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Abstract 

 

Structural Health Monitoring using Unmanned Aerial Systems 

Andrew James Ellenberg 

 

The use of Structural Health Monitoring (SHM) techniques is paramount to the 

safety and longevity of the structures. Many fields use this approach to monitor the 

performance of a system through time to determine the proper time and funds associated 

with repair and replacement. The monitoring of these systems includes nondestructive 

testing techniques (NDT), sensors permanently installed on the structure, and can also rely 

heavily on visual inspection. Visual inspection is widely used due to the level of trust 

owners have in the inspection personnel, however it is time consuming, expensive, and 

relies heavily on the experience of the inspectors. It is for these reasons that rapid data 

acquisition platforms must be developed using remote sensing systems to collect, process, 

and display data to decision makers quickly to make well informed decisions based on 

quantitative data or provide information for further inspection with a contact technique for 

targeted inspection. The proposed multirotor Unmanned Aerial System (UAS) platform 

carries a multispectral imaging payload to collect data and serve as another tool in the SHM 

cycle. Several demonstrations were performed in a laboratory setting using UAS acquired 

imagery for identification and measurement of structures. Outdoor validation was 

completed using a simulated bridge deck and ground based setups on in service structures. 

Finally, static laboratory measurements were obtained using multispectral patterns to 

obtain multiscale deformation measurements that will be required for use on a UAS. The 
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novel multiscale, multispectral image analysis using UAS acquired imagery demonstrates 

the value of the remote sensing system as a nondestructive testing platform and tool for 

SHM. 
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Chapter 1 Introduction 

  

1.1 Motivation 

The 2008 (USGAO-08-763T) testimony to Congress stated that the United States 

economy is “dependent on the reliability, safety, and security of its physical infrastructure” 

and therefore it is necessary to preserve the health of these complex systems [1]. This task 

has become increasingly challenging due to the age, scale, and quantity of the structures. 

The extent of United States infrastructure has grown due to higher demands and now there 

are over 610,000 bridges, over 5,500,000 commercial buildings, over 160,000 miles of 

railroad tracks, 4,000,000 miles of roads, 84,000 dams, over 19,000 airports, and 400,000 

miles of electric transmission lines [2, 3]. The American Society of Civil Engineers 

(ASCE) 2017 infrastructure report card scores the overall United States infrastructure at a 

D+ [4]. An estimated 3.6 trillion dollar investment will be required through 2020 to 

improve the state of infrastructure to meet the increasing demands [2]. Even if this money 

is invested, another major challenge is to determine how to prioritize which structure is 

repaired with the funds. There are many different ways to prioritize the maintenance and 

repair, including the importance to industry, importance to decision makers, or the extent 

of the damage. In addition, it is important to determine what is considered to be damaged 

enough to require repair to ensure that money is not wasted. Structural health monitoring 

(SHM) is one way to help determine the answers to these questions to repair or replace the 

right structure at the optimal time with the best method [5]. 

Using bridges as a representative example, Figure 1 shows the number of 

structurally deficient bridges, rated 4 and below on a scale of 0 to 9, in the United States. 
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Bridges were assessed with a grade of C+, which is better than the average grade of United 

States infrastructure, and yet still, major problems exist in many parts of the country, 

particularly in the Northeast and northern parts of the Midwest [4, 6]. Infrastructure 

inspection is expensive due to the time and frequency of the inspections resulting from the 

scale and quantity of the structures. With this in mind, the more money that is spent on 

inspection, the less money there is available for repairs. This forces rate of inspections 

down, for instance, bridges must be inspected at least once every two years and the 9.1% 

of bridges deemed structurally deficient must be inspected more frequently. This means 

that every day, over 800 bridges must be inspection to keep up with this rate [7]. 

Structurally deficient bridges require a higher degree of monitoring due to heavily damaged 

or degraded areas. At a rate of an inspection once every two years, it is a very discrete form 

of SHM.  

 

 

Figure 1. Map of the United States with color codes corresponding to percentage of 
structurally deficient bridges [6, 7] 
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America’s challenge today is to meet the growing demand of its aging infrastructure 

by rebuilding, maintaining, modernizing, and expanding its infrastructure while attempting 

to limit the costs associated with assessment, maintenance, and repair. Figure 1 shows a 

map of the United States color coded with the corresponding percentage of structurally 

deficient bridges by state according to data from 2016 [6, 7].  

Visual inspection is the most heavily relied upon method of inspection because it 

has historically been the most intuitive and effective method for evaluation. However, it is 

often time consuming, expensive, produces qualitative results, and relies heavily on the 

experience of the inspection personnel [8-10]. Visual inspection also requires adequate 

access to remote locations, which can increase the associated personal safety risk as well 

as add costs for equipment such as scaffolding, lifts and other protective equipment. These 

inherent limitations, associated with high stress situations that are sometimes involved in 

visual inspection, can hamper rapid and quantitative-based decisions to be made regarding 

necessary repairs [11].  

In order to supplement the qualitative results of visual inspection, structural health 

monitoring (SHM) and nondestructive testing (NDT) techniques are being utilized more 

frequently on many structures to contribute more information about the structure [12-14]. 

Some of these methods include fiber Bragg gratings, strain gauges, accelerometers, 

temperature sensors, impact echo, eddy current testing, acoustic emission, ultrasonic 

testing, and many others [13, 15-21]. Obtaining useful information from the data is a 

challenge both for visual inspection and nondestructive testing techniques because the 

ultimate goal of the inspection is to make a decision about allocating funding for 
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maintenance [22]. The safety and reliability of the structure depends heavily on the 

decisions made after analyzing the data from the inspection.  

SHM is defined as a damage detection strategy which is of importance to all 

structures [23]. One of the well-known, recent failures was the I-35 bridge collapse in 

Minnesota, which killed 13 people and injured 145 people [24]. Figure 2 (a) shows an 

image taken in 2003 with gusset plates in the field of view that appear to be bent [24]. The 

bridge did not collapse until August, 2007 meaning that at least two inspections had 

occurred without the problem being addressed. Two images of this failure are shown in 

Figure 2 (b) [24].  

 

 

Figure 2. Images of the I-35 bridge collapse [24] 
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It is for this type of failure that SHM must be implemented because the overarching 

goal of SHM is to prevent failures. Though this collapse was caused by many different 

factors including a mistake in steel replacement of a gusset plate years earlier, rush hour 

traffic, weight added to the structure due to repairs, and a large amount of construction 

materials adding to the dead load, a closer monitoring of the structure may have been able 

detect at least one of the problems to prevent this failure [24]. 

Given the large scale of civil infrastructure systems, the inspection process is 

hindered by access issues resulting in higher equipment costs and longer time required to 

perform an inspection, resulting in longer time intervals between inspections due to limited 

funds. An example of the difficulties associated with access to difficult to reach areas of 

the structure is shown in Figure 3 where a barge and a lift were required to get the personnel 

to the area of the structure that required inspection. 

 

 

Figure 3. Access difficulties encountered during an inspection. 
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Low-cost access to remote locations with high resolution images (e.g. RGB, 

infrared) from repeatable positions by Unmanned Aerial Systems (UAS) will positively 

impact how infrastructure is assessed and how maintenance is prioritized [25]. For 

example, these systems could permit tracking deterioration at a much higher temporal 

resolution, and therefore provide a better understanding of how changes occur with time to 

improve forecasting models. In order to realize this potential however, the extraction of 

quantitative information from images is required. Much has been written about the 

shortcomings of visual inspection procedures (especially related to their high variability 

and subjective nature [8, 26, 27]), and without the ability to extract quantitative information 

from images, the promise of UASs will remain limited for similar reasons. To address these 

deficiencies, attention must be focused on extracting quantitative information from images 

including the identification of features, such as cracks, corrosion, and other regions of 

deterioration, and quantification of mechanical responses, such as displacements and 

strains.  

1.2 Research Objectives 

UAS have had significant technological growth in commercial applications in the 

past few years. There have been many studies done demonstrating how UAS can collect 

data using a camera which could potentially save money compared to traditional methods 

of access to difficult to reach areas. Several companies have been formed to use UAS to 

collect data and create maps of the terrain below from the images including Pix4D, 

PrecisionHawk, Drone Deploy, Skycatch, and many others. In this context, UAS are very 

useful for collecting data and relying on a user to identify potential areas that need further 

examination. However, UAS imagery and video can often be disorienting to sort through 
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so visualization of the data in the form of stitched imagery has been developed. Three 

dimensional models have been created to better assist in the analysis by a user [28-30]. 

Most of the work done in this area focuses on collecting and visualizing the data, however, 

these are just the first steps of what is required to fully see the potential of the UAS for 

commercial applications.  

The research objective of this thesis is to develop and validate techniques for 

acquiring data from unmanned aerial system remote sensing platform and converting it into 

useful damage information to aid in the evaluation of infrastructure. This work uses bridge 

structural health monitoring (SHM) as an example, however it is not limited to bridges. 

Roadways, dams, powerlines, pipelines, wind turbines, power plants, and many other 

structures could benefit from using UAS remote sensing for SHM applications. To 

accomplish this goal, the work presented in this thesis includes automated damage 

identification and visualization from imagery, measurement of size and deformation, and 

measurement using multispectral imagery to selectively choose an optimal pattern for 

analysis using Digital Image Correlation (DIC). This undertaking is crucial to determining 

the effectiveness of a UAS platform as a future inspection tool to provide decision makers 

with fast, reliable, and useful information to make more informed decisions. 

1.3 Thesis Outline 

This thesis addresses some of the challenges associated with UAS data to provide 

useful information by providing an automated identification of areas of interest and a new 

way to use UAS for the measurement of deformation using imagery. Chapter 2 presents 

the background and state-of-the art in the use of UAS for remote sensing applications. 
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Chapter 3 presents the objectives of this work, hypotheses of the studies, and approach 

used to accomplish these goals.  

Chapter 4 presents the identification of surface damage from imagery and flag them 

as areas of interest for further analysis. This chapter also demonstrates the use of a global 

view of a structure. Chapter 5 presents the identification of subsurface damage on a bridge 

deck using a post processing algorithm. It also presents the usefulness of a global view of 

the structure with both surface and subsurface damage overlaid on the map of the structure 

and a way to collect color and infrared data using a UAS to aid in the post processing of 

the imagery. 

Chapter 6 presents the techniques used to obtain measurements of a structure from 

image data. This chapter presents the use of fiducial markers for analysis as well as full 

field data to measure deformation in both a static and hovering configuration. A novel 

technique is presented to use multiscale, multispectral imagery to obtain measurements at 

different distances from the target structure. Chapter 7 explains some of the future work 

and extensions of the research presented and the concluding remarks. 
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Chapter 2 Background and State-of-the-Art 

 

2.1 Structural Health Monitoring (SHM) 

Structural health monitoring (SHM) encompasses a variety of techniques and 

procedures implemented as a damage detection strategy that continuously monitors a 

structure through time to obtain information about the structure to predict its lifecycle [31]. 

There are many fields and systems that rely on SHM techniques to keep the systems safe 

and in general, these applications rely on the axioms of SHM defined by Worden et al. and 

shown in Table 1 [32]. 

 

Table 1. Axioms of SHM [32] 

Axiom 1 Flaws and defects are present in all materials. 
Axiom 2 At least two states are required to perform an assessment of damage. 
Axiom 3 Machine learning is a critical element that can be utilized for SHM. Damage 

identification and localization can be done with unsupervised learning, but 
determining the type of damage and extent requires supervised learning. 

Axiom 4 Signal processing and feature extraction are required to identify damage 
because sensors do not measure damage. Intelligent choices of features will 
determine the sensitivity and performance of the identification of damage. 

Axiom 5 The SHM sensing system must be determined based on the spatial and time 
scales as well as the type of damage. 

Axiom 6 All signal processing is dependent on a tradeoff between sensitivity and 
noise.  

Axiom 7 The detection of damage from changes in system dynamics is inversely 
proportional to the frequency of excitation. 

 

 

Axiom 1 highlights that not all material defects and flaws are damage because 

damage is associated with the degradation in performance of the system [23, 32]. The 

performance however is determined by the application and the extent of damage can be 
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associated with material defects, or in most cases, be insignificant until the material defects 

connect to cause a larger change in response of the system. The second axiom makes the 

point that there has to be a baseline to which the current state is compared to in order to 

determine if damage has occurred. For example, if a strain gauge is placed after a large 

amount of damage is present, the measurements will not be useful because the baseline is 

already damaged. It would therefore be better to place the strain gauge prior to damage 

initiation and compare the measurements to the undamaged state. Axioms 3 and 4 explain 

that feature extraction and machine learning are important parts of SHM because an 

enormous amount of data can be collected making it impossible for users to analyze all of 

the data manually. In addition, decisions need to be made based on the data and machine 

learning as well as experience from known previous cases can be leveraged to help aid in 

these decisions [33]. Furthermore, big data is a challenge in many applications including 

SHM due to the length of time required for measurement, the speed of data capture, and 

the number of sensors required for measurements. Axiom 5 explains that the proper choice 

of a sensor depends on what requires measurement and it is important to use the right sensor 

for the right application. Sensitivity versus noise is a challenge for all signal processing 

algorithms and is highlighted in axiom 6. A false alarm and missed detection rate will 

always be present when applying any detection method, but it is up to the user to determine 

the acceptable limits of false alarms and missed detections and examine the cost of each to 

determine if one is more acceptable than the other. The last axiom describes that the length 

of time between measurements will determine the accuracy of the damage growth 

monitoring [32].  
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SHM has been applied to a broad range of fields with slight variations such as 

aerospace [12] and large scale infrastructure [34]. Many different approaches and sensors 

are used for different systems, however the goal is always to identify areas of damage 

quickly for repair to ensure the health of the structure does not degrade to an unacceptable 

level. In most SHM applications, NonDestructive Testing (NDT) is implemented to 

provide information related to the structural behavior and the progressive deterioration 

through time. NDT techniques include impact echo, infrared thermography, ground 

penetrating radar, eddy current testing, ultrasonic testing, acoustic emission, radiography, 

and many others [17]. All of these techniques are used to identify different types of damage 

or flaws in the material making them not directly SHM methods, however if the techniques 

are applied over time and used to track growth of damage, these methods become tools in 

the SHM approach.  

The overall goal in SHM is to collect data, identify damage, assess the damage, and 

finally determine corrective action. The axioms presented in Table 1 provide the basic 

guidelines that are used for SHM and what must be accepted and determined when forming 

a SHM strategy. Though most applications of SHM are time based, condition based 

maintenance would be more cost effective and achieve a higher level of safety [23]. A 

closer monitoring of the systems and a heavy reliance on automated data collection and 

machine learning will ultimately aid in the prominence of condition based assessment and 

maintenance.  

Among other asset management tools, SHM is essential to keep civil infrastructure 

safe and functional. The cycle of SHM for bridges is shown below in Figure 4. The first 

part of the SHM cycle is the collection of data through inspection or sensing systems. The 
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next step is to analyze the data acquired and finally, the last step is to assess the structure 

and determine best course of action. Then the process repeats for the duration of the 

system’s lifecycle.  

 

 

Figure 4. SHM cycle 

 

In this thesis, bridges are often used as a representative example for assessment and 

SHM. In this context, visual inspection is the primary method of evaluation for the more 

than 610,000 bridges in the United States. The inspections are time based and must occur 

at least once every two years. Of these 610,000 bridges, 9.1% of them are structurally 

deficient and many more are functionally obsolete. Functionally obsolete bridges are 

bridges that were not designed to accommodate the current demands. Bridges labeled 

structurally deficient are not unsafe, they do have a bridge condition rating of 4 or less. The 

bridge condition rating is based on the deck, superstructure, and substructure and is shown 

below in Table 2 [6]. It is often difficult to determine which rating a bridge should receive 
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since the metrics to determine which category a bridge should be assessed are qualitative, 

subjective, and based on the experience of the inspection personnel. It is for this reason 

that the results for inspections are inconsistent among different inspectors, sometimes 

ranging two points on the bridge condition rating scale [8]. 

 

Table 2. Bridge Condition Rating Scale [6] 

Rating Condition 
Category 

Description* 

9 Excellent 
8 Very Good No problems noted. 
7 Good Some minor problems. 
6 Satisfactory Structural elements show some minor deterioration. 
5 Fair All primary structural elements are sound but may have minor 

section loss, cracking, spalling, or scour. 
4 Poor Advanced section loss, deterioration, spalling, or scour. 
3 Serious Loss of section, deterioration, spalling, or scour have seriously 

affected primary structural components. Local failures are 
possible. Fatigue cracks in steel or shear cracks in concrete may 
be present. 

2 Critical Advanced deterioration of primary structural elements. Fatigue 
cracks in steel or shear cracks in concrete may be present or 
scour may have removed substructure support. Unless closely
monitored, it may be necessary to close the bridge until 
corrective action is taken. 

1 Imminent Failure Major deterioration or section loss present in critical structural 
components, or obvious loss present in critical structural 
components, or obvious vertical or horizontal movement 
affecting structural stability. Bridge is closed to traffic, but 
corrective action may be sufficient to put the bridge back in 
light service. 

0 Failed Bridge is out of service and is beyond corrective action. 
 

 

Structurally deficient bridges must be monitored more closely to ensure that the 

damaged areas to not cause the bridge to close. The field process of SHM is shown in 
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Figure 5. Inspection is a large part of the current field practice of SHM for bridges and it 

is by far the most trusted and accepted form of assessment for bridges followed by strain 

gauges. The data processing is often qualitative and determined by the inspection 

personnel. The results of the data processing are then submitted to the bridge owner and a 

decision is made to determine the best action. The biggest gap in the SHM cycle is the data 

processing step which takes the data to information regarding the health of the structure. 

The large time span between inspections makes it a very discrete form of SHM. Therefore, 

the final segment connecting the condition assessment to the next inspection is not shown 

in the figure. 

 

 

Figure 5. Field practice SHM 

 

Figure 6 shows the technology expected to make an impact on SHM of bridges in 

the future [5]. The diagram shows how potential new technology can aid in the SHM cycle 

with better data acquisition, processing, visualization, and analysis. One such platform 

could be the use of UAS to capture data intelligently. The blue blocks in the figure show 
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potential segments of the SHM cycle where UAS could be useful as a data acquisition 

platform and how data captured from UAS imagery can be processed to aid in the decision 

making and pinpoint areas of interest for future inspections.  

 

 

Figure 6. Bridge technology integration matrix for the future of SHM of bridges [35] 

 

Data collection with UAS has already been demonstrated by many researchers 

proving the systems to be useful as remote sensing platforms. Quantitative geometry has 

been collected using both LiDAR [36] and structure from motion (SFM) [37]. Damage 

identification algorithms have been developed for many applications using computer 

vision, however few of them have been applied to the field due to many limitations 

including the controlled conditions required, high number of incorrect results, and 

skepticism of some field experts. It is for this reason that most UAS on the market do not 
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focus on the data aspect of the system, but on the system’s ability to access difficult to 

reach locations. There is also a large gap in the model construction and interrogation from 

geometry obtained from UAS. General point cloud data does not include critical 

information about the material or any information regarding boundary conditions or 

loading. It is for this reason that bridge information models are very labor intensive to 

develop [38]. In addition, measurements from UAS imagery is an open area of research 

[39]. Many researchers have focused on computer vision for a variety of applications and 

others on photogrammetry, but research on image based measurement using UAS is limited 

[40]. 

Computational model updating using experimental measurements has been 

leveraged in analysis for many years [41-43]. One of the biggest challenges with this 

technique for in service structures is the accuracy of the model [39]. This is due to the 

environment in the field including design changes made while building the structure, 

inaccurate modeling of the ground supporting the structure, inaccuracies in the modeling 

of friction in the joints, and many others. Furthermore, many in service structures do not 

have a model, so the model must be constructed.  

Images have been used to help create these models, but they lack the ability to 

understand what the points in the model mean [29, 39]. This complicates matters further 

because from the point cloud, a user must assign materials, determine the elements in the 

structure, and sometimes edit the geometry created from LiDAR or SFM [38]. An example 

of one of the problems that is associated with remotely acquired geometry data is shown in 

Figure 7 where a bearing is protected by rubber mats to keep out wildlife.  
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Figure 7. Bridge bearing protection 

 

The rubber mats would completely cover the bearing making it difficult to 

automatically identify it as a bearing. This is just one simple example of how field 

conditions complicate the automatic generation of the model. Even after the model is 

constructed, registration of measured data with the model is another challenging task if the 

measurement points are not at known locations, such as data acquired from strain or 

displacement gauges with known locations. Furthermore, if a moving platform is leveraged 

to acquire data, aligning the two point clouds is more difficult. The iterative closest point 

algorithm is one example of a way to align point clouds. It minimizes equation (2.1) 

assuming a rigid body transformation and an initial estimate of the transformation [44, 45].  
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If the initial estimate is poor, the point clouds may not be aligned properly after 

running the algorithm. The assumption of rigid body motion is a problem for model 

updating if the experimental measurements show that the object does not move like a rigid 

body such as bending or fracture. Another challenge with the method is that it requires a 
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good estimate of the initial transformation which can be difficult to obtain, especially when 

the point clouds have different densities. 

In cases where a model exists, measurements of the physical structure will almost 

never match the theoretical results of the model and the model must therefore be updated 

to match the measurements of the structure [46]. Therefore, the model must change through 

time using experimental data to account for damaged elements which may or may not be 

identified through inspection, but can potentially be identified by the model through 

changes in different parameters [47]. If the model is updated and accurate enough to the 

structure, the model could be used to determine the structural response for simulated 

loading to determine when damage could be expected to occur [48]. In addition, monitoring 

a structure through time and updating a model using experimental measurements is a 

potential way to determine the state of the bridge and leverage this information to provide 

useful information to owners such as bridge load rating [49, 50]. Both static and dynamic 

methods for updating the parameters of a model have been applied to different types of 

structures [51, 52]. The use of finite element models updated with experimental 

measurements has already started to aid in the SHM cycle for infrastructure and will likely 

have a larger impact in the near future. 

2.2 Unmanned Aerial System (UAS) 

2.2.1 Types of UAS 

There are four general categories of UAS that most systems fall into: fixed wing, 

lighter than air, helicopter, and multirotor. Figure 8 shows an example of each of the 

general type of UAS.  
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Figure 8. (a) Fixed wing UAS, (b) lighter than air UAS [53], (c) helicopter UAS [53], 
and (d) multirotor UAS. 

 

Each type has advantages and disadvantages caused by the physical characteristics 

and the controllability of the system. Lighter than air, helicopters and multirotor systems 

have the ability to stay in the same place where fixed wing require movement to stay in the 

air. Fixed wing UAS have the ability to cover large areas very quickly and have high 

endurance. Lighter than air vehicles have very high endurance, but are difficult to control 

due to their size, especially in the presence of wind. Helicopter UAS have controllability 

issues as well which can make them challenging to fly, but they also have much higher 

endurance and payload capabilities than multirotor systems. Multirotor systems have low 

flight time and low payload capabilities, but are easy to fly, have redundant motors if there 

are more than four, and can hover with high stability. UAS applications will have specific 

challenges associated with them and therefore each type of system should be assessed to 

determine the best system for the application. 
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The mechanism for attaining flight as well as the states that are being controlled are 

also very different for fixed wing, lighter than air vehicles, and vertical takeoff and landing 

(VTOL) aircraft. The states that are associated with an aircraft are position, velocity, and 

acceleration in the x, y, and z directions, and angles pitch (θ), roll (), and yaw (), angular 

velocity, and angular acceleration of each angle. Figure 9 shows a diagram of the states 

associated with an aircraft.  

 

 

Figure 9. Diagram of aircraft with axes and angles [54] 

 

 Only some of these states can be controlled using the inputs of the system. VTOL 

aircraft require a thrust to weight ratio greater than 1 to fly. Traditional helicopters rely on 

the tail rotor and the angle of the main rotor to control position and pitch, roll, and yaw of 

the aircraft. Multirotor aircraft rely on the speeding up and slowing down of different rotors 

to control the position and pitch, roll, and yaw of the aircraft. The thrust to weight ratio for 

both lighter than air and fixed wing aircraft can be less than one due to the physics 

associated with these types of flight. There are several control mechanisms for lighter than 

air vehicles, but one method could be using rotors to control the position of the aircraft. In 
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the case of fixed wing aircraft, flaps generally control the pitch, roll, and yaw of the aircraft 

and the motor controls the thrust. 

Figure 10 shows the general schematic of the communication flight control of a 

UAS with arrows pointing to the direction of the signals. The remote control uses an ultra-

high frequency (UHF) allowing the pilot to control the system manually [55]. Different 

bands of frequency are assigned to specific applications which is defined by the 

government. Therefore, different countries have different regulations on the frequency 

allowed for operation of these systems. Most remote controls for UAS use a 2.4GHz 

frequency with different channels. The more channels the remote and the flight controller 

have, the more functions the system can perform. Each manufacturer has their own 

modulation technique to ensure that there is no cross talk between channels. The pilot 

ground station is not always required for flight, but it can also send a signal using an UHF 

to the air end telemetry which for instance, controls the system using GPS waypoints. The 

waypoints tell the UAS to fly through predetermined GPS coordinates at a specified 

altitude. The ground station can also provide the pilot or observer with information about 

the system during flight such as remaining percentage of battery, altitude, GPS location, or 

some types of sensor or system failure [56, 57]. The flight controller constantly receives 

remote control and/or telemetry and other sensors such as, GPS, compass, and internal 

measurement unit (IMU). This feedback keeps the system stable. The IMU is composed 

on accelerometers and gyroscopes. The controller can also receive inputs from other 

sensors such as LiDAR, ultrasonic sensors, and/or optical flow data for control purposes 

[58, 59]. The feedback from these sensors is used to send a control signal to the physical 

components of the UAS, such as servos or Electronic Speed Controllers (ESCs).  
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Figure 10. Flight control of UAS 

 

The power system is shown in Figure 11 with the arrows showing the components 

the batteries power. The battery powers both the power distribution system and the flight 

controller. In general flight controllers require a step down in voltage because the inputs to 

the controllers are generally much lower than the voltage required for the motors. The 

power distribution system ensures that the voltage input to the different components is the 

same by attaching the different components in parallel. The control signal from the flight 

controller is used to send the proper amount of current to the physical system to complete 

the desired maneuver. The feedback from different systems can be used to track the desired 

output of the system to ensure the maneuver is completed without making the system 

unstable.  
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Figure 11. Power distribution of the UAS 

 

Lithium polymer (LiPo) batteries are popular choices for UAS applications due to 

their fast discharge rates and low weight compared to other battery types. The discharge 

rate varies with the battery’s C rating. Higher values of C result in higher discharge rates 

which is desirable for UAS applications. The C rating determines the number of amperes 

(amps) the battery can discharge at any given time. The amps of discharge depend on the 

C rating and on the size of the capacity of the battery. In the design of the system, it is 

important to know how much power the system will draw to ensure this value is not 

exceeded. If the current value is exceeded for an extended period of time, the battery will 

swell and not hold a charge or the battery could burn up. It is unsafe to use a LiPo battery 

that has swelled significantly. It is also very important to never discharge the LiPo batteries 

completely because they will not recharge if they are completely discharged. 

2.2.2 Historical Background 

UAS have been extensively researched and applied for military applications while 

several civil applications are currently being developed for remote sensing [60-62]. One of 

the first attempts of the use of UAS for military applications occurred in 1849 when Austria 

dropped bombs on Venice using unmanned balloons [63]. This could be questioned as to 
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the controllability of the aircraft, however this was one of the first successful attempts at 

using unmanned aircraft for military purposes. Since then, UAS have been used after WWI 

through today for military purposes expanding from reconnaissance [62, 64]. Today, these 

UAS are piloted remotely and used for reconnaissance, ground troop support, and 

eliminating threats. According to David Deptula, “we are with UAS in the same place we 

were with biplanes in WWI [65].”  

The acquisition of data has always been a goal of aerial spy aircraft. With this in 

mind, the UAS primary objective is to collect data more efficiently knowing that the data 

is the only output that matters. The acquisition of data is therefore one of the most important 

objectives for non-military use. Since being developed and implemented for military 

applications, several non-military uses have emerged from hobbyists, to delivering 

packages, aerial imagery and film, to inspection and monitoring applications. The 

advancement of this field has produced a new draw towards multirotor UAS for many 

different applications due to their ease of operation, low cost, and ability to hover in place. 

There have been concerns about the use of UAS in the national airspace and the Federal 

Aviation Administration (FAA) has started implementing and enforcing regulations to 

ensure the reliability and safety for all aircraft. 

2.2.3 Regulations for Hobby and Commercial Use 

Congress has tasked the FAA with opening up the United States National airspace 

to commercial UAS [66, 67]. Since then, the first Certificate of Authorization (COA) was 

granted to the oil company BP which allowed the Puma AE UAS to conduct oil pipeline 

inspections in Alaska [68]. Furthermore, the FAA had selected six “Center of Excellence” 

research test sites for UAS [69]. These events have created many new possibilities for 
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civilian applications of UAS including infrastructure visual inspection and regulations on 

the use of UAS have been developed to allow the industry to expand while keeping 

American airspace safe. Figure 12 shows a list of some of the significant events starting in 

2012. Most of the state legislation that was proposed to regulate UAS was based on privacy 

and safe operations around specified areas as well as punishments for breaking the laws 

[70].  

 

 

Figure 12. Timeline of regulations and steps to UAS integration into United States 
National airspace [67-74] 
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The use of UAS in American airspace is restricted to hobbyists who are registered 

with the FAA for any aircraft over 0.55 pounds (~250g) and under 55 pounds (~25kg) [73]. 

This law went into effect in December of 2015 and as of May 12, 2016, over 450,000 UAS 

were registered by hobbyists in the United States. A map showing the number of UAS 

registered per state is shown in Figure 13 [75]. The rules for hobbyist are the user must be 

at least 13 years old to register, fly below 400 feet, fly within visual line of sight (VLOS), 

and do not fly near other aircraft or within 5 miles of an airport without contacting the 

airport and agreeing on rules to follow. Furthermore, the use of UAS under the influence 

of drugs or alcohol, flying at sporting events, over people, near other aircraft, or near 

emergency situations is strictly prohibited. The pilot’s Small UAS Certificate of 

Registration Number must be permanently put the UAS. Hobbyists do not have to follow 

all of the requirements under Section 107, but do need to follow the laws set forth in section 

336 [67, 73]. 

 

 

Figure 13. Number of hobbyist UAS registrations by state as of May 12, 2016 [75] 
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Up until the rules for small UAS was released, civil organizations were required to 

complete a Section 333 Exemption to fly UAS with more strict rules than hobbyists. This 

was a step to allow companies to use UAS before the rules were released. Section 333 

allowed the companies to fly UAS by exempting them from rules used for general aircraft 

in the national airspace once the petition was approved. There were over 5,500 Section 333 

exemptions granted by the FAA by September 9, 2016 [71]. The rules for small UAS were 

a more permanent solution and were released on June 28, 2016 [74]. Under Section 107, 

all pilots must pass the remote pilot knowledge test and vetted by the Transportation Safety 

Administration (TSA) and obtain a remote pilot certificate [76]. The reasons for the 

intermediate steps was to satisfy the goal of integrating UAS into national airspace safely 

while still allowing the expansion of the UAS market as quickly and efficiently as possible. 

In cases where the rules for small UAS cannot be followed, for instance, if the UAS 

take-off weight was greater than 55lbs, a section 333 exemption would still be required. A 

certificate of authorization would also be required after the exemption was granted and an 

airworthiness certification is also required [71].  

2.2.4 Commercial Multirotor UAS and Software 

Many companies have emerged in the hobbyist and commercial UAS markets. DJI 

is the largest supplier of UAS for commercial and hobbyist applications. Other companies 

including Lockheed Martin, SenseFly, 3D Robotics, Parrot, Asctec, CyPhy, Aeryon Labs 

Inc., Microdrones, and many more have developed for commercial and industrial 

applications of UAS for data collection. Most UAS come with ground control station 

software that can be used to program waypoints, determine the state of the UAS for battery 

life, speed, altitude, etc., and program different outputs for a variety of sensors and other 
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onboard systems. Some of the ground control software is open source such as Qground 

Control and MissionPlanner. They are often used as research platforms with a variety of 

flight control hardware [57, 77, 78]. An example of ground station control used during an 

automated flight is shown in Figure 14. The flight data is boxed in orange, the waypoints 

are highlighted with the teal arrow, the red arrow shows the home point, the green arrow 

was the current UAS location, and the yellow arrow was the distance between the two 

waypoints. The final landing position is show with the black arrow.  

 

 

Figure 14. DJI ground station software 

 

In general, all of the flight control software has the elements shown in Figure 14 to 

aid in the mission control. More sophisticated systems exist to aid in the flights that provide 

better accuracy measurements and more control of the system. The use of these systems 

aids in flight control and allows the pilots to focus more on ensuring safety rather than 

actually flying the aircraft. In the case where data is acquired, the pilots can focus on data 

acquisition while monitoring the flight.  
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There are four general forms of flight control used for UAS: manual, stabilize, 

position hold, and automated. Manual mode uses no sensors and therefore, this mode is the 

least used and last resort flight control in almost all cases because multirotor aircraft are 

unstable systems that rely on the flight controller and input from the sensors to keep the 

system stable. Manual flight mode does not use many of the sensors and is generally 

reserved for when systems are failing or in the case where an experienced pilot intends to 

perform complex maneuvers. Stabilize flight mode uses all of the stabilization sensors and 

sometimes an altitude sensors to keep the system level during flight. The system does not 

have any position feedback to keep the system in the same location. Position hold uses the 

same sensors as in stabilize mode in addition to a position sensor used to keep the UAS in 

the same location. This position sensor can be GPS, optical flow, motion capture, or any 

other sensor that measures the position or relative position of the system which is used as 

an input for a flight controller a tracking algorithm. Finally, automated flight mode uses 

the sensors on the system to conduct a predetermined flight path. In general, GPS is used 

with preprogrammed waypoints to complete the flight mode, but methods involving 3D 

simultaneous localization and mapping (3D SLAM) to map and navigate through the 

environment have been demonstrated [79].  

Most of the UAS data processing software is limited to mapping and modeling of 

geometry. Precision Hawk, DroneDeploy, Skycatch, Pix4D, Pix Processing, 123D Catch, 

and ContextCapture, are just a few examples of software that use images to create 3D 

models. This type of software is critical to the understanding of the data acquired from the 

camera systems. Without the global context, the images are not nearly as useful. There are 

companies, such as Nexco, that perform semi-automated damage identification on bridge 
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decks using ground vehicles [80]. However, automated damage identification from images 

is an open area of research. Commercial software for identification of damage on structures 

is the next step to UAS providing useful information to decision makers. 

2.2.5 Civil Applications  

The use of UAS for civil applications is a much more recent topic of research and 

many different uses have been developed [81]. UAS have been used for mapping [82], 

monitoring of difficult to access areas such as volcanos [83],  search and rescue [84], crop 

monitoring [85], and inspection [11, 61]. UAS inspection is an open topic of research for 

different types of infrastructure systems including buildings [86, 87], pipelines [88], 

powerlines [89], and bridges [90]. The UAS sensing systems are generally limited to 

noncontact systems including LiDAR [91], color imagery [92], IR imagery [93], and 

wireless sensors [94]. Recent research has also investigated the use of UAS for contact 

interrogation with impact hammers [95].  

Some of the major advantages of UAS platforms being leveraged to perform 

inspections is their ability to access difficult to reach areas of the structure, carry multiple 

payload types, the collections of GPS and IMU data, and the high resolution full field data 

the sensing systems acquire. The most common inspection accidents involve the use of 

ladders which are used to gain access to different areas of the structure [96]. UAS also have 

the potential to decrease the risk to inspection personnel. Some major concerns involving 

UAS inspection are the low battery life, unreliable positioning and lack of collision 

avoidance in complex field conditions, environmental conditions on a structure, limited 

payload, and missing data. One of the biggest challenges is the environmental conditions 

around civil structures because they cause difficulties in UAS navigation and different 
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methods have been proposed to mitigate these issues, but there are no effective methods 

currently on the market today that can fully cope with the challenging conditions around 

civil structures [97, 98]. Like all forms of nondestructive testing, UAS cannot be the only 

tool used to solve all of the inspection related problems. However, they do have the 

potential to serve as the first pass of rapid inspection to target areas of interest for other 

types of nondestructive testing techniques. Contact sensors applied by inspection personnel 

or on other robotic platforms, such as the Robotic Assisted Bridge Inspection Tool 

(RABITTM), have advantages over noncontact sensors in terms of accuracy, however these 

techniques are slow and require traffic disruption [20]. The UAS could be employed as a 

first pass of inspection to identify areas of interest on the structure for inspection personnel 

or a system such as RABITTM to complete a more in depth, accurate assessment of the 

structure without disrupting traffic for long durations of time. 

The sensing systems that are most widely implemented in conjunction with aerial 

systems are cameras. Cameras are lightweight, data rich, and comparable to what an 

observer would see during the flight. Color imagery can be used to identify surface 

problems on infrastructure systems, however, the analysis of these images is an open area 

of research. For any application involving remote sensing that result in large datasets, it is 

crucial to eliminate redundant and insignificant data without removing important 

information. Many image processing algorithms have been used to identify objects from 

images to achieve this objective. For instance, images have been used to identify the 

spalling of concrete bridge elements [99, 100], a robot-mounted machine vision system has 

been used to identify cracks on a bridge [101], and images obtained at night with different 

light sources have been used to identify roadway surface cracks and other elements such 
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as manholes and spills [102]. Further, digital image correlation (DIC) approaches have 

been utilized to analyze in service structures under loading to estimate displacement and 

vibration responses [103, 104].  Aerial inspection using fixed-wing aircraft has been used 

for feature identification of linear infrastructure such as roadways to identify potholes and 

cracks [105, 106]. Color has been used in conjunction with machine learning to classify 

images with rusted areas on bridges using a robotic platform [107]. Hough transform was 

used to identify lines corresponding to the rows in vineyards from UAS images to find 

unhealthy plants [108]. Edge detection was used for crack identification in building facades 

using UAS imagery [109]. Moreover, a region growing technique was leveraged to identify 

delaminations from IR images of a manufactured concrete block with known defects [110]. 

Furthermore, localization is another important aspect of navigating through large sets of 

data. To help solve this problem, a 3D building model was constructed using a multirotor 

UAS by stitching images together and projecting them onto known geometry [111]. 

Structure from motion (SFM) was used to construct a 3D model of a retaining wall 

leveraging many images acquired with a UAS to provide a high accuracy dense 

reconstruction [86]. Similarly, a 3D point cloud reconstruction of a pedestrian bridge was 

completed by Lattanzi et al [37] using a dense SFM method applied to UAS imagery [28]. 

Despite the challenges associated with implementing SFM from UAS imagery, this method 

could provide a global view of the structure as a tool to identify and locate damage as well 

as provide useful context to the owners of the structures. 

Another popular sensor that can be utilized in conjunction with UAS are LiDAR 

and other 3D scanning technologies. A laser scanner and RGB-D sensor were used as the 

payload on a UAS to obtain point cloud information of outdoor buildings for inspections 
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purposes [91]. Furthermore,  3D SLAM was implemented to model buildings and streets 

using mobile vans using laser scanners, global positioning systems (GPS), cameras, 

position orientation systems (POS), and internal measurement units (IMU) [112, 113]. 3D 

SLAM is used for localization and navigation [114], environment mapping [115] and 3D 

surface geometry mapping [116]. 3D SLAM applications using a UAS platform for outdoor 

environments has been demonstrated [114, 117], which is promising for applications of the 

3D SLAM approach on infrastructure systems. Terrestrial laser scanning was used to 

collect a 3D point cloud of a bridge structure that was used for localization and 

visualization of the structure on a computer [36]. The 3D measurement systems could 

potentially obtain global measurements of a structure as well as help the UAS with 

navigation making it a promising technique that could further aid in the monitoring of civil 

structures as their accuracies improve.  

2.3 Image Processing Algorithms 

2.3.1 Filtering 

Filtering is very important to eliminate parts of the image that are unwanted and 

highlight parts of the image that are desired. There are many different types of filters with 

different properties that achieve different results. For instance, linear filters are fast, 

achieve many objectives, and are easy to implement by convolving a window with the 

image. Convolution is defined for discrete images using equation (2.2) [118]. The 

convolution window (w(s, t)) is moved across the entire image (f(x, y)) and the elements 

of the window are multiplied and added together to create the filtered image g(x, y) for all 

pixels in the image. This is effectively applying a transfer function to the image. 

      x, y , ,
a b

s a t b

g w s t f x s y t
 

     (2.2) 
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Some examples of this type of filter are low pass filters such as averaging filters or 

Gaussian filters, edge detection such as Prewitt or Sobel edge detection, and sharpening or 

edge enhancement such as difference of Gaussians or Laplacian of Gaussians. Low pass 

filters have the property of the sum across the filter is equal to one. Edge detection or high 

pass filters generally have the property where the sum across the filter is zero. Edge 

detection methods can also have elements that aid in detection such as the Canny edge 

detection method which uses the strongest edges to help identify connectivity to the weaker 

edges [119]. One of the problems with linear filtering comes at the edges of the image. 

Assuming the filter has an odd dimension (3x3 for example), the filtering at the top left 

corner pixel of the image does not have enough pixels to complete the filter. This problem 

is shown in Figure 15 where the blue pixel is the pixel being analyzed, the green pixels are 

the pixels in the filter that are in the image, and the red pixels are outside the image border. 

One way to handle this problem is to neglect the edge pixels completely, but this results in 

a smaller image. A boarder of zeros can be added to the image, but this will affect the 

boarders of the image in the resulting image. The other option is to repeat the edge pixels 

around the boarder and the last option is to mirror the border of the image to account for 

the missing pixels. The last two options achieve better results, but the edge pixels still 

cannot be relied on completely because they are based on simulated values. 

 

 

Figure 15. Linear filter of an image at top left corner pixel. 
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Gradient are also a useful tool for image analysis. The gradient of an image is 

simply the difference of two pixels across the entire image, similar to convolution. There 

are several methods to complete this, but generally, an edge detection window is use and 

instead of setting a threshold to detect the edge, the resulting value is stored in a new image. 

The gradients can be used for many different applications such as steering a segmentation 

algorithm or adaptively thresholding an image using the magnitude and angle of the 

gradient [118].  

Nonlinear filters can achieve different results than the standard linear filters and 

they cannot use equation (2.2). The median filter is appropriate for removing salt and 

pepper noise. It takes the median value associated with a local area in the image and this 

value is placed in a new image. Similarly, maximum and minimum filters are used in the 

same way only instead of saving the median, they choose the maximum or minimum. 

Depending on the type of noise, low pass filters or median filters can produce better results, 

but both accomplish the same goal of denoising the image. Adaptive filters are also capable 

of removing noise from the image. In general, they are more computationally expensive, 

but they can provide very good results. They use a local region of pixels to determine how 

to filter the image using gradients, intensity values, and/or other criteria such as the location 

of the boundaries to determine what type of filtering to use. This type of filter will generally 

have to be created by the user for a specific application, but the results are often worth the 

computation cost and the time for development [118].  

2.3.2 Morphological Operation 

Morphological operations are usually performed on binary images. The methods 

use a structuring element to determine the degree in which they change the image. In 
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grayscale images, dilation and erosion work as a max and min filter respectively and he 

largest or smallest value within the structuring element is kept for the new image. In the 

case of binary images, there are several more operations that can be completed including 

dilation and erosion as well as hole filling, skeleton, and boundary extraction. The hole 

filling algorithm is used to fill the holes that appear in blobs of a predetermined size. An 

image skeleton is erosion of the image until only one pixel width is left in each blob. There 

are several other types of morphological operations that are used on binary images to make 

identification of objects easier [118]. An example of image dilation is show in the top row 

of Figure 16 and erosion is shown in the bottom row.  

 

 

Figure 16. Dilation of the image (top row) and erosion of an image (bottom row). (a) 
Original image. (b) Structuring element. (c) Pixels effected. (d) Resulting image.  

 

The original image is shown in (a). The structuring element in both images is the 

same, but the pixels being operated on are different as shown in (c). The red pixels are 
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added and the blue pixels are removed. Figure 16 (d) shows the resulting image after 

dilation and erosion.  

2.3.3 Histograms 

Image histograms are useful for many applications, but one of the most important 

is thresholding. Many different methods can be applied to threshold images, but often 

histograms can be used to find natural points appear to be good threshold values. One 

method to help identify these points is to fit several Gaussian distributions to the data. A 

good way to think about an image histogram is a probability mass function (pmf) for the 

image. If all of the histogram are added together, this number can be used to normalize the 

histogram to make it satisfy the rules of the cumulative mass function (cmf) starting at 0 

and ending at 1. Furthermore, histograms can be used to normalize the intensity throughout 

the image. This can be accomplished by selecting the intensity value and moving up to the 

corresponding value on the cmf and setting the intensity values associated with that bin to 

the value of the cmf. This will make all of the values in the new histogram have roughly 

equal counts in each bin. Similarly, contrast limited adaptive histogram equalization uses 

the same idea, but breaks the image into blocks and computes the histogram equalization. 

Then, it compares the values to the neighboring blocks to ensure there are no dramatic 

changes in contrast along the boundary of the block [118]. An example of these techniques 

is shown in Figure 17. The images are on the top row and their corresponding histograms 

are shown below. The original image is shown in Figure 17 (a). After histogram 

equalization, the histogram in Figure 17 (b) shows all of the values have equal counts if 

you distribute them over the entire range of values that color encompasses. Finally, in 

Figure 17 (c), the adaptive histogram equalization shows the histogram is not equalized in 
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the same way, but more features are clearly visible in the image where they were less 

visible in the original and the histogram equalized image. 

 

Figure 17. (a) Original image with corresponding original histogram [120]. (b) 
Histogram equalized image with corresponding histogram. (c) Contrast limited 

adaptive histogram equalization and corresponding histogram. 

 

2.3.4 Segmentation 

One of the simplest ways to segment an image into foreground and background is 

thresholding [118]. This technique is rarely sufficient to truly segment the image because 

segmentation is used to understand what is in the image, therefore thresholding is often 

combined with other more sophisticated techniques. It is often difficult to determine what 

the threshold values and justifying the choice of that threshold. One way of choosing a 

threshold is the Otsu method, which is an automatic way for assigning an optimal threshold 

[121, 122]. This method is not limited to image analysis, but does work directly on the 
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histogram which makes this a very fast method for optimal thresholding. It minimizes the 

variances within classes and maximizes the variances between classes to form the optimal 

threshold. This method is also not limited to two classes and has been extended to multiple 

classes. As described in section 2.3.3, Gaussian distributions can also be used to describe 

an image histogram. Using the crossings of the Gaussian distributions, an optimal threshold 

can be set to distinguish what parts of the image are foreground and background. In both 

cases, the user does not have to manually select a threshold.  

Texture in an image can also be used to segment an image. This method can use 

entropy, variance, higher order moment methods, and several others [99, 123]. These 

methods focus on blocks within the image to compare a metric or metrics associated with 

the texture of the image. Morphological operations can be used to segment by texture as 

well. If an image is expected to have blobs of a specified size and spacing, proper choices 

of structuring elements used for dilation and erosion can help segment the image [118]. 

The changes in intensity within the blocks can aid in the decision making for what type of 

texture is associated with different areas of the image. Orientation of intensity changes are 

also used to classify texture [124]. There are several databases that are easily found online 

of different images and different types of textures that can be used for automated 

identification [125]. 

The use of intensity values and gradients can also be used to segment an image by 

following the path of least resistance in the image. Gradients can be calculated in many 

ways for images and filters similar to the edge detection filters presented in section 2.3.1. 

Methods for obtaining the gradient can also be determined using subtraction with the 

central difference method or the intermediate difference method. The gradients are 
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calculated in both the horizontal and vertical directions which are used to calculate the 

magnitude and the direction of the gradient. These parameters can be used to follow an 

outline of an object to segment it from the image [126]. 

Region growing is another method that can be used for segmentation. It is related 

to the morphological operations, but it is not bounded by a structuring element and has a 

criteria that causes it to stop growing. It requires seed points and a stop criteria which could 

be a probability models based on intensity value, gradients, or change in textural features 

[127, 128]. This method has been very useful for many image segmentation applications 

from medical imaging to civil infrastructure to identify cracks and delmainations [110, 126, 

129, 130].  

Active contours or morphological snakes is a method that uses gradients, color 

values, and the stiffness of the spline to minimize an energy equation [131, 132]. The major 

drawback to this method is the need for an initial guess at the contour boundaries with 

ordered points, however once this is achieved, the algorithm converges to boundaries very 

well when the correct parameters are selected. The energy minimization takes the form 

shown in equation (2.3). 

         
1

0

Int Image ConE E v s E v s E v s ds     (2.3) 

The three terms are the internal energy of the spline (Eint(v(s))) [132], image energy 

(Eimage(v(s))), and other energy constraints Econ(v(s))). The v(s) term is the ordered points 

for the initial boundary. The internal spline energy corresponds to the stiffness of the spline 

and is determined using equation (2.4) [132]. This term is based on the norm of the first 

and second derivatives of the spline function. The image energy is described in equation 

(2.5) [132] where the line terms push the spline towards lines, edge term pushes the spline 
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towards edges, and the termination (term) term forces the spline towards corners and bends 

[132]. The other energy constraints could be used to avoid certain areas of the image or 

force the spline in a different direction when it gets close to predetermined features, but 

this term will change with the intended purpose. 

 

   2

2

2 2

2Int

dv s d v s

ds ds
E

 
   (2.4) 

            Image line line edge edge term termE v s w E v s w E v s w E v s     (2.5) 

The α, β, and w terms are weighting functions that are set by the user. These terms 

could be functions or constants that heavily affect the performance of the method.  

Hough transform is a technique that uses votes to identify a defined shape [133]. 

The shapes this technique is most commonly used to identify are lines and circles. This is 

because the search space for these shapes is relatively small. The technique is used to cast 

votes to a space based on a binary image. The transform uses the equation for a shape and 

casts votes based on the space. In the case of lines, the space is determined through the 

distance and the angle to each white pixel to the origin of the grid. Each pixel votes at every 

step using equation (2.6), where x and y are the coordinates of the white pixel and theta is 

varied from -90 degrees to 90 degrees. 

    cos sinx y      (2.6) 

In order to identify the lines, the locations in the Hough space (r, θ) with the highest 

number of intersections has the highest number of votes. This can be seen in Figure 18 

where the original image and set of points are shown in (a) and (b) respectively. It should 

be noted that the y-axis is flipped in Figure 18 (b) because they coordinate system then 
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matches the pixel coordinate system shown in Figure 26. The Hough transform is shown 

with the intersection of the three curves highlighted in red, roughly at ρ = 0 and θ = -45˚.  

 

 

Figure 18. (a) Original image. (b) Original set of points. (c) Hough transform of the 
three points. 

 

Other shapes can be identified using Hough transform by fitting a different 

equation, but the parameter search space increases as well. In all cases, the location in the 

Hough space that receives the highest number of votes has the strongest correspondence to 

the predefined shape. The major advantage of Hough transform is the entire shape is not 

required to appear within the image for the shape to be identified and it is also robust to 

noise [128]. This is important for recognition because it will miss fewer shapes, however 

it is also important to note that if the shape varies significantly, the technique does not as 

work well [133]. 

Another method used for image segmentation to identify bright areas in images is 

the peaks over threshold method which is very robust to noise compared to other methods 

of segmentation. This method has been used to identify proteins in fluorescent labeled cells 

[134]. The image is modeled as low frequency background, noise, and the peaks. A 
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simulated image was created and displayed in Figure 19 with each part of the image 

separated and combined.  

 

 

Figure 19. Image model for the peaks over threshold method 

 

The method relies on a conditional probability to determine if the peak is high 

enough to exceed the threshold given the criterion associated with the distribution defined 

by the user. First, an initial threshold is set to identify values that could potentially be 

accepted as peak. The distribution used for this method is shown in equation (2.7) [134]. 
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In the equation, τ is the initial threshold, θ is defined in equation (2.8), and x is the 

value in the image [134]. 
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The final threshold used to segment the image is defined in equation (2.9) where τ 

is a second user defined threshold [134]. 

  ˆlog 1         (2.9) 

A main advantage to using probabilistic methods for determining segmentation 

threshold values is that it is based on a model to determine what points are large or small 

enough to be determined significant. For cases where the foreground is expected to be 

much smaller in number of pixels, for instance, in the case of cracks, the peaks over 

threshold method would be expected to perform well. Clustering methods are similar to 

other probabilistic methods, but instead of setting a threshold, they minimize a function to 

obtain the segmentation [135]. There are several different methods to cluster an image 

using different properties including texture features, color features, shape features, and 

many others. K-means is a common method of clustering used on many different data types 

including images. For this algorithm, k centers are randomly set and the classes are 

minimized using the error equation (2.10). E is the error, xi
k are the data points, n is the 

number of data points, ck is the center, and K is the number of clusters [136]. 
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    (2.10) 

The process is repeated until the location of the centers converges. After 

convergence, all of the data points are placed into the cluster with the closest center. Fuzzy 

clustering is essentially the same algorithm, but the points are not assigned to a specific 

cluster. Instead, they are assigned weights to each cluster to determine the proximity to 

each cluster center. Both types of clustering can be applied to different applications 

depending on the desired output. 
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2.3.5 Keypoint Identification and Matching 

Keypoints in an image are points with unique characteristics that can be identified 

easily using some metric. These points have been determined many different ways, but 

some of them include corner detectors and  local extrema detection [137]. The metrics used 

to identify these points can be intensity values, gradients, or other pixel based features, as 

well as how these features compare to their neighbors. One popular method that is often 

used for keypoint identification due to the robustness is scale invariant feature transform 

(SIFT). This method finds local minima and maxima using a multiresolution difference of 

Gaussian filter to create a 128 dimensional feature vector used to match points within 

images [138]. Each point can then be compared to points within another image to determine 

if the points are a match. Some other methods for keypoint identification and matching 

include Speeded Up Robust Features (SURF) [139], Features from Accelerated Segment 

Test (FAST) [140], Oriented FAST and Rotated BRIEF (ORB) [141], and many others 

[142]. Matching or corresponding points can be used for several tasks including geometry 

estimation, sensor movement, and object identification based on a template [138, 143].  

2.3.6 Blob Features and Classification 

After an image is converted to a binary image, blobs appear as groupings of black 

or white pixels. These pixels can be described using many different features. Some of the 

features include perimeter, area, bounding box, major and minor axes of the bounding 

ellipse, and many others [120]. They can be combined as well to produce features like 

circularity ratio as calculated by equation (2.11) where A is area, P is perimeter and R is 

circularity ratio. The circularity ratio has also be called the thinness ratio, roundness, or 

shape factor [118]. 
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Some other features include:  convexity (equation (2.12)), adjusted roundness 

(equation (2.13)), aspect ratio (equation (2.14)), equivalent diameter (equation (2.15)), and 

eccentricity ((2.16)) [120].  
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Descriptions of perimeter (P), area (A), convex area (Aconvex), major axis (Amajor), 

and minor axis (Aminor) are shown in Figure 20. 

 

 

Figure 20. (a) Group of points surrounding a blob. (b) Perimeter (P) in black and 
area (A) in blue. (c) Convex area (Aconvex) in green and blue. (d) Major axis (Amajor) 

in red and minor axis (Aminor) in blue. 
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In general, features that are dimensionless perform better for analysis because they 

do not rely on the scale of the image which is why circularity is desirable compared to area 

or perimeter. Dimensionless features generally involve ratios of features with dimension 

and include the ratio of area divided by convex area and ratio of minor axis divided by 

major axis of the bounding ellipse. 

Classification can be completed using many different machine learning algorithms 

for image analysis [136]. There are two types of machine learning algorithms: supervised 

and unsupervised. In general, supervised learning has a predetermined number of classes 

and a training and test set are used to determine the algorithm’s performance. Unsupervised 

learning is used to cluster a dataset using the natural differences in the dataset. These 

methods do not have a predetermined outcome. One example of unsupervised learning is 

the k-means algorithm described in section 2.3.4. Examples of supervised learning include 

support vector machines, k-nearest neighbors, and decision trees [144]. There are several 

different software packages which allow a user to test the performance of different machine 

learning algorithms to determine which will work best for the application [120, 145]. The 

major advantage of unsupervised learning is the outcome does not rely on user inputs prior 

to classification. The disadvantages are that this method is not consistent causing 

convergence to different centers and the outcome classification is not based on a physical 

description. The advantages of supervised learning are the outcomes are based on a 

physical description determined during the learning stage and the methods will classify the 

data more consistently [146]. The description of the objects in the image are broken down 

into features which are analyzed by the machine learning algorithm. Identifying intelligent 

features is one of the most important steps in distinguishing between classes using machine 
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learning. Another important step is determining what machine learning algorithm will be 

appropriate for the application. Different algorithms can be used for unsupervised and 

supervised learning and their performance varies based on the features chosen and how 

they can be separated using the equations associated with each method. In general, machine 

learning algorithms try to minimize some property within the data. The k-nearest neighbor 

approach uses the location of the new data in the n-dimensional space and bases the 

classification on the closest neighboring point. The k-means algorithm tries to minimize 

the Euclidean distance of all of the features from the cluster centers. Decision trees, support 

vector machines, artificial neural networks, and several other methods have been developed 

for machine learning and each one has its advantages and disadvantages [147]. When 

making the decision on which algorithm to choose, the speed of training and learning, 

accuracy, and robustness to different problems such as noise or overfitting should be 

considered as well as the type of separable data such as linear or nonlinear [136, 147]. 

There are several metrics that can be used to determine how well the classification 

performed. True positive and true negative are the conditions where the ground truth and 

the prediction are the same class. False positive and false negative are the conditions where 

the ground truth and the prediction are not the same. These values can be used to determine 

the false positive rate, false negative rate, true positive rate, and true negative rate as well 

as construct a receiver operating characteristic curve or determine other metrics such as 

precision and recall [144].  

Machine learning and many segmentation methods rely on how easy it is to separate 

the data in question. Threshold based segmentation that relies on an optimal threshold or 

Gaussian mixture models used to identify a threshold need adequate separation of the data. 
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In general, the preprocessing and filtering techniques are used to make the data more 

separable. A simple example of the ability to segment data into two classes is shown in 

Figure 21. Figure 21 (a) and (b) show two distributions of data with different separation 

between the means and the same standard deviations. The optimal threshold is shown as a 

black line. Figure 21 (c) and (d) show the correct and incorrect classifications. It is clear 

that the larger separation between the means causes a much better separation with fewer 

mistakes [148]. 

 

Figure 21. Two distributions that need to be segmented are shown in (a) and (b). A 
threshold is set and the same two distributions separated as shown in (c) and (d) 

where solid sections show the proper classification and hatched section show 
improper classification. 

2.3.7 Image Stitching 

Image stitching or mosaicking is a technique that is used to put together individual 

images to create a larger image [149]. One method that is used on many cellular phones is 
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the panorama. This technique relies on the focal point of the camera remaining in the same 

location while all of the images are taken. If this condition is not satisfied, parallax occurs 

within the image causing discontinuities or the panorama will fail [137]. Parallax is the 

case where two images are stitched together and the background appears to have doubles 

of artifacts in it. An example of parallax is shown in Figure 22. The green boxes show the 

steel grid that was stitched together properly. The yellow and red boxes highlight the 

parallax caused in Figure 22 (c). 

 

 

Figure 22. (a) Image 1. (b) Image 2. (c) Stitched Image. 

It is clear that the background boxed in yellow and red in Figure 22 (c) are the same 

object. They appear twice in the stitched image because of the two different angles the 

image was taken from. Instead of being rotated like what is done in a panorama, the images 
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camera translated while these images were taken. The object of interest for stitching was 

stitched properly, but all of the other distances that were not in the same plane were stitched 

improperly. There are several methods that can be used to match points within images. The 

simplest method is to manually identify the correspondences. This is a laborious and 

tedious process, so more automated methods such as corner detectors, scale invariant 

feature transform, and many others [138].  

2.3.8 Civil Applications 

The image processing techniques described in this section are just a few of the 

methods that exist for enhancing the output of images and segmentation and have been 

leveraged for many applications, including civil applications. Crack identification 

algorithms leveraging these and other techniques is important to bridges, buildings, dams, 

and many other forms of infrastructure. Matched filtering [150], percolation [130], edge 

detection [87], and several other algorithms [40] have been leveraged to identify this form 

of damage. Texture was used to monitor corrosion growth [151] and other forms of related 

damage [99]. Furthermore, global views of structures have been created and mapped for 

better viewing [109, 152]. A good review of what different image processing and computer 

vision methods that have been used for concrete civil structures can be found in [40]. 

2.4 Camera Sensors, Geometry, and Measurement Algorithms 

2.4.1 Sensors and Camera Inputs 

There are two major types of camera sensors that are easily accessible: charged 

couple devices (CCD) and complementary metal–oxide–semiconductor (CMOS) [153]. In 

general, CMOS sensors are more common because they process data faster and are less 

expensive than CCD sensors. CCD sensors historically have been a better sensor because 
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they have lower noise, a global shutter, and perform better in low light conditions. CMOS 

sensor technology has improved significantly and are now more comparable to CCD 

sensors, but are easier to manufacture. In most measurement systems, CCD sensors are still 

used due to the low noise associated with the sensors.  

Another important parameter that is determined by the camera sensor is the way the 

image data is saved. Monochrome cameras do not have color associated with them and 

achieve high spatial resolution in the band of light the sensor accepts. Other sensors have 

a spacing that will collect different bands of light with different detectors throughout the 

sensor. An example of this type of sensor is shown in Figure 23 which shows a Bayer filter 

with red, green, and blue detectors [154].  

 

 

Figure 23. Bayer filter detector pattern [154] 

 

In this case, the image has three color bands, one for Red, one for Green, and one 

for Blue (RGB). From the figure, it is clear that the green band has the highest spatial 

content. This sensor has an output in the RGB color space, but this is not the only color 
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space a sensor can output or that the color space can be converted into [118, 154]. Other 

color spaces include Cyan, Magenta, Yellow, and blacK (CMYK) and the Hue Saturation 

and Intensity (HSI) [118]. In general, RGB color space operations are more difficult than 

color spaces like HSI that separate the color from the intensity. This is because changes in 

the RGB color space values result in large changes in the visual appearance of the color 

[118]. An example of this can be clearly seen in Figure 24 and Figure 25. The top left 

image is the same red color labeled original image. Each of the other images in the figures 

are 50% changes in each of the color bands. It is clear from the results that the HSI color 

space keeps the visual appearance of the color of the original image much better than the 

RGB color space. It is for this reason that in histogram equalization across color images, 

the RGB space should not be used and the histogram equalization should be used on the 

intensity band of the HSI color space [118].  

 

 

Figure 24. Adjusted values in the RGB color space. 

 



Chapter 2  | 54 
 

 
 

 

Figure 25. Adjusted values in the HSI color space. 

 

The camera parameters that determine the quality of the image are: ISO, shutter 

speed, focal length, aperture, and target distance. The ISO setting determines how sensitive 

the sensor is to light. Higher values of ISO correspond to higher sensitivity, but the higher 

sensitivity also increases the amount of noise in the image. The shutter speed determines 

how fast the image is acquired. At high shutter speeds, the images are taken quickly, but 

as a result, less light passes through to the sensor. Aperture also controls the light allowed 

to pass through to the sensor. Smaller openings allow less light to pass, but increases the 

distance in the scene that is in focus or depth of field. The target distance determines the 

size of the pixels in the scene. This is important for metrology. As distance increases, the 

physical size of the pixels in the scene increase [155]. 

2.4.2 Coordinate Systems 

There are four coordinate systems in an image shown in Figure 9. The pixel 

coordinates xp and yp (red) are the default coordinates in pixels in the image. The image 
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coordinates xi and yi (purple) are the pixel coordinates shifted to the center of the image. 

The camera centered coordinates xc, yc, and zc (black) are three dimensional coordinates 

with the origin at the optical center. The world coordinates xw, yw, and zw (green) are the 

actual coordinates of objects in a three dimensional scene with a predefined origin. The 

pixel coordinates and image coordinates are in a two dimensional coordinate system 

measured in pixels. The camera coordinates are three dimensional scaled coordinates 

where the relative positions of the points are correct, but the physical dimensions are not 

assigned. Finally, world coordinates are three dimensional that have physical dimensions 

based on a scale bar within the image. The origin can be arbitrary or assigned by the user 

depending on the application. 

 

 

Figure 26.  Coordinate systems [156] 

The coordinate systems displayed in Figure 26 are crucial to the concepts presented 

in sections 2.4.4, 2.4.5, 2.4.6, and 2.4.7. These sections focus on camera geometry which 

relies heavily on converting between these coordinate systems as well as identifying the 

transformations between multiple camera views of a scene. 

2.4.3 Camera Calibration  

All cameras lenses cause some distortion due to the bending of light into the sensor. 

Wide angle lenses suffer more from this problem because the light has to bend significantly 
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more to reach the image plane at the edges of the image plane. Figure 27 shows the light 

rays and field of view of two different camera systems. The red camera system has a shorter 

focal length and a larger field of view. The blue camera system has a longer focal length 

and narrower field of view. The red rays that approach the edges of the lens must bend 

significantly more to hit the edges of the image plane than the light rays of the blue camera 

system.  

 

 

Figure 27. Light rays for two different focal lengths [157] 

 

The multiplane camera calibration technique [158] was used to fit an equation to 

the distortion to correct it. The camera distortion was modeled for tangential, radial, and 

skew distortion. The corrected coordinates are shown in equations (2.17) and (2.18) [137, 

159]. The x and y are the normalized image projection coordinates based on the pinhole 

projection model, r x y , kri is the ith radial distortion coefficient to be estimated, 

and kti is the ith tangential distortion coefficient to be estimated [159] 

    
1 2 3 1 2

2 4 6 2 21 2 2d r r r t tx k r k r k r x k xy k r x         (2.17) 

    
1 2 3 1 2

2 4 6 2 21 2 2d r r r t ty k r k r k r y k r y k xy         (2.18) 
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The technique used the known locations of the intersections of the checkerboard to 

be the reference points to correct the image. The more images taken from different 

locations, the better the approximation is expected to become. The algorithm was 

implemented in MATLAB using the toolbox developed by Bouget [159] and the MATLAB 

Camera Calibrator App [160, 161]. In both cases, multiple images of a checkerboard were 

used to identify corners, minimize error in the equations above based on the known points 

and estimate the parameters of the radial and tangential distortion which could be used to 

correct the distortion in other images with the same camera parameters. However if a 

camera with an adjustable lens is used, every time the lens parameters are changed, the 

camera must be calibrated again to correct for lens distortion. 

2.4.4 Homography 

Another technique that was used to complete much of this work is homography, 

which is used to project the image onto a plane in that image. The homography matrix is a 

transformation matrix that converts the existing pixel coordinates (x, y) in the image to the 

desired coordinates (X, Y) [143]. 

 
1 2 3

4 5 6

7 8 91 1

X h h h x

Y h h h y

h h h

     
          
          

  (2.19) 

The coordinates (X, Y) and (x, y) have an added 1 at the end which serves as a 

placeholder for the third (out-of-plane) dimension. The three dimensional scene is 

projected onto a two dimensional plane when the image is captured. This projection onto 

the image plane effectively eliminates the out of plane dimension. Therefore, the third 

dimension added back to the original coordinates and the desired coordinates artificially.  
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Since both artificial values are 1, the scale of the image does not change so the distance to 

the target would also not change if the three dimensions were still available.   

The homography matrix is calculated using at least four points known points in the 

image that are in the same plane. Each known point in the image (X, Y) corresponding to 

the image point in pixels (x, y) provides two equations in the system of equations as shown 

in the equation below (2.20) [162]. The system of equation is only composed of 8 equations 

if only four points are used and there are 9 variables associated with it. The last variable 

can be set to 1 because the transformation does not have scale.  
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  (2.20) 

If more than 4 points in the plane are used, the system of equations is over 

determined, but still lacks scale. In this case, the homography can be calculated using a 

least squares approach shown in equation (2.21). 

       0
T T TA h A h h A A h          (2.21) 

The minimization can be determined using the eigenvector with the smallest 

eigenvalue of the ATA matrix. The values in the eigenvector are then rearranged to become 

the homography matrix. 
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  (2.22) 

The inverse mapping of the homography matrix can be used to map all of the pixel 

colors onto the new plane, but since the homography matrix has no scale, the scale must 

be set by the user. If the user defines a scale that is too large, edge localization is difficult 

because of artificial blur due to low resolution, whereas if the scale is set to be too small, 

the resolution will not be high enough in the final image to obtain good measurements. The 

resulting image from this step can heavily affect the accuracy of the measurement. To 

circumvent this issue, the image scale is set to achieve a new image that is of similar size 

to the original image (usually slightly larger) to ensure no resolution was lost. Backward 

mapping and bilinear interpolation were utilized to ensure that all of the pixels in the new 

image had color associated with them. If forward mapping were used, there would be black 

pixels in the new image which would also make measurements difficult.  An example of 

the results of the transformation on an image is shown in Figure 28 where the four corners 

of the paper were used to project the image onto the plane in the image. 
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Figure 28.  Homography transformation:  (a) Original image (b) Image flattened to 
the plane of the paper. 

 

The angle of the camera with respect to the measurement plane will also affect 

measurement accuracy due to interpolation and errors in the known point selection. Larger 

angles create large errors in pixels that encompass a larger area in the corrected image. 

Also, measurements must only be taken in the plane the image is projected onto. Once the 

image is corrected for distortion and projected onto the measurement plane, measurements 

can provide a better estimate to quantify the size of the damage in the images in that plane. 

2.4.5 Photogrammetry 

This approach leverages fiducial points in the images to obtain high accuracy 3D 

position of those points. The setup is generally easier than DIC because the speckle pattern 

is not required. Many researchers have worked with photogrammetry for civil 

infrastructure applications [104, 163-166]. 

The computation of three dimensional points in images relies on triangulation 

[167]. Figure 29 shows a picture of why two images are required to obtain the three 

dimensional location of a point in space. 

 



Chapter 2  | 61 
 

 
 

 

Figure 29. Triangulation of point x using two images [143]. 

 

The major problem with using a single camera is that the rotation and translation 

are not known between two images. The fundamental matrix (F) is used to relate the two 

images and calculate the rotation and translation. There are several methods used to 

calculate the fundamental matrix with different numbers of corresponding points [143], 

however, all must satisfy equation (2.23). 

 
1 2

0p px F x     (2.23) 

where xp are corresponding points in the images and F is the 3x3 fundamental 

matrix. At least 8 points are needed to solve for F. The essential matrix can be computed 

from the fundamental matrix using equation (2.24) [143] and separated into relative camera 

rotation and translation using equation (2.25) [168]. K and K’ are the camera intrinsic 

matrices of the two cameras which are generally defined by equation (2.26) where f is the 

focal length in pixels, gamma is the skew which is usually zero or very close to zero, and 

Cx and Cy are the center location of the image in pixels. This matrix is an output of the 
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camera calibration explained in section 2.4.3. If using the same camera, the K matrices are 

the same. 

 'E K F K     (2.24) 

 [ ]xE t R    (2.25) 

 0
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y

f C

K f C

 
   
  

  (2.26) 

Using singular value decomposition, the rotation and translation can be calculated. 

    U S V svd E   (2.27) 

After decomposing E, S is normalized such that the first two diagonal values are 1 

and the rest of the matrix is 0. W is set to be an orthogonal matrix with the last element 

equal to 1. Using this and equations (2.25) and (2.27), the translation and rotation can be 

calculated using equation (2.28). 

     1 1 [ ]T T T T T
xE USV U WSU UW V UWSU UW V t R       (2.28) 

The translation is represented at a dual matrix which can be changed into a vector 

using equation (2.29). 
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  (2.29) 

After calculating the rotation and translation, there are 4 solutions since the 

essential matrix is not of full rank, R and t, R and –t, R-1 and t, and R-1 and –t [143]. There 

is only one solution that will allow the points in space to be in the field of view of both 

cameras which is the solution that is correct.  
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After calculating the rotation and translation, the projection matrices of each image 

are used to triangulate the three dimensional camera centered points [167]. Equations 

(2.30) and (2.31) show the projection matrices for each camera. The first is set to have zero 

rotation and translation and the second is rotated and translated according to the 

decomposition of the essential matrix.   

  0P K   (2.30) 

  ' ' 'P K R K t   (2.31) 

Using the known corresponding points, the three dimensional points were 

calculated using equation (2.32) where P(i, :) represents the i’th row of the projection 

matrix of each image. The solution to Ax=0 is determined using singular value 

decomposition. The vector corresponding to the smallest singular value is then rearranged 

to determine the scaled camera coordinates [167].  

 

   
   
   
   

3,: 1,:

3,: 2,:
0

' ' 3,: ' 1,:

' ' 3,: ' 2,: 1

p c

p c

p c

p

x P P x

y P P y

x P P z

y P P

   
          
       

  (2.32) 

After the camera three dimensional scaled coordinates are calculated, the 

coordinates must be converted into world coordinates [169]. Using the known positions of 

fixed points in the image, a direct linear transformation can be used to convert the camera 

coordinates to world coordinates using equation (2.33). This equation is very important 

because if certain coordinates are known, they can be fixed to make the resulting 

transformation more accurate. 
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(2.33) 

Singular value decomposition is used to solve this system of equations and the last 

vector of the V matrix corresponding to the smallest singular value is used to calculate the 

transformation shown in equation (2.34). 
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Point based photogrammetry methods have been demonstrated for many 

applications [170]. For instance, point based methods were applied a beam in laboratory 

conditions [14, 165]. In addition, photogrammetry was applied to track the movement of a 

wind turbine using high speed stereo cameras [171]. Furthermore, these methods have been 

extended to small span bridge applications [163, 164]. Malesa et al. used a target placed on 

a railway bridge to measure deformation during a train was crossing [103]. Furthermore, 

commercial photogrammetry systems have been developed to calculate movement and 

measure deformation leveraging coded markers, uncoded markers, and calibrated scale 

bars [172, 173]. More recently, a photogrammetry method was extended to UAS to 

measure beam deflection [174]. 
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2.4.6 Structure from Motion 

Structure from motion (SFM) uses the movement of a single camera to estimate the 

three dimensional locations of keypoints in a set of images to output a point cloud. There 

are many ways to extract the keypoints in the image, but one of the more popular methods 

is the SIFT algorithm [138]. The algorithm uses a multiresolution approach to obtain a 128 

element feature vector for each point that is a local extrema which is used to match points 

between images. Then, a random sample consensus (RANSAC) algorithm is used to 

identify the transformation between the images [175]. The three dimensional points are 

then extracted and an error minimization is used to produce the final point cloud. An 

example of the results of SFM is shown in Figure 30 on a bridge pier. For this case, over 

400 images of the pier were collected similar to the ones shown in Figure 30. The images 

were corrected for lens distortion and using VisualSFM [176], SIFT, RANSAC, and the 

bundle adjustment were computed and the 3D points were extracted.  

 

 

Figure 30. Sample images and results of SFM 
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The use of point clouds is generally for augmented reality purposes and model 

generation [30, 37, 39, 177]. The difficulties in obtaining measurements from structure 

from motion is the accuracy of the point cloud; however, there is current research in 

obtaining high accuracy point clouds for deformation measurements using a hierarchical 

approach [28, 29]. 

2.4.7 Digital Image Correlation (DIC) 

Optical flow can be considered the simplest form of digital image correlation (DIC). 

Both are used to track movement in images through light intensity changes. It is possible 

to obtain the movement using natural texture, but a random speckle pattern dramatically 

can improve results. The Lucas-Kanade algorithm for optical flow is one of the more 

popular algorithms [178]. This is a limited form of digital image correlation that only takes 

into account rigid transformations of the subsets of pixels in the image and subpixel 

movement. In cases where the movement is more than one pixel, a multiresolution 

approach can be used to iteratively force subpixel movement and update the movement to 

obtain the full movement. Equation (2.35) shows the comparison of an image and the 

shifted image. H is the original image and I is the image moved by u and v pixels in the 

horizontal and vertical directions respectively and x and y are the position of the pixels in 

the image. 

    , , yI x u y v H x     (2.35) 

The moved image can be approximated by 

     , , ,
I I I I

I x u y v I x y u v HOT I x y u v
x y x y

   
        

   
  (2.36) 

Combining equation (2.35) and equation (2.36), 
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Rearranging, 

     , ,
uI I

I x y H x y
vx y

    
          

  (2.38) 

Using these equations, small movements in image subsets can be extracted using 

different methods such as Newton-Raphson [179] and an example of the results of the 

algorithm is shown in Figure 31. The gear was rotating when the two images were taken. 

The smaller gear was rotating counterclockwise and the larger gear was rotating clockwise. 

The red arrows shown in the image and highlighted in the red box indicate the movement 

of the gear.  

 

 

Figure 31. Results of optical flow for a rotating gear 

 

In many cases, optical flow cannot be used because more complex motion must be 

characterized. A more complex DIC algorithm is needed to complete these tasks. In 

commercial software used for DIC, a speckle pattern is used to add artificial texture to the 

images to make the tracking more accurate. Instead of using rigid body motion, DIC can 
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use affine or higher terms to track the changes in light intensity of each subset which allows 

for more complicated changes to be tracked [180]. DIC is scale independent and it has been 

used for many applications from the micro-scale to the structural-scale [18, 181, 182]. This 

method has been extensively applied to experimental testing to the full field outputs of 

deformation, strains, and stresses in the material. Two dimensional DIC uses a single 

camera and has been extensively studied [179]. If multiple cameras are used, a third 

dimension can be extracted and measured using triangulation. Several commercial systems 

have been developed to perform 2D and 3D measurements with DIC including ARAMIS 

by GOM, VIC 3D by Correlated Solutions, and DaVis by LaVision. 2D DIC can be 

performed with a single camera while 3D DIC requires at least two cameras and 

triangulation for reasons shown in Figure 29.  

One of the challenges associated with DIC is the application and quality of the 

speckle pattern. Application of the pattern can be as simple as spray painting the pattern 

with a stencil or spraying over the sample and allowing the paint to fall randomly on the 

specimen [182, 183]. Other methods can be more difficult such as applying particles to a 

specimen [181]. Different techniques have different variability making it difficult to 

determine if a pattern is good before testing. Therefore, several metrics were developed to 

determine the quality of a speckle pattern within an image to help determine the systematic 

and random error in measurements [179, 184-187]. The two general classes of DIC speckle 

pattern quality are local and global metrics. Local metrics compare features of the speckles 

within the subset or facet of the image. These methods then compare the facet values to 

obtain the quality of the pattern. Global metrics are based on all of the pixels in the images 

with some feature of the pixels. Some of the features DIC pattern metrics can rely on are 
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intensity gradients, color contrast, and entropy of the pixels. All of these metrics follow the 

process of identifying the features at every pixel and averaging them across the facet in 

local metrics and the image in global metrics to determine a single value to compare the 

patterns. Global metrics are more convenient because the metric breaks down to one 

number. The local metrics break down to several numbers corresponding to each facet. 

Mean Intensity Gradient (MIG) is defined in equation (2.39) where fx gradient in the x 

direction, fy gradient in the y direction, M is the width of the image or subset, and N is the 

height of the image or subset [187].  
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The sum of square of subset intensity gradient is shown in equations (2.40) and 

(2.41) where the variables are the same as equation (2.39) [187]. 
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The entropy metric can be calculated using equation (2.42) where IP is the intensity 

of the current pixel, Ii is the intensity of each neighboring pixel, n is the number of 

neighbors, and M is the width of the image or subset, and N is the height of the image or 

subset [187]. 
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In all of the metrics described, the M and N can be either the image size or the 

subset size for the global or local metric respectively. Though the quality of the speckle 

pattern is very important parameter that determines the quality of the image measurements, 

the facet size and spacing used in the DIC software are also very important to the 

performance of the algorithm. The facet or subset size should be able to encompass at least 

3 speckles. The speckles should be between 3 to 5 pixels in size to achieve good 

measurements of displacement. The facet size is the size of the neighborhood around each 

measurement point. Large facet sizes result in higher accuracy, but also average out the 

localized displacements. Smaller facets achieve better local measurements, but tend to add 

more noise to the displacement field. Therefore, when local displacement measurements 

are required, the smallest facet size possible is desirable, but when local displacement 

measurements are not as important, larger facets may be desirable. The spacing is how far 

away each facet center is from the neighboring facet center. The spacing is important 

because too much facet overlap results in high computation time and too little overlap 

results in poor measurement quality. A diagram of facet overlap and size is shown in Figure 

32.  

 

 

Figure 32. Two adjacent facets with at least 3 speckles and (a) 90% overlap, (b) 50% 
overlap, and (c) 10% overlap. 
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Each facet is tracked individually with a DIC algorithm. There are many ways to 

perform DIC and different metrics to determine how correlated a facet is in the new image. 

In addition, the choice of a shape function will also determine the performance of the 

algorithm. In general, the commercial DIC systems do not provide the shape functions 

used, but they generally use high order shape functions for high quality measurements 

[180]. The shape functions determine the quality of the measurements between the facet 

center points. In Figure 33, P(x0, y0) is the point in which the measurement for the facet 

deformation is taken [179, 180, 184]. Point Q(xi, yi) must be interpolated between 

neighboring facets using a shape function [179, 180, 184]. If one facet was used for every 

pixel in the image, the interpolation would only be required for locations between pixels, 

but since this is computationally inefficient and it is expected that neighboring pixels move 

in the same direction, subset overlap is usually set to between 40% and 60%. This ensures 

that enough measurement points are calculated to achieve good full field displacements, 

while still being computationally practical. 

 

 

Figure 33. Undeforemed and Deformed subset with two corresponding points [179, 
180, 184].  
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2.4.8 Civil Applications 

Photogrammetry has been used to measure structural deformation in lab scale 

experiments as well as field experiments [103, 188]. It has been used to measure 

deformation of wind turbine blades and many other applications [170]. Full field DIC 

techniques have been applied to walls and buildings to perform experiments simulating an 

earthquake [18, 182]. DIC has also been used to obtain deformation measurements of 

railroad ties under loading [189]. Structure from motion has been used to model bridges 

and buildings [28, 92, 190]. The noncontact nature of these methods has major advantages 

compared to contact systems which could make them more attractive for use in the field in 

the future.  

2.5 Multispectral and Hyperspectral Imagery 

2.5.1 The Electromagnetic Spectrum 

Multispectral imagery is a subset of light ranges that are collected by imaging 

sensors to provide multiple channels within the image. For instance, a red, green, and blue 

(RGB) image obtained from a standard camera is a multispectral camera with three 

channels. Multispectral cameras can have many channels at different wavelengths of light. 

One of the challenges associated with multispectral imagery is that features in one band 

can appear in the other bands as well which can make identification of objects within the 

images difficult. Hyperspectral imaging is different because it collects many channels with 

very small, targeted ranges light wavelengths that do not overlap [191]. This eliminates the 

problem associated with crosstalk between bands of the multispectral imagery, but requires 

many bands which make the images more difficult to capture and require higher amounts 

of storage for the data. Many platforms have been used for hyperspectral imagery with 
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varying resolution and mobility [192]. Figure 34 shows the electromagnetic spectrum and 

highlights how small the range of wavelength is for visible light.  

 

 

Figure 34. Electromagnetic Spectrum [193] 

 

2.5.2 Resolving Power 

The angular resolution determines the minimum power of the optics to resolve a 

feature in the image. The Airy disk is defined as the first dark ring in the Fraunhofer 

diffraction pattern [194]. The Airy disk is determined by equation (2.43) [194] where J1(x) 

is the first-order Bessel function, θP is the angle, λ is the wavelength, I0 is the intensity at 

the center of the disk, and a is the size of the aperture. 
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Diffraction only becomes a concern for very small apertures or very small image 

sensors resulting in small pixel sizes. The optimal aperture diameter (D) can be calculated 

using equation (2.44) where c is a constant, f’ is the effective focal length and λ is the 

wavelength [195]. 

 'D c f    (2.44) 
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When the optimal diameter is compared to the actual diameters used to capture 

images, the resolution is generally not limited by diffraction for visible light. Most of the 

time, blur is related to the camera parameters and focus of the image planes. For longer 

focal lengths however, the airy disk can cause blur due to diffraction for small apertures or 

long wavelengths. The airy disk equation is shown in equation (2.45) [194] where f’ is the 

effective focal length, λ is the wavelength, D is the aperture diameter and d is the diameter 

of the airy disk. 
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When the diameter of the airy disk is the same physical dimension of the pixel on 

the image sensor, additional pixels will not provide higher resolution. Figure 35 shows the 

size of the airy disk for different wavelengths calculated using equation (2.43).  

 

Figure 35. Airy disk size for different wavelengths of light calculated from equation 
(2.43) 
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The size of the disk is much larger for longer wavelengths showing that their power 

to resolve objects is lower than that of shorter wavelengths. In some cases, resolution is not 

the only reason for using light of shorter wavelength such as measurement in high 

temperature applications, but it can also be used to increase resolution of the camera system 

if the system is in a diffraction limited case [194, 196]. A better illustration of how smaller 

wavelengths can achieve higher resolving power is shown in Figure 36. The distance from 

the center of each peak is 50 micrometers and the wavelengths are 400nm and 750nm. The 

blue and red dots show where the airy disks cross for each wavelength. It is clear that there 

is better separation for the shorter wavelength showing that it has better resolving power.  

 

Figure 36. Resolving for opposite ends of the visual spectrum for UV in blue and IR 
in red. 

 

2.5.3 Light Filters 

Another sensor parameter that is vital to the output of the sensor is the choice of 

light filter and the choice of monochrome and color sensors. Light filters are usually put 
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into place to eliminate the light outside the visible range before it reaches the sensor [197]. 

The glass lens also can serve as a filter for ultraviolet light [198]. The different filters can 

be used to produce different imaging effects that can be used for many different 

applications. The sensors themselves are more sensitive to different bands of light and if 

the filter and sensor are tuned to a specific band of wavelengths, the results are generally 

better. It is possible to convert a standard color camera to allow near infrared light to 

appear, however it is not possible to convert the camera into an infrared camera because 

the visual light sensors are not sensitive to infrared light  [197]. 

2.5.4 Infrared Thermography  

Infrared thermography can capture temperature data (also known as radiometric 

data) using infrared light which is emitted from the surface. Infrared thermography has 

been leveraged for a number of applications from health and medicine to maintenance and 

inspection [199-201]. One important parameter that effects this method significantly is 

emissivity (ε(T)), defined in equation (2.46), which is the ratio radiation emitted by a 

material (E(T)) and the radiation emitted by a blackbody at the same temperature (Eb(T)) 

where T is the temperature in Kelvin [202]. 
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E T
T

E T
    (2.46) 

The power emitted from a blackbody is defined by the Stefan-Boltzmann law 

shown in equation (2.47) where σ is the Stefan-Boltzmann constant (5.67*10-8 Wm2K-4) 

[202]. 
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Planck’s law is defined below as a distribution of emitted power shown in equation 

(2.48) where C1=3.742*108 W* µm4/m2 and C2=1.439*104 µm*K [199, 202]. 
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Infrared sensors that are used in infrared cameras measure the amount of infrared 

photons that hit the detector which is effectively a measurement of the radiation emitted by 

the material. This can then be extrapolated to determine the temperature in the scene. The 

problem with this approach is the different emissivity values. If the emissivity of the 

material is well known, this is not a problem, but in many cases, the emissivity is unknown 

which can cause errors in the temperature measurement. Some infrared cameras do not do 

this process and result in images of the infrared spectrum which are scaled to appear nicely 

in the image using some of the techniques used in section (2.3). Infrared cameras that do 

use this process result in radiometric data which correspond to temperature measurements 

of the scene. This information is useful for many applications [199]. 

2.5.5 Civil Applications 

Multispectral imagery outside of the visual spectrum has been limited to mainly 

infrared use due to the ability to convert the response on the sensor to temperature 

measurements. Infrared thermography has been used to identify grouted areas in a masonry 

wall [203]. Passive infrared imagery has also been used to identify delaminations in a 

bridge deck [204, 205]. Furthermore, active infrared has also been used at the structural 

level to identify damage [206]. Infrared imagery has also proven useful for identifying 

areas on interest in powerlines [89, 207]. Infrared thermography has also been useful for 

building inspection using aerial vehicles as well as ground based techniques [208-210]. 
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Though infrared has been the most widely used, in the future, different bands of light could 

add value to the SHM cycle.  

2.6 Summary 

The techniques presented in this chapter have been used in the research described 

in the following chapters and many research areas in the context of SHM. Image analysis 

techniques have been used for damage identification and measurement of measurements 

[99, 165, 173, 211-213]. Reconstructions from imagery have proven useful for many civil 

applications for mapping and analysis of damage in a global context [28, 37, 214]. The 

remote sensing and data analysis has the potential to revolutionize the field of SHM in the 

future [5]. Robotic platforms have the potential to aid in this goal and UAS in particular 

have the unique ability to access difficult to reach areas of the structure [215, 216]. Chapter 

3 describes the objective of the research described in this thesis and the approach used to 

accomplish these goals.   
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Chapter 3 Objective, Hypothesis, and Approach 

 

3.1 Research Objective 

The objective of this thesis is to develop and validate techniques for acquiring 

useful information from unmanned aerial system (UAS) remote sensing platform to aid in 

the rapid and automated evaluation of infrastructure. The research described in this thesis 

is geared towards Structural Health Monitoring (SHM) applications with a particular 

emphasis on the types of materials and components found in transportation bridges and to 

some extent in buildings. This undertaking is crucial to determine how effective a UAS 

platform can be as a future inspection tool to provide decision makers with fast, reliable, 

and useful information to make more informed decisions about repair in a situation with 

limited resources.  

The use of UAS for the purposes of bridge inspection is not new and there are 

several companies that are using UAS as data collection platforms [11, 30, 95, 217-219]. 

Furthermore, UAS have been used for the inspection of other types of infrastructure 

including pipelines [88], buildings [109, 152], power lines [89], and many others [220]. In 

addition, multispectral imagery has been used in many fields from the health of agriculture 

[221] to the mapping of terrain using satellites [191]. However, the biggest gap in SHM is 

obtaining information from the data acquired by any sensor [222, 223]. Hence, the research 

in this thesis focuses on the important step of acquiring data using UAS platforms, however 

it also emphasizes on the necessary processing of such data to help obtain useful 

information in the context of defects and damage commonly found in civil infrastructure.  
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The challenges associated with SHM in general are related to creating information 

from data across all of the monitoring and NDT techniques used. All of this information 

must result in an informed decision on how to maintain the structure. There is no single 

technique that can be used to determine what the structure needs to be properly maintained 

so that failure does not occur. Using UAS as an inspection tool will also not completely 

solve this problem, however, the data acquired from UAS can be further processed using 

developments found in related science and technology fields including remote sensing, 

digital signal processing, computer vision, and machine learning to provide more 

information more frequently which is a major benefit to the current state of practice. In 

many cases, inspectors take a diagram of the structure and draw on it to localize where the 

damage exists and mark in detail what they see. Though this is very reliable, it is also time 

consuming and very dependent on the experience and dedication of the inspection 

personnel. In addition, if a different inspection crew is used during the next inspection, it 

is often the case that the old information is not leveraged effectively. Intelligent acquisition 

of data and data processing have the potential, therefore, to revolutionize the way data is 

analyzed in an SHM setting with the use of robotic systems such as UAS. The Robotic 

Assisted Bridge Inspection Tool (RABITTM) and Targeted Hits to Measure Performance 

Response (THMPR), shown in Figure 37, are examples of how such robotic platforms are 

currently being utilized on structures to provide both data and information on the 

performance of the structure [20, 224]. Since UAS are noncontact sensor platforms, the 

challenges include collection of data, organization and visualization of data, missing data, 

and most importantly analysis of data. This thesis primarily focuses on the visualization 

and analysis of the data collected by UAS. 
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Figure 37. (a) RABITTM and (b) THMPR 

 

3.2 Targeted Hypotheses 

Three main hypotheses are explored in this thesis including that UAS can assist: 

(1) the identification of damaged areas on structures and present locally acquired data in a 

global perspective to automate detection and visualization, (2) the measurement of 

deformation in locations of interest, and (3) the demonstration that multispectral imagery 

can further assist in the quantification of deformation at different scales. The first 

hypothesis is explored with the intention to make the process of damage identification more 

automated and assist towards reliable and rapid damage localization, which is an important 

problem due to the complexity and length scales associated with infrastructure. The second 

hypothesis is interesting to explore as it aims to measure deformation solely using remote 

sensing platforms to drastically  limit the need for installing sensors in difficult to reach 

areas of the structure, addressing a key factor that results in time and labor demanding 

SHM practices. The final hypothesis is made to extend the previous two by addressing the 

needed for reliable measurements at different distances to the target which is an advantage 

and currently a great challenge in the field of UAS due to their inherent navigation, control 

and sensing characteristics.  
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Both qualitative and quantitative measurements using computer vision, optical 

metrology, and computational modeling are needed to address these hypotheses, as 

outlined in Figure 38. Hence, the research challenges that are targeted in this dissertation 

include:  (1) the identification of surface and subsurface defects and damage, (2) display 

local information on the global scale of the structure by stitching related information, (3) 

remotely measure deformation of structural elements using imagery, (4) isolate the 

movement of the UAS from the movement of the structure, (5) demonstrate that the 

technique will not hinder the current state of practice of visual inspection, (6) demonstrate 

that measurements can be obtained from multiple distances to the structure.  

Figure 38 shows the general goals for the future of SHM leveraging UAS, starting 

with the communication and control of the system and ending with quantitative analysis of 

the data acquired leveraging computational models. Communication and control have been 

addressed in many senses with GPS and IMU systems, but more advanced control systems 

leveraging 3D SLAM or other high accuracy positioning systems without relying on GPS 

in the future will further extend the capabilities of UAS, particularly around civil structures 

were GPS can be unreliable. Remote sensing systems are very important to many 

applications within SHM, but are the most important sensors required for UAS. These 

systems acquire a lot of data quickly and though they are less accurate and often qualitative, 

they do not require installation when placed on a mobile platform and have the ability to 

point inspection personnel in the right direction for a more detailed analysis with a contact 

method. The big advantage of remote sensing in acquiring a lot of data is also a hindrance 

because it takes time to analyze the data. Therefore, signal processing and computer vision 

can be leveraged to automate this process. Optical metrology can further extend the 
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qualitative nature of images into measurements leveraging digital image correlation and 

photogrammetry. These measurements can then be used to update a computational model 

and aid in the decisions for maintenance and repair. 

 

 

Figure 38. Future goals for UAS SHM 

 

3.3 Challenges Addressed 

3.3.1 Identification of Surface and Subsurface Damage 

One of the biggest challenges that has kept image based remote sensing from 

widespread application in the field of SHM is the problem of extracting information from 

images. Images are generally only taken at locations were damage is identified during an 

inspection. This is important information, but different damage types have been commonly 

identified manually while they further require specific technical expertise to detect them. 

If a remote sensing platform is used to capture many images of the structure, damage would 
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also have to be manually identified in the images so no benefit is really gained. However, 

if the damage is identified automatically through the use of image processing and computer 

vision algorithms, the damage information can be immediately sent to the decision makers 

without the need to manually identify and document each area of damage. Furthermore, it 

could allow for direct comparisons to previous inspections.  

The identification of surface and subsurface damage are described in Chapter 4 and 

Chapter 5. Chapter 4 introduces the developed post-processing algorithm used with UAS 

imagery to identify cracks leveraging the color and the gradients associated with the crack 

pixels. It also introduces the identification of corrosion using color and the k-means 

clustering algorithm. The results were compared to manual identification. Chapter 5 

explains the identification of subsurface delaminations in a simulated bridge deck using 

UAS imagery. The algorithm takes another step to estimate the size of the delamination 

using the width of the deck as a reference. 

3.3.2 Global Map of the Structure 

Most images that are taken during an inspection are for documentation purposes 

only and do not give a good representation of the health of the structure because they are 

generally sparse due to length scale of the inspected structures. If the inspectors do not take 

careful notes on where the image was taken, then the collected images are useless 

regardless of whether or not they reveal damage.  Chapter 4 and Chapter 5 explain the 

benefits to capturing images all across a bridge deck for the identification and localization 

of damage. The results of the test are the identification of damage and display on the global 

view of the structure such that the damage information is useful to the user.  The challenges 

with creating the map can be mitigated with appropriate stitching software in some cases 
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such as Microsoft ICE [225], or in a more general case using  VisualSFM [176]. In this 

thesis, an algorithm was developed using the output of VisualSFM to fit a plane to the 

structure and project the images taken in the field onto the plane. This development solves 

the problem of errors associated with the data capture of the UAS caused by UAS location 

errors. This method was further used to display damage information on the image mosaic. 

3.3.3 Measurement of Deformation of Structural Elements using Imagery  

Deformation of structural elements is an important metric for determining their 

overall health. It can be further used to determine if the structure is moving more than it 

was designed for, estimating the stiffness loss from a previous inspection, and thus it can 

help determine the cause of problems associated with the structure. Standard string 

potentiometers do an excellent job in determining the displacement of the structure at 

specific locations, however these systems require a ground reference which can be difficult 

to install. Additional issues with noise that appear due to environmental factors, such as 

wind, for instance when the cable connecting the sensor to the structure is long. Wireless 

and noncontact laser sensors have been applied, however they are generally expensive and 

have other problems associated with them such as range and power consumption.  Chapter 

6 explains how static and UAS imagery can be used to obtain remote deformation 

measurements of structures.  Both fiducial point-based methods and full field techniques 

are used to determine deformation of beams in a laboratory environment. The point-based 

method can obtain point results directly comparable to displacement gauges. Full field 

techniques using digital image correlation (DIC) provide a range of values across the 

structural element which can be more useful for analysis. 
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3.3.4 Isolation of UAS Movement 

In order to obtain measurements or relative measurements of a structure, a reference 

must be used to determine the exact position of the UAS. In Chapter 6, a static scale bar 

was placed in the scene which remained fixed throughout the test. This was required in all 

of the measurements obtained with a UAS. This is one major challenge to the application 

of this technology in the field, however it still has the ability to provide full field 

measurements which is an improvement over displacement gauges which also need a 

ground based reference. 

3.3.5 Invisible Speckle Pattern 

Another challenge associated with placing patterns or fiducial markers on a 

structure is the need to not hinder the process of current inspection methods.  Applying a 

speckle pattern to a structure will make it difficult for inspection personnel to identify 

surface damage such as cracking. The simulated example shown in Figure 39 demonstrates 

this concept. The random pattern shown in (a) hides the crack as shown in (b) which can 

easily be identified in (c). In this context, work towards an “invisible” speckle pattern using 

multispectral imagery outside the visual range is explored in this thesis. This will be of 

vital importance to the implementation of such a technique to in service structures. 

 

Figure 39. a. Random speckle pattern. b. Same speckle pattern with crack. c. Crack 
without speckle pattern. 

 



Chapter 3  | 87 
 

 
 

3.3.6 Multiscale DIC Measurements 

The need for an “invisible” pattern also leads to the conclusion that if a UAS is used 

to measure deformation using DIC, the optimal speckle pattern cannot be achieved when 

the UAS is flying at a different distance. This leads to the presentation of the multiscale 

multispectral DIC approach using different bands in the electromagnetic spectrum to 

produce multiple speckle patterns that are optimized for different distances from the target. 

This makes it possible for a UAS to fly further from the structure, determine an area of 

interest, and then fly closer to the structure to obtain a more fine measurement of the 

structure using a smaller speckle pattern optimized for the shorter working distance.  

 

 

Figure 40. Multiscale speckle pattern optimized for specified distances 

 

3.4 Technical Approach 

3.4.1 Unmanned Aerial System 

Multirotor systems were the types of UAS chosen for this research. They are easier 

to fly than many other systems, relatively stable with the use of flight controls, and they 

are capable of hovering in roughly the same location using position control. They can also 

carry multiple different remote sensing payloads. The exact UAS used in this dissertation 

are shown in Figure 41. 
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Figure 41. UAS used for this research (a) Commercial Parrot AR (b) DJI Phantom I 
(c) Constructed F450 (d) Commercial F550 (e) Commercial Tarrot 650 (f) 

Commercial Skyjib X4 (g) Constructed with Piasecki Aircraft Corporation. 

 

For multirotors, the thrust to weight ratio should be between 2 and 3 in order to 

control the system since it uses the different motors to control pitch, roll, and yaw. When 

designing a system, it is important to determine the weight of its individual components 

and the amount of thrust that must be produced to lift the system and payload. In general, 

larger propellers produce higher amounts of lift. In order to spin those larger propellers, 

though, larger motors are also needed. All of the systems used for the research presented 

in this thesis used brushless motors which cannot directly run on the output from batteries. 

Hence, Electronic Speed Controllers (ESCs) were used as well, rated for the highest 

number of amps they can send to the motor. The batteries have a C rating which determines 

how much current they can discharge. All of these parameters had to be used to design the 

power systems of each UAS. The UAS shown in Figure 41 (a), (b), and (c) were limited to 

indoor use and relied on 3s batteries for power. The UAS in Figure 41 (d) used a 4s battery 

and Figure 41 (e), (f), and (g) used 6s batteries. The ESCs were all overdesigned to ensure 

the motors would not be limited during flight due to current throughput. Figure 42 shows 

the full electronic diagram of the UAS shown in Figure 41 (g). 
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In Figure 42, there are 8 motors and 8 ESCs, but for other multicopters, it is possible 

to use fewer. The colors of the dashed bocks correspond to the colors of the components in 

Figure 10 and Figure 11. This was the largest system designed and manufactured. The 

Pixhawk flight controller, GPS, and telemetry were used to control the UAS. It is the same 

flight control system used for the UAS in Figure 41 (c).  

The systems used indoors did not leverage the GPS sensor. An optical flow camera 

was used for position control for the UAS in Figure 41 (a) and (c). The optical flow camera 

faced down for both systems and requires an ultrasonic sensor to estimate the height of the 

system. When used to hover, the sensors assume the height does not change and the motion 

of the system in horizontal and vertical directions determined from the camera are used to 

send a signal to the flight control to keep the system in the same position. In general, the 

ultrasonic sensors on these systems are only good for a few meters so optical flow breaks 

down at higher altitudes. Optical flow also requires that the ground below the system have 

significant texture to correctly estimate the movement. 

 

Figure 42. Electronic schematic of the UAS 
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3.4.2 Sensing Systems 

There are many types of sensors used for SHM applications. Some contact sensors 

include strain gauges, accelerometers, and displacement gauges. Remote sensing systems 

including cameras, LiDAR, and wireless sensors. The systems used for this research were 

primarily different types of camera sensors and were validated with contact sensors as well 

as commercial imaging systems.  

A Sony Nex 7, Sony a6000, Canon PowerShot Elph130 IS, and a GoPro Hero 3+ 

were the color cameras used for the experiments. Each of these systems were chosen for 

different experiments for different reasons. For instance, the GoPro camera is very 

lightweight, durable, and can be controlled from the ground so it was useful in experiments 

that required a UAS. The Sony cameras are of much higher quality, but they are much 

heavier and were therefore used as validation sensors. The Canon was a camera that had 

specifications which placed it in between the GoPro and the Sony. It was also more difficult 

to be integrated with a UAS and was heavier than the GoPro, but it was possible to control 

the camera from the ground using the remote control used to fly the UAS by mapping a 

switch to the channel in the flight controller that was attached to the camera. In addition, 

the Canon hack development kit (CHDK) was used to set up the image capture system 

[226].  

A FLIR 325sc, FLIR Tau2, and ICI9320 were the infrared cameras used for the 

experiments. The FLIR 325sc has better sensitivity and outputs radiometric temperature 

measurements, however it is also very heavy. It was used mainly as the validation camera 

for the FLIR Tau2 and ICI9320. The FLIR Tau2 does not output temperature 

measurements, but captures video at 30fps and is lightweight. It was used in several test 
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flights on a UAS. The ICI9320 camera was also used on a UAS and does output 

temperature measurements. The camera was used with a UAV module which allowed for 

the remote capture of images at a maximum of 1 image per second.  

An X-Box Kinect was also used during some of the experiments to simulate a 

LiDAR system. It is significantly less expensive than other LiDAR systems and provides 

similar information. Another advantage of the X-Box Kinect is that the sensor has a color 

camera and a distance map to each pixel in the image. This allows for 3D measurements to 

be obtained leveraging the two sensors.  

3.4.3 Applications 

The applications of the technology explained in the previous sections are focused 

on structural assessment in both lab and field settings targeting bridges, however the 

methods and applications developed can be extended to buildings, as well as other 

infrastructure examples including powerlines, telecommunication antennas, wind turbines, 

pipelines, storage tanks, etc. The systems were applied to indoor structures including 

building walls, cantilever beams and a model of a metallic bridge deck grid to control some 

of the parameters involved in such measurements. The experiments performed in the lab 

with UAS were limited to the smaller UAS shown in Figure 41 (a), (b), and (c) due to space 

restrictions. The outdoor experiments using the UAS were performed on a simulated bridge 

deck with manufactured defects that was used to test different methods used for NDT. The 

experiments what were performed in the field did not use UAS for legal and safety reasons.  

3.4.4 Software 

There were several sets of software used to perform the experiments presented 

herein. MATLAB was the primary software used for the image analysis algorithms. 
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ABAQUS was used to perform all of the finite element analysis. LabVIEW was used for 

data acquisition for the traditional sensors used for comparison. Furthermore, the 

commercial optical metrology systems used for the experiments were ARAMIS for full 

field DIC and TRITOP for photogrammetry, both developed by GOM.  

3.5 Thesis Results Overview 

The results presented in this thesis are broken into three parts:  (1) identification of 

damage, (2) deformation measurement, and (3) multispectral approach to deformation 

measurements.  

3.5.1 Identification of Damage 

The identification of damage relies on image processing for structural element 

identification and localization, identification of damage such as cracks, and quantification 

in the form of a size estimation. The combination of different types of imagery is expected 

to provide a more complete idea of the health of the structure. In the case of bridge deck 

delaminations, it is important to distinguish between surface artifacts and subsurface 

defects. A combination of the color and IR images will be used to identify the surface 

damage and use them to eliminate false positives in the IR imagery. The plan for damage 

identification is displayed in Figure 43. 

Surface damage identification for crack identification and the processing associated 

with creating an image mosaic to create the context for the damage is presented in Chapter 

4. Chapter 5 demonstrates the use of infrared imagery with both radiometric and 

nonradiometric data for automated identification of delaminated areas in a bridge deck. 

These techniques were also demonstrated in a field setting on a ground platform to prove 

the concept. 
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Figure 43. Framework for damage identification 

 

3.5.2 Deformation Measurements 

The measurement of deformation using target based photogrammetry first 

identifies the targets on the structure in multiple images, calculates the 3D coordinates of 

each point, then the structure was loaded and a second measurement was collected and 

compared to the first. The points of interest were fixed markers used as references for 

deformation and the remaining markers were used as deformation measurement points. 

The measurement points were either moved by a predetermined amount or had a 

corresponding, high accuracy, measurement systems associated with each marker which 

were used to assess the results of the methods. Figure 44 shows the plan of action for the 

measurement task. 
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Figure 44. Framework for measurement and update 

 

3.5.3 Multispectral Approach for Multiscale and Selective Imaging 

A major goal in this task is to identify paints and tailor multiple speckle patterns 

for a specified working distance to perform deformation measurements. An example of a 

multiscale pattern is shown in Figure 45 where the red dots are visible at the closer distance 

shown in (a) and the red dots are not visible from the farther working distance because of 

aliasing shown in (b) [227]. 

 

 

Figure 45. Multiscale speckle pattern (a) close working distance and (b) far working 
distance [227]. 



Chapter 3  | 95 
 

 
 

Multiscale speckle patterns can be accomplished in multiple ways, but the approach 

chosen was to paint a fluorescent paint on top of the initial speckle pattern in order to help 

distinguish the two patterns more easily. This could also be accomplished by tailoring a 

material to only appear in predetermined wavelengths of light, but would also require the 

analysis of the resolution of the camera based on the wavelength chosen. Figure 46 shows 

the framework for collecting and analyzing the multispectral imagery. 

 

 

Figure 46. Framework for multispectral imaging 
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Chapter 4 Surface Damage Identification 

 

4.1 Introduction 

Aerial image collection has been demonstrated for both military and civil 

applications, but commonly provides only qualitative assessment completed by users, often 

with manual identification. The representative tests herein are designed to demonstrate that 

both automated qualitative identification and quantitative measurements can be attained 

through UAS imagery. Specifically, identification and quantification of corrosion areas and 

their size, as well as localization of cracks leveraging images collected by ground and UAS 

based platforms are presented in this chapter, since these surface defects are commonly 

found in infrastructure. The obtained results demonstrate the usefulness of UAS acquired 

imagery for SHM applications. Furthermore, visualization of the damage information 

obtained from an in service structure is also presented in an image mosaic manner, to assist 

with the task of data handling and their presentation. 

Surface damage can take many forms, shapes, and sizes and can arise from different 

sources. In addition, many issues may affect aerial imaging such as shadows, paint, and 

debris. These challenges make automated identification of damage in imagery an open area 

of research [40]. Despite the challenges, aerial imaging is a technique that can be applied 

to many types of infrastructure such as buildings, roadways, pipelines, and bridges [105, 

220, 228]. Visual inspection of masonry buildings, for example, has been conducted with 

a focus on obtaining clear images and video while flying [92]. In terms of on-going 

research, the flight path of a UAS has been investigated to determine ways to minimize the 

effect of varying light conditions and blurring caused by wind moving the system during 
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image capture [30]. In addition, the application of three dimensional (3D) sensors on a 

UAS platform have been proposed with the objective to create 3D maps of building facades 

[91]. Furthermore, utilizing image processing and identification, 3D models have been 

extracted from imagery at both small and large scale [28, 29]. Specifically, the 

identification of the global location of damaged areas is crucial to e.g. inspection personnel 

and decision makers. In addition, damage location often must be properly documented by 

inspection personnel in order to make use of the information. The same concept applies to 

images obtained by UAS [229]. If the image provides no context as to where it was taken 

from or to what exact location on the structure and within the field of view it corresponds 

to, then it is practically useless for inspection purposes. Furthermore, images and video on 

a structure obtained by UAS can be disorienting when being viewed after the flight and 

therefore, an automated method for easier visualization is necessary to make use of such 

data [215]. In this direction, several image panorama, mosaic, and stitching algorithms 

have been developed using different assumptions and types of camera movement [149]. In 

such approaches, the presentation of the data acquired is the most important part to convert 

it into useful information to decision makers which is a major goal of SHM [223].  

Cracks constitute a common form of damage in many structures and for this reason, 

several methods for image based crack detection have been researched [230]. Examples of 

semi-automated approaches include the fly fisher and route finder algorithms which require 

user input for each crack to find the path of the crack given the two endpoints [231]. The 

percolation approach has also been used successfully to identify cracks using a region 

growing algorithm to eliminate background pixels by assuming all foreground darker 

pixels are cracks [130]. Furthermore, periodic image noise removal has been used for crack 
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identification using Fourier transform [232].  Moreover, edge detection approaches have 

been implemented for many purposes including crack identification since they are capable 

of highlighting areas of high gradients within the image [233, 234]. In this context, the 

Prewitt edge detection method was modified to identify cracks by attempting to fit lines on 

the crack path [235]. A multi-resolution Laplacian edge detection method was explored by 

Pei et al [236].  In addition, Zhang and Li et al. used a matched filtering algorithm 

developed by Chaudhuri et al [237] for blood vessel identification in retinal images which 

uses predefined filters at varying orientations to identify pavement cracks [238]. Tensor 

voting has also been applied to identify crack connectivity while shadow correction was 

additionally used to improve the results of this method [239, 240]. Besides cracks, image 

processing techniques have also been applied for corrosion monitoring [151, 241]. 

Identification using color was suggested to determine if blasting was required [242].  

Object identification using UAS imagery for infrastructure purposes is also an 

active area of research [216, 243]. In this area, a morphological and thresholding methods 

have been used to identify cracks on a masonry building from UAS imagery [87]. Active 

contours, edge detection and morphological operators were also used to identify cracks in 

a competitive study with UAS imagery [244]. For example, edge detection was used with 

UAS to identify cracks in buildings and bridges [11, 109, 152], as well as for crack 

identification on steel structural elements [245]. Reagan et al. demonstrated that full field 

displacement measurements obtained with stereo cameras on a UAS could be leveraged to 

obtain crack opening and closing [246, 247]. UAS have been used to identify problem spots 

in unpaved roads [248, 249]. The use and effectiveness in the identification process of these 

algorithms depends heavily on the objects being identified, on the dataset in which the 
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algorithm applied, and the environmental conditions during the experiments, but each of 

the developed methods have shown great promise in identifying areas of interest for further 

analysis or repair. Furthermore, algorithms developed for UAS applications can be used on 

imagery obtained by other robotic platforms or by inspection personnel. 

For the experiments explained in this chapter, images were obtained statically on 

the ground as well as in the lab with a UAS. The UAS images were saved onboard and 

post-processed for the experiments described. The experiments that leveraged UAS in this 

chapter were performed indoors where GPS signal was not available to provide position 

information. It should be noted that the analysis techniques presented do not depend on the 

sensor position. However, if the reported measurements were performed outdoors using a 

UAS equipped with high accuracy GPS and appropriate gimbal units, it would be beneficial 

to have the additional, high fidelity, position information at the time of image capture. This 

would allow for additional information including time stamps, position coordinates, and 

the specific angles at which the images were taken, which could all be leveraged in the data 

processing and future inspections. 

4.2 Preprocessing 

As with all cameras, lens distortion correction was required for all images used in 

this chapter. It should be noted that the GoPro lens causes significant lens distortion due to 

its 170º ultra-wide angle lens with a focal length of 2.3mm. The GoPro camera had a lens 

and camera settings that could not be changed. The camera calibration algorithm described 

in section 2.4.3 was leveraged, using 50 images of a checkerboard with the camera 

locations displayed in Figure 47. The algorithm allowed the user to analyze the error of the 

model for each image using the known locations of the corners of the checkerboard. Three 
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standard deviations were used to analyze the error and each of the error parameters was 

reduced to less than one pixel after the error analysis, which resulted in sufficient quality 

to measure objects in the corrected images. Ordinarily, cameras with a smaller field of view 

and a longer focal length will have errors less than one pixel on the first or second attempt 

because the distortion is less severe than with wide angle lenses. In this case, the error 

analysis required several attempts to reduce the error associated with the parameters.  

 

 

Figure 47. Camera calibration result for the GoPro camera [159] 

 

After the equation was determined from the algorithm, it could then be applied to 

new images captured with the same camera and lens system to correct for the lens 

distortion. For example, the improvement in Figure 48 (b) is clear especially around the 

edges of the image.  
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Figure 48. Results of GoPro lens distortion correction 

 

The lens distortion corrected image appears to have less field of view than the 

original image. This is due to the edges of the images obtained by this camera were cropped 

to remove black portions that were caused by sections of the original image that were not 

mapped into the field of view of the corrected image. The Parrot AR 2.0 camera parameters 

also could not be changed and consequently the lens distortion associated with the camera 

also had a large amount of distortion. Hence, the same method was used to also correct 

these images. The next step in preprocessing of the images was to apply the homography 

matrix, explained in section 2.4.4, to project the image onto a plane within the image, which 

was required to obtain the correct size of the identified damage.  

4.3 Corrosion 

Corrosion is a type of damage that affects many types of infrastructure. This type 

of damage has been identified using images combined with machine learning based on a 

robotic platform [242]. This type of damage is particularly difficult both in terms of 

identification and measurement based on imagery because it does not have a predefined 

shape or size associated with it and can often blend into the background of the images. 

Though color is an easy way to detect this type of damage, it is a difficult metric to apply 

as a threshold because different lighting conditions change the range of colors the camera 
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captures. Therefore, a threshold that appears to work well in one image or image set may 

not work well in another of the same scene. 

In order to simulate the corrosion in the lab, an image of an actual corrosion was 

found online [250], printed, cut out to fit the size a steel grid, and taped on the grid to 

simulate a corrosion location on the steel beam that changes over time. The UAS used for 

this experiment was a DJI Phantom I in stabilize mode with a 10MP GoPro Hero 3+ Silver 

edition fixed to the bottom of the system. The images were acquired manually with the 

cellular phone application. The pilot controlled the UAS to ensure that it was hovering next 

to the grid while taking images of each stage. After landing the system, the simulated 

corrosion was removed and resized two more times to become smaller and the process was 

repeated. Two representative images obtained from the UAS during the flight are shown 

in Figure 49. 

 

 

Figure 49.  Corrosion setup on steel grid.  (a)  Image of the larger corrosion.  (b)  
Image of the smaller corrosion [251].   

 

The purpose of this test was to identify and obtain size estimates of the corrosion.  

The images of the corrosion shown in Figure 49 were enlarged and highlighted in the red 
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boxes to show the area of interest during the experiment and highlight that the corrosion 

size was changed. Both manual and automated methods were used to determine the size of 

the corrosion in the UAS images. The manual measurements were completed by counting 

pixels in the image that appeared to be the corrosion and the automated method used the 

K-means algorithm to select the areas of corrosion. The images were corrected for lens 

distortion while the bearing plates were used as the reference measurement and for the 

homography matrix calculation. A ruler was used to determine the actual corrosion size, 

which is actually the way that such measurement would be performed during an inspection. 

Measurements using the UAS imagery were made by placing the simulated corrosion on a 

high contrast background and taking a high resolution image perpendicular to the surface 

with a ruler in the image. An example of the ground truth images are shown in Figure 50 

where Figure 50 (a) shows the image and Figure 50 (b) shows the mask used to determine 

the area of the corrosion. 

 

 

Figure 50. (a) Example of image used for the exact measurement and (b) the 
processed image used for size estimation 

 

Table 3 shows the results of the corrosion experiment where the small corrosion 

was assumed to be the initial state for all of the measurement types. The UAS manual, UAS 
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k-means, and the static measurements measured the area in pixels and converted the pixel 

measurements to millimeters using the distance per pixel measurement in the plane. These 

measurements are dependent on the user inputs to form the homography matrix.  The static 

measurements are assumed to be the most accurate due to the high resolution static images, 

the short working distance, the high contrast between the corrosion and the paper, and 

proximity of the scale bar to the corrosion. It is for these reasons that this measurement 

was chosen as the ground truth rather than the measurements taken with the ruler.   

 

Table 3.  Results of Corrosion Test 

Measurement Ruler UAS Manual UAS K-means Actual 

Set Size 
Area 
(mm) 

Growth Error 
Area 
(mm) 

Growth Error 
Area 
(mm) 

Growth Error 
Area 
(mm) 

Growth 

Small 3,811 0% 15% 3,632 0% 10% 3,739.3 0% 13% 3,308 0% 

Medium 6,452 169% -1% 6,342 175% -3% 5,784.5 155% -12% 6,550 198% 

Large 10,161 267% 5% 9,312 256% -4% 10,247.5 274% 6% 9,699 293% 

 

The measurements obtained manually from the UAS images were found to be more 

accurate than the K-means. However, both measurements were within 15% of the actual 

size. The K-means method suffers from repeatability issues and does not always achieve 

the correct measurement, however, it is also far less labor intensive which potentially 

makes it a more suitable approach for field measurements. 

4.4 Crack Identification 

Another major form of damage that is critical to monitor with SHM techniques is 

cracking [12, 13, 18, 96]. Similar to challenges with corrosion identification in images exist 

with crack identification. However, one property of cracks that allows them to be identified 
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easier is the width of the crack is in almost all cases small, but this also is a challenge 

because the resolving the crack is dependent on the working distance of the camera and the 

size of the crack [174]. Two experiments were performed to determine how cracks could 

be detected using a color camera from multiple distances to simulate a scenario where the 

UAS camera could resolve and detect a crack on civil infrastructure. The first experiment 

focused on quantifying the effect of camera distance on the viewing platform of the pilot 

using ideal, simulated cracks of varying size, as shown in Figure 51 (a) using a 16 

megapixel camera using both the screen for the live view and post processed with a 

computer. A sheet of paper with lines of different controlled thicknesses was used to 

simulate cracks and the camera moved to different controlled distances from the target. 

The second experiment used a Parrot AR 2.0 UAS camera to monitor the cracks developing 

on a masonry wall during cyclic loading [252].  Due to the space limitations, the UAS 

could not be flown safely and therefore images were taken statically for the measurements. 

Table 4 shows the results obtained for both “live” and “post-processed,” since digital zoom 

was not available to the pilot in real time using this camera and UAS setup. 

 

 
Figure 51. (a) Simulated Cracks on a sheet of paper for visual identification using a 

digital camera and the camera of the UAV; (b) Examples of cracks on an actual wall 
made of partially grouted concrete masonry blocks. 
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The results shown in Table 4 indicate that the smallest line on the sheet with 

thickness <0.75 mm could be observed at a working distance of 12 meters after post-

processing. Furthermore, images without post-processing showed that at 9 meters, the 

smallest observable crack was 2mm wide, while the smallest crack with width <0.75mm 

could be detected in the “live” mode at a distance of about 3 meters  from the target. This 

demonstrates that simply using the pilot or observer to identify the cracks real time on a 

screen is not as effective as the image processing after the flight. 

 

Table 4.  Crack detection results of distance test shown in Figure 51 (a) 

Crack Detection 
Analysis 

Distance (m) 3.0 4.6 6.1 7.6 9.1 10.7 12.2 

Live Smallest Crack 
Thickness (mm) 

<.75 0.75 0.75 1.5 2 N/A N/A 
Post-Processed 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

 

Figure 51 (b) shows a representative image of crack detection on a masonry wall 

using the built in Parrot AR 2.0 camera. The wall had dimensions of 4.2m x3.7m 0.2m and 

was loaded horizontally at the top of the wall by imposing cyclic displacement of 

increasing amplitude to simulate earthquake loads [18]. The highlighted areas in the image 

are the locations of cracks initiation on the partially grouted concrete masonry wall. It was 

determined that the UAS camera had a high enough resolution to allow the viewer to clearly 

see the cracks on an I-Pod Touch screen through the Parrot AR 2.0 application. The image 

quality is expected to have streaming resolution similar to what a pilot would have in the 

field using commercial equipment since lower resolution is required to achieve video 

streamed real time to the pilot with minimal lag time within the video. As the distance 

increases, the pilot would be expected to have a more difficult time identifying the cracks 
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based on the experiment from Figure 51 (a). At greater distances from the target, post-

processing is necessary to identify the cracks until they are aliased out completely and 

therefore undetectable. 

The results of these experiments were qualitative, with a goal of determining if a 

pilot could identify a crack in an image streamed to the ground real time alter the flight 

path to focus on that area of the structure. In many UAS setups, the pilot is responsible for 

triggering the camera and flying the system. As a result, if the pilot is unaware of the crack, 

it is unlikely that an image will be obtained from the UAS during the inspection and 

therefore not documented as a potential area of interest. This problem could potentially be 

mitigated if the entire structure is scanned. However, the resulting amount of data is much 

larger and a significant amount of data is not needed. In this context, an automated image 

analysis is required to help reduce the amount of data a user must search through. 

A lab experiment was performed using a DJI Phantom I and a GoPro Hero3+ Silver 

Edition to capture images of cracks during flight. Indoor masonry cracks were used for this 

test and post-processing image techniques were developed to identify the cracks from the 

UAS imagery after the flights. Many crack detection algorithms are tested on images where 

the surface being analyzed is the only object in the field of view. These algorithms often 

rely on the color of the image or the edges of the image which can be unreliable when other 

objects are in the field of view, particularly in the complex environment expected in the 

field. Most UAS imagery contains areas within the field of view that are of no interest for 

crack identification [100]. It is for this reason that an algorithm was developed to mitigate 

some of these challenges. The crack detection algorithm was leveraged on images collected 
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by a UAS in the lab. The algorithm pseudocode is displayed below. It takes into account 

both the intensity of the pixels and the gradient to fill in the cracks that are identified. 

Load image 

Segment image 

Convert to grayscale and apply median filter 

for all rows and columns of the image 

Find the average and standard deviation of a specified neighborhood of pixels 

throughout the image 

Set cutoff criterion based on average and standard deviation 

if any of the current four pixels < cutoff 

  Calculate and store the eigenvalues 

end 

end 

Remove edges created by segmentation from the eigenvalue map 

Connect potential cracks with image dilation and erosion  

Filter with shape criteria 

Highlight cracks in the image using color to the crack pixels 

After loading the image into MATLAB, it was segmented by color using the K-

means algorithm to eliminate parts of the image that do not contain cracks. Since the 

concrete wall in question did not have color, only pixels with colors similar to grayscale 

were kept for analysis. Shadows caused a gradient of color that can cause false positives in 

many algorithms, so a median filter was applied to the images and the outcome is subtracted 

from the original image which reduces the effect of shadows in the image [232]. The 

Eigenvalues were then extracted to identify pixels with strong directional components in 

one direction. Both local and global criteria leveraging the mean and standard deviation of 

the eigenvalues were used to limit the effect of surface texture on the output. Furthermore, 

multi-resolution edge detection leveraging a median filtering was applied to remove edges 

that had interfaces with different materials caused by other objects in the scene [236]. 

Cracks larger than the filter size would then be eliminated, so careful consideration was 
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required before choosing a filter based on the image resolution and the camera working 

distance. Image morphology, described in section 2.3.2, was then used to connect the 

segments that were likely to be cracks [118]. Then area and perimeter were used to filter 

the image with shape criteria to remove segments that did not belong to cracks and finally, 

the cracks were highlighted in the original image. The roundness criteria is shown in 

equation (2.11) was used to eliminate an blob that had a roundness value of greater than 

0.6 assuming that it was not a crack [253]. 

The crack identification algorithm presented above was validated using several 

images obtained from the internet and analyzed before testing it with images taken with a 

UAS. Twenty images with and without cracks were analyzed with different levels of 

complexity in each image.  The results of the images with cracks are shown in Figure 52 

and without cracks in Figure 53.  

The crack images shown in Figure 52 (a), (b), and (c) were identified properly as 

shown in (e), (f), and (g) with little to no noise in the background. The crack shown in 

Figure 52 (d) had a missed identification at the very bottom of the image as shown in (h), 

but still successfully identified the majority of the crack. This was one of the most difficult 

images in which the algorithm was tested. 

Figure 53 demonstrates how the algorithm performed with a lenient shape filter, 

but if a more stringent shape filter was applied, most of the noise would disappear. Ideally, 

no pixels in these images would have been identified as a crack. However, a more stringent 

shape filter could also cause problems with identification because missed identifications 

would increase in the crack images.  
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Figure 52.  Original images  (a-d) [254-257] and resulting images (e-h) after 
applying the identification algorithm 

 

 

Figure 53.  Original images  (a-d) [258-261] and resulting images (e-h) after 
applying the identification algorithm 

 

After the validation of the algorithm, the UAS was flown in the lab to collect images 

of wall cracks. Figure 54 (a) shows an image of the UAS hovering while the GoPro was 

capturing the image shown in Figure 54 (b). The camera was triggered remotely using the 

GoPro app for remote image capture. The image was corrected using the camera calibration 

algorithm as shown in Figure 54 (c) and the cracks were manually identified as shown in 

the red box. The results of the identification algorithm are shown in Figure 54 (d).   
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Figure 54.  (a)  Image of the UAS hovering to obtain image in (b). (c)  Image in (b) 
corrected for lens distortion with manually identified cracks. (d)  Results obtained 

from the crack detection algorithm. 

 

The next major step after crack identification is measurement using known features 

in the image. Quantitative measurements were completed using the concrete blocks in the 

image as a scale and the physical size of the pixels in the image shown in Figure 54 was 

determined to be 0.3mm2.  The cracks were also manually measured with a crack card and 

the crack sizes were almost all sub-millimeter with some crack widths less than the size of 

a pixel. A narrower field of view with a dimensional reference in the image would be 

required obtain accurate crack measurements. In Figure 54(d), the crack was correctly 

identified; however, there were several other features in the image were also falsely 

identified as cracks due to the image complexity compared to sample images obtained from 

the internet. Though the images are not as complex as images taken in the field, they are 

more representative of some of the challenging conditions that are encountered in the field. 
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4.5 Global View of a Structure 

In the case of large structures, it is important to know what is in the field of view 

of each image that is acquired. However, the challenge in many field applications of 

imagery is the lack of record or knowledge of where the image was taken and the purpose 

of taking the image. In many cases, high quality imagery loses its value because they have 

no context to determine what parts of the structure appear in the field of view. One simple 

way to obtain a good view of the structure with the context for each image is image 

mosaicking [149].  

The bridge deck is responsible for providing a driving surface for vehicles, 

distributing traffic loads to the other structural members, and protecting the structure. 

Figure 55 highlights the different parts of the bridge structure and highlights the location 

of the bridge deck. It is clear from the image that the bridge deck is the part of the bridge 

that is most exposed to the elements and traffic loads. As a result, the bridge deck accounts 

for 50% up to 80% of the maintenance funds [20]. There are several methods that are used 

to assess the health of bridge decks including impact echo, ground penetrating radar, 

infrared thermography, and chain drag. These methods often benefit from applying a grid 

pattern on the structure to aid in the localization of the damage to make documentation 

easier.  

 

Figure 55. Image of a bridge structure with the different parts labeled. 
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If photos are captured of the entire bridge deck, this can serve as a schematic for 

damage documentation rather than the use of a sheet of paper that is used to document 

surface and subsurface damage. The field study was focused on NDE methods including 

impact echo, ground penetrating radar (GPR), infrared thermography (IRT), impact testing, 

and modal analysis. The grid was required for these methods, but they also served as the 

control points for the image mosaic. The painted points were spaced every two feet 

throughout the structure. These points were used to manually stitch the image together to 

obtain highly accurate representation of the deck. An example of an image mosaic using 

383 images of an in service structure during a field study is shown in Figure 56. The images 

were preprocessed using lens distortion compensation described in section 2.4.3. Then, 

using the grid points painted on the structure, homography, described in section 2.4.4, was 

used to project the images onto the plane of the deck. The surface damage that was 

manually documented using a diagram of the deck was necessary during the test, however 

after the final image mosaic was produced, it was clear that this was a much better option 

because the damage size, shape, and locations are easily visualized and the locations of 

prior patching are also easily identified. Furthermore, it limits the possibility of mistakes 

in position of the damage while entering the data onto a map of the structure. This 

documentation is critical during the inspection and if any damage area is missed on the 

diagram, the images can then be analyzed after post processing of the NDE data to 

determine if there was in fact some surface anomaly that was influencing the other NDE 

data. 
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Figure 56. Field validation of image mosaic 

 

To further simplify analysis, other NDE data could be overlaid on the structure to 

allow for the positioning of the surface damage with respect to other methods like GPR, 

IRT, or other NDE methods to gain a better understanding of what cause anomalies in the 

NDE data. After the field experiment, a graphical user interface (GUI) was created to help 

select areas of interest in the stitched image and pull up the original image in full resolution 

as shown in Figure 57. This would aid in the visualization of surface damage providing 

both high resolution imagery using the original images and the global context of the image. 

In the future, other NDE data could also be incorporated into the GUI for better localization 

and quantification of potentially damaged regions.  
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Figure 57. GUI for global damage identification 

 

The GUI allows the user to click points in the stitched image. The points chosen 

are highlighted in green and if there is damage, the user can flag the area of interest in red. 

This type of interface is beneficial to a user because it allows an experienced inspector to 

analyze the structure without being on the structure which would save time, money, and 

potentially make the results of visual inspection more consistent. 

The images in this image set was by far the most challenging for damage 

identification due to the large amount of exposed aggregate in the deck. The background 

color variation was removed using fast Fourier transform (FFT). The low frequency content 

was isolated from the image and removed from the original image because cracks mostly 

appear in the high frequency content due to the much higher gradients associated with 

them. A local peaks over threshold (POT) method was used to process the images following 

the POT method described in section 2.3.4 after adjusting the threshold values and an 

inverting the image [134]. A local method was chosen to ensure that the aggregate would 

not cause as many false identifications as the global threshold based method. The image 

was inverted because cracks are dark in comparison to the background. A shape filter and 

morphological operations were used to reduce the number of false positives as well.  
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Load image 

Convert to grayscale 

Invert the image 

Correct with FFT by removing low frequency content 

Set image block size 

For each block in the image 

 Compute peaks over threshold method 

 Find all values greater than the threshold 

 Perform shape filter 

End 

Perform morphological operations 

Perform shape filter 

Identify cracks 

Save image 

A few examples of the results of the crack identification algorithm are shown in 

Figure 58, Figure 59, and Figure 60. The top images in each figure are the original images 

and the bottom images are the images with the cracks identified. Figure 58 shows images 

that have fewer difficulties due to the conditions in the field. There are really only cracks 

in the images which makes them easier to identify.  

 

Figure 58. Sample of crack identification with good results. Top:  Original image. 
Bottom: identified cracks 

 

Figure 59 shows images with more difficulties including large regions of damage 

that do not fit the profile of thin cracks and patches from previous repairs. Some of the 
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images also contain areas where prior damage was identified and patched causing an 

intensity gradient in the images not caused by cracks. 

 

 

Figure 59. Sample of crack identification with acceptable results due to 
environmental conditions. Top:  Original image. Bottom: identified cracks 

 

Finally, Figure 60 shows some of the worst results from the test which usually 

occurred at the edges of the structure. Some of the images have a different texture than the 

rest of the deck. Others have significantly different color caused by a wet surface.  

 

 

Figure 60. Sample of crack identification with bad results due to environmental 
conditions. Top:  Original image. Bottom: identified cracks 
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After the cracks were identified, the same points used to stich the original images 

together were used to stitch the images with the cracks identified together. This information 

is very important because it allows decision makers to see where on the structure damage 

is located as well as the severity of damage.  

 

Figure 61. Stitched image with damage information overlaid on the image 

 

Since manual stitching using the known global position of each white paint dot 

takes a significant amount of time, SFM, explained in section 2.4.6, was also used to stitch 

the images together. A flowchart for the identification of cracks and generation of a global 

crack map is shown in Figure 62. The method is more automated than manual point 

selection for stitching. 
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Figure 62. Steps to crack identification, stitching, and classification. 

 

A point cloud was generated of the structure and shown in Figure 63 [176].  

 

 

Figure 63. Point cloud of the bridge deck [120, 138, 176] 

Since the bridge deck is roughly planar, a plane was fit to all of the points and the 

images were projected onto that plane and stitched together as shown in Figure 64. It is 

clear from the figure that there are some inaccuracies in the stitching due to residual lens 

distortion effects and potentially a mismatch in the plane compared to the actual structure. 

This method still has the major benefit of not requiring the manual clicking of points to 
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stitch the image. The method provides the same benefits to supplement other NDE 

technologies with less effort on the part of the user. The cracks can still be overlaid of the 

structure as they were in Figure 61, but are not presented because the same images were 

used with a different projection matrix. 

 

 

Figure 64. Stitched image resulting from SFM [120, 138, 176] 

 

The next step for crack identification is to use machine learning to aid in the 

identification of cracks. There were many false positives in the data that make it difficult 

to accept the results of the initial identifications. Since cracks are generally long and thin, 

different features were used to classify each blob that was identified as a crack. Roundness, 

convexity, adjusted roundness, aspect ratio, equivalent diameter, and eccentricity, 

described in section 2.3.6, were used as features for this classification. A support vector 

machine was used to classify the cracks. A set of 40 images were used for training the 
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dataset. Two classes were used:  crack and no crack. The results of the training are shown 

in Table 5 with the number of cracks and non-cracks identified and the percentages of true 

positive, true negative, false positive and false negative. The overall accuracy of the 

training was 80.8%, but there is a big skew towards accuracy of the non-crack case. The 

crack identification was poor based on the training, but this is most likely due to the fact 

that there were only two classes and the patches produced blobs that look like cracks. In 

addition, a skew could potentially be added to the false alarm and missed detection rates to 

optimize them based on the cost of a missed detection and the cost of a false alarm. A 

higher number of features could also be used to obtain better results as well. 

 

Table 5. Training results [120] 

 

 

Even though the crack identification with SVM seemed poor based on the table, the 

results were very effective at eliminating false cracks and identifying actual cracks. A few 

images after identification are shown in Figure 65. It is clear that the machine learning did 

improve the identification in the images.  
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Figure 65. (a) Original images. (b) Cracks identified with peaks over threshold 
method. (c) Results after SVM classification. 

 

The images were then stitched together with the cracks identified after applying the 

SVM classification and the full mosaic is shown in Figure 66. 

 

Figure 66. Image mosaic leveraging SFM and SVM classification. 
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Image segmentation is not a fully solved problem. More complex field images were 

analyzed with another algorithm tuned for those images. The images were not collected 

using a UAS, but the locations of the images were not overly controlled when they were 

taken. These images contained problems that occur in the field including rough surfaces, 

shadows, traffic, dust, graffiti, image noise, and other operational and environmental 

factors affecting the quality of the images and reduce the ability of a segmentation 

algorithm to segment the cracked surface. In the future, more robust and reliable 

segmentation tools must be implemented to decrease their effect on the results of the 

identification. The automation of these identification algorithms is crucial to prove the 

benefits of using UAS as a first pass of inspection. In order to help accomplish this goal, 

image registration from previous inspections could be used for a direct comparison to 

determine changes in the structure. Another future objective for crack identification is the 

use of onboard image processing to provide feedback to the UAS and damage identification 

algorithm to further analyze the structure with another NDE method. Furthermore, future 

work will require a better implementation of machine learning with more classes assigned 

to different types of potential damage. This will limit misclassifications and potentially 

help to add layers to an analysis tool to aid a user to analyze specific types of damage.
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Chapter 5 Subsurface Damage Identification  

 

5.1 Introduction 

There has been increasing recognition of the importance of rapid and cost-effective 

techniques for the assessment of bridge deck condition over the last decade.  Bridge decks 

not only impact on ride quality, but also serve to distribute the traffic loads to the other 

structural members and protect the superstructure from hostile environmental conditions. 

The initial cost of a bridge deck is small compared to the other parts of the structure, but 

they account for between 50% and 80% of bridge maintenance funds [20, 262]. As a result, 

early deterioration identification is essential to enable preventive and more cost-effective 

interventions. This will have a significant impact to reduce the life-cycle cost of bridges. 

Currently, many different nondestructive evaluation (NDE) methods exist for 

identifying damage in bridge decks including impact echo, Ground Penetrating Radar 

(GPR), and several others which require contact with the structure [117].  Some of these 

techniques have been integrated on a robotic platform and used simultaneously to collect 

information for a combined evaluation of the bridge deck [20]. Furthermore, non-contact 

methods for damage identification include multispectral imaging, LiDAR, and DIC to 

identify both surface and subsurface damage in the case of infrared (IR) imaging [10, 36, 

246]. Major benefits of remote sensing include the speed at which data can be collected, 

the full field nature of such data, and the ease of data interpretation when compared to other 

methods.  

InfraRed (IR) imagery has been used in several NDE applications [200]. For 

example, infrared images have been utilized to determine the roof moisture content and 
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analyze the performance of wet insulation [263, 264]. In addition, along with other NDE 

methods, InfraRed Thermography (IRT) has applications in robotic tunnel inspection 

[265]. Active thermography requires a heat source or mechanical stimulation to excite the 

structure to identify defects and has been demonstrated in aerospace NDE applications 

primarily with honeycomb structures [266]. Both active and passive thermography have 

been shown to identify damage in bridge elements, such as delaminations in bridge decks 

[206, 267]. Specifically, detection of subsurface defects in concrete structures is based on 

the different heat transfer characteristics in flawed regions detected by temperature 

gradients [268-270]. Heat sources for these applications are typically provided by external 

heating or solar radiation [271].  In addition, both infrared and color cameras have been 

used to perform visual inspections using vans, boats, and UAS for top and side views of 

structures [19, 93, 272]. Geographic Information System (GIS) representations of bridge 

decks have been produced using infrared images combined with Global Positioning System 

(GPS) and image stitching tools [273]. Furthermore, IRT has also been used in conjunction 

with acoustic approaches for monitoring damage on masonry wall structures under cyclic 

loading [13] and detection of damage in concrete structural components [19]. 

UAS collected multispectral imagery has been used for many different types of civil 

applications. For instance, color and infrared images acquired by a UAS were used to 

identify humans in distress for rescue operations [84]. Furthermore, multiple UAS 

simultaneously collected data to identify forest fires with color and IR imagery [274]. In 

addition, UAS collected near infrared (NIR) images have been used to identify crops and 

segment out other objects like soil [221]. Similarly, IR images were leveraged to determine 

olive tree health by estimating the chlorophyll content and water distress [85]. Moreover, 
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the use of multispectral imaging and synthetic aperture radar have been proposed for gas 

pipeline inspection and permission was given to private contractors to survey  pipelines 

with a fixed wing UAS in the United States [88, 228].   

In this chapter, a hexicopter UAS was used as a remote sensing platform to collect 

IR and color image data and post process the data to detect delaminations as well as to 

estimate their size in a mock up bridge deck [126]. The delamination locations were not 

known to the pilot prior testing. The color and IR data was recorded onboard and streamed 

back to the pilot during the flight which allowed the manual identification of defects in real 

time, justifying the capability of rapid inspection. The data collected was analyzed after the 

flight by a novel post-processing algorithm based on the calculation of grayscale gradients 

and their directions in the IR images to detect and estimate the size of subsurface defects. 

The results obtained from the UAS imagery were validated by performing measurements 

with a similar multispectral payload attached to a moving cart to compensate for both 

payload and UAS motion uncertainties. Furthermore, potential delaminations in the field 

experiment described in section 4.5 were manually identified using a ground based 

platform. 

5.2 Bridge Deck Description 

The bridge deck mockup used to perform these experiments had multiple pre-

manufactured defects inside which were unknown to the pilot before, during, and after the 

tests were conducted [275]. The deck consisted of an eight inch thick reinforced concrete 

slab with three structural steel I-beams supporting it. Figure 67 shows a top, front, and side 

view drawing of the structure with dimensions. 
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Figure 67. Top, front, and side view of the simulated bridge deck. 

 

The bridge deck width is 610 millimeters smaller than the dimension considered in 

the ASTM standard [204] which recommends a 4.27 meters minimum field of view for 

both the color and IR cameras to fully cover an entire lane on actual bridge decks. This was 

not a concern since the UAS flight plan can be altered prior to the flight to ensure the 

required field of view is obtained given the properties of the optics of the equipment. It is 

further expected that with increasing height, the prop wash (turbulence from the propellers) 

will have less of an effect on the measured temperature of the bridge deck.  

5.3 Bridge Deck Delamination Identification and Measurement from UAS imagery 

without Radiometric IR Data 

5.3.1 UAS and Payload 

A DJI F550 six-rotor UAS with a NAZA V2 flight controller was used to conduct 

the aerial experiments. Figure 68 shows the components integrated into the payload and 

their positions on the UAS. Although the system was equipped with GPS, gyroscope, 

accelerometer, and pressure sensor for flight control and stabilization, the pilot flew the 

system manually in stabilize mode to collect the data due to the close proximity of 
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obstacles. However, a completely GPS controlled flight was also possible using up to 16 

GPS waypoints in the flight control software. The UAS carried both a GoPro Hero 3+ silver 

edition color camera and a FLIR Tau 2 uncooled core IR camera to capture video imagery 

in real time on a digital video recorder (DVR). The FLIR Tau 2 was unable to collect 

radiometric temperature data and the only output provided was an analog video of surface 

temperature gradients. At first, the color camera was placed on a gimbal to keep it level 

with the ground at all times; however due to the weight limitations on the gimbal, the IR 

camera was fixed to the bottom of the UAV with a separate vibration dampening system. 

Difficulties in image registration between the color and IR data resulted in more testing 

with both cameras fixed to the bottom of the UAS to keep a constant transformation 

between the cameras. This transformation was calculated with an over determined direct 

linear transformation or homography matrix described in section 2.4.4 [143]. Due the 

orientations of the cameras installed on the UAS, the transformation was assumed to have 

scaling, rotation about the axis perpendicular to the image plane, and rotation within that 

plane. Therefore, only two corresponding points were required to calculate the similarity 

transformation, but more points achieve better accuracy by using the least squares approach 

shown in equation (2.21). These corresponding points were manually selected in 10 sets of 

corresponding images to ensure the transformation was accurate. The calculated 

transformation had negligible rotation and the standard deviation associated with the 

translation was 4 pixels in the horizontal direction and 5 pixels in the vertical direction. 

The color video was recorded using the memory card inside the camera and the IR 

video was saved onto a second memory device using an onboard digital video recorder 

(DVR) shown in Figure 68.  The color video had a 138° diagonal field of view, resolution 
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of 1920x1080 pixels, and recorded at 30 frames per second. The IR camera had a 69° 

diagonal field of view, resolution of 324x256 pixels, and also recorded at 30 frames per 

second. The clocks of the two cameras were not synchronized during the flight, but the 

resulting images were post processed to be synchronized manually.  

 

 

Figure 68 (a) UAS platform with data capture equipment highlighted with the 
colored boxes. (b) FLIR Tau 2 with vibration dampening system (c) Antennas for 

RGB and IR video streaming (red) and RGB camera and gimbal (yellow). (d) 
Onboard digital video recorder for saving analog IR video. 

 

The ground sample distance varied with the height of the cameras, which was not 

recorded during the tests due to the closed system in the flight controller. This was not in 

issue for identification, but for measurement, a reference in each image was required to get 

an accurate estimate in damage size. The range of ground sample distance varied roughly 

between 2.5mm (at 2m height) and 1.3 cm (at 10m height) throughout the test. Both videos 

were wirelessly streamed to the pilot using 2.4GHz for the high definition DJI Lightbridge 

color video and a DJI AVL58 5.8GHz video downlink for the standard definition IR video. 

Figure 69 (a) shows an example of an IR image overlaid on the RGB image after the test 
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with the areas of potential interest manually identified in yellow boxes. The UAS videos 

were streamed separately back to the pilot and used to change the flight pattern based visual 

identification of areas of interest through their observation in real time as well as aid the 

pilot in navigation. 

 

 

Figure 69. (a) Images streamed in real time from the UAS. The delaminations were 
manually identified, but are viewed real time from the video stream.  (b) UAS 

hovering over the location of the delaminations in (a) 

 

Several flight tests were completed prior to testing on the simulated bridge deck. 

The first tests recorded data on the ground to reduce the weight of the aerial system and 

increase the flight time. However, during these tests, it was observed that when the videos 

were recorded on the ground, there were missing frames due to streaming. This was 

mitigated by wiring the recording systems on the UAS to ensure that no frames of the video 

were missing due to radio frequency interference caused by possible obstacles between the 

system and the ground station. Both videos were still projected real-time onto screens so 

the pilot could see what the UAS was capturing real time.  A diagram of the data flow and 

an image of the ground station and UAS during a flight are shown in Figure 70. The 
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receiving antennas were placed outside of the van for the experiments to limit the problem 

of shielding which cause breaks and jumps in the video streams. 

 

 

Figure 70. (a) Data flow diagram. (b) Image of ground station and UAS during 
flight highlighting the data obtained from the RGB and IR camera and streamed to 

the ground. 

 

Due to the number of video components and the power drawn by these systems, a 

second battery was added to the system to power the video components. A diagram of the 

components powered by the added battery are shown in Figure 71. A 3S battery was chosen 

because it has a lower voltage and low weight. Since each system did not draw much power 

compared to the motors, the UAS battery was expected to be out of power well before the 

second battery. 

 

 

Figure 71. Power system for the video components on the UAS 
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The total takeoff weight of the system was 2.6 kilograms which is close to the 

maximum recommended takeoff weight for this UAS. Despite this added weight, the 

system achieved flight times of up to 7.5 minutes in a very low wind environment. This 

was achieved by placing different components in strategic places to reduce the effect of 

moments on the aircraft to keep the center of mass near the center of the aircraft. However, 

when there was more wind, the control of the aircraft degraded, so a larger UAS would be 

needed in order to maintain good control and carry the payload. 

5.3.2 Validation Equipment  

A ground based platform including both infrared and color cameras was used to 

validate the results obtained by the UAS. A GoPro and a FLIR a325sc were attached to a 

rolling cart and moved along the deck to identify the delaminations with the color imagery 

that served to help localize the infrared data. Figure 72 shows the setup of the FLIR (red), 

GoPro (yellow), power (green), and recording system (blue) contained on a cart. Since a 

generator was used to supply power, the whole system could be moved easily without 

connection or range problems due to power cords which is similar to what must be done in 

the field. This allowed for ease of motion and therefore smoother movements which made 

the data easier to process. 

The FLIR a325sc was able to provide thermography data (actual surface 

temperature values) as opposed to the Tau 2 used on the UAS. This simplified the post-

processing because the FLIR a325sc temperature images were not affected by the color 

changes imposed by the automatic gain control (AGC) and allowed the processing do be 

completed directly on the temperature values. The ground based setup was also more 

controlled because the working distance of the cameras did not change with respect to the 
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deck throughout the test and the location was easily controlled. This differed from the UAS 

which was manually controlled in stabilize mode using only feedback from the IMU and 

pressure sensor, so a variability in position and height was expected, especially during wind 

gusts. Wind was not a significant problem for camera movement with the ground setup. 

Vibrations were caused by the generator, but they had a negligible effect on the images due 

to the dampers on the generator, dampening within the cart, and the shutter speed of the 

cameras. Furthermore, the images were sufficiently clear to manually identify the 

delaminations in the real time videos. 

 

 

Figure 72. (a) and (b) show the FLIR a325sc (red) and GoPro camera (yellow). (c) 
Shows the full ground system including the cart with the generator (green) and 

laptop (blue) used for data collection. 

 

5.3.3 Algorithms and Image Analysis  

5.3.4 UAS Delamination Identification Algorithm 

The pseudocode developed for delamination identification using color and IR images 

extracted from the IR analog video is shown below.  
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Load color and IR images 

Obtain same field of view for color and IR images 

 Correct images for lens distortion 

 Project color image onto IR image  

Identify the deck in the color image 

 Mask the IR image keeping pixels identified as the deck in the color image 

 Convert IR image to grayscale 

Identify seed points 

 Calculate the gradient of the grayscale IR image 

  Threshold the gradient based on Otsu method and mask IR image 

  Use local histogram equalization on the rest of the IR image 

  Color threshold using Otsu method 

 Calculate extrema of each blob 

For each blob 

If the maximum of the gradient is greater than threshold 

Use top left blob extrema as seed point 

Use region growing with 2 standard deviation from the mean cutoff criteria 

End if 

End for 

For each blob 

 While current pixel is unanalyzed and less than specified distance from the blob 

extrema 

  Calculate the gradient and the normal of the gradient 

  Use top left blob extrema as starting point 

  If the magnitude of the gradient is greater than the mean plus one 

standard deviation 

   Follow gradient direction to the next pixel 

  Else if the magnitude of the gradient is less than the mean minus one 

standard deviation 

   Follow the opposite direction of the gradient to the next pixel 

  Else 

   Follow the normal direction to the next pixel 

  End if 

  If next pixel has been analyzed 

   Blob is a delamination 

  End if 

 End while 

End for 
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Display results 

Both color and infrared images were loaded and corrected for lens distortion. The 

equations used to model the lens distortion in the image are shown in equations (2.17) and 

(2.18). Three radial distortion parameters and two tangential parameters were used to 

correct the distortion in these images. The same calibration described in section 4.2 was 

used to correct the distortion in the GoPro images. For the IR images, it was more difficult 

to obtain high quality images for the calibration process due to the lack of contrast in the 

calibration images. To this aim, a checkerboard pattern was printed on a projector 

transparency and heat was applied using lamps to achieve higher contrast than the paper 

used for the color image lens distortion calibration [276]. An example of one of these 

images is shown in Figure 73. The heat sources are boxed in red and the checkerboard used 

for calibration is boxed in blue. 

 

 

Figure 73. IR picture used for calibration 
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The heat source created higher contrast, but the edges and corners of the 

checkerboard were still not as well defined in the images as the color images. Therefore, 

50 images were used in the calibration in hopes that the error minimization in the camera 

calibration algorithm would reduce the error of the model by minimizing the error 

associated with the corner identification. The error associated with reprojection was two 

pixels after the minimization and visually, the lens distortion was improved significantly. 

Localization of the checkerboard corners was determined to be the biggest source of error 

due to the lack of clear corners. The pixel error associated with the IR images was expected 

to affect the results of the algorithm more significantly than the color imagery. 

Delamination identification performance is not affected by lens distortion errors, however 

the measurement steps will be affected up to 4 pixels the horizontal and vertical directions 

in the images. All of the errors associated with camera calibration are reported in pixels 

since the physical dimension associated with the error is dependent on the working distance 

of the camera to the specimen. The error can be calculated using equation (5.1) where θ is 

half of the angular field of view, h is the height of the UAS, Npix number of pixels across 

the angular field of view, epix is the error in pixels, and e is the error in dimensional units. 

A diagram of the locations of these variables in the measurement system are shown in 

Figure 74. 

 
 tan

pix
pix

h
e e

N


   (5.1) 

An example for calculating the error bounds on a specified size of a delamination 

is shown below using the error values identified above. Assuming a 0.305m x 0.305m 

delamination is identified perfectly in an image taken perpendicular to the deck at an 

altitude of 4m (h), the 4 pixel error (epix) and 69º field of view (2θ), the worst case would 
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identify the lower bound at 0.251m x 0.251m and upper bound at 0.358m x 0.358m. It is 

expected that the results should be significantly better since these errors are based on a 3 

standard deviation reprojection and the large pixel error comes from poor localization of 

the corners in the IR images. 

 

 

Figure 74. Diagram of working distance (h) 

 

The color image was set to have the same field of view as the IR image using a 

projective transform calculated with several corresponding points that were in both the 

color and infrared images. Since there was a constant distance and angle between the 

cameras, the same transformation could be used for all of the images obtained during the 

test. The transformation was calculated multiple times with different images using at least 

four matching tie points in pairs of images. Since the field of view of the color camera was 

much larger than that of the IR camera, the color image was cropped to remove the edges 

outside the field of view of the IR image. This also served to eliminate the areas of the 

image that had higher amounts of distortion remaining after the correction. Furthermore, 

since the color image was not used for detection purposes, bilinear interpolation was used 
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to determine the color of the pixels to complete the transformation. After the 

transformation, the deck was determined by color and a mask was formed for the image to 

eliminate the background. Since the images were aligned, the same mask created to identify 

the deck in the color image was used to mask the IR image. The hue, saturation, intensity 

(HSI) color space was used to identify the deck because the color based thresholding 

generally performs better in this space as explained in section 2.4.1 [118].  

After the deck was identified, a threshold based on the gradient values was utilized 

to mask the IR image [118]. In addition, local histogram equalization [118] was used on 

the grayscale IR image to enhance the contrast in the images of irregular portions of the 

deck. Furthermore, the same method served to mitigate the varying colors in the images 

caused by different light conditions and the automatic gain control of the camera. Since the 

automatic gain control changes the color of the images based on the scene to create the best 

contrast, a constant threshold value across all of the IR images could not be used.  

Therefore, Otsu’s method was chosen to segment the IR images [121].  

The measurements occurred early in the day and consequently the delaminated 

areas corresponded to warmer regions on the deck surface. Therefore, these areas appeared 

brighter in the IR images [204]. The images were converted to binary and the extrema of 

each blob was used as the seed point for the region growing algorithm [118]. The criteria 

used for region growing was based on the first and second moments of the pixel values in 

the blob at each iteration [110]. The lower bound for acceptance of a pixel into the region 

labeled as a delamination was set to the average minus one standard deviation. There was 

no upper bound because the delaminations were expected to brighter than the rest of the 

deck because the delaminations were expected to be hotter. An upper bound would have to 
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be added if there were other hotter objects on the deck that would make the delaminations 

appear cooler in the image. Since the IR camera used did not keep constant colors 

throughout the image set, the color was not a reliable identification feature and therefore 

color gradients were required to help identify the delaminations.  The extrema of each blob 

(as defined by the MATLAB function regionprops) were used as starting points for the 

gradient following algorithm [277]. The normal of each gradient was calculated and if the 

magnitude of the gradient was within a standard deviation from the average gradient for 

that blob, the normal was followed. If the gradient magnitude of that pixel exceeded the 

upper bound, the direction of the gradient was followed to select the next pixel. If the 

magnitude of the gradient was below the lower bound, the opposite direction of the gradient 

was followed to select the next pixel [131]. Since delaminations generally do not typically 

appear as shapes with sharp corners in the IR images due to the heat transfer properties 

through materials and they are large enough in size to form a set of gradients encompassing 

the delamination, any shape enclosed by the set of pixels identified by the algorithm was 

assumed to be a delamination. If the pixels following the gradient approach does not 

enclose a shape, the blob was not identified as a delamination. This made it impossible to 

correctly identify delaminations that were not fully contained within one image. In the case 

that the pixel being analyzed fell outside the image, the algorithm would stop causing a 

missed identification if that blob was in fact a delamination. This was not a concern due to 

the large field of view of the FLIR Tau 2 and the number of images that covered the entire 

deck in multiple images. 

After detection, size estimation was achieved using the width of the bridge deck in 

images that contained the entire width of the bridge deck. For those images that were taken 
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at lower altitudes and therefore did not contain the entire deck width in the field of view, 

such measurements were not possible. The edges of the deck were calculated using the 

canny edge detection method and Hough transform to identify the line segments making 

up the edges of deck. The distance per pixel in each image was calculated using the known 

width of the deck and calculating the number of pixels between the parallel lines. The 

assumptions made were that the deck edges are parallel and the UAS very close to level at 

the time the images were captured. The pitch and roll of the vehicle are therefore critical 

in the results of the algorithm so when wind causes the UAS to rotate at a slight angle, the 

distance per pixel would vary and the estimated delamination sizes would result in larger 

errors. Equation (5.2) was used to estimate the error associated with non-level flight. In the 

above expression, the camera calibration matrix (K) was assumed to be constant because 

the same camera was used for all of the images, R is the rotation matrix, the vector [X, Y, 

Z, 1]T represents the distance between camera and observed delamination, and [u, v, 1]T 

represents the pixel coordinates in the image [143].  
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  (5.2) 

Since the pitch and roll angles are small while the system is hovering, only angles 

of less than 5 degrees were considered. The height of the system was not constant during 

the test flights so test cases of 2 meters and 10 meters were used as extremes. A target 

delamination size of 0.305m x 0.305m was considered since this is a common size that can 

be identified in the field. The rotation matrix (R) assumed that pitch and roll varied of the 

same angle value, and the position of the delamination from the camera ([X, Y, Z, 1]T) was 
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assumed to be known to demonstrate the error. The changes in the pixel coordinates were 

analyzed using the ground sample distance at the given altitude.  

As expected, as the angle error was increased, the error in the measurement also 

increased. The error also increased with increasing height; however the acceptable error 

associated with the pitch and roll attitude of the aircraft increased from 0.3 degrees at 2m 

to 3 degrees at 10m based on the ground sample distance. A potential solution to help 

mitigate this problem is the use of a gimbal that is capable of carrying both cameras to keep 

them facing down, but this requires a UAV with higher payload. The yellow and white 

traffic lines on roadways could also serve as reference in future tests on an actual roadway. 

5.3.5 FLIR a325sc Delamination Detection Algorithm 

The algorithm previously described for UAS imagery was adapted for delamination 

identification using the ground IRT data. This data has temperature values associated with 

each pixel which is not the case for the FLIR Tau 2 images. Therefore, local histogram 

equalization and optimal thresholding were unnecessary because these the main purpose 

of these two steps was to even out the data in the images so that there was a more constant 

effect throughout them. Since the base temperature of the undamaged deck did not change 

within a single frame, histogram equalization was redundant and would actually cause a 

loss of information. The mean and variance of the thermography data and the temperature 

of the undamaged deck were used as the first iteration of segmentation instead of optimal 

thresholding with the Otsu method. This step does assume that the temperature of the deck 

does not change between frames which was necessary in the case where a cloud would 

block the sun for short periods of time. The region growing and gradient following 

acceptance criteria were altered due to the low variance of the temperature data. The narrow 
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field of view made the color images unnecessary because the IR data only contained the 

deck so segmentation of the deck was not needed. Furthermore, since the camera was fixed 

at 2.57m from the bridge deck and the field of view was so narrow, the size estimation 

could rely only on the location of the camera instead of a reference scale in the images. 

5.3.6 Results and Discussion 

The overall image of the tested mock-up bridge deck is shown below in Figure 75. 

The color and IR images were taken to display the likely locations of the areas of interest 

in the infrared image and map their approximate location in the color image.  

 

 

Figure 75. (a) Infrared image of the entire deck obtained with FLIR a325sc camera. 
(b) Color image of the entire deck. 

 

The images captured for this experiment were extracted from videos. As a result, 

over 4,000 images were analyzed in each aerial test. The measurement step was only 

applied to images that contained the full width of the deck in the field of view. Images that 

were obtained from different flights performed during different days were analyzed. The 

first flight used a gimbal to hold the color camera and therefore the transformation between 

cameras could not be assumed constant and therefore was not as effective for deck 

segmentation. A small sample of the results from these images are shown in Figure 76. 
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The height of the UAS was not precisely controlled or recorded and due to the 

nature of manual, piloted flight in stabilize mode, the images had different fields of view. 

If the UAS turned or was moved by the wind, the color camera would stay level and move 

smoothly because it separately controlled with the gimbal while the IR camera would not 

because it was fixed to the UAS. This had an effect on the identification algorithm which 

is clearly observed in Figure 76 (j) and (k) where the identified areas are misaligned and 

the edge of the deck is identified as a delamination. In fact, Figure 76 shows that all of the 

shallow delaminations as well as some surface roughness were properly identified based 

on an independent IR survey conducted with a more sophisticated infrared camera installed 

on the rolling platform. Figure 76 (l) represents one of the worst results in this scenario in 

which the majority of the identified areas were due to the surface roughness of the deck. 

 

 

Figure 76. (a-d) Original color imagery extracted from color video. (e-h) Original IR 
images corresponding to the color images (a-d) extracted from FLIR Tau 2 video.  

(i-l) Identified delaminations using the described algorithm. 
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A second flight was conducted to mitigate the issues that arose in the first flight and 

samples of images from the second flight are shown in Figure 77. The payload for this 

flight had both the color and IR cameras fixed to the bottom of the UAS to keep the 

transformation between the color and IR images throughout the flight constant. The 

orientation of the cameras was changed to shift the center of gravity closer to the center of 

the UAS for better stability and distribution of weight to increase the flight time. This did 

not have an effect on the identification algorithm with the exception of a different 

transformation used to relate the two data sets. The fixed transformation between the color 

and IR images did improve the results because the deck was easier to identify which 

allowed for better segmentation of the deck from the color images and therefore allowed 

the application of the size estimation step which had not been possible in the previous flight 

data. 

 

 

Figure 77. (a-d) Original color imagery extracted from color video. (e-h) Original IR 
images corresponding to the color images (a-d) extracted from FLIR Tau 2 video.  

(i-l) Identified delaminations using the described algorithm. 
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In Figure 77(i), the algorithm correctly identified delaminations in the image in 

addition to one section at the top left of the image that is caused by a change of the material 

with different thermal emissivity values causing apparent temperature variations which 

was verified by the color camera. As expected, surface roughness and different materials 

on the deck that were in the field of view of the IR images were falsely identified as 

delaminations. This is displayed in Figure 77 (k), but it also occurs in (j) along with the 

two delaminations that were correctly identified. The cracks on the surface of the concrete 

showed up bright in the IR image due to the automatic gain control of the FLIR Tau 2 

which optimized the image quality for contrast. In Figure 77(l), one of the blobs falsely 

identified in Figure 77(k) was limited in size due to the change in the automatic gain 

control. This significant change in color with a small change in temperature affecting the 

FLIR Tau 2 images limits the potential of this detection algorithm. However, it can still 

identify the delaminations with few false positives caused by surface defects. 

The redesigned algorithm was applied on the FLIR a325sc images and the results 

are shown in Figure 78. The IR images in Figure 78 were created using the minimum and 

maximum temperature to normalize the data into an image for visualization purposes. The 

actual thermography data was directly analyzed by the algorithm. Figure 78 (i) and (j) 

demonstrate that the delaminations were properly identified based on visual and manual 

interpretation of the temperature data obtained with the camera. The pixels representing 

delaminations appear to be a better estimate the size of the delamination than that of the 

FLIR Tau 2 images. This is likely due to the different magnitudes of gradients and values 

associated with the image processed by the automatic gain control versus the thermography 

data. The apparent delamination in Figure 78(k) is caused by the surface damage on the 
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deck. The cracks that were falsely identified in the Tau 2 images were also identified when 

the thermography data from the FLIR a325sc was used. These surface anomalies resulted 

in fewer erroneously identified delaminations suggesting that the algorithm can be more 

effective when leveraging temperature measurements than by directly using color images 

obtained with an IR camera.  

 

 

Figure 78. (a-d) Images extracted from color video. (e-h) Processed IR 
thermography data corresponding to the color images (a-d) extracted from the 

FLIR a325sc.  (i-l) Areas identified as delaminations using the described algorithm. 

 

The delaminations labeled 1 through 4 in Figure 85 correspond to the labels in 

Table 6 and Table 7, which show the estimated size of each delamination for each 

measurement system. The dashed line shows a potential delamination that was not 

consistently identified by the algorithm, but is slightly more visible when looking at the 
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pictures. The upper and lower bounds are based on the student t-distribution with the 

degrees of freedom associated with the number of images each delamination appeared in.  

 

Table 6. Estimate of delamination size from UAS aerial imagery 

 

 

The number of images each delamination appeared in was determined by the 

number of frames showing the delamination in the recorded videos. Less frames were 

captured with the FLIR a325sc because the test setup was easier to control and also took a 

shorter amount of time to take fewer images. Delamination 3 has a higher number of frames 

because it appeared and was identified in significantly more frames than any other 

delamination due to the way the experiment was conducted. 

 

Table 7. Estimate of delamination size using the FLIR a325sc temperature data 

 

 

Comparing the results from both experiments using a t-test assuming different 

variances and the same mean, delaminations 2 and 4 have the same mean in the aerial and 

ground based setups with 95% confidence and delaminations 1 and 3 do not. This shows 

Delamination # of Images Average (ft2) Stdev  (ft2) Upper Bound  (ft2) Lower Bound  (ft2)

1 96 4.02 0.21 4.43 3.61
2 91 1.95 0.19 2.34 1.57
3 82 0.68 0.08 0.85 0.51
4 44 0.60 0.07 0.74 0.46
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that the two identification methods are statistically different which is likely due to the 

difference in type of data, and the slightly altered algorithm for the FLIR a325sc frames.  

Finally, the results of the test were sent to the owners of the simulated bridge deck 

to determine how the identification and measurement algorithms performed. The defects 

were manufactured into the deck during construction with foam and plastic sheets used to 

simulate the damage. They were placed in predetermined locations inside the deck and kept 

secret from anyone performing an experiment to test new NDE equipment. The size and 

the three dimensional location of each defect was recorded during construction and full 

photographic documentation of the rebar cage with the defects was available to the owner 

[278]. The simulated damage that was correctly identified and the associated size were 

confirmed by the owner leveraging this documentation. The four shallow delaminations 

(shown in Figure 85 in yellow boxes with continuous lines) are 2 inches deep and were 

successfully identified by the algorithm and both the location and size were properly 

estimated. However, there are several delaminations, mostly deep into the concrete deck, 

that were not identified due to the lack of temperature gradient caused in the IR imagery. 

Only one shallow delamination (within 2 inches from the surface, showed in Figure 85 in 

a yellow box with dotted lines) was not correctly identified by the algorithm, although it 

was observable in several IR video frames. The deck includes additional 5 deep 

delaminations (at depths between 4 and 6.5 inches) that did not appear in any of the images 

from either IR camera; however, this is expected since deep delaminations do not 

significantly influence the temperature of the deck surface [278]. The owners did not 

disclose the sizes or locations of the deeper delaminations.  
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Table 8. Actual delamination size and average IR measurement error for UAV and 
ground based setup 

Delamination 
number 

Actual 
UAV 

Average Error 
Ground Platform 

Average Error Length (ft) Width (ft) Area (ft2)

1 2 2 4 0.5% -24.0% 
2 2 1 2 -2.5% 1.0% 
3 1 1 1 -32.0% -16.0% 

4 1 1 1 -40.0% -43.0% 
 

 

Table 8 shows the comparison of the data obtained during the test with the infrared 

cameras and the information provided by the deck owner. The size estimates had relatively 

large amounts of error, especially for the smaller delaminations. This is caused by the 

dissipation of heat and the gradient it causes on the deck surface across the delamination. 

The threshold for identification for the ground based setup could be changed to improve 

the results, however an increase in sensitivity will also result in false positives. Overall, it 

could be concluded that it is difficult with the current setup and algorithms to determine 

accurately the exact size of the delaminations due to the amount of variability in the 

environmental conditions. However, it could be further concluded that the presented 

method can be successfully used to rapidly identify shallow delaminated areas that are the 

most common in bridge decks and guide more expensive ground-based NDE systems to 

perform further assessments. It can also be concluded that the relative size of the 

delamination can be estimated and achieve accurate enough results to determine what areas 

of the deck are worse than others. 
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5.4 Bridge Deck Damage Identification with UAS collected Radiometric IR Data 

5.4.1 Equipment 

A DJI F550 frame was used with the similar components to the system described 

in section 5.3.1, but the flight controller was a Pixhawk running the PX4 flight stack. The 

UAS was set to have a combination of two color cameras and an ICI 9320 infrared camera 

that can record radiometric temperature measurements. The camera had a fixed focal length 

of 13mm and was light enough to be carried on the UAS. The UAS had a digital video 

recorder (DVR) and a memory card to save the analog video of the infrared camera while 

the temperature measurements were stored on a flash drive connected to the UAV module 

that controlled the camera. The downside to this camera was that it could only record 

temperature data at a maximum of one frame per second which is why the video recording 

was required. It did not provide temperature measurements, but it was able to save the data 

much faster. A Canon PowerShot ELPH 130 IS color camera was used for the collection 

of images at the same time as the infrared images were taken. The cameras were remotely 

triggered by the pilot during the test through a switch mapped to an output port of the 

Pixhawk. The Canon PowerShot had the CHDK installed on it and ran a program that 

enabled the camera to take an image every time it received a 5V input through the USB 

port [226]. The other color camera was a GoPro Hero 3+ which was used to collect video. 

The color data from both cameras were saved on their respective memory cards. The color 

and infrared cameras were fixed to the bottom of the UAS to ensure the distance between 

them did not change through the duration of the flight for the reasons explained in 5.3.1 

[14]. The data capture schematic is shown below in Figure 79.  
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Figure 79. UAS data capture schematic 

 

The red and black lines indicate the power for each component of the data collection 

system. Any subsystem not connected to the main power had an internal battery that 

powered only that component. The green lines are the image and video data captured from 

the infrared camera. The UAS module received video from the IR camera and send it to 

the DVR to record it. The IR data was saved by the UAS module simultaneously on a flash 

drive when the camera was triggered. The analog video was also sent to a transmitter which 

steamed the video real time to the ground. The blue lines represent the flow of the control 

signals to the data collection system. On the remote control used to fly the UAS, a switch 

was mapped to a port on the flight controller to trigger the color and infrared cameras that 

would not hinder the pilot’s ability to fly the aircraft. In a scenario where multiple pilots 

are employed to complete the flight, a second controller could be used to control the data 

capture. The goal of this setup was to obtain images in color and infrared data at the same 

time. The color and infrared videos were saved on the DVR and the internal storage of the 

GoPro for visualization and documenting purposes to help clarify the movement of the 

UAS after the test if it was required.  
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A color and infrared camera were placed on a rolling platform and images were 

taken in the same location with each camera to have better control of the position of the 

cameras at the time of image capture [19, 279]. The infrared camera was the same 320x240 

pixel ICI 9320. The color camera was a 24 megapixel Sony a6000, with a 50mm focal 

length. The focal lengths were chosen so that both cameras had the same field of view 

based on the sensor size and focal length. It should be noted that the field of view is based 

on the focal length and the sensor size which is why the focal lengths are different and 

achieve the same field of view. 

5.4.2 Damage Identification 

The color images were post-processed in MATLAB to identify cracks. The first 

step was to sharpen the image using an unsharp mask [118] and then threshold the image 

based on the mean intensity. The image was resampled to become smaller and the process 

was repeated for four different sizes of the image to reduce the noise [280]. The segmented 

parts of the image were then filtered by shape using the roundness criteria from equation 

(2.11) to eliminate regions that appeared to be round. The locations of these identified 

cracks were saved and overlaid on the original image.  

The delaminations were identified using the infrared imagery obtained during the 

test. The temperature values in the infrared image were segmented using a threshold value 

based on the mean temperature value within the image or an image set. Using an image set 

to determine the average temperature is beneficial to reduce the problems of a delamination 

taking up a large portion of the image and it also serves as a way to decrease the effects of 

temperature changes associated with environmental conditions such as clouds. Another 

benefit of using multiple images is the ability to use the standard deviation to identify the 
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delaminations as well. If the standard deviation is greater than 1, a threshold was set to the 

sum of the mean and standard deviation. If the standard deviation was less than 1, the 

threshold was set to the mean plus 0.5 degrees based on the ASTM standard for infrared 

thermography in bridge decks [204]. The gradient was calculated using the Sobel operator 

as a second metric to determine if a delamination was present. Any area of the image that 

satisfied both criteria for temperature value and temperature gradient was flagged as an 

area of interest and therefore a potential delamination. The locations were saved and 

overlaid on the infrared images.   

After the areas of interest were identified in both sets of images, the infrared image 

was mapped onto the same field of view as the color image using the same method 

described in section 5.3.1. This simplified the processing significantly because this fixed 

transformation allowed for the keypoints identified in the color images to be used in the 

infrared images as well for stitching purposes. The surface and subsurface damage 

information were projected onto the same image to display all of the local information 

associated with that camera location. The color images were used for display purposes 

because the infrared images consist of temperature values with colors assigned to them to 

achieve the best visualization. The temperatures were rescaled for visualization purposes, 

but did not have any meaning after the identification was completed. The color images also 

had higher resolution and are therefore a better choice for displaying all of the post-

processed damage information. A diagram of the post-processing algorithm is shown in 

Figure 80. The yellow segments correspond to the color imagery, the red segments 

correspond to the infrared imagery, and the blue segments correspond to the combination 

of both sets images [229]. This experiment focused on the identification of surface and 
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subsurface damage, but more importantly, the global visualization of both the color and 

infrared images as well as the identified damage information. 

 

 

Figure 80. Data workflow of the damage identification algorithm for color and 
infrared imagery. 

 

5.4.3 Results 

The UAS images did not have the color and IR images synchronized perfectly 

which is easily visible in Figure 81 where the two images are overlaid on top of each other. 

The camera trigger signal was sent at the same time from the ground occurred, but the 

images are shifted. This means that the color and infrared cameras take different amounts 

of time to respond and capture the image after the 5V input sent from the flight controller 

to the camera systems. 
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Figure 81. Images taken during flight showing the time shift of image capture 

 

This time shift in the image acquisition made the algorithm shown in Figure 80 

inaccurate. The same process used in section 5.3.1 of manually aligning the images was 

not possible in this case because individual photos were taken, not video. This made it 

impossible to simply shift the images forward and backward to achieve an alignment. 

Therefore, the post-processing was done separately on the two datasets and the results 

could not be directly overlaid. Examples of each data set collected during the flight are 

shown in Figure 82 and Figure 83. 

 

 

Figure 82. Color images captured during flight (top row) and post-processed images 
(bottom row) 
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In Figure 82, many of the false positives occur due to the change in material outside 

of the deck region. The shadow of the UAS causes false detection as well. The post 

processing algorithm does however make it easier to identify the cracks visually for a user 

who is tasked with looking through the pictures. Similarly in Figure 83, the IR images 

captured during flight improve the visibility of the hot areas. There were some false 

positives, however the processing still makes it easier for a user to identify potential 

delaminations. 

 

 

Figure 83. IR images captured during flight (top row) and post-processed images 
(bottom row) 

 

Due to the misalignment of the color and infrared images, the mapping of the global 

damage was completed leveraging a rolling platform without assuming a known position 

of the camera. The images were analyzed with the same algorithms as the images above, 

with the added step of comparing the color and infrared images to distinguish between 

surface and subsurface damage identification. The top images in Figure 84 are the color 

images with the potential cracks are identified, the middles images are the infrared images 

with the potential delaminations identified, and the last row of Figure 84 shows the color 



Chapter 5  | 157 
 

 
 

images with the potential delaminations highlighted in red and the potential cracks 

highlighted in blue.  

 

 

Figure 84. Identified damage from the ground based platform 

 

From these results, it is clear that in many cases, cracks are identified by both the 

color and infrared damage identification algorithms. This leads to some misclassifications 

of the damage. In the future, better segmentation and machine learning algorithms could 

be applied to ensure this problem was kept to a minimum.  

5.5 Global View of Local Data 

5.5.1 Color and IR Without Radiometric IR Data 

Figure 85 shows the images obtained after the stitching process was completed with 

Microsoft Image Composite Editor (ICE) using aerial images captured during flight. 
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Figure 85. (a) UAS IR image mosaic output from Microsoft ICE. (b) UAS color 
image mosaic output from Microsoft ICE. The potential delaminations are 

highlighted in both images to confirm they are not surface damage. 

 

It is easy to see that little to no parallax is present in the images. If the deck surface 

is not planar, problems with parallax could require a more advanced methodology to 

perform image stitching. These images were taken at higher altitude which made them 

easier to stitch, but for images taken closer to the surface, the program had more difficulty 

matching keypoints in the images. Therefore, a manual stitching code was written in 

MATLAB to stitch the images together and save the locations of each image and the 

manually selected points in the stitched representation. This resulted in a reduction in size 

of the global view that had the ability to recover the original high resolution image of an 

area of interest. The delamination locations in the stitched image match the locations of the 
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delaminations from the single image taken on the ground with the FLIR a325sc from Figure 

75. 

Image mosaics are used to obtain a global view over multiple images because local 

images are often not useful in decision making if they do not have a global context. In 

many scenarios in which a large area is covered by multiple images, it is difficult to 

visualize the location in which each image was taken from a global perspective, even if the 

images are being viewed in the order they were continuously captured. In order to address 

this issue, image mosaics can be used to provide information about the location of the 

individual images on the structure. There are several commercially available stitching 

software tools that can be used for creating panoramas; however, many of them rely on a 

constant camera location to stitch the images together [281]. In this special case, the 

projection onto the image plane goes through roughly the same focal point in all of the 

images (which represents a linear motion in cylindrical coordinates). When the camera’s 

focal point moves between images, parallax becomes a problem because the background 

appears to shift in different images which causes automated feature detection methods to 

fail because the background can be correctly stitched instead of the foreground [282]. In 

this case, the camera position cannot be controlled in the same way. The bridge deck was 

planar with no visible background which allowed the same focal position assumption to be 

violated. If the deck was not planar, problems with parallax would occur and a more 

advanced method for image mosaicking would be required to account for keypoint 

matching issues. Microsoft Image Composite Editor (ICE) was used to stitch both the RGB 

and IR images together [225]. 
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5.5.2 Color and IR With Radiometric Data 

The images were then processed using VisualSFM [176] to create a 3D point cloud 

of the bridge deck from the color imagery obtained with the rolling platform. The bridge 

deck was assumed to be planar so a plane was fit to the points on the deck. The color images 

were used to identify key points in the images in which VisualSFM was used to calculate 

the three dimensional locations of the key points. These three dimensional points and the 

pixel coordinates of the key points in the images were used to calculate the transformation 

used to project the image onto the plane of the deck. Then the infrared images were mapped 

to the same field of view as the color images using the fixed distance and rotation between 

the two cameras. The same transformation used to project the color imagery onto the deck 

was used on the corresponding infrared images with the same field of view. The individual 

color and infrared images were then used to form an image mosaic and the damage 

information was displayed on the color for each image. Finally, the images with the 

identified damage were projected onto the plane of the deck and displayed in the same way 

as the color and infrared mosaics. The algorithm is heavily dependent on the color and 

infrared images to be captured simultaneously or in the same location. The distance and 

rotation of the color with respect to the infrared camera also could not change during the 

test. Since structure from motion does not rely on the position of the camera or the way the 

camera is moved as explained in section 2.4.6, it is possible to obtain the images from this 

moving platform and can in the future extend to UAS imagery with synchronized image 

capture.  

Figure 86 (a) and (b) show the color and infrared image mosaics respectively, with 

the damage manually identified in red for delaminations and blue for surface damage. 



Chapter 5  | 161 
 

 
 

Figure 86 (c) shows the automatically identified damage information obtained using the 

algorithm in Figure 80 with red indicating subsurface damage and blue indicating surface 

damage. The manually identified damage in boxes is also overlaid onto the automatic 

identification of the damage. 

 

 

Figure 86. (a) Color stitched image. (b) Infrared stitched image. (c) Color stitched 
image with automated damage identification displayed in red and blue. 

 

The global view of the structure showing the automatically highlighted damage 

information is important to assess the condition of the bridge deck. The size, location, and 

type of damage must be reported to the bridge maintenance crews or inspection teams in 

order to fix the right area of the structure at the right time. The use of fast data acquisition 
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platforms and automated algorithms for identification make the use of SHM for bridges in 

the way we see it used in other industries possible in the future. 

5.6 Field Validation  

The field test explained in section 4.5 was used to also test a delamination 

identification algorithm. Rather than use the narrow field of view ICI infrared camera on 

foot, a rolling platform shown in Figure 87 was constructed to speed up the data collection 

process. 

 

 
Figure 87. Setup for collecting infrared data 

 

The camera had to be placed very high to efficiently collect data and the structure 

could not support two cameras for safety reasons. Therefore, the technique in the previous 

section could not be completed for a global infrared map because the color and infrared 

images were not taken at the same time or location. This limited the results to the analysis 

of local data, but the color imagery could be matched to some of the infrared imagery given 

specific features in the deck that could be identified manually. The examples in Figure 88 
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and Figure 89 show where on the deck the color and infrared image are located using the 

global view in shown in 4.5. 

 

 

 

 

Figure 88. Image mosaic of the bridge deck with location of interest. (b) Color image 
at the highlighted location. (c) Infrared image at the highlighted location. (d) 

Potential subsurface damage identified by the algorithm. 

 

The images shown in Figure 88 and Figure 89 are the global view of the deck (a), 

the original color (b) and infrared images (c) taken at each point displayed in (a), and the 
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identified potential delamination. The delaminations were identified using infrared part of 

the algorithm described in Figure 80. 

 

 

Figure 89. (a) Image mosaic of the bridge deck with location of interest. (b) Color 
image at the highlighted location. (c) Infrared image at the highlighted location. (d) 

Potential subsurface damage identified by the algorithm. 
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Chapter 6 Deformation Measurements 

 

6.1 Introduction 

There are several types of contact and noncontact sensors that are used in the field 

for displacement and strain measurements. Among these are string potentiometers, lasers, 

accelerometers, optical methods, and GPS [163, 164, 283, 284]. Though contact sensors 

can be more accurate and be more reliable, they are often difficult to install, difficult to 

interpret, and only provide information at a few points along the structure. The use of a 

mobile platform with noncontact measurement systems to obtain more information is 

highly desired in cases such as bridge SHM Though visual inspection has been reliable, 

funding limitations, the slow speed, and lack of repeatability between inspectors makes 

alternative methods of inspection seem attractive [27, 251]. In this context, different types 

of UAS based remote sensing have been applied to measure structures in a laboratory 

setting to measure the displacement of a structure using targets and speckle patterns [174].  

6.2 Displacement Gauge Calibration 

In each of the experiments described, string potentiometer displacement gauges 

were used as the ground truth for the image based measurements. The gauges were 

calibrated prior to each test to ensure the correct multiplication factor was used to determine 

displacement from the voltage. This ensured that the calibration constant was accurate in 

case the calibration constant changed. Generally this is not an issue, but the gauges were 

often used for other experiments in the field and when they get bumped and experience 

temperature changes, it is possible that the constant will change very slightly. This was 

completed using the calibration jig shown below in Figure 90 that was used to find the 
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calibration constant. The red box shows the voltage output to the computer, the orange box 

highlights the displacement gauge, the attachment connecting the jig to the displacement 

gauge is highlighted in green, and the displacement control highlighted in blue controls the 

exact displacement to 0.02mm accuracy. There is a linear relationship between voltage and 

displacement so a line was fit to the voltage outputs at different distances. The slope of the 

line was set to be the new calibration constant associated with that displacement gauge. 

 

 

Figure 90. Displacement gauge calibration jig 

 

The calibrations were completed with the displacement gauge roughly 2 inches 

from the fully retracted position because the gauge should be linear through the range of 1 

to 5 inches. The calibration ranged from 0 to 25mm in 5mm steps from the starting point. 

An example of the calibration data coming from the displacement gauge is shown in Figure 

91.  
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Figure 91. (a) Default voltage values out of the displacement gauge. (b) Curve used 
to determine the calibration constant. 

 

The default values out of the gauge shown in Figure 91 (a) were used to create the 

curve shown in Figure 91 (b). A line was fit to the points in Figure 91 (b) and the slope 

was used as the calibration constant to determine the deformation at a given voltage. 

6.3 Pointwise Deformation Measurements 

6.3.1 Equipment 

The commercially available Parrot AR 2.0 shown in Figure 92 was used to 

complete the preliminary experiments. This small quadrotor was equipped with one camera 

used for stability and position hold using optical flow during the flight of the UAS and a 

second camera facing forward used to obtain imagery. The UAS was made of carbon fiber, 

nylon, and foam, and used four brushless motors with a total vehicle weight of 420 grams. 

It was powered by a 3S battery which provided about 8 to 12 minutes of flying time in the 

laboratory setting. Furthermore, the UAS could be controlled by any Wi-Fi device with the 

application AR FreeFlight. In addition to the optical flow camera, the system’s flight 

control consists of a three-axis gyroscope, an accelerometer, a magnetometer, a pressure 
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sensor, and an ultrasonic sensor with a resonance frequency of 40kHz to measure UAS 

altitude up to 6 meters [285]. 

 

 

Figure 92.  Parrot AR 2.0 UAS [286] 

 

The forward facing camera fixed to the front of the UAS has a resolution of 

1280x720 pixels, a 92o wide angle lens, and recorded video at 30 frames per second (fps) 

while taking still images simultaneously. The pictures and videos were transmitted to the 

device controlling the UAS or saved on an onboard flash drive. The bottom facing camera 

of the UAS, used for control and collecting data, had a resolution of 640x320 pixels and 

captured images at 60 fps. The pilot could switch between the camera views from the 

ground using the app during flight. The ultrasonic sensor and the camera fixed at the bottom 

of the UAS assisted with flight stability, but it should be noted that the user could program 

the UAS to maintain altitude and position using both the ultrasonic sensor and downward-

facing camera [286].  

The deformation measurements obtained from the data collected by the UAS were 

compared and validated with a commercial optical metrology system (TRITOP, distributed 

by Trilion Quality Systems) that provided up to 50 microstrain accuracy. This optical 
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metrology system utilized a single camera to track user-placed fiducial markers, that could 

vary in size, on a given field of view by using a photogrammetry framework, presented in 

section 2.4.5, which assumes no marker movement between stages [287]. Specifically, the 

system identifies ellipses, due to oblique views of the circular markers depending on the 

sensor location, and then calculates the centroid of each marker leveraging the perimeter 

of the ellipses. Defined in this way, a set of digital points was used for deformation 

measurements with the scale provided in the field of view by both appropriately defined 

scale bars as well as an additional set of coded or reference markers, as referred to by the 

manufacturer. The perimeter of each marker was determined with the grayscale image and 

only markers with a minimum diameter of ten pixels were used in the calculations. In 

general, larger diameters in pixels provide more accurate centroid locations. This approach 

yields relatively low-density point clouds when compared to full field DIC or structure 

from motion, but it provides the accuracy associated with DIC with the flexibility of 

structure from motion. The calculation of the 3D coordinates and deformation using 

multiple camera positions for a given target in the field of view require that no changes 

occur within the scene while the images within a stage. The TRITOP system leveraged a 

16 megapixel digital single lens reflex (DSLR) camera which was validated with a 

corresponding full-field 3D DIC system leverging two 5 megapixel stereo camears and the 

ARAMIS DIC software [288]. The photogrammetry approach does not require precise 

control of the camera position by leveraging many camera views, which is promising for 

application on a UAS.  

Since it is possible to carry LiDAR on UAS platforms, the UAS image based 

measurements were compared with a 3 dimensional measurement from the X-BOX Kinect, 
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which was capable of providing RGB images with distance measurement associated with 

each pixel. The Kinect used an infrared laser projector to generate depth information for 

each RGB image pixel. The Kinect color camera had a resolution of 480x640 pixels which 

was used to determine the in plane coordinates leveraging the depth measurements. It 

measures data relative to its own coordinate system, which in conjunction with the known 

position of the Kinect, was used to obtain information on a globally defined coordinate 

system. The Kinect sensor has a minimum operating distance of 0.5 m from the target and 

two millimeter accuracy at one meter distance which degrades with increasing distance up 

to seven centimeters at a distance of five meters [289]. The Kinect was used in the place of 

a LiDAR system due to its low cost and data rich output. Though it cannot be used outside, 

there are commercial systems that can be implemented on a UAS with higher payload, such 

as the Velodyne VPL-16 [290].  Since the UAS was incapable of carrying the camera used 

for the TRITOP software and the Kinect due to the weight of the systems, the two systems 

were tested separate from the UAS for the proof of concept. 

6.3.2 Data Post-Processing  

The images captured with the UAS camera were severely distorted because of its 

wide angle lens, as displayed in Figure 93 (a). The distance variability per pixel throughout 

the image for a fixed distance perpendicular to the target. Therefore, raw captured images 

were post-processed by using a calibration algorithm explained in section 2.4.3. The 

resulting corrected image is shown in Figure 93 (b). This method ensured that the distance 

per pixel throughout the image taken perpendicular to the camera is not affected by the lens 

distortion, making it possible to place a scale bar in that plane within the field of view of 

the image instead of the checkerboard.   
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Figure 93.  a. Image obtained with the built-in UAS camera showing issues 

associated with measurement in images with lens distortion present. b. Corrected 
image after camera calibration 

 

Prior to experimentation on a structure, flight testing was performed to determine 

the effect of hovering on the image clarity. An example shown in Figure 94 is an image 

taken while the drone was hovering with the scale bar and a set of uncoded, orange.  

 

 
Figure 94.  Image obtained while the drone was hovering 
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The TRITOP coded markers and scale bars were also in the field of view of the 

image. The TRITOP black and white circular markers were placed in the center of each of 

the orange fiducial markers. The marker highlighted in Figure 94 shows the marker 

magnified to 8 times the actual size in the image to determine the amount of blur associated 

with the UAS vibration. In this case, the wide angle lens and blur associated with the image 

could be neglected. However, studies have been completed to help correct these problems 

with image blur using UAS [291].  

A computational algorithm was developed in MATLAB to compute the coordinates 

of the fiducial markers in images captured by the UAS. Since there was not a forward 

facing ultrasonic sensor to determine distance and angle of the UAS with respect to the 

target, the position of the camera with respect to a given target presented a practical 

challenge for this approach. This challenge was overcome assuming all of the images 

captured by the UAS were taken perpendicularly to the target. Therefore, the aircraft was 

carefully positioned during flight so only pictures taken perpendicularly to the target would 

be used for measurement purposes. It was assumed that images taken within 5 degrees from 

perpendicular to the target were acceptable for measurement. However, it is also known 

that the error increases as the markers get further from the center of the image. Since the 

angle was impossible to measure during flight with the equipment used for these 

experiments, the estimation of the UAS perpendicularity to the wall was made from 

multiple pilot and viewer positions. The perpendicularity assumption made it possible to 

eliminate the coded markers from the scene, which would be needed in the case that oblique 

angles of observation were required. In a system with higher payload, a high resolution 
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DSLR camera could be used to identify coded markers which would then allow for the 

processing of images taken at different angles. The coded markers would be required for 

matching purposes. 

The algorithm steps to obtain measurements from the UAS images are shown in 

Figure 95. The scale bar was placed in the image with rectangular markers on either end 

for easy identification and the scale bar was assumed not to move throughout the test. The 

distance between the scale bar markers was a parameter set prior to testing. Two images 

were imported where one was assumed to be the reference in which all of the other images 

were compared to and the second image was used for comparison. The images were 

subsequently corrected for lens distortion and markers were identified using their color. 

The markers were chosen to be orange because it is one of the easiest colors to identify in 

an image and non-orange areas of the image were eliminated using the color, size, and 

shape of the markers. The image was converted to a binary image using a color threshold 

and the centroids were calculated and tracked with the algorithm. The size of the markers 

in pixels within the image varied with the distance from the camera to the markers. The 

minimum acceptable marker radius was 10 pixels for each test regardless of the physical 

dimensions of the marker. Greater numbers of pixels encompassed by the marker resulted 

in more accurate centroid locations that would be used for the measurements. The Hough 

transform was used to identify the shape of the markers [128], which determined which 

markers corresponded to the scale bar and provided measurement points with a known 

scale within the image. The relative position of each marker was measured in a local 

coordinate system defined by the scale bars. This aligned the images to a common FOV to 

quantify the deformation. 
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Figure 95.  UAS MATLAB algorithm steps to image measurements 

 

The X-Box Kinect captured 3D coordinates at every pixel in the image and 

leveraging the additional information, another algorithm was developed in MATLAB. 

Each marker centroid was calculated from its area as in the previous algorithm. The 

distance measurements provided by the Kinect were used to determine the horizontal and 

vertical coordinates of each marker instead of using the scale bar. The distance 

measurements from the Kinect would output zero readings due to range limitations. 

Therefore, a local average of the distances around each centroid was used to estimate the 

actual distance to the marker for all non-zero distance readings.  

The algorithm steps to obtain measurements from the Kinect images are shown in 

Figure 96. The baseline Kinect data and the data used for comparison were first imported 

into MATLAB. The Kinect data was a color (RGB) image and distance measurements to 

each pixel in a fourth channel. The markers were identified in the images by their color and 

the image was filtered and converted to binary using the color based thresholds. Then, each 
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of the marker centroids were calculated in pixels with the origin located at the center of the 

image. The angle θ was calculated counterclockwise from the positive x axis for each 

marker. Distance measurements from the Kinect to each marker were determined using 

only the non-zero measurements for all pixels belonging to a marker.  Equations (6.1) and 

(6.2) were used to calculate the x and y distance in millimeters from the Kinect using the 

distance measurements and the locations of the centroids in pixels. The matching of the 

markers was accomplished using Euclidean distance assuming that the movement of each 

marker was small enough that there would be no tracking errors. Finally, the movement of 

each marker was calculated.  

 

 

Figure 96.  Steps to the Kinect measurement MATLAB algorithm 

 

The distance measurements and the known, fixed position of the Kinect allowed 

the measurements to be obtained without the use of a scale bar. Similar to LiDAR, UAS 

localization must improve significantly for this approach to be implemented in the field for 
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inspection applications. The major advantage of this approach is that global measurements 

are obtained making it feasible to determine if the entire structure has moved in a way that 

cannot be determined with local measurements. Examples of this include settlement, 

deformation caused by scouring, or shifting of the roadway or pier [96, 292]. In this 

experiment, the sensor did not move, so the local and global coordinate system were the 

same. In mobile applications, the exact position of the sensor must be well known for 

deformation measurements to be feasible. Systems with real-time kinematic global 

positioning systems (RTK GPS) can achieve centimeter accuracy positioning information 

with respect to the reference which has been used for geometric mapping of structures, but 

higher accuracy may be required to measure movements of the structure [36]. 

 

 

Figure 97. Diagram of the distance measurements used in image post processing 
with the Kinect sensor 

 

The diagram in Figure 97 provides a visual representation of equations (6.1) and 

(6.2) which were used to calculate the horizontal and vertical position of the markers in a 

local coordinate system centered at the Kinect sensor. The angle θ was determined from 
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equation (6.3), the angle γ was determined from equation (6.4), and the linear distance in 

pixels (d) from the center of the image to each marker was calculated with equation (6.5). 

After determining the x, y, and z coordinates in millimeters, deformation was calculated 

between the sets of images. 

    tan cosm mx z      (6.1) 

    tan sinm my z      (6.2) 

 arctan p
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 2 2
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The angle per pixel for the Kinect, θp, was assumed equal to 0.089o which was 

computed by dividing the experimentally determined horizontal and vertical field of view 

angles by the number of pixels in each direction for both RGB and IR data. The variables 

xp and yp are the marker centroid coordinates in pixels and variables xm, ym, and zm are the 

local coordinates of the markers in millimeters. 

6.3.3 Perpendicular Camera Angle 

Deformation measurements were performed both statically and while the UAS was 

hovering indoors. The first setup using a cantilever aluminum L-beam is show in Figure 

98. The images were taken statically with both the UAS camera and the Kinect sensor. The 

limited space in the laboratory prevented the UAS pilot from capturing images while the 

system was hovering. The purpose of the test was to validate the performance of both the 

UAS and Kinect algorithms. TRITOP was used as the ground truth measurement for this 
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setup. The orange markers were used by the developed algorithms and the black and white 

TRITOP markers were placed at the center of each orange marker for direct comparison. 

 

 

Figure 98.  An aluminum cantilever beam used for static measurements with 
vertical loading imposed near the tip of the beam. 

 

Figure 99 shows a comparison between TRITOP measurements and the 

measurements obtained from the developed algorithms for both UAS and Kinect images. 

The solid black lines in the figure show the measurements obtained from TRITOP which 

appear to be linear because the images were only taken at the free end of the beam. The 

error bars were computed by taking three measurements with no load after loading and 

unloading. The origin location was set to be at the centroid of the left orange scale bar 

marker. It was determined from the results that the Kinect had an accuracy of ±3.5mm, and 

the UAS had an accuracy of ±2mm.  
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Figure 99.  Deformation results for unloaded (0kg load baseline) and loaded with 

11kg and 22kg aluminum L-beam  

 

The inaccuracy of the Kinect increased as the deflections increased, as shown for 

the measurements obtained for both 11kgs and 22 kgs of loading. These inaccuracies could 

be explained by the angle per pixel, explained by Figure 97, which was assumed to be 

0.089˚, being inaccurate or not valid in practice. The offset between the RGB and IR 

sensors was not taken into account for these experiments and could lead to inaccuracies in 

the assumed value. However the offset between the sensors is 25mm in the x direction, so 

it was not expected to affect the vertical component of the measurements. Since the vertical 

component was the focus of the experiment, this source of error should have a limited effect 

on the results due to the offset. Another source of error for the Kinect is lens distortion in 

the infrared pattern. Since the infrared pattern projected by the Kinect passes through a 

lens, there is distortion associated with it. The infrared lens distortion was neglected for 
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this experiment because a checkerboard used for calibration is not visible. Many 

commercial LiDAR systems scan differently and often do not require a lens to collect the 

data which would eliminate this problem. The deformation measurements obtained from 

the UAS imagery consistently followed the deflection profile, while the observed error 

range suggests that a camera with higher resolution could allow for higher accuracies 

assuming the proper sensor and optics are used. 

Similarly, deformation measurements were performed on a laboratory scaled steel 

grid [42], shown in Figure 100. In this case, UAS images were captured both statically and 

during flight while hovering.  The deck was loaded and unloaded three times, and three 

measurements were for each stage with the UAS in a static and hovering configuration and 

also with the X-Box Kinect. One ground truth measurement was taken with TRITOP as a 

baseline to compare the image based measurements obtained from the Kinect and UAS 

static and hovering.  

 

 

Figure 100. (a) UAS hovering near the steel deck.  (b) Picture captured by the UAS 
camera  

  

The results of the test are shown in Figure 101. Nine measurements from each of 

the same load of 102kg were compared using a t-test, and no statistically significant 
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differences between the means of each measurement system were observed. The error bars 

were determined using a student t-distribution with a 95% confidence interval and eight 

degrees of freedom using each of the nine measurement points (orange dots) from each 

loading. Since the measurements were expected to be different for each of the markers, the 

markers were not compared to each other. 

 

 

Figure 101.  Deformation results for loaded steel deck from both the UAS static and 
hovering measurements and the Kinect measurements 

 

As it was in the aluminum L-Beam test, the zero horizontal position was located at 

the left scale bar marker. Based on these measurements, it was determined that the X-Box 

Kinect had an accuracy of ±5mm, the UAS in a static configuration had an accuracy of 

±2mm, and when hovering, the UAS had an accuracy of ±3.5mm.  
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The measurements obtained with the Kinect seem to have an opposite trend when 

compared to the expected deformation; however, due to the limited resolution of the 

system, error bars suggest that the structure did not move enough for the Kinect to reliably 

detect the movement. The error was approximated to be ±5mm for this testing 

configuration and the measurements obtained from the Kinect sensor fluctuated between -

9 and -12 which does capture the overall movement of the setup. The aluminum L-beam 

test provided a better representation of the capabilities of this system because the 

deformations were detectable with the sensor. The system could have been placed closer 

to the steel grid to increase the resolution to obtain better measurements if the Kinect could 

obtain measurements at working distances less than one meter from the structure. However, 

when the Kinect is placed closer than one meter to an object, the distance measurement to 

that object read zero. 

 Since the UAS was manually piloted, the system may not have been perfectly 

parallel to the setup when the image was captured during flight, which added a significant 

amount of error compared to the static setup. This would be an even bigger problem in the 

presence of wind, but a UAS with higher payload could carry a high resolution camera and 

use photogrammetry to its full potential with both coded markers and uncoded markers 

making angles to the target possible. Furthermore, a vibration dampening system and 

gimbal could be used to stabilize the images during flight which would decrease the amount 

of blurry images captured during flight. 

6.3.4 Field Demonstration 

A field experiment was performed on a pedestrian bridge to demonstrate the potential 

of the UAS to fly around an actual structure and obtain aerial imagery that could be 
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leveraged for damage detection and analyzed by the algorithms to obtain deformation 

measurements.  

 

 

Figure 102. (a) Picture of the UAV hovering near the pedestrian bridge;  (b) Image 
taken by the UAV showing the markers previously placed.  (c) Markers identified 

using the image processing algorithm 

 

Specifically, Figure 102 (a) shows the UAS hovering alongside the bridge, and 

Figure 102 (b) shows an image captured during the flight of the orange markers placed on 

the structure prior to the flight. These images were imported into the UAS algorithm and 

the markers were successfully identified as shown in Figure 102 (c). Marker identification 

is one of the most important components of the measurement algorithm because partially 

identified markers or incorrectly classified shape result in severely incorrect measurements. 

This demonstration was only used to ensure that the algorithm could identify the markers 

a c
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correctly on a structure outside of the laboratory. No loads were applied to the pedestrian 

bridge so deformation measurements could not be calculated. 

6.3.5 Oblique Camera Angle 

Since a perpendicular angle to the structure is not always feasible, a method was 

explored for obtaining measurements at large angles. Using the same laboratory steel grid 

as in section 6.3.3, static deformation measurements of the deck were performed using 

images captured on a tripod. Prior to the experiment, calculations were performed to 

determine the depth of field and expected blur associated with each of the markers. This 

was done to ensure that the markers were in focus enough to be correctly identified. The 

length of the deck was just under 6.5 meters and therefore the depth of field was required 

to be at least 6.5 meters to accurately determine the location of all of the markers in the 

image. The depth of field is defined by the nearest and farthest distance from the target that 

an object is still in focus with the same camera settings. These distances can be determined 

using the circle of confusion (c), focal length (f), F-number (N), and object distance (z). 

The circle of confusion was based on the physical size of the sensor and the number of 

pixels. In this case, the physical size of a pixel on the image sensor was set to be the circle 

of confusion because any amount of blur within a pixel cannot be detected. The hyperfocal 

length (H) is the focus distance where all of the objects further than that distance appear to 

be in focus. This value was calculated using equation (6.6) and is necessary to determine 

the depth of field [293]. 

 
2f

H f
N c

 


  (6.6) 

The closest  (DN) distance in focus was calculated using equation (6.7) and farthest 

(DF) in focus was calculated using equation (6.8) [293]. 
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The steps to obtain the measurement are below in Figure 103. The first step was to 

calibrate the camera to find the camera intrinsic matrix and correct the images for lens 

distortion. The markers were then identified using multiresolution edge detection and shape 

filtering, followed by circular Hough transform. The markers were then matched using the 

pattern and spacing of the dots on each marker. The three dimensional coordinates were 

obtained through triangulation limiting the movement to the directions the marker was 

expected to move. The camera coordinates were then mapped to the same coordinate 

system based on the known locations of the fixed markers. 

 

 

Figure 103. Steps to obtaining measurements from images taken at an oblique angle. 

 

A preliminary experiment was completed to validate the approach. An image 

captured during the experiment is shown in Figure 104. The two markers in the red boxes 
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were fixed during the experiment. The center marker in the green box was moved 5mm, 

10mm, and 20mm. 

 

 

Figure 104. Small scale point measurement validation. 

 

The camera parameters for this experiment were a 210mm focal length, aperture of 

f/6.3, ISO-100, and shutter speed of 1/30 seconds. After the experiment the images were 

processed to determine the movement using the steps outlined in Figure 103. The metric 

used to determine if the triangulation and transformation to world coordinates was 

acceptable was a movement of less than 0.25mm for all 8 dots on the fixed markers. After 

applying this criteria, 65 comparisons for 0mm movement, 34 for 5mm movement, 15 for 

10mm movement, and 37 for 20mm movement were determined to be good measurements. 

The results of the experiment are shown in Table 9 and Figure 105. The colors correspond 

to each movement. The dots are the image measurements and the x’s are the actual 

movement. 
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Table 9. Results of small scale validation experiment. 

X Location 
(mm) 

Mean Camera Marker Movements (mm) 

Marker 1 Marker 2 Marker 3 

0 0.00 -0.21 0.00 
5 0.00 5.07 -0.00 

10 0.00 10.47 -0.00 
20 0.00 20.07 -0.00 

 

 

 

 

Figure 105. Results of the validation experiment. 

 

Since the movement was done by hand and measured with a ruler, it is possible that 

some of the errors were a result of poor movement control. In general, the measurements 

performed very well and the grouping was very tight across all of the images that produced 

an acceptable reconstruction.  
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After validating the method, the larger scale experiment was completed. The focal 

length used for the experiment was 210mm. As the size of the aperture increases, the circle 

of blur increases, so the size of the aperture needed to be as small as possible. This was 

limited by the camera and lens system to a size of f/32. The focus distance was set to 7 

meters which corresponded to the center marker on the structure and the blur on both at the 

ends of the deck were between 19 and 21 pixels. This allowed for accurate identification 

of the markers designed for the experiment and all of the markers were visible in the field 

of view of the camera.  

 

 

Figure 106. (a) Circle of blur with large aperture. (b) Circle of blur with narrow 
aperture. (c) Image obtained during the experiment with close up of the end 

markers and the center marker to highlight the amount of blur. 
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Figure 106 (a) and (b) show how the amount of blur changes with object distance 

caused by wide and narrow apertures. The image plane is the location of the camera sensor 

and from the figure, the circle of blur decreases significantly with a smaller aperture at all 

of the image planes. Equations (6.7) and (6.8) were used to minimize the amount of image 

blur at the ends of the deck. The results of the analysis were accurate enough to obtain the 

results displayed in Figure 106 (c). It is clear from the images that the middle dot is more 

in focus than the other two. It is also clear that the first and last dot have a similar amount 

of blur as predicted from the analysis. This is important because they are on opposite sides 

of the marker in focus so this is the minimum amount of blur possible for all of the markers. 

If the focus is shifted in either direction, it will cause one of the markers to have a less 

sharp appearance in the image.  

Higher values of ISO correspond to a brighter image and add noise to the image so 

the ISO setting of the camera was set to be 100 to minimize the amount of noise in the 

image. The only parameter left to change to increase the brightness of the image was the 

shutter speed which was set to 4 seconds to obtain a bright enough image. Figure 107 (a) 

shows the description of the steel grid and where the load was placed. An image taken 

during the experiment is shown in Figure 107 (b) with all of the markers applied and 

numbered. In order for the method to be successful in obtaining measurements, all markers 

had to be within the field of view of the camera for all of the images [294]. Markers 1 and 

5 were fixed during the experiment and were used as references to determine how much 

the other markers moved. They were placed on the supports of the deck to ensure that they 

did not move throughout the experiment. Markers two, three, and four were fixed to the 

grid so they would move with the grid while the deck was loaded. Each of these markers 
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had a string potentiometer displacement gauge placed at the center of the marker for a 

direction comparison to what was assumed to be ground truth. The displacement gauges 

were calibrated immediately before testing to ensure they were working and an accurate 

calibration constant was used for processing. The grid was loaded with 0lbs, 50lbs, 100lbs, 

150lbs, and 200lbs and 4 images of each stage were taken at different locations to simulate 

the movement of a UAS. In order for this method to be implemented on a UAS, a gimbal 

would need to be used and the shutter speed would need to increase significantly to 1/500s 

or faster depending upon the setup in order to limit the amount of blur caused by the 

vibrations of the aircraft.  

 

 

Figure 107. (a) Top view of the steel grid with the load placed at the location of the 
red circle. (b) Image obtained during the experiment with the markers numbered. 

 

In processing the data, each marker was triangulated using the different locations 

of the camera. At least two views were needed in order to accomplish this task, as described 

in section 2.4.5. Assuming the markers do not move along the length of the deck and the 

motion in the horizontal direction was negligible, equation (2.32) can be altered to obtain 

better results based on known quantities. The measurements were determined using the 

fixed markers as a reference and the known locations of the markers along the length of 

the deck were added into the equation. This added some constraints to make the solution 
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more accurate. The location of each of the markers is shown in Figure 108 (a). Since this 

information was used to help constrain the problem, the simplified triangulation was only 

able to calculate the vertical displacement of the deck. This was not an issue for this 

experiment because the deck only moved in the vertical direction and the ground truth 

measurements could only measure the vertical direction as well.   

 

 

Figure 108. (a) Layout of the markers along the side of the steel grid. (b) Results 
obtained from the experiment. 

 

The results of the experiment are shown in Figure 108 (b), where the each load 

stage is color coordinated with the legend and the dots are the image based measurements 
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and the x’s are the displacement gauge measurements. The average of the image 

measurements taken for each loading stage is represented by a solid line. One advantage 

of having the fixed markers is that it allows for the assessment of the quality of the 

measurements. After determining the image measurements, the marker locations were 

reprojected onto the image and compared to the location of the centroids of each marker 

using the projection matrices. If the distances from each corresponding centroid were too 

high, the measurement was removed because of poor triangulation [143]. The numerical 

values of displacement for the image measurements and the displacement gauges are 

shown in Table 10. 

 

Table 10. Results of the displacement experiment. 

Load 
(lb) 

Mean Displacement Measurements (mm) 
Marker 1 Marker 2 Marker 3 Marker 4 Marker 5

Camera Gauge Camera Gauge Camera Gauge Camera Gauge Camera Gauge

50 0.00 - 1.03 0.72 1.08 0.85 0.48 0.29 0.00 -
100 0.00 - 1.74 1.47 1.76 1.71 0.65 0.69 0.00 -
150 0.00 - 2.34 2.26 2.57 2.48 1.05 1.05 0.00 -
200 0.00 - 2.93 2.92 3.28 3.25 1.28 1.36 0.00 -

 

 
The error in millimeters of the results shown in Figure 108 are shown in Table 11 

and the percent error is shown in Table 12. 

 

Table 11. Average displacement error results of the steel grid experiment. 

Load (lb) Error (mm)

50 - 0.31 0.23 0.19 - 
100 - 0.28 0.06 -0.04 - 
150 - 0.07 0.09 0.00 - 
200 - 0.01 0.03 -0.08 - 
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Table 12. Average percent error results of the steel grid experiment 

Load (lb) Error (%)

50 - 42.87% 26.69% 65.58% - 
100 - 18.78% 3.73% -5.97% - 
150 - 3.27% 3.51% -0.21% - 
200 - 0.43% 0.86% -5.86% - 

 

 

From the tables, it is clear that the average error in millimeters for each stage is less 

than half a millimeter and in most cases, less than 0.1 millimeters. The percent error appears 

to decrease as the load increases because of the increasing displacement. A study was done 

to determine the error associated with the image measurements. The assumption that any 

markers that had less than one millimeter of reprojection error was a good measurement 

was enforced and the error associated with the image measurements was determined to be 

0.3mm for this experiment. This was determined using two standard deviations of each 

measurement assuming the error was normal. The major problem associated with this 

technique is the scale of the experiment heavily affects the outcome and as the scale 

increases, it becomes impossible to obtain all of the markers in the field of view and achieve 

enough focus to complete the measurement. Furthermore, as the scale increases, the error 

associated with each step also increases. Since the error among each marker is minimized 

to complete the reconstruction, the error is distributed across all of the markers. The 

minimization takes into account the two view geometry correction which can help, but the 

underlying problem is still present [143]. One way to mitigate the challenge of scale is to 

fix the camera and focus on each individual marker, but this is difficult to achieve in the 

field [294]. 
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6.4 Full Field Beam Displacement Measurement 

6.4.1 Multiscale Multispectral Speckle Pattern for 2D DIC 

The first multispectral imaging experiments involved creating a pattern that was 

visible in the infrared spectrum, but not observable in the visible light spectrum. This was 

accomplished applying multiple types of paint with different emissivity values to a 

specimen and determining the visibility in the color and IR spectra. The first attempt at 

accomplishing this goal is shown in Figure 109. Black and white paint as well as clear 

lacquer were used to determine what was visible in infrared imagery. The clear paint was 

much more visible in infrared due to the very different emissivity of the aluminum and the 

lacquer.  

 

 

Figure 109. (a) Appearance of different paints in color (left) and infrared imagery 
(right). (b) Application of the invisible speckle pattern in a color image. (c) 

Application of the invisible speckle pattern in an infrared image. 

After the preliminary testing demonstrating the feasibility of the method, the next 

experiment focused on DIC with both IR and visible light imagery. Black point was used 
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to create the speckles so they would be visible in both visible and infrared imagery. Images 

were taken of a beam in the lab which was loaded and DIC was used to determine the 

displacement. These displacements were then compared to a displacement gauge. An 

example of each of the color and infrared images taken during the experiment are shown 

in Figure 110 (a) and (b) respectively and the results of the experiment are shown in Figure 

110 (c). For both loads, the displacement gauges and the DIC measurements were almost 

identical with less than 1% error with respect to the displacement gauges.  

 

 

Figure 110. (a) Color image from the experiment. (b) Infrared image from the 
experiment. (c) Displacement of the structure measured by visible light DIC, 

infrared DIC, and displacement gauges. 

After validating the results of IR DIC with traditional DIC, more careful 

consideration was taken to determining the wavelength to achieve better results. The 
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resolving power, described in section 2.5.2, was considered to determine the wavelength 

that would be used in the next experiments. In addition to the resolving power, the optimal 

size of the speckles for a specified distance, focal length, sensor size, and resolution was 

determined for multiple distances. 

A 24 megapixel Sony a6000 camera with a CMOS 23.5mm by 15.6mm sensor, 

Bayer filter, and 16mm focal length was used to capture color images during this 

experiment. The angle per pixel was determined using equation (9) and (10) where θp is 

the angle per pixel in radians, sx and sy is the horizontal and vertical size of the sensor in 

millimeters, f is the focal length in millimeters, and Nx and Ny is the number of pixels in 

the horizontal and vertical direction [295]. 
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The angle per pixel is roughly the same in both the horizontal and vertical 

directions. The average of these values were then used to determine the size of the speckles 

(S) based on the object distance (O) and the number of pixels per speckle (n) using equation 

(11). This quantity was critical to the design of the speckle pattern and several images of a 

crack card were taken at multiple distances and analyzed to determine the smallest size 

resolvable with a specified number of pixels to validate the equation. The minimum size 

of the speckle for registration is 3x3 pixels; therefore, n was set to be 3. The images taken 

at multiple distances and results are shown in Figure 111.  
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  tan pS n O     (11) 

A diagram describing the variables in equation (11) is shown in Figure 111 (a). The 

images in Figure 111 (b) were taken at 6, 12, 18, and 24 inches from the crack card. The 

pixel size was then compared to the results of equation (11). The smallest resolvable line 

width is shown in Figure 111 (c) and (d) with the red box corresponding to a 3x3 pixel 

neighborhood, the smallest acceptable size of the speckle.  

 

 

Figure 111. (a) Diagram describing equations (9), (10), and (11). (b) Images taken of 
a crack card with predetermined widths. (c) Expanded version of the smallest size 
the camera can resolve. (d) Further expansion to show a 3x3 pixel neighborhood in 

red. (e) Comparison of the values obtained with the equation at each of the distances 
shown in (b). 

 

Figure 111 (e) validates that the theoretical equations and the experimental results 

correlate well for the camera lens system. The numerical results of the experiment are 
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shown in Table 13 where the image speckle size was determined manually from Figure 

111 (d).  

 

Table 13. Results of validation experiment shown in Figure 111. 

Distance 
(inches) 

Image Speckle Size 
(mm) 

Theoretical Speckle Size 
(mm) 

6 0.1 0.1037 
12 0.2 0.2074 
18 0.3 0.3111 

24 0.4 0.4148 
 

 
The equations were then used to determine the optimal speckle size given distance. 

In addition to the speckle size, the distribution of points was a key parameter to creating a 

good speckle pattern. There are several metrics that can be used to determine the global 

and local quality of a speckle pattern. The ones chosen for this experiment were the local 

sum of squares of subset intensity gradient which was validated against the local subset 

entropy and the global mean intensity gradient [184]. Simulated images were used to 

compare these metrics and were then used to create a stereolithography (STL) file used to 

3D print a stencil. The validation is shown in Figure 112. As the mean intensity gradient 

increases, the local metrics also increase resulting in a better speckle pattern. The higher 

values in both metrics indicate a greater amount of texture which is better for DIC 

algorithms to track. 
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Figure 112. Comparison of global and local speckle pattern metrics 

 

The plots in Figure 113 show the how the particle area and number of particles 

affect the mean intensity gradient values. Smaller particles and a greater number of 

particles result in higher MIG values. Therefore, an optimal pattern should contain the 

smallest speckles possible and as many particles as possible. However, the minimum size 

of the particle is limited to 3 pixels since fewer pixels result in aliasing which causes failure 

in particle tracking which results in a loss of facets. Furthermore, the speckles within each 

facet must be unique within a predefined search radius to ensure proper tracking of each 

facet. 

 

 

Figure 113. Comparison of speckle size vs. speckle quality metrics 
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After the optimal speckle properties were determined, a template was manufactured 

with a 3D printer for each of the speckle sizes. The minimum print resolution of the 3D 

printer was used as to determine the smallest printable speckle size. Several STL files were 

created from the images created in MATLAB with different sizes and each pattern was 

printed with the 3D printer. The top images in Figure 114 show the patterns designed in 

MATLAB and the corresponding bottom images show the resulting 3D printed template. 

It was determined that the smallest acceptable speckle size was 1mm diameter circles based 

on the template quality. In order to ensure that the stencil was able to be manufactured at 

the proper size, the smaller dot size was set to 2mm. The larger dot size was determined 

based on the smaller pattern. Since the smallest acceptable speckle size is 3x3 pixels, the 

larger speckles were designed to have 6mm diameter circles. It was expected that the 

smaller speckles would be visible at the farther distance, but heavily affected by aliasing.  

 

 

Figure 114. Computer generated speckle templates used to determine the minimum 
printable dot size for the stencils 
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The design for the experiment is shown in Figure 115. The two different template 

sizes were optimized for the two corresponding distances. The horizontal field of view is 

represented by the angle θ which remains constant for both the near and far distances. Both 

patterns were spatially optimized to ensure the 3D printer would accurately print the dots 

with no overlap in addition to ensuring the speckles produced high values for the MIG for 

the optimal distance.  

 

 

Figure 115. Generation of pseudo-random, optimized speckle pattern for 
predetermined working distances [227] 

 

The images formed in MATLAB were used to form an STL file by assigning a 

thickness and the files were then sent to the 3D printer for manufacturing. The final stencils 

used for the experiment are shown in Figure 116 (a). The larger pattern was applied to the 

structure using black and white spray paint. The beam was first coated in white paint and 

after it was dry, the stencil was positioned on the beam and black spray paint was applied. 

After the black paint had dried, an invisible, non-reflective paint was applied so that when 

a black light was placed near the beam, the paint would not appear to fluoresce. After that 
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coat dried, the smaller stencil was placed on the structure and an airbrush was used to apply 

the clear paint with pigment inside that appeared bright when the black light was put near 

the structure. The patterns are shown in Figure 116 (b) after they were applied to the beam. 

 

 

Figure 116. (a) Manufactured pattern stencils, and (b) applied patterns on the beam 

 

The top image in Figure 116 (b) shows the color image with both patterns applied 

to it without the black light being present. The clear paint is not visible in this condition. 

The lower image shows the same beam with the smaller speckle pattern visibly fluorescing 

with a black light near it. 

A finite element model was created of the beam prior to the experiment. The model 

was formed with brick elements and assumed to be pinned at two locations on the structure 

to be more accurate to the actual boundary condition where the beam was clamped to the 

support. The model is shown in Figure 117 with the assumed loading shown in (a) and the 

results shown in (b). The main purpose of the model was to ensure that the beam would 

not be damaged under the loading and for comparison to the actual results obtained from 

DIC and the displacement gauges.  
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Figure 117. (a) Assumed loading for the model. (b) Results of the finite element 
model and properties 

 

The model for plasticity of Al-6061-T6 used for the model is tabulated below [296].  

 

Table 14. Stress and strain for the material law used in the model in Figure 117 

Stress (psi) Strain (%) 

41,480.868 0.384 
42,061.020 0.438 
43,221.324 0.493 
43,801.476 0.651 
44,236.590 0.992 
44,816.742 2 
45,686.970 3.51 
46,267.122 5.02 
46,702.236 6.51 

46,847.274 7.44 
 
 

An aluminum C-beam with the cross section shown at the top of Figure 118 (a) was 

chosen as the specimen for the experiment. This beam was chosen because it was not 
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expected to have any out of plane motion due to the symmetry. The beam was fixed at one 

end and loaded on the other. The speckle patterns were applied near the loading side. Three 

displacement gauges were used as the ground truth and placed at locations along the beam 

for direct comparison to points within the full field DIC measurements. The setup and 

dimensions of the beam are shown in Figure 118 (a) including the locations of the 

displacement gauges. Lights were applied to the beam to ensure the lighting was as uniform 

as possible and did not change throughout the experiment. The only camera setting that 

was changed during the experiment when switching from the standard color images to the 

images capture with a present black light was the exposure time. This ensured that the 

depth of field, noise properties, and magnification from the lens did not change both sets 

of images. This made the measurements directly comparable because the exposure time 

should have the least effect on the quality of the images, aside from changing the 

brightness. Table 15 shows the camera parameters for the color and UV patterns during the 

experiment. 

 

Table 15. Camera Settings during the experiment 

Camera Parameters Color UV 

Aperture f/22 f/22 
Exposure Time 0.5s 4s 
ISO 100 100 

Focal Length 16mm 16mm 
 

 
The images shown in Figure 118 (b) and (c) were taken during the experiment at 

the closer distance with and without the black light applied respectively. The speckles 
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appear to be blue when the black light was applied and were not visible when using the 

standard lighting conditions.  

 

Figure 118. (a) Experimental Setup. Images of the (b) UV pattern and (c) color 
pattern obtained during the experiment. 

 

Since 2D DIC was used to process the data obtained from this experiment, the 

distance per pixel was required to convert the pixel measurements into distance 

measurements. Calibration images were taken of a calibration panel prior to the experiment 

with known distances between each marker. The assumption with the 2D parameter is that 

the camera would remain stationary throughout the experiment. Figure 119 shows one of 

the calibration images taken prior to the experiment. The calibration images were taken at 

each predetermined distance in the exact same location as the images were taken during 

the experiment. To ensure the camera didn’t move during the experiment, the camera was 

tethered and triggered by a computer so the camera did not have to be touched after it was 

placed on the tripod and the calibration images were taken.  
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Figure 119. Calibration panel used to determine distance per pixel. 

 

The calibration panel was aligned with the front face of the beam to ensure the 

calculated 2D parameter was correct for the DIC algorithm. If this was not the case, large 

errors would result from an incorrect 2D parameter. The points of on the calibration panel 

were well known and the images were processed to isolate the dots in the calibration panel 

as shown in Figure 120. This process was done at both distances to calculate the 2D 

parameter. 

 

 

Figure 120. (a) Original image of the calibration panel. (b) Processed image to 
isolate the dots. 
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The segmentation of the dots was accomplished with thresholding using the Otsu 

method, followed by Hough transform used to identify lines across the image, and finally 

selecting only blobs that existed at the intersections of the lines. This ensured that only the 

known points were identified and rejected the other areas of the image corresponding to 

coded markers in the calibration panel that did not have a well-known location. 

Each of the points on the calibration panel with well-known locations with respect 

to each other were used to calculate the 2D parameter required for 2D DIC. The large 

number of points in the panel provided a higher degree of confidence in the distance per 

pixel. Using this technique, the 2D parameter at the closer distance was determined to be 

0.46mm/pixel and 1.38mm/pixel at the farther distance. This technique was effective in 

determining the 2D parameter as well as determining if the camera image plane was not 

parallel to the structure.  

Five images of each stage were taken and averaged to reduce the noise associated 

with the camera system prior to analyzing the images with DIC. ARAMIS DIC software 

was used to compute the displacements. ARAMIS only accepts grayscale images to 

compute the displacements [288]. However, due to the design of the Bayer filter, the green 

band of the image has the highest amount of spatial content [154]. Therefore, rather than 

simply averaging the color bands to obtain a grayscale image, the green band was isolated 

and processed so the highest spatial content was used and information was not averaged 

across the bands with less spatial content. Ideally, it would be beneficial to use a 

monochrome camera with corresponding filters to ensure only the desired wavelengths of 

light were visible. This would ensure the image takes full advantage of all of the pixels 

rather than interpolating between neighboring pixels of the same color. It could also 
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eliminate the need for the active lighting with the black light. The facet size used to post-

process the images obtained at the closer distance was 21 pixels with a spacing of 10 pixels. 

This ensured a significant amount of overlap of the facets so that light intensity changes 

would be picked up by neighboring facets to obtain good measurements. The facet size 

used to post-process the images taken that the farther distance was 11 pixels and a 5 pixel 

spacing. The measurements obtained at the 2m working distance are in shown in Table 16 

and Table 17 and the results are displayed in Figure 121 (a) and (b) for color and UV 

imagery respectively.  

 

Table 16. Displacement measurements from color images at the 2m working 
distance. 

Close (2m) Displacement Gauges (mm) Color Measurement (mm) 
load (kg) DG1 DG2 DG3 DG1 DG2 DG3 
Baseline 0 0 0 0 0 0 

0 0.17 0.10 0.13 0.20 0.14 -0.04 
11.34 -15.30 -18.71 -22.50 -15.77 -19.00 -22.81 
11.34 -14.83 -18.12 -21.83 -15.30 -18.46 -22.23 
22.68 -30.66 -37.58 -44.80 -30.75 -37.07 -44.54 
22.68 -30.10 -36.86 -44.05 -30.45 -36.72 -44.11 
45.36 -46.57 -56.87 -67.53 -45.44 -54.81 -65.92 
45.36 -46.35 -56.64 -67.28 -45.57 -54.95 -66.09 

 

 
Table 17. Displacement measurements from UV images at the 2m working distance. 

Close (2m) Displacement Gauges (mm) UV Measurement (mm) 
load (kg) DG1 DG2 DG3 DG1 DG2 DG3 
Baseline 0 0 0 0 0 0 

0 -0.08 -0.10 -0.11 0.01 0.02 0.05 
11.34 -14.93 -18.24 -21.95 -15.21 -18.33 -22.00 
11.34 -15.38 -18.78 -22.59 -15.51 -18.71 -22.37 
22.68 -30.32 -37.15 -44.34 -30.17 -36.44 -44.07 
22.68 -30.73 -37.65 -44.88 -30.58 -36.84 -44.45 
45.36 -46.43 -56.73 -67.38 -45.33 -54.63 -65.94 
45.36 -46.42 -56.65 -67.35 -45.35 -54.68 -66.04 
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The measurements obtained at the 6m working distance are in Table 18 and Table 

19 and displayed in Figure 122 (a) and (b) for color and UV imagery respectively.  

 

Table 18. Displacement measurements from color images at the 6m working 
distance. 

Far (6m) Displacement Gauges (mm) Color Measurement (mm) 
load (kg) DG1 DG2 DG3 DG1 DG2 DG3 
Baseline 0 0 0 0 0 0 

0 -0.14 -0.22 -0.11 -0.45 -0.44 -0.50 
11.34 -14.91 -18.15 -21.88 -15.40 -18.69 -22.52 
11.34 -15.29 -18.65 -22.41 -16.38 -19.73 -23.67 
22.68 -30.21 -36.96 -44.14 -30.97 -37.36 -44.96 
22.68 -30.97 -37.97 -45.12 -31.58 -38.01 -45.67 
45.36 -46.52 -56.84 -67.43 -46.49 -56.07 -67.38 
45.36 -46.61 -56.85 -67.54 -46.60 -56.13 -67.42 

 

 
Table 19. Displacement measurements from UV images at the 6m working distance. 

Far (6m) Displacement Gauges (mm) UV Measurement (mm) 
load (kg) DG1 DG2 DG3 DG1 DG2 DG3 
Baseline 0 0 0 0 0 0 

0 -0.06 -0.13 -0.19 -0.12 -0.09 -0.01 
11.34 -15.54 -19.01 -22.80 -13.85 -13.91 -17.79 
11.34 -14.96 -18.24 -22.05 -14.90 -18.05 -22.94 
22.68 -30.89 -37.84 -45.04 -30.99 -38.49 -44.86 
22.68 -30.36 -37.15 -44.43 -30.52 -37.93 -44.19 
45.36 -46.60 -56.92 -67.58 -46.03 -56.66 -66.81 
45.36 -46.64 -56.94 -67.65 -45.84 -56.64 -66.55 

 

 
The x markers correspond to the image based measurements at the location of the 

displacement gauges extracted from the calculated displacement field. The lines 

correspond to the displacement gauge measurements which were assumed to be the ground 

truth measurements for the experiment.  
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Figure 121. Results of displacement gauges and ARAMIS DIC data at points 
corresponding to the displacement gauges. (a) Deformation vs. location on the beam 

at 2m working distance. (b) Deformation vs. load at 2m working distance. 

 

 

Figure 122. Results of displacement gauges and ARAMIS DIC data at points 
corresponding to the displacement gauges. (a) Deformation vs. location on the beam 

at 6m working distance. (b) Deformation vs. load at 6m working distance. 

 

The localization of the displacement gauges within the full field measurements was 

difficult due to the size of the facets, spacing of the facets, and the aliasing that occurs at 

the edges of the beam. Therefore, the end of the beam was used as a reference to determine 

the approximate location of the displacement gauges and the facet closest to this location 

was compared to the displacement gauges. The results in Figure 121 (a) and (b) correspond 
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to the 2 meter working distance while Figure 122 (a) and (b) correspond to the 6 meter 

working distance. Figure 121 (a) and Figure 122 (a) show the displacement of the beam vs. 

the position along on the beam and Figure 121 (b) and Figure 122 (b) show the 

displacement vs. loading. 

It is clear from the plots that the measurements obtained from ARAMIS performed 

well when compared with the displacement gauges. The errors in millimeters are shown in 

Table 20 and Table 21 and the percent errors are shown in Table 22 and Table 23.  

 

Table 20. Error of the ARAMIS data with respect to the displacement gauges in 
millimeters for the 2m working distance 

load (kg) 
Error (mm) Color Close Error (mm) UV Close 

DG1 DG2 DG3 DG1 DG2 DG3 
Baseline 0 0 0 0 0 0 

0 -0.03 -0.04 0.17 -0.09 -0.12 -0.16 
11.34 0.47 0.29 0.31 0.27 0.09 0.06 
11.34 0.48 0.34 0.40 0.13 -0.06 -0.23 
22.68 0.09 -0.51 -0.26 -0.15 -0.71 -0.27 
22.68 0.35 -0.14 0.06 -0.15 -0.81 -0.43 
34.02 -1.13 -2.07 -1.61 -1.10 -2.11 -1.44 
34.02 -0.79 -1.69 -1.19 -1.07 -1.97 -1.31 

 

 
Table 21. Error of the ARAMIS data with respect to the displacement gauges in 

millimeters for the 6m working distance 

load (kg) 
Error (mm) Color Far Error (mm) UV Far 

DG1 DG2 DG3 DG1 DG2 DG3 
Baseline 0 0 0 0 0 0 

0 0.31 0.22 0.39 0.06 -0.05 -0.17 
11.34 0.49 0.54 0.65 -1.69 -5.10 -5.01 
11.34 1.09 1.08 1.25 -0.06 -0.20 0.89 
22.68 0.76 0.40 0.82 0.11 0.65 -0.18 
22.68 0.61 0.05 0.55 0.15 0.78 -0.24 
34.02 -0.03 -0.77 -0.06 -0.56 -0.26 -0.77 
34.02 -0.01 -0.72 -0.12 -0.81 -0.30 -1.11 
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Table 22. Percent error of the ARAMIS data with respect to the displacement 
gauges for the 2m working distance 

load (kg) 
Error (%) Color Close Error (%) UV Close 

DG1 DG2 DG3 DG1 DG2 DG3 

Baseline - - - - - - 
0 -15.0% -43.6% 130.8% 111.8% 117.5% 142.33% 

11.34 -3.1% -1.6% -1.4% -1.8% -0.5% -0.3% 
11.34 -3.21% -1.86% -1.84% -0.87% 0.34% 1.00% 
22.68 -0.3% 1.4% 0.6% 0.5% 1.9% 0.6% 
22.68 -1.2% 0.4% -0.1% 0.5% 2.2% 1.0% 
34.02 2.4% 3.6% 2.4% 2.4% 3.7% 2.1% 
34.02 1.7% 3.0% 1.8% 2.3% 3.5% 2.0 % 

 

 
Table 23. Percent error of the ARAMIS data with respect to the displacement 

gauges for the 6m working distance 

load (kg) 
Error (%) Color Far Error (%) UV Far 

DG1 DG2 DG3 DG1 DG2 DG3 

Baseline - - - - - - 
0 -226.2% -97.9% -355.7% -92.9% 35.3% 93.4% 

11.34 -3.28% -3.0% -3.0% 11.0% 26.8% 22.0% 
11.34 -7.14% -5.79% -5.58% 0.38% 1.08% -4.04%
22.68 -2.5% -1.1% -1.9% -0.3% -1.7% 0.4% 
22.68 -2.0 % -0.1% -1.2% -0.5% -2.1% 0.5% 
34.02 0.1% 1.4% 0.1% 1.2% 0.5% 1.1% 
34.02 0.0% 1.3% 0.2% 1.7% 0.5% 1.6% 

 

 
The errors are, in almost all cases, within 5% of the displacement gauges with the 

exception of the 0lb load that was not the baseline because the values should have been 

zero. One of the major sources of error that contribute to the error is the 2D parameter set 

in ARAMIS to calculate the deformation in millimeters from the deformation in pixels 

because even with the calibration images, small errors in this value result in larger errors 

in displacement, particularly for the later stages. In addition, the exact locations of the 

displacement gauges were difficult to accurately determine so the closest facet centroid 
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was used, which could also contribute to some of the errors. Furthermore, the camera was 

assumed to be fixed during the experiment. If it moved, this would be would cause a 

significant amount of error, particularly for the farther distance. Though the camera was 

on a tripod, the camera shutter may have caused slight movements. 

Due to the size requirements of the speckle patterns, it was not expected that the 

errors would be as small as in other DIC applications because of the large size of the pixels 

and the noise floor associated with a CMOS color camera. Even for the close distance, the 

size of the pixel was just under half a millimeter. However, Figure 123 proves that the 

speckle patterns that were optimized for each distance had a lower spread for the noise than 

the other pattern that was not optimized for that distance.  

 

 

Figure 123. (a) Noise floor at close distance. (b) Noise floor at far distance. 

 

Figure 123 (a) shows the noise distribution of the displacement with zero load at 

the 2 meter distance. It is clear that the UV pattern shown in blue has a smaller spread than 

the color pattern shown in red. Similarly, Figure 123 (b) shows the distribution of the 
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displacement noise with zero load at the 6 meter distance. It is clear that the UV pattern 

shown in blue has a larger spread than the color pattern shown in red. This demonstrates 

that both patterns that were designed for a specified distance performed better than the 

pattern that was not designed for that distance. The mismatch in the center of the 

distributions in Figure 123 is due to the beam not returning to the original position due to 

imperfect clamping on the fixed end of the beam. The beam was not plastically deformed 

during the experiment based on the stresses observed in the finite element model shown in 

Figure 117.  

6.4.2 Measurement from UAS Imagery 

The next experiment was designed to validate that 2D DIC can be used in 

conjunction with a UAS to obtain full field displacement measurements. The lab specimen 

used during the test was a cantilever aluminum L-beam. Figure 124 (a) shows the diagram 

of the setup and (b) shows an image of the setup with the fixed end secured by C-clamps. 

The fixed end is shown in purple, the speckle pattern is shown in red, and the load is shown 

in yellow. The string potentiometers are displayed in green with lines showing the locations 

of the measurement control points used during the experiment. The string potentiometers 

were assumed to be the ground truth in which the full field image measurements were 

compared. Since the string potentiometers only give point measurements, these points were 

compared to the closest facet centroids at the same locations in the full field measurements. 

The displacement gauges were fixed to the front of the beam so they were easier to identify 

their locations in the images. The speckles were very large in this experiment because the 

position was not able to be well controlled with the UAS. This ensured that no matter what 
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the distance, the pattern could be tracked, even if it was not optimized using the method 

described in section 6.4.1 

 

Figure 124. (a) Diagram of experimental setup. (b) Picture of the experimental 
setup.  

 

A finite element simulation was completed in ABAQUS for the comparison of the 

results and validation of movement in the out of plane direction. Since the beam was 

asymmetric, the beam was expected to have out of plane motion that could negatively 

impact the DIC measurements. The results of the ABAQUS model demonstrated that the 

out of plane motion could be neglected given the camera and lens combination used for the 

experiment. The load diagram and the cross section of the beam are shown in Figure 125 

(a) and (b), Figure 125 (c) shows the results and properties of the model. The red dot on 
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the beam is the approximate location in the model of the displacement gauge used as the 

ground truth for these measurements.  

 

 

Figure 125. (a) Load diagram and boundary conditions assumed for the finite 
element model. (b) Cross section of the beam. (c) Displacement results of the finite 

element simulation and finite element properties. 

 

The boundary conditions for the finite element model were chosen based on the 

locations of the C-clamps in the experiment. In addition to the errors associated with out 

of plane motion for 2D DIC, the out of plane motion was expected to add error to the 

displacement gauge measurements, however the effect on these measurements is also 

negligible because the sensors were placed far away from the beam with strings connecting 

the sensor to the beam. This caused a very small angle associated with the string making 

the effect of the out of plane motion negligible for this system as well.  
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The first measurements were conducted with a high resolution camera placed on a 

tripod. The camera was tethered to a computer and triggered remotely to ensure the camera 

did not move throughout the experiment. DIC was used to track the deformation of the 

beam using Ncorr in MATLAB [297, 298]. The beam was loaded and the Ncorr results are 

displayed in Figure 126 for 25lb, 50lb, and 75lb loads.  

 

 

Figure 126. Results of DIC analysis for (a) 25lb, (b) 50lb, and (c) 75lb loads. 

 

After the static experiment, a UAS was used to obtain the same measurements. 

Since the flight occurred indoors, position control using GPS was not possible, so an optical 

flow camera and an ultrasonic sensor were placed under the UAS to control the position of 

the aircraft. Figure 127 (a) shows the schematic of the UAS where the power systems of 

the aircraft are highlighted in red, the flight control systems are highlighted in blur, and the 

textured surface under the optical flow camera is highlighted in yellow. The battery 

provides power to all of the systems on the UAS. The flight controller receives control 

inputs and feedback from the receiver, optical flow camera, and the ultrasonic sensor and 

sends the command to the electronic speed controller using this feedback and feedback 
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from the internal measurement unit to keep the system stable. A textured surface was 

placed on the floor to ensure a good position hold could be achieved because optical flow 

requires texture to be effective. The floor by itself was did not provide the system with 

enough points to allow the UAS to achieve and accurate position hold. Figure 127 (b) 

shows the UAS flying over the textured surface during the experiment. 

 

 

Figure 127. (a) Diagram of UAV power (red and black), control (blue), and sensing 
(yellow). (b)Picture of the UAV (green) flying over the textured surface (yellow). 

 

Due to the lift limitations of the UAS, a gimbal was not able to be added to the 

system, so a damping system was added and the optical flow camera was relied upon to 

keep the system still enough to take clear imagery without a gimbal. After the test, the 

images were preprocessed before loading them into Ncorr. The steps for processing are 

shown in Figure 128 (a). The results of the preprocessing steps are shown in Figure 128 

(b), (c), and (d).  
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Figure 128. (a) Algorithm for UAV analysis. (b) Image obtained from the UAV. (c) 
Image corrected for lens distortion. (d) Image aligned using the checkerboard. 

 

The original image was first corrected for lens distortion, then the checkerboard 

was then identified, the corners in the checkerboard were extracted using edge detection 

and Hough transform and the homography matrix was calculated. Finally, the images were 

projected onto the defined by the checkerboard. This forced all of the images taken during 

the flight to be in the same plane to ensure they were directly comparable. After 

preprocessing, the aligned images were then imported into Ncorr. The 2D DIC results for 

25lb, 50lb, and 75lb are shown in Figure 129. 

 

 

Figure 129. Output results from Ncorr with colorbar corresponding to the 
displacement for (a) 25lbs, (b) 50lbs, and (c) 75lbs. 
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The image based results from the DIC software for both the high resolution static 

and hovering UAS were compared to the displacement gauges using the pixels nearest to 

the gauge. The results of all of the measurement systems were compared to the theoretical 

displacements obtained using Euler-Bernoulli beam theory and the vertical displacement 

obtained from the finite element model. The results of each measurement system and the 

theoretical calculations are shown below in Table 24 and the error with respect to the 

displacement gauges are shown in Table 25.  

 

Table 24. Results from static imagery, UAV imagery, displacement gauges, the 
Euler-Bernoulli beam theory and ABAQUS results. 

Load 
(lb) 

Static 
(mm) 

UAV 
(mm) 

Gauge 
(mm) 

Euler-Bernoulli 
(mm) 

ABAQUS 
(mm) 

0 0 0 0 0 0 
25 -7.00 -7.21 -7.01 -6.91 -7.33 
50 -14.31 -14.81 -14.23 -13.81 -14.67 
75 -21.82 -21.19 -21.59 -20.72 -22.00 

 
 
 

Table 25. Percent error from static imagery, UAV imagery, the Euler-Bernoulli 
beam theory and ABAQUS results. 

Load (lb) Static (%) UAV (%) Gauge (%) Euler-Bernoulli (%) ABAQUS (%)
0 - - - - - 
25 0.14 -2.85 - 1.43 -4.56 
50 -0.56 -4.08 - 2.95 -3.09 
75 -1.07 1.85 - 4.03 -1.9 

 

 
The results in Table 24 and Table 25 assume there is no out of plane motion and as 

a result only the vertical motion is displayed. The beam was asymmetric and therefore there 

was out of plane motion which could significantly affect the results of the experiment if 

the beam was loaded with enough weight. The Euler-Bernoulli beam used to design the 
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experiment did not take this into account and the vertical direction movement is smaller 

than that of the displacement gauges and the DIC measurements in all cases suggesting that 

the out of plane motion did affect the measurements slightly. The out of plane motion 

forced the beam away from the camera which should make the image measurements 

slightly smaller than expected. 

The working distance for the static camera is much smaller than the UAS camera 

working distance. The pixel size in the images taken with the static camera was 

0.05mm/pixel, which is significantly much higher quality than the 0.68mm/pixel 

associated with UAV imagery. This difference in pixel size was caused by the different 

camera resolutions, different lenses, and different working distances. The movement 

corrections, blur caused by vibrations, and the residual errors from the lens distortion 

correction added even more error to the UAS measurements. Adding a vibration 

dampening gimbal and higher resolution camera with increased zoom capabilities would 

improve the UAS DIC results significantly. 
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Chapter 7 Concluding Remarks 

 

7.1 Summary of Contributions 

This thesis presented the feasibility of using an Unmanned Aerials System (UAS) 

for Structural Health Monitoring (SHM) applications focusing on the identification of 

potentially damaged areas and measurement with remote sensing systems. Though bridges 

were used as a representative example, the work presented is not limited to bridge 

applications, but can easily extend to many types of infrastructure such as buildings, dams, 

and roadways. Most existing work using UAS for inspection has been limited to mapping 

and taking images of a structure leaving it up to the inspection personnel to identify and 

quantify damage from the images  to make decisions [299, 300]. This is an important first 

step to obtaining useful information, however in general, owners of infrastructure systems 

need to know if they need to perform maintenance, stop using the structure, or perform a 

detailed inspection and are not interested in having more data to search through. 

Many image processing techniques have been developed for identification of 

damage with varying degrees of success [40, 212, 230]. Though many methods have been 

proposed, there is still no segmentation technique that will work on all image sets. 

Furthermore, the methods for crack identification are simplified due to the fact that only 

the structure is visible in the image and in general, the object in the image is planar [40, 

130]. The method proposed in Chapter 4 of this thesis were used to identify cracks from 

UAS imagery for a lab setting and focus on both the identification of cracks as well as the 

elimination of the parts of the image that cannot have cracks. Most methods used for image 

based crack identification only use images that have only the areas in question in the image. 
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In UAS imagery, this is almost never the case because there will always be something other 

than the structure visible in UAS imagery. The global visualization using Structure From 

Motion (SFM) for simple reconstruction is not new, however the damage overlay on the 

structure is a major advantage to the method proposed in Chapter 4 and Chapter 5. The 

global damage map is an acceptable output that can be presented to an owner or other 

decision maker to directly compare structures to previous inspections or other structures. 

This is crucial to asset management because the distribution of funding is difficult when 

there is no direct comparison available between structures [301]. Furthermore, machine 

learning techniques can be implemented to ensure that the objects identified in the image 

are damage features and not other artifacts within the image.  

In Chapter 6, several methods for image based measurements were presented for 

use with and without UAS. The point based methods produce similar results to contact 

sensors, but without the hassle of running cables, requiring a ground reference for each 

target, and without problems associated with environmental conditions such as wind which 

causes a large amount of noise in the measurements. The point based image measurements 

have their own set of limitations also described in Chapter 6, but do present an alternative 

to contact sensors. Full field Digital Image Correlation (DIC) was also presented in Chapter 

6 and novel multiscale multispectral method for obtaining measurements was presented 

which would be beneficial to use on UAS because it allows for multiple speckle patterns 

optimized for different working distances. This is crucial to use on UAS because they 

generally do not maintain a constant distance from the structure. In addition, most data that 

is acquired will not have any useful information, so a multiscale method was proposed to 

capture images at a farther working distance and if something unusual appears in those 
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measurements, then a image set could be leveraged to obtain higher detail in the areas in 

question. The use of UAS in conjunction with a DIC speckle pattern was also presented in 

Chapter 6. A ground reference was required for measurements, but the location of the 

reference was not required to be directly under the sensor and the only requirement was 

that the reference did not move. Furthermore, the UAS full field measurements provide 

more information to characterize local deformation and, in the future, strains between the 

contact sensors. This local information is crucial in the cases where local damage is present, 

for example cracking or areas of higher strain.  

The bridge technology integration matrix presented in Figure 6 is redrawn again in 

Figure 130 with the contributions highlighted in blue with gold boarder. The light blue 

sections are areas in which UAS could be used in the future. The light gray boxes show 

areas in which other NonDestructive Testing (NDT) methods, engineering expertise, or 

other methods are required to progress farther in these areas. The in-depth visual inspection 

using UAS and capturing noncontact geometry were presented in Chapter 4 and Chapter 

5. The full views of the structure would contribute to developing historical data for a bridge 

information model (BRIM) and contribute to the information warehouse. Chapter 4 and 

Chapter 5 also present the ability of UAS to collect color and IR imagery to perform wide-

area NDE scans. The measurement methods presented in Chapter 6 could contribute to 

controlled load testing and load rating. This, in conjunction with the existing contact 

sensors already implemented in the field, can provide a greater degree of detail for the 

measurements. All of the techniques implemented through time contribute to the SHM 

framework. Combining many of these techniques with computer vision and machine 
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learning will also help automate some of the processes involved in leveraging the 

technology for civil structures.  

 

 

Figure 130. Bridge technology integration matrix highlighting the contributions of 
the research presented in this thesis 

 

7.2 Future Direction 

The future of SHM and the integration of technology into civil infrastructure 

assessment will revolutionize the industry. Sensor networks integrated into the structure 

and systems that provide notifications of damage and changes in the structure to the 

decision makers. This has started to take effect in other countries such as the Rion Antirion 

bridge in Greece which has several sensors permanently installed which can be used to 

send notifications to decision makers when specific events occur [15]. Integrating sensors 
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into the structure is just the beginning. If DIC speckle patterns are manufactured onto the 

structural elements, there will be no need to apply the pattern after the structure is in place. 

Furthermore, invisible paints, printed materials, or other advanced manufacturing method, 

that do not emit light into the visible spectrum could be used to implement this pattern and 

not degrade the aesthetic appearance of the structure [302]. If new infrastructure is built 

with SHM in mind, significant improvements can be made in monitoring the structure and 

it will reduce costs of integrating the system with SHM equipment.  

The integration of UAS into the SHM framework will have a massive impact on 

infrastructure assessment. The control systems on UAS could eventually not rely on GPS 

and instead use image based systems such as a VICON system to obtain high accuracy 

position information on the UAS [303]. This would be particularly useful in locations 

where GPS performance is degraded in places like under bridges or near buildings. 

Furthermore, multiple UAS can be used in a swarm to capture data on a structure to 

increase speed or perform different data capture tasks [304]. High accuracy position 

information can be leveraged to perform quantitative measurements of global movements 

such as settling with systems like LiDAR. 3D Simultaneous Localization And Mapping 

(3D SLAM) has been used for mapping of unknown environments and determining 

position based on the map [117]. This could also be leveraged in the control of systems 

around structures to ensure collisions do not occur, which is another big challenge to flying 

UAS around structures in field conditions. Wind is a major factor in environmental 

conditions that will heavily effect the performance of a UAS flying around a structure. In 

addition, the inaccurate position information makes it difficult to localize the UAS with 

respect to the structure making collisions possible. High accuracy position information of 
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both the UAS and the structure location built into the control of the system would make it 

possible to safely fly around a structure to collect data. Furthermore, additional sensing 

systems could be implemented on UAS in the future when the weights of the sensors 

decrease and the flight time of the systems increase. One advantage to having more than 

on camera on the system is the ability to perform 3D measurements using stereovision 

[246, 247]. Multispectral and hyperspectral cameras would also be beneficial to UAS based 

sensing. LiDAR could also be added to obtain geometry information of the structure and 

in the future could be used to construct more accurate computational models [38, 91]. 

In general, the sensors and data are not important to the owner of the structure. 

Owners only need to know if the structure is safe for operation. Therefore, the identification 

and localization of damage is one of the most important parts of SHM. If the system cannot 

provide information to the owner, the SHM framework will not be effective. With this in 

mind, future segmentation algorithms and application of machine learning [33] will greatly 

advance the field of SHM. Integration of other technologies and multiple sets of data also 

will aid in SHM and asset management. For instance, integrating the damage information 

into a GIS database and matching a structure with a digital model that leverages all of the 

data obtained from previous inspections and building plans would help organize the data 

in a more efficient way. Creating a computational model with smaller errors would also 

allow for the interrogation of the model to determine if and where maintenance needs to be 

performed based on the results of a simulation. In addition, incorporating both contact and 

noncontact sensor data could improve upon the remote sensing measurements and simplify 

the acquisition of data on the structure. In some cases, it may eliminate the need for a 

ground based reference in the image data or an exact camera location. If the reference is 
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placed on the structure and the displacements on the structure are known at specific points 

from contact sensors, the contact sensors can account for the motion of the structure at 

those points and the image measurements can be used for the local measurements to 

provide full field data. Furthermore, future remote sensing systems will become lighter and 

have higher resolution which could allow UAS data to calculate strain in structural 

members in the absence of a ground reference. 

The future of SHM will include many different sensing systems integrated into the 

structure as well as robotic platforms to acquire data, analyze data, and repair the structure. 

As the technology develops, SHM will be more trusted among the owners of structures and 

implemented more often than it is today. UAS could be the first response for monitoring 

with remote sensing, but could also potentially be used for contact sensing as well [95, 

305]. The data could then be used to point other robotic systems to areas of interest for a 

more detailed inspection and repair the structure [20, 306, 307]. A potential framework for 

future SHM applications is shown in Figure 131. The methodology would start with the 

collection of data with contact and noncontact sensing systems. The data would be 

processed to identify damage and measure deformation. A model would then be 

interrogated to determine if the damage will have an impact on the structure as well as 

determine if the measurements indicate a significant loss in performance from previous 

analyses. Then, if necessary, a detailed assessment could be performed with a robotic 

system or inspection personnel and repairs could be completed leveraging robotic 

platforms. The process would then cycle back to the collection of data and due to the 

automated nature of most of the steps, these analyses could be performed every day based 

on embedded sensors and a UAS programmed to perform a scan at predetermined times.  
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Figure 131. Future vision for SHM 

 

7.3 Future Work 

7.3.1 Model Updating 

Updating an existing finite element model could be a major benefit to SHM in the 

future to allow testing of potential scenarios to determine how the structure will perform. 

One potential method that could be used to complete this is full field DIC measurements 

used to create boundary conditions in the model. Preliminary steps towards this task were 

completed and presented in this section. The expected steps to complete this task 

leveraging full field DIC, LiDAR, and/or SFM are shown in Figure 132. The first step is 
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to register the experimental data with a well-known computational model of the structure. 

Then, the boundary conditions would be set based on the experimental measurements of 

deformation. The model was created in ABAQUS and registered with DIC measurements 

calculated in ARAMIS using MATLAB [120, 288, 308]. After registration, the 

measurements were interpolated to match the locations of the finite element model. Finally, 

the points were compared to determine how different the experimental data is from the 

theoretical analysis in the finite element model.  

 

 

Figure 132. Data process for FEM update with experimental data 

 

7.3.2 Preliminary Results 

The model from section 6.4.1 was used along with the displacement measurements 

obtained from the experiment at the close distance. The iterative closest point algorithm 

was used to match the locations of the point cloud output from both ABAQUS and 

ARAMIS [44, 45]. Since the motion of the end of the beam is close to rigid body, the 

assumption is not violated and the initial transformation was completed using the manual 

measurement of the translation between the two point clouds. Figure 133 shows the 

misalignment of the point clouds and highlights the different densities of points shown in 

(c) and (d).  
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Figure 133. Misaligned point clouds are shown in (a) and (b). Zoomed in versions 
are shown in (c) and (d). 

 

The undeformed model and the undeformed experimental data were used to align 

the model and the experimental results for all cases since the camera did not move during 

the test. This made it possible to align the data without errors associated with the mismatch 

in deformation between the model and the experiment. After alignment, the points are 

overlaid on top of each other as shown in Figure 134. It is clear in (c) and (d) that the 

different point densities did not make a difference in the alignment.  
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Figure 134. Aligned point clouds are shown in (a) and (b). Zoomed in versions are 
shown in (c) and (d). 

 

The DIC point cloud is only in two dimensions which is demonstrated in Figure 

133 and Figure 134 where the FEM point cloud is in 2D with only the points corresponding 

to the points on the front face of the C-beam. The experimental displacements calculated 

in section 6.4.1 were interpolated to match the locations of the points on the FEM point 

cloud. Different types of interpolation can be used with different assumptions about the 

errors. Linear interpolation was used to demonstrate the concept, however higher order 

polynomials generally achieve better results. The DIC measurements were interpolated 

onto the FEM point cloud to ensure that the points aligned properly with the nodes of the 
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finite element model. The result of this process is shown in Figure 135. The red x’s are the 

nodes of the finite element simulation under 75lb load and the blue circles are the DIC 

measurements from ARAMIS interpolated onto the finite element nodes.  

 

 

Figure 135. Aligned and interpolated DIC measurements with finite element model 
at 75lb load 

 

Each node was then set as a boundary condition in the finite element model. The 

boundary conditions were written to a text file using MATLAB and imported into 

ABAQUS. Since the measurements were two dimensional, the first attempt at fixing the 

boundary conditions used a two dimensional model. This neglects several important 

parameters such as deformation in the third dimension and cross section of the beam which 

result in a stiffer cross section. The text file written by MATLAB was used to enforce the 

boundary conditions. The model had 20,181 nodes, 19,200 CPS4R elements, and over 

4,500 boundary conditions obtained from the DIC measurements. The color imagery at 2m 

was used at 25lb and 50lb experimental load to produce the images shown in Figure 136 

where the top image imported the 50lb load boundary conditions and the bottom image 

imported the 25lb load results and then the 50lb results.  
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Figure 136. Stress comparison for different load paths from 0lb to 50lb (top) and 0lb 
to 25lb to 50lb (bottom) 

 

Since the beam was three dimensional and symmetric and the measurements were 

taken of a two dimensional surface, the same displacements calculated on the front face 

were applied to the back face in the model. The result of the simulation is shown in Figure 

137 leveraging the base model shown in Figure 117. The displacements are shown in 

inches.  

 

 

Figure 137. Magnitude of displacements for imposed boundary conditions 
associated with DIC measurements in inches. 
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As expected, the DIC displacement results are almost identical to the model so the 

plots are almost identical as well, however when the stress distribution is viewed in the 

area of interest where the boundary conditions were applied, the results are clearly different 

as shown in Figure 138. In the theoretical model, the stress distribution is more uniform 

with no stress concentrations. The cause of these stress concentrations are the errors in the 

DIC results due to the large size and lack of uniformity of the speckles within the patterns. 

 

 

Figure 138. Von Mises stress distribution (psi) at the end of the beam where the 
boundary conditions were applied. 

 

After deforming the beam, further analysis can performed to determine how much 

additional load can be applied to the structure before damage would occur such as yielding. 

The geometry and stress distribution were exported and imported into a new model and the 

imported deformation and stress distribution are shown in Figure 139 (a) and (b) 

respectively. This model was then interrogated using higher loading until the beam was 

yielded. Though this is a simplified model, it does demonstrate the goal for the updating of 

an existing model with full field experimental data. 
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Figure 139. (a) Deformed shape of the beam set as the initial step. (b) Stress 
distribution imposed on the initial step. 

 

The same methods were extended to UAS measurements using the image data from 

section 6.4.2 where the displacement measurements were calculated in ARAMIS. The 

model shown in Figure 125 was used to impose the displacement and the result of the 

imposed deformation is shown in Figure 140.  

 

 

Figure 140. Displacement results in the y-direction in inches 
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Since the measurement did not take into account the out of plane motion, the results 

at the end of the beam appear to be more distorted than expected. This combined with 

interpolation errors and imperfect loading and boundary conditions creates a significant 

amount of displacement that does not appear in the experimental setup. More work must 

be done to demonstrate the value of this information for more complicated structures, but 

in the future, 3D DIC and higher accuracy measurements from aerial systems could have a 

large impact on infrastructure assessment [246, 247]. In addition, better DIC results 

leveraging smaller speckle patterns will decrease the error which will limit the stress 

concentration in the updated model. After enforcing the boundary conditions in the model, 

the model stiffness could be updated and the model could then be interrogated using the 

current state of the structure. Though the results presented are limited and require much 

work to become useful, finite element updating leveraging UAS data is possible in the 

future and can add to the benefit of UAS to SHM applications in the future. 

7.4 Extensions  

The work in this thesis is not limited to bridges, though it was the type of structure 

that was emphasized in this thesis. The shortest extension of this work is to other types of 

infrastructure including buildings [86, 87], pipelines [88], powerlines [89], and many other 

forms of infrastructure. In general, the damage types are similar for infrastructure because 

the materials are similar and therefore the identification algorithms should also be quite 

similar. The challenges associated with different types of infrastructure are expected to 

vary slightly and therefore the SHM strategy may incorporate more or different types of 

sensors, but large structures that are difficult and time consuming to assess can benefit from 

the use of UAS as a data acquisition platform. 
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Another research area that can benefit from UAS remote sensing is crop monitoring 

and vegetation health tracking [81, 85, 221]. Healthy plants emit light at a different 

wavelength from unhealthy plants. This allows infrared or near infrared imagery to 

distinguish between the two types of plants. The identification algorithms presented in this 

thesis would need to be adapted to identify the unhealthy plants, but this is not a far reach 

either. Furthermore, green infrastructure such as rain gardens and green roofs could benefit 

from this work as well. These systems rely heavily on plants to clean and retain storm water 

so other water resources do not get overwhelmed [309]. Since they filter out a lot of 

chemicals, the health of the plants can be degraded which decreases the effectiveness of 

the systems. The same methods with infrared imagery could be applied to these systems as 

well to help determine if the plants are healthy, if the systems are retaining too much water, 

or if there is something interfering with the performance of the system [309, 310].  

This work could also extend to the analysis of ground or aerial vehicles for damage 

identification and measurement using a multispectral speckle pattern. For instance, at 

airports when an aircraft lands, a scan could be completed to determine if any cracks had 

propagated during the flight and any red flags could be used to target a more detailed 

inspection and analysis to determine if the aircraft was ready to perform another flight. 

These methods in conjunction with other embedded sensors onboard during flight could 

move inspections from a time based assessment to a condition based assessment [311].  
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