projects that, a set of files should, according to their modular structure,

evolve independently, but they actually are highly coupled with each other in revi-

sion history. Wong et al. [2011] implemented a tool, called Clio, which can detect

modularity violations in software projects from the source code and revision history.

In the experiments on three open source projects, Clio identified large numbers of

modularity violations, which were verified to bring maintenance consequences, such

as errors, modularity decay, or even expensive refactorings.

We conducted a case study (Schwanke et al. [2013]) on an industry agile project.

In this study, we identified and verified many cases of modularity violations using Clio.

We found that Modularity violations usually suggest “shared secrets” (undocumented

assumptions) among files that require better encapsulation. For example, we found

that a set of files in the project shared an assumption of using the same time unit

without encapsulating this concept explicitly. Whenever the time unit used in one

file changed, the other files had to accommodate accordingly.

The DRSpace modeling, utilizing the DSM representation, can help to reveal and

visualize modularity violations in a software system. In a DSM, if a cell contains

evolutionary coupling without any structural dependencies, it indicates a modularity

violation. Aided by the visualization tool, Titan-GUI (which will be introduced in

Section 9.3), software practitioners can investigate modularity violations conveniently.

In addition, in the ArchDebt quantification approach, we quantify the maintenance

“costs” and model the “interest rate” of each instance of modularity violation. We

found that modularity violations are actually the most high-impact and expensive

type of flaws.

31

Part IV

Our Methodology

32

In this part, we will introduce our methodology in great detail.

Chapter 8 introduces the DRSpace modeling, and shows its usefulness in helping

software practitioners to understand the architectural root causes of quality concerns,

relating to bug-proneness and high maintenance costs.

Chapter 9 presents the Architectural Root detection algorithm based upon the

DRSpace modeling. We applied the ArchRoot detection algorithm on 15 software

projects. The analysis of the ArchRoots identified in these projects advanced the

understanding of the architectural root causes of bug-proneness.

Chapter 10 formally defines a particular form of Technical Debt—Architectural

Debt, based on the observations made using the DRSpace modeling and ArchRoot

detection algorithm. In this chapter, we also provide an approach to automatically

identify, quantify and model the maintenance consequences of ArchDebts.

33

8. Design Rule Space (DRSpace) Model

In a case study on a commercial agile project (Schwanke et al. [2013]), we found

that software architectural flaws, such as unstable key interfaces and important un-

documented assumptions, could cause maintenance difficulties. However, like other

similar studies (Maranzano et al. [2005]; Kazman et al. [1994, 1999]), the diagnosing

of poor architectural decisions contributing to the maintenance quality problems was

largely labor-intensive and experience-based. To the best of our knowledge, there

was no systematic way to analyze the architectural root causes of bug-proneness and

related high maintenance costs. In a word, there remains a gap between software

architecture and maintenance quality.

To bridge this gap, a model that expresses relevant architecture information for

diagnosing quality problems is vital. Hence, in this chapter, we propose a new ar-

chitecture insight, called the Design Rule Space (DRSpace) modeling, to capture

the modular structure and the change-/bug-proneness of files simultaneously. The

DRSpace modeling is based upon the design rule theory proposed by Baldwin and

Clark [2000]. They claim that any complex modern system can be interpreted as

design rules—the high level decisions, and modules—the implementations of concrete

tasks. As long as the design rules are well established and rigorously obeyed, modules

can be implemented and maintained independently.

Based on the design rule theory, we propose to represent the modular structure of

software architecture as multiple overlapping Design Rule Spaces (DRSpaces). Each

DRSpace, composed of certain key design rules and modules following the design

rules, reflects a cohesive aspect of software architecture. For example, a complex

system can apply multiple design patterns1. Each design pattern can, and should,

1Design patterns are well accepted design solutions for common problems(Gamma et al. [1994];

34

be expressed by a separate DRSpace. The key interfaces of a pattern are the design

rules, and the concrete implementations of the design rules are the modules. We

will illustrate the DRSpace modeling using a simple Java system as an example in

section 8.2.

In the DRSpace modeling, the evolutionary couplings among files are expressed

as a special form of architectural connections. The number of times two files are

changed together in revision history denotes the strength of their evolutionary cou-

pling. The more frequently two files are changed together, the more coupled they

are. We visualize the evolutionary couplings among files and the modular structure

of a DRSpace simultaneously. This helps to diagnose architectural flaws that 1) vio-

late common design principles and 2) have actually brought maintenance “penalties”

(in the form of high co-changes). For example, the evolutionary coupling between

two structurally independent modules indicates a shared implicit assumption among

them. High coupling between a key interface and its dependent modules suggests an

unstable key interface.

Our supporting tool, Titan-GUI, visualizes each DRSpace in the form of a De-

sign Structure Matrix (DSM). The rows and columns of a DSM represent files in

a DRSpace. Each cell can flexibly display various relationships between the file on

the row and the file on the column, including different types of structural depen-

dencies and/or the evolutionary coupling. Visualizing the evolutionary coupling and

the modular structure simultaneously can help to reveal architectural flaws among

the bug-prone files. In section 8.4.2, we will show examples of architectural flaws

identified in an open source project.

As the first step to bridging the gap between software architecture and mainte-

nance quality, the DRSpace modeling has shown great potential in facilitating the

Freeman et al. [2004])

35

understanding of the architectural root causes of bug-proneness. We found that, if a

design rule is bug-prone, files depending on it are also likely to be bug-prone. Thus,

bug-prone and high-impact key design rules should be granted higher priority in bug

fixing activities. The bug-prone files in a DRSpace are architecturally related to each

other through the dependencies to the common design rule. In addition, with the

help of the DRSpace modeling, we revealed multiple architectural flaws among the

bug-prone files in 15 open source projects, such as unstable interface and cyclic de-

pendencies. The developers should be aware of such architectural flaws when they fix

bugs. They should even consider fixing these flaws first to prevent error propagation

in the bug fixing activities.

The following of this chapter is organized as follows. Section 8.1 defines what is a

DRSpace. Section 8.2 illustrates the overlapping DRSpaces of a small Java project.

Section 8.3 presents the supporting tools for building and viewing the DRSpace mod-

eling. Section 8.4 shows the usefulness of the DRSpace modeling for understanding

the architectural root causes of bug-proneness in 15 open source projects. Section 8.5

discuss the limitations and threats to validity of our DRSpace modeling. Section 8.6

summarizes this chapter.

8.1 DRSpace Definition

Design Rule Space (DRSpace) is defined as a graph with the following character-

istics:

1. A DRSpace is composed of a set of classes (files), and one or more selected

types of relations between them. It distinguishes different types of structural

connections among files, such as “inherit”, “realize”, “aggregate” and “depend”.

“Inherit” and “realize” are basic polymorphism concepts in object-oriented pro-

gramming languages, like Java. “Extend” (i.e., “inherit”) refers to a child class

36

inheriting from a parent class. “Implement” (i.e., “realize”) refers to a concrete

class realizing an interface. All other general references, such as method calls,

between files are uniformly recognized as “depend”. It models evolutionary

couplings among files as a special form of architecture connection. The evolu-

tionary couplings are extracted from the revision history of a project. If two

files change in the same commits, we consider the two files to be evolutionar-

ily coupled. The number of times they change together in the same commits

represents the weight of their evolutionary coupling. For example, if two files

change together in 10 commits, the weight of their evolutionary coupling is 10.

2. The vertices (classes) of a DRSpace must be clustered into the DRH form (in-

troduced in chapter 6) based on one or more selected types of relations. We

call these selected relations that form a DRH structure the primary relations of

the DRSpace. Using our tool, Titan, the user can choose to include other types

of relations in a DRSpace for analysis purposes, which we call the secondary

relations of the DRSpace. For example, to visualize modularity violations, we

first create a DRSpace with one or more of the three structural relations to

show the designed modular structure, and then choose evolutionary coupling as

the secondary relation to visualize where violations occur.

3. A DRSpace always contains one or more leading files, which are the design rules

of the space. All other files in the space directly or indirectly depend on the

leading files. We use the term leading files instead of design rules because the

latter usually refer to architecturally important decisions for the whole system,

while the former are only the design rules of a particular DRSpace. We use a

DSM (introduced in Chapter 5) to represent a DRSpace. And we apply the

DRH algorithm (introduced in Chapter 6) to automatically capture the leading

files and modules in a DRSpace. Each module is a cluster of structurally coupled

37

files that directly or indirectly depend on the leading files. The DRH algorithm

also arranges the leading files and modules of a DRSpace in a hierarchy in the

DSM: the leading files are on the top level, while the modules are in the lower

levels. If a DRSpace DRS has leading LD, we also say that DRS is led by LD.

8.2 DRSpace Model Illustration

The rows and columns represent files, arranged in the same order. The “x” mark in each cell represents a structural

dependency from the file on the row to the file on the column. Each inner rectangle represents a package.

Figure 8.1: MIJ DSM in Package Cluster

We use a small calculator program called MIJ, implemented in Java, as a running

example to illustrate the uniqueness of our DRSpace model. MIJ supports simple

38

calculations, including addition, subtraction, multiplication, and division. It applied

multiple design patterns, such as Interpreter, Visitor, and Pipe and Filter pattern.

The Interpreter pattern defines interpreter and lexer components to parse differ-

ent operations. The Visitor pattern traverses and enacts different operations on an

abstract syntax tree (AST). The Pipe and Filter pattern facilitates communication

between different components in the system.

Figure 8.1 shows the traditional DSM (used in most existing tools, such as Latix 2)

of the MIJ program, reverse-engineered from the source code. This DSM only models

a uniformed dependency type, presented by “x”, among files. The first column is

the list of Java files in MIJ, arranged first by the directory hierarchy, and then in

alphabetical order. Each non-empty cell in the matrix indicates a dependency from

the file on the row to the file on the column. For example, there is a “x” in cell[r3:c2],

indicating the file on row 3 (mij.ast.FuncExpr) depends on the file on column 2

(mij.ast.TreeVisitor). It is clustered by the file directory structure. Each inner

rectangle in the matrix represents a package in MIJ. For example, files in the ast

(abstract syntax tree) directory, from file 1 (mij.ast.Node) to file 7 (mij.ast.Variable),

are grouped in a rectangle.

In a way of contrast, the complexity of software architecture cannot be well rep-

resented using just a single view like Figure 8.1. Next, we will show the uniqueness

of our DRSpace model in representing software architecture as multiple overlapping

spaces. Groups of files addressing different concerns should be viewed separately. For

instance, each (set of) dependency type(s) can be used as the primary relation(s) to

form a separate DRSpace.

39

“rl” stands for realize. “ih” stands for inherit. The inner rectangles are calculated by the DRH algorithm (introduced

in chapter 6) based on the displayed relationships to show the modular structure of this Polymorphism space.

Figure 8.2: MIJ Polymorphism DRSpace

8.2.1 Polymorphism DRSpace

Figure 8.2 shows a DRSpacce formed by dependency types “ih” (inherit) and “rl”

(realize) as the primary relations. This DRSpace depicts the modular structure of the

inheritance tree in MIJ. The DRH algorithm (introduced in chapter 6) automatically

captures such structure in a hierarchy. The design rules and modules are reflected by

the layered inner-rectangles in the DSM in Figure 8.2.

The leading files (which are also the design rules) of this space are clustered into the

first layer, containing four files, including mij.io.P ipe, mij.bnf.Node, mij.ast.Node,

and mij.F ilter. All other files in this space are clustered into modules based on

their structural dependencies to the leading files. Groups of files extending or im-

2http://lattix.com/

40

plementing different base classes or interfaces are decoupled into mutually indepen-

dent modules (shown as rectangles in the lower parts of the DSM). For instance, file

mij.ast.OperExpr (row 24) to file mij.ast.UnaryOperExpr (row 28) form the concrete

ast (abstract syntax tree) module, because they all extend base class mij.ast.Node.

File mij.bnf.ExponExpr (row 13) to file mij.bnf.ParamExpr (row 19) form the concrete

bnf (Bbckus-naur form) module, because they all extend base class mij.bnf.Node.

8.2.2 Aggregation DRSpace

“ag” stands for a class aggregating another class as an attribute. The inner rectangles are calculated by the DRH

algorithm (introduced in chapter 6) to capture the modular structure formed by “aggregation” relationship.

Figure 8.3: MIJ Aggregation DRSpace

Similarly, Figure 8.3 depicts the DRSpace in which the primary relation is ag-

gregation (shown as “ag” in the DSM). Aggregation relationship refers to a class

aggregating another class as its attribute. By applying the DRH algorithm (intro-

41

duced in chapter 6), there are two layers in this DRSpace. The first layer, row 1

to row 5, contains four modules of leading classes, and the second layer contains

three meaningful modules. For example, m1:(rc8-9) is a MemoryBuffer module that

contains two classes using it; m2:(rc10-13) groups major components such as parser

and lexer together because they all communicate through pipes, and thus aggregate,

mij.io.InputPipe and mij.io.OutputPipe.

8.2.3 Dependency DRSpace

“dp” stands for all general types of references, such as function calls. The inner nested rectangles are calculated by

the DRH algorithm (introduced in chapter 6) to capture the modular structure formed by the “dp” relationship.

Figure 8.4: MIJ Depend DRSpace

Figure 8.4 depicts the DRSpace with general structural dependencies, such as

function calls, as the primary relations. Completely different from the other two

DRSpaces, this DRSpace shows how classes work together to accomplish a function.

42

For example, m:(rc11-20) shows which classes the parser needs in order to accomplish

the parsing function.

8.2.4 Pattern DRSpace

“rl” stands for realize. “ih” stands for inherit. “dp” stands for all other general references. “ag” stands for a class

aggregating another class. “nt” means that a class nest another class.

Figure 8.5: MIJ Visitor Pattern DRSpace

Figure 8.5 depicts a DRSpace led by mij.ast.TreeVisitor. As we can see, this

DRSpace captures the overall structure of the classes that participate in the visitor

pattern. The key design rules of this pattern include mij.ast.TreeVisitor, acting as

the role of visitor interface, and mij.ast.Node, acting as the element interface. The

classes in the module m:(rc3-7) contains all the concrete elements of the pattern.

These classes are all subclasses (the “ih” relation) of mij.ast.Node, which fills the

element role in the visitor pattern. They all accept the visitor interface, and pass

themselves to the visitor interface (the “dp” relation), as required by the pattern.

43

The Calculator class takes the concrete visitor role through the realization (“rl”)

relation to mij.ast.Treevisitor.

8.2.5 Hybrid DRSpace

Figure 8.6 depicts a DRSpace in which the DRH is produced using all three

types of structural relations as primary ones. As we can see, all the interesting and

meaningful modular structures that can be observed from previous DRSpaces are all

mixed up, and become less obvious. The DRH now has many more nested layers.

In this DRSpace, we also choose evolutionary coupling as the secondary rela-

tion. For example, cell c:(r13, c4) has number 12, meaning that mij.ast.Node and

mij.io.InputPipe changed together 12 times in the revision history. This cell has dark

background and white font to indicate that there are no structural relations between

these classes. The content in cell c:(r23, c2) is “ag,4”, meaning that mij.Interpreter

aggregates mij.io.OutputPipe, and they changed together 4 times in the revision his-

tory. As an illustrative example, the history of this system is faked.

In summary, it is clear that the architecture of this small system can be viewed

as a set of multi-layer DRSpaces. Each DRSpace reflects a unique aspect of the

architecture that cannot be captured using any other types of relations or clustering

methods.

8.3 Tool Support

In this section, we briefly introduce our tool, Titan (Xiao et al. [2014b]), that sup-

ports the creation and visualization of DRSpaces. All the figures in this dissertation

were created from data exported from Titan.

Titan accepts DSM files, with extension .dsm. There are two types of .dsm files:

the structure DSM and the history DSM. The structure DSM is calculated from the file

44

“
rl

”
st

a
n

d
s

fo
r

re
a
li
ze

.
“
ih

”
st

a
n

d
s

fo
r

in
h

er
it

.
“
a
g
”

st
a
n

d
s

fo
r

a
g
g
re

g
a
te

.
“
d

p
”

st
a
n

d
s

fo
r

a
ll

o
th

er
ty

p
es

o
f

st
ru

ct
u

ra
l

d
ep

en
d

en
ci

es
.

F
ig

u
re

8.
6:

M
IJ

H
y
b
ri

d
D

R
S
p
ac

e

45

Figure 8.7: The DRSpace Viewer - Titan Graphic User Interface

dependency report generated by a reverse engineering tool, such as Understand 3. For

a structure DSM, the value in a cell is used to represent different types of relations. So

far our tool processes inheritance, realization, dependency, aggregation, and nested.

The history DSM is extracted from the revision history of a project, such as a

SVN log. For a history DSM, the number in a cell represents the number of time

the two classes changed together (where “changed together” means that both classes

were involved in the same commit), which is called co-change frequency.

Titan also accepts clustering files, with extension .clsx, as another input. The .clsx

files are generated by the DRH clustering algorithm. It describes the nested hierarchy

of design rules and modules in the XML format. One .dsm file can be associated with

multiple clustering files, each representing a different way the DSM can be clustered.

Figure 8.7 shows a snapshot of Titan’s GUI. Similar to commercial tools with

3http://www.scitools.com/

46

DSM-based user interfaces, Titan has a tree structure view (the top right part) and

a DSM view (the lower right part).

The Tree View When a structure DSM file is first opened, the tree view renders

classes randomly. After the user loads a clustering file, the tree view is redrawn to

reflect the given structure. The leaf nodes represent files (classes) in a DRSpace,

while the parent nodes represent clusters of files in the given (or generated) clsx file.

The Tree View Control Using the tree view control panel, the user can expand,

collapse, group, and ungroup classes, and the DSM view will be updated when the

user clicks the redraw button.

The user can also cluster the DSM using an algorithm by choosing the Clusters

menu item. As shown in the figure, currently Titan supports the following clustering

methods:

1. Package Cluster. The DSM will be clustered based on the project’s package

and namespace structure, as supported by other commercial tools.

2. DRH Cluster. This is the clustering method we employed to generate DRSpaces

in this paper. We have discussed this clustering algorithm in Chapter 6 in Part II

(Background). This algorithm automatically captures the design rules and modules

in a hierarchy in the DSM representation. The design rules will be ranked on the top

of the DSM, while the models depends on the design rules will be ranked on the lower

parts of the DSM.

The user can also view partial DSMs in two ways. If a tree node (folder) is selected,

the SubSystem button will be activated. Clicking it creates a new GUI representing

only the subspace within the chosen folder.

If a DSM is clustered using ArchDRH, and at least one tree leaf (class) is selected,

the Split button will be activated. Clicking it creates a new window that contains

47

only the classes in the DRSpace led by the selected class(es). All the DRSpaces in

this paper are generated this way.

The window created by clicking the Split or SubSystem button is exactly the same

as the original GUI so that the user can treat the subspace as an entirely independent

design space, which can be further manipulated or splitted.

The DSM View In the DSM view, each group of classes are colored using a dark

background. A nested group always has a darker background than the outside group.

The diagonal line is labeled with the index of the class. The cells show the relations

among files, including different types of structure dependencies, and evolutionary

couplings. If two classes do not have any structural relation but still changed together,

the cell will have a red background. For example, cell c:(r5,c3) shows that although

FileConsumer and GenericFileEndpoint have no structural relation, they changed

together 26 times.

The DSM View Control The relation displayed in the cells can be controlled

using the check-boxes located at the left lower corner of the GUI. The user can check

and uncheck any listed relation, or any combination of them, to control the display.

Once the relation types are selected, clicking the clustering menu item will cluster

the DSM using the selected relations as primary relations. That is how we generated

the aggregation, inheritance, and dependency DRSpaces, for example.

To show the evolution coupling together with structure relations, the user first

loads a history DSM, and then checks the history checkbox. The cells of the DSM

will then display how many times each pair of classes have changed together in the

history. For example, the DSM in Figure 8.7 displays aggregation, nesting, and

history relations. The cell c:(r4,c3) has: ”extend,22”, meaning that FileEndpoint

extends GenericFileEndpoint, and they changed together 22 times.

48

The user can control the threshold of the co-change frequency to be displayed by

checking the Threshold box and filling a number in a pop-up window. In the DSM

of Figure 8.7, the threshold is set to 10, so that only cells with co-change frequency

of 11 or more are displayed.

To summarize the key differences between Titan and other commercial DSM tools:

Titan allows the user to choose any combination of relation types, and to cluster the

DSM based on the selected primary relation(s) only. Moreover, it supports the display

of evolution coupling together with structure relations so that their discrepancies can

be visualized.

8.4 Usefulness of DRSpace Modeling

We have shown (Xiao et al. [2014a]), based on the study of three large scale open

source projects, that the DRSpace model is useful for understanding the structural

relations among bug-prone files, as well as revealing the problematic relations that

contribute to the bug-proneness. If a design rule is bug-prone, the majority of files

contained in the space led by it are also bug-prone. We call such a DRSpace a bug-

prone DRSpace. The bug-prone files in such a space are architecturally connected

with each other, directly or indirectly, because they all depend on the same design

rule. Therefore, when developers are fixing bugs on these files, they should consider

them as a connected group, instead of as isolated individuals. In addition to that,

bug-prone design rules, leading large numbers of bug-prone files, should be given

higher priority in bug-fixing activities.

In this dissertation, we chose another 15 Apache open source projects to fur-

ther validate the usefulness of the DRSpace model. Those projects differ in size,

application domain, length of history, and other characteristics. They are: Avro 4

4https://avro.apache.org/

49

– a data serialization system; Camel 5 – an integration framework based on known

Enterprise Integration Patterns; Cassandra 6 – a distributed database management

system; CXF 7 – a fully featured Web services framework using APIs like JAX-WS

and JAX-RS; Derby 8 – a relational database implemented entirely in Java; Hadoop 9

– a framework for reliable, scalable, distributed computing; HBase 10 – the Hadoop

database, a distributed, scalable, big data store; Mahout 11 – a scalable machine

learning application; MINA 12 – a network application framework which helps users

develop high performance and high scalability network applications easily; Open-

JPA 13 – an implementation of the Java Persistence API specification; PDFBox 14

– a Java library for working with PDF documents; Pig 15 – a platform for creat-

ing MapReduce programs used with Hadoop; Tika 16 – a content analysis toolkit;

Wicket 17 – a lightweight component-based web application framework; ZooKeeper 18

– a centralized service for maintaining configuration information, naming, providing

distributed synchronization, and providing group services.

Summary information for these projects is given in Table 8.1. The first column

shows the project names. The second column shows the length of each project’s his-

tory covered by our study, denoted by a start time-stamp to an end time-stamp, and

the number of months within the history (in parentheses). The third column shows

the number of releases we selected in each project. Each project has many snapshot-

5http://camel.apache.org/
6http://cassandra.apache.org/
7http://cxf.apache.org/
8https://db.apache.org/derby/
9https://hadoop.apache.org/

10http://hbase.apache.org/
11https://mahout.apache.org/
12https://mina.apache.org/
13http://openjpa.apache.org/
14https://pdfbox.apache.org/
15https://pig.apache.org/
16https://tika.apache.org/
17https://wicket.apache.org/
18https://zookeeper.apache.org/

50

Table 8.1: Summary of Evaluation Projects

Subject Length of history (#Mon) #Versions #Commits #Committers #Issues #Files

Avro 8/2009 to 1/2014 (53) 12 1115 17 734 156 to 426
Camel 7/2008 to 7/2014 (72) 12 14563 106 2790 1838 to 9866
Cassandra 9/2009 to 11/2014 (62) 10 14673 122 4731 311 to 1337
CXF 12/2007 to 5/2014 (77) 13 8937 46 3854 2861 to 5509
Derby 10/2007 to 8/2014 (83) 13 4275 23 2726 2388 to 2776
Hadoop 8/2009 to 8/2014 (60) 9 8253 75 5443 1307 to 5488
HBase 12/2009 to 5/2014 (53) 9 6718 37 6280 560 to 2055
Mahout 10/2008 to 2/2014 (64) 9 3113 22 658 455 to 1262
MINA 10/2005 to 10/2009 (49) 8 1760 19 467 219 to 550
OpenJPA 2/2007 to 4/2013 (74) 11 6098 25 1572 1266 to 4314
PDFBox 8/2009 to 9/2014 (62) 12 2005 16 1857 447 to 791
Pig 3/2008 to 1/2012 (47) 10 1668 19 2579 302 to 1195
Tika 6/2008 to 1/2015 (80) 15 2412 17 714 131 to 550
Wicket 6/2007 to 1/2015 (92) 15 8309 65 3557 1879 to 3081
ZooKeeper 4/2008 to 11/2012 (55) 10 1012 10 1154 151 to 382

s/releases during the history covered by our study. We carefully selected “stable”

releases, such that the interval between any two consecutive releases is roughly 4

to 6 months. The column “#Commits” is the number of revisions made to each

project. The column “#Committers” is the number of developers who were submit-

ting changes to each project. Both “#Commits” and “#Committers” are extracted

from the version control systems of the projects: either from SubVersion 19 or Git 20.

The column “#Issues” is the number of bug reports in each project, which is ex-

tracted from the JIRA 21 bug-tracking database of each project. The last column

shows the size of each project, measured by the number of files in the first release and

the last release.

8.4.1 Bug-prone DRSpaces

We have reinforced our findings in these 15 open source projects as shown in

Table 8.2. In order to analyze the structural relations among bug-prone files, we first

19http://subversion.apache.org/
20http://git-scm.com/
21https://issues.apache.org/jira/secure/Dashboard.jspa

51

rank all the files by the frequency they are revised to fix bugs. The more frequently

a file is involved in bug fixes, the more bug-prone it is. We designate three bug-prone

file sets, which we call bug spaces, according to the bug-fixing frequencies:

1. Bug10%—the top 10% most frequently revised files to fix bugs;

2. Bug30%—the top 30% most frequently revised files to fix bugs;

3. Bug100%—all the files ever revised to fix bugs.

Then we measure how bug-prone a DRSpace is by computing its intersections with

the three bug spaces. We use the following two parameters to masure the intersection

between a DRSpace, DRS, and a bug space, BugX :

1. Design Space Bugginess (dsb): the percentage of files in DRS that are also

in BugX . It is calculated as:

dsb =
|DRS ∩BugX |
|DRS|

(8.1)

, where |DRS| is the number of files in the DRS, and |DRS ∩ BugX | is the

number of files in the intersection between DRS and BugX .

2. Bug Space Coverage (bsc): the percentage of files in BugX that are also

contained in DRS. It is calculated as:

bsc =
|BugX ∩DRS|
|BugX |

(8.2)

These two values, together measure how bug-prone a DRSpace is. The higher both

values are, the more bug-prone the DRSpace is.

Table 8.2 lists one DRSpace from each project with a bug-prone leading file. The

leading files of these spaces are the top 1% to the top 22% most frequently revised

52

files to fix bugs. These DRSpaces contain from 34 (ZooKeeper) to 856 (Camel) files.

From Table 8.2, we can summarize that, when the leading file is bug-prone, a

significant portion of files in its space are also bug-prone. In these DRSpaces,

from 28% (Hadoop) to 76% (Cassandra) of files were revised to fix bugs. In addition,

from 17% (Avro and Hadoop) to 65% (PDFBox) of files are in Bug30% (the top 30%

most frequently revised to fix bugs). Furthermore, from 8% (Avro) to 38% (Mahout)

of files are from Bug10%.

We can also summarize that, when the leading file is bug-prone, its space

aggregates a non-trivial, if not significant, portion of the bug-prone files

in a project. From 5% (CXF and Hadoop) to 65% (Avro) of files in the Bug100%

spaces are aggregated in a DRSpace with a bug-prone leading file. Even though the

bsc is much lower in some projects (for example, only 5% for Bug100% in CXF and

Hadoop), each DRSpace still aggregates a non-trivial number of bug-prone files (for

example, 32 in Hadoop and 80 in CXF), because the Bug100% spaces can contain

hundreds and even thousands of files. Similarly, from 9% (Hadoop) to 72% (Avro) of

files in Bug30% and from 13% (CXF) to 80% (Avro) of files in Bug10% are aggregated

in just a single DRSpace with a bug-prone leading file.

For a particular note, there exist super large spaces, led by high-impact and bug-

prone design rules. These spaces aggregate a large percentage of bug-prone files. For

example, the DRSpace led by ObjectHelper (top 1% most bug-prone) from Camel,

containing a total of 856 files, aggregates 64% of files in Bug10%. And 54% of files in

the space were revised to fix bugs, meaning, every other file in the space was involved

with bugs. We observed a similar case for the DRSpace led by SQLState (top 1%

most bug-prone) from Derby, which contains 658 files, and with both high bsc and

high dsb.

53

Table 8.2: DRSpaces with a Bug-prone Leading File

Project (Release#)
Leading File Leading File Bug Info Bug100% Bug30% Bug10%

(# Files in DRS) #Bug Fixes Bug Rank bsc dsb bsc dsb bsc dsb

Avro (1.7.4) Schema (197) 18 5% 65% 46% 72% 17% 80% 8%
Camel (2.12.4) ObjectHelper (856) 31 1% 30% 54% 49% 29% 64% 14%
Cassandra (1.2.5) CFMetaData (165) 86 2% 19% 76% 36% 48% 43% 29%
CXF (3.0.0) JAXRSUtils (106) 41 1% 5% 75% 10% 46% 13% 32%
Derby (10.11.1.1) SQLState (658) 43 1% 48% 67% 62% 30% 75% 15%
Hadoop (2.5.0) SecurityUtil (114) 16 6% 5% 28% 9% 17% 18% 11%
HBase (0.98.2) ProtobufUtil (171) 60 1% 9% 65% 15% 47% 25% 23%
Mahout (0.9) AbstractJob (85) 8 4% 8% 68% 13% 47% 21% 38%
MINA (1.1.7) ByteBuffer (84) 10 22% 33% 42% 40% 23% 50% 11%
OpenJPA (2.2.2) DBDictionary (329) 77 1% 7% 50% 14% 32% 29% 18%
PDFBox (1.8.7) PDResources (54) 25 4% 9% 74% 13% 65% 16% 30%
Pig (0.9.0) PigContext (193) 7 15% 14% 49% 28% 26% 33% 13%
Tika (1.7) XHTMLContentHandler (108) 15 5% 28% 55% 44% 33% 55% 16%
Wicket (6.19.0) RequestCycle (204) 26 1% 9% 60% 17% 35% 25% 24%
ZooKeeper (3.4.5) Leader (34) 23 8% 18% 71% 31% 47% 43% 26%

bsc is the percentage of all the bug-prone files that are also contained in a DRSpace.

dsb is the percentage of files in a DRSpace that are also bug-prone.

Based on these observations, we believe that a bug-prone and high-impact design

rule should be grant higher priority in bug-fixing activities, because a large number

of files aggregated in the DRSpace led by it are also likely to be bug-prone. These

bug-prone files are structurally related to each other, directly or indirectly, given

their structural dependencies to the same design rule. Therefore, when developers

are trying to fix bugs, these files should be treated as a connected group, instead of

as isolated individuals.

8.4.2 Problematic Relations

Our Titan-GUI provides insights into what are the problematic relations among

files that contribute to a bug-prone DRSpace. Figure 8.8 is part of the DRSpace led

by ObjectHelper from Camel, generated using Titan with all the types of structural

dependencies as the primary relations and the evolutionary coupling as the secondary

relation. We can see from column “#b (# of bug fixes)” and “br (bug-prone rank-

ing)” that files displayed rank from the top 1% to the top 18% most bug-prone in

54

Camel. All the files in the space have direct structural dependencies on the leading

file ObjectHelper, except OnCompletionDefinition which indirectly depends on it.

With the help of Titan, we are able to identify multiple problematic relations

among these bug-prone files:

1. Dependency cycles. We found many bug-prone files exhibiting cyclic depen-

dencies among them. For example, in Figure 8.8, ExchangeHelper (row4) and

DefaultExchange (row3) structurally depend on each other. Different from

other tools that detect cyclic dependencies, Titan also visualize the mainte-

nance penalty on such relation. Titan shows that ExchangeHelper (row4) and

DefaultExchange (row3) changed together 32 times in revision history. Simi-

larly, FileEndpoint (row 22) and FileConsumer (row 21) also form a depen-

dency cycle, and they changed together 56 times. For a particular note, not

all dependency cycles are harmful. For example, RouteDefinition (row 15) and

ErrorHandlerBuilderRef (row 14) also depend on each other, but they don’t in-

troduce any maintenance penalty in terms of evolutionary co-changes. By using

evolutionary coupling among files as the secondary relation, our Titan tool can

distinguish harmful and harmless cases.

2. Unhealthy inheritance. According to dependency inversion principle (abstrac-

tions should not depend on the implementation details), structural dependency

from a parent class to its child manifest a problematic inheritance relation. For

example, in Figure 8.8, RouteDefinition (row 15) “inherit” ProcessorDefinition

(row 12), and in the meanwhile, ProcessorDefinition depends on its child class

RouteDefinition. Given the problematic inheritance relation, these two files

changed together 26 times in revision history.

3. Shared Secrets. Using evolutionary coupling as the secondary relation, Titan

55

automatically highlights cells in the matrix that contain evolutionary couplings

without any direct structural dependencies, using a dark background color. For

example, cell[r19,c18] says “,60”, meaning GenericFileProducer and GenericFile

changed together 60 times without any direct structural dependencies. Wong

et al. [2011] first defined such phenomenon as modularity violation. In our

prior case study of an agile comercial project (Schwanke et al. [2013]), we have

showed that modularity violations usually suggests “shared secrets” among files

that need to be better encapsulated.

#b br 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
1 ObjectHelper 60 1% (1) dp,
2 FileUtil 24 3% dp, (2)
3 DefaultExchange 17 7% dp,18 (3) dp,
4 ExchangeHelper 20 5% dp, dp,32 (4)
5 IntrospectionSupport 15 10% dp,22 (5)
6 URISupport 14 10% dp, (6)
7 EndpointHelper 12 15% dp, dp, dp, (7)
8 ExpressionBuilder 13 12% dp,26 ,18 (8)
9 OnExceptionDefinition 14 10% dp, dp, (9) ih, dp,

10 OnCompletionDefinition 11 18% (10) ih, dp,
11 RouteDefinitionHelper 10 10% dp, dp, dp, (11) dp, dp,
12 ProcessorDefinition 48 1% dp, dp, dp, dp,24 dp,24 (12) dp,
13 DefaultRouteContext 13 12% dp, (13) ag,
14 ErrorHandlerBuilderRef 12 15% dp, (14) dp,
15 RouteDefinition 17 7% dp, dp,16 ih,26 dp, dp, (15)
16 GenericFileEndpoint 20 5% dp, dp, (16) dp, dp,
17 GenericFileConsumer 23 4% dp, ag, (17) dp,
18 GenericFile 20 5% dp, dp,16 (18)
19 GenericFileProducer 15 10% dp, dp, dp, ag, ,60 (19)
20 FileOperations 19 6% dp, dp, ,36 (20) ag,
21 FileConsumer 33 2% dp, dp, dp, ih, dp,74 (21) dp,
22 FileEndpoint 14 6% dp, dp, ih, dp,30 dp, ag, dp,56 (22)
23 MulticastProcessor 58 1% dp, dp, (23)
24 Splitter 13 12% dp, dp,18 ,20 ih,58 (24)
25 XmlConverter 19 6% dp, (25)
26 XsltBuilder 17 7% dp, dp, ag, (26)

Figure 8.8: Hadoop FileSystem Inherit DRSpace

We can’t enumerate all possible problematic relations in the bug-prone DRSpaces

because there are different combinations of leading files, primary and secondary rela-

tions to form a DRSpace. But, actually, we observed multiple problematic relations

in each bug-prone DRSpace with a bug-prone leading file. We recognize them as

problematic not only because they violate common design principles, but also that

the involved files are both change- and bug-prone. Mo et al. [2015] reported that

56

these problematic relations, such as cyclic dependencies, modularity violation, and

unhealthy inheritance, have positive correlation with reduced quality and increased

bug rates. Files that are involved in more problematic relations are more bug-prone

compared to average files.

8.5 Limitations and Threats

Our evaluation for the usefulness of the DRSpace modeling is subject to internal

threats to validity. First, to evaluate how bug-prone a particular DRSpace is, we cal-

culated its dsb and bsc with regards to three levels of bug spaces: Bug10%, Bug30%,

and Bug100%. We chose these three levels purely based upon experience and intuition.

We consider files from Bug10% as very bug-prone, files from Bug30% as average bug-

prone, while files from Bug100% as the least bug-prone. Due to individual difference of

the studied subject, these three bug spaces may imply different bug-proneness levels

within the subject’s context (such as project problem domain and project manage-

ment conventions). Thus, the selections of bug spaces potentially poses a threat to

validity for the evaluation of the bug-proneness level of a DRSpaces. However, in

general, we believe the choice of these three levels of bug spaces is reasonable. In the

future, we plan to thoroughly test more sample levels of bug spaces for each individual

subject.

Second, in the data reported thus far, we used all the history for each project to

calculate evolutionary coupling and bug proneness. A prior work by Wong and Cai

[2011] showed that recent history has a different impact than more distant history.

To determine the impact of history we recalculated all the data reported here based

on just the most recent five releases of each project. This analysis showed that the

top DRSpaces and bug ranking order of their leading files are somewhat different,

but the general conclusions are exactly the same: a significant part of the DRSpace

57

led by an error-prone file is also error-prone.

Our evaluation is also subject to several external threats. First, as with other

history-based bug prediction work, we link a bug with a file by searching developers’

commit messages when they submit changes to a file, trying to find bug IDs associated

with the commit. However, as prior work Bachmann et al. [2010] has pointed out,

since there is no guarantee that developers always report which commits are fixing

which bugs, the bug space we considered may be biased. The second threat comes

from the subject projects we chose. We only studied 15 open source projects, all of

which are written in Java. The results could be different for projects implemented

using other object-oriented programming languages. We plan to address this by

investigating a more diversified set of projects in the future.

8.6 Summary

In this chapter, we introduced the DRSpace modeling, a new form of architecture

representation that simultaneously captures the modular structure and the evolution

coupling among files. We proposed that software architectures should be viewed and

analyzed as multiple overlapping DRSpaces, because each DRSpace, formed using

different types of primary and secondary relations, exhibits a meaningful and useful

aspect of software architecture. Each of these structures promotes and supports a

different kind of analysis. As the first step to bridging the gap between architecture

and maintenance quality, the DRSpace modeling provides a perspective for inspecting

the maintenance quality of software architecture as separate design spaces.

The study on 15 projects showed that, if a design rule is bug-prone, files in the

DRSpace led by it are also likely to be bug-prone. In addition, by viewing the struc-

tural and evolutionary relations simultaneously, DRSpace modeling helps to reveal

flawed structural relations, such as modularity violation, unstable interface, cyclic

58

dependencies. We have shown that these flawed relations not only violate common

design principles, but also have actually brought maintenance “penalties”.

Based on these observations, we suggest that the developer team should give higher

priority to high-impact and bug-prone design rules, compared to average files. They

should also be aware of the flawed architectural connections among bug-prone files.

The DRSpace modeling, we envision, has the potential to increase such awareness.

59

9. Architectural Root (ArchRoot) Detection

Given all possible combinations of primary and secondary relations, there can be

a large number of DRSpaces for describing the architecture of a software system. It is

overwhelming, and more likely impossible, to inspect each and every DRSpace to look

for architectural flaws that contribute to maintenance difficulties in a project. To reap

the largest benefits in the bug fixing activities or even refactoring, the developer team

should focus on the most bug-prone DRSpaces. The question is which DRSpaces are

bearing the highest concentration of bug-prone files?

In this chapter, to answer this question, we propose an ArchRoot detection algo-

rithm to automatically locate DRSpaces with the highest concentration of bug-prone

files. First, we automatically extract the bug-prone files from the revision history and

the bug tracking database of a software project. We call these bug-prone files a bug

space. Then we reverse engineer the source code of a software system to generate

a comprehensive set of DRSpaces. These DRSpaces are generated using each and

every file in the project as a leading file (if there are 100 files in a project, in this way

we generate 100 DRSpaces). The algorithm calculates the intersection between each

DRSpace and the input bug space to identify a list of DRSpaces which, together, ag-

gregate the files from the input bug space. We call these DRSpaces the Architectural

Roots (ArchRoots) of bug-proneness. Each ArchRoot, which is also a DRSpace, can

be represented by a DSM. It thus can be visualized and explored using Titan-GUI.

We applied the ArchRoot detection algorithm on 15 software projects. The analy-

sis of the identified ArchRoots advanced our understanding of the impacts of software

architecture on the maintenance quality. First of all, the bug-prone files seldom exist

alone. Instead, a significant percentage (up to 91%) of the most (the top 30%) bug-

prone files are architecturally connected in the top five ArchRoots. Some long-lived

60

ArchRoots survive multiple releases of a project. Their leading files keep aggregating

a large number of bug-prone files over time. These ArchRoots are more bug-prone

compared to random groups of files with equal sizes. With the help of Titan-GUI, we

identified multiple, recurring architectural flaws in the long-lived ArchRoots, such as

modularity violation, unstable interfaces, cyclic dependencies, and unhealthy inheri-

tance. These flaws can keep propagating changes among files and make bugs hard to

eradicate.

Based on the observations, we believe that the ArchRoots in a project tend to have

persistent and significant impacts on the maintenance quality. The flawed architec-

tural connections contained in the ArchRoots can be the root causes of bug-proneness

and related high maintenance costs. We envision that the developers are unlikely to

make a single file bug-free, without first fixing the flaws in an ArchRoot. Just like

debts keep accumulating interest, these flaws, if not fixed, will keep incurring high

maintenance costs. Hence, to improve maintenance quality in the long run, the de-

veloper team should consider refactoring to pay off the “debts”.

The following of this chapter is organized as follows. Section 9.1 defines Archi-

tectural Root. Section 9.2 introduces the ArchRoot detection algorithm. Section 9.4

shows the usefulness of ArchRoot detection algorithm in uncovering architectural root

cusses contribute to the bug-proneness. Section 9.5 briefly discusses the limitations

and threats to validity of the ArchRoot detection algorithm. Section 9.6 summarizes

this chapter.

9.1 Architectural Roots of Bugginess

If a file is revised to fix bugs, we consider it as bug-prone. The more frequently

it is revised to fix bugs, the more bug-prone it is. If a file is more bug-prone than

90% of all bug-prone files, we consider it the top 10% most bug-prone. We define a

61

bug space as a set of bug-prone files. If a bug space is consisted of the top X% most

bug-prone files, we call it BugX%.

Suppose there are N files in a bug space BugX%. Given a DRSpace DRS, if n

files contained in it are also in BugX%, we claim that DRS covers n/N of BugX%

in the project. We have observed that a bug space can usually contain hundreds or

even thousands of files, therefore it can intersect with multiple DRSpaces. Given a

bug space BugX%, we can calculate a minimal set of DRSpaces which cover all the

files in BugX%. These DRSpaces, together, capture all the architectural connections

aggregating files in BugX%. These connections, especially the problematic ones, could

be the root causes of bug-proneness. Intuitively, we call this minimal set of DRSpaces

the architectural roots (ArchRoots) of BugX%.

In order to calculate the ArcRoots of BugX%, we define the following two param-

eters to describe the intersection between a set of DRSpaces, S={S1, S2, ..., Sn}, and

BugX%:

1. Coverage : the coverage of S={S1, S2, ..., Sn} on BugX% can be calculated as:

coverageS,Bug100% =
|(S1 ∪ S2... ∪ Sn) ∩BugX%|

|BugX%|
(9.1)

|(S1 ∪ S2... ∪ Sn) ∩BugX%| is the number of files in the intersection between S

and BugX%. |BugX%| is the number of files in BugX%.

2. LOC Normalized Coverage (LocCoverage). Ostrand et al. [2004] found

that files with large lines of code (loc) are more likely to be bug-prone compared

to small files. As a result, a set of DRSpaces with a high coverage can simply

because they contain a set of very large files. In order to reduce the interference

of loc, we define LocCoverage as the coverage of a set of DRSpaces normalized

by the loc of each file. The LocCoverage of S={S1, S2, ..., Sn} on BugX% can be

62

calculated by the following steps:

(a) For each file f in a project, we compute its loc normalized bug-proneness:

fweight =
fBug Fix Frequency

floc
(9.2)

fBug Fix Frequency is the number of bug fixes involving f .

floc is the lines of code in f .

fweight represents the bug-proneness of f normalized by its lines of code.

(b) We compute the sum of the loc normalized bug-proneness on all the files

in BugX%:

WBugX%
=

∑
∀ f∈BugX%

fweight (9.3)

(c) We compute the sum of the loc normalized bug-proneness on the files in

the intersection between S={S1, S2, ..., Sn} and BugX%:

WS∩BugX%
=

∑
∀ f∈(S1∪S2...∪Sn)∩BugX%

fweight (9.4)

(d) The LocCoverage of S={S1, S2, ..., Sn} on BugX% is computed using the

equation 9.4 divided by the equation 9.3 :

LocCoverageS,BugX%
=

WS∩BugX%

WBugX%

(9.5)

The ArchRoots of BugX% satisfied the following conditions: (1) CoverageArchRoots,BugX%

equals to 100%; (2) ArchRoots contain a minimal number of DRSpaces; (3) the top

63

few ArchRoots have a maximal possible coverage on BugX%.

9.2 Detection Algorithm

As the first step to detecting the most problematic DRSpaces, we just bluntly

assume that each file in a project could be a high-impact design rule, potentially

connecting a large number of bug-prone files. Thus, we use each and every file in

a project as the leading file to generate a DRSpace. In each DRSpace, we treat all

the types of structural dependencies as the primary relations and the evolutionary

couplings as the secondary relation. This set of DRSpaces comprehensively capture

all the files and their connections in a project.

ALGORITHM 1: genDRSpaces (DSM)

1: DRSpaceSet← ∅
2: DrhCluster ← DRHClustering(DSM)
3: for each file in DSM do
4: newSpace← ∅
5: LeadingF ile← file
6: newSpace.add(LeadingF ile)
7: for each Module in DrhCluster do
8: if Module has structural dependences on LeadingF ile then
9: newSpace.add(Module)

10: end if
11: end for
12: DRSpaceSet.add(newSpace)
13: end for
14: return DRSpaceSet

Algorithm 1 shows the procedure for generating such a DRSpace set of a project.

The input is the DSM of the project, reversed engineered from the source code.

The DRH algorithm (introduced in chapter 6) in line 2 clusters the input DSM into

modules based on the structural dependencies among files. Each module is a group

64

of tightly coupled files with strong structural dependencies. From line 3 to line 13,

using each file in the input DSM as a leading file, the algorithm generates a DRSpace

composed of the leading file and all the modules that depend on the leading file. The

new DRSpace is added to the return value, DRSpaceSet, which is a comprehensive

set of DRSpaces covering all the files and their connections in a project.

Then, which DRSpaces, from DRSpaceSet, together have the highest concentration

of the bug-prone files. To answer this question, we propose an ArchRoot detection

algorithm to identify a list of DRSpaces AR = [R1, R2, ..., Rm], covering all the files

and connections in a given bug space, BugX%. The algorithm calculates and ranks

the intersection between each DRSpace from the comprehensive set and BugX%. The

top few DRSpaces together have a maximal Coverage on BugX%. The ArchRoot

detection algorithm is efficient and greedy in identify a list of bug-prone DRSpaces.

Although it doesn’t identity the minimal list of DRSpaces that concentrates bug-

prone files, our study (we will discuss in detail later) shows that this algorithm is

very helpful in identifying problematic DRSpaces that worth attention.

ALGORITHM 2: ArchRootDetection (DRSpaceSet,BugX%)

1: AR ← ∅;
2: BugSpace2Cover ← BugX%;
3: while BugSpace2Cover 6= ∅ do
4: MaxCoverageSpace ← SelectMaxCoverange(DRSpaceSet,BugSpace2Cover);
5: AR.Add2Tail(MaxCoverageSpace);
6: DRSpaceSet.Remove(MaxCoverageSpace);
7: BugSpace2Cover.RemoveAll(MaxCoverageSpace.Files());
8: CalculateCoverage(AR,BugX%);
9: CalculateLocCoverage(AR,BugX%);

10: end while
11: return AR;

Algorithm 2 displays the pseudo-code of ArchRoot detection algorithm. First of

65

all, the output, AR, is initialized to be an empty list. The input BugX% is copied to

BugSpace2Cover denoting the remaining bug-prone files that are not covered by AR

yet. In each iteration of the while loop from line 3 to line 10, first, a DRSpace with

a maximal coverage on BugSpace2Cover is selected from DRSpaceSet and added

to AR (line 4 and 5); then the selected DRSpace is removed from DRSpaceSet and

the files covered by it are removed from BugSpace2Cover (line 6 and 7); finally, the

Coverage and LocCoverage of current AR with regards to BugX% is updated. The

algorithm terminates when BugSpace2Cover becomes empty, meaning all the files in

the original BugX% have been coverd by AR.

Although a bug space can contain hundreds and even thousands of files, the Arch-

Root detection algorithm can automatically identify a relatively small number of

DRSpaces that capture the majority of bug-prone files. For example, in open source

project Camel, the top 20 ArchRoots cover more than 70% of the 496 bug-prone

files in Bug30%. In other words, 350 of the 496 files are architecturally aggregated in

only 20 DRSpaces. Since each DRSpace is a group of architecturally connected files,

the result actually implies the existence of strong architectural connections among the

majority of the top bug-prone files in Camel. More importantly, we observed multiple

architectural flaws in the ArchRoots. We will illustrate and discuss the characteristics

of ArchRoots we identified in greater detail in Section 9.4.

9.3 Tool Support

Our approach is supported by our toolset, Titan. Figure 9.1 depicts an overview

of the toolset. Titan consists of 4 data processing components and 1 visualization

component. The visualization component, TitanGUI, which visualizes the output of

the data processing components, has been introduce in greater detail in section 8.3.

In this section, we will focus on introducing the other components.

66

Figure 9.1: Titan Tool Chain

StructureDSM Generator This component takes the file dependency report gen-

erated by a reverse engineering tool, such as Understand 1 as input. The output is a

structure DSM, in the form of a .dsm file, that represents the structural dependencies

between files in a project.

HistoryDSM Generator The input for this component includes a structure .dsm

file and the revision history of a project, such as a SVN log. The user can specify a

start and end date that designate the time span between which the revision history

should be considered in the computation. Evolutionary coupling is exported into a

history dsm, also in the form of a .dsm file, that records the co-change frequency

between two files in a project.

1http://www.scitools.com/

67

BugSpace Generator This component uses revision history, e.g. a SVN log, a

bug issue list, and a specified time period as input, and outputs a list of files that

were changed multiple times to fix bugs in the specified time period, ranked by their

bug change frequency, and recorded in a .csv file. We call the ranked buggy file list

a bug space.

Architecture Root Detector The inputs to this component include a structure

DSM, a history DSM, a bug space, and an input parameter P representing the per-

centage of buggy files to be covered. The user can specify a severity threshold of the

bug space, that is, the number of times a file is revised to fix bugs. The larger the

number, the more error-prone the files are. If the severity threshold is specified to be

N , then we call it a BugN space. This component computes the minimal number of

DRSpaces needed to capture P% of the given BugN space. We call these DRSpaces

the architecture roots, which are also recorded in .dsm files.

TitanGUI TitanGUI is an interactive design structure matrix (DSM) user inter-

face that takes .dsm files generated by the StructureDSM Generator, History DSM

Generator, or the Architecture Root Detector as input. Using TitanGUI, the user

can manipulate, split, import, and export any parts of a DRSpace, save a specific

clustering into a .clsx file, or export a DSM view into a spreadsheet.

9.4 ArchRoots Analysis

We applied the ArchRoot detection algorithm on the 15 open source projects listed

in Table 8.1 in Section 8.4, and analyzed how ArchRoots aggregate bug-prone files.

Despite the different characteristics of projects, we made consistent observations.

First, the top few (usually five) ArchRoots can cover a significant portion of

bug-prone files, indicating strong architectural connections among a large number of

68

bug-prone files in these projects. In addition, we discovered long-lived ArchRoots that

persistently aggregating a large number of bug-prone files in multiple releases of each

project. To reap the largest benefits when developers are trying to fix bugs, or even

to refactor their codes, they should give the highest priority to the long-lived roots.

Lastly, in each ArchRoot, we identified multiple, recurring architectural flaws, such as

cyclic dependencies and modularity violations, that violate common design principles

and indeed incurred maintenance “penalties” in the form of high change-/bug- rates.

We believe that these architectural flaws could be the root causes of bug-proneness.

We will present the details of ArchRoot analysis based on 15 open source projects in

the following subsections.

9.4.1 Concentration of Bug-proneness

In a project, there can be hundreds and even thousands of bug-prone files. For

example, as shown in Table 9.1, there are from 135 (ZooKeeper) to 2475 (OpenJPA)

bug-prone files in the 15 open source projects. These bug-prone files are extracted

from the revision history and bug tracking database of each project. For each project,

we rank all the bug-prone files according to the number of times each is revised to

fix bugs. Based on the ranking, we discriminate three different levels of bug spaces:

Bug100%, Bug30%, and Bug10%, denoting the sets of all, the top 30%, and the top 10%

most bug-prone files respectively. The sizes (number of files) of Bug100%, Bug30%,

and Bug10% of each project are shown in column 2, 4, and 6 respectively.

Given a bug space, the ArchRoot detection algorithm locates a set of DRSpaces

concentrating the bug-prone files. By definition, each DRSpace is a group of architec-

turally connected files. Therefore, if only a few DRSpaces concentrate a large number

of bug-prone files, it indicates that these bug-prone files are architecturally connected

in only a few groups. Actually, our study shows that, in each project, a significant

69

portion of bug-prone files are usually connected in only five DRSpaces. For example,

Figure 9.2 visualizes the trend of the Coverage and LocCoverage by up to the top

18 ArchRoots for Bug30% in Cassandra. The x-axis represents the top x ArchRoots,

while the y-axis represents the Coverage and LocCoverage by the top x ArchRoots.

In Cassandra, the top five ArchRoots cover 58% of the top 30% most bug-prone files

(347 files). For a particular note, as the number of ArchRoots doubles from the top

five to the top ten, the Coverage and LocCoverage only increase from 58% to 68%

and from 73% to 86% respectively. It indicates that the top few ArchRoots have the

highest concentration of bug-prone files, while the following ArchRoots contain more

scattered bug-prone files.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Coverage 13% 22% 28% 33% 38% 43% 46% 50% 53% 56% 58% 60% 62% 63% 65% 66% 68% 69%
LocCoverage 9% 17% 23% 28% 31% 37% 41% 46% 48% 50% 51% 54% 56% 57% 58% 59% 61% 63%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Co
ve

ra
ge

/L
oc

Co
ve

ra
ge

Camel Top ArchRoots for
Bug30% (496 Files)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Coverage 22% 38% 47% 52% 58% 60% 63% 65% 66% 68% 69% 70% 71% 72% 73% 73% 73% 74%
LocCoverage 30% 47% 59% 67% 73% 77% 79% 81% 82% 86% 86% 87% 88% 88% 89% 90% 90% 90%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Co
ve

ra
ge

/L
oc

Co
ve

ra
ge

Cassandra Top ArchRoots for
Bug30% (347 Files)

Figure 9.2: Cassandra ArchRoots Coverage

We made consistent observations in all the 15 projects: the top five ArchRoots

70

usually cover a significant portion of bug-prone files. Table 9.1 shows the Coverage

and LocCoverage of the top five ArchRoots for Bug100%, Bug30%, and Bug10% for the

15 projects. There are 135 (ZooKeeper) to 2475 (OpenJPA) files revised to fix bugs

(shown in column #Fls under Bug100%) in these projects. The top five ArchRoots

concentrate 18% (OpenJPA) to 77% (MINA) of these bug-prone files. Although the

Coverage by the top five ArchRoots in OpenJPA is relatively low (which is only

18%) compared to other projects, the top five ArchRoots actually concentrate 446

bug-prone files (calculated by 2475*18%, since there are totally 2475 bug-prone files

in OpenJPA).

Admittedly, files with only a few bug fixes may not be truly bug-prone. They

can be false-positives due to fixes for arbitrary reasons. In addition to Bug100%, we

analyzed the top five ArchRoots for Bug30% and Bug10% as well, for Bug30% and

Bug10% are less likely to be false-positive. It turns out that the top five ArchRoots

also concentrate a significant portion of Bug30% and Bug10% (even higher than the

Coverage on Bug100%). As shown in the “Bug30%” column in Table 9.1 , from 35%

(OpenJPA) to 91% (MINA) of the top 30% most bug-prone files are concentrated in

the top five ArchRoots. Actually, in MINA, the top four ArchRoots already cover

91% of the bug-prone files (marked as 94%∗(4) in Table 9.1). Similarly, as shown

in column “Bug10%”, from 54% (Camel) to 95% (ZooKeeper) of the top 10% most

bug-prone files (from 16 files Avro to 254 files in CXF) are concentrated in the top

five ArchRoots.

In summary, the top five ArchRoots can usually concentrate a significant portion

of the top ranked bug-prone files. For a particular note, the LocCoverage in general

is consistent with Coverage as shown in Table 9.1. This means that the concentration

of bug-proneness in the top five ArchRoots is not merely because these roots contain

a set of very large files. We propose, based on our observations, that when developers

71

are trying to fix bugs, they should treat the bug-prone files as connected groups,

instead of as a large number of individuals. The developers should also be aware of

the architectural connections among the bug-prone files. To reap the largest benefits

in bug fixing, or even refactoring, activities, the developers should especially pay

attention to the top few ArchRoots with the highest concentration of bug-proneness.

Table 9.1: Loc Coverage (LC) by the Top Five ArchRoots

Projects Bug100% Bug30% Bug10%

Release # #Fls Cov. LocCov. #Fls Cov. LocCov. #Fls Cov. LocCov.

Avro (1.7.6) 148 63% 52% 46 89% 89% 16 94%∗(2) 95%∗(2)
Camel (2.12.4) 1553 23% 20% 496 38% 31% 194 54% 41%
Cassandra (2.1.2) 997 37% 51% 347 58% 82% 161 67% 81%
CXF (3.0.0) 1740 23% 19% 492 43% 35% 254 56% 57%
Derby (10.11.1.1) 910 45% 29% 318 60% 49% 130 74% 57%
Hadoop (2.5.0) 601 28% 60% 209 41% 44% 73 67% 63%
HBase (0.98.2) 1246 25% 19% 521 40% 30% 160 64% 64%
Mahout (0.9) (0.9) 750 31% 42% 312 43% 50% 149 56% 68%
MINA (1.1.7) 189 77% 88% 59 91%∗(4) 94%∗(4) 18 94%∗(2) 99%∗(2)
OpenJPA (2.2.2) 2475 18% 14% 770 35% 18% 210 79% 56%
PDFBox (1.8.7) 466 65% 59% 270 69% 62% 101 68% 91%
Pig (0.9.2) 699 49% 52% 196 66% 85% 91 68% 91%
Tika (1.7) 209 62% 59% 81 81% 86% 31 87% 88%
Wicket (6.19.0) 1321 27% 26% 411 43% 45% 194 57% 60%
ZooKeeper (3.4.5) 135 67% 62% 51 86% 62% 21 95% ∗(3) 95%∗(3)

∗(n) means that the Cov. and LocCov. is by the top n (n ¡ 5) DRSpaces instead of the top five DRSpaces because

the coverage is already maximal.

9.4.2 Long-lived ArchRoots

During the life cycle of a software project, the architecture evolves and the bug-

prone files varies from release to release. We have shown in Table 9.1 that, in a single

release of a project, the top few (usually five) ArchRoots have high concentration

of bug-proneness. More interestingly, how the top few, say five, ArchRoots vary

from release to release? Thus, we analyzed the evolution of the top five ArchRoots

72

identified in multiple releases of each project. We recognize the ArchRoots, identified

in multiple releases but with the same leading file, as different snapshots of the same

ArchRoot. The number of snapshots of an ArchRoot is its Age. For example, if a

project has totally ten releases, the maximal possible age of an ArchRoot is ten. If

an ArchRoot has five snapshots, its age is five. If an ArchRoot persists more than

40% of the total releases, we consider it as a long-lived ArchRoot. We believe that

an ArchRoot surviving multiple releases deserves more attention than an ArchRoot

only appeared in a few releases.

In each project, we identified several long-lived ArchRoots, which are also among

the top five in each release. In Table 9.2, we listed the leading file, the age, the

bug-prone ranking of the leading file, the LocCoverage, and the DSB (Design Space

Bugginess is the percentage of files in a DRSpace that are also contained in a bug

space) of each ArchRoot. We can make the following observations from this table.

First, a long-live ArchRoot is usually led by a bug-prone leading file: 35 of the 47

long-lived ArchRoots are led by a bug-prone leading file (The leading files are at least

the top 52% most bug-prone). Furthermore, there are 31 and 15 ArchRoots led by a

top 30% and a top 10% most bug-prone leading file respectively. This re-enforced our

understanding of the influences of a bug-prone and high-impact design rule: it can

persistently aggregate bug-prone files throughout the entire life cycle of a project.

Second, except two, for each long-lived ArchRoot, the LocCoverage w.r.t Bug30%

is on average three times that of a random group containing the same number of files.

Also, the DSB of each long-lived ArchRoot is on average three times that of a random

group with an equal number of files. For a particular note, there are five long-lived

ArchRoots, each covering more than half of the files from Bug30%. In addition, for 36

long-lived ArchRoots, the DSB is at least 20%, meaning at least one in every five files

in each root is from Bug30%. This indicates that the long-lived ArchRoots are usually

73

very bug-prone, and specifically, they are more bug-prone than average groups of files.

In summary, in each project, there exist several long-lived ArchRoots remaining

the top five most bug-prone in multiple releases of a project. They are usually led

by a bug-prone leading file. They are more bug-prone than random groups of files,

covering and containing higher percentages of the top 30% most bug-prone files. The

implication is that the most bug-prone ArchRoots can have persistent impact on the

bug-proneness of a project. A long-lived ArchRoot, especially if it is led by a bug-

prone design rule, can keep aggregating a large number of bug-prone files in multiple

releases of a project. Higher bug rates can “grow” out of long-lived roots over time.

To fundamentally reduce the over-all bug rates on files in the long run, long-lived

ArchRoots, especially those led by a bug-prone design rule, should be granted the

top priority for developer team to fix, or even refactor.

9.4.3 Architectural Flaws

In order to understand the root causes in ArchRoots that contribute to the bug-

proneness, we investigated the architectural connections among files in the top Arch-

Roots using our Titan-GUI. We found that ArchRoots usually contain multiple, recur-

ring architectural flaws, such as cyclic dependencies, unhealthy inheritance, unstable

interfaces, and modularity violations. We consider these connections as architectural

flaws, not only because they violate common design principles, but also because they

indeed incur high co-changes.

In Figure 9.3, we illustrate the architectural flaws identified in part of a root

identified in Cassandra. Using this as an example, we will qualitatively analyze how

different flaws contribute to the high bug rates on files.

First, there exists unhealthy inheritance between the parent class SSTabledp (row

1) and its child class SSTableReaderdp (row 2). SSTableReaderdp and SSTableWri-

74

B.rk 1 2 3 4 5 6 7 8 9 10 11 12 13
1 SSTabledp 8% (1) dp,34 ,34 ,27 ,6
2 SSTableReaderdp 1% Ext,dp,34 (2) ,62 ,16 dp,6 ,9 ,6 ,69 ,12
3 SSTableWriterdp 1% Ext,dp,34 dp,62 (3) ,15 ,7 dp,16 ,6 ,39 ,13
4 CompactionTaskdp 3% dp, dp,16 dp,15 (4) ,6 dp,27 ,9
5 Upgraderdp 29% dp, dp, dp, dp,6 (5) dp,
6 AutoSavingCachedp 7% ,7 (6) dp,7 dp,13
7 CacheServicedp 16% dp, dp,6 Impl,dp,7 (7) dp,9
8 ColumnFamilydp 3% dp, ,9 ,16 (8) ,12 ,29 ,14
9 AtomicSortedColumnsdp 21% Impl,Ext,dp, (9) ,6

10 CassandraServerdp 0.8% ,6 ,6 dp,12 (10) dp,26
11 ColumnFamilyStoredp 0.3% dp,27 dp,69 ,39 ,27 dp,13 dp,9 ,29 ,26 (11) ,10 ,57
12 CassandraDaemondp 4% dp, dp,10 (12)
13 Memtabledp 2% dp,6 ,12 dp,13 ,9 dp,14 dp,6 dp,57 (13)

Unhealthy Inheritance Unstable Interface Cyclic Dependencies Modularity Violation

Figure 9.3: Architectural Flaws in a Root in Cassandra

terdp extend and depend on class SSTabledp (cell[r2,c1] and cell[r3,c1]). But there is an

inverted dependency from SSTabledp to its child class SSTableReaderdp (cell[r1:c2]).

Martin [2003] states in the dependency inversion principle that abstractions should

not depend on details and details should depend on abstractions. Therefore, an in-

terface or abstract class should usually not depend on the concrete classes (except for

particular circumstances that embrace the opposite, such as the template design pat-

tern). Based on the reasoning, we consider the inverted dependency from the parent

class to its child as a potentially flawed architectural connection. The history co-

change shows that the parent class SSTabledp changed together with its child classes

SSTableReaderdp and SSTableWriterdp 34 times in history.We assume that whenever

one of the files in this unhealthy inheritance changes, the change will propagate to

the other files in the inheritance relation, increasing the bug rates on these files. As

shown in Column “B.rk”, SSTabledp ranks the top 8% most bug-prone, and the two

child classes rank the top 1% most bug-prone, among all other files.

We also observed unstable interface in this root. There are numerous files struc-

turally depends on SSTableReaderdp (as shown by the cells on the second column).

Therefore, SSTableReaderdp should be kept as stable as possible, otherwise, changes

75

to it will potentially affect files depends on it. In fact, the history co-change in-

dicates that SSTableReaderdp changed together with three dependents: SSWriterdp,

CompactionTaskdp, and ColumnFamilyStoredp, 62 (cell[r3,c2]), 16 (cell[r4,c2]), and 69

(cell[r11,c2]) times respectively. We vision that whenever SSTableReaderdp changes,

it could propagate changes to files that structurally depends on it. As a result, these

four files suffer from high bug rates (all rank above the top 3% most bug-prone) as

shown in column “B.rk”.

There are also cyclic dependencies between ColumnFamilyStoredp (row 11) and

two files: AutoSavingCachedp (row 6) and CacheServicedp (row 7). As shown on

cell[r6,c11] and cell[c11,r6], ColumnFamilyStoredp and AutoSavingCachedp form a

structural dependency cycle with each other. Similarly, there are a cyclic dependen-

cies between ColumnFamilyStoredp and CacheServicedp (showin in cell[r7,c11] and

cell[r11, c7]). Whenever, one file in a cycle changes, it is likely to propagate changes

to other members in the cycle, accumulating the over-all maintenance costs. The

history co-change indicates that ColumnFamilyStoredp changed together with Au-

toSavingCachedp and CacheServicedp 13 and 9 times respectively.

Last but not least, there are modularity violations among ColumnFamilyStoredp

(row 11), SSTableWriterdp (row 3), and ColumnFamilydp (row 8). Modularity vio-

lation was first proposed by Wong et al. [2011] as the phenomenon where a set of

files frequently change together in revision history without having any structural de-

pendencies. In this case, ColumnFamilyStoredp has no structural dependencies with

SSTableWriterdp or ColumnFamilydp, but it changes with them 39 (cell[r4, c11] and

cell[r11,c4]) and 29 (cell[r8, c11] and cell[r11,c8]) times respectively. In a prior case

study (Schwanke et al. [2013]), we found that modularity violation usually implies

shared concepts between files that would benefit from a better encapsulation design.

Whenever the shared concept changes in one file, the other files have to accommodate

76

the change. Unless encapsulate the concept, files sharing the concept tend to change

together frequently, causing bug rates to increase.

With numerous architectural flaws, it is not surprising to see from column “B.rk”

that files in this root all rank above the top 30% most bug-prone. Actually, except

three files, Upgraderdp, CacheServicedp, and AtomicSortedColumnsdp, all other files

rank above the top 10% most bug-prone.

We can’t enumerate all the architectural flaws in each ArchRoot. Mo et al. [2015]

have verified that the flawed architectural connections among files have strong positive

correlation with increased bug rates in software projects. A file involved in multiple

architectural issues are more likely to be bug-prone than average files. The qualitative

analysis supplements that these flaws could be the root causes of high bug rates,

because they can propagate changes among files, making bugs hard to eradicate. The

take away message is that, it is unlikely that a developer can make a single file bug-

free without also fixing the other files that architecturally connect to it. For example,

in order to fix bugs involving a set of files with a dependency cycle, the developers

should probably first cut the cycle to prevent the changes from propagating. In

summary, in order to fundamentally reduce the bug rates, the developer team should

consider fixing these flaws first, probably by refactoring. Otherwise, these flaws are

likely to keep incurring high bug rates and maintenance costs over time.

9.5 Limitations and Threats

Although the ArchRoot detection algorithm has shown great potential in revealing

the architectural root causes of error-proneness, there is, in any research, limitations

and threats. In this section, we will discuss the limitations and threats to validity.

First, the 15 studied open source projects are all implemented in Java, and the

industrial projects studied earlier are implemented in either Java or C++. Thus, we

77

cannot claim that our approach can work as effectively for projects implemented in

other programming languages, particularly non-object-oriented languages. The con-

cept of design rule is naturally embraced by object-oriented programming languages,

such as Java and C++, in the form of the abstraction mechanisms that they pro-

vide. How well the DRSpace model can capture the modular structure of projects

implemented in non-object-oriented languages is not clear. To overcome this limita-

tion, in our future work, we plan to apply our approach to projects implemented in

non-object-oriented languages.

Second, a bug space, used as an input to the ArchRoot detection algorithm, is

extracted from a project’s revision history by matching bug ticket IDs in commit

messages. In reality, the links between commits and bug tickets may be missing due

to various reasons. For example, the developers may fail to link their commits to the

specific bug tickets simply because they forget to do so. Therefore, a project with

a small bug space may not, therefore, truly be high quality. For projects with low

bug tagging rates, we can examine the change spaces, instead of the bug spaces. A

change space is a list of change-prone files ranked by their change-prone levels. Our

approach can, in such a case, identify the architectural roots of change-proneness.

Third, the investigation of long-lived ArchRoots requires ample revision history.

The 15 open source projects we studied have revision history covering four to eight

years. The adequacy of revision history allowed the investigation of the evolution

of ArchRoots over time. For software projects with substantially shorter revision

histories, such an analysis cannot be conducted.

9.6 Summary

In this chapter, we proposed an algorithm to automatically locate a list of DRSpaces

that architecturally aggregate the bug-prone files in a project. We consider these

78

DRSpaces as the architectural roots of bug-proneness, thus we call them the Arch-

Roots. The ArchRoots deserve special attention in maintenance activities due to their

contributions to the reduced maintenance quality.

According to the study of 15 open source projects, we found that a significant

percentage of bug-prone files in these projects are architecturally connected in only

a few (usually five) ArchRoots, instead of being isolated from each other. Some

ArchRoots survive multiple releases of a project. Their leading files, which are usually

very bug-prone as well, keep aggregating a large number of bug-prone files over time.

Consequently, these long-lived ArchRoots are more bug-prone than average groups

of files. In addition, we observed multiple, recurring flawed architectural connections

in these ArchRoots, such as cyclic dependencies, unhealthy inheritance, modularity

violations, and unstable interfaces. Due to such flawed connections, it is difficult for

the developers to make a single file bug-free, without also revising the other bug-

prone files in an ArchRoot. As long as the flawed architectural connections are not

fixed, the maintenance costs will keep accumulating over time, just like how debts

accumulate penalties.

Based on the above observations, we believe that the flawed architectural connec-

tions are the root causes of maintenance difficulties. In order to reduce bug rates in

the long run, the developer team should consider paying off the “debts” first, proba-

bly in the way of refactoring to fix the architectural flaws. The long-lived ArchRoots,

with significant and persistent impacts on the maintenance quality, should be granted

the top priority in maintenance activities.

79

Table 9.2: Long-lived ArchRoots for Bug30%

Project
Leading File of Root Root Age Bug Rank of LocCoverage DSB
(Average #Files in Root) (Max Age) Leading File Avg. Std. Rate Avg. Std. Rate

Avro
Schema (139) 10 (12) 5% 82% 13% 1.65 16% 4% 1.48
Protocol (55) 6 (12) 18% 38% 2% 1.88 15% 3% 1.17
Decoder (44) 6 (12) - 34% 2% 2.23 22% 3% 1.82

Camel

RouteDefinition (107) 8 (12) 7% 6% 1% 4.56 24% 4% 5.10
ExchangeHelper (155) 7 (12) 6% 11% 2% 3.72 29% 5% 6.26
IOHelper (117) 6 (12) 14% 9% 2% 4.30 34% 2% 6.78
ServiceHelper (159) 6 (12) 27% 12% 5% 4.66 33% 3% 6.61

Cassandra
DatabaseDescriptor (135) 9 (10) 2% 46% 14% 2.17 39% 10% 2.36
CFMetaData (132) 7 (10) 2% 34% 3% 2.04 47% 6% 2.41
FBUtilities (155) 7 (10) 7% 46% 9% 1.90 38% 10% 2.11

CXF
NoJSR250Annotations (139) 7 (13) - 8% 1% 2.63 23% 5% 3.08
ClassLoaderUtils (129) 6 (13) - 15% 3% 5.29 43% 2% 5.67
AbstractPropertiesHolder (176) 9 (13) - 14% 3% 3.47 32% 5% 5.22

Derby

TableDescriptor (185) 10 (13) 18% 12% 2% 1.73 23% 7% 3.24
Property (131) 7 (13) 21% 14% 2% 2.60 33% 5% 3.97
SqlException (119) 13 (13) 13% 12% 2% 2.37 17% 6% 2.62
Monitor (193) 6 (13) 7% 14% 2% 1.88 18% 12% 2.76

Hadoop

WritableComparable (146) 5 (9) 52% 18% 10% 3.40 8% 2% 2.11
KerberosName (15) 4 (9) - 10% 1% 6.19 65% 1% 6.58
ReflectionUtils (144) 6 (9) 50% 11% 2% 1.31 11% 2% 2.58
FsPermission (152) 6 (9) 27% 18% 11% 1.67 10% 2% 2.91

HBase

HConstants (164) 4 (9) 16% 57% 23% 1.94 24% 9% 2.30
ServerName (164) 4 (9) 12% 25% 8% 1.69 43% 4% 1.83
Filter (86) 4 (9) 18% 9% 2% 1.51 50% 3% 1.98
HBaseConfiguration (163) 4 (9) 11% 9% 2% 0.69 30% 4% 1.31

Mahout
HadoopUtil (103) 5 (9) 5% 15% 4% 1.76 36% 5% 2.59
AbstractDistribution (16) 4 (9) 3% 15% 2% 9.92 68% 14% 3.95
Matrix (142) 6 (9) 14% 16% 1% 1.38 22% 3% 1.72

MINA IoServiceConfig (57) 4 (8) - 47% 28% 2.10 25% 7% 2.06

OpenJPA

J2DoPrivHelper (135) 11 (11) 7% 23% 27% 3.61 73% 4% 5.04
JDBCStore (196) 6 (11) - 6% 0% 1.19 42% 1% 2.34
JavaTypes (187) 9 (11) 14% 7% 5% 1.10 50% 7% 3.10
FetchConfiguration (101) 5 (11) 21% 5% 2% 1.40 49% 7% 3.37
Value (113) 6 (11) 43% 4% 0% 1.30 40% 1% 2.15

PDFBox
PDDocument (168) 7 (12) 4% 26% 3% 1.07 28% 7% 1.55
COSArray (163) 7 (12) 6% 64% 5% 1.87 22% 10% 2.14
COSObjectable (121) 7 (12) - 19% 4% 0.96 24% 6% 1.32

Pig PigContext (171) 5 (10) 21% 34% 4% 2.04 27% 3% 2.06

Tika
TikaException (153) 8 (15) - 59% 13% 1.36 18% 6% 1.46
MediaType (136) 10 (15) 31% 55% 9% 1.56 22% 5% 1.81
ContentHandlerDecorator (28) 7 (15) - 26% 33% 1.36 18% 5% 1.26

Wicket
FormComponent (158) 8 (15) 2% 15% 5% 2.60 24% 6% 2.60
Session (177) 8 (15) 7% 22% 5% 2.55 18% 3% 2.87
Strings (172) 7 (15) 11% 41% 6% 4.94 23% 7% 5.56

ZooKeeper
QuorumPeer (47) 9 (10) 7% 29% 3% 1.40 27% 7% 1.80
KeeperException (75) 5 (10) 42% 29% 12% 1.09 23% 3% 1.59
ZooDefs (90) 7 (10) - 42% 19% 1.11 15% 4% 1.21

DSB stands for Design Space Bugginess, which is the percentage of top 30% most bug-prone files an ArchRoot

contains. Avg. stands for Average. Std. stands for Standard Deviation. LocCoverage.Rate is the LocCoverage of an

ArchRoot divided by the LocCoverage of a random group of files with an equal size. Similarly, DSB.Rate is the DSB

of an ArchRoot divided by that of a random group of files with an equal size.

80

10. Architectural Debt (ArchDebt)

We have observed that maintenance costs will keep increasing as long as the flawed

architectural connections are not fixed. Thus, the flawed architectural connections are

like “debts” that need to be paid off. Otherwise, “penalties”, in terms of high change-

or bug-rates, will keep accumulating. The term “technical debt” (TD), first proposed

by Cunningham [1992], has been used as a metaphor to describe the consequences of

shortcuts taken in software development to achieve immediate goals. In this chapter,

based upon our observations from prior chapters, we define a particular form of TD—

an Architectural Debt (ArchDebt)—as a group of architecturally connected files that

incur high maintenance costs over time due to their flawed architectural connections.

In the case of an ArchDebt, the developers sacrifice the long-term maintenance quality

by postponing refactoring their codes to fundamentally fix the architectural flaws.

However, they may be subject to higher future maintenance “penalties”.

An ArchDebt, as a special form of TD, has essential differences from debts in real

life. First, in real life, we know what debts we have. But, in software architecture, we

don’t know which and how files are involved in ArchDebts. Although an ArchRoot

usually contains multiple architectural flaws with high maintenance costs over time,

we can’t treat an ArchRoot directly as a debt, because an ArchRoot contains both

high maintenance and normal files. The diagnosing of architectural flaws in an Arch-

Root still requires a certain level of expertise and manual inspection. Second, in real

life, we know how much each debt costs and its interest rate. But, it is not clear how

much an ArchDebt has cost in a project, or how fast the maintenance costs will accu-

mulate in the future (the interest rate). Without knowing these key parameters—the

costs and the interest rates—of ArchDebts, the developer team can’t make informed

decisions for their project: whether, when, and where they should invest in a refac-

81

toring to pay off a “debt”.

In this chapter, we provide an approach to automatically identify ArchDebts,

quantify and model the growing trend of such “debts”. To automatically identify

groups of files that are true ArchDebts, we define four typical architectural flaw pat-

terns, which capture all possible combinations of structural and evolutionary relations

among files. We can identify groups of files involved in “debts” by matching these

patterns. To better model evolutionary coupling, we develop a novel History Cou-

pling Probability (HCP) matrix, which models the evolutionary coupling between

files using probabilities of change propagation between files. We use the propagation

probabilities to replace the simple co-change numbers in the original DRSpace model-

ing. In addition, the actual maintenance costs on files, such as the monetary costs or

human labor hours, can’t be accurately measured. Thus, we approximately quantify

the maintenance costs on files involved in an ArchDebt by the lines of code revised

to fix bugs in them. Finally, to answer what’s the interest rate on each ArchDebt,

we monitor the change of maintenance costs spent on each ArchDebt over time. We

use four types of regression models to describe four typical types of interest rate: lin-

ear, exponential, logarithmic, and polynomial regression models for stable, increasing,

decreasing and fluctuating interest rates respectively.

We applied the ArchDebt approach on seven open source projects. We found that

the ArchDebts consume up to 85% of the total bug fixing effort in these projects. Most

interestingly, the most expensive and high-impact ArchDebts don’t involve any direct

structural dependencies among files. Instead, groups of files are heavily coupled with

each other in revision history. It indicates the lack of sufficient design to encapsulate

change-/bug-prone concepts shared among files. Finally, we found that the majority

of ArchDebts have a stable interest rate over time, meaning during each release cycle,

the developer team have to spend a stable amount of costs to fix bugs in an ArchDebt.

82

As the last step in this dissertation to bridging the gap, the ArchDebt approach

enables software practitioners to diagnose and manage architectural flaws—the root

causes of bug-proneness and high maintenance costs—in a systematic way. The iden-

tification and quantification of ArchDebts have pushed forward the TD concept from

a metaphor toward an actionable practice. Our approach can not only automatically

locate groups of files as ArchDebts, but also quantify the “costs” and the “interest

rate” of each debt. Informed decisions can be made, in terms of whether, where, and

when to invest in a refactoring to fundamentally increase software quality.

The rest of this chapter is organized as following. Section 10.1 formally defines

Architectural Debt (ArchDebt). Section 10.2 introduces the approach to identify

ArchDebts, quantify the maintenance costs of such debts, and model the interest

rate of such debts. Section 10.3 evaluates the usefulness of the ArchDebt approach

in identifying true debts. Section 10.4 discusses the interest rate and evolution of

ArchDebts over time. Section 10.5 discusses limitations and threats to validity for

our ArchDebt quantification approach. Section 10.6 concludes this chapter.

10.1 ArchDebt Definition

An Architectural Debt is a group of architecturally connected files that incur

high maintenance costs over time due to their flawed architectural connections.

An Architectural Debt Formal Definition. We first formally define software

architecture of a system, implemented at release r, as a set of overlapping DRSpaces:

SoftArchr = {DRSpace1, DRSpace2, ..., DRSpacen} (10.1)

where n is the number of DRSpaces, each revealing a different aspect of the architec-

ture, e.g., each dependency type can form a distinct DRSpace, which was illustrated

83

in section 8.2.

We define an Architectural Debt (ArchDebt) as a group of architecturally connected

files that incur high maintenance costs over time due to their flawed connections, as

follows:

ArchDebt =< FileSetSequence,DebtModel > (10.2)

The first element, FileSetSequence, is a sequence of file groups, each extracted

from a different project release:

FileSetSequence = (FileSet1, F ileSet2..., F ileSetm) (10.3)

where m is the number of releases that ArchDebt impacts, m ≤ R, the total number

of system releases. FileSetr, r = 1...m is an architecturally connected file group in

release r. The number of files in each FileSet may vary in different releases.

The second element, DebtModel is a formula capturing the growing trend, i.e.

interest rate, of the architecture debt, in the form of maintenance costs spent on

FileSetSequence.

10.2 Identifying and Quantifying ArchDebts

Given the formal definition of ArchDebt, we will first identify FileSetSequence,

and then build a DebtModel to capture the “interest rate” based on the costs FileSetSequence

has incurred. Since there are numerous DRSpaces in each release, and numerous file

groups in each DRSpace that can be debt candidates, we illustrate our process of

searching for FileSetSequence as an analogy to searching for a specific web page on

the internet, consisting of the following steps as shown in Figure 10.1:

1) Crawling: this step collects a subset of DRSpaces from each SoftArchr, r from

1 to R, similar to crawling and collecting web pages.

84

2) Indexing: this step identifies (indexes) a specific file group, FileSet, from

each DRSpace selected in the first step, then locate sequences of related FileSets in

different releases as a FileSetSequence.

3) Modeling: we measure the maintenance costs incurred by each FileSetr in a

sequence, and model the cost variation. An ArchDebt is a FileSetSequence whose

costs increase over time.

4) Ranking: we rank the severity of each ArchDebt according to the amount of

maintenance costs they have accumulated in the project’s evolution history.

③Modeling: Select
RegressionModel

②Indexing: Identify
ArchDebtCandidates

R_r1
R_r2…
R_rn

Revision
Log

Bug
Report

Crawling

Titan

ErrorSpace_r1
ErrorSpace_r2,..
ErrorSpace_rn

ASFileSetSeq

ADFileSetSeq

HBFileSetSeq

MVFileSetSeq

Input file

Input files

New approach

Prior approach

Output files Input

Output

①Crawling: Discover
ErrorArch

④Ranking: Identify
High-maintenance
ArchDebt

SoftArch_r1
SoftArch_r2,..…
SoftArch_rn

ErrorArch_r1
ErrorArch_r2,…
ErrorArch_rn

HCPGen

Indexing

HCP_r1
HCP_r2 …
HCP_rn

ArchDebtCandidates

Modeling Ranking

ArchDebts

……

ArchDebt_1
<FileSetSeq,
DebtModel>

ArchDebt_n
<FileSetSeq,
DebtModel>

ArchDebt_2
<FileSetSeq,
DebtModel>

RankedArchDebs

……

ArchDebt_1
<FileSetSeq,
DebtModel>

ArchDebt_n
<FileSetSeq,
DebtModel>

ArchDebt_2
<FileSetSeq,
DebtModel>

Source
Code
Repo

Und

Und Commercial Tool

Figure 10.1: Approach Framework

85

10.2.1 Crawling: Selecting High-maintenance DRSpaces

We first define the set of bug-prone files in a particular release r as a bug space:

BugSpacer={f1, f2, ..., fn}, where file fi, i = 1...n, was revised to fix bugs at least

once from release 1 to release r. According to this definition: BugSpacer is a subset

of BugSpacer+1. For each release r, we select a set of DRSpaces from SoftArchr,

each led by a file in BugSpacer, and form a SelectedDRSpace set as the output of

Crawling:

SelectedDRSpacer = Crawling(SoftArchr, BugSpacer) (10.4)

Each DRSpace in SelectedDRSpacer is led by a bug-prone file in BugSpacer, and

contains other files that depend on the leading bug-prone file. If there are n files in

BugSpacer, there are n DRSpaces in SelectedDRSpacer.

10.2.2 Indexing: Identify ArchDebt Candidates

Next we need to find the FileSetSequences that are debt candidates. Files in

such a sequence must have changed together in the revision history. We first calcu-

late a history coupling model—HCP matrix—and then we filter file groups using 4

architecture flaw patterns, which we call indexing patterns.

HCP Matrix In the prior chapters, we used a DSM to model history coupling :

each cell in the DSM displays the number of times two files changed together. To

manifest how a change to a file influences other files, we propose an extended history

model: the history coupling probability (HCP) matrix. Although each column

and row in a HCP still represents a file, we use a cell in the matrix to record the

conditional probability of changing the file on the column, if the file on the row has

been changed, indicating the odds of change propagation from one file to another.

86

Figure 10.2 shows a small example to illustrate the generation of a HCP. Part 1 of

Figure 10.2 shows 4 files A, B, C, and D, that change in 4 commits: Commit1{A,B}

(Commit1 changes A and B), Commit2{A,B}, Commit3{B,D}, and Commit4{A,C}.

First, we compute the pair-wise change conditional probabilities between any pair of

files. For example, the probability of changing file A, under the condition that file C

has changed, denoted by Prob{A|C}, is the number of times A and C change in the

same commits divided by the total number of changes to C. Similarly, Prob{C|A} is

the number of times A and C change in the same commits divided by the total number

of changes to A. Hence, Prob{A|C} is 1/1, indicating that A always changes with C,

and Prob{C|A} is 1/3, indicating a probability of 1/3 that C changes with A. In this

relation, we recognize C as dominant and A as submissive because Prob{A|C} >

Prob{C|A}. We compute the probabilities between every pair of files and get the

graph in part 2 of Figure 10.2.

Next, as shown in part 3 of Figure 10.2, we compute the N-Transitive-Closure

of the graph in part 2 to identify history dependencies between files that change in

distinct but potentially related commits. The conditional probabilities between files

without direct history connections are the multiplication of the probabilities on the

transitive links. For example, file B and C never change in the same commits, but

they change with file A in Commit1 and Commit4. Hence, there are transitive history

connections between B and C. Prob{B|C} is Prob{B|A}*Prob{A|C}=0.7*0.2=0.21,

and Prob{C|B} is Prob{C|A}*Prob{A|B}=1*0.7=0.7. We only keep links with

probabilities of at least 0.3 to avoid keeping weak connections (the selection of 0.3 is

still experimentally, we will discuss it as a threat to validity later). In case there are

multiple paths between two files, which may suggest different conditional probabilities

between two files. We keep the highest probability. Part 4 shows the N-Transitive-

Closure which is stored in an adjacency matrix, called a HCP matrix.

87

For each release r of a project, we compute a HPC matrix (HPCr), consisting of

files in BugSpacer, from the bug-fixing revision history between release 1 to release

r.

0.7

0.7*0.3 (<thred=0.3, discard)

1*0.7

A B D

 Commit1: A, B
 Commit2: A, B
 Commit3: B, D
 Commit4: A, C

 ①

②

 ③

④

0.7*0.3 (discard)

 1*0.7

1*0.7*0.3 (discard)

1*0.7*0.7

0.7
0.7

0.3 1 0.3 1

0.7

0.7

1 1/1

1/3

3

3 3 1 3 1/1

1/3

2/3

2/3

B D A B

A C

D

A B

C

B A C

C A B D

A B

C

0.3 1

D

0.7 1

0.5

0.7

 Figure 10.2: Generate HPC Matrix

Indexing Patterns Now we compute the interaction between SelectedDRSpacesr

and HCPr to find FileSetr from each release. We observe that, in most cases, even

though the number of files in a FileSet may vary in different releases, they are always

connected to at least one file over all releases. For example, if more child classes are

88

defined to extend a parent class over time, the group of files connected to the parent

class grows. We thus call this one special file the Anchor file of the group, denoted

as file a. We thus define FileSetr as:

FileSetr = {a,Mr|Mr = {mi : i from 1 to n}|

∀mi ∈Mr,mi architecturally connected with a in release r}
(10.5)

where FileSetr ∈ FileSetSequence, a is the anchor file, and the files contained in

Mr may change with release r. We call Mr the member files of a in release r.

We also define two boolean expressions to describe the relationships between two

files (x and y) in release r: Sr(x→ y) and Hr(x→ y). Sr(x→ y) means y structurally

depends on x in release r. Hr(x→ y) means x is more likely to propagate changes to

y in revision history than the opposite direction. We also say that x is dominant and y

is submissive in their co-changes between release 1 to release r. In HCPr, HCPr[x, y]

is the probability of changing y, given x has changed. If HCPr[x, y] > HCPr[y, x],

then x is dominant and y is submissive. HCPr[x, y] = HCPr[y, x] means x and y are

equally dominant. Formally:

In release r,

Sr(x→ y) is true if y ∈ DRSpacer x, otherwise it is false

Hr(x→ y) is true if HCPr[x, y] >= HCPr[y, x]

∧HCPr[x, y] 6= 0, otherwise it is false

(10.6)

For any pair of a and m in a FileSetr, we identify 4 relationships: Sr(a →

m), Sr(m → a), Hr(a → m), and Hr(m → a). Each relationship could be either

true or false. We enumerated all 16 combinations of these 4 relationships. The 4

combinations with Hr(a→ m) and Hr(a→ m) false are irrelevant to our analysis (as

89

we need history to measure debt). From the remaining 12 possible combinations, we

defined 4 indexing patterns—Hub, Anchor Submissive, Anchor Dominant, Modularity

Violation. Each pattern corresponds to prototypical architectural issues that proved

to correlate with reduced software quality Mo et al. [2015].

Given any anchor file a ∈ BugSpacer, we could calculate its FileSetr a using

SelectedDRSpacer and HCPr through the lens of the 4 indexing patterns:

Hub—the anchor file and each member have structural dependencies in both

directions and history dominance in at least one direction. The anchor is an architec-

tural hub for its members. This pattern corresponds to cyclic dependency, unhealthy

inheritance (if the anchor file is a super-class or interface class), and unstable interface

(if the anchor file has many dependents). Informally such structures are referred to

as “spaghetti code”, or “big ball of mud”. A FileSetr a with anchor file a in release

r that matches a hub pattern is denoted by HBFileSetr a and is calculated as:

HBFileSetr a = IndexHB(a, SelectedDRSpacer, HCPr)

= {a,Mr|∀m ∈Mr, Sr(a→ m) ∧ Sr(m→ a)

∧ (Hr(a→ m) ∨Hr(m→ a))}

(10.7)

1 2 3 4 5 6 7
1 PDA*Line (1) ,100% ,100% dp,100% ,100% ,100% ,100%
2 PDA*SquareCircle ,100% (2) ,100% dp,100% ,100% ,100% ,100%
3 PDA*FileAtt* ,100% ,100% (3) dp,100% ,100% ,100% ,100%
4 PDA* dp,50% dp,50% dp,50% (4) dp,50% dp,50% dp,50%
5 PDA*Text ,100% ,100% ,100% dp,100% (5) ,100% ,100%
6 PDA*Link ,100% ,100% ,100% Extend,dp,100% ,100% (6) ,100%
7 PDA*Widget ,100% ,100% ,100% Extend,dp,100% ,100% ,100% (7)

A* stands for Annotation

Figure 10.3: Hub

90

Figure 10.3 is a Hub FileSet for the PDFBox project, anchored by PDAnnotation.

The dark grey cell represents the anchor file (cell[4,4] for PDAnnotation). The cells

showing the history and structure relationships between member files and the anchor

file are in lighter grey. In this HBFileSet, the anchor file structurally depends on each

member file, and each member file also structurally depends on the anchor file. When

the anchor file changes, each member file has a 50% probability of changing as well.

When a member file changes, the anchor file always changes with it. A HBFileSet is

potentially problematic because the anchor file, like a hub, is strongly coupled with

every member file both structurally and historically.

Anchor Submissive—each member file structurally depends on the anchor file,

but each member historically dominates the anchor. This pattern corresponds to an

unstable interface, where the interface is submissive in changes. An Anchor Submis-

sive FileSet with anchor a in release rt is:

ASFileSetr a = IndexAS(a, SelectedDRSpacer, HCPr)

= {a,Mr|∀m ∈Mr, Sr(a→ m)∧

⇁ Sr(m→ a) ∧Hr(m→ a)

(10.8)

1 2 3 4 5 6 7 8
1 AbstractType (1)
2 UUIDSerializer ,100% (2) ,50% ,100% ,50%
3 UUIDType ext,dp,33% dp, (3) ,33% ,50%
4 AbstractCell dp,50% (4)
5 TypeCast dp,33% ,33% (5) ,33% ,33%
6 IntegerSerializer ,100% ,100% ,50% (6) ,50%
7 LongType ext,dp,67% ,67% ,33% (7) dp,67%
8 DateType ext,dp,40% ,60% dp,40% (8)

Figure 10.4: Anchor Submissive

91

Figure 10.4 shows an ASFileSet with anchor AbstractType in the Cassandra project.

Each member file structurally, directly or indirectly, depends on the anchor file, but

when the member files change, the anchor file changes with each of them, with his-

torical probabilities of 33% to 100%. A ASFileSet is problematic because the history

dominance is in the opposite direction to the structural influences: the anchor file

should influence the member files, not the other way around.

Anchor Dominant—each member file structurally depends on the anchor file

and the anchor file historically dominates each member file. This pattern corresponds

to the other type of unstable interface, where the interface is dominant in changes.

An Anchor Dominant FileSet with anchor a in release rt can be calculated as:

ADFileSetr a = IndexAD(a, SelectedDRSpacer, HCPr)

= {a,Mr|∀m ∈Mr, Sr(a→ m)∧

⇁ Sr(m→ a) ∧Hr(a→ m)}

(10.9)

1 2 3 4 5 6
1 ColumnParent (1) ,100% ,50% ,41% ,50% ,100%
2 Cassandra dp, (2) ,48%
3 CliClient dp, dp, (3)
4 Column*Reader dp, dp, (4)
5 ThriftValidation dp, (5)
6 CassandraServer dp, Implement, dp, (6)

Figure 10.5: Anchor Dominant

Figure 10.5 shows an ADFileSet calculated using anchor ColumnParent in Cas-

92

sandra. Each member file (from row 2 to row 6) structurally depends on (cell[2 to

6:1]) the anchor file (row 1), and when the anchor file changes, the member files

change as well with probabilities from 41% to 100% (cell[1:2 to 6]). A ADFileSet

presents potential problems where the anchor file is unstable and propagates changes

to member files that structurally depend on it.

Modularity Violation—there are no structure dependencies between the an-

chor and any member, however, they historically couple with each other. In a modu-

larity violation, the anchor file and the member files share some common assumptions

(“shared secrets”), but these are not represented in any structural connection. A

MV FileSet with anchor a in release r can be calculated as:

MV FileSetr a = IndexMV (a, SelectedDRSpacer, HCPr)

= {a,Mr|∀m ∈Mr,⇁ Sr(a→ m)∧⇁ Sr(m→ a)

∧ (Hr(m→ a) ∨Hr(a→ m))}

(10.10)

1 2 3 4 5 6 7 8
1 JMXETPEMBean (1) ,100% ,44% ,50% ,100% ,100% ,50%
2 DebuggableTPExecutor (2) ,31%
3 StorageService (3) dp, dp,Use,
4 ColumnFamilyStore dp, (4)
5 MessagingService dp, (5) dp,
6 NodeProbe ,44% dp, (6)
7 StatusLogger ,50% dp,50%dp, ,50% (7)
8 JMXCTPExecutor ,50% ,100% ,31% ,100% ,50% ,50% ,50% (8)

Figure 10.6: Modularity Violation

Figure 10.6 is a MV FileSet with anchor JMXCTPExecutor (row 12) in Cassan-

dra. The anchor file, on the bottom of the matrix, is structurally isolated from the

93

member files. However, when the anchor file changes, there are historically 31% to

100% probabilities that the member files change as well, and when the member file

JMXETPEMBean (on row 1) changes, the anchor file has a 50% chance to change with

it. This pattern identifies potential problems where the anchor file and the member

files share common assumptions, without explicit structural connections, and these

assumptions are manifested by historical co-change relationships.

Identify ArchDebtCandidates by anchor file For each release r, we use each

a in BugSpacer as the anchor file to calculate a FileSet for each of the 4 pat-

terns: HBFileSetr a, ASFileSetr a, ADFileSetr a, and MV FileSetr a. The File-

SetSequence in the Hub pattern with anchor file a is denote by HBFileSetSequencea.

Similarly, for anchor a, we can identify AS-, AD-, and MV- FileSetSequencea. Using

any bug-prone file as the anchor, we can identify 4 FileSetSequence, each of which is

an ArchDebtCandidate.

As a result, for each a ∈ BugSpacer and for each release r , we can exhaus-

tively detect 4*| ∪nr=1 BugSpacer| candidates, which equals 4*|BugSpacen| because

BugSpacen is a super set of all BugSpace in earlier releases.

10.2.3 Modeling: Build Regression Model

Now that we have identified the FileSetSequences, candidates of Archdebt, we

further: (1) measure maintenance costs incurred by each FileSet within a FileSetSe-

quence, and (2) formulate a DebtModel to capture cost variation.

Measure ArchDebtCandidates From each FileSetSequence, we first exclude each

FileSetr that only contains 1 file (the anchor file) since it doesn’t involve architecture

problems. After that, we define the age of a FileSetSequence as the number of

FileSets in it after unqualified FileSets are filtered out.

94

Then, for each FileSetr, we measure the maintenance effort, denoted by Ef-

fort FileSetrr, it consumes by the end of release r. For any file f ∈ FileSetr, we

approximate its maintenance costs as the amount of bug-fixing churn on it by the end

of release r. We denote the maintenance cost for file f by release r as BugChurnr f .

Effort FileSetrr is the sum of maintenance costs spent on each file in the set:

Effort FileSetr =
∑

∀f∈FileSetr
BugChurnr f (10.11)

To qualify as a real debt, first a FileSetSequence should have long-lasting impacts.

This can be evaluated using the age of FileSetSequence. Second, FileSetSequence

should consume increasing amount of maintenance effort. Suppose a software system

has n releases. Let FileSetf and FileSetl be the first and last element in FileSet-

Sequence. A FileSetSequence is identified as a real debt if it satisfies the following

conditions:
age >= n/c;

Effort FileSetl > Effort FileSetf .

where c is a tunable parameter. In this dissertation, c=2, meaning that FileSet-

Sequence influences at least half of the releases. Otherwise, the candidate is not a

meaningful debt, at least not yet. The second condition requires that the maintenance

costs on FileSetSequence increase over time (when an anchor file architecturally con-

nects to smaller numbers of member files over time, due to reasons such as refactoring,

a candidate may exhibit reducing maintenance costs over time, and thus cannot be a

debt).

Formulate DebtModel For each FileSetSequence identified as a real debt, we select

a suitable regression model as its DebtModel to describe the growing trend (the

interest rate) of maintenance costs over time. We use four types of regression models:

95

DebtModel(T) = 510.49ln(T) + 875
R² = 0.9351

600
800

1000
1200
1400
1600
1800
2000

0 2 4 6 8

Wicket
RequestParameters

Logarithmic

DebtModel(T) = 290.81e0.385T
R² = 0.9108

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10

Exponential

DebtModel(T) = -145.28*T3 + 1582.9*T2 -
3985.8*T + 3772.7

R² = 0.9631

0

1000

2000

3000

4000

5000

6000

0 2 4 6 8

Wicket
StockQuoteLabel

Polynormial

DebtModel(T)= 857.3*T + 1070.7
R² = 0.9839

0

2000

4000

6000

8000

10000

0 2 4 6 8 10

HBase
KeyValueHeap

Linear

PDFBox
Type1Encoding

Figure 10.7: 4 Types of Regression Model

linear, logarithmic, exponential, and polynomial (up to degree 10). Figure 10.7 shows

typical examples of these 4 models. Each model represents a coherent scenario. In

a linear model (part 1 of Figure 10.7), the penalties of a debt increase at a stable

rate in each version. In a logarithmic model (part 2), the penalties of a debt increase

more slowly over time (for example, when developers refactor a group of files, it

become easier to make the next change to them, so the interest rate on the debt

drops over time). In an exponential model (part 3), the penalties of a debt increase

at ever-faster rates over time (for example, the structure of a tangled group of files

gets exponentially worse, often in the early stages of a project, before anyone worries

about modularity). In a polynomial model (part 4), the penalties of a debt increase

with many fluctuations over the set of releases.

We calculate the maintenance costs—Effort FileSetrr for each FileSetr in a File-

SetSequence using equation 10.11. The Effort FileSetrr of all FileSetr in a File-

96

SetSequence form an array that we call Effort Array. Effort Array[i] = Ef-

fort FileSetrr, where FileSetr is the ith element of FileSetSequence. We define an

integer array T [i] = r, where r is the release number of the ith element in FileSet-

Sequence. Each release r is numbered by its order in the release in history. In the

DebtModel of a FileSetSequence, Effort Array is the independent value and T is

the dependent value. “ModelSelector” (shown in Algorithm 3) selects a regression

model for the relationship between T and Effort Array. The formula and R2 of the

regression model are returned as DebtModel:

DebtModel = ModelSelector(EffortArray, T) (10.12)

We define a global parameter R2
thresh (the R2 threshold) for ModelSelector. R2

thresh

ranges from 0 to 1; the higher the value, the stricter Effort Array and T fit the

selected model. Our ModelSelector algorithm first tries to fit the Effort Array

and T into a linear regression model. If the R2
Lin of the linear model reaches the

threshold R2
thresh, it returns the linear model. If not, it builds both logarithmic

model and exponential model, and computes their R2 values. If the R2 values of

both models reache R2
thresh, it returns the model that gives a higher R2. Otherwise,

it returns the model that reaches the threshold. If the debt fits neither of them

with R2 >= R2
thresh, it tries polynomial models of degrees up to 10. A polynomial

model where R2
poly >= R2

thresh or the degree reaches 10, whichever is satisfied first, is

returned.

In the ModelSelector algorithm, we give higher priority to linear, logarithmic,

and exponential models over polynomial models. We do not simply pick the best

fit (i.e., the model with highest R2). The reason is that the linear, logarithmic,

and exponential models present three general types of penalty interest rate: stable,

decreasing, and increasing. The polynomial model, however, catches minor fluc-

97

ALGORITHM 3: ModelSelector (EffortArray,T)

1: modelLin ← LinearF it(EffortArray,T)
2: R2

Lin ← modelLin.getR
2()

3: if R2
Lin >= R2

thresh then
4: return modelLin
5: end if
6: modelLog ← LogFit(EffortArray,T)
7: R2

Log ← modelLog.getR
2()

8: modelExp ← ExpFit(EffortArray,T)
9: R2

Exp ← modelExp.getR
2()

10: if R2
Log >= R2

thresh and R2
Exp >= R2

thresh then

11: if R2
Log > R2

Exp then
12:

13: return modelLog
14: end if
15:

16: return modelExp

17: end if
18: if R2

Log >= R2
thresh then

19:

20: return modelLog
21: end if
22: if R2

Exp >= R2
thresh then

23:

24: return modelExp

25: end if
26: modelpoly ← PolyF it(EffortArray,T, 10)
27:

28: return modelpoly

tuations of the penalty trend, most likely a result of noise due to extraneous fac-

tors. For example, the debt in part 1 of Figure 10.7, intuitively a linear model

(DebtModel(r) = 857 ∗ r + 1070 with R2 of 0.98), can fit into a polynomial model

DebtModel(r) = −2∗ r6 + 59∗ r5−680∗ r4 + 3874∗ r3−11342∗ r2 + 16538∗ r−6466,

with a higher R2 (0.99). The polynomial model fits better (higher R2), but the linear

model is preferred. As long as a debt penalty generally (R2 >= R2
thresh, where e.g.

R2
thresh is 0.8) fits into a linear, logarithmic or exponential model, we choose those

98

models.

For each FileSetSequence, we identify its DebtModel. This completes our ArchDebt

identification.

10.2.4 Ranking: Identify High-maintenance ArchDebt

Not all architectural debts have the same severity in terms of the maintenance costs

they incur. Debts with higher maintenance consequences deserve more attention. We

rank all the identified architectural debts according to their accumulative maintenance

cost as follows.

We define a pair pf < f,BugChurnf >, where f is a bug-prone file, BugChurnf

is the maintenance costs for f , approximated by bug-fixing churn on f . Let EffortMap

be the set of pf , such that ∀f ∈ BugSpacen (n is the latest release), there exists a

pf ∈ EffortMap. EffortMap is one of the inputs to the ranking algorithm. The other

input is the identified ArchDebts.

RankedDebts = ranking(ArchDebts, EffortMap) (10.13)

In the ranking algorithm 4, we rank the importance of each ArchDebt according

to EffortMap in a loop. In each iteration, we select maxArchDebt that consumes the

largest portion of effort for files in EffortMap from ArchDebts. The effort for duplicate

files are excluded, and the iteration terminates when all ArchDebts are ranked. The

top debts returned consume the largest possible maintenance effort, and deserve more

attentiosn and higher priority.

99

ALGORITHM 4: ranking (ArchDebts,EffortMap)

1: RankedDebts← ∅
2: while ArchDebts is not ∅ do
3: maxDebt = MaxDebt(EffortsMap,ArchDebts)
4: RankedDebts.addtoTail(maxDebt)
5: ArchDebts.remove(maxDebt)
6: EffortsMap.removeAllFiles(maxDebt.F ileSetSequence)
7: end while
8: return RankedDebts

10.3 Evaluation

To evaluate the effectiveness of our approach, we investigate the following research

question:

RQ: Whether the file groups identified in ArchDebts generate and grow

significant amount of maintenance costs? That is, are they true and sig-

nificant debts?

If the identified file groups only consume a small portion of overall maintenance ef-

fort, then they do not deserve much attention. Similarly, if the identified file groups

cover a large portion of the system itself, it is not surprising if they also consume the

majority of maintenance effort. In both cases, we cannot claim that they are debts

worthy of attention.

10.3.1 Subjects

We chose 7 Apache open source projects as our evaluation subjects. These projects

differ in scale, application domain, length of history, and many other project char-

acteristics. They are: Camel—a integration framework based on Enterprise Inte-

gration Patterns; Cassandra—a distributed DBMS; CXF—a Web services frame-

work; Hadoop—a framework for reliable, scalable, distributed computing; HBase—

the Hadoop distributed, scalable, big data store; PDFBox—a library for working

100

with PDF documents; and Wicket—a component-based web application framework.

A summary of these projects is given in Table 10.1. The second column is the start to

end time and the total number of months (in parentheses) for each project. The third

column “#R” shows the number of releases selected per project. We selected releases

to ensure that the time interval between two releases is approximately 6 months. The

column “#Cmt” is the number of commits made over the selected history. The col-

umn “#Iss” is the number of bug reports, extracted from the project’s bug-tracking

system. The last column shows the size range, measured as the number of files in the

first and the last selected release.

Table 10.1: Subject Projects

Subject Length of history (#Mon) #R #Cmt #Iss #Files

Camel 7/2008 to 7/2014 (72) 12 14563 2790 1838 to 9866
Cassandra 9/2009 to 11/2014 (62) 10 14673 4731 311 to 1337
CXF 12/2007 to 5/2014 (77) 13 8937 3854 2861 to 5509
Hadoop 8/2009 to 8/2014 (60) 9 8253 5443 1307 to 5488
HBase 12/2009 to 5/2014 (53) 9 6718 6280 560 to 2055
PDFBox 8/2009 to 9/2014 (62) 12 2005 1857 447 to 791
Wicket 6/2007 to 1/2015 (92) 15 8309 3557 1879 to 3081

10.3.2 Evaluation Results

To answer our research question, we measured the amount of maintenance effort

spent on the ArchDebts we identified. Since we can not directly measure the amount

of effort in working hours or budgets, we use bug-fixing churn as an approximation:

the number of lines of code modified and committed to fix bugs.

We use HBase as an example to illustrate our observations. Figure 10.8 shows

the percentage of maintenance effort associated with the files in FileSets of all iden-

101

Total files: total churn 264655
order history_on history_on history_on downup se downup si downup coupdown se updown si updown cohub seed hub size hub cover total size total cover

1 org.apache 94 0.218628 org.apache 2 0.086894 org.apache 9 0.100225 org.apache 3 0.064968 107 0.427368
2 org.apache 117 0.391117 org.apache 16 0.142196 org.apache 13 0.190301 org.apache 11 0.095358 144 0.498683
3 org.apache 142 0.504721 org.apache 38 0.181005 org.apache 26 0.239448 org.apache 13 0.116117 195 0.547426
4 org.apache 264 0.563409 org.apache 46 0.205373 org.apache 29 0.25916 org.apache 15 0.127925 307 0.614657
5 org.apache 290 0.611672 org.apache 86 0.223226 org.apache 36 0.276186 org.apache 17 0.135425 347 0.679579
6 org.apache 311 0.651558 org.apache 89 0.239584 org.apache 57 0.289252 org.apache 19 0.142442 369 0.695162
7 org.apache 317 0.683807 org.apache 92 0.255446 org.apache 61 0.301895 org.apache 21 0.149092 375 0.716382
8 org.apache 373 0.714262 org.apache 102 0.268285 org.apache 67 0.314338 org.apache 29 0.155546 435 0.748359
9 org.apache 380 0.73875 org.apache 112 0.279692 org.apache 70 0.324079 org.apache 33 0.160858 449 0.774049

10 org.apache 406 0.753679 org.apache 132 0.290234 org.apache 71 0.330566 org.apache 36 0.165771 476 0.784595
11 org.apache 426 0.766934 org.apache 151 0.300179 org.apache 78 0.336593 org.apache 37 0.170146 498 0.803166
12 org.apache 433 0.776388 org.apache 153 0.309463 org.apache 81 0.34203 org.apache 39 0.173902 503 0.809529
13 org.apache 443 0.784557 org.apache 161 0.318653 org.apache 83 0.347101 org.apache 41 0.177329 512 0.814434
14 org.apache 450 0.791854 org.apache 173 0.326637 org.apache 85 0.35125 org.apache 44 0.18014 526 0.823718
15 org.apache 456 0.797744 org.apache 177 0.334605 org.apache 87 0.354745 org.apache 49 0.182468 532 0.828626
16 org.apache 461 0.801761 org.apache 183 0.342461 org.apache 88 0.357991 org.apache 53 0.184629 540 0.832847
17 org.apache 466 0.805146 org.apache 186 0.349217 org.apache 91 0.361191 org.apache 55 0.186688 543 0.834294
18 org.apache 467 0.807984 org.apache 188 0.355474 org.apache 92 0.364029 org.apache 59 0.188642 546 0.837286
19 org.apache 476 0.810516 org.apache 189 0.36152 org.apache 94 0.366817 org.apache 61 0.190301 555 0.839818
20 org.apache 477 0.813013 org.apache 191 0.366859 org.apache 95 0.369375 org.apache 63 0.191249 556 0.840007
21 org.apache 484 0.814698 org.apache 197 0.37066 org.apache 97 0.371695 org.apache 64 0.191831 561 0.840887
22 org.apache 486 0.815787 org.apache 198 0.374166 org.apache 98 0.373713 org.apache 65 0.19236 563 0.841975
23 org.apache 488 0.81686 org.apache 200 0.377371 org.apache 105 0.37561 org.apache 66 0.192598 568 0.84374
24 org.apache 491 0.817596 org.apache 204 0.380567 org.apache 109 0.377408 org.apache 67 0.192745 570 0.844201
25 org.apache 493 0.818235 org.apache 210 0.383756 org.apache 112 0.379033 org.apache 68 0.192825 574 0.844934
26 org.apache 494 0.818613 org.apache 211 0.386768 org.apache 114 0.380601 org.apache 69 0.192893 575 0.84504
27 org.apache 496 0.818919 org.apache 215 0.389556 org.apache 116 0.382026 org.apache 70 0.192942 578 0.845395
28 org.apache 498 0.819202 org.apache 217 0.392141 org.apache 118 0.383371 org.apache 71 0.192972 579 0.845573

43%

68%

78%
83% 84% 84% 85%

22%

61%

75%
80% 81% 82% 82%

10%

28%
33% 35% 37% 38%

9%

22%
29% 33% 37% 38%

39%

6%
14% 17% 18% 19% 19% 19%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Pe
rc

en
ta

ge
 o

f T
ot

al
 E

rr
or

-fi
xi

ng
 C

hu
rn

Error Churn Associated with Top Architectural Debts (HBase)

All Patterns
Modularity Violation
Anchor Dominant
Anchor Submissive
Hub

Figure 10.8: Debt Churn Consumption (HBase)

tified ArchDebts in HBase. The x-axis is the number (from 1 to 28) of identified

architectural debts. The y-axis is the accumulated percentage of maintenance effort

associated with the top x ArchDebts. Each line represents the percentage of each

type of debt. This figure depicts, from bottom to top, you can see: Hub, Anchor-

Submissive, Anchor-Dominant, and Modularity Violation debts respectively. The line

on the top is the total percentage of the 4 types of debts. The values of the top line

are not simply the sum of the values of the 4 types because different types of debts

may share some files. Thus we make the following observations in HBase.

(1) Architectural debts consume a significant percentage (85%) of the

total project maintenance effort. A significant portion of the maintenance effort

is spent on paying interest on related groups of files. If they can identify such debts

early, a project can save significant effort by paying down the debts via refactor-

ing Kazman et al. [2015]. As the number of debts increases, the total does not reach

100% because not all bugs are architecturally connected. Occasionally, developers

102

introduce bugs that can be fixed in isolation.

(2) The top few architectural debts consume a large percentage of

maintenance effort. The top 5 Modularity Violation debts in HBase consume 61%

of total effort, wherease all Modularity Violation debts consume 82% of total effort.

Similar observations hold for Anchor-Submissive, Anchor-Dominant, and Hub debts.

The lines flatten as the number of debts increases, indicating that most of the effort

concentrates in the top few debts. This means that instead of reviewing all identified

debts, project leaders only need to focus on the top few.

(3) Modularity Violation debt is the most common and expensive

debt. Hub debts consume the least percentage of effort, while Anchor-Dominant and

Anchor-Submissive take similar percentages. We can see that the line for Modularity

Violation is close to the line for the sum of all types. This is because Modularity

Violation debts involve the files in other debts as well.

We made consistent observations from all 7 projects, as summarized in Table 10.2.

Column “All Debts Ch%” shows that, for all 7 projects, from 51% to 85% of the total

maintenance effort is consumed by architectural debts. And, a large percentage (31%

to 50%) of the effort is consumed by the top 5 Modularity Violation debts (shown

in sub column “Ch%” under “Modularity Vio”). Modularity Violation debts impact

the largest number of files and consume the greatest effort, Hub debts consume the

least, while Anchor-Submissive and Anchor-Dominant rotate their orders.

If a debt contains a large number of files, it is not surprising that they take a

large percentage of effort. We observed, however, that (4) the top 5 architectural

debts contain only a small number of files, but consume a large amount of

the total project effort. We compare the number of files in the top 5 architectural

debts versus the percentage of effort they take. For example, in table 10.2, column

“Modularity Vio” under “Top 5 Debts” shows that, in Camel, there are 206 files (13%

103

of all the bug-prone files) in the top 5 ModularityViolation debts, and these 206 files

consume 32% of the total project bug-fixing effort. Similarly, in Camel, the top 5

Anchor Submissive, Anchor Dominant, and Hub debts contain only 1%, 4%, and 2%

of the bug-prone files, but consume 7%, 16%, and 5% of the total effort respectively.

From the column “All 4 types” under “Top 5 Debts”, we can observe that, for all the

projects, the top 5 architectural debts contain from only 11% to 32% of the bug-prone

files, but consume 27% to 49% of the total effort. The average ratio of percentage of

effort to the percentage of files in the top 5 debts is 2.

Finally, we analyze the file size (in lines of code) of the debts we identified. Much

research has shown that file size correlates with bug rates and churn. We would like

to know that the debts identified by our approach are not just a set of large files. To

show this we counted the LOC of the files in the top 5 debts, and observed that the

sizes of these files are randomly distributed. Figure 10.9, for example, shows the file

size distribution of the top 5 Modularity Violation debts in Cassandra. The x-axis is

the range of file size: 10% means the top 10% largest files, 10-20% means files in the

10-20% range in LOC, and so forth. The y-axis is the percentage of files in the top 5

debts that belong to each size range. For example, 22% of the files in top 5 debts are

in the top 10% largest files, and 11% of the files are in the range of 90-100% range

(that is, the smallest files). The top 5 debts do contain a non-trivial number of large

files (22% from the top 10% size range), consistent with other studies showing that

large files tend to be problematic. But Figure 10.9 shows that the top 5 debts contain

files in all size ranges.

In summary, we can claim that the architectural debts identified by our approach

are truly debts that account for a large amount (from 51% to 85%) of maintenance

effort. Most (31% to 61%) of the maintenance effort concentrates in the top 5 archi-

tectural debts, which contain only a small percentage (13% to 25%) of the project’s

104

Table 10.2: Top 5 Debt:#Files vs Churn

Projects
All Debts Top 5 Debts

Ch%
All 4 types Modularity Vio Anchor Sub. Anchor Dom. Hub
Fls Ch% Fls Ch% Fls Ch% Fls Ch% Fls Ch%

Camel 59% 230(15%) 35% 206(13%) 32% 20(1%) 7% 60(4%) 16% 40(2%) 5%
Cassandra 72% 273(28%) 57% 196(20%) 50% 72(7%) 28% 33(3%) 32% 26(3%) 16%
CXF 56% 200(11%) 27% 136(8%) 20% 70(4%) 6% 22(1%) 10% 12(1%) 3%
Hadoop 51% 145(25%) 44% 118(20%) 42% 45(8%) 22% 10(2%) 16% 10(2%) 6%
HBase 85% 349(30%) 67% 290(25%) 61% 87(7%) 15% 36(3%) 27% 23(2%) 13%
PDFBox 67% 133(32%) 49% 107(25%) 45% 35(8%) 12% 30(7%) 26% 17(4%) 10%
Wicket 62% 295(22%) 38% 214(16%) 31% 130(10%) 11% 35(3%) 13% 14(1%) 7%

22%

13%

8%
10%

5% 5% 6%
9% 11% 11%

0%

5%

10%

15%

20%

25%

10% 10%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80% 80%-90% 90%-100%

File LOC Distribution-Top 5 MV Debt (Cassandra)

Figure 10.9: Top 5 Debts File Size Distribution (Cassandra)

files.

10.4 Discussion

We now discuss which model best describes the interest rate of an ArchDebt

and illustrate how our approach helps to understand and monitor the evolution of

ArchDebts.

105

10.4.1 The Interest Rate of ArchDebt

For each ArchDebt, we search for a suitable regression model to capture its interest

rate, as introduced in 10.2.3, using R2
thresh of 0.75 and 0.8 respectively. The results

are reported in Table 10.3. The first column is project name. The second column

is the number of instances of ArchDebt identified in a project. The third and forth

columns are model distributions for R2
thresh of 0.75 and 0.8 respectively.

When R2
thresh=0.75, in all the projects, about half (46% to 65%) of the debts fit

a linear regression model (with R2 >= 0.75). For other debts where a linear model

doesn’t fit, a small percentage fits either a logarithmic (4% to 22%) or exponential

(0% to 7%) model (with R2 >= 0.75), and a polynomial model fits 25% to 41% of

the identified debts.

When R2
thresh=0.8, the models are less noise-tolerant. We can see that linear

model is still common (36% to 62%) for all projects. But a small portion of debts,

from 6% (HBase, 31% minus 25%) to 18% (PDFBox, 51% minus 33%), can no longer

fit into linear, logarithmic, or exponential models, but fit a polynomial model.

In summary, when R2
thresh is 0.75, the linear model is most common—about half of

the debts fit into it. This indicates that half of ArchDebts accumulate maintenance

interest at a constant rate. Only a small portion of debts accumulate interest at

a faster (less than 7% in exponential) or slower (less than 22% in logarithmic) rate.

About 1/3 of the identified debts accumulate costs with a more fluctuating rate, which

is captured by a polynomial model. More ArchDebts fit into a polynomial model as

R2
thresh increases.

10.4.2 Architectural Debt Evolution

We showed, that the top 5 debts consume a large amount of effort. We manually

inspected the evolution of these debts, and now illustrate how architectural flaws

106

1 2 3 4 5 6 7 8 9 10 11
1 ProcessorDef (1) dp dp dp dp dp dp dp dp dp dp
2 LoadBalanceDef Ext,dp,100% (2) dp,
3 ChoiceDef Ext,dp,100% (3) dp, ,100%
4 RollbackDef Ext,dp,100% (4) dp,
5 RouteContext dp,67% (5) ,33% ,67% ,33% ,33% dp,33%
6 MarshalDef dp,100% dp,67% (6) ,100% ,100%,50% ,100%
7 PolicyDef dp,67% dp,44% ,33% (7) ,33% ,33% ,33%
8 TryDef dp,100% ,100% dp, (8)
9 UnmarshalDef dp,100% dp,67% ,100% ,100% (9) ,50% ,100%

10 Error*Ref dp,50% dp, ,33% (10)
11 InterceptStrategy dp,50% ,33% ,50% ,50% ,50% (11)

(a) R-2.0.0, Age 1, #Files 11,
Churn 392

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 ProcessorDef (1) dp, dp dp, dp, dp, dp, dp, dp, dp, dp, dp dp dp, dp, dp, dp, dp, dp, dp,
2 ChoiceDef Ext,dp,100% (2) dp ,100%
3 LoadBalanceDef Ext,dp,100% (3) dp
4 RollbackDef Ext,dp,100% (4) dp ,33%
5 OnCompletionDef Ext,dp,67% (5) ,33% ,33% ,33% ,33% ,33% dp ,33% ,33%
6 RouteDef Ext,dp,33% (6) dp dp, ,33%
7 OnExceptionDef Ext,dp,100% ,100% (7) ,33% ,50% ,33% ,33% dp ,100% ,33%
8 Channel dp,50% ,50% (8) ,50% ,50% ,50% dp ,50% dp
9 Def dp,44% ,33% Implt,dp,33% (9) ,33% ,33% dp ,33% dp

10 ToDef dp,100% ,33% ,100% ,33% ,100% ,100% (10) ,100% dp,40% ,40% ,100%
11 ThreadsDef dp,100% ,33% ,100% ,33% ,100% ,100% ,100% (11) dp,40% ,40% ,100%
12 RecipientListDef dp,100% (12) dp
13 RouteContext dp,60% dp, (13) ,50% dp
14 MarshalDef dp,100% ,50% dp,40% (14) ,100% ,100% ,50% ,100%
15 PolicyDef dp,75% dp (15)
16 TryDef dp,100% ,100% dp (16)
17 UnmarshalDef dp,100% ,50% dp,40% ,100% ,100% (17) ,50% ,100%
18 Error*Ref dp,40% dp, dp, dp (18)
19 MulticastDef dp,100% ,50% ,50% ,50% ,50% ,50% dp (19)
20 InterceptStrategy dp,50% ,50% ,50% ,50% ,50% (20)

(b) R-2.2.0, Age 2, #Files 20, Churn 771

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
1 ProcessorDef (1) dp
2 ExpressionNode Ext,dp,60% (2) ,40% ,40% ,40% ,40% ,40% ,40% ,40% ,40% ,30
3 CatchDef Ext,dp,40% dp,40% (3) ,40% ,40% ,40% ,40% dp, ,40% dp, dp,60% ,30 ,40%
4 ChoiceDef Ext,dp,67% dp, (4) dp,33% dp, ,33%
5 LoadBalanceDef Ext,dp,50% (5)
6 RecipientListDef Ext,dp,50% dp, (6) ,33% ,33% ,33% dp, dp, ,50%
7 WireTapDef Ext,dp,33% ,67% (7) ,67% ,33% ,44% ,33% ,33% ,33% ,33% dp,33% ,33% dp,33% ,67%
8 AggregateDef Ext,dp,33% ,33% ,33% ,33% ,33% (8) ,50% ,67% ,33% ,50% ,50% ,33% dp, ,33% dp, ,33% ,50%
9 ResequenceDef Ext,dp,50% ,50% ,50% ,75% (9) ,75% ,50% ,50% dp, ,50% ,37

10 OnCompletionDef Ext,dp,44% dp, ,44% ,33% (10) dp, ,33% dp, ,33% dp, ,33%
11 LoopDef dp,100% Ext,dp,100% ,100% ,50% ,50% ,33% ,100%,100% ,100% (11) ,100% ,100% ,100% ,100% ,33% ,100% ,100% ,100% ,100% ,100% ,100% ,100% ,100% ,100%
12 ThrottleDef dp,40% Ext,dp,67% ,33% ,33% ,33% ,67% ,33% ,67% ,33% (12) ,33% ,67% ,67% dp,33% ,67% ,33% dp, ,33% ,33% ,33% ,33% ,33% ,67% ,33%
13 I*ConsumerDef dp,50% Ext,dp,50% ,50% ,75% ,50% ,50% (13) ,50% dp, ,50% ,50%
14 WhenDef dp,100% Ext,dp,50% ,50% ,100% ,50% ,50% ,50% ,50% (14) ,50% ,50% ,37
15 SplitDef dp,50% Ext,dp,50% ,50% ,50% ,75% ,50% ,75% ,50% ,50% (15) ,50% dp, ,50% dp, ,50% ,75%
16 DelayDef dp,33% Ext,dp,44% ,33% ,33% ,33% ,67% ,33% ,67% ,33% ,67% ,33% ,67% (16) dp,33% ,67% ,33% dp, ,33% ,33% ,33% ,33% ,33% ,67% ,33%
17 Processor*Helper dp,33% dp, dp, dp, (17) dp, dp, dp, dp,
18 ThreadsDef dp,33% ,33% ,50% ,33% ,33% ,33% dp, (18) dp, ,50%
19 OtherwiseDef dp,100% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% (19) ,50% ,50% ,50% ,50% ,50% ,50% ,50%
20 RouteContext ,43% ,33% ,33% ,33% ,33% (20) ,33% ,33% ,33% dp
21 PolicyDef dp,80% ,40% (21) dp,100%
22 TryDef dp,60% ,40% dp,60% ,40% ,40% ,40% ,40% ,40% dp, ,40% dp, (22) ,30 dp,40%
23 TransactedDef dp,56% dp, ,71 (23)
24 PipelineDef dp,100% ,100% ,100% ,50% ,50% ,33% ,100%,100% ,100% ,100% ,100% ,100% ,100% ,100% ,33% ,100% ,100% ,100% ,100% ,100% (24) ,100% ,100% ,100%
25 SamplingDef dp,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% (25) ,33% ,33%
26 MulticastDef dp,43% ,43% ,43% ,43% ,43% dp, ,43% dp, (26)
27 FinallyDef dp,60% ,50% ,100% ,40% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% dp,100% ,50% ,50% ,50% ,50% (27)
28 InterceptStrategy ,50% ,50% ,50% (28)

(c) R-2.12.4, Age 11, #Files 28, Churn 2134

Figure 10.10: Camel Hub Debt Evolution-Anchor ProcessorDefinition

107

Table 10.3: Debt Costs Model Distribution

Project #Ds
R2

threshold = 0.75 R2
threshold = 0.8

Lin Log Exp Poly Lin Log Exp Poly

Camel 199 52% 19% 0% 30% 39% 20% 2% 39%
Cassandra 180 61% 7% 2% 30% 53% 6% 3% 39%
CXF 189 56% 12% 1% 32% 45% 10% 4% 41%
Hadoop 74 46% 7% 7% 41% 36% 8% 3% 53%
Hbase 204 65% 7% 2% 25% 62% 4% 2% 31%
PDFBox 85 59% 4% 5% 33% 39% 1% 9% 51%
Wicket 153 46% 22% 1% 30% 38% 17% 1% 44%

evolve into debts over time. As an example, consider the top Hub debt with anchor

file ProcessorDef (referred to as PDef in the following) in Camel (Figure 10.10). We

have provided 3 snapshots of this debt—in release 2.0.0 (age 1), release 2.2.0 (age

2), and release 2.12.4 (age 11)—to show its evolution. Snapshots from age 3 to 10

are similar to age 11. “Ext” and “Impl” stand for “extend” and “implement”, “dp”

denotes all other types of structural dependencies.

In release 2.0.0(shown in Figure 10.10(a)), PDef forms a hub with 10 member

files: 3 files are its subclasses, 7 files are its general dependents, and PDef structurally

depends on all of them. Note that in this snapshot, all files, except InterceptStrategy,

depend on RouteContext (column 5). The 11 files in this hub structurally form a

strongly connected graph. According to the revision history, PDef changes with all

member files with probabilities from 50% to 100% (column 1). The dependents (on

rows 5 to 11) of PDef are highly coupled with each other. This is problematic in 3

ways: 1) the parent class PDef depends on each subclass and each dependent class

(unhealthy inheritance proposed by Mo et al. [2015]); 2) the parent class is unstable

and often changes with its subclasses and dependent classes (unstable interface Mo

et al. [2015]). 3) RouteContext forms cyclic dependencies with 9 files (cycles). Without

fixing these flaws, we expect the maintenance costs of this group to grow.

108

In release 2.2.0 (shown in Figure 10.10(b)), the impacts of this hub have enlarged—

PDef has 3 more subclasses and 6 more general dependents, and it depends on each

of them as well. Each newly involved file also depends on RouteContext (column 13).

The revision history shows that PDef changes with its subclasses and dependents

with probabilities of 33% to 100%. Also, the subclasses and dependents (rows 5 to 11)

of PDef are highly coupled with each other—changing any of them is likely to trigger

changes to the rest. In following releases, the hub grows further. Up to release 2.12.4

(shown in Figure 10.10(c)), PDef has 9 subclasses and 18 general dependents—the

size of the hub tripled compared to the start, and, as always, PDef depends on each

of them. In addition, 6 of the 18 general dependents (rows 11 to 16) of PDef also

become its grandchildren. The inheritance tree has increased in width and depth.

The revision history shows PDef still changes with its dependents with probabilities

from 33% to 100%. The files in this snapshot are tightly coupled with each other,

and so changing any file is likely to trigger changes to others.

The maintenance costs spent on this debt fit a linear regression model: DebtModel(rt)

= 158.75 ∗ rt + 509.35 with R2 = 0.89. This means that, in every release, develop-

ers contribute 158.75 more lines of code to fix bugs in the hub anchored by PDef .

Although this model can only be obtained after the costs and penalty have accumu-

lated, one could use our approach to detect architecture flaw patterns at any point (as

described in Mo et al. [2015]), monitor how file groups grow, monitor the formation

of debts, and prevent significant costs by investing in proper refactorings (Kazman

et al. [2015]).

10.5 Limitations and Threats

We now briefly discuss the limitations and threats to validity for the ArchDebt

quantification approach.

109

First, since we have only examined 7 projects and all of these are Apache projects,

we can not guarantee that our results will generalize to other projects.

Second, similar to the analysis of the evolution of long-lived ArchRoots, the

ArchDebt quantification approach relies on enough revision history as well. For

projects without enough history data, our approach can still identify groups of files

with the potential to become architectural debt. The building of a DebtModel relies

on having adequate history data. But our pattern matching approach is still feasible

for projects with short history. We plan to evaluate the effectiveness of our approach

on projects without enough history in our future work.

Third, as have been dicussed in the prior chapters, our approach relies on mining

error-prone files from the revision history and bug tracking data. We use the bug re-

port id that developers enter into commits to locate error-prone files. The availability

and accuracy of such information heavily depend on the project’s protocols. This is

both a limitation and threat to validity to our approach.

Finally, we can’t guarantee that error-fixing churn is the best maintenance effort

approximation proxy. In our future work, we plan to explore more proxies, such as

the amount of communications, the turn-around time for bug reports, etc. We are

currently collaborating with an industry project that records real effort data, and we

plan to compare this with our proxy measures of effort in our future work.

10.6 Summary

In this chapter, we formally defined a special form of TD, called Architectural

Debts, on which maintenance “penalties” keep accumulating due to flawed architec-

tural connections among files. And we contributed an approach to automatically

identify groups of files involved in ArchDebts by matching four typical architectural

flaw patterns. We quantified the maintenance costs spent on each ArchDebt, and

110

monitored the growing trend of each debt to model its “interest rate”. We used four

types of regression models to describe stable, increasing, decreasing, and fluctuating

interest rates.

In the application on seven open source projects, this approach identified true

debts that generate and grow significant (up to the 85% of the total) maintenance

costs in these projects. Most interestingly, the most expensive and high-impact

ArchDebts don’t involve any direct structural dependencies, instead groups of files

are heavily coupled in revision history. This indicates the lack of design to better en-

capsulate undocumented assumptions shared among files. In addition, stable interest

rates are found to be the most common interest type. In other words, during each

release cycle, the developer team have to devote a stable amount of effort to fixing

bugs involving files in an ArchDebt. Lastly, we illustrated how an architectural flaw

evolved into a debt over time using an ArchDebt we identified.

The ArchDebt approach has further bridged the gap between software architec-

ture and maintenance quality, built upon the DRSpace modeling and the ArchRoot

detection. Software practitioners can use this approach to analyze and manage the

architectural flaws that contribute to the maintenance difficulties in a systematic and

automatic way. We believe that our approach has great potential in the early identifi-

cation and prioritization of the concrete refactoring opportunities in software projects.

Based on the cost and interest rate of each ArchDebt, informed decisions can be made

in terms of whether, where and when to refactor, to fundamentally improve software

quality as the long term goal.

111

Part V

Conclusions

112

11. Conclusions

In this dissertation, we have contributed a methodology that models, analyzes, and

monitors software architecture in respect to addressing maintenance quality concerns.

First, we proposed a new architecture representation, the DRSpace modeling,

embracing Baldwin and Clark [2000]’s design rule theory. It simultaneously captures

the modular structure and the relevant maintenance quantify information of software

architecture. It represents software architecture as multiple, overlapping DRSpaces.

Each DRSpace represents a cohesive aspect of the architecture, which is composed

of the leading files—the key design rules of the space—and the independent modules

decoupled by the leading files. Each DRSpace captures the evolutionary couplings

among files (which are not captured in existing architecture models) as a special form

of architectural connections. Our studies have shown that the files led by bug-prone

leading files are also likely to be bug-prone. Therefore, high-impact and bug-prone

design rules should be given higher priority in bug fixing activities.

Based upon the DRSpace modeling, we further proposed an ArchRoot detection

algorithm to automatically identify the most problematic DRSpaces of a system.

We call these DRSpaces the ArchRoots of bug-proneness. We found, based on the

studies of 15 software projects, that the majority of the bug-prone files in the projects

are usually concentrated in the top few ArchRoots. It implies that the developers

should focus on the top few ArchRoots with the highest concentration of bug-prone

files to reap the largest benefits in bug-fixing activities. We also observed that some

long-lived ArchRoots have persistent and significant impacts on the maintenance

quality of a software project. We believe that the flawed architectural connections

contained in these roots are the root causes of maintenance difficulties. Consequently,

to fundamentally improve the maintenance quality in the long run, the developers

113

should consider refactoring these roots to fix the architectural flaws.

Last but not least, based on the analysis of the ArchRoots, we formally defined

a particular type of Technical Debt, the ArchDebts. An ArchDebt is a group of files

that keep incurring high maintenance costs over time due to their flawed architectural

connections. The developer team can pay off such “debts” in the project by refactor-

ing, or they can take shortcuts by continuing to add new features. The former will

delay the planed progress. The latter will lead to higher future maintenance “penal-

ties”. To solve this dilemma, we contributed an approach to automatically identify

such “debts” by matching four typical architectural flaw patterns. Each identified

“debt” is a potential refactoring opportunity. Our studies have shown that this ap-

proach can identified true and significant debts that worth attention. In the projects

we studied, the identified ArchDebts consume up to 85% of the total maintenance ef-

fort. To further support informed refactoring decision-making, we quantified the key

parameters—the “costs” and the “interest rates”—on the “debts”. We prioritized

the identified “debts” according to these parameters. It turned out that the most

high-impact and expensive debts involve groups of files frequently change together

without any direct structural dependencies. This suggests shared “secrets” among

these files that should be better encapsulated. Ultimately, our approach enables soft-

ware practitioners to make informed refactoring decisions based on the systematic

analysis, rather than one’s intuition or experience.

In summary, the methodology introduced in this dissertation has demonstrated

great potential in bridging the gap between software architecture and maintenance

quality. To the best of our knowledge, it is original in directly and systematically

linking software architecture and maintenance quality concerns. We envision that

this methodology has the potential for changing how software architecture is analyzed,

monitored, and maintained in practice for addressing maintenance quality concerns.

114

12. Future Directions

The research in software architecture has huge potential in solving various practi-

cal problems in software engineering. Based on the studies and techniques presented

in this dissertation, the following directions are particularly valuable and accessible.

(1)Increase software architecture awareness in maintenance activities.

The work presented in this dissertation has revealed that architecture problems could

be the root causes of error-proneness and high-maintenance costs in software projects.

Compared to fixing the architecture problems by refactoring, preventing the intro-

duction of such problems in the first place could be more advantageous. Increasing

architecture awareness in the development environment can help developers to avoid

introducing expensive architecture flaws.

Automatically recognizing and monitoring the evolution of applied design patterns

(canonical design solutions for recurring problems in software design) in a software

project could be a way of increasing architecture awareness. For example, when a

developer commits a change that breaks a design pattern in the project, he/she shall

be notified, or even be disapproved, of the violation. In our DRSpace model, each

design pattern in a software system can be represented using a separate DRSpace, but,

how to automatically recognize and monitor the evolution of design patterns using

the DRSpace model still needs to be explored. I plan to explore such potential of our

DRSpace model to increase architecture awareness in development environment.

(2)Facilitate testing using software architecture. Software architecture

could be used to facilitate testing. There may exist test dependencies among com-

ponents with architectural dependencies among one-another. The integration test

of a set of components in a system is not ready to execute, until all the involved

components have “passed” status in the unit test. In order to increase test efficiency,

115

unit tests of components without architectural dependencies should be maximally

paralleled; unit tests of components with dependencies should be properly ordered.

In addition to that, integration test on a set of components in a system can start as

soon as all involved components have “passed” status in the unit test. Before the test

cases are written, or even before the details of components are implemented, the ar-

rangement of parallel and sequential unit tests, as well as early integration test plans,

can be computed from the architecture of a software project. Our DRSpace model

captures the design rules and independent modules in software systems. The tests of

independent modules could be maximally paralleled. I plan to explore the potential

of software architecture, using our DRSpace model, to facilitate test activities.

Facilitating testing based on architecture is particularly valuable for modern soft-

ware system, which is composed of other sub-systems. In such scenarios, using the

high level architecture view to guide testing is crucial for testing efficiency. And the

APIs that connect sub-systems should be tested the first and the most thoroughly.

(3)Identify architecture problems which are responsible for quality at-

tributes. The design, implementation, and evolution of software architecture are

driven by quality requirements. As a result, architecture is the foundation for achiev-

ing the quality attributes. However, the potential of software architecture in analyzing

various quality problems, such as performance bottle neck, security pitfalls, scalabil-

ity constraints, has not been fully explored. Whether and how architecture decisions

affect the quality aspects have not been fully answered. For example, how to identify

high latency architecture components that are the performance and scalability bottle

neck in software systems? What could be the security vulnerabilities related to the

SOA (Service Oriented Architecture) in web-based applications?

The work in this direction is very challenging, but is also extremely valuable,

especially for software systems that emphasis, or even rely on, quality attributes to

116

survive (e.g. performance, scalability, and security are important for software systems

in the domains of cloud computing and big data). The research in this direction not

only requires background in software engineering, but also requires backgrounds in

related domains. I plan to collaborate with researchers who have expertise in the

related domains to solve these problems.

117

Bibliography

Aldrich, J., Chambers, C., and Notkin, D. (2002). ArchJava: Connecting software
architecture to implementation. In Proc. 24th International Conference on Software
Engineering, pages 187–197.

Allen, R. and Garlan, D. (1994). Beyond definition/use: Architectural interconnec-
tion. In Proceedings of the Workshop on Interface Definition Languages, IDL ’94,
pages 35–45, New York, NY, USA. ACM.

Alves, N. S., Ribeiro, L. F., Caires, V., Mendes, T. S., and Spinola, R. O. (2014).
Towards an ontology of terms on technical debt. In Managing Technical Debt
(MTD), 2014 Sixth International Workshop on, pages 1–7. IEEE.

Bachmann, A., Bird, C., Rahman, F., Devanbu, P., and Bernstein, A. (2010). The
missing links: Bugs and bug-fix commits. In Proc. 16th ACM SIGSOFT Interna-
tional Symposium on the Foundations of Software Engineering.

Baldwin, C. Y. and Clark, K. B. (2000). Design Rules, Vol. 1: The Power of Modu-
larity. MIT Press.

Bansiya, J. and Davis, C. G. (2002). A hierarchical model for object-oriented design
quality assessment. IEEE Trans. Softw. Eng., 28(1):4–17.

Basili, V. R., Briand, L. C., and Melo, W. L. (1996). A validation of object-oriented
design metrics as quality indicators. IEEE Transactions on Software Engineering,
22(10):751–761.

Bass, L., Clements, P., and Kazman, R. (2012). Software Architecture in Practice.
Addison-Wesley, 3rd edition.

Bavota, G., Gethers, M., Oliveto, R., Poshyvanyk, D., and Lucia, A. d. (2014).
Improving software modularization via automated analysis of latent topics and
dependencies. ACM Trans. Softw. Eng. Methodol., 23(1):4:1–4:33.

Briand, L. C., Wüst, J., Daly, J. W., and Porter, D. V. (2000). Exploring the rela-
tionships between design measures and software quality in object-oriented systems.
Journal of Systems and Software, 51(3):245–273.

118

Brondum, J. and Zhu, L. (2012). Visualising architectural dependencies. In Proceed-
ings of the Third International Workshop on Managing Technical Debt, MTD ’12,
pages 7–14, Piscataway, NJ, USA. IEEE Press.

Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., Mac-
Cormack, A., Nord, R., Ozkaya, I., Sangwan, R., Seaman, C., Sullivan, K., and
Zazworka, N. (2010). Managing technical debt in software-reliant systems. pages
47–52.

Cataldo, M., Mockus, A., Roberts, J. A., and Herbsleb, J. D. (2009). Software
dependencies, work dependencies, and their impact on failures. IEEE Transactions
on Software Engineering, 35(6):864–878.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 20(6):476–493.

Clements, P. C. (1996). A survey of architecture description languages. In Proceedings
of the 8th International Workshop on Software Specification and Design, IWSSD
’96, pages 16–, Washington, DC, USA. IEEE Computer Society.

Cunningham, W. (1992). The WyCash portfolio management system. In Adden-
dum to Proc. 7th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 29–30.

Curtis, B., Sappidi, J., and Szynkarski, A. (2012). Estimating the principal of an
application’s technical debt. IEEE Software, 29(6):34–42.

D’Ambros, M., Lanza, M., and Robbes, R. (2009). On the relationship between
change coupling and software defects. In Proc. 16th Working Conference on Reverse
Engineering, pages 135–144.

Eaddy, M., Zimmermann, T., Sherwood, K. D., Garg, V., Murphy, G. C., Nagap-
pan, N., and Aho, A. V. (2008). Do crosscutting concerns cause defects? IEEE
Transactions on Software Engineering, 34(4):497–515.

Falessi, D., Kruchten, P., Nord, R. L., and Ozkaya, I. (2014). Technical debt at the
crossroads of research and practice: report on the fifth international workshop on
managing technical debt. ACM SIGSOFT Software Engineering Notes, 39(2):31–
33.

Fenton, N. E. and Ohlsson, N. (2000). Quantitative analysis of faults and failures in a
complex software system. IEEE Transactions on Software Engineering, 26(8):797–
814.

Freeman, E. T., Robson, E., Bates, B., and Sierra, K. (2004). Head First Design
Patterns. O’Reilly Media.

119

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. M. (1994). Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley.

Garcia, J., Krka, I., Mattmann, C., and Medvidovic, N. (2013). Obtaining ground-
truth software architectures. In Proceedings of the 2013 International Conference
on Software Engineering, ICSE ’13, pages 901–910, Piscataway, NJ, USA. IEEE
Press.

Garlan, D. (2003). Formal Modeling and Analysis of Software Architecture: Compo-
nents, Connectors, and Events. Springer Berlin Heidelberg.

Garlan, D., Bachmann, F., Ivers, J., Stafford, J., Bass, L., Clements, P., and Merson,
P. (2010). Documenting Software Architectures: Views and Beyond. Addison-
Wesley Professional, 2nd edition.

Griffith, I. and Izurieta, C. (2014). Design pattern decay: The case for class grime. In
Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM ’14, pages 39:1–39:4, New York, NY, USA.
ACM.

Hassan, A. E. (2009). Predicting faults using the complexity of code changes. In
Proc. 31rd International Conference on Software Engineering, pages 78–88.

Henry, S. and Kafura, D. (1981). Software structure metrics based on information
flow. IEEE Transactions on Software Engineering, SE-7(5):510–518.

Huynh, S., Cai, Y., and Sethi, K. (2008a). Design rule hierarchy and analytical
decision model transformation. Technical Report DU-CS-08-04, Drexel University.
https://www.cs.drexel.edu/node/13664.

Huynh, S., Cai, Y., and Sethi, K. (2008b). Design rule hierarchy and model trans-
formations. Presented at Student Research Forum of 16th ACM SIGSOFT Inter-
national Symposium on the Foundations of Software Engineering. (Best Student
Poster Award).

Jahanian, F. and Mok, A. K. (1994). Modechart: A specification language for real-
time systems. IEEE Trans. Softw. Eng., 20(12):933–947.

Jones, J. A., Harrold, M. J., and Stasko, J. (2002). Visualization of test information
to assist fault localization. In Proceedings of the 24th International Conference on
Software Engineering, ICSE ’02, pages 467–477, New York, NY, USA. ACM.

Kazman, R., Abowd, G., Bass, L., and Webb, M. (1994). Saam: A method for analyz-
ing the properties of software architectures. In Proc. 16th International Conference
on Software Engineering, pages 81–90.

120

Kazman, R., Asundi, J., and Klein, M. (2001). Quantifying the costs and benefits of
architectural decisions. In Software Engineering, 2001. ICSE 2001. Proceedings of
the 23rd International Conference on, pages 297–306.

Kazman, R., Barbacci, M., Klein, M., Carriere, S. J., and Woods, S. G. (1999). Ex-
perience with performing architecture tradeoff analysis. In Proc. 16th International
Conference on Software Engineering, pages 54–64.

Kazman, R., Cai, Y., Mo, R., Feng, Q., Xiao, L., Haziyevy, S., Fedaky, V., and
Shapochkay, A. (2015). A case study in locating the architectural roots of technical
debt. In Proc. 37th International Conference on Software Engineering.

Kazman, R. and Carriere, S. J. (1999). Playing detective: Reconstructing software
architecture from available evidence. 6(2):107–138.

Kim, S., Zimmermann, T., Whitehead, J., and Zeller, A. (2007). Predicting faults
from cached history. In Proc. 29st International Conference on Software Engineer-
ing, pages 489–498.

Kouroshfar, E., Mirakhorli, M., Bagheri, H., Xiao, L., Malek, S., and Cai, Y. (2015).
A study on the role of software architecture in the evolution and quality of software.
In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,
pages 246–257.

Kruchten, P., Nord, R. L., and Ozkaya, I. (2012). Technical debt: From metaphor to
theory and practice. IEEE Software, 29(6):18–21.

Kruchten, P. B. (1995). The 4+1 view model of architecture. IEEE Software, 12:42.

Leszak, M., Perry, D. E., and Stoll, D. (2000). A case study in root cause defect
analysis. In Proc. 22rd International Conference on Software Engineering.

Li, Z., Avgeriou, P., and Liang, P. (2015). A systematic mapping study on technical
debt and its management. J. Syst. Softw., 101(C):193–220.

MacCormack, A., Rusnak, J., and Baldwin, C. Y. (2006). Exploring the structure of
complex software designs: An empirical study of open source and proprietary code.
Management Science, 52(7):1015–1030.

Maldonado, E. and Shihab, E. (2015). Detecting and quantifying different types of
self-admitted technical debt. SIGSOFT Softw. Eng. Notes.

Mancoridis, S., Mitchell, B. S., Chen, Y.-F., and Gansner, E. R. (1999). Bunch: A
clustering tool for the recovery and maintenance of software system structures. In
Proc. 15th IEEE International Conference on Software Maintenance, pages 50–59.

Maranzano, J., Rozsypal, S., Zimmerman, G., Warnken, G., Wirth, P., and Weiss,
D. (2005). Architecture reviews: Practice and experience. IEEE Software, 22:34.

121

Martin, R. C. (2003). Agile Software Development: Principles, Patterns, and Prac-
tices. Prentice Hall PTR, Upper Saddle River, NJ, USA.

Martini, A. and Bosch, J. (2015). The danger of architectural technical debt: Con-
tagious debt and vicious circles. In Software Architecture (WICSA), 2015 12th
Working IEEE/IFIP Conference on, pages 1–10.

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software Engi-
neering, 2(4):308–320.

Menzies, T., Greenwald, J., and Frank, A. (2007). Data mining static code attributes
to learn defect predictors. IEEE Transactions on Software Engineering, 33(1):2–13.

Meyer, B. (1988). Object-Oriented Software Construction.

Mo, R., Cai, Y., Kazman, R., and Xiao, L. (2015). Hotspot patterns: The formal
definition and automatic detection of architecture smells. In Proc. 15th Working
IEEE/IFIP International Conference on Software Architecture.

Mo, R., Garcia, J., Cai, Y., and Medvidovic, N. (2013). Mapping architectural decay
instances to dependency models.

Moha, N., Guéhéneuc, Y.-G., Le Meur, A.-F., and Duchien, L. (2008). A domain anal-
ysis to specify design defects and generate detection algorithms. In Proc. 11th In-
ternational Conference on Fundamental Approaches to Software Engineering, pages
276–291.

Nagappan, N. and Ball, T. (2005). Use of relative code churn measures to predict
system defect density. In Proc. 27th International Conference on Software Engi-
neering, pages 284–292.

Nagappan, N., Ball, T., and Zeller, A. (2006). Mining metrics to predict component
failures. In Proc. 28th International Conference on Software Engineering, pages
452–461.

Newton, P. and Browne, J. C. (1992). The code 2.0 graphical parallel programming
language. In Proceedings of the 6th International Conference on Supercomputing,
ICS ’92, pages 167–177, New York, NY, USA. ACM.

Ohlsson, N. and Alberg, H. (1996). Predicting fault-prone software modules in tele-
phone switches. IEEE Transactions on Software Engineering, 22:886–894.

Ostrand, T. J., Weyuker, E. J., and Bell, R. M. (2004). Where the bugs are. In Proc.
13thACM SIGSOFT International Symposium on Software Testing and Analysis,
pages 86–96.

122

Ostrand, T. J., Weyuker, E. J., and Bell, R. M. (2005). Predicting the location
and number of faults in large software systems. IEEE Transactions on Software
Engineering, 31(4):340–355.

Palsberg, J., Xiao, C., and Lieberherr, K. (1995). Efficient implementation of adaptive
software. ACM Trans. Program. Lang. Syst., 17(2):264–292.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–8.

Peters, L. (2014). Technical debt: The ultimate antipattern - the biggest costs may
be hidden, widespread, and long term.

Posnett, D., D'Souza, R., Devanbu, P., and Filkov, V. (2013). Dual ecological
measures of focus in software development. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages 452–461, Piscataway, NJ,
USA. IEEE Press.

Ran Mo, Yuanfang Cai, R. K. L. X. and Feng, Q. (2016). Decoupling level: A
new metric for architectural maintenance complexity. In Proceedings of the 2016
International Conference on Software Engineering, ICSE ’16.

Robillard, M. P. (2008). Topology analysis of software dependencies. ACM Transac-
tions on Software Engineering and Methodology, 17(4):18:1–18:36.

Sangal, N., Jordan, E., Sinha, V., and Jackson, D. (2005). Using dependency models
to manage complex software architecture. In Proc. 20th ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
pages 167–176.

Schwanke, R., Xiao, L., and Cai, Y. (2013). Measuring architecture quality by struc-
ture plus history analysis. In Proc. 35rd International Conference on Software
Engineering, pages 891–900.

Schwanke, R. W. and Hanson, S. J. (1994). Using neural networks to modularize
software. Machine Learning, 15(2):137–168.

Seaman, C., Nord, R. L., Kruchten, P., and Ozkaya, I. (2015). Technical debt: Beyond
definition to understanding report on the sixth international workshop on managing
technical debt. SIGSOFT Softw. Eng. Notes, 40(2):32–34.

Selby, R. W. and Basili, V. R. (1991). Analyzing error-prone system structure. IEEE
Transactions on Software Engineering, 17(2):141–152.

Shaw, M., DeLine, R., Klein, D. V., Ross, T. L., Young, D. M., and Zelesnik, G.
(1995). Abstractions for software architecture and tools to support them. IEEE
Trans. Softw. Eng., 21(4):314–335.

123

Shull, F., Falessi, D., Seaman, C., Diep, M., and Layman, L. (2013). Technical debt:
Showing the way for better transfer of empirical results. In Mnch, J. and Schmid,
K., editors, Perspectives on the Future of Software Engineering, pages 179–190.
Springer Berlin Heidelberg.

Stephen H. Edwards, Wayne D. Heym, T. J. L. M. S. and Weide, B. W. (1994).
Specifying components in resolve. pages 29–39.

Terry, A., Hayes-Roth, F., Erman, L., Coleman, N., Devito, M., Papanagopoulos, G.,
and Hayes-Roth, B. (1994). Overview of teknowledge’s domain-specific software
architecture program. SIGSOFT Softw. Eng. Notes, 19(4):68–76.

T.L. Graves, A.F. Karr, J. M. and Siy, H. (2000). Predicting fault incidence using
software change history. IEEE Transactions on Software Engineering, 26(7):653–
661.

Tzerpos, V. and Holt, R. C. (1997). The orphan adoption problem in architecture
maintenance. In Reverse Engineering, 1997. Proceedings of the Fourth Working
Conference on, pages 76–82.

Tzerpos, V. and Holt, R. C. (2000). ACDC: An algorithm for comprehension-driven
clustering. In Proc. 7th Working Conference on Reverse Engineering, pages 258–
267.

Wong, S. and Cai, Y. (2011). Generalizing evolutionary coupling with stochastic
dependencies. In Proc. 26rd IEEE/ACM International Conference on Automated
Software Engineering, pages 293–302.

Wong, S., Cai, Y., Kim, M., and Dalton, M. (2011). Detecting software modularity
violations. In Proc. 33rd International Conference on Software Engineering, pages
411–420.

Wong, S., Cai, Y., Valetto, G., Simeonov, G., and Sethi, K. (2009). Design rule hier-
archies and parallelism in software development tasks. In Proc. 24th IEEE/ACM
International Conference on Automated Software Engineering, pages 197–208.

Xiao, L., Cai, Y., and Kazman, R. (2014a). Design rule spaces: A new form of archi-
tecture insight. In Proc. 36th International Conference on Software Engineering.

Xiao, L., Cai, Y., and Kazman, R. (2014b). Titan: A toolset that connects software
architecture with quality analysis. In Proc. 22nd ACM SIGSOFT International
Symposium on the Foundations of Software Engineering, FSE 2014, pages 763–766.

Zimmermann, T. and Nagappan, N. (2008). Predicting defects using network anal-
ysis on dependency graphs. In Proc. 30th International Conference on Software
Engineering, pages 531–540.

124

Vita

Lu Xiao received a Bachelor of Engineering in Network Engineering from Beijing

University of Posts and Telecommunications in 2009. In 2014, she received the 1st

Prize at the Student Research Competition at the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering (FSE). In the following year,

her work, entitled Detecting and Preventing the Architectural Roots of Bugs, won

the 1st Prize at the inter-disciplinary Grand Finals of the ACM Student Research

Competition. In 2016, she was awarded the College of Computing & Informatics

Outstanding Graduate Student Research Award at Drexel University.

Book Chapter:

• A Decision-Support System Approach to Economics-Driven Modularity Evalu-
ation
Yuanfang Cai, Rick Kazman, Carlos V.A. Silva, Lu Xiao, and Hong-Mei Chen
in Ivan Mistrik, Rami Bahsoon, Rick Kazman, and Yuanyuang Zhang, Economics-
Driven Software Architecture, 1st Edition , Pages 105-126, June 18, 2014, Mor-
gan Kaufmann Imprint.

Journal Paper:

• Manufacturing Execution Systems: A Vision for Managing Software Develop-
ment
Martin Naedele, Hone-Mei Chen, Rick Kazman, Yuanfang Cai, Lu Xiao, Car-
los V.A. Silva
JSS 2015, Journal of Systems and Software, Volumne 101, March 2015, Pages
59-68.
Impact factor 1.485.

Full Conference Papers:

• Towards an Architecture-Centric Approach to Security Analysis
Qiong Feng, Rick Kazman, Yuanfang Cai, Ran Mo, and Lu Xiao

125

WICSA 2016, 13th Working IEEE/IF IP Conference on Software Architec-
ture. Pages 221-230. Venice, Italy, April 5 - 8, 2016.

• Identifying and Quantifying Architectural Debts
Lu Xiao, Yuanfang Cai, Rick Kazman, Ran Mo, and Qiong Feng
ICSE 2016, Research Track, Proceedings of the 38th International Conference
on Software Engineering. Pages 488-498. Austin, US, May 14 - 22, 2016.

• Decoupling Level: A New Metric for Architectural Maintenance Complexity
Ran Mo, Yuanfang Cai, Rick Kazman, Lu Xiao, and Qiong Feng
ICSE 2016, Research Track, Proceedings of the 38th International Conference
on Software Engineering. Pages 499-510. Austin, US, May 14 - 22, 2016.

• A Case Study in Locating the Architectural Roots of Technical Debt
Rick Kazman, Yuanfang Cai, Ran Mo, Qiong Feng, Lu Xiao, Serge Haziyev,
Volodymyr Fedak, and Andriy Shapochka
ICSE 2015, Industry Track, Proceedings of the 37th International Conference
on Software Engineering. Pages 179-188. Florence, Italy, May 16 - 24, 2015.

• Hotspot Patterns: The Formal Definition and Automatic Detection of Archi-
tecture Smells
Ran Mo, Yuanfang Cai, Rick Kazman and Lu Xiao
WICSA 2015, Research Track, 12th Working IEEE/IFIP Conference on Soft-
ware Architecture. Pages 51-60. Montreal, Canada, May 4-7 2015.

• A Study on the Role of Software Architecture in the Evolution and Quality of
Software
Ehsan Kouroshfar, Mehdi Mirakhorli, Hamid Bagheri, Lu Xiao, Sam Malek,
and Yuanfang Cai
MSR 2015, Research Track, Proceedings of the 12th Working Conference on
Mining Software Repositories. Pages 246-257. Florence, Italy May 16 - 18, 2015.

• Design Rule Spaces: a New Form of Architecture Insight
Lu Xiao, Yuanfang Cai, and Rick Kazman
ICSE 2014, Research Track, Proceedings of the 36th International Conference
on Software Engineering. Pages 967-977. Hyderabad, India, May 31 - June 7,
2014.

• A Replication Case Study to Measure the Architectural Quality of a Commer-
cial System

126

Derek Reimanis, Clemente Izurieta, Rachael Luhr, Lu Xiao, Yuanfang Cai,
and Gabe Rudy
ESEM 2014, Industry Track, Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, Article No.
31. Torino, Italy, Sept. 18-19 2014.

• Measuring Architecture Quality by Structure plus History Analysis
Robert Schwanke, Lu Xiao, and Yuanfang Cai
ICSE 2013, Industry Track, Proceedings of the 2013 International Conference
on Software Engineering. Pages 891-900. San Francisco, CA, USA, May 18 -
23, 2013.

• A Moving-Object Index for Efficient Query Processing with Peer-Wise Location
Privacy
Dan Lin, Christian S. Jensen, Rui Zhang, Lu Xiao, Jiaheng Lu
VLDB 2012, Research Track, Proceedings of International Conference on Very
Large Data Bases. Pages 37-48. Istanbul, Turkey, 2012.

Tool Demonstration:

• Titan: a Toolset that Connects Software Architecture with Quality Analysis
Lu Xiao, Yuanfang Cai, and Rick Kazman
FSE 2014, Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. Pages 763-766. Hong Kong, China,
Nov 16-21, 2014.

Doctoral Symposium:

• Quantifying Architectural Debt
Lu Xiao
FSE 2015, Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. Pages 1030-1033. Bergamo, Italy, Aug. 30 - Sept. 4,
2015.

