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Abstract
Comparison of NCD and CNN based mitotic classification of neural stem cells in phase contrast

microscopy
Michael Marino

Andrew R. Cohen, Ph.D.

Automated mitosis detection is a major difficulty in segmentation and tracking algorithms. This

thesis explores the implementation of an automated mitotic detection algorithm for phase-contrast

data into a segmentation and tracking platform called LEVER2. We implement two separate classifi-

cation algorithms - one based on an estimate of the pairwise normalized compression distance (NCD)

and one deep learning implementation using convolutional neural networks (CNN) - in combination

with local statistics in order to limit the search region for mitotic events. The CNN provided a

significantly higher detection rate while the NCD provided a significantly lower false positive rate.

The NCD classifier generated an overall detection rate of 0.736 and an overall false positive rate of

0.0083, while the CNN approach generated an overall detection rate of 0.880 and a false positive

rate of 0.0567. However, it was also determined that using a bi-modal classifier incorporating the

peak normalized cross-correlation of the image with the t− 1 frame the CNN implementation could

outperform the NCD classifier - achieving a false alarm rate of 0.0079 with a detection rate of 0.809

by thresholding out cell images that were above a threshold peak cross-correlation.





1

Chapter 1: Introduction

Segmentation and tracking algorithms for microbiology data have become one of the most

prominent applications of computer vision and image processing to date. The ability to robustly

evaluate the behavior and form of cells in a culture using automated algorithms has the potential to

save biologists countless man-hours of manual data-processing. One of the most difficult problems

in accurate tracking today is the problem of accurate mitosis detection. Without accurate mitosis

detection, modeling track division relies entirely on the accuracy of the segmentation from frame

to frame. This paper explores two different methods for mitotic detection - one using compression

based similarity in the form of a wavelet-based estimation of the normalized compression distance

(NCD)3 and another based on deep learning - specifically convolutional neural networks4.

1.1 Background & Theory

1.1.1 LEVER

LEVER is a tool for lineage editing and validation in neural stem cells (NSCs)5. There is

a ubiquitous demand in the field of microbiology for more sophisticated tools to evaluate time-lapse

microscopy data. LEVER is designed to quantify the lineage and patterns of the behavior of neural

stem cell development. The software package contains two integarted modules - one that performs

automated segmentation and tracking and another that provides and interactive software application

that allows a user to inspect and edit the automated results provided by the first module2. The

interactive software package allows a user to provide feedback regarding the accuracy of cell splits

which are then utilized to re-learn the behavior of the cell lineages to a significantly more accurate

level. The segmentation and tracking uses the algorithm in6 7 with a resegmentation step that utilize

the user-provided feedback as described in8. Steps to download and install LEVER can be found

in2.
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1.1.2 Computability, Kolmogorov Complexity, and Distance Measures

The classification algorithm used to classify each hull as mitotic or non-mitotic utilizes

concepts in Algorithmic Information Theory developed in this section. The central concepts of

computability and distance, specifically information distance adapted to a compression distance, in

combination with the concept of Kolmogorov Complexity, are the theoretical basis for the classifier.

The notion of computability has been an ongoing topic of conversation for at least decades.

Let us first define a Turing Machine as a machine consisting of a finite program called the finite control

which is capable of manipulating a linear list of cells (generally visualized as a one-dimensional tape

consiting of horizontally conjoined sqaures), and one access pointer referred to as the head. The

machine is capable of only the most basic functions. It is capable of reading the contents of the

square it is currently pointing to, overwriting that square, or moving left or right3. Considering the

symbol on each square of tape to be either a 0 or a 1 or a blank, this theoretical machine can be

considered the most simple form of what we would consider a computational device. The device

is constructed as to behave according to a list of rules based on the state of the machine and the

current input. Thus, the machine is a mapping from a set of states and inputs to a set of states

and outputs. The significance of such a machine is that it is arguably the most basic abstraction

possible that can still perform any computational task that a modern computer is capable of, albeit

at a significantly lower speed. It is the idea of this most basic computational device that lies at the

heart of the notion of Kolmogorov Complexity. The Kolmogorov Complexity of a string is defined

as the shortest description length program that, given as an input to a Universal Turing Machine,

would produce that string as an output3.

Information Distance & Normalized Information Distance

The notion of Kolmogorov Complexity gives an objective evaluation of information content

of a particular string. A natural progression in this thinking is to derive a related distance measure

that can measure the distance between two strings with respect to their information content, or, in

other words, a similarity measure of the strings based on their information content3. One universal

information distance between two strings is the amount of information necessary to transform from

Chapter 1: Introduction 1.1 Background & Theory
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one to the other, or, stated another way, given a string x, what amount of information is required to

generate a string y, or vice-versa3. Similar to the definition of Kolmogorov Complexity, the minimal

information distance between x and y could be considered as the length of the shortest program

for a universal Turing machine to transform x into y or transform y into x. This measure is equal

to the maximum of the conditional Kolmogorov Complexity, K (y |x ) up to an additive logarithmic

term3. This value in and of itself is not suitable as an information distance because of particular

cases such as the empty string, ε, where K (ε|x ) is small regardless of x. So a more suitable choice

for the information distance from x to y is the value K (y |x ) + K (x |y)3. Alternatively, we could

avoid such a problem by defining the maximum information distance as the value3

E0(x , y) = max{K(x|y),K(y|x)} (1.1)

Further, another issue with the information distance defined by (1.1) is that it is a function of

the length of the strings involved. Thus, if we are more interested in a relative distance rather than

an absolute one we define the normalized information distance (NID) to be3

e(x, y) =
max{K(x|y),K(y|x)}
max{K(x),K(y)}

(1.2)

Normalized Compression Distance

Since Kolmogorov Complexity is theoretically uncomputable3, in practical applications

an approximation of the NID must be used. On such approximation utilizes a real-world compressor

to replace the notion of Kolmogorov complexity. Defining xy as the concatenation of the string x

with the string y and denoting the compressed size of the string x as Z(x) we define the normalized

compression distance as3

ez(x, y) =
Z(xy)−min{Z(x), Z(y)}

max{Z(x), Z(y)}
(1.3)

Chapter 1: Introduction 1.1 Background & Theory
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1.1.3 The Discrete Wavelet Transform & Image Compression

Image compression algorithms are a pressing field of study for researchers today. An

overview of such a topic is beyond the scope of this thesis, however, the particular compression

algorithm used for the implementation will be discussed. A wavelet is a signal which can be visu-

alized as an oscillatory pulse of limited duration that integrates to zero9. A general form for 2D

transformations of an image f(x, y) can be written in terms of the transform domain variables u

and v as10

T (u, v) =
∑
x,y

f(x, y)gu,v(x, y) (1.4)

It is significant to note that in the case that the kernel function hu,v(x, y) is separable such that

hu,v(x, y) = hu(x)hv(y) (1.5)

the computation can be implemented for the 2-D transform by performing row-column or column-

row passes of the 1-D transform10.

The concept of wavelets is designed to overcome the zero-time resolution of the Fourier

transform defined as

F{ω} =

∫ ∞
−∞

f(t)e−jωtdt (1.6)

where j is the
√
−1, f(t) is the signal and ω is the frequency variable in rad/s. In this equation

the time variable, t, is integrated out which gives full frequency resolution and zero time resolution,

implying that frequency information for the overall signal is known with full resolution while no

information regarding the location in time where the frequency exists is left. For a signal with

constant frequency this is perfect. However, if the frequency composition varies in time (or in space

in the case of an image) there is significant information lost. Wavelets are one way to remedy this.

In continuous time, the continuous wavelet transform (CWT) is defined as11

γ(s, τ) =

∫
f(t)ψ∗s,τ (t)dt (1.7)

Chapter 1: Introduction 1.1 Background & Theory
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where ψ(t) acts as the basis function for the signal decomposition and is referred to as the mother

wavelet, ∗ refers to complex conjugation, s is referred to as the scale factor (as what is being evaluated

is not a pure frequency as in the case of the Fourier transform), and τ is the translation factor which

act on the mother wavelet according to11

ψs,τ (t) =
1√
s
ψ

(
t− τ
s

)
(1.8)

thus, as the names imply, scaling and shifting the original mother wavelet. Some examples of mother

wavelet function approximations can be seen below in figure 1.1.

Chapter 1: Introduction 1.1 Background & Theory
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(a) Haar Wavelet

(b) Daubechie Wavelet

Figure 1.1: Examples of common mother wavelet function approximations used in computing the
discrete wavelet transform (DWT)

Chapter 1: Introduction 1.1 Background & Theory
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(c) example1C

(d) example1C

Figure 1.1: (cont’d) Examples of common mother wavelet function approximations used in computing
the discrete wavelet transform (DWT)

Chapter 1: Introduction 1.1 Background & Theory
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(e) Wavelet Examples

Figure 1.1: (cont’d) Examples of common mother wavelet function approximations used in computing
the discrete wavelet transform (DWT)

The properties that a mother wavelet function must exhibit are specified as11

∫
|Ψ(ω)|2

|ω|
dω <∞ (1.9)

where Ψ(ω) refers to the Fourier transform of ψ(t) and (1.9) is referred to as the admissibility

condition, and also implies that

|Ψ(ω)2|
∣∣∣∣
ω=0

= 0 (1.10)

and that ∫
ψ(t)dt = 0 (1.11)

or the zero-mean condition11. For the discrete case, the wavelet basis functions are defined according

Chapter 1: Introduction 1.1 Background & Theory
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to

ψj,k(t) =
1√
sj0

(
t− kτ0sj0

sj0

)
(1.12)

where j and k are integers, s0 is the dilation step, and τ0 is the discrete translation factor11.

The result of wavelet decomposition is a series of wavelet coefficients that represent the

amount of energy contained in a particular basis function in a particular temporal or spatial area.

Thus, wavelets can be used as low-pass, high-pass, or band-pass filters by only using a subset of

coefficients. Typical implementations of wavelet approximations consist of performing high-pass

and low-pass analysis of the image in the horizontal, vertical, and diagonal directions separately.

Further, wavelet analysis has proven valuable in image compression as it has been shown that

relatively few large coefficients will capture the majority of the information contained in the image,

so that most coefficients can be set to zero and the image representation in the wavelet domain can

be implemented using sparse matrices12. The sparsity of the wavelet coefficients is thus a measure

of the compressibility of the image. An efficient algorithm for image compression using the wavelet

coefficients was also proposed in9.

1.1.4 Spectral Clustering

Spectral clustering as defined in13 is a method of using the eigenvalues and eigenvectors of a distance

matrix in order to cluster data that would not lend itself well to clustering in its raw form. The

generalized algorithm can be summarized in the steps -

1. Generate an affinity matrix A ∈ Rnxn based on some distance or similarity metric

2. Generate a diagonal matrix D ∈ Rnxn whose (i, i)th entry is the row sum of the matrix A.

3. Define L = D−1/2AD−1/2

4. Perform an eigendecomposition on L and find {x1, x2, ...xk} the k orthogonal eigenvectors

corresponding the the k distinct largest eigenvalues, where k is the number of clusters the data

is to be divided into and form the matrix X = [x1x2...xk] ∈ Rnxk

5. Perform clustering on the resulting X matrix treating each row in X as a point in Rk

Chapter 1: Introduction 1.1 Background & Theory
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6. Assign raw data point i to the cluster j which row i in X was assigned to

In summary, the algorithm performs a spectral decomposition of a distance matrix and uses

clustered row vectors of a matrix composed of the k principal eigenvectors in order to cluster the

raw data.

1.1.5 Convolutional Neural Networks

Traditional neural networks represent a family of well-known algorithms used in machine

learning that extend the field of linear models for regression and classification of the form14

y(x,y) = f

(
M∑
j=1

wjφj(x)

)
(1.13)

where f(·) is, in the case of classification, a nonlinear activation function, or is the identity

function in the case of regression, wj represents the jth weight component and φj(x) represents the

jth basis function in the model. Neural networks extend this paradigm to a network where the

φj(x) depend on a set of parameters and these parameters as well as the weights, wj , are adjusted

according to an optimization function during training14. This type of network can be composed of

several hidden layers each with separate parameters and weights. Figure 1.2 below shows a diagram

of a basic neural network framework.

Chapter 1: Introduction 1.1 Background & Theory
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Input #1

Input #2

Input #3

Output

Hidden
layer

Input
layer

Output
layer

Figure 1.2: Example of basic neural network architecture1. This network shows three inputs
followed by one hidden layer composed of five neurons and then one output

Chapter 1: Introduction 1.1 Background & Theory
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In the framework in Figure 1.2 there are three input nodes followed by one hidden layer composed

of four nodes followed by a single output node. This model performs well in some applications (and

is also a component of many typical convolutional neural network architectures as will be discussed

later) but is of limited value in computer vision problems due to its treatment of all inputs as

independent entities and thus eliminating all spatial information.

In order to exploit spatial relationships between pixels in computer vision tasks, rather

than simply learning weights to be multiplied by each input pixel, a convolutional layer is designed

to learn kernels which are then convolved with the input images resulting in feature maps. A typical

convolutional network is composed of convolutional layers as well as multiple additional layers which

can be generalized as -

� convolutional layer

� non-linear activation layer

� sub-sampling layer

� cross-channel normalization layer

� fully-connected layer

Convolutional Layer

A convolutional layer is composed of sets of units organized into planes which are referred

to as feature maps 14. Each feature map is limited to having the same weights for each sub-region.

For instance, a layer may consist of 128 26x26 feature maps with a 5x5 kernel of weights associated

with each of the 128 channels. Training this layer would constitute learning 128x5x5 = 3200 weights.

The feature maps from each layer are generally then subject to some sort of activation layer as well

as either a sub-sampling layer, cross-channel normalization, or both, before being fed into another

convolutional layer or a fully connected layer.

Chapter 1: Introduction 1.1 Background & Theory
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Non-linear Activation Layer

The non-linear activation layer parallels the function f(·) in equation (1.13). Activation

functions are used in traditional neural networks to model the output of a layer in an approximately

discrete fashion, which is the ultimate goal of classification. Three typical activation functions are

the functions

f(x) = tanh(x) (1.14)

and

f(x) = (1 + e−x)−1 (1.15)

which is more generally known as the logistic sigmoid function and will be discussed further with

the softmax layer. With respect to the first derivative, both of these functions approximate the unit

step function defined as

f(x) =


0 : x < 0

1 : x ≥ 0

(1.16)

the derivative of which is zero everywhere with the exception of at x = 0 where it is infinite. This

type of activation function lends itself well to classification tasks. However, the downside is that

neuron saturation leads to longer training times. Since the derivative goes to zero as the input moves

away from zero, and training algorithms are based on the first derivative, or similarly the gradient

in the multi-dimensional case, if a neuron’s output moves away from zero it will no longer have a

significant impact on the update function. This phenomenon is referred to as the neuron saturating.

Alternatively, a non-saturating activation function called Rectified Linear Units (ReLUs) as defined

in15 as

f(x) =


0 : x < 0

x : x ≥ 0

(1.17)

Chapter 1: Introduction 1.1 Background & Theory
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has been shown to decrease learning time significantly in some applications16.

Figure 1.3: Plot of activation functions in equations (1.14), (1.15), and (1.17). Note how both
tanh(x) and (1 + e−x)−1 flatten as they move away from x = 0 while the ReLU function has a constant
slope of one from x > 0 to x = ∞. The fact that the derivative does not go to zero as x moves away
from zero is what decreases training time by preventing saturation.

Chapter 1: Introduction 1.1 Background & Theory
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Sub-sampling Layer

The subsampling layer effectively decreases the effect of noise on the output. Convolutional

neural networks are designed to take as input images with minimal pre-processing and so noisy

images can present a problem in training. Additionally, sub-sampling decreases the number of pixels

composing each image. As the end result of the convolutional layers is intended to be input into a

fully connected layer, the smaller size is advantageous at this point. Common sub-sampling layers

include max-pooling, min-pooling, and average-pooling. At this layer, a window-size is chosen and,

depending on the type of pooling, either the maximum value, minimum value, or average value from

that window will be taken as the output.

Cross-channel Normalization

Cross-channel normalization, also referred to as local response normalization, is a means

of introducing a lateral inhibition between adjacent channels which creates competition for large

activities amongst neighboring kernels16. The output of the cross-channel normalization layer, bix,y,

is defined according to the equation16

bix,y =
aix,y(

k + α
min(N−1,i+n/2)∑
j=max(0,i−n/2)

(ajx,y)2

)β (1.18)

where aix,y is the non-normalized activity at position (x, y) in feature map i, and k, n, α, andβ are

parameters that can be manually determined or potentially optimized using a validation set. The

values used in16 were k = 2, n = 5, α = 10−4, and β = 0.75. These values were used in the

present implementation with the exception of n which MATLAB does not allow for deviation from.

Incorporating the cross-channel normalization layer generated an error-reduction of 1.7% in the

validation set.

Fully connected layer & softmax

The final layer before classification, the fully connected layer, is a traditional neural net-

work as seen in figure 1.2 treating all pixel values from the previous layer as individual inputs. This

Chapter 1: Introduction 1.1 Background & Theory
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layer is then followed by a softmax layer, the purpose of which is to generate a probabilistic model

for the output.

The softmax is a generalization of the logistic regression model which defines the posterior

probability of a class C1 according to14

p(C1|φ)φ)φ) = y(φφφ) = σ(wTφφφ) (1.19)

where σ(·) is the sigmoid function defined in (1.15). This probabilistic model has the advantage over

the Gaussian model of requiring only M adjustable parameters for an M dimensional space rather

than 2M parameters representing the mean values and M (M +1)/2 parameters representing the co-

variance matrix. Thus, for many-dimensional models such as neural networks it is preferred14. Since

the support of the sigmoid function is between zero and one it can be interpreted as a probability

within the context of a two class classification problem. However, convolutional neural networks are

generalized to mutli-class problems, and so the logistic regression model is not sufficient to generate a

probabilistic model for the output classification. Thus, this model was generalized to the normalized

exponential, also known as the softmax function, defined as

p(Ck |x) =
exp(xTφkφkφk)∑
j exp(x

Tφjφjφj)
(1.20)

where p(Ck |x) is the posterior probability for class k, x is the observation vector of the datapoint

being classified, and φkφkφk is the weight vector for the neuron in the final fully connected layer that is

designated to class k. Thus, the final classification is based on a probabilistic model defined using the

softmax equation in (1.20). The default behavior of a network is to set the output to the class with

the maximum probability. However, alternatively the model could be re-defined to any threshold

based on the effective cost of misclassification vs. false alarm by, for instance, using the ROC in the

two-class case.

Chapter 1: Introduction 1.1 Background & Theory
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Stochastic Gradient Descent and Backpropogation

The learning parameters w are updated according to stochastic gradient decent according

to the rule14

w(τ+1) = w(τ) − η∆En (1.21)

where w(τ) denotes the weight parameters after iteration τ , η is the learning rate parameter which

determines the rate of descent, and ∆En denotes the gradient of the weight parameters with respect

to the parameters for the nth mini-batch of the dataset14. Stochastic gradient descent differs from

standard gradient descent, which is defined similarly to (1.21) but where the entire dataset is con-

sidered in each update, thus ensuring a global optimal solution, whereas stochastic gradient descent

uses subsets of the data for each update. This approach is used when the datasets are sufficiently

large to make training with standard gradient descent unattractive in terms of computation time.

In a network consisting of several to many layers with parameter counts on the order

of 103 to 106, calculating ∆En defined here to be the gradient with respect to these parameters is

a computationally intensive task even for a small subset of the data. These update computations

are defined using the chain rule from calculus which states that, given a function f that is itself a

function of of two other functions, u and v, parameterized by t,

f
(
u(t), v(t)

)
= f(u, v) (1.22)

then

df

dt
=
∂f

∂u

du

dt
+
∂f

∂v

dv

dt
(1.23)

This basic relationship can be extended to any number of input variables. The multi-input general-

ization will yield a gradient composed of partial derivatives with respect to each input parameter,

rather than a derivative. Defining xn as the output to the module or layer defined by the weights

wn, and if the partial derivative Ep with respect to the outputs xn are known, then the partal

Chapter 1: Introduction 1.1 Background & Theory
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derivatives with respect to wn and xn−1 can be calculated according to the recurrence relation17

∂Ep

∂wn
=
∂J

∂w
(wn,xn−1)

∂Ep

∂xn
(1.24)

∂Ep

∂xn−1
=
∂J

∂x
(wn,xn−1)

∂Ep

∂xn
(1.25)

where J denotes the Jacobian matrix whose ijth element Jij is defined with respect to the jth output

yj and the ith input xi as14

Jij =
∂yj
∂xi

(1.26)

Using the relationships defined in (1.24) and (1.25), the gradient of the weights w with respect to

the inputs x0 can be computed recursively beginning from layer N down to layer 1, which is the

technique referred to as backpropogation17.

Chapter 1: Introduction 1.1 Background & Theory
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Chapter 2: Related Work

Many works have attempted to solve the problem of mitosis detection since the advent of

segmenting and tracking computational algorithms. In18 Huh et al. propose a three-step approach

in which candidate patch sequences are first identified, followed by feature extraction and finally

temporal localization of birth events by estimating a probabilistic model based on the features. The

approach for determining candidate patches consists of locating pixel areas exhibiting above-average

brightness which could be considered similar to our approach of using the ReLu L1 of the difference

image in order to filter out false positives. In our approach, however, it was found that the 2D

normalized auto-correlation performed more effectively and was less correlated with the latter steps

taken in detection. In19, Padfield et al. locate mitotic events by linking non-mitotic images through

a distance metric and the fast marching method in order to connect parent cells with children cells to

find mitotic events. This approach relies on effective tracking as a prerequisite for effective results, an

assumption not made in the current work. In20, Yang et al. utilize a brightness threshold to extract

ROIs, followed by smoothing the ROI region and computing local properties and then searching for

relative changes in the local properties in order to classify mitosis. In21, Liu et al. also use relative

bright regions in order to identify mitotic candidates, followed by a hidden conditional random field

approach which is similar to hidden Markov models but without the assumption of independent

observations given the values of hidden variables21. The only example of utilizing deep learning for

mitosis detection was found in22 where Wang et al. use CNNs to classify mitosis in breast cancer

histology images. However, their detection rate was relatively limited at 0.65.

The basis for the theory of the NCD classifier was developed in3. The efficacy of clustering

by compression was demonstrated in23 in which Cilibrasi et al. tested compression-based similarity

in various applications including genomics, literature, music, and character recogniton. This work

was extended in24 in which Cohen et al. utilized the NCD of multisets for retinal progenitor cell fate

prediction as well as in successfully labeling a mutant huntington protein population of mice that
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the pairwise NCD was unable to effectively label. The pairwise NCD was also utilized by Joshi et al.

in25 in order to successfully separate mitotic from non-mitotic frames in phase contrast microscopy

date. This algorithm is the NCD pairwise implementation used in the present work. The CNN

architecture was designed using the concepts developed in16 with theoretical foundations also found

in14 4 17.

Chapter 2: Related Work
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Chapter 3: Contributions

� Implemented NCD and CNN based mitotic detection algorithms for phase contrast microscopy

neural stem cell image sequences

� Tested classification schemes on dataset including 519,097 segmentations with 1,549 mitotic

events for an overall detection rate of 0.88 and an overall false positive rate of 0.0567 for the

CNN and an overall detection rate of 0.736 and false positive rate of 0.0083 for the NCD

� Evaluated a frame-to-frame increase in brightness as well as a peak normalized autocorrelation

as filtering mechanisms for the classifier, finding that the normalized autocorrelation works well

to filter false positives in the CNN case but has little effect in the NCD case

� Incorporated NCD classifier into LEVER platform in order to test impact on lineaging algo-

rithm, generating six lineage trees for an overall recall rate of 0.394 and an overall precision

rate of 0.500
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Chapter 4: Implementations

4.1 CNN Architecture

Many slightly varying CNN architectures were tested ranging from one convolutional layer

to four, with the best overall error rates on the validation testing set used to classify the entire data

set. The optimal architecture can be seen in figure 4.1 below.

The architecture consists of three convolutional layers - the first layer is a 5x5 convolutional

window with 4 channels, the second is a 3x3 window with 8 channels, and the final is a 3x3 window

with 12 channels, with a 2x2 max-pooling layer after the second two convolutions. These layers are

then followed by two fully connected layers - one hidden layer consisting of 256 neurons and one

output connected layer consisting of two neurons, which are then fed into the softmax classification

function. Each layer with the exception of the final output layer is also followed by ReLu activation

layer. Without the ReLu layer the testing accuracy did not reach above 55%.
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Figure 4.1: CNN architecture chosen as optimal model - The input at the left is a grayscale image,
which is input to a four-channel convolutional layer with a 5x5 kernel size, followed by an eight-channel
convolutional layer with a 3x3 kernel size, followed by a max-pooling layer with a 2x2 kernel and a
stride of two which effectively decreases the area of each feature map by a factor of four, followed by
a twelve-channel convolutional layer with a 3x3 kernel size, and another max-pooling layer identical to
the previous one. The output of the final max pooling will be twelve 5x5 feature maps which are then
flattened and passed into a fully-connected layer with 256 neurons, and finally the last fully-connected
layer consisting of two nerons - one for each class. The output of these last two neurons are fed into
the softmax classification layer.

Chapter 4: Implementations 4.1 CNN Architecture
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4.2 NCD Implementation

The NCD implementation was based on that in25 which uses the L1 norm of the discrete

wavelet approximation of a difference image as the approximate compressed size of the image. The

algorithm is composed of three steps. First, the a 30x30 image consisting of the hull to be classified

is extracted from the larger image, as well as the same spatial region extracted for the t + 1 time

frame. The low-pass discrete wavelet approximation based on the symlet shown in figure 1.1d of

both images are then taken, and the resulting t cell approximation is subtacted from that in the

t + 1 frame. The “training set” used in this case consisted of 24 mitotic cases and 24 non-mitotic

cases chosen for the distinctive patterns exhibited in the sets. The normalized training sets can be

seen below in figure 4.2 as well as the normalized low-pass DWT approximations and their difference

images (bottom row) in figure 4.3.

Chapter 4: Implementations 4.2 NCD Implementation
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(a)

(b)

Figure 4.2: Training sets for NCD implementation - top row is the t+1 frame and bottom is the t
frame. The difference image of the discrete wavelet approximations of these images were calculated.
The L1 norm of each wavelet approximation was then taken as the compressed size of the image which
was used in equation (4.1)

(a) mitotic training data

(b) non-mitotic training data

Figure 4.3: Normalized DWT approximations for training sets for NCD implementation - top row
is the t+1 frame and second is the t frame. Bottom row represents the difference image. The L1 norm
of the difference image is what is used as the approximation of the compressed size of the difference
image.

Chapter 4: Implementations 4.2 NCD Implementation
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It can be seen that the difference images in figure 4.3b which represent the non-mitotic data

are significantly more uniform while those seen in 4.3a show a bright pattern towards the center

of the image. Thus, we utilize the L1 norm of the difference image as an approximation of the L0

norm, which is a measure of sparsity and thus compressibility12, replacing the compressed size of

the image, Z(·), in equation (1.3) with the L1 norm of the difference image. A distance matrix is

formed using the NCD equation in (1.3) where x and y represent the two 30x30 images, thus in

this case Z(x) would be the L1 norm of the DWT approximation of the difference image and Z(xy)

represents the L1 norm of the dwt approximation of image x concatenated with image y. For each

cell image to be classified, the affinity matrix was then generated according to

Aij =
Z(xi, xj)−min{Z(xi), Z(yj)}

max{Z(xi), Z(yj)}
=

∑
n,m xijnm

−min
{∑

n,m xinm
,
∑
xjnm

}
max

{∑
n,m xinm

,
∑
xjnm

} (4.1)

where xij denotes the concatenation of image xi with image xj and xinm refers to the pixel belonging

to the nth row and mth column in image xi. Here the first 48 images represent the training data

in figure 4.2 with the image to be classified appended as the 49th entry. This affinity matrix A was

then used as the affinity matrix in the spectral clustering algorithm defined in 1.1.4 with the final

matrix X clustered using k-means clustering. The image to be classified was classified as mitotic

if the resulting clustering paired it with the mitotic data and non-mitotic if it was paired with the

non-mitotic data.

4.3 LEVER Implementation

The mitotic classification results were implemented into LEVER tracking and segmenta-

tion using the NCD classifier. This classifier was chosen due to its significantly better performance

with regard to false positives. The goal is to improve LEVER tracking accuracy using mitototic

information. Each accurately classified mitosis represents a possible increase in accuracy. However,

each false positive represents a decrease in accuracy. Thus, a conservative classifier is best for this

Chapter 4: Implementations 4.3 LEVER Implementation
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application.

The classification is performed after the original segmentation and tracking is complete. Each hull

is classified with the result fed into a resegmentation algorithm. It is assumed that all cells are

accurately segmented in the t = 1 frame and thus the tracks to be preserved are defined as all

those present in this frame. First easily detected redundant positives are removed by evaluating the

temporal/spatial proximity of the mitotic events to one another. Next, the movie is then processed

frame by frame, preserving only the desired tracks from the initial frame until a mitotic event is

reached. Once a mitotic event is reached, the tracking graph attempts to associate it with one of the

preserved families. If no match is made, the event is ignored. If a match is made, the hull is split

using a Gaussian mixture model and a mitotic event is added considering the newly split hull as the

daughter cells and its t− 1 pairing as the parent. This approach was chosen in order to assume as

little as possible regarding the accuracy of the pre-existing segmentation, since the motivation for

the classifier is to resolve pre-existing errors rather than to build on an already perfectly segmented

movie. Once a mitotic event was created, a new track was added to those to be preserved and the

resegmentation continued until another mitotic event was detected.

Chapter 4: Implementations 4.3 LEVER Implementation
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Chapter 5: Experiments & Results

5.1 CNN Results

The data being used is a set of phase contrast images of neural progenitor stem cells

taken from mice brains from three separate experiments. Subsets of the data taken on 02/09/14

and 10/03/12 were used as the training set and a subset of the data taken on 09/26/12, which was

the most focused on for classification of the NCD, was used as the validation set. This entire data

set was also used as the further testing set once a model had been chosen.

The training set consisted of all 1,549 mitotic events across the two training sets as well

as 7,613 non-mitotic events. In order to increase the size of the mitotic training set, each image

rotated by 90 180 and 270 resulting in 4x the amount of training data, or 6,196 mitotic

images. This is justified since our model should ideally be rotationally invariant. Based on other

implementations, it appears the general practice is to use an equal amount of training data for each

class. When this practice was implemented in this case, however, the training models did not tend

to converge to a model of accuracy beyond 55%. As such, the updated training set was updated to

the current one. Each model was then validated on a subset of the 09/26/12 dataset consisting of all

1,583 mitotic events in the data set as well as 5,175 non-mitotic events. The latter value was chosen

simply as a convenient amount of data that balanced scope and testing time, which was initially

a factor. Approximately 30-40 different architectures were tested varying between zero and four

convolutional layers, with that shown in figure 4.1 performing optimally with a validation accuracy

of 92.69% - a false positive rate of 5.87% and a detection rate of 88.0%. The resulting validation

accuracy vs training epoch for the optimal architecture as well as several other varying architectures

is shown below in figure 5.1. Note that the model in figures 5.11a, trivially classified all data as

either mitotic or non-mitotic through all training epochs, while the models in figures 5.11b, 5.1c,

and 5.1d all reached validation accuracy rates between 90% and 100%.
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(a)

(b)

Figure 5.1: Validation error vs training epoch for several architectures. The dimensions of the
convolutional layers are shown above the graph in the form ixjxk where the first two dimensions represent
the kernel size and the third dimension gives the number of channels in that layer.

Chapter 5: Experiments & Results 5.1 CNN Results
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(c)

(d)

Figure 5.1: (cont’d) Validation error vs training epoch for several architectures. The dimensions of
the convolutional layers are shown above the graph in the form ixjxk where the first two dimensions
represent the kernel size and the third dimension gives the number of channels in that layer.

Compared to architectures in the general vicinity of that in figure 4.1, this particular architecture

Chapter 5: Experiments & Results 5.1 CNN Results
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appears to be somewhat of a sweet-spot. A variety of architectures were tested from one convolu-

tional layer up to four with varying channel depth and varying window size ranging from 2x2 to

5x5. In general, a variety of similar architectures to this one would achieve a validation accuracy

from 85-90%, including one with only two convolutional layers rather than three which represents a

significant drop in the number of parameters to be trained. However, no other architecture would

consistently reach as low as the 7-8% error rate generated by this architecture. Particularly, this ar-

chitecture achieved the lowest false positive rates that were achieved without sacrificing a completely

unacceptable amount of detection accuracy. It is noteworthy, also, that no architecture tested with

four convolutional layers achieved a training accuracy above 65%.

The optimal architecture shown in figure 4.1 was further tested on the entire testing data

set which included a total of 519,097 images - 1583 mitotic and 517,514 non-mitotic (this should

explain why my model leaned in the direction of low false positive rate). However, it was noticed in

the data analysis process that a significant amount of the “false positives” came from images that

were within three frames of a mitotic frame. Specifically, there were instances where the mitotic

frame as well as two or three frames ahead of it were considered mitotic. It does not seem useful to

consider this the same as a true false positive as it may actually be useful for the model and so these

neighboring positive results were filtered out, but with negligible effects on the actual error rates

since the non-mitotic frames are so much more numerous than the mitotic ones (just consider that

given the number of mitotic vs non-mitotic frames, if I were to just simply call every cell classify

non-mitotic I could claim 99.7% accuracy), it still seemed worth mentioning for the sake of rigour.

Below are the resulting ROC curves with the any cell image that was within three frames of splitting

removed. With the threshold set at 0.5, the detection rate was 88.0%, as stated above, and the false

positive rate on all 517,514 non-mitotic cell images was 5.67%.

Chapter 5: Experiments & Results 5.1 CNN Results
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Figure 5.2: Two CNN models from chosen architecture ( figure 4.1 ) - this model consisted of three
convolutional layers - [5x5x4], [3x3x8], [3x3x12]. The architecture for both is identical but the weights
will differ as the models result from different training epochs. CNN2 can be seen to achieve a slightly
improved ROC curve from a detection rate of 0.9 and above but CNN1 performs slightly better at lower
detection rates between 0.6 and 0.9.

Chapter 5: Experiments & Results 5.1 CNN Results
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5.2 NCD Results

The NCD implementation as described in 4.2 was also tested on the 519,097 cell images from the

09/26/12 data set. The algorithm performed significantly better with regard to false positives with

a rate of only 0.0083 or 0.98%. The detection rate, however, was also significantly lower, successfully

classifying 1140 out of the 1549 mitotic events for a detection rate of 73%. The results are tabulated

below in table 5.1. Some examples of the cells that were classified are also shown below in figures

5.5 through 5.6. The results for all mitotic images are also visualized in the appendix.

Table 5.1: Results of classification testing on 09/26/12 dataset - this dataset consisted of
519,097 cell hulls, 1,549 of which were true mitotic events

Implementation Missed Detection Rate False Positive Rate Precision
CNN .097 .0567 .045
NCD .264 .0083 .187

Confusion matrices for the CNN and NCD classifiers can be seen below in figures 5.3 and 5.4,

respectively. Note that even at a false positive rate below 1% in the case of the NCD, the ratio of

false positives to true positives is nearly 5:1 due to the significantly greater class probability for the

non-mitotic class. The ratio of true non-mitotic hulls to true mitotic hulls is approximately 327:1,

as can be seen in the last column of both confusion matrices.

Chapter 5: Experiments & Results 5.2 NCD Results
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Figure 5.3: Confusion matrix for CNN classifier - note that the accurate classifications are along the
main diagonal while the false classifications are along the opposing diagonal.
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Figure 5.4: Confusion matrix for NCD classifier - note that the accurate classifications are along the
main diagonal while the false classifications are along the opposing diagonal.
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Figure 5.5: A subset of the mitotic events detected by both algorithms
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Figure 5.6: Mitotic events missed by just the CNN algorithm
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Figure 5.7: Sample of mitotic events missed by just the NCD algorithm
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Figure 5.8: All mitotic events missed by both algorithms
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5.3 Filtering Methods

In order to deal with the accuracy issues posed by both algorithms, filtering methods

were that could be used in order to optimize the results were explored. The two statistics that

appeared to separate mitotic events from non-mitotic events to a certain extent were the L1 of the

difference image put through the equivalent of the ReLu function defined in (1.17) which filters out

any decrease in brightness from the t frame to the t+ 1 frame, and the peak correlation determined

by registering the 30x30 extracted image from the t frame with the respective 90x90 subimage in

the t+ 1 frame. The image was registered using the normalized 2D cross-correlation defined as10

γ(x, y) =

∑
s,t

(
w(s, t)− w̄

)(
f(x+ s, y + t)− f̄xy

)√∑
s,t

(
w(s, t)− w̄

)2∑
s,t

(
f(x+ s, y + t)− f̄xy

)2 (5.1)

where, in this case, the template image w is the 30x30 subimage of the cell, w̄ is the average of

this region, f is the larger 90x90 subimage and f̄xy is the average of the image f in the overlapping

region. The value of γ will vary from -1 to 1 where a high |γ| indicates a good match between the

template and the image10. Below in figures 5.9 through 5.10 are the histograms for the Relu L1 of

the difference images for the test data set as well as those for the peak normalized cross-correlation

from the centroid of the cell, as well as the ROC curves if each were used as the only classifier in

figure 5.11.

Chapter 5: Experiments & Results 5.3 Filtering Methods
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(a)

(b)

Figure 5.9: Histograms for the peak cross-correlation of non-mitotic (a) and mitotic events (b) - the
histogram in curve (a) shows a relatively clean frequency distribution while that in (b) is a bit more
course due to the scarcity of mitotic data.
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(a)

(b)

Figure 5.10: Histograms for the ReLu of the difference images for non-mitotic (a) and non-mitotic
events (b) - the histogram in curve (a) shows a relatively clean frequency distribution while that in (b)
is a bit more course due to the scarcity of mitotic data.
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(a)

(b)

Figure 5.11: ROC curves for using the peak correlation (a) and ReLu L1 difference (b) as classifiers -
both show an ROC curve considerably above the diagonal implying they both contain useful information
regarding the locations of mitotic events.

In attempting to use either statistic as a filter out false positives, the question is whether or

Chapter 5: Experiments & Results 5.3 Filtering Methods
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not the statistics introduce new information and are thus independent of the classifiers already in

use. The figures below show the histograms for peak correlation and the ReLu L1 difference of the

detected mitotic events vs the false alarms for both CNN classifiers in figure 5.2 as well as the NCD

implementation.

Chapter 5: Experiments & Results 5.3 Filtering Methods



44

(a)

(b)

Figure 5.12: Histograms for peak cross-correlation (top) and ReLu L1 difference (bottom) for first
CNN classifier for successful detections and false positives - (a) shows a significant different distribution
for the peak correlations of the false alarms vs that of the true positives. This may make this useful to
include in a CNN classifier in order to lower the false positive rate.

Chapter 5: Experiments & Results 5.3 Filtering Methods
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(a)

(b)

Figure 5.13: Histograms for peak cross-correlation (top) and ReLu L1 difference (bottom) for second
CNN classifier for successful detections and false positives - (a) shows a significant different distribution
for the peak correlations of the false alarms vs that of the true positives. This may make this useful to
include in a CNN classifier in order to lower the false positive rate.
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(a)

(b)

Figure 5.14: Histograms for peak cross-correlation (top) and ReLu L1 difference (bottom) for NCD
classifier for successful detections (left) and false positives (right). The differences in the distributions
in is not nearly as significant as the difference in figure 5.10a and 5.10b which may imply a correlation
between the false alarms and these statistics. This would imply redundant information if both were
included into the classification scheme and thus not much gain for the added parameter.

It can be seen from figures 5.12 and 5.13 that the distribution of the peak correlation values

is significantly different from the peak correlation values for true mitotic events. Additionally, the

Chapter 5: Experiments & Results 5.3 Filtering Methods
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distribution of the ReLu L1 difference is shifted slightly to the right for true mitotic events but not

quire as dramatically. In the case of the NCD implementation (figure 5.14) the peak correlation of the

false alarms appears to be correlated with that of the true mitotic events and so this statistic would

not be as useful as a filter in this case. Tabulated results from using the peak cross-correlation as a

filtering mechanism for both the NCD and CNN classifiers are shown below in table 5.2. Additionally,

the resulting detection and error rates are plotted below in figures 5.15 to 5.17. It is significant that

whereas this filtering mechanism does not improve the performance of the NCD classifier, it can

be seen to significantly improve that of the CNN classifier such that the approach outperforms the

NCD implementation for a range of thresholds.

Table 5.2: Corresponding detection and false positive rates for both the CNN and NCD
when false positives are filtered using the peak cross-correlation as a secondary classifier. The
threshold was set such that any hull with a peak cross-correlation above that value was set to
non-mitotic without consideration of the CNN or NCD classification. Note that at a threshold
of 0.7 the CNN outperforms the NCD at any threshold level.

CNN NCD
Threshold Detection False Positive Detection False Positive

1 .9028 .0544 .7416 .0084
.9 .8762 .0336 .7416 .0083
.8 .8686 .0173 .7416 .0078
.7 .8092 .0079 .7113 .0062
.6 .6001 .0030 .5540 .0036
.5 .2243 .0008 .2129 .0009
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Figure 5.15: Resulting detection rates when varying the peak correlation threshold from 1 to 0.
Any cell image with a peak cross-correlation above the threshold was considered non-mitotic without
concern for NCD or CNN results. Both detection rates begin to drop off around 0.7.

Figure 5.17: Overall error rate taken by averaging those in figures 5.15 and 5.16 above. Note that the
CNN performance approaches minimum as the threshold approaches 0.8, while the NCD performance
is only affected negligibly until the accuracy drop-off point.
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Figure 5.16: Resulting false alarm rates when varying the peak correlation threshold from 1 to 0.
The NCD false alarm rate is only affected negligibly up until a threshold of 0.7, which is also where the
detection rate begins to drop off as can be seen above in figure 5.15.

Chapter 5: Experiments & Results 5.3 Filtering Methods



50

5.4 Lineage Generation in LEVER

Below in figure 5.18 are examples of lineage trees resulting from implementation in LEVER. Recall

rates are included for reference, however the precision rates are the main focus of this section. Lower

recall rates than the overall rate are due to detected mitotic events being associated with a different

cell family. However, these results are intended to demonstrate the impact of the precision rate on

lineage accuracy gains from the algorithm. Each branching in the graph represents a mitotic event

being detected. Branching marked with an ‘X’ represent false positives while those not marked

represent true detections. The resulting precision rates can be seen below in Table 5.3.

Table 5.3: Resulting precision rates for the specific lineages generated automatically in figures
5.18a through 5.18f. Note that since the ultimate goal of the algorithm is an increase in accury
in the lineages above that generated without the mitotic classifier, a precision rate above 0.500
represents an increase in accuracy while a precision rate below 0.500 represents a decrease in
accuracy after using the classifier.

Figure Precision Recall
5.18a .625 .270
5.18b .300 .375
5.18c .500 .300
5.18d 1.00 .400
5.18e .800 .800
5.18f .583 1.00

overall .500 .394

The precision rate is focused on here because of the particular application. Since the goal is to

utilize the algorithm in order to improve the current tracking accuracy, each true positive that is

accurately tracked could be considered a gain of 1, while each false positive that is incorporated into

the tracking could be considered a loss of one. Thus, only results with precision ratings above 0.5

would be considered to have a net benefit.

Chapter 5: Experiments & Results 5.4 Lineage Generation in LEVER
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(a) precision - 0.625, recall - 0.270

(b) precision - 0.300, recall - 0.375

Figure 5.18: Lineage tree examples using the NCD mitotic classification - the orange x’s indicate a
false positive included into the lineage tree.
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(c) precision - 0.500, recall - 0.300

(d) precision - 1.00, recall - 0.400

Figure 5.18: (cont’d) Lineage tree examples using the NCD mitotic classification - the orange x’s
indicate a false positive included into the lineage tree.
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(e) precision - 0.800, recall - 0.800

(f) precision - 0.583, recall - 1.00

Figure 5.18: (cont’d) Lineage tree examples using the NCD mitotic classification - the orange x’s
indicate a false positive included into the lineage tree.
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Chapter 6: Discussion

With respect to overall accuracy on the entire test data set the NCD is far more accu-

rate without adding the filtering modality. However, this is due to the majority of the test images

consisting of non-mitotic data and so the overall accuracy rate is approximately one minus the false

positive rate. If each type in the test dataset were equally probable, the CNN classifier would per-

form at 91.2% while the NCD classifier would perform at 86.2%, making it likely that if the mitotic

candidates were narrowed down sufficiently the CNN would be optimal. Additionally, once the peak

normalized cross-correlation has been introduced as a filtering mechanism for the classifier, however,

the accuracy of the CNN can be modified to outperform the NCD as was shown in table 5.2 and

figures 5.15 through 5.17.

In terms of computation time the CNN is significantly better once training time is com-

plete. An accurate CNN model can be trained in one to two hours, after which classification time

is negligible whereas the NCD classifier takes approximately 10 seconds per hull to generate. In a

dataset consisting of 1,000,000 hulls this would amount to approximately 10,000,000 seconds which

amounts to 115 days without a parallel implementation, or 3.62 days in the case of a 32-core parallel

architecture as was used in this case. Thus, in terms of computational efficiency a CNN classifier

has significant advantage.

In terms of optimization, there are several considerations. One significant flaw in the im-

plementation of the NCD is that an effective model using a lossless compressor such as bzip was not

successfully implemented. An implementation using an entropy encoder would likely approximate

the true NCD more accurately. This could lead to better results and also perhaps be implemented

on a single frame image rather than a difference image, removing the dependency on cell movement

from frame to frame. However, a lossless compression implementation would increase the already

demanding computation time significantly.

With regard to the CNN classifier, there are also several places to look in terms of opti-
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mization. The architecture in16 did not use a single classification but rather a voting strategy with

an ensemble of classifications. This approach may make the model more robust with respect to false

positives. Another obvious flaw in this implementation was the low amount of training data available

for the mitotic events. Successful convolutional networks are often trained on training sets in the

range of 106 which is three orders of magnitude above what was available for the present experiment.

Further, the method of acquiring training data was by using previously labeled cell images extracted

based on the centroid of the frame previously. Thus, even the process of acquiring the training data

was dependent on the efficacy of the tracking and segmentation. A manually selected training set

may have been more accurate with regards to spatial orientation of the event, as well as introducing

the possibility of ignoring mitotic events that are not representative of the visual pattern that we

are interested in detecting. For instance, if the mitosis is not even apparent to the human eye it

may be unreasonable to expect any contemporary classifier to detect it, at least until above-human

accuracy has already been demonstrated for such applications.

One major place to look at in terms of optimization is in the way the classifier is im-

plemented into LEVER. Utilizing the normalized cross-correlation as a filtering mechanism is just

one place to look as far as making the final decision as to whether or not a mitosis exists. Utilizing

additional information based on the tracking and segmentation information before it is updated

could also provide some useful gains. Rather than simply using the mitotic information as a means

of correcting errors, a more prudent approach may be to combine all of the information together in

the decision-making process.

Chapter 6: Discussion
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Chapter 7: Conclusions

For this particular application and at the level of accuracy presently achieved it appears

the NCD is optimal as a single-modality classifier. The CNN implementation, on the other hand,

appears to be more improvable by combining it with other classification modalities such as the

peak cross-correlation filtering mechanism used in this work. However, the present accuracy of

either algorithm does not appear to warrant a significant contribution to lineage accuracies without

further optimization. The significant impact of false positives on the results showed clearly why other

approaches such as that shown in19 20 21 develop a robust candidate search phase before implementing

a classifier. Although the statistical filter implemented did improve results, a more sophisticated

algorithm would likely generate a significant increase in precision. Increasing recall, however, may

be a more difficult problem. Several CNN implementations reached detection rates as high as 95%

but with the parallel increase in false positives that made the model completely ineffective for the

task of increasing tracking accuracy. If an extremely reliable approach to candidate search was

used to limit the testing regions, significantly higher detection rates may be able to be achieved by

optimizing the CNN model for the narrowed-down search region.
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