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Abstract 

Multi-Scale Modeling of the Neural Control of Respiration 

Bartholomew J. Bacak 

Ilya A. Rybak, Ph.D. 

 

The generation of respiration in mammals begins in the lower brainstem where groups of 

neurons, that together comprise the respiratory central pattern generator (CPG), interact to 

produce a motor output that controls breathing. The pre-Bötzinger complex (pre-BötC) in 

the ventrolateral respiratory column (VRC) is believed to be a major contributor to 

rhythmic inspiratory activity that interacts with other neural compartments within the VRC 

as well as with other brainstem areas, including the pons. Though there has been a 

substantial push to understand the exact cellular and network mechanisms operating within 

the pre-BötC, as well as the way it is incorporated into the larger respiratory network, there 

is still much to be resolved. The overarching goal of the work presented in this dissertation 

is to contribute to our understanding of the neural control of respiration at several 

hierarchical levels. It is my hope that better insight into the complexities of these multiscale 

neural control mechanisms will provide a more complete framework for understanding 

various respiratory pathologies, and ultimately guide the development of novel therapies 

that will improve patient outcomes. 

 I applied techniques from the fields of mathematics and computer science to 

develop computational models that reproduced results from electrophysiological 

recordings (done by our collaborators) and generated verifiable predictions. The scale of 

my modeling work encompasses the interaction of neurons in a single population, several 

interconnected populations of neurons that encompass the core of the mammalian 
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respiratory network, and an integration of the respiratory network into a larger control 

system that includes afferent feedback loops. At each level I address specific, but related, 

topics that add to the general understanding of the neural control of respiration. 

 The aims of my thesis address specific issues at each of the scales mentioned above. 

These issues may be summarized as follows: (i) the characteristic rhythmic bursting 

behavior observed in the pre-BötC, which was studied at the cellular levels with a particular 

interest in how this behavior impacts respiratory rhythmogenesis; (ii) a respiratory network 

connectome that defines interactions between several populations of neurons that together 

form the VRC, which produces an alternating pattern of inspiration, post-inspiration and 

expiration, and, how such a pattern may be affected by changes in chemical environment, 

e.g. elevated carbon dioxide or diminished oxygen concentrations; and (iii) the role of 

afferent feedback to the VRC, from the pons and lungs, which was studied in the context 

of respiratory phase switching mechanisms.  
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Chapter I: Introduction 

 

A. Neural control of respiration 

Respiration, or the cyclical uptake of oxygen and removal of carbon dioxide, occurs 

approximately once every four seconds, for the duration of human life. Like many 

physiological processes, it is easy to take respiration for granted, particularly when 

considering the robust regulatory mechanisms employed by our bodies to ensure continued 

and effective gas exchange. Respiration will, and typically does, occur without any 

conscious input, but failure to generate a respiratory rhythm is the final symptom of several 

neurodegenerative diseases. Therefore, it is unsurprising that a basic understanding of the 

neural circuitry controlling respiration has been an area of intense research during the last 

century. The following sections will provide an overview of the mechanics of respiration, 

its neural origins, and the finely tuned control mechanisms needed to maintain mammalian 

respiratory rhythms.  

 

A-1. Overview of mammalian respiration 

During inhalation, air enters the body through the mouth or nose and converges at the 

pharynx, together these structures make the upper airway. The upper airway gives way to 

the conducting airways where the pharynx meets the trachea. Below the trachea, airways 

begin to branch, increasing the contact area of air and vessel walls. The first, and largest 

diameter, branches are the bronchi, followed by the bronchioles and terminal bronchioles. 

There are 23 branch points between the trachea and the alveolar sacs, the final 7 of which 

encompass the respiratory bronchioles, the alveolar ducts, and the alveoli. The alveoli are 
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the terminal portion of the respiratory tract and have a combined surface area of 70 m2 [1]. 

Ultimately, gas exchange occurs between the alveoli and the surrounding pulmonary 

capillaries. These capillaries bring blood rich in carbon dioxide and low in oxygen to the 

alveoli, where, via simple diffusion, oxygen moves into the capillaries and carbon dioxide 

enters the alveoli. Carbon dioxide is then expelled during expiration while oxygen is 

carried throughout the body. 

 During respiration, the movement of air, into and out of the thoracic cavity, follows 

pressure gradients created by the muscles of respiration. When the thoracic cavity expands 

in volume its pressure decreases and air enters the lungs. Contraction of the diaphragm 

accounts for 75% of the chest cavity’s increase in volume during quiet inspiration [1]. The 

external intercostal muscles also contribute to the increased thoracic volume during 

inspiration and, in absence of diaphragmatic contraction, are able to produce sufficient 

expansion for resting ventilation. When breathing becomes more labored, neck muscles, 

such as the scalene and sternocleidomastoid muscles, raise the thoracic cavity and enable 

deeper inhalations. Early in the inspiratory phase, abductors of the upper airways must 

contract to open the glottis and pull the vocal folds apart. 

 Air is pushed out of the lungs when the thoracic cavity passively contracts after the 

inspiratory expansive phase. The decrease in thoracic volume increases the pressure, 

relative to the atmosphere, and air moves out. During forced expiration lung volume is 

further decreased by contraction of the internal intercostal muscles and various anterior 

abdominal muscles, e.g. rectus abdominus, transverse abdominus, and the external and 

internal oblique muscles. These muscles pull the ribcage down and inward, thus increasing 

the volume of expelled air. 
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 Spinal motor neurons in the ventral horn of the cervical, thoracic, and upper lumbar 

cord innervate the muscles of respiration described above. The phrenic nerve exits the 

spinal cord at C3-C5 and innervates the diaphragm. External and internal intercostal 

muscles are innervated by neurons from the thoracic ventral horn, and abdominal muscles 

receive innervation from motorneurons originating in the thoracic and upper lumbar cord 

regions [2]. The nucleus ambiguous, in the ventrolateral medulla, contains several pools of 

motor neurons that innervate the laryngeal and pharyngeal muscles. Also in the 

ventrolateral medulla is the facial motor nucleus which innervates the nasalis muscle and 

other facial muscles involved in the initial entry of air to the mouth and nasal cavity. In 

addition, the genioglossus muscle, which, when contracted, assists in enlarging the upper 

airway, is innervated by motor neurons arising from the hypoglossal nucleus [2]. 

 

A-2. Respiratory rhythm generating circuits in the medulla 

The respiratory cycle in mammals consists of two major phases: inspiration and expiration. 

Expiration is further comprised of two phases, post-inspiration and a second phase of 

expiration [3], [4]. These respiratory phases can be recognized in the integrated activities 

of the phrenic (PN, defining inspiratory phase) and cranial nerves (e.g., the central vagus 

nerve expressing activity during both inspiration and postinspiration). The rhythm and 

coordinated motor pattern that causes breathing in mammals is generated by a respiratory 

central pattern generator (CPG) located in the medulla [3], [5], [6]. Medullary respiratory 

neurons are organized into bilaterally symmetrical groups referred to as the dorsal 

respiratory group (DRG) and the ventral respiratory column (VRC). Neurons in the DRG 

and VRC are further classified by their locations and the timing of their discharge with 
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respect to the respiratory cycle (e.g. inspiratory (I) neurons are found in the pre-Bötzinger 

complex (pre-BötC) of the VRC). 

 

Dorsal Respiratory Group 

The dorsal respiratory group is located in the nucleus of the tractus solitaries (NTS), and 

respiratory neurons were first identified there in the 1950’s [7]. I-α and I-β neural 

populations in the DRG are active during inspiration and can be distinguished by their 

activity during suppression of lung inflation. Specifically, I-α neurons neurons show an 

increase in activity during lung suppression, while I-β neurons demonstrate decreased 

activity [8], and both populations project to the phrenic motor neurons [9]. A third 

population of neurons in the DRG, namely, the pump cells, receives afferent axonal input 

from pulmonary stretch receptors (I-β neurons receive this input as well), via the vagus 

nerve, exciting the pump cells and providing phasic, respiratory-modulated activity [10]–

[12]. The pump cells are thought to drive the Hering-Breuer reflex (discussed in Chapter I: 

A-5), because of the results of microinjection of pharmacological blockers and lesioning 

studies [12]–[15]. The connectivity between the DRG, VRC, and pontine respiratory 

groups is a topic of this thesis and further information can be found in Chapter V.  

 

Ventral Respiratory Column 

The ventral respiratory column (VRC) contains the core circuitry needed to generate a 

respiratory rhythm. The main regions of the VRC will be discussed starting with the caudal 

ventral respiratory group (cVRG) and moving rostral to the retrotrapezoidal nucleus 

(RTN), see Figure I-1. 
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Figure I-1. Intact representation of the neural respiratory network, from [16]. (A) A 

parasagittal section of the brainstem with neutral red stain. (B) Schematic representation 

of the respiratory-related structures in the brainstem.  

 

 

The cVRG and rostral ventral respiratory group (rVRG) contain pre-motor neurons for 

phrenic, abdominal, and central vagus motor neurons, though it is unlikely that this list is 

exhaustive. The cVRG has bulbospinal pre-motor neurons that project primarily to 

expiratory motor neurons, such as the abdominal nerve [17]. The rVRG also contains 

bulbospinal premotor neurons, but projects primarily to inspiratory motor neurons [16], 

[18]–[22]. In addition, because of elevated c-fos expression after exposure to elevated CO2, 

some have speculated that the rVRG may be a site of central chemoreception [22]. Smith 

et al. first described a sub-region of the VRC putatively responsible for generating the 
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inspiratory rhythm, named the pre-Bötzinger complex (pre-BötC) [23]. In this study, 

inspiratory rhythm generation ceased after removal of a slice containing the pre-BötC [23]. 

Furthermore, when a 500 µm thick medullary slice containing the pre-BötC was excised 

from the brainstem, an inspiratory rhythm (in this case, hypoglossal nerve activity) 

comparable to those observed in intact brainstem preparations was recorded. Following 

this initial publication, the pre-BötC became the target of many studies that confirmed and 

further explored the pre-BötC’s role in respiratory rhythm generation [20], [24], [25]. The 

pre-BötC’s intrinsic rhythmicity extends beyond rhythm generation in a slice, and it was 

shown that rhythmic bursting activity occurred even when the pre-BötC was isolated from 

a slice, in so called “pre-BötC islands,” see [26] for initial publication of this experimental 

preparation. Moreover, some individual pre-BötC neurons in these slices continued 

generating rhythmic bursting after synaptic connections were blocked, i.e. endogenous 

bursting, see [25]–[28]. In these studies, bursting in slices was typically induced by the 

increasing the concentration of extracellular potassium, Kout, from its physiological level 

of 3-4 mM up to 8-9 mM [27]–[30]. This elevation of Kout was usually applied for a 

necessary increase in neuronal excitability (neuronal membrane depolarization) in vitro to 

compensate for a lack of external excitatory drives operating in more intact systems in vivo. 

It should be noted here that the mechanisms underlying the endogenous rhythmicity in the 

pre-BötC are an area of intense debate. The neuron models used in this dissertation rely on 

the persistent sodium current for their rhythmicity, however, several other currents have 

been implicated in this behavior and are discussed more extensively in Chapter II.  

 Several groups have attempted to determine the connectivity of the pre-BötC using 

anatomical (e.g. antidromic stimulation, viral neuronal tracing, calcium imaging, etc.) as 
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well as functional (e.g. qualitative changes following transections, ablations, drug 

application, etc.) methods. Presently, there are several proposed connectivity schematics, 

however, there is significant disagreement over the existence and importance of various 

connections. The topic of the pre-BötC’s connectivity will be addressed throughout this 

dissertation using computational modeling alongside experimental work, particularly in 

Chapters III-V.  

Rostral to the pre-BötC is the Bötzinger complex (BötC), containing mostly 

expiratory related neurons [3], [31]–[34]. Recordings from the BötC revealed neurons that 

were active immediately following inspiration (post-inspiratory, i.e. post-I neurons) and 

others that had increasing activity during expiration (augmenting-expiratory, aug-E 

neurons) [16], [18], [19], [35], [36]. Together, the BötC and pre-BötC comprise the core 

circuitry of the respiratory CPG, and they generate respiratory oscillations defined by the 

intrinsic biophysical properties of the neurons involved as well as the architecture of 

network interactions between neural populations within and between the pre-BötC and 

BötC.  

 Rostral to the BötC is the parafacial respiratory group (pFRG), that lies within, or 

overlapping, the retrotrapezoid nucleus (RTN) [37]–[39], and they are often referred to 

together as the RTN/pFRG. This region was first discovered by Smith et al. via retrograde 

labeling from the VRC [40]. Several studies indicate that RTN/pFRG oscillations drive 

abdominal motor (AbN) activity. The AbN is typically active during the expiratory phase, 

and, in particular, plays a critical role in forced, or active, expiration. The activity of the 

RTN/pFRG seems to drive AbN activity primarily in the pre-inspiratory (or late-expiratory, 

late-E) phase of expiration when CO2 is elevated (hypercapnic conditions) [20], [41]–[43]. 
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This sensitivity to CO2 is supported by several studies that found chemosensitive 

characteristics in the RTN/pFRG region of the medulla [22], [44]–[48]. The work presented 

in Chapters III and IV of this dissertation will examine the role of the RTN/pFRG in altered 

chemical environments, specifically hypercapnia and hypoxia, as well as in the presence 

of opioid agonists. The purpose of this work is to better understand how the RTN/pFRG 

participates in the generation of a respiratory rhythm through interactions with other VRC 

compartments. 

 

A-3. Additional neural populations in the brainstem contributing to the respiratory 

rhythm 

Pontine involvement in respiratory rhythm generation was first observed in 1887 by 

Marckwald, who demonstrated that lesioning the pons and then cooling the vagus nerve 

caused a transformation from eupnea to apneusis (a pattern characterized by significantly 

prolonged inspiratory duration) [49]. Later, Lumsden challenged the necessity of vagal 

cooling (or removal), and instead posited that only removal of the pons was needed to 

induce apneusis [50]. Although subsequent studies have shown only an increase in 

inspiratory duration following a chronic pontine lesion in vagi intact animals [51]–[55], it 

is widely agreed that the pons plays a critical role in the generation and maintenance of 

eupneic breathing and this role is dramatically altered by hypoxic conditions [36], [56]–

[60]. Several populations of neurons in the dorsolateral (dl) and ventrolateral (vl) pons, as 

well as the intertrigeminal region (ITR), send axonal projections to the VRC to modulate 

the respiratory rhythm [16], [18], [19], [61]–[64]. Additionally, the pons contains the locus 
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coeruleus and pedunculopontine tegmental nuclei, both of which can effect breathing and 

may participate in adaptation of the respiratory rhythm [64]–[66]. 

 The dl pons contains the Kölliker-Fuse nucleus (KF) and the parabrachial (PB) 

complex. There are many nuclei in the KF and PB regions of the dl pons, and the specific 

functions tend to vary by species [64], therefore I will refer to this area simply as the dl 

pons. Arguably the most notable function of the dl pons is the inspiration-expiration phase 

transition, often referred to as the inspiratory off-switch (IOS) [3], [18], [63], [64]. 

Stimulation of the dl pons causes a premature termination of inspiration, i.e. a sharp 

inspiration-expiration phase transition [3], [63], similar to the IOS promoted by the Hering-

Breuer reflex (see Chapter I: A-5). The activity patterns of inspiratory (I) and inspiratory-

expiratory (IE) neurons in the dl pons can be either phasic and tonic [63], [64], [67]–[73]. 

The source of phasic activity in the dl pons is still unknown, but numerous models and 

experimental studies suggest that input from the medullary CPG is required for phasic 

activity in the pons [18], [60], [63], [64], [74], [75]. This phasic activity exists in intact 

animals, but is minimal, however, it has been shown that inhibition of the NTS, or removal 

of vagal input to the NTS, causes a strong facilitation in the phasic activity of dl pontine 

neurons [60], [63], [72], [73], [76]. This evidence pointed to the NTS as a strong inhibitor 

of phasic dl pons activity. Interestingly, Feldman and Cohen demonstrated that this 

inhibition had little effect on the tonic discharges of dl pontine neurons, and it was thus 

suggested that this inhibition may therefore be presynaptic [72], [73]. 

The vl pons is not as well characterized as the dl pons. However, neurons in the A5 

region of the vl pons have been recorded with expiratory modulated activity, typically post-

inspiratory and middle-late expiratory [57], [77] and localized application of glutamate to 
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A5 has been shown to prolong the expiratory phase [78]. Moreover, several studies have 

uncovered reciprocal connections between A5 and neurons of the respiratory CPG in the 

ventrolateral medulla [79]–[81]. In addition, it has been speculated that intra-pontine 

connections exist between the dl and vl regions [82], possibly through ITR interneurons 

[64]. 

 

A-4. In vitro characterization of respiratory rhythm following progressive 

transections 

The previous two sections introduced the key sub-populations of the brainstem respiratory 

network, the connectivity of which is a central focus of this dissertation. Though there has 

been extensive work performed using antidromic stimulation, viral tracing, and calcium 

imaging (see [21], [81], [83]–[86]) to understand the respiratory CPG’s connectivity, 

elucidating the importance of known connections is an ongoing task. To address this issue, 

Smith et al., 2007 performed serial transections on an in vitro spinal cord preparation and 

used the qualitative changes to posit functional connections that were tested in a 

computational model [16], [19]. 

 The specific transections performed by Smith et al. are highlighted in Figure I-1. 

The intact preparation included the pons and medulla, and produced the three-phased 

rhythm characteristic of eupneic breathing (see Figure I-2A and Figure I-3A). The specific 

phases of this rhythm include the inspiratory phase (early-I and pre-I neurons in the pre-

BötC, and ramp-I neurons in the rVRG), post-inspiration (post-I neurons in the BötC), and 

augmented expiration (aug-E neurons in the BötC), see Figure I-3A. The activity of these 

medullary CPG neurons is reflected in the output of inspiratory motor neurons (hypoglossal 



11 

 

 

and phrenic nerves) and the inspiratory-expiratory central vagus nerve, see Figure I-2A. 

Note that the hypoglossal nerve activity precedes the phrenic nerve suggesting pre-I 

neurons in the pre-BötC are pre-motor for hypoglossal activity, whereas the early-I and 

ramp-I neurons of the pre-BötC and rVRG, respectively, are likely pre-motor for phrenic 

nerve activity. 

 

 

Figure I-2. Activity patterns of central vagus (cVN), hypoglossal (HN), and phrenic (PN) 

nerves recorded with suction electrodes, adapted from [16]. Raw recordings are below 

integrated activity for each nerve. (A) Intact preparation containing pons and medulla. (B) 

Following transection at ponto-medullary junction, i.e. medullary preparation, no post-I 

activity is observed. (C) Preparation with removal of medulla rostral to pre-BötC.  

 

 Transection of the pons produced a two-phased rhythm with comparable durations 

of inspiration and expiration (see Figure I-2B and Figure I-3B). In Figure I-3B the activity 

of post-I neurons in the BötC is eliminated and the aug-E neuron now comprises the entire 

expiratory phase. The onset of pre-BötC neurons is now closer in temporal proximity and 
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this is reflected in the onset of hypoglossal and phrenic nerve activity. Finally, after 

removal of the medulla, rostral to the pre-BötC (i.e. pre-BötC preparation, in see Figure 

I-2C and Figure I-3C), only the inspiratory phase remains. Notably, the activity in early-I 

pre-BötC neurons has ceased, and only the pre-I pre-BötC and ramp-I rVRG neurons 

remain active. This suggests: (i) some form of internal rhythmicity and (ii) pre-I pre-BötC 

neurons likely project to the rVRG pre-motor neurons as well as directly to the hypoglossal 

nerve. 
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Figure I-3. Activity patters within multiple respiratory compartments, adapted from [16]. 

Individual neurons were recorded in several compartments and traces represent cycle-

triggered waveforms for the groups of cells recorded. (A) Intact preparation showing three-

phase rhythm. (B) Preparation with pons removed, shows two-phase rhythm. (C) 

Preparation with removal of medulla rostral to the pre-BötC, shows one-phase, inspiratory 

rhythm. 

  

These transection studies inspired modeling studies by the Rybak group, aimed at 

elucidating the VRC connectivity responsible for these qualitative changes [35], [61]. 

Models used in these studies employed qualitatively similar network architectures that 
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included pre-BötC, BötC, and pontine compartments with pre-I (excitatory) and early-I 

(inhibitory) neurons in the pre-BötC compartment and post-I (inhibitory) and aug-E 

(excitatory) neurons in the BötC compartment (note: the Rybak et al., 2007 model had a 

more complex framework to account for motorneuron activity), see Figure I-4. 

 

 

Figure I-4. Adapted schematic of simplified VRC model, published in [35]. Model includes 

an excitatory pre-I population (red circle), inhibitory populations (blue circles), and tonic 

drives (green triangles). Transection experiments from [16] were simulated by progressive 

removal of drives, i.e. to simulate the medullary preparation d1=0 and to simulate the pre-

BötC preparation, d2=0. 

  

Moving rostral to caudal, the tonic pontine drive supplied the post-I neurons only 

source of excitation, therefore, transection of the pons (d1=0 in the model) silenced the 

post-I neurons. When intact, the expiratory neurons of the BötC exist in a state of mutual, 
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but asymmetric, inhibition where the post-I escapes from early-I inhibition and thus begins 

the expiratory phase by inhibiting the aug-E neuron. As the post-I neuron adapts, the aug-

E neuron is released and, as its activity grow, it inhibits the inspiratory pre-BötC neurons, 

thus prolonging the expiratory phase. When inhibition from the BötC is no longer sufficient 

to suppress the pre-BötC neurons, the pre-I neurons activate and excite the early-I neurons. 

In the intact configuration there is a latency between pre-I and early-I activation created by 

stronger inhibition to the early-I neurons from inhibitory BötC neurons, this addresses the 

latency between pre-I and early-I, as well as hypoglossal and phrenic nerves, seen 

experimentally (Figures I-2A, I-3A). 

 To simulate transection of the pons, d1 was set to zero, and post-I activity ceased. 

Without the post-I neuron, the expiratory phase included only aug-E activity (hence the 

two-phased rhythm). Moreover, this weakened the expiratory side of the half-center 

interactions between BötC and pre-BötC, resulting in an extended duration of inspiration. 

Moreover, the loss of inhibition from the post-I to the early-I reduced the latency between 

pre-I and early-I activation at the onset of inspiration, comparable to Figure I-2B and Figure 

I-3B. Finally, removal of the medullary compartments rostral to the pre-BötC was 

simulated by setting d2 to zero and thus removing all drive to the BötC compartment and 

the early-I neuron. In this simulation, the pre-I neuron continued to generate a rhythm due 

to its persistent sodium dependent rhythmicity.  

 These experimental and modeling studies established the rostral to caudal 

framework of the VRC. This framework forms the basis of many subsequent models and 

has been supported by several experimental studies, see [17], [36], [41], [63], [87]–[89]. 
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The connectivity presented in this section will be expanded on in Chapters III-V of this 

dissertation. 

 

A-5. Afferent feedback to the brainstem respiratory network 

Many systems are in place to regulate the respiratory rhythm, in this section modulation 

caused by changes in lung inflation, pH, and the partial pressures of O2 and CO2, will be 

discussed. Chemoreception in the periphery occurs primarily in parenchymal lobules 

located above the bifurcation of the common carotid (carotid bodies) and along the superior 

portion of the aortic arch (aortic bodies). These receptors sense decreases in arterial partial 

pressure of O2 (PaO2) and pH, and increases in PaCO2, and project to the NTS via cranial 

nerve IX (carotid bodies) and X (aortic bodies) to modulate the respiratory rhythm. Though 

these chemoreceptors are quick to respond to changes in the peripheral chemical 

environment, they do not have as strong an influence on the respiratory rhythm as the 

central chemoreception system, with an unappreciable effect at PaO2 levels above 40 

mmHg [2]. 

  Currently, existing models of the respiratory CPG rely on tonic drives from various 

brainstem compartments, including the raphe, locus ceruleus, and the RTN [16]–[19], [35], 

[62], [63], [88]. Some of the most critically involved tonic drives include areas that are 

often implicated in chemosensation, including the NTS and Raphe (see [90], [91]), and the 

RTN [22], [45], [46]. This dissertation will focus particularly on the role of the RTN in 

chemosensation, and its subsequent modulation of the respiratory rhythm. However, it 

should be noted that there exists an opposing concept to the paradigm of distinct 

chemoreceptive populations [48]. Specifically, the Guyenet group has posited that 
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chemosensation is not a phenomenon reliant on specialized neurons outside the respiratory 

CPG, but could instead be an emergent phenomenon of the neurons participating in the 

generation of a respiratory rhythm, including BötC and pre-BötC neurons [92]. Some 

studies support the hypotheses drawn by the Guyenet group and have shown that 

respiratory CPG neurons either exhibited hyperpolarization or depolarization in response 

to a decrease in pH [93], that acidification of the pre-BötC resulted in an increase in 

breathing frequency [94], and that acidification of the rVRG caused an increase in phrenic 

nerve amplitude [95].  

While it is not the purpose of this dissertation to argue against the concept of a 

respiratory CPG with intrinsic chemosensitivity, it is important to point out that the 

Guyenet group seems to be in agreement that the RTN possesses the properties needed to 

be considered a central respiratory chemoreceptor. Namely, the RTN: (i) increases firing 

rate in vivo when PaCO2 is increased, (ii) this response is caused by a direct decrease in pH 

sensed by these cells, and (iii) this response stimulates breathing [91], [96]. Our use of the 

RTN in a computational model, explored in detail in Chapter III and IV does not seem to 

contradict the criteria put forward by the Guyenet group. Moreover, the concept of 

chemosensitivity being an emergent property of respiratory CPG neurons does not directly 

contradict any of the work presented in this dissertation. 

Unlike central chemoreception, the respiratory reflexes originating from the 

airways have a long history with relative agreement across groups [12], [97]–[99]. There 

are several receptors in the airways, each eliciting specific responses. Rapid adapting 

receptors (RARs) augment breathing, initiate cough, and increase airway secretion [100]–

[102]; bronchopulmonary C fibers induce rapid breathing, bronchoconstriction, 
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vasodilation, and bradycardia [99], [103]–[105]; and other receptor types have been 

identified, though their purpose has yet to be identified, see neuroepethelial bodies [99], 

[106] and slow adapting deflation receptors [107]. However, the slow adapting receptors 

(SARs) that underlie the Hering-Breuer reflex (HBR), as well as brondodilation and 

tachycardia, will be the focus of the remaining portion of this section and Chapter V of this 

thesis. 

 First identified by Josef Breuer and Edwald Hering in 1868, the HBR is initiated 

by SARs in the lungs and promotes the termination of inspiration while facilitating 

expiration [108], [109]. SARs are mechanoreceptors that exhibit phasic activity tracking 

lung inflation and deflation. Like all airway receptors, SARs send axons to the middle and 

caudal portions of the NTS via the vagus nerve [110]–[112]. Specifically, SARs project to 

the ipsilateral NTS at the rostrocaudal level of the area postrema [100]–[102], [113]. At 

least two cell types are known to receive monosynaptic input from SARs, these include I-

β [114] and pump cells [10], [100], [115], [116]. These NTS cells exhibit phasic activity 

mirroring the SARs, and therefore long inflation and deflation, however, the I-β cells have 

a tonic drive that the pump cells are lacking [12], [114]. The pump cells are thought to be 

the primary initiator of the HBR and therefore have extensive projections to the respiratory 

CPG. The connectivity of the NTS’s pump cells, the VRC, and pons is the topic of Chapter 

V of this dissertation. 

 

B. Computational modeling of neural processes 

The purpose of computational neuroscience is to explain the brain’s generation and control 

of behaviors using computational models [117]. These models are used to address one or 



19 

 

 

more of the following questions: (i) what is happening? (ii) how does the brain do this? 

(iii) why does the brain do this? A purely descriptive model (i), also known as a 

phenomenological or statistical model, summarizes experimental observations without 

explaining the mechanisms at play [118]. The results of a regression analysis are an 

example of a descriptive model, providing a relationship between two variables, which are 

often, though not necessarily, a system’s input and output. Mechanistic models (ii) attempt 

to explain how a system works. A purely mechanistic model, that is also perfectly correct, 

will reproduce the experimentally observed output for the entire set of possible inputs. 

Finally, interpretive models (iii) are used to provide a reason for the observed activity 

and/or the mechanisms employed to produce that activity. These models often use 

mechanistic models and apply some novel perturbation that could demonstrate a benefit 

for the system to operate in a particular way. 

 The computational models in this paper were built with the intention of developing 

mechanistic explanations for breathing behavior. To validate a model we first demonstrate 

that the model reproduces experimentally observed activity. To separate our particular 

model from the infinite set of network architectures and/or mathematical formalizations 

that could reproduce experimental findings, we generate experimentally testable 

predictions. That said, a confirmed prediction does not guarantee that our model is correct. 

Indeed, many network configurations could likely produce the initial observations and the 

proposed predictions - a “problem” common to all applications of the scientific method. 

 Model predictions in this dissertation can be categorized by scale such that there 

are sub-cellular, cellular, and system level predictions. At the sub-cellular scale, predictions 

address the intrinsic properties of the neuron. In this work, sub-cellular predictions focus 
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on the currents required to provide neurons with intrinsic rhythmicity. Predictions made at 

the cellular level concern the interactions of neurons in a single population. For example, 

we can identify a network parameter, e.g. probability of connections between neurons or 

strength of this connection, and vary this parameter to predict how a biological system 

might behave under analogous circumstances. The largest hierarchal scale is the system 

level, which I define as several interacting populations of neurons. The presence or absence 

of an interaction between populations, the nature of the interaction (e.g. pre-synaptic, 

excitatory, etc.), and the strength of an interaction can all be system level predictions. The 

majority of predictions made in this work are system level predictions. 

 

B-1. Introduction to computational models of neurons 

Application of dynamical systems theory to model biological, and specifically neural, 

processes began over a century ago. The difference in ionic concentrations on either side 

of a lipid bilayer creates an electrical potential that can change when ions traverse this 

bilayer via various channels. This phenomenon is analogous to an electrical circuit, where 

the lipid bilayer, or membrane, is represented by a capacitor and the various ion channels 

may be modeled as variable resistors connected in parallel. Indeed, many computational 

models of neuronal action potentials model the neuron in just this way, see Figure I-5 for 

a circuit diagram representation of the Hodgkin-Huxley model of a neuron.  
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Figure I-5. Electrical circuit equivalent of a Hodgkin-Huxley computational model. The 

voltage (Vm) across a membrane is dependent on the capacitive properties of the membrane 

(Cm) and the conductances of the various ionic channels (gx). Adapted from [119]. 

 

Conductance-based models are often used to make biophysically realistic models of 

neurons. More simplistic models, e.g. the integrate and fire [120] and FitzHugh-Nagumo 

models [121], [122], are often selected for situations calling for extensive mathematical 

analysis or large-scale network simulations. However, the work in this dissertation will 

employ only conductance-based models modified from the canonical Hodgkin-Huxley 

model [123], [124].  

There are, broadly speaking, two types of models I wish to use in this dissertation: 

(i) spiking neurons that are integrated into networks of neurons (Sections B-2, 3), and (ii) 

activity-based, or reduced, formalizations (Section B-4), and each model type has unique 

features and advantages. It should be emphasized that, in this section, I am simply 

presenting a general form of these models. I applied slight variations to perform the 
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simulations presented in this document and these variations will be addressed in the 

methods sections of each specific chapter. 

 

B-2. Model of a spiking neuron 

The model of a single, spiking pre-BötC neuron, used in Chapters II, III, and V, represents 

an extension of previous conductance-based models [125]–[127]. The neuron’s membrane 

potential (V) is defined using the differential equation:  

  ,Na NaP K L Syn

dV
C I I I I I

dt
             (I-1) 

where C is the membrane capacitance, V is membrane potential, and Ix represents the 

various currents described below: 

  );(3

NaNaNaNaNa EVhmgI         (I-2) 

  ( );NaP NaP NaP NaP NaI g m h V E           (I-3) 

  
4 ( );K Kdr KI g n V E           (I-4) 

  );( LLL EVgI          (I-5) 

  ( ),Syn Syn SynI g V E           (I-6) 

where: Nag , NaPg , and Kg  are maximal conductances for the fast sodium, persistent 

sodium, and potassium delayed rectifier currents, respectively; gL and gSyn are the leakage 

and synaptic conductances, respectively; mcur and hcur (where the index, cur, identifies 

either Na or NaP) represent the activation and inactivation gating variables for the 

corresponding voltage-gated sodium channels whose dynamics are described by the 

following equations:  
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dt
          (I-7) 
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m cur cur cur

dm
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dt
          (I-8) 

where the voltage dependent inactivation, h∞,cur, and the voltage dependent activation, 

m∞,cur, have voltage dependent time constants, τh,cur and τm,cur, respectively. These voltage 

dependent gating functions for the sodium currents, INaP and INa, are governed by the 

following equations, first described by [125]: 
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         (I-10) 
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The voltage dependent activation, n, of the delayed rectifier potassium current, IK, follows 

the same general form as the other currents activations:  

  
n ( ) ( ) ,

dn
V n V n

dt
           (I-13) 

and obeys the voltage dependent functions described by [128]: 
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The reversal potentials, ENa and EK in equations (I-2)-(I-4), for Na and K ions, may be 

calculated with the Nernst equation: 

  
 
 

,ln 
in

out
ion

Ion

Ion

F

TR
E 


        (I-18) 

where R is the universal gas constant, T is the temperature in Kelvin, and F is Faraday’s 

constant.  

 

B-3. Modeling networks of neurons 

The models used in Chapters II, III, and V were models of networks of spiking neruons 

similar to what was described in the previous section. To “connect” neurons within a 

population we used the following formalization: 

  ( ),syn dr netg g g t          (I-19) 

where gdr specifies an external drive applied to the system, and gnet describes afferent inputs 

from neurons in the population (it should be noted that equation (I-19) technically exists, 

separately, for both excitatory and inhibitory synaptic inputs, but I am using a general form 

here for brevity). gnet is equal to zero at rest, and increases when a spike is received. If a 

neuron, j, transmits a spike to a neuron, i, there is an increase in the synaptic conductance, 

jig w  ( g  defines the increase in synaptic conductance produced by a single spike and wji 

is a synaptic weight from neuron j to i) of neuron i that obeys the formalization below: 

  
( )/
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g t g w e
 

 

          (I-20) 

where τsyn defines the synaptic time constant and tkj emulates synaptic delay by defining 

the time at which the falling edge of the k-th action potential reaches -10mV. To explain 
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how populations are connected in my models, assume that a given population A receives 

an input (either excitatory or inhibitory) from a population B. Then, based on a weighting 

coefficient that defines the strength of connection between populations A and B, we assume 

that every neuron in population B sends an input to every neuron in population A, with a 

strength based on the afore mentioned coefficient. 

 

B-4. Activity-based model 

To perform certain qualitative analyses I use a reduced, activity-based, non-spiking neuron 

model with two dynamical variables. This model was adapted from a reduced model of a 

population of intrinsically bursting neurons first developed by Rubin et. al [35], [88], [129]. 

Endogenous bursting in these neurons was suggested to involve the persistent sodium 

current, INaP, previously described in equation (I-3), with burst termination based on the 

slow inactivation of this current. This model is capable of generating bursting activity in a 

wide range of neuronal excitation and burst frequencies, and exhibited a reduction of burst 

amplitude when the frequency increased. Similar to the Rubin et al. models, our 

formulation for each center includes an explicit representation of INaP: 

  ,NaP LC V I I           (I-21) 

where C is the membrane capacitance, NaPI  represents the persistent sodium current, and 

LI  is the leak current. The currents in equation (I-21) are described identically to the 

currents in the previous section, i.e. equations (I-3) and (I-5). 

 The output of each neuron describing its activity, or normalized firing rate, is 

transformed from its membrane potential by a piecewise linear function f(V), changing 
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between 0 and 1 such that: 
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  (I-22) 

where Vmin and Vmax define the threshold and saturation voltages, respectively.  

  The model described in this section is somewhat incomplete. There may be up to 

two additional currents used to describe excitatory and inhibitory connections between 

neurons and, in Chapter IV an additional adaptive current was used. However, detailed 

descriptions of these neurons are provided in their respective chapters. 

 

B-5. Previous computational models of the respiratory network 

To my knowledge, the first published computational model of the respiratory network was 

by Rubio in 1967 [130]. This model employed a Volterra-type integral equation that could, 

under specific parameter sets, provide a stable limit-cycle that represented a respiratory 

rhythm. Similar conceptual models extended this work and accounted for possible firing 

patterns seen experimentally [131]–[133]. Just prior to the first publication of the pre-BötC, 

Duffin published a model of mutual inhibiton from the BötC to the putative inspiratory 

region [133]. This concept was expanded upon greatly by the Rybak group in a series of 

three publications [61], [134], [135]. The initial model was the first to employ 

biophysically realistic neurons, as well as multiple cell types, see Figure I-6. Despite being 

developed after the discovery of the pre-BötC, this model did not incorporate any 

pacemaker properties.  
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Figure I-6. Schematic of respiratory CPG from [135]. 

  

 The first model of the respiratory network with intrinsically rhythmic, pacemaker 

neurons was published by Butera et al. in 1999 [125], [126]. The formalization of neurons 

in these models closely mirrors the ones we use in our spiking neuron models, see Chapter 

I: B-1, and was used by Rybak et al., 2003 to make a biophysically realistic model of the 

pre-BötC [136].  This model of the pre-BötC has been the fundamental kernel of 

many respiratory models published by the Rybak group [16]–[19], [62], [63], [127], as well 

as several models presented in this dissertation. The integration of the pre-BötC neurons 

with other medullary and pontine neurons was discussed in Chapter I: A-4. Further 

development of the pre-BötC (Chapter II), and its integration with the RTN/pFRG 

oscillator (Chapters III, IV), the pons (Chapters III, IV, and V), and the DRG (Chapter V) 

will be the focus of this dissertation. 
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C. Techniques of mathematical analysis 

C-1. Overview 

The computational models presented in this thesis are all non-linear systems, meaning that 

they do not satisfy the superposition principle. This principle states that linear systems have 

homogeneity and additivity, and these are defined, for variables x and y and scalar a, as 

follows: 

)()( xFaxaF  ;        (I-23) 

)()()( yFxFyxF  .       (I-24) 

equation (I-23) defines homogeneity and (I-24) defines additivity. Linear systems are 

typically easier to analyze than non-linear ones. However, using only linear systems would 

significantly limit the number of physical processes one could model. The need for non-

linear systems, and an appreciation of their dynamics, underlies the mathematical fields of 

bifurcation theory and qualitative analysis. The following two sections will introduce these 

analytical tools and their application to computational models of neurons. 

 

C-2. Bifurcation theory 

To understand a broad range of dynamics produced by our models, we used a 

technique involving the construction of Poincaré sections to create bifurcation diagrams 

[137]. Various Poincaré sections could be constructed depending on the circumstance. 

However, as an example, assume we wish to create the bifurcation diagram shown in 

Figure I-7, where a neuron’s interspike interval is calculated as a function of applied current 

(i.e. external drive). In this example drive is the bifurcation parameter and the Poincaré 

section was constructed by locating instances of a neuron’s potential crossing a chosen 
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threshold, typically -35 mV, in a specified direction. The time between these instances is 

the interspike interval. Such bifurcation diagrams show qualitative changes in the system’s 

behavior as the parameters were varied. However, the time interval separating changes in 

drive must be sufficiently large to allow the system to closely converge to its steady state 

prior to the calculation of interspike intervals. 

In this specific example, there is a bistability revealed in the bifurcation diagram in 

Figure I-7. When drive is increased the interspike interval is depicted with red dots, and 

then drive is decreased and interspike interval is depicted with green dots. The bistable 

region in occurs when drive = [0.3, 0.34] and the system could either exhibit bursting (i.e. 

several interspike intervals) or tonic spiking (one interspike interval). This behavior 

indicates a chaotic system, or, more informatively, a system whose state is dependent on 

the initial conditions. Similar observations have been made with in vitro preparations that 

demonstrate switching between quiescence and bursting behavior when a small transient 

current pulse is applied [138]. The in silico parallel creates two stable regions of attraction 

and applying an external drive can perturb the system away from one region and towards 

the other [139].  
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Figure I-7. One-dimensional bifurcation diagram showing interspike interval as a function 

of external drive. Red dots correspond to interspike intervals calculated when drive was 

increased, whereas green dots show the interspike interval with decreasing drive. 

 

Two-dimensional bifurcation diagrams have different bifurcation parameters on the 

x- and y-axis. Using an example analogous to Figure I-7, drive and extracellular potassium 

concentration (Kout) could both be bifurcation parameters, and the qualitative nature of the 

interspike interval, i.e. silence, bursting, tonic spiking of a neuron, could be depicted with 

shading, see Figure I-8. In this example the regions of bursting are shaded black. 
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Figure I-8. Two-dimensional bifurcation diagram in the (Kout, drive)-plane. Bursting is 

calculated using the method described for one-dimensional bifurcation diagrams. 

 

C-3. Fast-slow timescale decomposition 

Bifurcation diagrams provide us with a picture of a broad range of system behaviors. 

However, further analysis is required to answer why a particular qualitative transition 

(e.g. from silence to bursting to tonic spiking, in a neuron, see Figures I-7, I-8), occurred. 

The technique of fast-slow timescale decomposition enables us to answer such a 

question. Using the example of a neuron that transitions from silence, bursting, to tonic 

spiking when Kout is increased, for a fixed value of drive (e.g. drive=0.5, Figure I-8), we 

can exploit the timescale difference between this neuron’s fast and slow variables, note: 

though no parameter values were given for the simulations performed above, they closely 

resemble the parameters of pre-BötC neurons described in Chapters II, III, and V. 

 Specifically, the time constants for V, hNa, mNa, mNaP, n, and hNaP are such that the 
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slower variable, hNaP, may be treated as a fixed parameter of the five-dimensional fast 

subsystem with dynamical variables: V, hNa, mNa, mNaP, and n. The equilibrium solutions, 

or critical points, of the fast subsystem were projected into (hNaP, V) and formed the slow-

manifold as hNaP was varied, see Figure I-9, blue curve. The slow-manifold had a cubic 

shape with three branches. The lower and middle branches are connected by a point 

which is the lower knee (LK) of the slow-manifold. From right to left, along the slow-

manifold, critical points become unstable at a Hopf bifurcation point (HB, blue circle), 

with periodic orbits emerging (red lines represent the extrema of the voltage on the 

emerging periodic orbit). The hNaP-nullcline, calculated when the first derivative of hNaP = 

0, see equation. (I-7), is represented by a black dashed line, and the solution to the full 

system is depicted by a trajectory drawn with a solid black line. 

 

 

Figure I-9. Fast-slow analysis of transitions between silence and bursting. The slow-

manifold is depicted by solid and dashed blue line when the critical points are stable and 

unstable, respectively. When the slow-manifold loses its stability (at the solid blue circle 

representing the location of the Hopf bifurcation), a periodic orbit emerges and its minimal 

and maximal V-coordinates are depicted with red lines. The hNaP-nullcline is represented 
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by a dashed black line. The solid black line represents the neuron’s trajectory in (hNaP, V). 

(A) Silence occurred when the neuron reached a stable critical point. (B) Bursting occurred 

by a homoclinic bifurcation. 

 

Fast-slow decomposition methods reveal the mechanisms underpinning silence and 

bursting in this model of a neuron. Silence occurs when the low potential branch of the 

slow-manifold intersects the hNaP-nullcline, creating a stable fixed point where the 

trajectory converges (black solid black circle). Increasing Kout causes a transition to 

bursting behavior via a saddle-loop (homoclinic) bifurcation in the fast subsystem that 

occurs when the HB is positioned to the left (lower hNaP-coordinates) than the LK of the 

slow-manifold.  

 

D. Specific Aims 

D-1. Specific Aim 1  - Chapter II  

This aim focuses on computational and theoretical investigations of neuronal activity 

arising in the pre-Bӧtzinger complex (pre-BӧtC), a medullary region generating the 

inspiratory phase of breathing in mammals. A progressive increase of neuronal excitability 

in medullary slices containing the pre-BӧtC produces mixed-mode oscillations (MMOs) 

characterized by large amplitude population bursts alternating with a series of small 

amplitude bursts. Using two different computational models, I demonstrated that MMOs 

emerge within a heterogeneous excitatory neural network because of progressive neuronal 

recruitment and synchronization. The MMO pattern depends on the distributed neuronal 

excitability, the density and weights of network interconnections, and the cellular 

properties underlying endogenous bursting. Critically, the latter should provide a reduction 
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of spiking frequency within neuronal bursts with increasing burst frequency and a 

dependence of the after-burst recovery period on burst amplitude. This work highlights a 

novel mechanism by which heterogeneity naturally leads to complex dynamics in rhythmic 

neuronal populations. 

 

D-2. Specific Aim 2 - Chapter III   

I modeled the network level dynamics, specifically the phase switching between inspiration 

and expiration, of the pre-BötC and other populations relevant to respiratory 

rhythmogenesis. I incorporated chemosensitive elements that reproduced experimental 

findings in hypercapnic and hypoxic environments, specifically the emergence of 

abdominal nerve activity at the end of expiration (late-E) during hypercapnia that 

transitioned to biphasic (late-E and early-inspiration) pattern in hypoxic conditions. The 

computational model I used is a well-established model of the mammalian respiratory 

network, first proposed by [16]. I extended this model by adding a chemosensitive 

retrotrapezoidal nucleus/parafacial respiratory group (RTN/pFRG) that became 

increasingly active, at integer ratios relative to the respiratory rhythm, as carbon dioxide 

levels rose. I hypothesized that the RTN/pFRG entrains the respiratory CPG as carbon 

dioxide levels rise. Specific connections between the RTN-pFRG and BötC/pre-BötC were 

predicted based on the results of this modeling study.  

 

D-3. Specific Aim 3 - Chapter IV  

I developed a simplified model of the network proposed in Specific Aim 2, containing 

interacting pre-BotC and RTN/pFRG oscillators, that was used to understand, from a 
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dynamical systems perspective, the mechanisms underlying the observed behaviors in the 

larger model and experimentally. I demonstrated that the dynamics governing the 

interactions of the core respiratory CPG and the RTN/pFRG may be explained in terms of 

release and escape mechanisms used in previous dynamical systems studies of the 

respiratory system [35]. Moreover, intrinsic rhythmicity of the RTN/pFRG was 

demonstrated to be essential to the observations made in Specific Aim 2, as well as 

experimentally. 

 

D-4. Specific Aim 4 - Chapter V  

I incorporated the network developed in Specific Aim 2 into a systems-level model of the 

respiratory network in the VRC with afferent feedback from the pons and lungs (via 

pulmonary stretch receptors). I focused on the respiratory phase switching, i.e. switching 

from expiration to inspiration and from inspiration to expiration. The VRC respiratory 

network receives many afferent connections from other brainstem areas such as the 

RTN/pFRG (Specific Aim 2), the pons, and the nucleus tractus solitarii (NTS). In this study 

I hypothesized that phasic populations in the pons and the pulmonary stretch receptors 

(acting through the NTS), control phase switching in the VRC by projecting to key 

inspiratory and expiratory neuron populations in specific ways. Furthermore, removal of 

both afferent feedback loops caused a transition to an apneustic pattern of breathing, 

characterized by a dramatically lengthened inspiration. 
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E. Significance 

Uncovering the mechanisms governing the generation and control of respiration in 

mammals could lead to a better understanding of several pathologies (e.g. Congenital 

central hypoventilation syndrome, sudden infant death syndrome, Rett's syndrome, central 

sleep apnea, etc.) and provide key insights that would aid in clinical interventions. My 

long-term goal is to develop a complete connectome of the respiratory network and it's 

interaction with other physiological systems, as well as to cultivate a rich understanding of 

the sub-cellular, cellular, network, and system level dynamics that underlie respiratory 

motor outputs. 

 In addition to the direct impact this work may have within the field of neural control 

of respiration, the results may also add to our understanding of more general concepts in 

neuroscience as well as the field of computational biology. The first aim of this dissertation, 

for example, was designed to improve our understanding of the mechanisms that underlie 

rhythmic bursting. This bursting behavior is not limited to respiratory neurons, and our 

work may lend insight to neuroscientists that study bursting in other areas, e.g. the 

locomotor CPG. Moreover, we will develop several novel computational models that will 

be thoroughly described, and made available, for other researchers to use. These models 

could be modified to study a broad range of physiological systems. 
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Chapter II: Mixed-mode oscillations and population bursting in the pre-Bötzinger 

complex 

 

The following section was adapted from the following submitted manuscript: B. J. Bacak, 

T. G. Kim, J. E. Rubin, J. C. Smith, I. A., Rybak, “Mixed-mode oscillations and population 

bursting in the pre-Bötzinger complex.,” Submitted to eLife. Dec. 2015. 

 

A. Introduction 

Mixed-mode oscillations (MMOs) represent rhythmic behaviors of dynamical systems 

characterized by an alternation between large amplitude (LA) and small amplitude (SA) 

oscillations [140] and have been observed in many physical, chemical, and biological 

systems, including a variety of neural structures. The latter include populations of neurons 

in the entorhinal cortex [141], [142], hippocampal neurons [143], dopaminergic neurons 

[144], neurons of the medullary pre-Bӧtzinger complex [145], [146] vibrissa motoneurons 

[147] and spinal motoneurons [148] in rats.   

Theoretical investigations of MMOs typically focus on the mechanisms by which 

MMOs emerge from a complex interplay of multiple distinct time scales in the nonlinear 

processes governing a system’s activity. In this work, we introduce and explain a novel 

alternative paradigm for the generation of MMOs. The key element in the mechanism that 

we present is that a network of coupled oscillators can generative repetitive MMOs based 

on heterogeneity within the network. The importance of this paradigm for neural systems 

relates to central pattern generators (CPGs) that can intrinsically generate rhythmic activity 

controlling different motor behaviors such as breathing and locomotion. Heterogeneity in 
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the quantitative features of the neurons involved is likely a ubiquitous property of such 

circuits [126], and thus our work predicts that MMO patterns should be attainable in a wide 

range of brain structures with rhythmic activity depending on mechanisms for neuronal 

synchronization. Furthermore, predictions that follow from the existence of this MMO-

generation mechanism should be of similarly widespread relevance.  

For concreteness, the present study focuses on computational models of a neuron 

population in a particular brain area, the pre-Bӧtzinger complex (pre-BӧtC), where MMOs 

have been previously observed [149]. The pre-BӧtC is a medullary region representing an 

excitatory kernel circuit of the respiratory CPG in mammals that is critically involved in 

generating the inspiratory phase of respiration [16], [23], [36], [150]. The pre-BӧtC can 

generate rhythmic bursting activity in vitro, in medullary slices containing this structure 

[25], [28], [30] and even in isolated "islands" extracted from these slices (Figure II-1A). 

This rhythmic activity is typically induced by elevating the extracellular concentration of 

potassium ([K+]out) up to 7-9 mM, which putatively increases neuronal excitability [25], 

[27], [28], [30], [151], [152]. Pre-BӧtC neurons project to the hypoglossal nuclei containing 

motor neurons, the activity of which can be recorded in rhythmically active slices from the 

hypoglossal (XII) nerve (see Figure II-1, panels A, B, and C1). Simultaneous optical 

recordings from individual neurons and XII output have shown that bursts in the XII root 

represent the synchronized activity of pre-BӧtC neurons ([25]; Figure II-1C1,C2) and the 

amplitude of XII bursts clearly depends on the number of pre-BӧtC neurons involved. 

Interestingly, a progressive increase in [K+]out in slices containing the pre-BӧtC evokes 

complex population MMOs characterized by amplitude modulation, with large amplitude 
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(LA) bursts alternating with a series of small amplitude (SA) bursts [145], [146] (see Figure 

II-1A, bottom). 

 

 

Figure II-1. Mixed mode and endogenous oscillations in the pre-Bӧtzinger complex in 

vitro.  (A) Top: medullary slice showing “pre-BӧtC island” (shaded dark gray) and labeled 

structures: XII, hypoglossal motor nucleus; NTS, nucleus tractus solitarius; SP 5, spinal 

trigeminal tract. Bottom: Excised pre-BӧtC island with extracellular recording from the 

pre-BӧtC that demonstrates MMOs (i.e. interleaved large and small amplitude bursts). 

Modified from [26]. (B) Intracellular recording from pre-BӧtC neurons with resting 

membrane potential of -54 mV (top trace) and -49 mV (bottom trace). The corresponding 

integrated hypoglossal motor output (ʃXII) is shown below each neuronal recording. In the 

top trace, each neuronal burst coincided with the activity in the hypoglossal motor output. 

At the more depolarized baseline potential, bursting occurred at higher frequency and 

several ectopic bursts did not correspond to ʃXII output. (C1) Optical recording from pre-

BӧtC neuron activity (Ca2+ imaging). Left: three inspiratory neurons (1-3) show 

synchronized Ca2+ activities (ΔF/F) and corresponding ʃXII output (synchronization 

marked with dotted lines). Right: Application of CNQX (6-cyano-7-nitroquinoxaline-2,3-

dione, blocking fast glutamatergic synaptic transmission, 50 µM) caused a loss of bursting 
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in ʃXII and neurons 1 and 2 showed desynchronized bursting activity (see dotted lines). 

(C2) Cross-correlograms for neurons 1 and 2 in C1. The loss of a peak at 0 time lag after 

CNQX indicates loss of synchronization. B and C1-2 were adapted from [25]. 

   

 To theoretically investigate the mechanisms underlying these MMOs, we 

developed and analyzed two models: (a) a computational model of a network of 100 

neurons, described in the Hodgkin-Huxley style, with bursting properties defined by the 

persistent (slowly inactivating) sodium current (INaP) incorporated in each neuron, with 

sparse excitatory synaptic interconnections, and with randomly distributed neuronal 

parameters, and (b) a simplified model consisting of three mutually excitatory non-spiking 

neurons that allowed us to apply qualitative analytical methods for understanding key 

system behaviors. Our simulations and analysis suggest that neurons with low excitability, 

which generate low frequency bursting with high intra-burst spike frequency, recruit LA 

bursts by synchronizing the activity of many neurons in the network and therefore play a 

critical role in the generation of MMOs. Our simulations and analysis of these models 

provide important insights into how heterogeneity of neural excitability and other network 

features contribute to the generation of rhythmic activities in neuron populations that are 

key components of central pattern generators in vertebrates. 

 

B. Methods 

B-1. Description of single neuron in the large-scale population model 

In the large-scale population model all neurons were modeled in the single-compartment 

Hodgkin-Huxley style, in accordance with our previous models [16], [18], [19], [136], 
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[153]. For each neuron, the membrane potential, V, was described by the following 

differential equation: 

 SynELKNaPNa IIIII=
dt

dV
C  ,      (II-1) 

where C is membrane capacitance. The following ionic currents were included in the 

model: fast sodium (
NaI ); persistent, slowly inactivating sodium ( NaPI ); delayed-rectifier 

potassium (
KI ); leak (

LI ); and excitatory synaptic ( SynEI ). These currents were described 

as follows: 

  NaNaNaNaNa EVhmg=I  3 ;      (II-2) 

  NaNaPNaPNaPNaP EVhmg=I   ;      (II-3) 

  KKKK EVmg=I  4
 ;       (II-4) 

  LLL EVg=I  ;        (II-5) 

  
SynESynESynE EVg=I  ,       (II-6) 

where xg  terms (with index x denoting the particular current) represent maximal 

conductances;  SynEg
 
denotes the conductance of the excitatory synaptic current to the 

neuron (see below); Ex is the current’s reversal potential; and mx and hx are dynamic 

variables describing current x activation and inactivation, respectively. Activation and 

inactivation kinetics obey the following equations: 

     xx

x

mx mVm=
dt

dm
Vτ 

,       (II-7) 

     xx

x

hx hVh=
dt

dh
Vτ 

,       (II-8) 
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where  Vmx  and  Vhx  define steady-state voltage-dependent activation and 

inactivation, respectively, and  Vτmx  and  Vτ hx  are the corresponding voltage-dependent 

time constants (see Table II-1). Equations (II-1)-(II-8) were used for each neuron in the 

population, with all variables indexed by a numerical subscript specifying the identity of 

each neuron.  

 

B-2. Interaction between neurons  

We considered only excitatory synaptic connections between neurons. The excitatory 

synaptic conductance was zero at rest and was increased when each excitatory input 

occurred, such that 

 



tt

SynEkj

j

jiSynESynEi

kj

τttwg=g ]/)([exp ,    (II-9)  

where wji is the synaptic weight from neuron j to neuron i, 
SynEg  is the maximal synaptic 

conductance, SynE  is the synaptic time constant, tkj is the time of the k-th spike from neuron 

j, and each term in the sum is evaluated for t > tkj.. That is, each new spike from neuron j 

increases the excitatory synaptic conductance of neuron i by jiSynE wg  . The probability of 

each connection (p) was set a priori, where in a network of N neurons, pN represents the 

mean number of neurons with which an individual neuron would form synapses. To form 

a network, a random number generator was used to determine whether or not each possible 

synaptic connection among neurons was actually present. 
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B-3. Simulations 

Neuronal heterogeneity within the population was generated with Gaussian distributions 

for the leak reversal potential (EL) (defining neuronal excitability) and the maximal 

conductance of the persistent sodium current (
NaPg ). The means and variances of these 

parameter distributions, as well as all other parameters used in the large-scale model, are 

provided in Table II-1.  

Initial conditions for neuronal membrane potentials and variables defining currents' 

activation and inactivation were randomly distributed within physiologically realistic 

ranges for each variable. To rule out chaotic behaviors, simulations were repeated with 

redistributed initial conditions for each parameter set. Finally, results were only considered 

following an initial simulation period of 20 seconds to minimize the likelihood of transient 

dynamics. 

All simulations were performed using the simulation package NSM 3.0, developed 

at Drexel University by S. N. Markin, I. A. Rybak, and N. A. Shevtsova. Differential 

equations were solved using the exponential Euler integration method with a step size of 

0.1 ms. 

 

Table II-1. Steady-state functions for voltage-dependent activation and inactivation  

of ionic channels and other parameter values of the large-scale model. 

Ionic channels   

Fast sodium (Na) ))6/)8.43(exp(1/(1)(  VVmNa ; 

   0.14/)8.43(cosh/25.0  V=VτmNa  ms; 

))8.10/)5.67exp((1/(1)(  VVhNa ; 

   8.12/)5.67(cosh/46.8 V=VτhNa  ms; 

Nag = 170 nS.  
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Persistent sodium (NaP) ))1.3/)1.47(exp(1/(1)(  VVmNaP ; 

   2.6/)1.47(cosh/1  V=VτmNaP  ms; 

))9/)60exp((1/(1)(  VVhNaP ; 

   9/)60(cosh/6000 V=VτhNaP  ms; 

NaPg  = 5.0 ± 0.5 nS. 

Delayed-rectifier 

potassium (K) 

)/()(   KKKK Vm  ; 

)/(1)(   KKmK V   ms,   

where 

))5/)45(exp(1/()45(01.0  VVK ; 

);40/)49(exp(17.0  VK  

Kg = 180 nS. 

Leak (L) Lg = 2.5 nS. 

Neuron parameters  

Reversal potentials ENa = 60.0 mV, EK = -94.0 mV, ESynE = -10.0 mV,  

EL= -62.0 ± 0.93 mV. 

Membrane capacitance C= 36.2 pF. 

Synaptic/network 

parameters 

 

Synaptic connections SynEg = 0.05 nS, SynE = 5 mS,  

wij = w, varied [1, 5], p = varied [0.09, 0.4]; 

Spike threshold = -35.0 mV. 

 

 

B-4. Reduced model formalization 

Mathematical analysis of the large-scale model was prevented by its high dimensionality 

(100 neurons, each with several differential equations per neuron). However, a preliminary 

analysis of the simulation results suggested that a minimal neural network could be used 

to reproduce the development of MMOs caused by the clustering of neurons with similar 

excitabilities. We therefore developed a reduced network consisting of three neurons 

simulated by an "activity-based,” non-spiking, model with different excitability defined by 
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the EL value for each neuron. In this reduced formalization, a neuron’s activity represents 

the aggregate activity of a distinct cluster in the large-scale model. Such reductive neuron 

models were previously used to simulate and analyze the behavior of larger models of 

respiratory networks, including the pre-BötC [35], [88].  

 Each neuron is described by one “fast” dynamic variable, V, that governs changes 

in a neuron’s membrane potential and obeys the following differential equation: 

 
SynEiLiNaPi

i III
dt

dV
C  ,       (II-10) 

where }3,2,1{i is the index corresponding to the neuron’s number shown in Figure II-5A1 

and C is membrane capacitance. This reduced model excluded the fast sodium (INa) and 

potassium (IK) currents included in the large-scale model. However, similar formalizations 

of the persistent (slowly inactivating) sodium (INaP), leak (IL), and excitatory synaptic (ISynE) 

currents were used: 

  )()( NaiNaPiiiNaPNaPNaPi EVhVmgI   ;     (II-11) 

  LiiLLi EVg=I  ;        (II-12) 

 





3

1

)())((

ij

j
SynEiSynEjjiSynEi EVgVfwI ,     (II-13) 

where for x {NaP, L, SynE}, xg  is the maximal conductance and Ex is the channel’s 

reversal potential, respectively. EL was uniformly distributed in the range [-54.5, -63.5] mV 

to produce the specific behaviors observed in the uncoupled case (Figure II-5B1). The 

excitatory synaptic current in equation (II-13) includes inputs to neuron i from neurons j, 

each of which is the product of a fixed connection weight, wji = w and a piecewise linear 

function, f(V):  
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min max min min max

max

0,  if  

( ) (V V ) / ( ),  if 

1,  if 

V V

f V V V V V V

V V




    
 

,     (II-14) 

where Vmin and Vmax define the voltages at which threshold and saturation occur, 

respectively. 

An activity level (or normalized firing rate) for each neuron is implicitly associated with 

the value of its voltage, and the function f(V) represents an output signal corresponding to 

that activity level. 

 The activation of the persistent sodium current, INaP, is described by the voltage-

dependent steady state gating variable, mNaP∞: 

    1
/)(exp1)(



  mNaPmNaPNaP kVVVm .     (II-15) 

INaP activation is considered instantaneous. The “slow” dynamical variable in the reduced 

model, hNaP, represents inactivation of the persistent sodium current and is governed by the 

following equation: 

     NaPNaP

NaP

hNaP hVh=
dt

dh
Vτ  

,      (II-16) 

where hNaP∞ and τNaP∞ describe the voltage-dependent steady-state and time constant for 

inactivation, respectively:  

    1
/)(exp1)(



  hNaPhNaPNaP kVVVh ;     (II-17) 

    hNaPhNaPhNaPhNaP kVV=Vτ  /)(cosh/max  .    (II-18) 

The variables VxNaP and kxNaP for x {m,h,τh} in equations (II-15), (II-17), and (II-18) 

represent the gating variable’s half-activation voltage and slope, respectively.  
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 All parameters of the reduced model are specified in Table II-2. The distribution of 

EL was first set manually to match the large-scale model and then optimized by calculating 

a series of iterative one-dimensional bifurcation diagrams. The robustness of a given 

regime (for example, the LE period branches marked “1:X” in Figure II-6A) was 

determined by the range of connection weights across which the LE period maintained an 

integer ratio to the HE period. Simulations were performed and visualized using custom 

C++ scripts and gnuplot, respectively. 

 

Table II-2. Parameter values for the reduced model 

Ionic channels   

Persistent sodium (NaP) VmNaP=-40.0 mV, kmNaP=-6 mV; 

VhNaP=-59.0 mV, khNaP=10.0 mV; 

VτhNaP=-59.0 mV, kτhNaP=20.0 mV, τhNaPmax=5000 ms; 

NaPg =5.0 nS. 

Leak (L) 
Lg =2.8 nS. 

Synaptic Current (SynE) SynEg =0.1 nS. 

Neuron parameters  

Potentials ENa=50.0 mV; 

EL1=-54.5 mV, EL2=-59.0 mV, EL3=-63.5 mV; 

ESynE=-10.0 mV. 

Membrane capacitance C=20 pF. 

Synaptic/network 

parameters 

 

Synaptic connections wij= w, varied [0, 5] 

Parameters of output function, 

f(V) 

Vmin=-50 mV, Vmax=0.0 mV. 
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B-5. Time-scale decomposition in the reduced model  

The complete range of a neuron’s dynamics, as a function of EL, was investigated with 

time-scale decomposition in the (V,hNaP)-plane (Figure II-5B3). When projected into the 

(V,hNaP)-plane, the dynamical variables, V and hNaP, had steady states or “nullclines” (sets 

of points for which the right-hand sides of equations (II-10) and (II-16), respectively, were 

set to zero). Some possible positions of the cubic V-nullclines are depicted by a gray band 

in Figure II-5B3. The upper and lower boundaries of the band correspond to the lowest and 

highest values of EL that produced bursting, respectively. That is, the intersection of the V- 

and hNaP-nullclines created a fixed point for the system that, when stable, denotes the point 

where solutions converge. There were two possible stable fixed points in our model for 

each neuron: (i) along the left branch of the V-nullcline (silence), and (ii) on the right 

branch of the V-nullcline, creating a state of constant depolarization (the activity-based 

analog to tonic spiking). When EL was intermediate to values that produced silence and 

tonic behavior, the hNaP-nullcline intersected the V-nullcline’s middle branch, creating an 

unstable fixed point with a stable periodic orbit, or oscillation (Figure II-5B3, red trace), 

that encompassed the local maximum and minimum of the V-nullcline (Figure II-5B3, blue 

curve). The presence of a stable periodic orbit corresponded to endogenous bursting in 

these neurons.  

 Each periodic orbit has two “slow” components located close to the neuron’s V-

nullcline and governed by the neuron’s hNaP (slow) dynamics, and two “fast components” 

connecting between V-nullcline branches and governed by the neuron’s V (fast) dynamics. 

During the slow components, the neuron could be silent or at rest when its trajectory was 

traveling up the left branch of its V-nullcline corresponding to an absence of spike 
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generation, and it could be active or depolarized when its trajectory was traveling down the 

right branch of its V-nullcline, corresponding to spike generation. While at rest, a neuron 

in the bursting regime slowly “recovered,” with its trajectory rising to higher hNaP-

coordinates until it reached the left knee (or fold) of the V-nullcline (a bursting neuron, 

shown in Figure II-5B3, red trace). At the left knee, a neuron’s trajectory moved rightward 

in the (V,hNaP)-plane under the fast dynamics to approach the right branch of the V-

nullcline, corresponding to activation of the neuron. Once active, the neuron’s trajectory 

traveled downward, to lower hNaP–coordinates, along the right branch of the V-nullcline 

until it reached the right knee (fold) of the V-nullcline, which caused a leftward jump in 

the (V,hNaP)-plane corresponding to burst termination (Figure II-5B3, red trace). Similarly, 

a neuron with a stable fixed point could have slow transient dynamics and be in a rest 

(active) state as its trajectory traveled along the left (right) branch of its V-nullcline.   

 When a neuron became more excitable, either by an increase in EL or in its 

excitatory inputs, the right-hand side of its voltage equation was altered, causing a change 

in the position of its V-nullcline, to a location downward and to the right of the original in 

the (V,hNaP)-plane.  Such a change could cause the neuron’s fixed point to switch from one 

branch of its V-nullcline to another, yielding a transition from silence to bursting to tonic 

spiking, depending on fixed point location.  
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C. Results 

C-1. Computational modeling of a network of pre-BӧtC neurons with sparse 

excitatory synaptic interconnections 

Intracellular recordings from individual pre-BӧtC neurons in rhythmically active slices 

show a range of resting membrane potentials and other quantitative properties among 

individual neurons [30], [145], [154], [155]. Neurons with more negative resting membrane 

potentials usually generate bursting activity that is fully consistent with, and reflected in, 

XII output activity, whereas neurons with less negative resting membrane potentials 

demonstrate higher burst frequencies and often generate "ectopic" busts not reflected in the 

XII output (see example in Figure II-1B). Pharmacological blockade of synaptic 

transmission within the pre-BӧtC by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) 

results in a reduction and desynchronization of neuronal activity within the pre-BӧtC, with 

no activity in the hypoglossal output (see example in Figure II-1C1,C2).    

In light of these experimental findings, we modeled the pre-BӧtC as an excitatory 

network consisting of 100 neurons described in the Hodgkin-Huxley style, with sparse 

excitatory synaptic interconnection between neurons. The intrinsic bursting prosperities of 

these neurons were based on the persistent (slowly inactivating) sodium current INaP [30], 

[125]–[127], [136], [153], [156]–[158] see Chapter II: B). To account for neuronal 

heterogeneity, we distributed the reversal potential of the leak current, EL, across the 

population (see Chapter II: B). In the absence of coupling (when all weights of connections 

were set to zero), the population contained silent neurons, as well as neurons with bursting 

and tonic activities (Figure II-2A1). Figure II-2A2 presents the raster plot of neuronal 

activity in the same population, in which neurons were sorted in order of increasing (from 
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bottom to top) excitability (defined by the assigned EL). This figure shows that neurons 

with the most negative EL values were silent (neurons with ID numbers from 1 to 49), 

neurons with intermediate EL exhibited bursting activity with burst frequency increasing 

with EL (neurons 50-94), and neurons with greatest EL displayed tonic spiking (neurons 95-

100). The lack of network interactions resulted in asynchronous neuronal activity and the 

corresponding integrated population histogram lacked phasic modulation (Figure II-2A3).  

The patterns of population activity and integrated output dramatically changed 

when relatively weak and sparse excitatory synaptic connections among neurons were 

incorporated in the model (Figure II-2B1-B3). The raster plot of the same sorted neurons 

in this coupled case (Figure II-2B2) shows the presence of overlapping clusters (sub-

populations) of neurons with synchronized bursting, which generate MMOs characterized 

by alternating LA and SA population bursts (Figure II-2B3).   

Figure II-3 shows another example of our simulations, including "uncoupled" 

(panel A1) and coupled (panel B1) cases for sorted neurons of the same populations and 

the integrated population activity for the coupled case (panel C1). In both A2 and B2 panels 

we plotted the membrane potentials (V) of four selected representative neurons that in the 

uncoupled case exhibited (bottom-up): silence (trace 1), bursting with low burst frequency 

(trace 2), bursting with higher burst frequency (trace 3), and tonic spiking (trace 4). Also 

in these figures, the time course of the INaP inactivation variable (hNaP) of each neuron, 

which defined the burst recovery period, was superimposed onto its V time course (red 

trace). An important feature of all neurons operating in bursting mode is illustrated in 

Figure II-3A3 (uncoupled case): while the burst frequency (blue curve) increased with the 

neuronal excitability (bottom-up), the spike frequency within the burst (red curve) changed 
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in an inverse manner, i.e., decreased with increasing neuronal excitability. This reduction 

of spike frequency within the bursts in more excited neurons limited their ability to 

synchronize and recruit other neurons activity in the coupled case (see below).   

 

 

Figure II-2. Distribution of neural excitability in a sparsely connected network causes 

mixed mode oscillations. (A) Network simulation when excitatory interactions between 
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neurons were removed (w=0, “uncoupled” network). (B) Simulation of network activity 

when w=2.5 and p=0.15. (A1), (B1) Unsorted raster plots depicting the timing of action 

potentials in neurons with randomly distributed EL values. (A2), (B2) Raster plots were 

sorted by EL values such that the lowest Neuron ID was assigned to the neuron with the 

most negative EL. (A3), (B3) Histogram of population activity with 10ms bin size. No 

phasic component is observed in A3 due to the desynchronized bursting in the uncoupled 

population. B3 shows a typical MMO pattern including LA bursts alternating with SA 

bursts of varying amplitudes. 

 

The pattern of population activity in a coupled network is shown in Figure II-3B1-

B3,C1. Several clusters of neurons with synchronous bursting activity emerged 

dynamically in the population. Clusters differed by the number of the population bursts in 

which they participated (panel B1), which in turn defined the amplitude of integrated 

population bursts (panel C1). The same panels also show that several relatively small, 

distinct or partly overlapping clusters with synchronous bursts were formed by neurons 

with relatively high (less negative) EL. These clusters generated a series of high-frequency 

SA bursts. Generation of low-frequency LA bursts involved synchronization of many 

neurons and included those with low excitability (most negative EL) (Figure 

II-3B1,B2,C1).  

 Figure II-3C2 shows two insets from the raster plot in Figure II-3B1 that correspond 

to two SA bursts (left) and one LA burst (right). The neuronal clusters in these insets are 

colored as follows: spikes of neurons with default tonic spiking - yellow; spikes of neurons 

involved in SA bursts - light and dark green, light and dark blue, and purple, arranged in 

order of increasing excitability; spikes of neurons involved only in LA bursts  - red.  

The left inset (within the blue rectangle) in Figure II-3C2 and 3D1 depicts spikes 

in the raster plot corresponding to two SA bursts. Two clusters of high excitability neurons, 

colored by yellow and green, participated in both of these bursts. In addition, the blue 
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cluster participated in the first, but not the second, SA burst, and a purple cluster 

participated in the second, but not the first, SA burst. The neurons belonging to the red 

cluster were only active during LA bursts (see right inset within the red rectangle). 

To evaluate the role of different clusters in SA and LA bursts in both insets, we 

built integrated histograms showing the number of neurons, from each colored cluster, that 

were active within a 100 ms bin (Figure II-3D1). Note that the sub-population of low 

excitability neurons, colored red, do not contribute to SA bursts. Activation of this sub-

population during the LA burst is marked by a black, dot-dashed, vertical line at about 32.7 

seconds. This vertical line intersects with a black, dashed, horizontal line indicating a 

threshold for the activation of red neurons. This line intersects the two SA bursts 

demonstrating that, although the amplitudes of both SA bursts rose above the marked 

threshold for activation of the red sub-population in the LA burst, the latter neurons were 

not recruited in SA bursts (note the absence of the red neuron cluster in SA bursts) and 

hence the full LA burst did not develop. We further find that the sub-population of neurons 

with low excitability (colored red) cannot be recruited by other sub-populations 

(participating in SA bursts), and hence cannot generate LA bursts, until sufficient recovery 

of bursting capability in the low excitability neurons (defined by the INaP inactivation 

variable hNaP) has occurred. This observation suggests that with fixed parameter values, 

even though the low excitability neurons do not burst when uncoupled, the generation of 

LA bursts and the durations of their interburst intervals (IBIs) are mostly defined by the 

operation of an intrinsic burst-supporting mechanism in the less excitable neurons, rather 

than by variations in the intensity of their recruitment by the activity of highly excitable 

neurons involved in SA bursts. 
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Figure II-3. Neurons with similar excitabilities activate in clusters within a heterogeneous 

network with sparse connectivity. (A) Simulation results for uncoupled network, w=0. (A1) 

Sorted raster plot showing silent (most negative EL, lowest Neuron IDs), bursting, and tonic 
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(least negative EL, highest Neuron IDs) neurons. (A2) Endogenous activity of four 

individual neurons (Neuron IDs: 30, 65, 85 and 97) showing membrane potential (black) 

and inactivation, hNaP, of the persistent sodium current (red). (A3) Burst frequencies (blue) 

and intra-burst spike frequencies (red) were calculated for each neuron in the uncoupled 

case. Boundaries separating bursting from silent and tonic neurons are marked (black, dot-

dashed lines). (B) Simulation results for w=1.8 and p=0.15. (B1) Raster plot sorted by EL 

(Neuron ID). Two SA bursts (blue rectangle) and one LA burst (red rectangle) were 

selected for the inset in C2. (B2) Membrane potential (black) and hNaP are shown for the 

four neurons originally selected in A2.  (B3) Spike frequency of neurons sorted by 

excitability in the coupled (w=1.8) case (the dashed red curve shows spike frequencies for 

the uncoupled (w=0) case in A3, for comparison). (C1) Histogram of population activity 

corresponding to B1. (C2) Insets depicting magnified raster plots from the selected bursts 

in B1. Colors were assigned to clusters from lowest excitability (LE - red) to highest 

(yellow, tonic neurons). A cluster was defined as a group of neurons that participated in a 

unique set of bursts. (D1) The color-coding scheme from C2 was used in conjunction with 

a histogram depicting the number of active neurons within a 100 ms window. The vertical 

dot-dashed black line marks the time of onset of LE neuron activation in an LA burst and 

the horizontal dot-dashed line intersects this onset time to show the total number of neurons 

already active at the time of LE activation. The horizontal dot-dashed line is extended to 

the two SA bursts and demonstrates that LE activation failed despite the presence of a 

sufficient number of active neurons in the network. (D2) Comparison of number of neurons 

active over time from two SA bursts (purple and blue curves) and one LA burst (red curve). 

The intersection of the two dashed, black lines compares the SA and LA burst amplitudes 

when the LE neurons (red bars) first start to activate in an LA burst. 

 

C-2. Parameter dependence of mixed mode oscillations (MMOs) 

To study the dependence of MMOs on neuronal interactions within the network, we 

observed changes in the network activity when the weights and/or probability of synaptic 

connections were varied across simulations. Figure II-4A1,A2,A3 shows three heat maps 

that demonstrate quantal changes in MMO regimes defined by ratios of LA to SA bursts 

(e.g. 1:5, 1:4, etc.) as several key parameters were varied (Figure II-4A1,A2,A3). When 

either weights (Figure II-4A1,A2,B1) or probability of connections (Figure 4A1,A3,B2) 

were increased, the frequency of LA bursts increased and the number of SA bursts between 

successive LA bursts decreased. This corresponded to a progressive change in the quantal 

state of the network toward regimes with high LA to SA burst ratios.  
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 Figure II-4B1 shows regimes observed when the probability of connections was 

fixed (p = 0.15) and only the weights of connections were varied. At the lowest weights (w 

= 1.0), only irregular SA bursts were observed because of insufficient neuronal 

synchronization (top trace, Figure II-4B1). Weights between 1.0 and 1.8 caused regimes 

characterized by low-frequency irregular LA bursts with irregular patterns of SA bursts 

(not shown). At a weight of 1.8, each LA burst emerged regularly following five SA bursts 

(second trace); no parameter sets produced stable regimes with more than five SA bursts 

per one LA burst. Further increases in weights caused a quantal increase of LA frequency 

and the corresponding reduction in the number SA bursts between LA bursts (traces 2-4), 

until strong enough weights yielded LA bursts only (trace 5). A similar trend is seen in 

Figure II-4B2 with increases in the probability of connections at a fixed value of synaptic 

weights (w = 1.8). Overall, for fixed connection weights, the availability of INaP in low 

excitability neurons still selects the cycles on which LA bursts occur during MMOs. 

Furthermore, our simulations showed increased IBIs following the LA bursts, relative to 

IBIs observed after SA bursts, in all instances of MMOs (Figure II-4B3,3C1, and 4B1,B2). 

In the next section, “Reduced model analysis of interburst intervals (IBIs)”, we use a 

reduced model to explain these effects. 

 Finally, to study the dependence of MMOs on INaP, we varied the average maximal 

conductance for INaP ( NaPg ) and either weights (Figure II-4A2) or probability of 

connections (Figure II-4A3). The resulting heat maps show a qualitatively similar pattern 

where the ratio of LA to SA bursts decreases as NaPg  is reduced. Activity traces 

corresponding to NaPg  changes at fixed weights and probability of connections are shown 

in Figure II-4B3 (w = 3.0, p = 0.24,). At the typical value of NaPg  (5.0 nS), network activity 
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consisted entirely of LA bursts (Figure II-4B3, top trace). When NaPg  was reduced, a 

decrease in LA burst frequency and an increase in SA burst count between LA bursts were 

observed (traces 2-4) until busting fully stopped at NaPg  = 3.2 nS (trace 5).  Thus, while 

raising the weights or probability of synaptic connections can enhance the rate of LA burst 

generation in some parameter regimes, if there is insufficient availability of burst-

supporting current, then the recruitment of low excitability neurons is precluded. 
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Figure II-4. Parameter dependence of mixed mode oscillations. (A1-A3) Heat maps 

depicting guantal changes in the ratio of LA to SA bursts, representing quantal MMO 

regimes calculated with variation of the connection weights (w), probability of connections 

(p), and maximal conductance of the persistent sodium channel ( NaPg ). In A1, w and p 

were iteratively varied at NaPg = 5 nS. In A2, w and NaPg  were varied at p=0.24, and in 

A3, p and NaPg  were varied at w=3. (B1-B3) Histograms of population activity 

(spikes/10ms) were calculated as a parameter of interest was varied. In B1, w was varied 
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between 1.0 and 4.5 at p=0.15 and NaPg = 5 nS; these changes correspond to the horizontal 

red, dashed line in A1. Progressive increase of w caused the frequency of LA bursts to 

increase and the number of SA bursts between LA bursts to decrease. In B2, p was varied 

from 0.09 to 0.4 at w=1.8 and NaPg = 5 nS; these changes correspond to the vertical blue, 

dashed line in A1. Similarly to changes of w, increasing p caused an increase in frequency 

of LA bursts and decrease in the number of SA bursts between LA bursts. In B3, NaPg  was 

decreased from 5.0 to 3.0 nS, with fixed values w=3.0 and p=0.24, corresponding to the 

black, dashed lines in A2 and A3, respectively. This progressive decrease caused a decline 

in LA burst frequency, and an emergence of SA bursts, until all network activity stopped 

at NaPg =3.0 nS. 

 

C-3. MMOs in a reduced model 

A reduced model was developed to allow qualitative mathematical analysis of the MMOs 

that we observed. The model consisted of three neurons with mutual excitatory synaptic 

interactions (see Figure II-5A1). It was considered that each model neuron represented a 

sub-population of spiking neurons with a particular level of excitability. Each neuron was 

described using a non-spiking, activity-based model [35], [88], [129]; see Chapter II: B). 

The behavior of each neuron was defined by two dynamical variables, the membrane 

voltage, V, and INaP inactivation, hNaP. For each neuron we calculated a nonlinear output 

function, f(V), which approximated the aggregate activity of a cluster of neurons in the 

original 100-neuron model. EL values were distributed such that in the absence of coupling, 

neuron 1 (high excitability, HE) engaged in high frequency bursting, neuron 2 (moderate 

excitability, ME) engaged in low frequency bursting with no special frequency relation to 

the bursting of the HE neuron, and neuron 3 (low excitability, LE) was silent; the three 

neurons’ summed activity provided a representation of network output (Figure 

II-5B1,C1,D1,E1). For each simulation, in addition to voltage and summed activity time 

courses, we visualized the network trajectory as it evolved in (hNaP,1, V1, V3)-space. Without 
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coupling, this trajectory was cyclic, corresponding to the oscillations of the HE neuron 1 

(i.e., of hNaP,1, V1) without changes in V3 (Figure II-5B2). 

 In subsequent simulations, neurons in this model interacted through excitatory 

synaptic interconnections with the weights of connections increasing top-down in Figure 

II-5 from panels B1-B3 to panels E1-E3. Similarly to the previous model, when connection 

weights were progressively increased, the network underwent a series of regime transitions 

progressing from only SA bursts (Figure II-5B1,B2) to only LA bursts (Figure II-5E1,E2). 

The intermediate regimes (Figure II-5C1,C2 and 5D1,D2) are referred to as “quantal” and 

labeled as 1:N if there were N-1 SA bursts between each pair of LA bursts; these 

correspond to the MMOs in the 100-neuron model described above. The periods of 

oscillations were calculated for all neurons as weights of connections were gradually 

increased (Figure II-5A), and these clearly distinguished the different quantal states 

observed. As in the previous model, LA bursts involved activation of all neurons and 

occurred exactly on the cycles when the LE neuron activated (Figure 

II-5C1,C2,D1,D2,E1,E2). 
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Figure II-5. Reproduction and analysis of mixed mode oscillations in a reduced model. 

(A1) Schematic of reduced model with mutual excitatory connections between all neurons. 

Indices correspond to (1) high-excitability (HE), (2) medium-excitability (ME), and (3) 

low-excitability (LE) neurons. (A2) 1:4 regime represented in toroidal state space (product 

of two cyclical variables). Four rotations around the larger cycle, corresponding to SA 

bursts, occur during a single rotation in the smaller cycle, corresponding to an LA burst. 

Adapted from [88]. (B) Simulation results when w=0. (B1) Output activity, f(Vi), was 
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calculated for each neuron. The “Sum” trace depicts aggregate network output and is 

asynchronous when w=0 (uncoupled network). (B2) A trajectory (red trace) in the 

(hNaP1,V1,V3)-plane depicts endogenous HE oscillations (cyclical movement in the 

(hNaP1,V1)-plane), and a silent LE neuron (no movement in V3). (B3) In the (hNaP,V)-plane 

an endogenously bursting neuron’s trajectory (red trace) travels around the local minima 

and maxima of a V-nullcline (blue curve) that intersects the hNaP-nullcline (black, dotted 

curve). A band of V-nullclines was calculated for the range of EL values [-59.0, -53.8] mV 

where endogenous bursting occurred (gray band). EL values above and below this range 

caused tonic activity and silence, respectively. (C) Simulation results when w=2. (C1) 

Output activity showed a pattern of three SA bursts between two LA bursts (1:4 quantal 

regime). LA bursts occurred when all three neurons were active, low amplitude SA bursts 

occurred when only the HE neuron was active, and higher amplitude SA bursts occurred 

when both HE and ME neurons were synchronously active. (C2) The system’s trajectory 

(red curve) projected into (hNaP1,V1,V3). Four rotations in (hNaP1,V1) occurred (SA bursts) 

during with only a single rotation in (V1,V3), denoting an LA burst. (C3) The LE neuron’s 

trajectory (red curve) is projected into the (V3,hNaP3)-plane. The hNaP3-nullcline (black, 

dotted curve) intersects three V3-nullclines:, the black nullcline curve corresponds to 

depicts the LE neuron's resting state (no excitatory input), and the blue and green nullcline 

curves correspond to excitatory inputs from the HE neuron and both HE and ME neurons, 

respectively. The LE neuron receives four inputs, marked (i)-(iv), while at rest. Only input 

(iv) corresponds with results in a successful LE activation, and therefore an LA burst. (D) 

Simulation results when w=3. (D1) Two SA bursts occurred between pairs of LA bursts 

(1:2 quantal regime). (D2) In (hNaP1,V1,V3) the trajectory makes two rotations in (hNaP1,V1) 

during one rotation in (V1,V3). (D3) In (V3,hNap3), the two inputs to the LE neuron ’s 

trajectory receives two excitatory inputs, occur at points marked (i) and (ii). Nullcline 

colors are consistent with B3. (E) Simulation results when w=4. (E1) Only LA bursts were 

observed (1:1 quantal regime). (E2) In (hNaP1,V1,V3), one revolution rotation occurs in 

(hNaP1,V1) for each rotation in (V1,V3). (E3) The LE trajectory is projected into (V3,hNap3) 

for the 1:1 regime. The LE neuron activates when it receives an excitatory input from the 

other neurons. 

 

C-4. Analysis of the quantal nature of MMOs with the reduced model 

The reduced model provided an explanation for the emergence of quantal MMOs. A key 

point was that for each neuron, when it was silent, there was a level of synaptic input that 

caused its activation. This level depended on the degree of INaP deinactivation in the neuron, 

quantified by hNaP, as well as on its excitability. When one neuron was activated, it excited 

the other two neurons, and each of these could be activated if and only if the input it 

received was sufficiently large (cf. [159]).  For the LE neuron, there were therefore discrete 
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windows of opportunity for activation, corresponding to activation times of the other 

neurons. This idea can be visualized by considering the trajectory of the full system 

projected to the (V3, hNaP,3)-plane (Figure II-5B3,C3,D3,E3; see Chapter II: B, “time-scale 

decomposition in the reduced model”). When the LE neuron is not active, the trajectory 

evolves along the left branch of the cubic V3-nullcline, corresponding to low V3. The LE 

neuron is activated if the trajectory rises above the left knee, or local maximum, of the V3-

nullcline (analogously to the sample trajectory in Figure II-5B3).  

 Incoming synaptic excitation lowers the V3-nullcline (Figure II-5C3,D3,E3), a well-

known effect known as fast threshold modulation [160]; the amount of lowering depends 

on the input strength. In Figure II-5C3, three V3-nullclines are shown: black corresponds 

to no input, blue to input from the HE neuron only, and green to input from the HE and 

ME neurons. If a synaptic input lowers the left knee below the current value of hNaP,3, then 

the LE neuron is activated (e.g., Figure II-5C3, marked with “iv”). Therefore, the activation 

of the LE neuron depends on the recovery of hNaP,3 when input arrives, and hence on the 

rate of recovery of hNaP,3  relative to the frequency of input arrival.  For example, in Figure 

II-5C3, an SA burst involving only the HE neuron occurs when the trajectory is at position 

“i”. Since the trajectory is below the knee of the blue nullcline, the LE neuron does not 

activate. An SA burst involving the HE and ME neurons occurs when the trajectory is at 

“ii”. Again, LE neuron activation fails, because the trajectory is below the knee of the green 

nullcline.  A failure similar to the first occurs at “iii”. Finally, when the HE and ME 

neurons activate with the trajectory at “iv”, the green nullcline becomes relevant, the 

trajectory is above the knee, and the LE neuron activates, yielding an LA burst.  
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 When synaptic weights were increased, the correspondingly larger excitatory input 

moved the V3-nullcline to lower hNaP,3 values, allowing activation of the LE neuron with 

less recovery time (increase of hNaP,3) and hence with fewer input cycles. Figure II-5D3 

shows one SA burst without LE neuron activation (“I”) and one cycle with LE neuron 

activation (“ii”), while in Figure II-5E3, the LE neuron can activate the first time it receives 

excitation.  In all cases, a discrete number of activations of the HE and ME neurons is 

needed before hNaP,3 recovers to a level from which the LE neuron can activate (Figure 

II-5C3,D3,E3), which gives rise to the quantal nature of the MMO patterns (Figure II-6A).  

A change in the excitability of the LE neuron alone could alter the V3-nullclines 

(for all input levels) and hence change the frequency of the LA cycles within each quantal 

MMO rhythm without any change in the overall oscillation frequency of the 3-neuron 

population (data not shown). On the other hand, an increase in the excitability of the HE 

neuron alone caused an increase of the SA burst frequency. Since the time between SA 

cycles became shorter, there was less recovery of the LE neuron per cycle, such that more 

SA cycles occurred between LA cycles and the overall LA frequency remained 

approximately constant (data not shown).  

  

C-5. Reduced model analysis of interburst intervals (IBIs) 

Another feature of the MMOs observed in our large-scale model is that IBIs were longer 

after LA bursts than after SA bursts. This property was seen in the reduced model as well 

(Figure II-5C1,D1, and see the multiple values of the period for the HE neuron within each 

quantal regime in Figure II-6A). The reduced framework elucidates the mechanism 

underlying this feature. When some neurons are activated, the active neurons excite each 
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other. Each active neuron’s variables evolve along the right branch of its V-nullcline, and 

activation ends when they reach the right knee, or local minimum, of this nullcline (see 

Figure II-5B3, red trace). Stronger excitation pushes a neuron’s V-nullcline, including its 

right knee, to lower hNaP values and hence causes the active phase to end with more INaP 

inactivation (i.e., lower hNaP-coordinate). Thus, a longer recovery period is needed before 

subsequent activation of the leading neuron. On LA cycles, all neurons excite each other, 

which causes a maximal lowering of V-nullclines and subsequently yields the longest IBIs.  

 The difference in post-burst recovery times is evident in the HE neuron’s trajectory 

when the 1:2 regime is simulated (w=3.0, see Figure II-6B). The different-size loops shown 

in (V1, hNaP1) correspond to SA and LA bursts, respectively, and therefore have different 

maximal V1 and minimal hNaP1 values, defined by positions of the V1-nullcline during HE 

activation. The SA bursts occur due to the HE neuron’s intrinsic rhythmicity. When the 

ME and LE neurons excite the HE, the V1-nullcline moves to lower hNaP1 and V1 values 

(lowest green nullcline, Figure II-6B). This movement extends the active phase by pushing 

the right knee of the V1-nullcline down.  As ME and LE neuron activity adapts, excitation 

gradually decreases (green band, Figure II-6B) but nonetheless, when excitation from ME 

and LE neurons is removed, the HE neuron returns to the left branch of the V1-nullcline at 

much lower hNaP1 values than following an SA burst. Therefore, the time it takes the HE 

neuron to recover, following an LA burst, is longer than the recovery following an SA 

burst. 
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Figure II-6. Emergence of quantal regimes and analysis of interburst intervals. (A) The 

burst period of each neuron was continuously calculated as the connection weights (w) 

were increased and neuronal periods on each cycle were plotted. LA bursts occurred at 

w>1.4 (LE emergence, red dots). The quantal regime was determined by the ratio of LE 

and HE periods. Transitions between stable regimes, i.e. bifurcations, occurred when the 

LE period “jumped” to progressively lower integer ratios of the HE period. The ME and 

HE neurons had longer periods following LA bursts than SA bursts. This phenomenon 

creates multiple branches in the ME and HE periods for a given quantal regime (see the 

pair of HE period branches at w=3 in the 1:2 quantal regime, for example). (B) The HE 

neuron's trajectory (red curve) is projected into the (hNaP1,V1)-plane when w=3.0 (1:2 

regime). Distinct oscillations arise in the HE neuron's trajectory for SA and LA bursts. The 

black V1-nullcline governs HE activity when it is endogenously bursting during an SA 

burst. The green V1-nullclines govern HE activity during network-wide activation (LA 

burst) and are depicted as a band because of the progressive decay of output from LE and 

ME neurons (resulting from the decrease in f(V) as their voltages decreased, see equation 

(II-14)) following LA burst onset. 

 

C-6. Effects of reduced neuronal excitability and interconnections 

To investigate the dependence of MMO regimes on excitability (EL) we proportionally 

reduced excitability in all neurons. Quiescence could be induced in the LE and ME neurons 

after decreasing all excitabilities by 8% (Figure II-7A). The frequency of the HE neuron 

decreased, and this produced low frequency SA bursts with no LA bursts. A similar regime 

of only SA bursts could be produced by decreasing weights of neuronal interconnections 

(Figure II-7B). In the example shown, both the HE and ME neurons participated in the SA 

bursts. No change occurred in the frequency of the HE and ME neurons (Figure II-7B).  
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 The phase diagram in Figure II-5B3 can be used to explain the effects of reduction 

in neuronal excitability and connection weights. Changing excitability moved the V-

nullclines corresponding to the unexcited, or resting, state of a neuron. For an uncoupled 

neuron, increasing EL caused progressive transitions from silence, to bursting, to tonic 

behavior. The transitions between these behaviors occurred when the fixed point 

(intersection of the neuron’s V- and hNaP-nullclines) moved from the V-nullcline’s left 

branch (silence), to its middle branch (bursting), to its right branch (tonic). When 

excitability was decreased in a coupled network (Figure II-7A), the fixed points of the ME 

neuron moved to the left branch of the V-nullcline (the LE neuron’s fixed point was already 

on the left branch, corresponding to the quiescence of the LE neuron in the uncoupled case, 

see Figure II-5B1). This decreased excitability increased the amplitude of excitation 

required to induce bursting in these neurons, and thus the low amplitude HE neuron’s 

phasic excitation was insufficient.  

When synaptic weights were changed (Figure II-5B3,C3,E3) only the V-nullclines 

corresponding to the presence of phasic excitation (from other neurons in the network) 

were altered. Thus, the intrinsic dynamics of each neuron stayed the same under changes 

in weights, such that the HE and ME neurons both remained able to activate.  With 

decreased synaptic weights, however, we again found that synaptic excitation could no 

longer recruit the LE neuron (cf Chapter II: C-4).  



69 

 

 

 

Figure II-7. Modulation of excitability and connection weights alters reduced model 

activity pattern. (A) Output levels, f(Vi), for all three neurons with w=1.7. A transient 

decrease of 10% in EL was implemented between 4 and 8 seconds (blue shaded region), 

causing the 1:5 quantal regime to transition to a regime with only HE active. (B) Output 

levels, f(Vi), for all three neurons with w=2.0, producing the 1:4 quantal regime. A transient 

reduction of w by 50% between 4 and 8 seconds (blue shaded region) caused a loss of LA 

bursts. Resulting SA bursts featured activation of HE alone (lower amplitude SA bursts) 

or synchronized HE and ME activity (higher amplitude SA bursts).   
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D. Discussion 

D-1. MMOs in heterogeneous populations of coupled excitatory neurons 

We have presented and explored a novel, network-based mechanism for the emergence of 

MMOs, featuring repetitive alternations of SA and LA bursts of activity, in a heterogeneous 

population of neurons coupled via sparse excitatory synaptic interactions. In this form of 

MMOs, the time intervals between bursts are on a similar time scale regardless of whether 

an SA or an LA burst has just occurred, yielding quantal patterns of SA and LA events, 

although precise IBI durations actually depend on the amplitude of preceding bursts, and 

hence IBIs following LA bursts are longer than those following SA bursts (Figure II-6A). 

These MMOs appear to be a natural, perhaps inevitable, behavior of heterogeneous neural 

networks with excitatory coupling that can be expected to emerge widely in the nervous 

system, in which the rate of recovery of high excitability neurons dictates the period of 

subsequent events, while the recovery of low excitability neurons determines which 

subsequent events become LA bursts. LA bursts correspond to synchronous activation of 

most neurons in the network and occur when the least excitable neurons in the network can 

be recruited. Furthermore, feedback from these least excitable to the more excitable 

neurons is essential for synchronizing the network during LA bursts.  

   

D-2. Relation to MMOs in previous theoretical and modeling studies 

MMOs have been reported in a variety of neural systems [141]–[144], [147], [148]. The 

computational and mathematical analysis of these patterns has focused on mechanisms that 

emerge from the separation of time scales typically found within neural dynamics, between 

voltages and fast gating and synaptic kinetics on one hand and slower gating, synaptic, and 
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ionic concentration kinetics on the other. Within the corresponding MMOs, SA oscillations 

occur during a delayed transition between two different attractors for the fast dynamics and 

are often relatively high frequency events that emerge after a quiescent period, whereas the 

actual transitions between attractors yield LA events [140].   

 Our present work deals with a very different form of MMOs where different 

oscillation amplitudes correspond to the participation of different numbers of neurons from 

within a network. In these MMOs, even within SA events, there is a complete transition 

between different attracting states (hyperpolarized and depolarized) for the fast voltage 

dynamics, although only some variables in the network are involved in this transition. The 

MMOs that we studied here depend critically on the synaptic interactions leading to the 

emergence of neuronal clusters with synchronous bursting activity, whereas the other 

described classes of MMOs mainly arise from intrinsic dynamics even in single neurons. 

Therefore, we observed a transition through a range of quantal MMO regimes as synaptic 

parameters were varied (Figure II-4A,B, 5, and 6).  Furthermore, LA bursts are gained, as 

parameters are varied, by conversion of particular SA bursts, arising roughly evenly 

between pairs of LA bursts, into LA bursts (reminiscent of period-doubling), whereas in 

time-scale-based MMOs, transitions involve the less radical loss or gain of individual SA 

oscillations occurring just before each LA burst. 

 The previous analyses closely related to this novel form of MMO were presented 

in two earlier papers, both motivated by the pre-BötC in the respiratory brainstem. In one 

study, synchrony could emerge in a group of modeled neurons with heterogeneous 

excitability, coupled with synaptic excitation [159]. It was noted that, starting in a 1:1 

regime, weakening synaptic strengths could cause less excitable neurons to skip some 
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cycles.  In the other previous work, the reduced neuron models were used to investigate 

quantal recruitment of normally-silent late-expiratory neurons under hypercapnia [88].  

However, the model was not a heterogeneous excitatory network but rather consisted of 

several distinct neuronal populations coupled with a combination of excitation and 

inhibition, and the quantal effects observed involved only the single expiratory population, 

without any clustering or other alterations in other neurons’ behaviors. 

 

D-3. Generation of MMOs: the role of endogenous bursting properties of neurons 

In the present work, we first studied MMOs in a large-scale neuron population consisting 

of 100 neurons modeled in the Hodgkin-Huxley style, which were coupled through sparse 

excitatory synaptic connections. All neurons in the model were capable of endogenous 

generation of rhythmic bursting activity (Figure II-2A2) within a particular range of 

excitability (their resting membrane potential, defined by EL; see Figure II-2A1,A2 and 

3A1,A2). This intrinsic neuronal bursting was based on a persistent (slowly inactivating) 

sodium current, INaP, characterized by fast sub-threshold activation and slow inactivation, 

both voltage-dependent [125], [126], [136], [156]. Although there is ongoing debate 

concerning the exact mechanisms responsible for endogenous bursting in the pre-BӧtC in 

vitro [21], [28], [146], [153], [154], [157], [158], [161]–[163], INaP has been found in pre-

BӧtC neurons and the rhythmic bursting activity in the pre-BӧtC could be abolished by 

pharmacological blockade of this current [136], [149], [155], [156], [161]. Therefore, the 

inclusion of INaP in our models can be considered reasonable. Following the previous 

computational models of pre-BӧtC neurons [125], [126], [136], [153], [156], [158], the INaP 

inactivation variable, hNaP, evolved with a large time constant and its slow dynamics 
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defined a slow neuronal “recovery", i.e. gradual depolarization in the post-activity phase 

(red traces in Figure II-3A2).  

 The reversal potential of the leak current (EL) was randomly distributed across 

neurons in the network to provide a range of excitabilities and subsequent behaviors. This 

combination of distributed neuronal excitability with slow voltage-dependent recovery 

provided two important characteristics of neurons within the population: 

(1) With an increase of excitability in intrinsically bursting neurons, the frequency 

of bursts increased, whereas the spike frequency within the bursts decreased (Figure 

II-3A3); such a reciprocal effect of neuronal excitability on the burst vs. spike frequency 

arose because with higher burst frequencies (reduced IBIs), there was less time for recovery 

(deinactivation).  

(2) Neurons with lower excitability required more time for recovery and could not 

be involved in high-frequency oscillations.  

These two key features of the large-scale model were preserved in our reduced 

model, in which the spike frequency within the burst was explicitly represented by the 

amplitude of neuronal output. Therefore, this amplitude decreased with the increasing 

neuronal excitability (from LE to HE neurons), and the slow recovery of LE neurons 

(defined by the voltage-dependent time constant for hNaP3), was greater than the recovery 

of HE neurons, and prevented the LE neuron from participation in higher frequency 

synchronized bursts (Figure II-5).  

Although these key features in both our models are the direct result of INaP kinetics, 

they actually are not specific for the INaP-dependent bursting mechanism analyzed herein. 

Instead, they represent a common feature of most known cellular bursting mechanisms, in 
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which the post-burst recovery time depends on the neuronal activity within the bursts and 

vice versa. For example, in the case of intrinsic bursting mechanisms based on Ca2+-

dependent potassium (IK(Ca2+)), Ca2+-activated nonspecific (ICAN), or Na+-dependent 

potassium (IK(Na+) currents, involving intracellular accumulation of Ca2+ or Na+ ions, a 

functionally similar slow recovery is usually connected with operation of either the Ca2+ 

or Na+/K+ pumps [153], [157], [158], [164]–[168]. Therefore the two key features 

formulated above, which are critical for generation of network-based MMOs, appear to 

represent common properties of populations of intrinsically bursting neurons with 

distributed excitability that extend across many different bursting mechanisms. This 

conclusion clearly contradicts a recently published opinion [163] that previous 

computational models reproducing the MMOs observed in the pre-BötC [126], [127] are 

not valid because the neuronal bursting in these models is critically dependent on slow 

deactivation kinetics of INaP. 

To evaluate the potential role of INaP in the considered MMOs, we used our large-

scale model to investigate the transition of the population activity pattern during 

progressive suppression of INaP in all neurons (Figure II-4A3,B2,B3). A regime with only 

LA bursts was selected as a starting point for this study (top trace). When INaP conductance 

( NaPg ) was suppressed, the frequency of LA bursts decreased and an MMO regime 

emerged (Figure II-4B3, traces 2 and 3) until eventually only SA bursts remained and then 

activation completely ceased. We consider this result as a prediction for future 

experimental study, suggesting that a progressive suppression of INaP in the pre-BötC, in 

vitro, by its specific blocker, riluzole, should cause a transitional MMO regime before 

abolishing rhythmicity completely.  
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D-4. Generation of MMOs: effects of changing connections and neuronal excitability  

When the weights of excitatory connections were progressively increased in our large-scale 

model, a succession of stable network rhythms, or “regimes”, were observed (Figure 

II-4A1,B1,B2). Low weights of connections produced only SA bursts in the network’s 

activity (top trace in Figure II-4B1), intermediate weights caused MMOs (traces 2-4), and 

strong weights produced regimes with only LA bursts (bottom trace). Similar regimes 

emerged when the probability of connections was increased at fixed weights of connections 

(Figure II-4B2). In all of these cases, the overall frequency of burst events remained 

similar; what changed was the frequency with which those bursts were of large amplitude. 

Similar transformations in the integrated pattern occurred when weights of 

interconnections were increased in the reduced model (Figure II-5). In contrast, reduction 

of either the general neuronal excitability (Figure II-7A) or weights of connections (Figure 

II-7B) could cause LE neurons to remain silent, leading to an integrated pattern with only 

SA bursts present (Figure II-7A,B). These simulation results may provide a reasonable 

explanation for the transformation of MMOs observed during application of cadmium 

(Cd2+) in a medullary slice exhibiting MMOs [146]. In these experiments, Cd2+ application 

abolished LA bursts whereas SA oscillations persisted. We therefore suggest that the 

effects of Cd2+, a blocker of calcium currents, could either attenuate neuronal excitability 

or reduce excitatory synaptic interconnections within the pre-BötC, as seen in our 

simulations (Figure II-7A,B). However, more experimental investigations, particularly 

regarding frequency changes following Cd2+ exposure, are needed to distinguish these 

possibilities. 
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D-5. The frequency of output pre-BötC oscillations is defined by properties of 

neurons with the lowest excitability  

The analysis of neuronal “clustering” of our large-scale model showed that groups of 

neurons with different excitability participated either in SA and LA bursts or only in LA 

bursts (see Figure II-3B1,B2,C1,C2,D1,D2). Specifically, neurons with relatively high 

excitability (EL), and therefore with the high burst frequency (HE neurons), participated in 

some SA and all LA bursts, whereas neurons with the lowest excitability and the lowest 

burst frequency (LE neurons) participated only in LA bursts. Importantly, since LE 

neurons had the highest spike frequency (Figure II-3B3) within the bursts, they could 

provide the strongest excitatory synaptic inputs to other neurons, resulting in the network-

wide synchronization underlying the generation of LA bursts. It is also interesting to note 

that LE neurons could fail to activate even when receiving excitatory inputs of sufficient 

strength (see intersection of dashed lines in Figure II-3D1), if the time from the last LA 

burst was insufficient for the recovery of LE neurons. This suggests that a mechanism 

intrinsic to the LE neurons and connected with their slow recovery is critically involved in 

the generation of LA bursts, defining their IBIs and the output burst frequency.  

 Our reduced model exhibited a similar dependence on LE neuron recovery, which 

could be confirmed by analysis using time-scale decomposition in the (V,hNaP)-plane 

(Figure II-5C3,D3,E3). This analysis showed that whether or not an excitatory input could 

recruit the LE neuron and induce an LA burst depended on the relative sizes of two 

quantities: (a) the hNaP-coordinate of the LE neuron at the time of input (longer periods of 

recovery, or inactivity, led to higher hNaP-coordinates) and (b) the hNaP-coordinate of the 
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left knee of the V3-nullcline corresponding to the excitatory input (stronger inputs induced 

lower hNaP-coordinates). Successful LE neuron activation occurred when (a) was greater 

than (b), as at point (iv) in Figure II-5C3, and activation failed when (b) was greater than 

(a), as at (i)-(iii) in Figure II-5C3. When weights were increased, the V3-nullcline was 

shifted to lower hNaP values, which allowed the LE neuron to activate with less recovery.  

Interestingly, based on this analysis and previous work [158], we can infer that the 

strong mutual excitation, that occurs during an LA burst, is responsible for the pause in 

activity of the tonic spiking neurons after an LA burst in the large-scale model (Figure 

II-3B2).  Both the prolonged IBI and the pause in tonic spiking after LA bursts rely on the 

synaptic excitation from the full collection of neurons in the network, and thus their 

presence can be taken as evidence that the least excitable neurons in the network are not 

recipients of feed-forward inputs but rather participate in the recurrent network structure. 

 

D-6. Burstlets, bursts, and separate sub-networks for rhythm and pattern generation  

The emergence of MMOs in the pre-BötC have been recently studied in vitro in the 

medullary slices from neonatal mice [146]. These MMOs were artificially evoked at a 

moderate level of neuronal excitability produced by elevation of [K+]out to 5-6 mM and 

were characterized by a series of SA bursts ("burstlets") alternating with single LA bursts 

that, in contrast to the burstlets, were able to trigger the "inspiratory" rhythmic bursts in the 

hypoglossal motor output and hence defined the frequency of output oscillations. The 

emergence of MMOs in the pre-BötC in these conditions allowed Feldman and Kam to 

propose a novel "burstlet concept" of inspiratory rhythm generation that "fundamentally 

breaks with the burst hypothesis" [163]. According to this concept, "rhythm- and pattern-
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generating functions common to all CPGs are assumed to be segregated" so that the rhythm 

and the pattern are generated by "separable microcircuits" and "distinct mechanisms" 

[146], [163], similar to that in a previous model of the spinal locomotor CPG suggesting 

the existing separate circuits for rhythm generation and pattern formation [169], [170]. In 

this interpretation, the role of intrinsic bursting mechanisms in neurons generating the LA 

bursts in the pre-BötC is fully disregarded, and the lack of these bursts on the top of each 

burstlet (SA bursts) is considered as equivalent to the non-resetting spontaneous deletions 

(missing bursts) observed during fictive locomotion in the spinal cord.  

Our computational study does not support the interpretation of MMOs in the pre-

BötC as indicative of separate rhythm- (burstlets) and pattern- (bursts) generating sub-

networks. The results of our present modeling study instead suggest that a single, 

inseparable population of coupled excitatory neurons incorporating endogenous neuronal 

oscillators with distributed excitability can reproduce, and is sufficient to explain, the 

coexistence of burstlets and bursts in population rhythmic activity (i.e., the MMOs 

described in this work). We implemented a sparse network connectivity pattern that reflects 

experimental data more completely than previous models [127], [153] and precludes the 

existence of separable sub-networks. In the models of the locomotor CPG in the spinal cord 

mentioned above, the pattern formation circuits did not affect the rhythm generator circuits, 

but just responded 1:1 to the rhythm-generating input, unless accidental perturbations 

happened, changing the excitability of the pattern formation network and producing 

deletions [169], [170]. In contrast, in the interconnected single network considered here, 

the activity of low-excitable neurons involved in generation of low frequency LA bursts 

(attributed to the "pattern generating circuits") synchronize the entire population activity, 
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explicitly defining its output frequency ("rhythm"). Therefore, the intrinsic properties of 

these low-excitable neurons, specifically the temporal characteristics of their recovery (see 

Figure II-5D1,D2 and 6B), but not deletions of unknown origin, define the output 

frequency of rhythm generator that interacts with other circuits to shape the CPG activity 

pattern.     

 

E. Summary of predictions 

Sub-cellular level predictions: Both models presented in this chapter had persistent sodium 

(INaP) dependent intrinsic rhythmicity. The model of 100 Hodgkin-Huxley neurons used a 

more detailed description of INaP than the reduced model formalization. Interestingly, a 

major implication of the reduced modeling results was that the current did not need to be 

INaP, per se. Rather, intrinsic rhythmicity itself was the critical element. In fact, neurons in 

the reduced model were simple relaxation oscillators that were able to produce MMOs. 

This suggestion is critical given the controversial nature of INaP’s role in respiratory 

rhythmogenesis. 

 

Cellular level predictions: The predictions at this level involved changes between quantal 

states (i.e. 1:N regimes of LA:SA activity). Our model predicts that the quantal state is 

dependent on the weight of connections, the probability of connections, and INaP. 

Specifically, increasing weight of connections and the probability of connections causes a 

convergence to a 1:1 regime, see Figure II-8A1, A2, B1. The weight of connections could 

be experimentally tested by applying an NMDA agonist to the pre-BötC. In addition, we 
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predict that, starting with a 1:1 regime, application of a small dose of riluzole, an INaP 

channel blocker, would cause the emergence of MMO activity (see Figure II-9A3, B2, B3).  

Finally, our results suggest that inspiratory motor outputs are driven by a group of 

neurons with low excitability that emerge as a cluster and recruit the rest of the network 

with their high spike frequency bursting. Using calcium imaging, Jeffrey Smith’s lab found 

that a small cluster of spatially constrained neurons activates prior to the synchronized 

activity in the pre-BötC (unpublished data). The excitability of these neurons has not yet 

been characterized.    
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Chapter III: Late-expiratory activity: emergence and interactions with the 

respiratory CPG 

 

The following section was adapted from the following accepted manuscript: Y. I. Molkov, 

A. P. Abdala, B. J. Bacak, J. C. Smith, J. F. R. Paton, and I. A. Rybak, “Late-expiratory 

activity: emergence and interactions with the respiratory CPG.,” J. Neurophysiol., vol. 104, 

no. 5, pp. 2713–29, Nov. 2010. 

 

A. Introduction 

The respiratory rhythm and coordinated motor pattern during breathing in mammals 

is generated by a respiratory central pattern generator (CPG) located in the lower brain 

stem [3], [5], [6]. The pre-Bötzinger complex (pre-BötC), located within the medullary 

ventrolateral respiratory column, is considered a major source of rhythmic inspiratory 

activity [20], [23]–[25]. The pre-BötC, interacting with the adjacent Bötzinger complex 

(BötC) containing mostly expiratory neurons [3], [31]–[34] represents a core of the 

respiratory CPG [3], [5], [6], [16], [19], [33], [35], [36], [62], [151]. This core circuitry 

generates primary respiratory oscillations defined by the intrinsic biophysical properties of 

respiratory neurons involved, the architecture of network interactions between respiratory 

neural populations within and between the pre-BötC and BötC, and input drives from other 

brainstem compartments, including the pons, retrotrapezoid nucleus (RTN), raphé, and 

nucleus tractus solitarii (NTS). In addition, information on the metabolic state of the system 

such as levels of CO2, O2, pH, provided by the RTN, raphé, peripheral chemoreceptors (via 
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NTS), can reorganize the respiratory network and operating rhythmogenic mechanisms 

depending on metabolic conditions.  

A distinct site of neural oscillations, the parafacial respiratory group (pFRG), 

putatively involved in respiratory function was initially identified in vitro, in the isolated 

neonatal rat brain stem-spinal cord preparation [37]–[39]. The pFRG seems to reside 

within, or to overlap with, RTN. It has been proposed that RTN/pFRG oscillations drive 

abdominal motor activity, expressing pre-inspiratory (or late-expiratory, late-E) or 

biphasic-E (with pre-inspiratory and post-inspiratory) discharges in the abdominal motor 

output when the system operates in the active expiration state to force exhalation [20], 

[41]–[43]. Several competing concepts concerning the physiological role of RTN/pFRG 

oscillations have been suggested and debated [20]. These include the suggestion that the 

pFRG represents the primary inspiratory oscillator [39], [171] and the dual oscillator 

concept that considers the RTN/pFRG to be an independent expiratory rhythm generator 

that is coupled with a distinct inspiratory rhythm generator in the pre-BötC [42], [172]. 

However, the exact physiological role of pFRG oscillations, the specific conditions for their 

emergence, and the nature and mechanisms of the interactions between the BötC/pre-BötC 

and RTN/pFRG oscillators are not yet known. New mechanistic insights in this regard 

would represent a significant step in understanding the neural control of breathing and 

would have a broader impact on understanding the role of interacting neural oscillations in 

brain operation. 

Our previous large-scale computational models of the spatially and functionally 

organized brain stem respiratory network [16], [19] were able to reproduce the three-phase 

eupneic respiratory pattern generated under normal conditions as well as its reorganization 
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resulting from multiple experimental perturbations, such as various brainstem transections 

and application of specific blockers of ionic channels and inhibitory synaptic transmission. 

Based on these modeling studies, we have concluded that the brain stem respiratory 

network has rhythmogenic capabilities at multiple hierarchical levels, which allows 

flexible, state-dependent expression of different rhythmogenic mechanisms under different 

physiological and metabolic conditions and enables a wide repertoire of respiratory 

behaviors [16], [19], [36], [41]. 

Our previous modeling studies, however, did not analyze in detail interactions 

between the respiratory CPG circuits and RTN/pFRG oscillator. The goal of this study was 

to extend our previous model [16] in order to investigate: (i) the metabolic state-dependent 

conditions for the emergence of RTN/pFRG oscillations, (ii) the neural mechanisms 

involved in the interactions between BötC/pre-BötC and RTN/pFRG oscillators, and (iii) 

the role of these interactions in shaping the coordinated pattern of respiratory motor outputs 

under different conditions, which may reveal the physiological role of RTN/pFRG activity.  

To this end, we analyzed further our previous results [41] and some new 

experimental data providing additional evidence for the location of the source of abdominal 

late-E oscillations in RTN/pFRG, the dependence of these oscillations on the persistent 

sodium current, the metabolic conditions for the emergence of these oscillations, and their 

role in coordination of phrenic and hypoglossal motor outputs. We specifically investigated 

some critical regimes of coupling between RTN/pFRG and BötC/pre-BötC oscillations 

including a regime of quantal acceleration of late-E oscillations with the development of 

hypercapnia.  
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The modeling part of our study is presented in two consecutive aims. In this first 

paper, we describe an extended large-scale model and perform a series of key simulations 

to reproduce (and predict) experimentally observed behaviors. In Chapter IV I present a 

reduced model that maintains the essential features and architecture of the extended large-

scale model, but allowed us to use methods of dynamical systems theory, such as 

bifurcation and phase plane analyses, to elucidate the mechanisms and dynamics of 

synchronization between the RTN/pFRG and BötC/pre-BötC oscillations. The presented 

combination of experimental and modeling studies provides new theoretical insights into 

the state-dependency of RTN/pFRG oscillations, the nature of their coupling with 

BötC/pre-BötC oscillations and their impact on respiratory pattern generation under 

different metabolic and physiological conditions. 

 

B. Methods 

B-1. Experimental data 

The majority of the data used herein were taken from a recently published study [41] 

conducted in the in situ arterially perfused brainstem-spinal cord of juvenile rats. New 

experimental results presented here included the effects of riluzole, the persistent sodium 

current blocker, on the abdominal and phrenic motor activities during hypercapnia, and the 

effect of local blockade of GABAergic synaptic inhibition within the RTN/pFRG on late-

E abdominal activity during normocapnia. Procedures for applying riluzole (5–10 μM) to 

the perfusate in the in situ preparations with recording of multi-nerve activities to study the 

role of this current in respiratory pattern generation in situ have been described in detail in 

[16]. The procedures used here for local, bilateral injection of bicuculline (10 µM) into the 
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RTN/pFRG, including histological documentation of injection sites, were identical to those 

described in [41] for focal injection of pharmacological agents perturbing GABAergic 

synaptic transmission in the RTN/pFRG. For all other experimental details, including 

electrophysiological methods for recording abdominal nerve (AbN) activity 

simultaneously with activity of cervical vagus (cVN) and hypoglossal (HN) cranial nerves 

and phrenic (PN) nerve, refer also to [41]. 

.  

B-2. Data processing and analysis 

We measured parameters of motor or neuronal unit activity (cycle period/frequency, 

inspiratory/expiratory phase durations and amplitudes) across at least 50 respiratory cycles. 

For time-series analysis of different outputs we used signals simultaneously recorded from 

nerves and neuronal units digitally acquired (5 kHz sampling rate) by means of Spike2 

(Cambridge Electronics Design) software. For detection of nerve bursting activity, these 

signals were DC removed, rectified and integrated (50 ms time constant). An appropriate 

threshold was chosen and the time points of successive intersections of the integrated 

activity with the threshold were registered. The time intervals between the onsets or offsets 

of two successive bursts of nerve activity (referred to as periods) were computed. 

Processing of digitized data was performed using the software package TISEAN and 

custom written C++ programs.  

 

B-3. Modeling and simulations 

The model was developed based on, and as an extension of, the previous model described 

by [16]. All neurons were modeled in the Hodgkin-Huxley style (single-compartment 
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models) and incorporated known biophysical properties and channel kinetics characterized 

in respiratory neurons in vitro. Each neuronal type was represented by a population of 50 

neurons. Heterogeneity of neurons within each population was set by a random distribution 

of some parameters and the initial conditions for values of membrane potential, calcium 

concentrations, and channel conductances. A full description of the previous model and 

model parameters used can be found in [16]. All new (additional), and altered (relative to 

[16]) model parameters are indicated in Table III-1. 

All simulations were performed with a simulation package NSM 3.0, developed at 

Drexel University by S. N. Markin, I. A. Rybak, and N. A. Shevtsova. Differential 

equations were solved using the exponential Euler integration method with a step of 0.1 

ms. Other details of the modeling and simulation methods can be found in [16], [19]. 

 

Table III-1. Weights of synaptic connections. Values in brackets represent relative 

weights of synaptic inputs from the corresponding source populations (wji) or drives 

(wdmi). * indicates populations not present in the model of Smith et al. (2007) and 

weights of connections adjusted in the present model relative to that model. 

Target population 

(location) 

Excitatory drive {weight of synaptic input} or  

source population {weight of synaptic input from single 

neuron} 

bulbospinal E* 

(cVRG) 

 

early-I(2) {-2}*; late-E {0.02}*. 

ramp-I 

(rVRG) 

drive(pons) {2.0};  

early-I(2) {-0.3}*; pre-I /I{0.06}; aug-E{-0.1}*; post-I {-

2.0}*.  

early-I(2) 

(rVRG) 

drive(pons) {2.5}*;  

aug-E {-0.25}; post-I {-0.25}*; late-E {0.1}*. 

pre-I/I  

(pre-BötC) 

drive(raphe) {0.3}; drive(RTN) {0.22}*; drive(pons) {0.65}*;  

pre-I /I {0.03}; aug-E {-0.06}*; post-I {-0.16}*; late-E 

{0.02}*. 

late-E*  

(RTN/pFRG) 

 

early-I(1) {-0.025}*; post-I {-0.0225}*; late-E {0.03}*; 
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early-I(1)  

(pre-BötC) 

drive(RTN) {1}*; drive(pons) {1.1};  

pre-I /I {0.1};* aug-E {-0.265}* ; post-I {-0.45}*. 

aug-E 

(BötC) 

drive(RTN) {2.1}*; drive(pons) {0.6}*;  

early-I(1) {-0.115}*; post-I {-0.32}; late-E {0.03}*. 

post-I 

(BötC) 

drive(RTN) {0.05}*; drive(pons) {1.65}*;  

early-I(1) {-0.025}*; aug-E {-0.01}. 

post-I (e) 

(BötC) 

drive(pons) {0.05}*;  

early-I(1) {-0.2}; aug-E {-0.2}*. 

 

 

C. Results 

In this section we present results from new analyses of our previously published data [41] 

as well as new experimental observations that form the basis for developing an extended 

computational model of the brainstem respiratory network described in the following 

section.  

 

C-1. Emergence and quantal acceleration of late-E abdominal activity with 

hypercapnia  

Under baseline metabolic conditions (95% O2, 5% CO2) the abdominal motor output (AbN) 

recorded in the in situ arterially perfused rat brainstem-spinal cord preparations typically 

exhibits a low-amplitude post-inspiratory activity as described in [41]. Switching to 

hypercapnic (7–10% CO2) and/or hypoxic conditions evokes large amplitude late-

expiratory (late–E, also called pre-inspiratory, pre-I) bursts in AbN. A representative 

example is shown in Figure III-1 where the late-E discharges emerge in AbN at 7% CO2 

(Figure III-1A2,B) followed by a progressive increase in their frequency (decrease in the 

burst period) as the CO2 concentration is incremented to 10%. Importantly, although the 

frequency of late-E bursts increases with CO2, these bursts remain coupled (phase-locked) 
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with the bursts in the PN, cVN and HN (Figure III-1A2-A4, see also Figure III-2A1,A3, 

and Figure III-4A1,A2,B). With the development of hypercapnia, the ratio of late-E burst 

frequency to the PN burst frequency shows a step-wise or quantal increase from 1:5 and 

1:4 (seen in Figure III-1B) to 1:3, 1:2, and, finally, to 1:1 (Figure III-1A2-A4 and B; see 

also Figure III-4A1,B below). On returning CO2 to the control levels the ratio showed a 

step-wise reversal (see in Figure III-4B). Similar hypercapnia-evoked AbN late-E 

discharges phase-locked to PN with a step-wise increase of their frequency with increasing 

CO2 levels has been demonstrated previously in vivo by Iizuka and Fregosi 2007. We call 

this process quantal acceleration of late-E activity with development of hypercapnia. 

 

 

Figure III-1. Quantal acceleration of AbN late-E activity with the development of 

hypercapnia. (A1-A4) Simultaneously recoded activity of (bottom-up) PN (red), AbN 

(black), cVN (green), and HN (blue). Activity of each nerve is represented by two traces: 

raw recording (lower trace) and integrated activity (upper trace). (A1) Normocapnia (5% 

CO2): late-E activity is absent in the AbN. (A2-A4) Quantal acceleration of AbN activity: 
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with the development of hypercapnia, the ratio between the AbN and PN frequencies goes 

through step-wise changes from 1:3 and 1:2 (A2 and A3, 7% CO2) to 1:1 (A4, 10% CO2). 

(B) Time-series representation of the entire experimental epoch with the oscillation periods 

in the PN (red squares) and AbN (black circles) plotted continuously vs. time. The AbN 

late-E bursts were synchronized with the PN bursts with a ratio increasing quantally from 

1:5 to 1:1. The content of CO2 in the perfusate of this preparation was changed at times 

indicated by short arrows and vertical dashed lines. Large arrows indicate times 

corresponding to the episodes shown in A1-A4. 

 

C-2. Dependence of late-E abdominal bursting on RTN/pFRG  

Abdala et al., 2009 showed that pharmacological suppression of the RTN/pFRG region by 

local microinjection of isoguvacine, a GABAA receptor agonist, abolished reversibly the 

hypercapnia-evoked late-E bursting in the AbN. Figure III-2 shows a time series of the 

oscillation periods of PN and AbN constructed for a representative preparation from the 

original data set for three sequential activity epochs. During the first epoch, 10% CO2 was 

applied to the perfusate, which evoked a quantal distribution of late-E AbN discharge 

(Figure III-2A1, black circles). As shown in the second epoch (Figure III-2A2), bilateral 

microinjections of isoguvacine made in the RTN/pFRG caused transient apnea followed 

by recovery of PN discharge to the baseline frequency and subsequently blocked late-E 

AbN bursting during systemic application of 10% CO2 in the perfusate (no black circles). 

The third epoch (Figure III-2A3) shows recovery of hypercapnia-induced AbN discharge 

after isoguvacine washout. Based on these experimental data and in agreement with the 

previous suggestions of others (see [20], [42]) we hypothesized in our model that the source 

of hypercapnia-evoked late-E oscillations in AbN is located within RTN/pFRG and that 

AbN oscillation may be considered as an indicator of the corresponding RTN/pFRG 

oscillations.  
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Figure III-2. The effect of RTN/pFRG suppression on hypercapnia-evoked late-E activity 

in AbN. The vl RTN/pFRG region was inactivated by local bilateral microinjection of 

isoguvacine, a GABAA receptor agonist. (A1), (A2), and (A3) columns represent three 

epochs from the same experiment. In each column, the top diagram shows the raw 

recording and integrated activity of PN (bottom traces, red) and AbN (upper traces, black), 

and the bottom diagram shows the changes in the oscillation periods in the PN and AbN 

nerves with time. In column A1, hypercapnia (10% CO2) evoked quantally dispersed late-

E bursts in AbN (see nerve recordings at the top and black circles in the bottom diagram). 

Note that the time interval was not sufficient to allow development of 1:1 ratio of AbN:PN 

frequencies. In A2 column, injection of isoguacine fully blocked late-E AbN bursting that 

would be expected at 10% CO2 (no black circles). In column A3, hypercapnia (10% CO2) 

again evoked late-E discharges in AbN discharge after isoguvacine washout. 

 

C-3. Correlated CO2-evoked late-E neuron bursting in RTN/pFRG and AbN bursting 

Our previous extracellular recordings of single neuron activity in RTN/pFRG indicate that 

the ventrolateral (vl) part of RTN/pFRG contains a population of CO2-sensitive neurons 

that exhibit bursting synchronized with the AbN late-E activity during hypercapnia. 
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Moreover, at 7% CO2 such neuronal bursts are skipped whenever AbN late-E bursts are 

skipped, reflecting their relationships (Figure III-3A,B). Analysis of the bursting behavior 

of a set of neurons recorded previously shows that the CO2-evoked RTN/pFRG neuronal 

and AbN late-E bursting are highly correlated during hypercapnia. The average probability 

of simultaneous AbN and RTN/pFRG neuron activity from a group of these neurons (n = 

5) was 0.92, computed from an average recording epoch of 280 s duration (average number 

of 141 bursts analyzed per epoch). Accordingly, we have included in the model a CO2-

sensitive, rhythmically bursting population of neurons in the RTN/pFRG that is postulated 

to represent a source of late-E AbN bursting.  

 

 

Figure III-3. An example of extracellular recording of a single neuron within vl part of 

RTN/pFRG during hypercapnia (7% CO2) whose activity correlated with the AbN late-E 

bursts. (A) The two bottom traces show integrated activities of PN (red) and AbN (black); 
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the second trace shows raw activity of the RTN/pFRG neuron, and the top trace shows the 

corresponding spike-frequency histogram of this neuron activity (bin = 0.1 s). Note that 

the neuronal bursts were skipped whenever AbN bursts were skipped, reflecting their 

synchrony. (B) Interdependence between the RTN neuron discharges (shown in A) and 

AbN late-E bursts. Integrated activities of AbN and RTN neuron are calculated during a 

300s epoch with sampling frequency of 100Hz (30000 points in total) and plotted against 

each other (red crosses). Dashed lines representing thresholds split the space into four 

quadrants. The top right quadrant represents cases where both cell activity and AbN late-

E bursts were present (indicated by blue dashed ellipse); the bottom left quadrant represents 

cases where both cell and AbN late-E discharges were missing (indicated by another blue 

dashed ellipse) and only background activity is represented. 

 

C-4. Dependence of late-E AbN bursting on persistent sodium current (INaP) 

Recent modeling studies [41], [174] have suggested an intrinsic, cellular, INaP-dependent 

mechanism for RTN/pFRG bursting. This previous suggestion is consistent with recent 

observations in the embryonic parafacial neuronal population (e-pF) that the INaP blocker, 

riluzole abolishes rhythmic e-pF neuron activity [175], [176]. Our new experiments (n = 

5), illustrated in Figure III-4A3 and Figure III-4B (right part of the plot), show that riluzole 

(5 µM in the experiment shown) abolished the AbN late-E activity evoked by hypercapnia 

(10% CO2) in the juvenile rat in situ. It is important to note that the administration of 

riluzole in these experiments (5-10 µM) suppressed the AbN late-E activity but did not 

abolish rhythmic respiratory activity although the amplitudes of all motor discharges were 

reduced (Figure III-4A3) as noted previously [16]. This is fully consistent with our previous 

in vivo and in situ studies [16], [19] showing that respiratory rhythm generation in the intact 

brainstem under normal conditions is not critically dependent on INaP. 
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Figure III-4. Effects of hypercapnia and riluzole on the hypercapnia-induced AbN late-E 

activity. (A1-A3) Simultaneously recoded activity of (bottom-up) PN (red), AbN (black), 

cVN (green), and HN (blue). (B) Representation of the entire experimental epoch by 

plotting the oscillation periods in PN (red squares) and AbN (black circles) vs. time. A1-

A2 and the corresponding parts of the diagram in B (indicated by large arrows) show 

quantal acceleration of the AbN late-E activity with the development of hypercapnia from 

7% CO2 (see in left part of B and A1 showing a 1:2 ratio between AbN and PN frequencies) 

to 10% CO2 (see in B after first small arrow indicating changing CO2 to 10% and in A2 

where the ratio of frequencies is 1:1). The level of CO2 then was returned back to 5% (see 

second small arrow in B) and the frequency of AbN started quantally reducing. Then 

riluzole (5 μM), the persistent sodium current blocker, was added to the pefusate (indicated 

in B by blue arrow). The right arrow in B indicates the moment when CO2 was increased 

to 10% in the presence of riluzole. A3 and the right part of B show that riluzole abolished 

the hypercapnia-evoked AbN late-E activity while only reducing the amplitude (and 

frequency) of discharges in other nerves (seen in A4). 
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C-5. Late-E activity and temporal relationships between PN and HN discharges 

The onset of the PN inspiratory bursts under normal conditions is usually delayed (by ~100 

ms) relative to the HN bursts [16], [19], [177]–[179]. Interestingly, this delay has been 

shown to increase during hypercapnia [178]. In Figure III-5, we show temporal 

relationships between the onsets of HN and PN bursts during intermittent AbN bursting, 

extending our original analysis to illustrate in more detail the distributions of delays 

between HN and PN burst onsets for cases when ABN bursts are present and when they 

are missed from a representative preparation. The most striking result is that the presence 

of late-E bursts in the AbN coincides with an increase in the delay between the onsets of 

HN and the PN bursts (see Figure III-5A,B) to approximately 500 ms (Figure III-5B). This 

suggests that AbN late-E discharge is associated with an enhancement and early onset of 

HN bursts accompanied by a delay and shortening of PN bursts (see also [41]). In our 

modeling we incorporate RTN/pFRG interactions with the CPG circuitry that can 

reproduce these temporal features of the motor outputs. 
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Figure III-5. Effect of late-E activity on the temporal relationships between PN and HN 

bursts. (A) Integrated activities of phrenic (PN, lower trace, red), abdominal (AbN, middle 

trace, black), and hypoglossal (HN, upper trace, blue) nerves during hypercapnic (7% CO2) 

regime corresponding to a 1:3 ratio between AbN and PN frequencies. The delay between 

onsets of PN and HN bursts is substantially longer when late-E bursts are present in AbN 

than when they are missing (shown by dashed vertical lines). The earlier onset of HN 

discharges coincides with AbN late-E bursts and the delayed onset of PN bursts coincides 

with the termination AbN late-E discharges. (B) The delays between onsets of HN and PN 

bursts are indicated by small red pluses in the presence of AbN activity and by small blue 

crosses in the absence of AbN bursts. The corresponding histograms show the distributions 

of delays between HN and PN onsets for the two cases, when ABN bursts are present (red) 

and when they are missed (blue). 

 

C-6. Patterns of AbN discharge: late-E vs. biphasic-E  

 In contrast to late-E AbN bursting, biphasic-E activity, consisting of pre-I (late-E) and 

post-I bursts has been recorded from the abdominal motor output in decerebrate neonatal 
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rats [42], [43]. This activity pattern is similar to that of single neurons recorded from the 

RTN/pFRG region of the in vitro isolated brainstem-spinal cord preparation of neonatal 

rats that show a biphasic-E pattern consisting of a short pre-I discharge and a post-

inspiratory (rebound) component [37], [38], [171], [174], [180]. The issue of whether the 

biphasic-E pattern (in both RTN/pFRG and AbN) is a specific characteristic of neonates 

which transforms to late-E during development or is a characteristic of the specific 

metabolic conditions of the in vitro preparation (e.g., hypercapnic hypoxia or anoxia) 

remains unresolved [87], [174], [181], [182]. In the in situ preparations AbN biphasic-E 

activity was more readily evoked in neonates than in juvenile animals [87]. We have found 

that in more mature animals transient biphasic-E discharges can be evoked under specific 

conditions, including hypercapnic anoxia (7% CO2, 93% N2) or recovery from anoxia-

induced central apnea. In the analysis shown in Figure III-6, we illustrate the consistent 

finding that transformation of the AbN late-E bursting to a biphasic-E bursting pattern 

during hypercapnic anoxia is accompanied by a corresponding reduction/suppression of 

post-I activity recorded in the cVN. Thus lack of post-I activity appears essential for the 

expression of the post-I component of the biphasic-E AbN discharge pattern. 
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Figure III-6. Transformation of the pattern of AbN activity from late-E (pre-I) bursting to 

biphasic-E discharge during hypercapnic anoxia (7% CO2, 93% N2). The top tree traces 

show integrated activity of cVN, AbN and PN. The bottom trace represents the index of 

post-I activity calculated as an averaged activity in cVN during the expiratory phase in 

each cycle (shown as the gray area in the cVN trace); the expiratory phase was defined by 

the PN trace (vertical dashed line indicates the onset of expiration). In the first half of the 

recorded episode, only late-E bursts were present in AbN. The post-I component of cVN 

was progressively reducing. The transition of AbN bursts to a biphasic-E discharge pattern 

(with pre-I and post-I components) occurred after a significant suppression of the cVN 

post-I activity (indicated by vertical and horizontal dash-dotted lines). 

 

C-7. Construction of the extended model and validation  

The experimental findings described above provide the necessary prerequisites for 

extending our large-scale computational model of the brain stem respiratory network [16]. 

This model describes interactions between the respiratory neuron populations spatially 

organized within brain stem compartments (Figure III-7A). The brain stem populations 

include (right-to-left): bulbospinal premotor expiratory (bulbospinal E or bs-E) population 

of the caudal ventral respiratory group (cVRG); ramp-inspiratory (ramp-I) population of 

premotor bulbospinal inspiratory neurons and inhibitory early-inspiratory (early-I(2)) 

population located in the rostral ventral respiratory group (rVRG); pre-
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inspiratory/inspiratory (pre-I/I) and inhibitory early-inspiratory (early-I(1)) populations of 

the pre-BötC; inhibitory augmenting-expiratory (aug-E) and post-inspiratory (post-I) 

populations and excitatory pre-motor post-I(e) populations in the BötC; late-E population 

representing pFRG and located in RTN/pFRG. The latter population along with the bs-E 

population represents an extension (and the only difference) in the current model structure 

(Figure III-7A) relative to the model described in [16]. The BötC and pre-BötC populations 

represent together the core circuitry of the respiratory CPG. In addition, multiple drives 

from other brain stem components, including the pons, RTN/pFRG and raphé nuclei, 

provide inputs that regulate the dynamic behavior of this core circuitry, as well as activity 

of premotor neuron populations in the rVRG and cVRG and motor outputs. 
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Figure III-7. The extended model of the brain stem respiratory network. (A) Schematic of 

the extended model showing interactions between different populations of respiratory 

neurons within major brain stem compartments involved in the control of breathing (pons, 

RTN/pFRG, BötC, pre-BötC, rVRG, and cVRG). Each population (shown as a sphere) 

consists of 50 neurons described in the Hodgkin-Huxley style. In comparison with the 

previous model (Smith et al. 2007), this model additionally incorporates the population of 

bulbospinal premotor expiratory (E) neurons in cVRG, representing the source of AbN 

activity, and the late-E population in the RTN/pFRG compartment (see text for details), 

serving as a source of RTN/pFRG oscillations. The model includes three sources of tonic 

drives: pons, RTN, and raphé (not all connections from these drive sources are shown). 

Justification for all interconnections used in the basic models can be found (with the 

corresponding references) in our previous papers [16], [19], [35]. Justification of 

interconnections involving the late-E population is in the text. The late-E population 

receives an additional external drive simulating the effect of hypercapnia; the pontine drive 
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is considered to be hypoxia/anoxia dependent and was reduced in simulation of hypoxic 

conditions. (B) Model performance under normal conditions. The activity of major neural 

populations in the model are represented by average histograms of activity of all neurons 

in each population; bin=30 ms). The late-E population and the AbN output under normal 

conditions are silent. (C) Traces of membrane potentials of single neurons (randomly 

selected from each population). (D) The dynamics of the model’s motor outputs: HN (blue 

trace); cVN (green trace) and PN (red trace). 

 

The bulbospinal-E population of cVRG was included in the model to generate the 

expiratory motor output. The neurons of this population were identical to these in the ramp-

I population and contained only a minimal set of ionic currents necessary for spiking 

activity. The late-E population of RTN/pFRG was identical to the pre-I/I-population and 

consisted of neurons containing INaP and having mutual excitatory interactions within the 

population. This was based on the hypothesis that AbN late-E bursting activity originates 

in the RTN/pFRG and that its generation is critically dependent on INaP, as suggested by 

our experimental observations. 

Previous theoretical studies have demonstrated that such a population with an INaP-

dependent busting mechanism can operate in the population-bursting mode (at lower 

excitability or drive) and in the regime of asynchronous sustained activity (when the 

excitability exceeds a certain threshold) [125], [136], [156]. Importantly, although the pre-

I/I and late-E populations were identical in the model, their behavior was different because 

of the different excitability of these populations. Specifically, under normal conditions, the 

pre-I/I population received a strong total excitatory drive that kept this population in the 

state of sustained activity independent of INaP until phasic external inhibition terminated its 

activity (see [16], [19], [136], [156]). In contrast, a relatively weak “hypercapnic” drive 

could evoke INaP-dependent bursting in the late-E population.  
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The following connections between the late-E population and other neural 

populations were incorporated in the model (Figure III-7A):  

(1) Excitatory connection from the late-E to the excitatory pre-I/I population of pre-

BötC, allowing entrainment of the pre-BötC oscillations by the late-E oscillations;  

(2) Inhibitory connection from the inhibitory inspiratory population (early-I(1) of 

pre-BötC) to the late-E to provide inhibition of late-E neurons during inspiration (Fig 7A). 

These two connections have been suggested in many previous experimental and modeling 

studies [20], [37]–[39], [42], [43], [87], [171], [174], [180], [181], [183];  

(3) Excitatory connection from the late-E to the AbN motor output (see Figure 

III-7A), which was based on the previous suggestions [20], [42], [43] and our results with 

local inhibition suggesting that late-E AbN activity originates in the RTN/pFRG;  

(4) Excitatory connections from the late-E to the inhibitory populations aug-E (of 

BötC) and early-I(2) (of rVRG), which both inhibit the premotor ramp-I population (see 

Figure III-7A). These connections were hypothesized to produce an additional delay in the 

onset of PN discharge by the preceding late-E burst shown in our analysis (Figure III-5);  

(5) Inhibitory connection from the post-I population of BötC to the late-E 

population. This connection was necessary to reproduce the experimental observations 

described in Chapter III: C-1.  The existence of this connection represents one of the key 

hypotheses of this study.  

The performance of the model under simulated normal metabolic conditions (i.e. 

when the late-E population in the RTN/pFRG is not active) is shown in Figure III-7B-D. 

Panel B shows the integrated activities of key respiratory populations, panel C exhibits the 

traces of membrane potential of the corresponding single respiratory neurons (randomly 
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selected from each population), and panel D shows the dynamics of motor outputs (PN, 

cVN, and HN). The model generates the three-phase eupneic-like respiratory pattern 

similar to that observed in the in situ preparations under normal conditions. In this state the 

respiratory oscillations emerge from the core circuitry due to dynamic interactions between 

(i) the excitatory neural population in pre-BötC active during inspiration (pre-I/I), (ii) the 

inhibitory population in pre-BötC that provides inspiratory inhibition within the network 

(early-I(1) of pre-BötC); and (iii) inhibitory populations in the BötC generating expiratory 

inhibition (post-I and aug-E).  

The performance of the model under specific metabolic conditions when the late-E 

population is active is described below. Our simulations focused on the three following 

behaviors: (a) emergence and quantal acceleration of abdominal late-E activity during 

hypercapnia; (b) transformation of the late-E bursts to a biphasic-E activity during 

hypercapnic hypoxia or anoxia, and (c) quantal slowing of BötC/pre-BötC and PN 

oscillations with the progressive suppression of the BötC excitability.  

 

C-8. Emergence and quantal acceleration of late-E abdominal activity during 

hypercapnia  

In our model, the late-E population in RTN/pFRG is considered a population of central 

chemoreceptors, whose excitability is most sensitive to hypercapnia (an increase in the 

level of CO2 in the brain stem). The behavior of the model during hypercapnia is shown in 

Figure III-8. The progressive hypercapnia was simulated as a linear increase of a 

“hypercapnic” excitatory drive to the late-E population (see Figure III-7A and Figures 

III-8A1-A3,B). The behavior of late-E neurons depends on: (a) their intrinsic properties, 
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namely on the voltage-dependent dynamics of INaP activation and slow inactivation, (b) the 

phasic inhibition that these neurons receive from the post-I population of BötC during 

expiration and from the early-I(1) population of pre-BötC during inspiration, and (c) the 

hypercapnic excitatory drive. As a result, the late-E population begins generating bursts 

when hypercapnic drive exceeds some threshold (see Figure III-8B), which is mostly 

defined by the post-I inhibition. This post-I inhibition (being reduced during expiration) 

allows the late-E bursts to appear only close to end of expiration. The post-I inhibition of 

late-E together with late-E excitation of pre-BötC pre-I/I neurons provide coupling of 

RTN/pFRG (late-E) and BötC/pre-BötC oscillations. 
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Figure III-8. Modeling the effects of progressive hypercapnia and INaP blockade. (A1-A3) 

The activity of motor outputs in the model during simulated hypercapnia. The late-E bursts 

in the AbN were always phase-locked with PN bursts and the ratio between AbN and PN 

frequencies quantally increased through 1:3 (A1) to 1:2 (A2) and to 1:1 (A3) as 

“hypercapnic” drive to the late-E population of pFRG/RTN gradually increased to simulate 

progressive hypercapnia. (B) The dependence of oscillation periods in AbN (black circles) 

and PN (red squares) on the hypercapnic drive (horizontal axis). This simulation shows a 

quantal acceleration of AbN activity during a gradual increase in the simulated hypercapnic 

drive. The ratio between AbN and PN frequencies sequentially jumped from 1:4 to 1:3 (as 

in A1), then to 1:2 (as in A2), and finally to 1:1 (as in A3). See Fig. 1 for comparison. With 
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quantal acceleration of AbN activity (after it emerges at 0.31 and before it reaches 1:1 ratio 

at 0.35) PN periods alternate between two red branches depending on the presence or 

absence of an AbN burst during corresponding breathing cycle. (C) Membrane potential 

traces of single neurons from the pre-I/I population of pre-BötC (bottom trace) and the late-

E population of RTN/pFRG (upper trace) corresponding to the regime of 1:2 coupling 

between AbN and PN bursts (A2). (D) Simulation of the effect of INaP blockade. Model 

output motor activities shown correspond to the regime of 1:1 coupling shown in A3. The 

blockade of INaP was simulated by setting its maximal conductance to zero in all neurons 

of the model. This led to a full suppression of AbN activity and a reduction in amplitude 

and frequency of other simulated motor outputs (compare with Figure III-4A3). 

 

Similar to the experimental results with progressive hypercapnia (Figure III-1 and 

Figure III-4, and also [173], the progressive increase of hypercapnic drive in the model 

evokes quantal acceleration, i.e. step-wise increase in AbN burst frequency with a ratio to 

PN burst frequency sequentially jumping from 1:4 to 1:3, then to 1:2 and, finally, to 1:1 

(see Figure III-8A1-A3, B and compare with Figure III-1A2-A4,B). Figure III-8C shows 

the activity of a single pre-I/I neuron of pre-BötC and a single late-E neuron of RTN/pFRG 

when the ratio of late-E:pre-I/I discharge frequencies is equal to 1:2. A more detailed 

analysis of quantal acceleration behavior using dynamical systems theory methods applied 

to a simplified mathematical model can be found in the following chapter. 

Figure III-8D shows the result of modeling of the effect of riluzole, the INaP blocker, 

on the system behavior during hypercapnia. The effect of riluzole was simulated by 

reducing the INaP maximal conductance to zero in all neurons of the network (late-E and 

pre-I/I). Similar to our experimental finding (Figure III-5), the suppression of INaP during 

hypercapnia (1:1 coupling regime) fully silenced the late-E AbN (and RTN/pFRG late-E 

neuron) activity but did not abolish BötC/pre-BötC and PN oscillations. This reflects the 

differences in tonic drive and hence level of excitation of the late-E vs. the pre-I/I neuron 

populations as described earlier.  
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Our simulations also show that the late-E bursts when present delay the onset of PN 

activity and increase the delay between the onsets of HN and PN bursts (Figure III-9). This 

delay in the model results from (a) an advance activation of pre-I/I population (projecting 

to the HN output) by the late-E burst and (b) an additional inhibition of the ramp-I 

population (projecting to the PN output) by the early-I(2) and aug-E populations excited 

by the late-E (see Figure III-7). These simulation results are fully consistent with the 

experimental data described above (Figure III-5) and previously by [87]. 

 

 

Figure III-9. The effect of late-E activity on the delay between onsets of HN and PN bursts 

in the model. Three motor outputs of the model are shown (HN, blue; AbN, black, and PN, 

red) during the hypercapnic regime corresponding to 1:2 ratio between AbN and PN 

frequencies. The late-E bursts when present increased the delay between onsets of the 

corresponding HN and PN bursts (indicated by gray bars). 

 

C-9. Transformation of the late-E to a biphasic-E activity  

As shown in Figure III-6, transformation of AbN late-E bursts to a biphasic-E activity is 

accompanied by a reduction of the post-I activity. Such a reduction of the post-I activity 

has been also observed during strong hypoxia or anoxia. As shown previously, the 

expression of post-I activity strongly depends on pontine input [18], [184]. Based on these 

observations, we suggest that metabolic conditions similar to hypercapnic anoxia can be 
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simulated with our model by applying the “hypercapnic” drive to the late-E population and 

progressive reduction of the pontine drive to the network (see Figure III-7A). 

 The results of these simulations are shown in Figure III-10A. In the simulation 

shown, the value of drive to the late-E population was initially set to produce 1:1 coupling 

between late-E and PN activities. Then the pontine drive was progressively reduced from 

the initial value to zero (bottom trace in Figure III-10A). As seen in Figure III-10A, 

reducing the pontine drive produced significant changes in network dynamics. Specifically 

the post-I component in the cVN output was progressively reduced and the pattern of AbN 

activity changed from the late-E to a biphasic-E pattern, consisting of a short late-E (pre-

I) burst and a stronger post-inhibitory rebound. The results of this simulation qualitatively 

reproduce the experimental results shown in Figure III-6. Interestingly, the transformation 

from the late-E to a biphasic-E pattern in our simulation went through an intermediate stage 

in which the PN (and late-E population) activity exhibited only post-I activity without the 

late-E (pre-I) burst. Figure III-10B-D shows the activity of a single pre-I/I neuron of pre-

BötC and a single late-E neuron of RTN/pFRG for all three regimes described. A more 

detailed analysis of the above late-E pattern transformation can be in Chapter IV.  
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Figure III-10. Transformation of the late-E to a biphasic-E activity with the development 

of simulated hypoxia. (A) In this simulation, the value of drive to the late-E population was 

set to 0.36 to produce 1:1 coupling between the late-E and PN activities (see Figure 

III-8A3). A gradual reduction of pontine drive (bottom trace) was used to produce a 

progressive reduction of post-I activity during development of hypoxia/anoxia (see cVN 

trace). During this reduction of pontine drive, the AbN pattern sequentially transformed 

from late-E (pre-I) bursting (see 0-40 s), to a rebound post-I type bursting pattern (40-70 

s), and then to a biphasic-E pattern (with pre-I and post-I components (70-100 s). (B-D) 

Membrane potential traces of single neurons from the pre-I/I population of pre-BötC 

(bottom traces) and the late-E population of RTN/pFRG (upper traces) corresponding to 

the AbN late-E (pre-I) pattern (B), post-I pattern (C) and the biphasic-E pattern (D), indicated 

by arrows. 
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C-10. Quantal slowing of the BötC/pre-BötC and PN activities  

The quantal slowing of the pre-BötC and/or PN oscillations has been previously 

demonstrated with administration of opioid agonists in the in vitro isolated brainstem-

spinal cord preparation and in vivo [42], [43], [172]. Previous attempts to simulate this 

effect were made by several groups [87], [174], [183]. 

This quantal slowing consists of a step-wise reduction in the frequency of pre-BötC 

(and/or PN) oscillations resulting from deletion (missing) of a single or a series of 

inspiratory bursts in the output activity recorded. Although the exact pharmacological 

effect of opioids is unknown, the general assumption has been that opioids reduce the 

excitability of pre-BötC neurons either directly or indirectly (via the suppression of 

excitatory synaptic transmission within the pre-BötC). 

To simulate quantal slowing with our model, we first set the hypercapnic drive to 

the late-E population to produce 1:1 coupling between AbN late-E and PN bursts and then 

reduced the pontine drive to zero. As a result, both the late-E population and the AbN output 

in the model exhibited the biphasic-E activity profile with 1:1 coupling to the inspiratory 

bursts in the pre-BötC and PN (see Figure III-11A,B, left parts in both panels).  

To produce quantal slowing, the excitatory synaptic conductances within the pre-

BötC (in both pre-I and early-I(1) populations) were scaled by a linearly decreasing control 

function (see Figure III-11A, bottom trace). With the gradual decrease of these 

conductances, the simulated period of BötC/pre-BötC (and PN) oscillations increased in a 

step-wise manner (see Figure III-11B) until these oscillations completely stopped. The 

frequency of PN (and BötC) oscillations correspondingly decreased, so that the ratio 
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between late-E and PN oscillation frequencies sequentially jumped from 1:1 to 2:1, and 

then to 4:1, until the full termination of PN bursting.  

It is important to note that rhythmic activity in the late-E population of RTN/pFRG 

and in AbN persisted, but the profile of their bursts changed from biphasic-E to a 

monophasic burst whenever the PN burst was missing (Figure III-11A). This is also seen 

in the activities of single pre-I/I and late-E neurons shown in Figure III-11C. These 

modeling results are consistent with the previously published experimental data [42], [43], 

[172]. 

A more detailed analysis of quantal slowing behavior by dynamical systems theory 

methods applied to a simplified mathematical model can be found in Chapter IV. 
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Figure III-11. Simulation of quantal slowing of PN activity. (A) To simulate quantal 

slowing of PN activity we first set the value of drive to late-E to 0.36 and the value of 

pontine drive to zero. This regime corresponded to the end of the simulation shown in Fig. 

10 with a biphasic-E pattern of AbN activity. Then the excitability of the pre-BötC neurons 

(in both the pre-I/I and early-I(1) populations) was linearly decreased by a proportional 

reduction of all weights of excitatory synapses to pre-I/I and early-I(1) neurons (“pre-BötC 

suppression”, see lower trace., starting with 78% of the basic value and reducing this to 

zero). During progressive reduction of pre-BötC neuronal excitability, the frequency of PN 

(and HN and cVN) bursts was quantally reduced with the ratio to AbN frequency jumping 

from 1:1 to 1:2 and so on (see red steps in B), until the activity of all nerves except AbN 

was abolished. (B) This diagram demonstrates a step-wise dependence of AbN (black 

circles) and PN (red squares) periods on the pre-BötC’s synaptic depression. After the first 
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step in PN period (around 75% of normal synaptic weights), two different periods of AbN 

activity were observed. The longer periods correspond to AbN cycles accompanied by PN 

bursts and the shorter periods correspond to AbN oscillations with PN silent. (C) 

Membrane potential traces of single neurons from the pre-I/I population of pre-BötC 

(bottom traces) and the late-E population of RTN/pFRG (upper traces), corresponding to 

the regime 4:1. Note that the profile of AbN bursts in A and late-E bursts in C changed 

from the biphasic-E activity to a monophasic burst whenever the PN bursts were missing. 

 

C-11. Suppression of RTN/pFRG oscillations by inhibition and release by 

disinhibition 

As noted above, our model suggests that during normal conditions the BötC/pre-BötC 

kernel inhibits RTN/pFRG oscillations. Therefore, we predict that blocking of inhibitory 

transmission within RTN/pFRG should evoke (release) oscillations in the RTN/pFRG and 

AbN at normal metabolic conditions. To investgate this possibility with the model, we kept 

a small (subthreshold) drive to the late-E population and set to zero the weights of 

inhibitory connections from BötC/pre-BötC (from both eatly-I(1) and post-I populations) 

to late-E population in RTN/pFRG. The result of this simulation is shown in Figure 

III-12A: the suppression of inhibition to the late-E population evoked bursing activity in 

both the RTN/pRFG late-E population (not shown) and in AbN. As soon as the inhibition 

was restored the AbN activity disappeared (Figure III-12A).  

To verify this prediction experimentally, a small experimental series (on 2 juvenile 

rat in situ perfused preparations) was performed experimentally. In these experiments, 

GABAergic synaptic transmission was blocked/attenuated bilaterally within the vl 

RTN/pFRG by microinjection of the GABA antagonist bicuculline (10 μM) under normal 

metabolic conditions (5% CO2). In both experiments, microinjection of bicuculline evoked 

a low-amplitude late-E activity, which then disappeared with washout. The results of one 
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experiment are shown in Figure III-12B,C, which are qualitatively similar to our simulation 

(Figure III-12A). These results are consistent with the previously published data showing 

that RTN/pFRG oscillations can be produced by RTN/pFRG disinhibition [185]. 

 

 

Figure III-12. Release of the AbN late-E busting under normal conditions by suppressing 

inhibition in RTN/pFRG. (A) Simulation results. The traces of motor outputs PN, AbN and 

HN generated by the model are shown. Drive to late-E was set to 0.3, below the threshold 

for late-E population activation (see Figure III-8B). To simulate the blockade of inhibition 

within RTN/pFRG, the weights of inhibitory synapses in late-E neurons were set to zero 

during the time interval between 10 and 17.5 s (indicated by gray area). Removing 

inhibition evoked late-E oscillations in both the late-E population in the RTN/pFRG (not 

shown) and in the model’s AbN output. The bursts generated were phase-locked to PN 

oscillations. After inhibition returned to the previous level (at 17.5 s) AbN activity 

disappears. (B), (C) Experimental testing of the above modeling prediction. The 

experiment shown was performed at normal metabolic conditions with 5% CO2 in the 

perfusate. Under control conditions there was no late-E bursting activity in AbN (see AbN 
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activity in B, left column, and a lack of black circles in C under “control”). Bicuculline (10 

μM), a blocker of GABAA inhibition, was bilaterally microinjected in vl RTN/pFRG at the 

moment shown in B by the vertical dashed line. As seen in B (middle column) and C (black 

circles), the application of bicuculline evoked rhythmic late-E activity in AbN phase-

locked with PN bursts. The AbN activity evoked by disinhibition then disappeared with 

the drug washout (see right column in B and lack of black circles in C, right part). 

 

D. Discussion 

This study was based on and actually promotes the concept that the kernel of the respiratory 

CPG resides in the pre-BötC and BötC compartments within the medullary ventral 

respiratory column and that the respiratory rhythm is generated due to dynamic interactions 

between neural populations within and between these compartments [3], [5], [6], [16], [19], 

[31]–[36], [41], [87], [127], [186].  

The other source of respiratory-related oscillations, originally found in the 

brainstem-spinal cord preparation of the neonatal rat [37], [38], was suggested to reside in 

the RTN/pFRG region and perform the function of an independent generator of pre-

inspiratory/expiratory activity [20], [42], [43]. In the present study, we performed new 

analyses of experimental data and computational modeling to consider the possible 

conditions and mechanisms for the emergence of pFRG/RTN and abdominal late-

expiratory oscillations, as well as the possible interactions between the pFRG/RTN 

oscillations and the respiratory CPG. 

 

D-1. Source of late-E oscillations, conditions for their emergence, and the role of INaP  

Experimental data analyzed herein have shown that the high amplitude late-E activity is 

not usually expressed in the AbN at the normal metabolic conditions but could be evoked 

by hypercapnia and other metabolic perturbations. We show that the hypercapnia-evoked 
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late-E bursts in AbN is abolished by pharmacological suppression of the vl RTN/pFRG 

region (Figure III-2 and [41]) and we could find single neurons within the RTN/pFRG 

whose hypercapnia-evoked rhythmic activity was strongly correlated with the AbN late-E 

activity (Figure III-3 and [41]). These findings provide support although indirect for the 

previous suggestions that the generator of late-E oscillations resides in the RTN/pFRG 

region and is the source of the AbN late-E activity [20], [42], [43]. 

At the same time, our results (have clearly demonstrated that late-E oscillations in 

the AbN (and probably in the RTN/pFRG) are not generated under normal metabolic 

conditions but emerge during metabolic challenges, such as hypercapnia or hypercapnic 

hypoxia/anoxia, at least in the mature animals. Therefore, in our opinion, the RTN/pFRG 

oscillator should not be considered as a fundamental component of the respiratory CPG 

operating during normocapnia, at least in the mature respiratory system. Our data, however, 

do not allow inferences about a different, e.g. a more dominant or leading, role of the 

RTN/pFRG oscillations at the embryonic stage or in neonatal animals, which has been 

widely discussed in the literature [20], [42], [171], [174]–[176]. 

We also showed that the hypercapnia-evoked late-E activity monitored via the AbN 

was abolished in the mature rat in situ by systemically applied riluzole, an INaP blocker. 

The critical role of INaP in the generation of rhythmic activity in the embryonic parafacial 

population (e-pF) has been previously demonstrated by administration of riluzole, which 

abolished the e-pF rhythmic activity [175], [176]. Our finding is consistent with this data 

and represents indirect evidence that the generation of rhythmic activity in the RTN/pFRG 

of the mature animal may also critically depend on INaP. 
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D-2. Interactions between the RTN/pFRG oscillator and the respiratory CPG 

Before discussing the possible connections between the RTN/pFRG oscillator and the core 

CPG circuitry, we would like to emphasize the important difference between our concept 

and model and the dual oscillator concept [42], [172]. The latter considers the normal 

neural machinery for respiratory rhythm and inspiratory pattern generation to reside within 

the pre-BötC inspiratory generator whose rhythmic activity is fully defined by the intrinsic 

(or group-pacemaker) properties and excitatory interconnections within this region. In our 

opinion, this concept undervalues the role of other brain stem compartments, such as the 

BötC and pons, and interactions between them (including inhibitory interactions) in the 

generation of respiratory rhythm and pattern. In contrast, in our concept and the model, the 

respiratory rhythm is generated because of the dynamic interactions within and between 

the pre-BötC and BötC, representing the core of the CPG, under control of other brain stem 

compartments including the pons, RTN, and raphé [16], [19], [36], [87]. Therefore, 

concerning interactions between the RTN/pFRG oscillator and the respiratory CPG, these 

interactions in our opinion also involve interactions with other critical components of the 

CPG, including the BötC and rVRG. 

A schematic of interactions between the RTN/pFRG oscillator and the respiratory 

CPG (with BötC/pre-BötC kernel) predicted by our model is shown in Figure III-13. These 

important interactions include (a) excitation of the BötC/pre-BötC oscillator (specifically 

the excitatory pre-I inspiratory neurons of the pre-BötC, see Figure III-7A) by the 

RTN/pFRG oscillations and (b) inhibition of the RTN/pFRG oscillations by the BötC/pre-

BötC oscillator during inspiration (by early-I(1) population of the pre-BötC, see Figure 

III-7A). These two interactions have been suggested and justified in many previous 
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experimental and modeling studies [20], [37]–[39], [42], [43], [87], [171], [174], [180], 

[181], [183].  

 

 

Figure III-13. Proposed interactions between BötC/pre-BötC and pFRG/RTN oscillators in 

the adult mammals in vivo. Red arrows represent excitatory influence; blue lines terminated 

with circles indicate inhibitory influence; violet arrows indicate metabolic dependence. 

Under normal metabolic conditions, the RTN/pFRG oscillator is inhibited by the BötC/pre-

BötC oscillator (the core of the respiratory CPG) during both inspiration (by the inhibitory 

early-I neurons of pre-BötC) and expiration (by the post-I neurons of BötC) and remains 

silent. The normal expression of post-I inhibition requires excitatory drive from the pons 

(not shown). The RTN/pFRG oscillator can be activated either by hypercapnia, which 

directly excites RTN/pFRG neurons, or by hypoxia/anoxia (or pontine suppression), which 

reduces RTN/pFRG inhibition by the BötC/pre-BötC oscillator, or by both the above. 

When activated, the BötC/pre-BötC oscillator provides both excitation of the BötC/pre-

BötC oscillator and inhibition of rVRG premotor neurons, hence increasing the delay 

between hypoglossal and phrenic discharges. 

 

In addition to the above interactions, we hypothesize an inhibitory connection 

(direct or indirect) from the RTN/pFRG to the premotor inspiratory neurons of rVRG 

(Figure III-13) (e.g. via the aug-E and/or early-I(2) population, see Figure III-7A). This 

hypothesized connection provides a reasonable explanation for the additional delay 

between the hypoglossal (HN) and phrenic (PN) motor outputs associated with the late-E 
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bursts in the abdominal motor output (Figure III-5 and Figure III-9), as well as for an 

increase of this delay generally observed during hypercapnia [178]. 

The other connection hypothesized in our study is the inhibitory connection from 

the BötC/pre-BötC kernel (specifically from post-I neurons of the BötC, see Figure III-7A) 

to the RTN/pFRG oscillator (Figure III-13). This connection provides a decreasing 

inhibition of RTN/pFRG during expiration. Based on our modeling studies, we 

hypothecize that this connection performs three important functions. First, it significantly 

contributes to the coupling between RTN/pFRG late-E and pre-BötC bursts by not allowing 

late-E RTN/pFRG bursting to occur before the end of expiration. Second, this expiratory 

inhibition together with the inspiratory inhibition (see above) may keep RTN/pFRG 

oscillations inhibited during normal conditions. Third, this inhibition may suppess the 

second rebound burst of AbN (and, probably, RTN/pFRG). 

Based on the suggested schematic of interactions between the RTN/pFRG and 

BötC/pre-BötC kernel (Figure III-7A and Figure III-13) we conclude that RTN/pFRG 

activity is strongly controlled by BötC/pre-BötC inhibition during both inspiration and 

expiration which fits to the general schematic of interactions between RTN and the CPG 

proposed by the Guyenet group [96], [187]–[189]. Moreover, based on our simulation, we 

suggest that the activity of RTN/pFRG is actually more strongly controlled by the 

BötC/pre-BötC activity than the activity of BötC/pre-BötC is controlled by RTN/pFRG 

oscillations. This control of RTN/pFRG activity by the BötC/pre-BötC circuits includes 

control of the emergence of RTN/pFRG oscillations, their frequency and coupling to 

BötC/pre-BötC oscillations, which is clearly demonstrated by the regime of quanal 
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acceleration of late-E activity with the development of hypercapnia (Figure III-1, Figure 

III-4, and Figure III-8).  

As stated above, our model suggests that during normal conditions the BötC/pre-

BötC kernel inhibits RTN/pFRG oscillations, and our simulation results demonstrated that 

blocking of fast inhibitory synaptic transmission within RTN/pFRG in the model should 

evoke (release) oscillations in the RTN/pFRG and AbN at normal metabolic conditions. 

We then verified this prediction experimentally, although in our experiments, we cannot 

fully exclude a possibility that this inhibition of RTN/pFRG is produced by sources other 

than the BötC post-I population. This issue requires further experimental investigations. 

 

D-3. Effects of hypercapnia and hypoxia on RTN/pFRG activity 

Our studies (previous and herein) show that the late-E activity in AbN (and probably in 

RTN/pFRG) is usually not generated under normal metabolic conditions. At the same time, 

the excitability of the late-E population in RTN/pFRG is highly sensitive to hypercapnia. 

Therefore, the progressive hypercapnia producing depolarization of late-E neurons can 

overcome the inhibition by BötC/pre-BötC and initiate late-E rhythmic activity that goes 

through several stages described herein as quantal acceleration until the late-E activity 

reaches 1:1 coupling with the BötC/pre-BötC oscillations (see Figure III-1 and Figure 

III-8). In contrast, strong hypoxia or anoxia can affect the RTN/pFRG oscillations through 

reduction of inhibition, specifically post-I inhibition (see Figure III-13) and produce an 

effect similar to hypercapnia by shifting a balance between inhibition and excitation at the 

RTN/pFRG late-E neurons.  
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In summary, we suggest that the emergence of RTN/pFRG and abdominal (late-E) 

oscillations is defined by two major factors (Figure III-13): (a) general RTN/pFRG 

excitability, which rises with CO2 level (hypercapnia), and (b) post-I inhibition from the 

BötC/pre-BötC oscillator, which depends on the level of O2 (hypoxia). The same factors 

define the pattern of RTN/pFRG and abdominal discharges. With the progressive 

development of hypoxia under the hypercapnic conditions the patterns transforms from a 

late-E (pre-I) to a post-I rebound and then to biphasic pre/post-I burst profile. 

 

D-4. The extended model and its validation 

In this study, we used and extended our previous computational model [16], [19]. This 

model was able to reproduce the three-phase eupneic respiratory pattern generated under 

normal conditions as well as the reorganization of this pattern caused by multiple 

experimental perturbations, such as various brainstem transections and application of 

specific blockers of ionic channels and inhibitory synaptic transmission. It is interesting to 

note that since the first publications of the basic version of our model [16], [19], [35], 

several modeling predictions have been (directly or indirectly) confirmed by experimental 

studies. For example, our model suggested that the pre-BötC compartment should contain 

a population of inhibitory neurons (early-I(1) in Figure III-7A) that provides inspiratory 

inhibition in the network. In agreement with this suggestion, Winter et al., 2009 have 

recently found a population of glycinergic inspiratory neurons within the pre-BötC that can 

“make important contribution to generation and maintenance of the respiratory rhythm”. 

The critical role of inhibitory neurons in the BötC for rhythm generation suggested by our 

model have been indirectly confirmed by Abbott et al., 2009, who found that 
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microinjections of galanin into the BötC causes severe dysrhythmia or persistent apnea 

[191]. Also, Bongianni et al., 2010 have demonstrated that blockade of GABAA receptors 

in the BötC (of rabbit) by bicuculline or gabazine induces strong depression of respiratory 

activity up to apnea [192]. These new results provide additional indirect support for the 

importance of the mutual inhibitory interactions between the BötC and pre-BötC for 

respiratory rhythm generation as proposed by our model. 

Morgado-Valle et al., 2010 has recently found in vitro a sub-population of 

glycinergic inhibitory neurons with pacemaker-like properties within the pre-BötC [193]. 

These authors suggest that this finding challenges our network models, which in their 

opinion critically depend on excitatory pacemaker neurons within the pre-BötC. In this 

connection, we emphasize that: (1) our previous models [16], [18], [19], [35] and the model 

described herein always included an inhibitory population of pre-BötC neurons (see early-

I(1) in Figure III-7); and (2) the generation of respiratory rhythm in these models under 

normal conditions is not critically dependent on excitatory pacemaker neuron activity, 

which was demonstrated with full suppression of INaP that does not disrupt rhythm 

generation experimentally and in these models (see [16], [19], [186], and Figure III-8D 

herein). We suggest that the inhibitory neuron pacemaker properties described by [193] 

cannot represent a basis for population bursting, because such neurons cannot excite each 

other to generate coherent inspiratory bursting. Moreover, in contrast to other suggestions 

based on reduced in vitro preparations (e.g. see [194]), we propose that the role of intrinsic 

pacemaker or group-pacemaker mechanisms is significantly reduced in the more intact 

network under in situ/in vivo conditions, at least in mature animals, and that network 
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interactions as depicted in Figure III-7 play a dominant role in rhythmogenesis per se as 

well as in the control of phase durations and respiratory pattern expressed by the network. 

Our current study focused on the interactions between the BötC/pre-BötC kernel of 

the CPG and the RTN/pFRG oscillations that emerge under specific metabolic conditions. 

In order to study these interactions we extended the previous model by incorporating the 

late-E population with INaP-dependent bursting properties in the RTN/pFRG compartment 

and proposed specific connections between the BötC/pre-BötC kernel and this late-E 

population generating RTN/pFRG oscillations. These hypothesized connections allow the 

model to reproduce and explain several key behaviors including the emergence and quantal 

acceleration of abdominal late-E activity during hypercapnia, transformation of the late-E 

bursts to a biphasic-E activity during hypercapnic hypoxia or anoxia, and quantal slowing 

of BötC/pre-BötC and PN oscillations with the progressive suppression of pre-BötC 

excitability. A more detailed analysis of these behaviors by dynamical systems theory 

methods applied to a simplified mathematical model can be found in Chapter IV showing 

that the same behaviors can be reproduced, suggesting that the models are robust. The 

ability of the extended model to reproduce these behaviors provides additional validation 

for the model per se and for the hypothesized interactions between the RTN/pFRG and the 

respiratory CPG. Several important predictions have been made that require further 

experimental testing. Our model provides a framework and tool for further experimental-

theoretical studies. 
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E. Summary of predictions 

Subcellular level predictions: A dependency on INaP, for intrinsic rhythmicity was predicted 

by our model. This model utilized the INaP current in both the pre-BötC and RTN/pFRG 

populations. Our model predicted that application of riluzole, an INaP channel blocker, 

locally to the RTN/pFRG would cause a cessation of AbN bursts during high metabolic 

load, when 1:1 AbN:RTN/pFRG bursts are expected, see Figure III-14. 

 

System level predictions: Our model has several populations of connected neurons. A 

particular area of focus was the interactions between the medulla and the RTN/pFRG. 

Specifically, our model predicted inhibitory connections from post-I neurons of the BötC 

and early-I of the pre-BötC to the RTN/pFRG Figure III-15A. Moreover, the nature of this 

inhibition had to be asymmetric, with inhibition from post-I being the weaker of the two. 

Inhibition from the post-I neurons was supported by the application of a GABAA antagonist 

to the RTN/pFRG, see Figure III-16B, C. This caused an emergence of AbN activity at the 

end of the expiratory phase, without hypercapnic conditions. The timing of AbN 

emergence indicates that the inhibition from the early-I may in fact be stronger than 

inhibition from the post-I as no AbN activity was observed during the inspiratory phase. 

 Additional findings and predictions regarding the interaction between the 

RTN/pFRG and medullary neurons are discussed in the following chapter.  
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Chapter IV: Interacting oscillations in neural control of breathing: modeling and 

qualitative analysis 

 

The following section was adapted from the following accepted manuscript: J. E. Rubin, 

B. J. Bacak, Y. I. Molkov, N. A. Shevtsova, J. C. Smith, and I. A. Rybak, “Interacting 

oscillations in neural control of breathing: modeling and qualitative analysis.,” J. Comput. 

Neurosci., vol. 30, no. 3, pp. 607–32, Jun. 2011. 

 

A. Introduction 

Neural oscillations with various temporal and spatial patterns have been shown to play 

fundamental roles in brain operation, including sensory processing (in the visual [195], 

somatosensory [196], olfactory [197], and other sensory systems), central brain 

mechanisms [198], [199], and neural control of movements [200], [201]. Revealing the 

rhythmogenic mechanisms underlying these oscillations and characterizing the nature of 

interactions between different oscillations would have a broad impact on understanding the 

general principles of how the brain functions.  

This study focuses on the interactions between two neural oscillators involved in 

the control of breathing in mammals. The first “oscillator” is the respiratory central pattern 

generator (CPG) that generates primary respiratory oscillations driving phrenic nerve 

motor output and controlling lung ventilation. The rhythm-generating core of this CPG has 

been hypothesized to include several interacting populations of respiratory neurons located 

in the pre-Bötzinger (pre-BötC) and Bötzinger (BötC) complexes within the ventral 

respiratory column of the medulla[3], [5], [16], [18], [19], [23], [35], [36], [186], [202], 
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[203]. The second “oscillator”, referred to as the parafacial respiratory group (pFRG), 

appears to reside within, or overlap with, the retrotrapezoid nucleus (RTN) [39], [42]. 

Recent data suggests that, with increasing metabolic demands, e.g. with increased level of 

CO2 (hypercapnia) and/or decreased level of O2 (hypoxia) [41], the RTN/pFRG oscillator 

starts generating a rhythmic late-expiratory (late-E, sometimes referred to as pre-

inspiratory or pre-I) activity that interacts with the BötC/pre-BötC oscillations and drives 

an enhanced late-E rhythmic activity in the motor output controlling abdominal muscles 

[20], [36], [41], [42], [87].  

A large-scale computational model of the respiratory CPG was previously 

developed to reproduce multiple experimental data obtained in the arterially perfused 

brainstem-spinal cord rat preparation with brain stem transections that sequentially 

removed rostral components of the respiratory network [16], [19]. The results of these 

experimental and modeling studies suggest that the core neural circuitry of the respiratory 

CPG resides within the BötC and pre-BötC compartments and that the primary respiratory 

oscillations are generated due to dynamic interactions between (i) excitatory neural 

populations in the pre-BötC that are active during inspiration, (ii) inhibitory populations in 

the pre-BötC providing inspiratory inhibition within the network; and (iii) inhibitory 

populations in the BötC generating expiratory inhibition [16], [19]. It has also been 

proposed that these network interactions form a hierarchy of multiple oscillatory 

mechanisms whose expression is controlled by multiple drives from several brain stem 

compartments, including the RTN and pons, some of which depend on and reflect current 

metabolic conditions (e.g. levels of CO2, O2 and pH) [16], [19]. 
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To allow investigation of interactions between the BötC/pre-BötC and RTN/pFRG 

oscillations, the above large-scale model was extended by incorporating an additional late-

E population of the RTN/pFRG that consisted of neurons with intrinsic rhythmogenic 

properties defined by the persistent sodium current, NaPI [41]. Interactions between the late-

E and other neural populations were suggested based on experimental studies [41] to 

reproduce the specific relationships between phrenic activity and abdominal oscillations 

observed in nerve recordings during various metabolic conditions. The extended large-

scale model [41] was successful in reproducing several operating regimes featuring specific 

relationships between the above oscillations. However, the complexity of that model, based 

on explicit simulation of populations of neurons modeled in the Hodgkin-Huxley (HH) 

style, does not allow implementation of dynamical systems methods for theoretical 

investigation of the possible states and oscillatory regimes in the system. We have recently 

gained insight by simplifying such large-scale models using activity-based (non-spiking) 

single neuron models to represent populations of spiking neurons. Specifically, this 

approach was successfully applied for theoretical investigation of the core of the 

respiratory CPG, namely its BötC/pre-BötC kernel [35]. 

The model proposed herein is based on and extends the network model from this 

previous work [35]. An additional late-E neuron with NaPI -dependent rhythmogenic 

properties (representing a hypothetical late-E population in the RTN/pFRG) was included 

in the model and interconnected with other neurons according to the connection scheme 

proposed in the corresponding large-scale model [41]. Our objective in this study was to 

develop a relatively simple model, which maintains the essential features and architecture 

of the large-scale model, and to harness this reduced model to theoretically investigate the 
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oscillatory patterns and mechanisms of coupling between the BötC/pre-BötC and 

RTN/pFRG oscillations in the functional regimes corresponding to different metabolic 

conditions.  

Our analysis focused on the following three scenarios studied experimentally: (1) 

the emergence and “quantal acceleration” of the (RTN/pFRG) late-E oscillations, and their 

interactions with the BötC/pre-BötC oscillations, with the progressive increase of external 

drive to the late-E population, simulating hypercapnic conditions, (2) transition of the late-

E (pre-I) activity pattern to a biphasic-E (pre-I/post-I) pattern with changing external 

drives, simulating hypercapnic hypoxia conditions, and (3) “quantal slowing” of BötC/pre-

BötC oscillations with progressive suppression of pre-BötC neurons, simulating the effect 

of opioids. These behaviors represent the typical regimes of synchronization between the 

BötC/pre-BötC and RTN/pFRG oscillators. Using numerical simulations in combination 

with bifurcation analysis and fast-slow decomposition techniques, we show and explain 

how gradual variation of external drives or other model parameters, associated with 

specific metabolic and/or physiological conditions, can produce particular BötC/pre-BötC 

and RTN/pFRG outputs and change the functional role of coupling between these 

oscillators. In addition to characterizing the phase plane conditions associated with each 

regime, our theoretical analysis explains certain features observed in simulations. 

Specifically, we show why the inspiratory period remains constant even as late-E activity 

emerges on progressively larger proportions of cycles in quantal acceleration, why late-E 

rebound activity is seen before a complete switch to biphasic-E activity emerges in 

hypercapnic hypoxia, and what determines pre-BötC burst times, as well as why late-E 

activity remains biphasic precisely on those cycles in which pre-BötC neurons activate, in 
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quantal slowing. The results of this work provide theoretical insights into the key features 

and dynamics of synchronization between BötC/pre-BötC and RTN/pFRG oscillators 

under different physiological conditions.  

 

B. Methods 

B-1. Model description 

The schematic of the respiratory network model considered herein is shown in Figure 

IV-1A. This model is a reduced version of the large-scale model by [41]. On the other hand, 

this model represents an extension of the previous reduced model of the core of the 

respiratory CPG [35]. The latter was extended by incorporating an additional late-

expiratory (late-E) neuron that represents a hypothetical neural population within 

RTN/pFRG, serving as a source of late-E oscillations.  

The rhythmic activity in the RTN/pFRG appears to be critically dependent on INaP, 

since a suppression of this current by riluzole, a specific INaP blocker, abolishes this 

rhythmic activity, as shown in rat embryos [175], [176] and in mature rat in situ 

preparations [17]. Therefore the late-E neuron of the RTN/pFRG added to the present 

model contains INaP and hence (similar to the pre-inspiratory/inspiratory (pre-I/I) neuron of 

the pre-BötC) is able to intrinsically generate INaP-dependent bursting under certain 

conditions [174], [204].  
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Figure IV-1. Reduced model of pre-BötC, BötC, and RTN/pFRG. (A) Model schematic. 

Spheres represent neurons (excitatory– red; inhibitory– blue); green triangles represent 

sources of tonic excitatory drives (in pons, RTN) to different neural populations. Excitatory 

and inhibitory synaptic connections are indicated by red or green arrows and small blue 

circles, respectively. (B) Model performance: output activity of all neurons is shown when 

“hypercapnic” drive to the late-E neuron ( 3d ) is set to zero. The periods of elevated activity 

of pre-BötC neurons define the inspiratory phases (top two traces), while the BötC neurons 

(post-I and aug-E) are active during expiration. Although the post-I neuron inhibits the aug-

E neuron early in expiration, adaptation in the post-I neuron causes a decrease in the 

inhibition to aug-E and thus allows the second phase of expiration, characterized by aug-E 

activity, to begin. 
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The synaptic interactions between the core BötC/pre-BötC neurons of the CPG 

shown in Figure IV-1A were described in detail and justified in our previous papers [16], 

[19], [35]. The interactions between the late-E neuron of RTN/pFRG incorpotated in new 

model and the core BötC/pre-BötC neurons include (see Figure IV-1A): (a) excitation of 

the pre-I/I inspiratory neuron of BötC by the late-E neuron and inhibition of the late-E 

neuron by (b) the early-inspiratory (early-I) neuron of pre-BötC during inspiration and (c) 

the post-inspiratory (post-I) neuron of BötC during expiration. The first two connections 

(a and b) have been proposed and justified in many previous studies [20], [37]–[39], [41]–

[43], [174], [181], [183], [204]. The third connection (the inhibitory one, from post-I to 

late-E) has been previously hypothesized [41] as the natural mechanism to prevent late-E 

bursting from occurring in the initial part of expiration and, together with the inspiratory 

inhibition (from early-I), to suppress late-E oscillations during normal conditions. 

The model consists of five neurons (i = 1,…,5), each representing one of the key 

populations of neurons in the preceding large-scale model [41]. The first four neurons 

include the excitatory pre-I/I neuron of the pre-BötC (i = 1), the inhibitory early-I neuron 

of the pre-BötC (i = 2), and two inhibitory neurons of the BötC, the post-I (i = 3) and the 

augmenting-expiratory (aug-E, i = 4) neurons. These neurons represent the core circuitry 

of the respiratory CPG [16], [19], [35]. The fifth neuron is the late-E neuron of the 

RTN/pFRG (i = 5, see above). These neurons interact according to the schematic shown in 

Figure IV-1A and receive excitatory drives from two sources: the pons (d1) and RTN (d2). 

An additional excitatory drive to late-E (d3) is included to simulate the effect of 

hypercapnia.  
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Each neuron in the model represents a specific neural population and is described 

by an activity-based model in which the dependent variable Vi represents an average 

voltage for that (i-th) population and each output f(Vi) (0≤ f(Vi) ≤1) represents an averaged 

or integrated population activity. Because we consider regimes in which neurons within 

each population are synchronized, we assume that the dynamics of the average voltages in 

the model can be represented by a conductance-based framework [35]. 

Specifically, the pre-I/I and late-E ( }5,1{i ) neurons are excitatory, with intrinsic 

oscillatory properties defined by the persistent (slowly inactivating) sodium current NaPI . 

The membrane potentials of these neurons, iV , thus obey the following differential 

equation: 

SynIiSynEiLiKiNaPii IIIIIVC   .     (IV-1) 

The other three neurons ( }4,3,2{i ) are adaptive neurons (with adaptation defined by an 

outward potassium current, iADI ) whose membrane potentials iV  evolve as follows:  

iSynIiSynEiLiADi IIIIVC   .             (IV-2) 

In equations (1) and (2), C is the neuronal capacitance, KiI represents the potassium 

delayed rectifier current, iLI  is the leakage current, and iSynEI  and iSynII  are the excitatory 

and inhibitory synaptic currents, respectively. The currents are described as follows: 

}2,1{),()()(  iforEVVhVmgI NaiiNaPiNaPNaPNaPi ;   (IV-3)

}2,1{),()(4  iforEVVmgI KiiKKKi ;     (IV-4)

}5,4,3{),(  iforEVmgI KiADiADADi ;     (IV-5)

}5,...,1{),(  forEVgI LiiLLi ;      (IV-6)
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))(()( 22111155111 dcdcVfaEVgI SynESynESynE  ;   (IV-7)

))(()( 22211211222 dcdcVfaEVgI SynESynESynE  ;    (IV-8)

}4,3{),()( 2211  ifordcdcEVgI iiSynEiSynESynEi ;   (IV-9)

33555 )( dcEVgI SynESynESynE  ;      (IV-10) 

}5,...,1{,)()(
4

;2

 


iforVfbEVgI
ijj

jjiSynIiSynISynIi ,   (IV-11)  

where ,,,,, SynEiLADKNaPi ggggg  and SynIig  are the maximal conductances of the 

corresponding ionic channels; ,,,, SynELiKNa EEEE  and SynIE  are the corresponding reversal 

potentials; 
12a  and 51a  define the weights of the excitatory synaptic input from the pre-I/I 

to the early-I neuron and from the late-E to the pre-I/I neuron, respectively (see Figure 

IV-1A); jib  defines the weight of the inhibitory input from neuron j to neuron i ( }4,3,2{j

; }5,...,1{i ); and kic  defines the weight of the excitatory synaptic input to neuron i from 

drive k (dk, }3,2,1{k ).  

 The neuronal membrane potential is converted to the neuron output by the 

piecewise linear function: 

















max

maxminminmaxmin

min

,1

),/()(

,0

)(

VVif

VVVifVVVV

VVif

Vf       (IV-12) 

where minV  and maxV  define the “threshold” and “saturation” voltages, respectively.  

  There are two types of slow variables in the model. One type represents the slow 

inactivation of the persistent sodium current ( NaPih , }5,1{i ; see [125]) in the pre-I/I and 
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late-E neurons; the other variables ( iADm , }4,3,2{i ) denote adaptation in the other three 

neurons (each with fixed time constant 
AD  and maximal adaptation 

ADk ): 

}5,1{,)()(   ihVhhV NaPiiNaPNaPiihNaP
 ;    (IV-13)

}4,3,2{,)(  imVfkm ADiiADADiAD
  .    (IV-14) 

Voltage dependent activation and inactivation variables and time constants for the 

persistent sodium and potassium rectifier channels in the pre-I/I and late-E neurons (

}5,1{i ) are described as follows: 

   1
/)(exp1)(


 mNaPmNaPiiNaP kVVVm ;      (IV-15)  

   1
/)(exp1)(



  hNaPhNaPiiNaP kVVVh ;     (IV-16) 

 hNaPhNaPihNaPihNaP kVVV  /)(cosh/)( max  ;    (IV-17) 

   1
/)(exp1)(


 mKmKiiK kVVVm .     (IV-18) 

 The architecture of network interconnections between the neurons follows that in 

the large-scale model in the previous chapter and is based on the existing direct and indirect 

experimental data and our current assumptions. The connection weights were adjusted so 

that, on one hand, the model reproduced the dynamics of the BötC/pre-BötC and late-E 

(RTN/pFRG) oscillators in all regimes considered herein and, at the same time, maintained 

all the features and behavior described previously [35]. 

 

B-2. Model parameters 

The following default values of parameters were used (except where it is indicated in the 

text that some parameter values were varied in particular simulations): 
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Table IV-1. Parameters for reduced model of RTN/pFRG and BötC/pre-BötC 

interactions. 

Membrane capacitance (pF):  C= 20. 

Maximal conductances (nS):  
NaPg = 5, 

Kg = 5, 
ADg = 10, 

Lg = 2.8, 

SynEg = 10, SynIg = 60. 

Reversal potentials (mV):  

 
NaE = 50, 

KE = -85, SynEE = 0, SynIE = -75, 

LiE = -60 ( }4,...,1{i ), 5LE =-64. 

 

Synaptic weights:  
12a = 0.35, 51a = 0.35, 21b = 0, 23b = 0.2, 

24b = 0.25, 25b = 0.035, 31b = 0.8, 32b = 

0.15, 34b = 0.5, 35b = 0.05, 41b = 0.22, 

42b = 0.15, 43b = 0, 45b =0, 11c = 0.35, 12c

= 0, 13c = 0.33, 14c = 0.05, 21c = 0.16, 22c

= 0.25, 23c = 0, 24c = 0.4, 35c = 1.
 

Parameters of )( iVf  functions (mV):  minV = -50, 
maxV = -20. 

Parameters for INaP and IK (mV):  
mNaPV = -40, 

mNaPk = -6, 
hNaPV = -55, 

hNaPk

= 10, 
mKV = -30, 

mKk = -4. 

Time constants (ms): 
maxhNaP = 4000, 

AD =2000. 

External drives:  
1d  varied from 1 (default value) to 0, 2d

=1, 3d  varied from 0 (default value) to 

1. Other parameters: 
ADk = 1. 

  

 

 This baseline parameter tuning, with d1 = 1 and d3 = 0, yielded a respiratory rhythm 

shown in Fig. 1B, which is representative of baseline conditions. In particular, the value d3= 

0 was assumed to represent to a normocapnic (normal CO2) state. Changing metabolic and 

physiological conditions were simulated by changing external drives or other model 

parameters. Specifically, progressive hypercapnia (an increase in the CO2 level) was 

simulated by a gradual increase of “hypercapnic” drive (d3) to the late-E neuron, 

representing a population of central chemoreceptors located in RTN/pFRG, whose activity 
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is believed to increase with the level of CO2 [48], [92], [205]. Hypercapnic hypoxia was 

modeled via the reduction of post-I activity, i.e. as a progressive decrease in the pontine 

drive, d1, from the baseline value d1 = 1 to zero, at a particular level of hypercapnia (i.e., 

d3 value). To reproduce “quantal slowing” of pre-BötC activity [42], the excitability of pre-

BötC neurons was progressively suppressed by a reduction of the excitatory synaptic 

conductance SynEg  in both pre-I/I and early-I neurons. 

 

B-3. Bifurcation analysis 

For the analysis of changes in qualitative behavior of the system with variation of external 

drives or other model parameters we used a technique based on the construction of Poincaré 

sections [206]. This technique involves choosing a surface, called a Poincaré section, that 

is transverse to the flow in the phase space and finding the successive intersections of the 

model trajectory with that surface. The Poincaré section was defined by choosing a 

threshold and finding the time moments when the output neuron activity, f(V), intersects 

the threshold in a fixed direction. The time interval between two successive phase 

transitions (referred to as period) was used to build bifurcation diagrams for each of the 

three scenarios of interest. In 2D bifurcation diagrams, the periods of pre-BötC and late-E 

active phases were plotted as functions of a parameter whose variation was used to simulate 

the corresponding change in the metabolic state. The variation of such a parameter was 

implemented using a slowly changing linear function of time, and a continuous calculation 

of the corresponding periods of pre-BötC (early-I neuron) and late-E oscillations was 

performed. In the resulting bifurcation diagrams, most qualitative changes (bifurcations) 
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in system behavior were clearly evident as discontinuities, the appearance of new solution 

branches, and the emergence of clouds of points. 

Some bifurcation diagrams were generated by changing two parameters 

independently. At each point in the corresponding 2D parametric plane, the mean value of 

the period was represented by color. This type of diagram shows bifurcation curves as 

boundaries between areas with different colors, corresponding to qualitatively different 

behaviors. 

 Bifurcation diagrams were constructed using a TISEAN software package [207] 

and custom written C++ programs. 

 

B-4. Phase-plane analysis 

Phase plane analysis involved the evolution of variables describing voltage (V5) and INaP 

inactivation (h5) in the late-E neuron, adaptation of early-I (m2) or post-I (m3) neurons, and 

input currents and conductances. Each neuron model includes a fast voltage variable (Vi) 

and a second slow variable, corresponding to persistent sodium inactivation (h1, h5) or 

adaptation (m1, m2, m3). Thus, the voltage equation for each neuron, with its slow variable 

treated as a parameter, forms a one-dimensional fast subsystem for that neuron (assuming 

that other neurons’ voltages are fixed). Correspondingly, when we refer to critical points 

of the fast subsystem for a neuron, we mean points for which the right hand side of equation 

(IV-1) (for the pre-I/I and late-E neurons) or (IV-2) (for all other neurons) is equal to zero. 

We consider some standard phase plane diagrams with a voltage variable on the horizontal 

axis and the associated slow variable on the vertical axis. We also consider diagrams with 

a slow variable on the horizontal axis and a variable representing the level of input to the 
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corresponding neuron on the vertical axis. All synaptic inputs to neurons 3,4, and 5 are 

inhibitory, with the same reversal potential, and we define input variables 5,4,3, iinhi , 

to neuron i as the sum 
ij

jji Vfb )( . Neurons 1 and 2 each receive both excitatory and 

inhibitory inputs, and we define the variables input1 and input2 as the sum of synaptic 

currents to these neurons, excluding drives di. For consistency with the use of inh > 0, we 

adopted the convention that positive and negative values of input denote inhibition and 

excitation, respectively.  

 

 

Figure IV-2. Construction of diagram for use in analysis. (A) Standard phase plane for 

model neuron 2, subject to a fixed level of inhibitory input (input2>0). There is a critical 
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point (blue) where model nullclines (V2, dashed and m2, solid) intersect. The m2 coordinate 

is read off of this point (blue dashed line). The vertical red dashed lines label V2 values at 

which the synaptic output from neuron 2 turns on (-50) and reaches a half-maximal level 

(-35). When they are positive, the m2 coordinates of these intersections are also recorded 

(horizontal red dashed line). (B) The same nullclines and intersections from (A) are shown 

along with additional nullclines and intersections (dash-dotted curve and lines) 

corresponding to a different level of input to neuron 2 that is excitatory (input2<0). C: 

Curves of critical points (blue) and intersection points with key V2 values (red dashed and 

solid) in the input2 versus m2 plane. 

 

The construction of a diagram with input2 versus m2 is illustrated in Figure IV-2A-

B, with the diagram itself shown in Figure IV-2C. In Figure IV-2A, the V2 (dashed) and m2 

(solid) nullclines, corresponding to a fixed level of input to cell 2 (input2) that is positive, 

since it is inhibitory, intersect in a critical point. The V2 nullcline also intersects the line 

{V2 = Vmin = -50}, at which synaptic outputs from cell 2 turn on (equation (IV-12)), at a 

positive value of m2. We can search for such critical points and points of intersection with 

the line V2 = -50, as well as with the lines V2 = -35, corresponding to half-maximal 

activation of synaptic outputs, and V2 = Vmax = -20, corresponding to maximal activation of 

synaptic outputs, for each fixed value of input2; this is done, for example, in Figure IV-2B 

for a level of input2 corresponding to excitatory input to cell 2. From this process, we obtain 

a curve of m2 values at critical points, parameterized by input2, along with similar curves 

from the other intersections. These curves are plotted together in a single diagram showing 

input2 versus m2. An example is given in Figure IV-2C.  

All phase plane diagrams were constructed in Matlab 7.5.0. Simulations were 

performed using XPPAUT, available at http://www.pitt.edu/~phase [208]. 

 

http://www.pitt.edu/~phase
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C. Results 

C-1. Model performance under normal conditions 

It appears that late-E oscillations are not observed under normal metabolic conditions (see 

[41], see also Figure IV-3A1 and B at 5% of CO2). Similarly, the late-E neuron in the model 

under “normal” conditions does not receive a strong “hypercapnic” drive (d3) and is 

inhibited by the early-I neuron during inspiration and by the post-I neuron during expiration 

(Figure IV-1A,B). In this case, the behavior of the current model is equivalent to that of 

the model described in detail by [35] and the model demonstrates all the regimes simulated 

and investigated in that paper. The output activity of all neurons of the model, in a regime 

corresponding to breathing under baseline conditions, is shown in Figure IV-1B. During 

expiration, the post-I neuron output is elevated and demonstrates adapting (decrementing) 

activity that is defined by the dynamic increase in its adaptation variable 
3ADm  (see equation 

(IV-5)). The resulting decline in inhibition from the post-I neuron shapes the augmenting 

profile of aug-E activity. This reduction in post-I inhibition also produces a slow 

depolarization of pre-I/I and early-I neurons. In addition, the pre-I/I neuron depolarizes 

further because of the slow deinactivation of INaP (slow increase of hNaP, see equation (IV-

13)). Finally, at some moment during expiration, the pre-I/I neuron rapidly activates, 

providing excitation of early-I. The latter inhibits both post-I and aug-E, completing the 

switch from expiration to inspiration (Figure IV-1B). During inspiration, the pre-I/I and 

early-I outputs are elevated, and the inspiratory neuron outputs settle towards a 

corresponding equilibrium state. In particular, the early-I neuron demonstrates adapting 

(decrementing) activity (Figure IV-1B), defined by the dynamic increase in its adaptation 

variable 
2ADm  (see equation (IV-5)). The decline in inhibition from this neuron produces a 
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slow depolarization of the post-I and aug-E neurons. Eventually, the system reaches a 

moment at which the post-I neuron rapidly activates and inhibits both inspiratory neurons 

(pre-I/I and early-I) and the aug-E neuron (initially), producing the switch from inspiration 

back to expiration (Figure IV-1B).  

 

C-2. Emergence and quantum acceleration of late-E oscillations with progressive 

hypercapnia 

It has been suggested that when late-E oscillations emerge within the RTN/pFRG, they 

project to and drive late-E bursts in the abdominal motor output [20], [42], [43] that can be 

seen in the abdominal nerve, AbN. Neurons whose activity clearly correlated with the AbN 

late-E discharges (including simultaneous burst missing) were found in the RTN/pFRG 

region, and a pharmacological inactivation of the RTN/pFRG abolished the AbN late-E 

activity [41]. Thus the AbN late-E discharges can be considered as an indicator of the 

corresponding oscillations in the RTN/pFRG [20], [41]–[43]. 

Figure IV-3 shows the integrated activities of phrenic (PN, active during 

inspiration), cervical vagus (cVN) and abdominal (AbN) nerves recorded from the in situ 

arterially perfused rat brainstem-spinal cord preparation with the progressive development 

of hypercapnia (increasing CO2 concentration in the perfusate) (data are taken from [41]). 

Under baseline metabolic conditions (95% O2, 5% CO2) the AbN typically exhibits a low-

amplitude post-inspiratory activity (Figure IV-3A and left part of B). Switching to 

hypercapnic (7–10% CO2) conditions evokes large amplitude late-E (i.e., occurring at the 

very end of expiration) AbN bursts (indicating the emergence of RTN/pFRG oscillations, 

see above). Figure 3 shows that the late-E discharges emerge in AbN at 7% CO2 (Figure 
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IV-3A2,B) followed by a progressive increase in the burst frequency as the CO2 

concentration is incremented to 10%. Importantly, although the frequency of late-E AbN 

bursts increases with CO2, these bursts remain coupled (phase-locked) with the bursts in 

the PN and cVN (Figure IV-3A2-A4). With the development of hypercapnia, the ratio of 

late-E AbN burst frequency to the PN burst frequency shows a step-wise or quantal 

increase from 1:5 and 1:4 (seen in Figure IV-3B) to 1:3, 1:2, and, finally, to 1:1 (Figure 

IV-3A2-A4 and B). On returning CO2 to the control levels, the ratio showed a step-wise 

reversal. Similar hypercapnia-evoked late-E AbN discharges phase-locked to PN, with a 

step-wise increase of their frequency with increasing CO2 levels, have been demonstrated 

previously in vivo [173]. We call this process quantal acceleration of late-E AbN activity 

with development of hypercapnia. 

 

 

Figure IV-3. Quantal acceleration of AbN late-E activity with the development of 

hypercapnia in the in situ arterially perfused brainstem-spinal cord of juvenile rat (data 
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from [41]). (A1-A4) Integrated activity of simultaneously recoded (top-down) phrenic 

nerve (PN, red), cervical vagus nerve (cVN, black) and abdominal nerve (AbN, blue). A1: 

Normocapnia (5% CO2): late-E activity is absent in the AbN. A2-A4: Quantal acceleration 

of AbN activity: with the development of hypercapnia, the ratio between the AbN and PN 

frequencies goes through step-wise changes from 1:3 and 1:2 (A2 and A3, 7% CO2) to 1:1 

(A4, 10% CO2). (B) Time-series representation of the entire experimental epoch with the 

oscillation periods in the PN (red squares) and AbN (blue circles) plotted continuously vs. 

time. The AbN late-E bursts were synchronized with the PN bursts with a ratio increasing 

quantally from 1:5 to 1:1. The content of CO2 in the perfusate of this preparation was 

changed at times indicated by short arrows and vertical dashed lines. Large arrows indicate 

times corresponding to the episodes shown in A1-A4. 

 

To simulate progressive increase of hypercapnia using our model, the excitatory 

“hypercapnic” drive d3 to the late-E neuron (see Figure IV-1A) was progressively increased 

from d3 = 0 (representing normocapnic conditions) to higher values (d3 ≥ 1) (Figure IV-4). 

The late-E neuron is a conditional burster, whose intrinsic rhythmogenic properties are defined 

by slowly inactivating INaP (see equation (IV-16)). If this neuron is isolated from the others, 

then with a progressive increase in excitatory drive its behavior evolves from a silent state 

to bursting, and then to tonic activity [125]–[127], [136]. In our model, the bursting activity 

in the late-E neuron is shaped by the excitatory drive to this neuron (d3, simulating the 

effect of hypercapnia), the inhibitory synaptic inputs from the adapting early-I and post-I 

neurons (see Figure IV-1A), and the dynamics of INaP inactivation (h5). The complex net 

effect of these factors is a step-wise decrease of the late-E bursting period with the 

progressive increase of hypercapnic drive to this neuron (d3). Specifically, late-E bursts 

become 1:N synchronized with pre-BötC (pre-I/I and early-I) bursts, and a quantal increase in 

the ratio of late-E burst frequency to pre-BötC frequency (decrease in N) occurs as hypercapnic 

drive increases (see Figure IV-4A1-A3, B). Once the late-E neuron is activated, it excites 

the pre-I/I neuron which in turn excites early-I (Figure IV-1A). This cascade ends when 
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the early-I neuron inhibits both expiratory neurons in the BötC and ultimately terminates 

the late-E burst. 

The dependencies of the periods of late-E and pre-BötC oscillations on the 

“hypercapnic” drive to the late-E neuron are shown in the bifurcation diagram in Figure 

IV-4B. The late-E oscillation period changes in a stair-like manner with progressive 

increases in the drive to the late-E neuron. The late-E oscillations emerge at a particular 

drive to the late-E neuron near point a in Figure IV-4B. To the right from this point, the ratio 

of late-E to pre-BötC burst frequencies is 1:5. A further increase of the drive causes a quantal 

acceleration of the late-E frequency (with a 1:4 ratio to the pre-BötC frequency between 

points b and c; 1:3 between points c and d; 1:2 between points d and e) until a steady 1:1 

synchronization with the pre-BötC oscillations is achieved (to the right from point e). 
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Figure IV-4. Increasing drive (d3) to the late-E neuron, applied to simulate “progressive 

hypercapnia”, results in the emergence and “quantal acceleration” of late-E oscillations in 

RTN/pFRG. (A1-A3) The frequency of late-E activity proceeds through synchronization 

regimes with ratio of 1:3 (A1), 1:2 (A2), and 1:1 (A3) relative to the pre-BötC/BötC 

frequency. (B) Bifurcation diagrams of late-E (blue) and pre-BötC (red) periods as 

functions of drive to late-E. The late-E period quantally decreases through a series of 

jumps; the drives to late-E at which the jumps occur are denoted by vertical green dashed 

lines, marked with the letters a through e. Drives below point a are not high enough to 

produce late-E neuron activity. Between points a and e late-E activity accelerates from 1:5 

(one late-E burst per five pre-BötC bursts) to 1:1. (C) The trajectory of the network model 

projected to the ),,( 225 mVV phase subspace during hypercapnia in the 1:3 regime (shown 

in A1). Subthreshold late-E neuron activity (dashed blue line) occurs when V5 is below -

50mV. Superthreshold late-E neuron activity (solid blue line) corresponds to bursts of the 

late-E seen in A1 (when d3=0.03). Cyclical subthreshold movement in ),( 22 mV  indicates 

two periods of early-I activity during which the late-E neuron fails to burst (see text for 

more details). (D) Simulation of the effect of blocking the persistent sodium current in the 

model. After 1:1 synchronization is achieved (as in A3), NaPg  is set to zero. Expiration 
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increases in duration, pre-I activity decreases in amplitude, and the late-E neuron falls 

silent. 

 

 The dynamics of sub-threshold and supra-threshold changes in the membrane 

potential of the late-E neuron (V5) corresponding to the 1:3 regime of synchronization (d3 

= 0.3, same as in Figure IV-4A1) is shown in Figure IV-4C as a trajectory in the ),,( 225 mVV

phase space. After the initial activation of the late-E neuron (supra-threshold 5V ), 2V  

quickly increases due to the cascading excitation from late-E to pre-I/I and from pre-I/I to 

early-I (rightward arrow in Figure IV-4C). As V2 exceeds the threshold, the early-I neuron 

is activated and m2 begins gradually increasing. When V2 becomes sufficiently elevated, 

the early-I neuron inhibits the late-E neuron, sending V5 to a sub-threshold state (leftward 

arrow in Figure IV-4C). 

Simulation results demonstrating the effect of INaP suppression on the late-E and 

BötC/pre-BötC oscillations during hypercapnia are shown in Figure IV-4D. All parameters in 

this simulation are the same as in Figure IV-4A3, but NaPg  is set to zero in both pre-I/I and 

late-E neurons. One can see that the suppression of INaP in the network fully abolishes the 

late-E oscillations, which are critically dependent on this current in our model, but does 

not stop the network BötC/pre-BötC oscillations. The latter persist with a reduced frequency 

and slightly reduced amplitude. 

Figure IV-5A-D illustrates and explains the mechanisms providing the above 

quantal acceleration of late-E oscillations and their synchronization with the BötC/pre-

BötC oscillations. In Figure IV-5A, the state of the late-E neuron is considered in the (V5, 

h5) plane. Two pairs of 5V  nullclines are drawn. We use these nullclines to give a 
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preliminary illustration of how hypothetical changes in the level of inhibition and drive 

(d3) to the late-E neuron can shape the model activity. For this demonstration, we simulate 

the late-E neuron in isolation and manipulate the synaptic inhibition artificially. The solid 

pair of nullclines is representative of relatively low d3 values, while raising d3 lowers the 

nullclines, as illustrated by the dashed pair. If the inhibition to the late-E neuron is on, then 

the V5 nullcline is elevated, as represented by the nullcline at higher h5 values within each 

pair. If this inhibition is instantaneously reduced to zero, then the V5 nullcline assumes a 

new, lower, position in the space, as illustrated by the nullcline at lower h5 values within 

each pair. Note that three of the V5 nullclines shown have cubic shapes, each consisting of 

a left branch (LB) and a middle branch (MB) that meet in a point, which we call the left 

knee (LK), and a right branch (RB), which meets MB at the right knee (RK). Importantly, 

the positions of the knees depend on the levels of drive and inhibition to the late-E neuron, 

as is evident in Figure IV-5A.  
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Figure IV-5. Phase plane analysis of model performance during “hypercapnia.” (A) 

Projection of model trajectory to the (V5, h5) phase plane together with V5 nullclines 

corresponding to intermediate and high values of d3 (solid and dashed blue curves, 

respectively) and the nullcline for the slow variable, h5 (red curve). The upper V5 nullclines 

correspond to higher inhibition than do the lower ones. The trajectory shown undergoes 

three excursions, namely a failed burst (lowest h5), a successful burst that is prematurely 

terminated by the return of inhibition (middle h5), and a successful burst that temporarily 

survives the return of inhibition (highest h5). Vertical dashed black line marked “synapses 

on” shows the lower threshold of the voltage-to-activity function f(V) defined by equation 

(IV-12). (B) Trajectories during 1:1 and 2:1 activity regimes (black and grey curves, 

respectively) projected to the (h5, inh5) plane, together with curves for the right (dashed) 

and left (solid) knees of the V5 nullcline. Different curves of knees correspond to d3 values 

that produce 2:1 (red) and 1:1 (green) regimes. As shown in A, increasing inhibition moves 

the nullcline to lower voltages and makes the cubic-like shape more pronounced, thus 

raising the value of h5 at each knee. A trajectory must cross the curve of left knees for the 

late-E neuron to become active. Curves of critical points of the (V5, h5) equations on the 

left branch of the V5 nullcline are shown in blue (1:1 regime) and light blue (2:1 regime). 

(C), (D): Trajectories projected to show early-I (C) and post-I (D) dynamics, along with 

curves of critical points of the (V2, m2) and (V3, m3) equations (blue) and synaptic thresholds 

(red). The synaptic thresholds represent the values of input2 and m2 or inh3 and m3 at which 

each neuron will reach voltages of -50 (“on”, upper dashed), -35 (“half max”, solid red), 

and -20 (“max”, lower dashed, not shown in D) if it evolves on its voltage nullcline. Each 

m  variable increases while the corresponding neuron is active (rightward arrows) and 

decreases while the neuron is silent (leftward arrows). 
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A trajectory of the model solution with the lower level of d3 (solid nullclines), 

starting at the initial condition (V5, h5) ≈ (-65,0.15), is shown in black in Figure IV-5A. In 

this example, we manipulate the level of inhibition to the late-E neuron, purely to illustrate 

the effects that changes in inhibition can have on late-E neuron dynamics. As time advances 

from zero, h5 increases, corresponding to deinactivation of NaPI . In this particular 

simulation, when h5≈ 0.35, we turned off the inhibition to the late-E neuron and the 

trajectory jumped to the lower solid V5 nullcline. The position of this nullcline prevents V5 

from crossing the synaptic activation threshold (-50 mV; “synapses on” in Figure IV-5A) 

and exciting the pre-I neuron. We subsequently restored inhibition, which caused the 

trajectory to return to the elevated 5V  nullcline. A second withdrawal and return of 

inhibition was imposed with h5 ≈ 0.45. The trajectory could not reach the RB of the V5 

nullcline, even though it was above the LK, because the inhibition was restored too quickly. 

With a still higher value of h5, namely h5 ≈ 0.6, a third removal of inhibition was performed 

and the trajectory reached the right branch of the V5 nullcline, corresponding to full late-E 

neuron activation. Furthermore, when inhibition was subsequently restored again, the late-

E neuron remained active (on a RB) for some additional time, as illustrated by the trajectory 

segment on the far right of Figure IV-5A (leftward arrow), due to the relative nullcline 

positions. This same mechanism is the reason why the activation of the early-I neuron does 

not immediately terminate late-E activity in the network rhythm (e.g. Figure IV-4), even 

though early-I inhibits late-E. Ultimately, the late-E activity is terminated when h5 reaches 

the RK of a V5 nullcline, causing a decrease in V5 that returns the late-E neuron to a sub-

threshold state on the LB. 
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In summary, we see that because of the significant difference in rates of evolution 

of V5 and h5, the late-E cell will head toward the synaptic activation thresholds if the 

solution trajectory in the (V5, h5) phase plane lies above the LK corresponding to the levels 

of drive and inhibition that it is receiving, although it may fail to reach them if inhibition 

increases sufficiently fast. As inhibition decreases, the LK moves to lower values of h5, 

making it easier for the late-E cell to activate, and the RK moves lower as well. Increases 

in inhibition have the opposite effects, but an abrupt increase in inhibition will not 

terminate late-E activity if it arrives after the late-E neuron is on the RB and the trajectory 

remains above the resulting RK.  

 This discussion makes clear that it is the frequency with which the solution 

trajectory can rise above the left knee of the V5 nullcline in the (V5, h5) plane that determines 

which of the 3:1, 2:1, and 1:1 (pre-BötC:late-E) synchronization regimes occurs in Figure 

IV-4. Figure IV-5B illustrates the qualitative differences between the 2:1 and 1:1 regimes 

in the (h5, inh5) plane. This diagram includes LK curves, RK curves, and curves of critical 

points for each of the two regimes. Indeed, since the inhibition to the late-E neuron varies 

continuously, it is not so useful to show a small number of particular nullclines in the (V5, 

h5) plane, as in Figure IV-5A. Since the knee positions depend on the level of inhibition to 

the late-E neuron, and V5 is fixed as a function of (h5, inh5) at each knee, it is useful to 

generate curves of knees, indicating how the h5 coordinates of LK and RK depend on inh5, 

in the (h5, inh5) plane. These curves are shown as solid (LK) and dashed (RK) red (2:1 

regime) and green (1:1 regime) curves in Figure IV-5B. Similarly, the critical point where 

the V5 and h5 nullclines intersect varies with inh5 (e.g., Figure IV-5A). This critical point 

may lie on the LB or MB of the V5 nullcline and moves from the LB to the MB as inhibition 
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decreases or drive increases. The light (2:1 regime) and dark (1:1 regime) blue curves in 

Figure IV-5B show the relationships between the h5 coordinates of the critical point and 

inh5 for those values of inh5 that are large enough such that the critical point lies on the LB. 

Two trajectories (black and grey) are plotted along with the LK, RK, and critical point 

curves. The trajectory shapes reflect an asymmetry present in the inhibition to the late-E 

neuron: smaller values of inh5 arise during periods of post-I inhibition, and larger values 

correspond to periods of early-I inhibition. As noted previously, for a fixed value of inh5, 

the h5 coordinate of a trajectory must exceed the h5value at the LK of the V5 nullcline for 

the trajectory to reach elevated V5 values, corresponding to late-E activation. In Figure 

IV-5B, since h5 is on the horizontal axis, jump-up requires the trajectory to move to the 

right of the relevant (solid) LK curve.  

  Now, we are ready to consider the regime of 1:1 synchronization between the late-

E and pre-I/early-I neurons, as illustrated by the black trajectory in Figure IV-5B. The 

upper part of this trajectory, labeled by the leftward arrow, corresponds to a period when 

the late-E neuron is active and excitation from late-E to pre-I has allowed the pre-I and 

early-I neurons to become active as well, inducing a large inh5. When the late-E neuron 

reaches the RK (dashed green curve), it jumps to the LB and becomes inactive, and thus h5 

starts to increase, while inh5 slowly decreases due to adaptation of early-I. When the early-

I neuron becomes inactive, inh5 sharply decreases and the trajectory is able to cross the LK 

curve (lower left spike in the black trajectory in Figure IV-5B crosses the solid green curve) 

but the post-I neuron activates and inhibits the late-E neuron before the late-E can activate, 

just as in Figure IV-5A (middle spike in trajectory). This leads to the post-I phase, 

corresponding to the part of the black trajectory labeled with the downward right arrow. 



151 

 

 

During this phase, h5 continues to increase and the post-I neuron adapts, causing inh5 to 

drift down again. This time, the late-E neuron can cross the LK curve and activate (loop 

structure in the lower part of the black trajectory in Figure IV-5B). Activation of late-E is 

quickly followed by early-I activation, resulting in a sharp increase in inh5, and the 1:1 

cycle repeats. 

The grey trajectory in Figure IV-5B is similar to the black one but corresponds to 

the 2:1 regime. The key difference between the two cases is labeled “jump-up fails”. There, 

we see that the 2:1 trajectory reaches the LK (red solid) curve during expiration but is hit 

with a strong inhibition (increase in inh5) due to a second activation of the pre-I/early-I 

neurons, which prevents the late-E neuron from becoming active. The end of the second 

pre-I/early-I phase is followed by post-I activation as previously (rightmost down-up spike 

along the grey trajectory) and subsequent post-I adaptation (downward arrow along grey 

trajectory), after which the late-E neuron finally crosses the LK curve and activates near 

the label “jump-up succeeds” in Figure IV-5B. Interestingly, we note that the value of h5 

when late-E activation fails in the 2:1 regime is greater than the value when it succeeds in 

the 1:1 regime. Indeed, an increase in drive to late-E hampers INaP deinactivation (lowers 

h5), but it can promote late-E activation nonetheless because of how it lowers the LK curve, 

decreasing the level of INaP required for late-E to cross it. Moreover, the failure of the late-

E neuron to activate on particular cycles occurs because the pre-I/early-I neurons activate 

first, not because the late-E is insufficiently excitable. This observation yields the 

prediction that a decrease in pre-I and early-I excitability would be sufficient to prevent or 

reduce late-E cycle skipping.  



152 

 

 

 So far, our analysis has illustrated how late-E activity is determined by its phase 

plane structures. We can also use this type of analysis to explain why the early-I oscillation 

period remains roughly constant as the drive to the late-E neuron is varied (Figure IV-4B). 

A key point is that transitions between phases can occur through distinct mechanisms 

known as escape and release (see also [35], [209]–[211]). It turns out that even under 

hypercapnic conditions, the early-I activity in the model is initiated primarily by escape, 

such that the excitation it receives from pre-I, and by extension the excitation from late-E 

to pre-I, has little effect on the timing of inspiration onset. This point is illustrated in Figure 

IV-5C. There, the trajectory shown approaches the blue curve of critical points in the 

direction of increasing m2 while the early-I neuron is active, and hence adapting (rightward 

arrow; recall that negative input2 corresponds to excitation from pre-I), and from the 

direction of decreasing m2 while the early-I neuron is silent, and hence recovering from 

adaptation (leftward arrow; positive input2 corresponds to inhibition from post-I and aug-

E). The red curves show the places where the early-I voltage hits the synaptic thresholds 

Vmin (synapses start to activate, upper dashed red curve), Vmax (synapses reach maximum 

strength, lower dashed red curve), and (Vmin + Vmax)/2 (solid red curve) from equation (IV-

12), assuming that the projection of the trajectory to the (V2, m2) plane lies on the V2 

nullcline, which is true except during fast voltage excursions at phase transitions. While 

the early-I neuron is silent, the trajectory reaches the Vmin curve at a high input2 value, 

corresponding to strong inhibition. Indeed, even as the post-I neuron adapts (Figure IV-5D, 

bottom trajectory segment/rightward arrow), the aug-E activity ramps up, yielding a 

roughly constant inhibition to the early-I neuron. The crossing of the Vmin curve by the 

early-I neuron allows the early-I neuron to start inhibiting the expiratory neurons, which 
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quickly suppresses their activity (e.g., Figure IV-5D, rightmost vertical trajectory 

segment). Thus, the early-I neuron escapes from the silent phase to the active phase, while 

the expiratory neurons become silent. This escape is independent of the activation of the 

late-E neuron and hence a constant early-I neuron period is maintained as d3 is varied. 

Importantly, this invariance of period is also maintained if the model is tuned such that it 

is pre-I escape, rather than early-I escape, that initiates the inspiratory phase. 

Activation of the post-I neuron occurs in a different manner than that described 

above, namely by release from early-I inhibition. Indeed, while the post-I neuron is silent, 

the inhibition it receives from the early-I neuron (inh5) gradually decreases (Figure IV-5D, 

upper trajectory segment/leftward arrow) as m2 increases and V2 decreases correspondingly 

(Figure IV-5C, bottom trajectory segment). This release allows the post-I neuron 

eventually to cross the synaptic activation threshold and inhibit the early-I and pre-I 

neurons. Interestingly, the late-E neuron is gradually released from inhibition in parallel 

with the release of the post-I neuron. This common release provides a shared window of 

opportunity for post-I and late-E activation. In the hypercapnic parameter regimes that we 

simulated, post-I always activates first and suppresses the late-E neuron, but it is possible 

that in other regimes, corresponding for example to different experimental contexts, an 

earlier late-E activation could occur. 

 

C-3. Transforming the late-E pattern to biphasic-E activity with development of hypoxia  

Abdominal motor activity with a biphasic-E profile, consisting of late-E (pre-I) and post-I 

components, was recorded in vivo from decerebrate neonatal rats [20], [42]. This 

abdominal activity pattern was similar to the pattern of single neuron activity recorded 
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from the RTN/pFRG region of the in vitro isolated brainstem-spinal cord preparation of 

neonatal rats [37], [38]. The issue of whether the biphasic-E pattern (in both RTN/pFRG 

and AbN) is a specific characteristic of neonates which transforms to late-E during 

development or is a characteristic of the specific metabolic conditions of the in vitro 

preparation (e.g., hypercapnic hypoxia or anoxia) remains unresolved [41], [174], [181], 

[182], [212], [213]. In the in situ preparations, the biphasic-E AbN activity was more 

readily evoked in neonates than in juvenile animals [41]. However, transient biphasic-E 

AbN discharges can be evoked in situ under specific conditions, such as hypercapnic 

anoxia (7% CO2, 93% N2) or recovery from anoxia-induced central apnea [41]. Exposing 

the system to hypoxia (low O2) or anoxia (no O2) results in suppression of post-I activity 

[214]. In the experimental results shown in Figure IV-6, we illustrate the consistent finding 

that transformation of the late-E AbN bursting to a biphasic-E bursting pattern during 

hypercapnic anoxia is accompanied by a corresponding reduction/suppression of post-

inspiratory activity in the cVN. We suggest that the lack of post-I activity elsewhere in the 

network appears essential for the expression of the post-I component of the biphasic-E 

AbN discharge pattern. 



155 

 

 

 

Figure IV-6. Transformation of the pattern of AbN activity from late-E (pre-I) bursting to 

biphasic-E discharge during hypercapnic anoxia (7% CO2, 93% N2, 0% O2). The top tree 

traces show integrated activity of PN, cVN and AbN. The bottom trace represents the index 

of post-I activity calculated as an averaged activity in cVN during the expiratory phase in 

each cycle (an example is shown as the gray area in the cVN trace); the expiratory phase 

was defined by the absence of activity in the PN trace (the vertical dashed line across the 

first cycle of integrated activity indicates the onset of expiration for the first cycle shown 

in this example). In the first half of the recorded episode, only late-E bursts were present 

in AbN. The post-I component of cVN gradually decreased. The transition of AbN bursts 

to a biphasic-E discharge pattern (with pre-I and post-I components) occurred after a 

significant suppression of the cVN post-I activity (indicated by vertical and horizontal 

dash-dotted lines). 

 

It was suggested that the post-I component of the biphasic-E activity pattern 

represents a post-inhibitory rebound resulting from the abrupt termination of inspiration 

and a corresponding rapid release of late-E neurons from inspiratory inhibition [174], 

which is normally suppressed by post-I neurons.  

The activity of post-I neurons has been shown to depend on the pontine input or 

drive [18], [184]. Thus, to simulate hypercapnic hypoxia conditions, we set d3 =0.04 

(producing 1:1 coupling between late-E and pre-BötC oscillations during hypercapnia, see 

Figure IV-4A3,B) and decreased pontine drive from d1 =1 to zero linearly over time. Figure 
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IV-7A shows the result of our simulation. With the linear decrease of pontine drive, the 

late-expiratory burst of the late-E neuron is transformed first to a rebound post-I burst and 

then to a biphasic-E activity with late-E and post-I components. Simultaneously, a 

reduction and, finally, a full suppression of activity of the post-I neuron occurs (Figure 

IV-7A). 

Figure IV-7B shows the bifurcation diagram representing the periods of late-E and 

pre-BötC oscillations as functions of pontine drive. To generate this diagram, we reduced 

1d  in a sequence of steps (left to right) from 
1d =1 to 

1d =0 and simulated the model 

dynamics for each fixed value of 
1d . The red and blue bifurcation curves show the time 

intervals between successive activations of the early-I and late-E neurons, respectively. 

When the pontine drive is strong enough (prior to point a in Figure IV-7B), late-E neuron 

activity occurs in a single burst at the end of expiration (late-E or pre-I) with a 1:1 coupling 

to the pre-BötC activity. The system then proceeds through a series of bifurcations until 

point d, when late-E neuron activity settles into a post-I pattern. At point a, a bifurcation 

happens that splits (doubles) the period curves but bursts by late-E and pre-BötC neurons 

remain phase-locked (1:1). In the region between points b and d, the timing of bursts of 

late-E neuron activity varies between pre-I (i.e., just before the early-I phase) and post-I, 

with post-I  
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Figure IV-7. Simulation of “hypercapnic hypoxia” conditions. The “hypercapnic” drive 

was set to d3=0.04 (producing 1:1 coupling between late-E and pre-BötC oscillations, see 
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Figure IV-4 A3,B). (A) Changing model performance with a linear reduction of pontine 

drive from d1 =1 to zero (lower trace) applied to simulate the development of ”hypoxia”. 

With the reduction of pontine drive, the activity of the post-I neuron weakens and, finally, 

becomes fully suppressed by inhibition from the aug-E neuron. Simultaneously, the late-

expiratory burst of the late-E neuron is transformed first to a rebound post-I burst and then 

to a biphasic-E activity pattern with pre-I and post-I components. (B) Bifurcation diagram 

showing the periods of late-E neuron and early-I neuron oscillations as functions of pontine 

drive d1 (indicated on the bottom axis). The diagram shows that with the progressive 

reduction of pontine drive, the system proceeds through a series of bifurcations indicated 

by points a – e and the vertical dashed green lines (see details in the text). (C) Trajectories 

in the (V5, V2, m2) subspace at three levels of pontine drive: unsuppressed (d1 =1, red), 

reduced to 60% (d1 =0.6, green), and reduced to 20% (
1d =0.2, blue) of the initial value, 

while the hypercapnic drive to the late-E neuron is held constant (d3 =0.04, hypercapnia). 

 

becoming more common as pontine drive increases. Specifically, in the (b,c) interval, late-

E neuron bursts alternate between pre-I and post-I. Then, to the right from c, two out of 

every three late-E bursts occur during the post-I phase, and so on. This sequence converges 

at point d. The transitions between these regimes likely occur through chaotic behavior 

(note the spread in periods in the vicinity of the points b, c and d). The period of the pre-

BötC neurons does not undergo any further jumps as late-E neuron activity transitions from 

a post-I type to a biphasic-E response (point e). At point e, the post-I activity becomes 

weak enough to allow for the emergence of second late-E neuron bursts in the pre-

inspiratory phase. This converts the shape of late-E neuron activity to a biphasic-E (pre-

I/post-I) discharge. 

Figure IV-7C shows projections of typical trajectories to the (V5, V2, m2) subspace, 

corresponding to three levels of pontine drive (unsuppressed pontine drive, 
1d =1, red; 

40% suppression, d1=0.6, green; and 80% suppression, d1=0.2, blue), while the 

hypercapnic drive to the late-E neuron is held constant (d3=0.04, hypercapnia). Periods of 

sub- and supra-threshold late-E neuron activity are distinguished by dashed and solid lines, 
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respectively. When d1=1, a 1:1 late-E to pre-I/I and early-I synchronization is observed, 

and therefore all instances of supra-threshold V2 activity are preceded by supra-threshold 

V5 activity. Once supra-threshold V2 activity is achieved, m2 begins to increase, and soon 

thereafter, V5 rapidly drops due to inhibition from the early-I. After termination of late-E 

neuron activity, 
2m  continues to increase and causes a gradual decrease in V2, until the post-

I neuron is released and early-I neuron activity ends (Figure IV-7C-D). Finally, after V2 has 

decreased to a minimum, there is a small decrease in V5 as inhibition from the post-I neuron 

takes over and expiration begins. During expiration, m2 resets to its initial value before the 

late-E neuron bursts again and restarts the cycle. For d1=0.6 (green trajectory), the periods 

when V2 and V5 are supra-threshold have become separate. At the end of inspiration, m2 

begins to decrease and a V5 rebound emerges. During the rebound, V2 remains unchanged 

and no supra-threshold activity is observed until 
2m  reaches its minimum, well after V5 

activity has ended. The inspiratory phase, marked by an increase in V2, begins after m2 

reaches its minimum; this phase then terminates similarly to the trajectory corresponding 

to d1=1. When the pontine drive is further suppressed (d1=0.2, blue) a biphasic-E pattern is 

observed. Following the termination of inspiration, an immediate increase in V5 to supra-

threshold activity is observed. This rebounding activity occurs while m2 is still quite 

elevated and terminates earlier in the expiratory phase than it does when d1=0.6. After V5 

returns to its sub-threshold state, 
2m  continues to decrease and a second increase in V5 

precedes the emergence of supra-threshold V2 activity. V2 begins its increase with a larger 

value of m2 than in the other cases, presumably due to excitation received from the late-E 

neuron, which allows it to overcome some residual adaptation. V5 then begins to decrease 

as V2 and m2 increase, and inspiration ensues as previously.  
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Figure IV-8A-D illustrates and explains the mechanisms providing the 

transformation in the pattern of late-E neuron activation. In Figure IV-8A-C, the behavior 

of the late-E neuron is considered in the (V5, h5) plane for the regimes shown in Figure 

IV-7C. The positions of the V5 nullclines in this plane are crucial for determining the late-

E behavior. The uppermost nullcline in each plane arises when the late-E neuron is 

maximally inhibited by the early-I neuron. The next nullcline down arises at the onset of 

post-I neuron activity. As d1 is decreased, the peak in post-I neuron activity is reduced and 

hence the inhibition from the post-I to the late-E neuron weakens, changing the position 

that the V5 nullcline takes during post-I neuron activity. Finally, post-I inhibition gradually 

decreases during expiration, causing the V5 nullcline to move progressively lower, and 

certain examples of resulting nullcline positions, occurring at important moments in the 

evolution of each solution, are also shown.  
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Figure IV-8. Phase plane analysis in case of hypercapnic hypoxia. (A)-(C) Blue curves 

show V5 nullclines for various levels of inhibition to the late-E neuron while red curves 

show the h5 nullcline. (A) For d1=1, V5 nullclines shown correspond to the inhibition to the 

late-E neuron at the start of early-I activity (top), at the start of post-I activity (middle), and 

at the moment when late-E activates (bottom). (B) When pontine drive is reduced to 60% 

of the default value (d1=0.6), the late-E neuron exhibits only “rebound” bursts during the 

post-I phase. The top three 5V  nullclines shown are analogous to those in A, although the 

positions of the middle and lower of these three differ due to different levels of post-I 

activation. The lowermost V5 nullcline corresponds to the level of inhibition to the late-E 

neuron at the onset of early-I activity. (C) When pontine drive is reduced to 20% (d1=0.2), 

biphasic late-E neuron activity occurs. The V5 nullclines shown correspond to the inhibition 

to the late-E neuron at the start of early-I activity (top), at the start of post-I activity 

(middle), and just before the onset of early-I activity (bottom). The nullcline corresponding 

to the moment when the late-E neuron undergoes rebound activation (analogous to the 

bottom nullcline in A) is omitted due to its proximity to the middle nullcline shown. (D) 

Projection of model trajectories to the (input2, m2) plane at pontine drive reduced to 60% 

(d1=0.6, grey, rebound regime) and to 20% (d1=0.2, black, biphasic regime), along with 

curve of critical points (blue) and synaptic threshold curves (red; as in Figure IV-5). In the 

both regimes, the dip in the trajectory at high input2  occurs when rebound activation of the 

late-E neuron happens, because the pre-I neuron is slightly activated and hence a small 

excitation to the early-I neuron (decrease in input2) results (see text for further details). 

 



162 

 

 

When d1= 1, the mechanism for the pre-I activation of the late-E neuron is rather 

straightforward. As the post-I neuron adapts and its inhibition to the late-E neuron weakens, 

the LK of the 5V  nullcline eventually dips below the trajectory in the (V5, h5) plane, which 

allows the late-E neuron to jump to high voltage (Figure IV-8A). As discussed with respect 

to Figure IV-5A and Figure IV-6C, by the time this happens, the early-I neuron is ready to 

activate on its own, such that the late-E neuron’s activity ends up occurring just before the 

onset of inspiration, and the pre-I regime of late-E neuron activation results.  

When the pontine drive is reduced, the post-I neuron achieves a lower level of 

activity and thus the inhibition to the late-E neuron during the post-I phase is weaker than 

in the case of full drive. Thus, the 5V  nullcline drops below the trajectory, allowing late-E 

activation earlier in the post-I phase, which we call post-I rebound (Figure IV-8B). This 

activation of late-E could potentially recruit the early-I neuron but in fact fails to do so. 

Indeed, we observe that the pre-I neuron cannot strongly activate in response to this earlier 

late-E activation, because it has not had enough time to recover and overcome the inhibition 

it receives from the post-I and aug-E neurons (Figure IV-7A). The weak activation of the 

pre-I neuron is insufficient to activate the early-I neuron (Figure IV-7A; Figure IV-8D, 

grey trajectory: note that the dip in the upper part remains just above the dashed synaptic 

threshold curve). Since it does not immediately precede inspiratory activity, the activation 

of the late-E neuron cannot be labeled as pre-inspiratory in this case. Indeed, it is likely 

that the various, possibly chaotic regimes arising between the pre-I and post-I rebound 

cases as d1 is reduced (Figure IV-7B) involve shifts in the timing of late-E neuron activation 

relative to the onset of pre-I/early-I neuron activity. Finally, although the late-E neuron’s 

activity ends before pre-I/early-I neuron activity starts, and the trajectory in the (V5, h5) 
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plane returns back to the LB of the V5 nullcline, this trajectory lies below the knee of the 

relevant 5V  nullclines, determined by the inhibition from the post-I neuron to the late-E 

neuron, until the early-I neuron activates and strongly inhibits the late-E neuron, pushing 

the trajectory back to the upper V5 nullcline (Figure IV-8B, “blocked”).  

When the pontine drive becomes lower still, this last observation no longer holds. 

The late-E neuron’s post-I rebound occurs earlier in the post-I phase (also evident in the 

early-I neuron’s dynamics as the dip in the top part of the black trajectory in Figure IV-8D), 

so that h5 has more time to recover before the early-I neuron activates, and furthermore, 

the LK of the V5 nullcline is lower throughout the post-I phase because the post-I neuron’s 

activity is weaker. Thus, the trajectory is able to climb above the knee of the V5 nullcline 

and activate the late-E neuron a second time before the early-I neuron becomes active 

(Figure IV-8C, “pre-I burst occurs”). This second late-E activation yields enough activation 

to pull the early-I neuron into the active phase before it reaches the synaptic threshold on 

its own. The fact that excitatory input plays a role in recruiting the early-I neuron can be 

seen from the fact that the black trajectory in Figure IV-8D lies above the top dashed 

(“synapses on”) curve when it suddenly undergoes a near-vertical drop, corresponding to 

synaptic excitation of the early-I neuron (via excitation of the pre-I neuron by the late-E 

neuron) and resulting in the onset of the inspiratory phase.  

The recruitment of the early-I neuron by the late-E neuron in the biphasic regime, 

which we have identified using phase plane analysis, explains the decrease in early-I 

oscillation period that occurs as pontine drive decreases in the biphasic-E regime, as shown 

in Figure IV-7B. Interestingly, this decrease occurs despite the increase in the aug-E 

activity level and, correspondingly, in the level of inhibition that the aug-E neuron sends 
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to the pre-I and early-I neurons. In addition to explaining this aspect of how period changes 

with pontine drive, our analysis makes a clear prediction that post-I rebound occurs as a 

natural intermediate state between regimes in which late-E neuron activation is a pre-I 

event and those in which late-E neuron activation is biphasic: in the model, as post-I neuron 

activity weakens, late-E neuron activity can emerge earlier in the respiratory period via 

rebound, but only with additional post-I weakening can the late-E neuron activate a second 

time before the pre-I/early-I neurons are activated and suppress the late-E neuron. 

 

C-4. Quantal slowing of pre-BötC oscillations 

“Quantal slowing” of breathing is a phenomenon in which the average breathing frequency 

is reduced as a result of the skipping of output bursts in the pre-BötC or phrenic motor 

output while RTN/pFRG or related abdominal oscillations are maintained [42], [172]. 

Experimentally, this phenomenon was demonstrated by administration of μ-opioid 

agonists, such as DAMGO or fentanyl, which was suggested to suppress excitability of 

pre-BötC neurons [42], [172].  

To simulate quantal slowing in the model, we started from conditions of 

“hypercapnic hypoxia”, established by increasing the “hypercapnic” drive to d3=0.04 and 

reducing pontine drive to d1=0.4, so that the late-E neuron expressed biphasic-E busts with 

1:1 coupling to the pre-BötC oscillations (see Figure IV-7A, Figure IV-9A). Pre-BötC 

depression was simulated by a progressive reduction of the maximal conductance of 

excitatory synaptic inputs ( }2,1{, ig SynE ; the default value is 10 nS) in both pre-BötC 

neurons (pre-I/I and early-I). The results of the quantal slowing simulation are shown in 

Fig. 9A, where SynEg  in the pre-I/I and early-I neurons is reduced linearly over time from 
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80% of the default value to 64%, at which point the ratio of the late-E to pre-BötC 

oscillation frequencies becomes 5:1, and then kept constant. 

 

 

Figure IV-9. “Quantal slowing” in a reduced model of the medullary VRC. (A) Simulation 

of “quantal slowing” of pre-BötC oscillations. “Hypercapnic hypoxia” conditions were set 

by fixing “hypercapnic” drive at 3d =0.04 and reducing pontine drive to 1d =0.4, so that the 

late-E neuron expressed biphasic-E busts with 1:1 coupling to the pre-BötC oscillations 

(see the text and Figure IV-7A). Pre-BötC depression was simulated by a progressive 

reduction of the maximal conductance of excitatory synaptic inputs in both pre-BötC 

neurons (the default value is 10 nS). SynEg  in the pre-I /I and early-I neurons was linearly 

reduced from 80% of the default value to 64%, where the ratio of the late-E neuron to pre-
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BötC neuron oscillation frequencies becomes 5:1, and then kept constant. (B) Bifurcation 

diagram of the period of pre-BötC oscillations as a function of synEg  in pre-BötC neurons 

(pre-I/I and early-I). synEg  defines the excitability of these neurons and is reduced from its 

default value (on the left) to 60% of the default value (to the right). The late-E neuron’s 

period remains relatively constant as the pre-BötC neuron’s period proceeds through a 

series of jumps in duration. Each jump represents a quantal change of the ratio of the pre-

BötC oscillation frequency to the late-E frequency. (C) Two-parameter bifurcation diagram 

that shows the period of pre-BötC oscillations as a function of pontine drive and synEg . 

Darker colors indicate shorter periods of pre-BötC activity (see palette on the right). The 

yellow area indicates no activity in the pre-BötC neurons. Areas of different regimes are 

labeled by the ratio of the late-E frequency to the pre-BötC frequency (from 1:1 to 5:1). 

The dashed white line indicates the level of pontine drive corresponding panels A and B. 

(D) A trajectory in the (V5, V2, h2)  subspace generated with the pontine drive reduced to 

40% (d1=0.4) and synEg  reduced to 65% of baseline, representing the 4:1 synchronization 

regime. The part of the trajectory for which early-I neuron activity is sub-threshold (below 

-50 mV) is dashed and the part with supra-threshold early-I activity is solid. 

 

The suppression of excitability of the pre-BötC neurons compromises their ability to 

activate via escape from the inhibition of the BötC neurons. When pre-BötC neurons are 

unable to escape, expiration increases in duration. Late-E neuron activity remains biphasic 

precisely on those cycles on which pre-BötC neurons fire (Figure IV-9A). Consistent with 

cycle skipping, the bifurcation diagram in Figure IV-9B, created by simulating the model 

for each of a sequence of fixed SynEg  values between 100% and 60% of the default value, 

shows that the period of the pre-BötC oscillations increases as the suppression of pre-BötC 

excitability progresses. The gradual decrease of pre-BötC excitability causes the pre-BötC 

to move through a series of regimes with increased periods of pre-BötC oscillations 

(quantal slowing), arising as ratios (1:1, 2:1, etc.) of the late-E frequency to the pre-BötC 

frequency. The existence of such regimes depends on the pontine drive suppression, 

reflecting the level of “hypoxia”. The two-parameter bifurcation diagram in Figure IV-9C 

illustrates this relationship. A reduction of pontine drive changes the levels of pre-BötC 
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excitability at which the “steps” between regimes of synchronization, with different 

frequency ratios between the late-E and pre-BötC oscillations, occur. Figure IV-9D shows 

a trajectory in ),,( 525 hVV  at 1d =0.4 and synEg  reduced to 65%, corresponding to the 4:1 

regime (see Figure IV-9A,B). Three cycles of late-E neuron activation and deactivation 

occur without any supra-threshold early-I neuron activity. After the fourth late-E neuron 

activation, V2 increases above the synaptic threshold and early-I neuron activity ensues. 

The activation of the early-I neuron causes a decrease in V5 (silencing the late-E neuron). 

Finally, V2 proceeds back to a sub-threshold value, and the late-E neuron’s bursts resume. 

 Using phase plane analysis, we can explain why late-E neuron activity is biphasic 

precisely on those cycles where inspiratory activation occurs. On “rebound cycles” that 

lack supra-threshold early-I activity, the projection of the trajectory to the (V5, h5) plane 

reaches the LK of the appropriate V5 nullcline and the late-E neuron activates (Figure 

IV-10A), and then the trajectory travels down the RB of the 5V  nullcline, hits the RK, and 

returns to the LB of the V5 nullcline. This late-E neuron activation, however, fails to elicit 

early-I neuron activation and the associated increase in inhibition (inh5) of the late-E 

neuron. Over successive rebound cycles, post-I and aug-E activity levels, and hence the 

level of inh5, quickly equilibrate. Figure IV-10B shows another view of these cycles as part 

of a full 2:1 trajectory, projected to the (h5, inh5) plane. This image includes LK (solid) and 

RK (dashed) curves. Each late-E neuron activation cycle corresponds to an excursion from 

the LK curve to the RK curve and a return to the LK curve. On pure rebound cycles, since 

inh5 is approximately constant, the trajectory is roughly horizontal (Figure IV-10B, pure 

rebound). Eventually, a cycle is reached on which late-E neuron activation does lead to 

early-I neuron activity (Figure IV-10B, pre-I), with a corresponding rapid rise in inh5. The 
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inhibition to the late-E neuron elicited by the activation of the early-I neuron causes the V5 

nullcline to move to a high position in the (V5, h5) plane (Figure IV-10A; also Figure 

IV-8C). In particular, the right knee of the V5 nullcline has an h5-coordinate that 

significantly exceeds the h5 value on the solution trajectory at the onset of early-I activity 

(Figure IV-10B; note that the h5 value at the point of highest inh5 along the trajectory is 

much smaller than the h5 value at the red, dashed RK curve for that inh5). Thus, the late-E 

neuron quickly returns to the silent phase when early-I neuron activity starts (as illustrated 

in Figure IV-5A, middle excursion, as well). This rapid return prevents significant 

inactivation of INaP in the late-E neuron, such that 5h  remains relatively high, and 5h  

continues to increase while the late-E neuron is inhibited by the early-I neuron throughout 

the inspiratory phase (Figure IV-10B, inspiration). When inspiration ends and this 

inhibition is removed, the high value of h5 relative to the LK of the 5V  nullcline (Figure 

IV-10B; note that the part of the trajectory with lowest inh5 and 35.05 h  has 5h  well above 

the solid, red LK curve for that inh5) allows the late-E neuron to undergo rebound 

activation, resulting in a biphasic late-E activity profile (Figure IV-10B, post-I rebound; 

note that the post-I neuron also activates at that time, causing 5inh  to become nonzero along 

the post-I rebound part of the trajectory).  
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Figure IV-10. Phase plane analysis in the case of suppression of pre-BötC excitability. (A) 

Cycling of late-E activity during expiration. V5  nullclines are shown as solid blue curves; 

the upper nullcline corresponds to the onset of inhibition from the early-I neuron and the 

middle and lower nullclines to the onset and steady-state levels of inhibition from the post-

I neuron, respectively. The black trajectory represents a series of late-E neuron activation 

cycles occurring during expiration that are not followed by pre-I/early-I activity. (B) 

Trajectory for an oscillation with a 2:1 late-E:early-I oscillation frequency ratio, in the (h5, 

inh5) plane. Included with the trajectory are curves of left knees (solid red) and right knees 

(dashed red). The horizontal parts of the trajectory correspond to periods when the late-E 

neuron is active; the post-I rebound immediately follows inspiration while the pure rebound 

occurs without inspiratory activity. The segment of the trajectory labeled pre-I corresponds 

to the time of activation of the late-E neuron just prior to inspiration, which is followed by 

the activation of the pre-I/early-I neurons, the sharp rise in inh5, and the subsequent 

inspiration phase. (C), (D) Projections of the trajectory for a 4:1 late-E:early-I solution. (C) 

(V1, h1) plane for the pre-I neuron. The trajectory is superimposed on the 
1h  (red) and 

1V  

nullclines (blue) corresponding to the steady-state level of inhibition from the post-I/aug-

E neurons (upper) and to the absence of inhibition (lower). The threshold for the turn-on 

of synaptic output from the pre-I neuron is also shown (dashed blue). Time increases in a 

clockwise direction along the trajectory. Note that there are five, not four, excursions in 
1V

away from the LB in this image due to the fact that the late-E neuron, which excites the 

pre-I neuron, exhibits one cycle of biphasic activation. (D) (m2, input2) plane for the early-

I neuron. The trajectory is superimposed on the curves corresponding to the onset of early-

I synaptic activity (upper dashed red), half-maximal (solid red), and maximal (lower 

dashed red) early-I synaptic activity. The blue curve is a curve of critical points, which 
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becomes vertical at 
2m =0. Time increases in a counterclockwise direction along the 

trajectory, with the top corresponding to expiration and the bottom to inspiration. 

  

It is not surprising that a reduced pre-BötC excitability causes the pre-BötC neurons 

to skip cycles. Exactly which cycles will be skipped is determined by the evolution of the 

variables for these neurons in the model network, relative to the synaptic activation 

threshold, which reflects the level of inhibition that they receive. More precisely, the pre-I 

neuron receives synaptic excitation when the late-E neuron activates. This excitation may 

push 
1V  above the synaptic activation threshold of -50 mV (Figure IV-10C), but it will not 

induce full pre-I neuron activation if the trajectory does not reach the RB of the 
1V  

nullcline. The weak crossing of the synaptic activation threshold by the pre-I neuron results 

in a weak excitation of the early-I neuron, which either fails to turn on the early-I neuron’s 

synaptic outputs (Figure IV-10D; note that excursions 1 and 2 lie above the “synapses on” 

curve) or turns them on only very weakly (Figure IV-10D, excursion 3), such that the early-

I neuron cannot terminate post-I/aug-E activity and take over. In the example shown in 

Figure IV-10D, the m2-coordinate of the trajectory approaches a minimum value very close 

to 0 while the early-I neuron is inactive until finally, a fourth activation of the late-E neuron 

pulls the trajectory across the early-I synaptic activation curve (by decreasing input2) and 

causes the onset of inspiration.  

We emphasize that, in contrast to hypercapnic simulations, the activation of the 

early-I neuron in the case of quantal slowing results not from escape but from recruitment 

by the late-E neuron. Thus, the burst times of the pre-BötC neurons are set by the 

RTN/pFRG period in this regime, which stands as a prediction of the model, along with 
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the prediction that biphasic late-E neuron activation occurs exactly on those cycles on 

which early-I neuron activation occurs. 

 

D. Discussion 

We have analyzed a reduced model based on a proposed network of interactions [41] 

between two oscillators involved in the neural control of breathing: a BötC/pre-BötC 

oscillator that is considered a rhythmogenic kernel of the respiratory CPG, and a 

RTN/pFRG late-E oscillator that is activated with increasing metabolic demands and, when 

activated, generates late-E (or pre-inspiratory) oscillations. Using simulations and 

bifurcation analysis, we have explored how changes in drives within the network shift 

output patterns from a baseline state of late-E neuron quiescence, through a regime of late-

E neuron quantal acceleration featuring 1:N phase-locking between late-E and BötC/pre-

BötC activation, through an evolution of late-E neuron output patterns culminating in 

biphasic activation, to a regime of quantal slowing featuring N:1 phase-locking between 

late-E and BötC/pre-BötC activation. Using phase plane analysis, we have explained the 

mechanisms for transitions between regimes and have also elucidated why recruitment of 

late-E activity in quantal acceleration does not affect BötC/pre-BötC period, why a regime 

of post-I rebound late-E neuron activation arises before biphasic late-E neuron activation 

and why BötC/pre-BötC period decreases as pontine drive in the model is reduced, and 

why biphasic late-E activation persists precisely on cycles featuring BötC/pre-BötC 

activation in quantal slowing. These features of model dynamics all stand as predictions 

for subsequent experimental testing, and inasmuch as our analysis shows how particular 

model components affect these features, we can also predict the effects of experimental 
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manipulations, such as changes in excitability of particular respiratory neuron populations, 

on network outputs. 

 

D-1. Two oscillators involved in respiratory rhythm generation  

The longstanding view has been that the generation of the respiratory rhythm and 

(inspiratory-expiratory) motor pattern involves network interactions, mostly inhibitory, 

between different populations of respiratory neurons located within, or distributed over, 

multiple brain stem compartments [3], [5], [203]. From the time of its discovery [23], the 

pre-BötC has been shown to play an essential role in respiratory rhythm generation 

(reviewed in [20]). However, the pre-BötC alone (without interactions with other brain 

stem compartments, e.g., with the BötC) is not sufficient for generating the normal 

respiratory rhythm and pattern (eupnea). Recent experimental studies, based on a series of 

brain stem transections in situ, and the corresponding modeling studies suggest that the 

network interactions within and between the pre-BötC and BötC, along with the intrinsic 

rhythmogenic properties of pre-BötC neurons, form a hierarchy of multiple oscillatory 

mechanisms [16], [19], [36], [186]. The functional expression of these mechanisms is 

controlled by drives from other brain stem components, including the RTN and pons, which 

regulate the dynamic behavior of the core circuitry and may re-organize it with changes in 

physiological or metabolic conditions [16], [19], [36], [186]. The important role of the 

BötC and other brain stem regions for respiratory rhythm generation has been 

experimentally re-confirmed by several studies [191], [202], [215]. 

Alternatively, the current dual oscillator concept suggests that there are two distinct 

rhythm generators driving breathing when the RTN/pFRG is active: one located in the pre-
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BötC and considered to be an inspiratory rhythm generator, and another located in the 

RTN/pFRG and considered as an expiratory rhythm generator [42], [172]. This contrasts 

with our suggestion that the first oscillator represents a core network of the respiratory 

CPG that generates coordinated respiratory (i.e., inspiratory, post-inspiratory and 

expiratory) oscillations, particularly due to the network interactions within the CPG kernel 

(BötC/pre-BötC) that in turn are controlled by inputs from other brain stem compartments 

(RTN, pons). Indeed, the essential feature of our model, distinguishing it from other related 

models, is that rhythm generation in this oscillator relies on the network interactions within 

the pre-BötC/BötC circuitry and generates not just inspiratory oscillations but a 

coordinated inspiratory-expiratory oscillatory pattern. In particular, this circuitry generates 

its own expiratory activity (provided by post-I and aug-E neurons of the BötC), which also 

contributes to the specific interactions between the CPG kernel and the RTN/pFRG 

oscillator.  

 

D-2. Modeling the interactions between the oscillators  

Three relatively simple computational models have been proposed previously to simulate 

coupling between pre-BötC and RTN/pFRG oscillators and to suggest possible 

mechanisms that govern their interactions. Joseph and Butera, 2005 used an abstract 

canonical model composed of two identical phase oscillators [183]. Wittmeier et al., 2008 

simulated both oscillators as single neurons with INaP-dependent bursting properties 

described previously [125], and Lal et al., 2011 considered interacting populations of such 

neurons [204]. The connections between the oscillators proposed in all these models were: 

(a) an excitatory input from the RTN/pFRG oscillator to the pre-BötC oscillator, providing 
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the entrainment of the latter by the former, and (b) an inhibitory input from the pre-BötC 

oscillator to the RTN/pFRG one, providing inhibition of the latter during inspiration. These 

connections were sufficient to reproduce regimes of quantal slowing of the pre-BötC 

oscillator with the phase relationships observed experimentally under conditions of 

reduced excitability of pre-BötC neurons, which was considered as a test for these models. 

The same two connections have been included in our model (Figure IV-1A), which also 

produced a realistic simulation of quantal slowing behavior (see Figure IV-9), without 

requiring any decrease of pre-BötC activation amplitude, as was needed in an earlier study 

[204]. Note, however, that while these two connections are sufficient for reproducing 

quantal slowing behavior, the RTN/pFRG oscillator has a much stronger effect on pre-

BötC oscillations than the pre-BötC has on the RTN/pFRG oscillator. 

In our more complete model, this imbalance arises specifically in the regime of 

quantal slowing (see Chapter III: C-4). In contrast to the dual oscillator concept [42], [172] 

and the previous models [174], [183], [204], in which the pre-BötC oscillator is only active 

and able to affect the RTN/pFRG oscillator during inspiration, our model incorporates an 

additional third connection, namely the inhibitory connection from the post-I neuron of the 

BötC to the late-E neuron of the RTN/pFRG. Our analysis shows that this connection is 

critical for reproducing and explaining the regime of quantal acceleration of RTN/pFRG 

oscillations [41], [87], [173], [212]. Moreover, we showed that the reduction/suppression 

of this inhibitory input is critical for the transformation of the late-E activity to the biphasic-

E pattern during simulated hypercapnic hypoxia/anoxia (Figures IV-6, IV-7, and IV-8; see 

also [212].  



175 

 

 

The existence of (presumably post-I) inhibition of RTN/pFRG activity during 

expiration is consistent with previously proposed inhibition of RTN chemosensitive 

neurons by the medullary CPG circuits during both inspiration and expiration [47], [92], 

[182] and is indirectly confirmed by the experimental finding that blockade of inhibition 

within RTN/pFRG can produce (release) and accelerate the RTN/pFRG and/or abdominal 

oscillations in normal metabolic conditions [185], [216]. 

 

D-3. Coupling between the BötC/pre-BötC and pFRG/RTN oscillators 

Within the framework of synchronization, the BötC/pre-BötC and RTN/pFRG generators 

can be considered as a system of coupled oscillators. The dynamics of each oscillator may 

be represented by a stable limit cycle in some phase space. The phase space of a system of 

two oscillators is a Cartesian product of the phase spaces of each oscillator. The 

corresponding limit set is a 2D invariant torus and the behavior of this system is represented 

by a trajectory on this torus (Figure IV-11A1,A2; see also [217]). If the ratio of oscillation 

frequencies of the two oscillators is rational (i.e. equal to N/M, for some integers N and 

M), then this trajectory is closed, indicating N:M synchronization between oscillators, 

where the numbers N and M represent topological invariants, namely the numbers of 

rotations around two orthogonal circles that together span the torus (e.g., large and small 

circles as illustrated in Figure IV-11A1,A2). 
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Figure IV-11. Illustration of coupling between two oscillators with different ratios of 

frequencies represented by the trajectories on a 2D torus. (A) In A1 the system makes 4 

“large” cycles during 1 “small” cycle (1:4 synchronization regime). In A2 the system 

makes 4 “small” cycles during 1 “large” cycle (4:1 synchronization regime). (B1), (B2) 

The corresponding examples from the current model with different ratios between the late-

E (pFRG/RTN) and BötC/pre-BötC oscillations shown in (V2, m2+h5, V5) sub-space. The 

trajectory in B1 corresponds to a “weak hypercapnia” 1:3 synchronization regime, in which 

one cycle of late-E corresponds to 3 rotations of early-I. In B2, the excitability of pre-BötC 

neurons is suppressed, producing the 4:1 synchronization regime. The oscillators switch 

their roles. Late-E traverses 4 cycles while early-I rotates only once. 

 

With changing conditions, the system of coupled oscillators can proceed through 

regimes characterized by different relations between oscillation frequencies and phase 

relationships. In this context, the specific interactions between the oscillators perform two 

functions. First, they help select the particular (N,M) pairs for which stable synchronized 

oscillations occur, and second, they constrain the phase relationships between the 

oscillators within these oscillations. The regimes considered in this study can be interpreted 

based on this concept. 
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Interestingly, our analysis reveals that a sequence of shifts in the functional 

coupling between the BötC/pre-BötC and RTN/pFRG oscillators occurs across the regimes 

that we have simulated. Our simulation of progressive hypercapnia (Figure IV-4) is based 

on a gradual increase of RTN/pFRG excitability that results in a quantal increase in the 

frequency of RTN/pFRG oscillations, as seen in abdominal motor output [41], [87], [173]. 

With a progressive increase of RTN/pFRG excitability (as could be defined by the CO2 

level), these oscillations emerge then accelerate and proceed through a series of phase-

locked resonances with 1:N ratios between the RTN/pFRG and BötC/pre-BötC 

frequencies, with N decreasing from an initial higher value to 1 (see Figure IV-11B1). 

Given the tuning of our model to reproduce experimentally observed regimes of activity, a 

feature that arises is that by the time post-I inhibition decays enough to allow late-E 

activation, the early-I neuron has already reached the synaptic activation curve and is thus 

able to escape (despite roughly constant inhibition from post-I plus aug-E) and become 

active on its own, without the excitatory input triggered by the late-E neuron (Figure 

IV-5C). In this regime, late-E neuron activation is also independent of BötC/pre-BötC 

activity, such that the two oscillators are effectively uncoupled. Moreover, although the 

late-E neuron activates first on cycles in which it does become active, it does not entrain 

inspiratory activity and hence the frequency of the RTN/pFRG oscillations approaches the 

frequency of the BötC/pre-BötC oscillator, which remains essentially constant, as N 

decreases. The maintenance of a steady oscillation frequency in hypercapnia, despite the 

appearance and acceleration of late-E activity, represents a prediction of this model, 

although this may be specific to particular experimental settings that lack additional 

feedback signals (e.g. from lung stretch receptors) not present in the model. Furthermore, 
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since post-I neuron activation occurs through release from inhibition from the early-I 

neuron, and this inhibition is shared by the late-E neuron as well, our model suggests the 

theoretical possibility that the timing of late-E activity could switch from pre-I to post-I or 

even biphasic under strong hypercapnic conditions.  

In simulated hypercapnic hypoxia (Figure IV-7), the system can exhibit phase-

locked regimes with different phase shifts depending on pontine drive, which controls the 

expression of post-I neuron activity and hence the inhibition from the post-I neuron to the 

late-E and pre-BötC neurons. If late-E neuron activity entrained pre-BötC activity in the 

regime when late-E neuron activation directly precedes pre-BötC activity, then a decrease 

in post-I inhibition would be expected to maintain and accelerate the regime of pre-

inspiratory late-E neuron activation (pre-I regime). Instead, a switch to the rebound regime, 

in which late-E activity occurs during expiration but is not associated with a switch to 

inspiration, occurs. In the rebound regime, the late-E neuron would be able to generate 

repetitive oscillations on its own under the reduced level of post-I inhibition, especially as 

that inhibition decayed during expiration. The inhibition that the late-E neuron receives 

from the early-I neuron during inspiration, however, suppresses its activity, setting up a 

certain phase relationship between inspiration and late-E activation (Figure IV-8B). After 

this inhibition is removed, the late-E neuron can break free from post-I inhibition more 

easily than it could in the purely hypercapnic regime. But the excitation of the pre-BötC 

that ensues from an earlier late-E activation cannot cause early-I activation (Figure IV-8D). 

Thus, the RTN/pFRG/pre-BötC network switches from being effectively decoupled in the 

pre-I regime to having an effectively one-way coupling, from pre-BötC to RTN/pFRG, in 

the rebound regime. We note that the transitions between these regimes occur through 
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aperiodic, possibly chaotic, behaviors (see Figure IV-7B), corresponding to a form of 

asynchronous dynamics as the oscillators cannot settle into a phase-locked regime.  

As pontine drive is progressively lowered, the rebound regime gives way to the 

biphasic regime when the late-E neuron recovers enough, due to its intrinsic dynamics and 

the further weakened post-I inhibition, to activate a second time during expiration. In 

contrast to the pre-I regime observed in pure hypercapnia, this second activation does 

recruit the pre-BötC neurons (Figure IV-8D). Pre-BötC neuron activity suppresses late-E 

neuron activity, but as a result the persistent sodium current for the late-E neuron shows 

little inactivation and the late-E neuron can rebound immediately following the end of 

inspiration (Figure IV-8C), yielding the biphasic activity profile. Thus, the biphasic regime 

reflects two-way coupling between the RTN/pFRG and BötC/pre-BötC oscillators. A 

decrease in oscillation period in this regime arises because less INaP deinactivation is 

required for the late-E neuron to escape from the weaker post-I inhibition and the late-E 

neuron is able to entrain the pre-BötC neurons, despite the increase in aug-E activity and 

the associated inhibition. A subtle point is that, because the late-E rebound occurs earlier 

than in the pure rebound regime, the resulting excitation does not interfere as much with 

recovery of the pre-I pre-BötC neurons (through deinactivation of INaP) as its later rebound 

does. 

In summary, our model offers a possible explanation of why, under gradual 

suppression of pontine drive, the timing of late-E activation progresses from late-E 

activation to rebound activation and finally to biphasic activation. This hypothesis yields 

the prediction that recordings featuring biphasic late-E activity represent states of low 
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pontine drive or high pontine suppression or states in which some other factor limits post-

I activation. 

Finally, in addition to effects of hypercapnia and reduced pontine drive, we have 

considered progressive suppression of pre-BötC excitability (e.g., by opioid agonists), 

which leads to quantal slowing of pre-BötC activity [42], [43], [172]. In this regime in our 

model, the network interactions between the oscillators (specifically the excitatory 

connection from the RTN/pFRG to pre-BötC) provide phase locking. Due to their 

decreased excitability, the pre-BötC neurons depend on recruitment by the late-E neuron 

to activate. Thus, the pre-BötC frequency is quantally reduced through a series of 

resonances with M:1 ratios between the RTN/pFRG and BötC/pre-BötC frequencies with 

M increasing from 1 to higher values (see Figure IV-11B2). The pre-BötC to RTN/pFRG 

connection becomes less important in this regime than in the others. This connection does 

yield the biphasic late-E neuron activity profiles seen in oscillation cycles that feature pre-

BötC activity (Figure IV-10B). However, the time interval between late-E neuron 

activations does not differ noticeably between these cycles and cycles of pre-BötC skipping 

(Figure IV-9 A) and the late-E neuron controls oscillatory period. The mechanisms 

responsible for the precise shapes of the curves delineating transitions between regimes as 

pontine drive and pre-BötC excitability vary (Figure IV-9 C), and the full characterization 

of the dynamics of the model network presented here, remain for further investigation.  

 

D-4. Modeling issues 

We have used a reduced model in this paper. This reduction includes the omission of 

various currents present in biological neurons and imposes certain characteristics on the 
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model’s outputs. In particular, the model aug-E neuron exhibits a brief surge of activity at 

the start of the post-I phase in our simulated solutions. This surge is a figment of the model 

aug-E neuron’s monotone nullclines. With such a simplified model structure, the rapid 

cessation of inhibition from the early-I neuron causes the aug-E voltage nullcline to quickly 

move to elevated voltages, and a corresponding rise in the aug-E neuron’s voltage results. 

Post-I activation quickly tamps out the aug-E surge, and this feature is not necessary in the 

model rhythms. Similarly, there is little distinction between the timing of activation of the 

pre-I and early-I neurons in the model. We claim that our insights about the relationship of 

late-E and pre-BotC activity in different regimes will carry over to activity patterns with a 

more realistic time shift between pre-I and early-I phases. In particular, the idea that pre-

BotC activity need not be entrained by late-E in hypercapnia would hold if the early-I 

escape from inhibition were replaced by a pre-I escape and subsequent recruitment of the 

early-I neuron.  

Our models for the pre-I/I neuron in the pre-BotC and the late-E neuron in the 

RTN/pFRG include persistent sodium current. It remains for future work to incorporate 

additional factors that may contribute to pre-BötC dynamics (see [35] and references 

therein) into a respiratory network setting. Similarly, although the persistent sodium current 

is prevalent in respiratory neurons and appears to be significant in late-E dynamics, it is 

important to note that equivalent dynamics can be achieved by other inward, slowly 

inactivating or outward, slowly activating currents [218]. 

By means of the qualitative analysis presented in this study we have shown that the 

proposed model closely reproduces several behaviors observed experimentally. This 

agreement supports the proposed connectivity between the RTN/pFRG and pre-BötC/BötC 
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circuits and changes in model parameters used for simulating the experimentally applied 

changes in metabolic or physiological conditions. Our simulation results suggest that the 

functional roles of the synaptic connections between possible pre-BötC and RTN/pFRG 

oscillator networks change under variations in respiratory demand, with suppression of 

RTN/pFRG, relative independence, each direction of one-way effective coupling, and two-

way effective coupling each emerging in specific situations and resulting in particular 

activity profiles, as discussed in the previous section. Thus, this coupled oscillator network 

embodies an inherent flexibility that likely enhances the capacity of the CPG to respond 

dynamically to changing conditions. 

 

E. Summary of predictions 

Sub-cellular level predictions: Same as previous chapter. 

 

System level predictions: Same as previous chapter.  

Qualitative analysis of the reduced model indicated that the transition from 

expiration to inspiration is governed by the early-I neuron’s “escape” from post-I inhibition 

(escape was defined by the adaptive variable reaching a threshold and causing activation, 

see [167]). This mechanism differs from release, i.e. reduced inhibition to a neuron 

allowing the emergence of that neuron, which governs the transition from inspiration to 

expiration. This predicted mechanism is supported by the shortening of expiration with no 

appreciable change in the inspiratory phase, following RTN/pFRG emergence. This 

finding suggests that the respiratory network is constructed to provide robust durations of 

inspiration at the expense of the expiratory phase’s variability.   
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Chapter V: Control of breathing by interacting pontine and pulmonary feedback 

loops 

 

The following section was adapted from the following accepted manuscript: Y. I. Molkov, 

B. J. Bacak, T. E. Dick, and I. A. Rybak, “Control of breathing by interacting pontine and 

pulmonary feedback loops.,” Front. Neural Circuits, vol. 7, p. 16, Jan. 2013. 

 

A. Introduction 

As in other CPGs, afferent feedbacks are involved in the control of the mammalian 

respiratory CPG and the generation and shaping of the breathing pattern. Many peripheral 

mechano- and chemo-sensory afferents, including those from the lungs, tracheobronchial 

tree and carotid bifurcation, provide feedback signals involving in the homeodynamic 

control of breathing, cardiovascular function, and different types of motor behaviors 

coordinated with breathing, such as coughing (see [219], for review). The NTS is the major 

integrative site of these afferent inputs. The present study focuses on the mechanoreceptor 

feedback mediated by pulmonary stretch receptors (PSRs). These mechanoreceptors 

respond to mechanical deformations of the lungs, trachea, and bronchi, and produce a burst 

of action potentials during each breath, thereby providing the central nervous system with 

feedback regarding rate and depth of breathing (see [12], for review). Activation of PSRs 

elicits reflex effects including inspiratory inhibition or expiratory facilitation (representing 

the so-called Hering-Breuer reflex), enhancement of early inspiratory effort, 

bronchodilatation, and tachycardia. PSR axons travel within the vagus nerve, and form 

excitatory synapses in NTS pump cells [10]–[12], [220]–[222]. Pharmacological 
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microinjection and lesion studies [12]–[15], [223] suggest that NTS pump cells mediate 

the Hering-Breuer reflex (lung-inflation induced termination of inspiration). Through 

pump cells, PSR-originating information alters the activity of CPG neurons in manners 

consistent with their proposed roles in rhythm generation. 

The other feedback loop, important for the respiratory CPG operation, involves 

multiple pontine-medullary interactions. The pons (Kölliker-Fuse nucleus, parabrachial 

nucleus, A5 area, etc.) contains neurons expressing inspiratory (I)-, inspiratory- expiratory 

(IE)-, or expiratory (E)-modulated activity, especially in vagotomized animals [3], [64], 

[68], [73], [75], [82], [224]–[229]. This modulation is probably based on reciprocal 

connections between medullary and pontine respiratory regions which were described in a 

series of morphological studies [3], [225], [229]–[233]. The principal source of pontine 

influence on the medulla is thought to be the Kölliker-Fuse region in the dorsolateral pons, 

although other areas, including those from the ventrolateral pons, are also involved [18], 

[58], [60], [64], [68], [75], [78], [184], [225], [227], [234], [235]. Pontine activity 

contributes to the regulation of phase duration as demonstrated by stimulation and lesion 

studies [60], [64], [74], [75], [78], [127], [184], [236]. Stimulation of the Kölliker-Fuse or 

medial parabrachial nuclei induced a premature termination of inspiration (I-E transition) 

and extended expiratory phase. These effects were similar to the effects of vagal 

stimulation [3]. Also, the effects of both vagal and pontine stimulation appear to be 

mediated by the same medullary circuits that control onset and termination of inspiration 

[60], [64], [127], [236], [237]. Finally, the respiratory pattern in vagotomized animals with 

an intact pons is similar to that in animals without the pons and vagi intact. The above 
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observations support the idea that the pontine nuclei mediate a function similar to that of 

the Hering-Breuer reflex. 

 Bilateral injections of NMDA antagonists (MK-801 and AP-5) into the rostral pons 

reversibly increase the duration of inspi-ration in vagotomized rats, and this increase is 

dose-dependent [58]. This suggests that the rostral pons contains neurons with NMDA-

receptors participating in the inspiratory off-switch mechanism. Morrison et al., 1994 

showed that lesions of the parabrachial nuclei in the decerebrate, vagotomized, 

unanesthetized rat produced a significant (4-fold) increase in the duration of inspiration 

and a doubling of the duration of expiration, supporting a role for this pontine area in the 

regulation of the timing of the phases of respiration [238]. This abnormal breathing pattern 

is known as apneusis. Administration of MK-801 into the rostral dorsolateral pons was 

shown to induce apneusis in vagotomized ground squirrels [239]. Systemic injection of 

MK-801 increases the inspiratory duration or results in an apneustic-like breathing in 

vagotomized and artificially ventilated rats. Similarly, Jodkowski et al., 1994 showed that 

electrical and chemical lesions in the ventrolateral pons produced apneustic breathing in 

vagotomized rats [75]. At the same time, apneustic breathing is not usually developed if 

the vagi remained intact and can be reversed by vagal stimulation, suggesting that NMDA 

receptors are not involved in the pulmonary (vagal) feedback mechanism. Feldman et al. 

recorded cells in the rostral pons that exhibited respiratory modulation only when lung 

inflation, via a cycle-triggered pump, was stopped [73]. The emergence of this respiratory-

modulated activity suggests that afferent vagal input may have an inhibitory effect on the 

respiratory modulated cells in the pons (see also [71]). In the same work, it was noticed 

that this activity had no apparent influence on the tonic discharge of pontine neurons, 
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suggesting that this inhibition might be presynaptic. Dick et al., 2008 recorded several 

hundred cells in the dorsolateral pons of decerebrate cats, artificially ventilated by a cycle-

triggered pump before and after vagotomy. In their experiments, vagotomy led to either an 

emergence or facilitation of respiratory modulation in the pons. Sustained electrical 

stimulation of the vagus nerve elicited the classic Hering-Breuer reflex. Systemic or local 

blockade of NMDA receptors can result in an apneustic breathing pattern [58], [237], 

[240]–[244] similar to that demonstrated by pontine lesions or transections. 

 The specifics of feedback control in the brainstem respiratory CPG is that the latter 

operates under control of two control loops (pulmonary and pontine ones), which both 

regulate key neural interactions within the CPG, thereby affecting the respiratory rate, 

respiratory phase durations and breathing pattern, and, at the same time, interact with each 

other so that each of them may dominate in the control of breathing depending on the 

conditions and/or the state of the system. Such feedback interactions and a state-dependent 

feedback control of the CPG may have broader implication in other CPGs in vertebrates 

and/or invertebrates. 

Specifically, our study focuses on the following major feedback loops involved in 

the control of breathing (Figure V-1A): (1) the peripheral, pulmonary (vagal) loop that 

controls the medullary rhythm-generating kernel via afferent inputs from PSRs mediated 

by the NTS circuits, and (2) the pontine control loop, that provides pontine control of the 

respiratory rhythm and pattern. Our central hypothesis is that both the peripheral afferent 

and pontine-medullary loops control the respiratory frequency and phase durations via key 

medullary circuits responsible for the respiratory phase transitions (onset of inspiration, E-

I, and inspiratory off-switch, I-E, see Figure V-1A). In addition, these loops interact 
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changing, balancing, and adjusting their control gain via interaction between NTS and 

VRC and pontine circuits. To investigate the involvement and potential roles of these 

feedback loops and their interactions with the medullary respiratory circuits we simulated 

the effects of suppression/elimination of each and both these feedbacks on the respiratory 

pattern and respiratory phase durations. The results of simulations were compared with the 

related experimental data and showed good qualitative correspondence hence providing 

important insights into feedback control of breathing. 
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Figure V-1. The medullary respiratory network with pulmonary and pontine feedbacks. (A) 

A general schematic diagram representing the respiratory network with two interacting 

feedback. See text for details.(B) The detailing model schematic showing interactions 

between different populations of respiratory neurons within major brainstem compartments 

involved in the control of breathing (pons, BötC, pre-BötC, and rVRG) and the 

organization of pulmonary and pontine feedbacks. Each neural population (shown as a 

sphere) consists of 50 single-compartment neurons described in the Hodgkin-Huxley style. 
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The model includes 3 sources of tonic excitatory drive located in the pons, RTN, and 

raphé—all shown as green triangles. These drives, project to multiple neural populations 

in the model (green arrows; the particular connections to target populations are not shown 

for simplicity, but are specified in Table A3 in the Appendix). See text for details. 

Abbreviations: AP-5, amino-5-phosphonovaleric acid, NMDA receptor antagonist; BötC, 

Bötzinger complex; e, excitatory; E, expiratory or expiration; i, inhibitory; I, inspiratory or 

inspiration; IE, inspiratory-expiratory; KF, Kölliker-Fuse nucleus; MK801, dizocilpine 

maleate, NMDA receptor antagonist; NTS, Nucleus Tractus Solitarii; P, pump cells; PBN, 

ParaBrachial Nucleus; PN, Phrenic Nerve; pre-BötC, pre-Bötzinger Complex; PSRs, 

pulmonary stretch receptors; RTN, retrotrapezoid nucleus; r, rostral; VRC, ventral 

respiratory column; VRG, ventral respiratory group. 

 

B. Methods 

B-1. Simulation Package 

All simulations in this study were performed using a neural simulation package NSM-3.0 

developed at Drexel by Drs. Markin, Shevtsova, and Rybak and ported to the high-

performance computer cluster systems running OpenMPI by Dr. Molkov. This simulation 

environment has been specifically developed and used for multiscale modeling and 

computational analysis of cross-level integration of: (a) the intrinsic biophysical properties 

of single respiratory neurons (at the level of ionic channel kinetics, dynamics of ion 

concentrations, synaptic processes, etc.); (b) population properties (synaptic interactions 

between neurons within and between populations with random distributions of neuronal 

parameters); (c) network properties (connectivity strength and type of synaptic 

interactions, with user-defined or random distribution of connections), (d) morpho-

physiological structure (organization of interacting modules/compartments) (see [16]–[19], 

[89], [136], [245], [246]. NSM-3.0 has special tools for simulation of various in vivo and 

in vitro experimental approaches, including suppression of specific ionic channels or 

synaptic transmission systems, various lesions/transections, application of various 
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pharmacological, electrical and other stimuli to particular neurons or neural populations, 

etc. 

 

B-2. Modeling basis: Neuronal parameters and ionic channel kinetics 

The model presented in this paper continues a previously published series of models of 

neural control of respiration [16]–[19], [89], [136], [245], [246] and, specifically, 

represents an extension of the Smith et al., 2007 model [16]. Following that model, each 

neuron type in the present model was represented by a population of 20–50 neurons. Each 

neuron was modeled as a single-compartment neuron described in the Hodgkin-Huxley 

(HH) style. These neuron models incorporated the currently available data on ionic 

channels in the medullary neurons and their characteristics. Specifically, the kinetic and 

voltage-gated and characteristics of fast (Na) and persistent (NaP) sodium channels in the 

respiratory brainstem were based on the studies of the isolated pre-BötC neurons in rats 

[156]. The kinetics and steady-state characteristics of activation and inactivation of high-

voltage activated (CaL) calcium channels were based on the earlier studies performed in 

vitro [247] and in vivo [237]. Temporal characteristics of intracellular calcium kinetics in 

respiratory neurons were drawn from studies of Frermann et al., 1999 [248]. Other 

descriptions of channel kinetics were derived from previous models [16], [19]. 

Heterogeneity of neurons within each population was set by a random distribution 

of some neuronal parameters and initial conditions to produce physiological variations of 

baseline membrane potential levels, calcium concentrations, and channel conductances. All 

simulations were performed using the simulation package NSM 3.0 (see above). 

Differential equations were solved using the exponential Euler integration method with a 
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step of 0.1 ms. We utilized the high-performance computational capabilities of the Biowulf 

Linux cluster at the National Institutes of Health, Bethesda, MD (http://biowulf.nih.gov). 

 

B-3. Single Neuron Model 

All neurons were modeled in the Hodgkin-Huxley style as single-compartment models: 

 SynISynELCaKCaLKNaPNa IIIIIIII
dt

dV
C  , ,   (V-1) 

where V is the membrane potential, C is the membrane capacitance, and t is time. The  

terms  in  the  right  part  of this equation represent ionic currents: INa - fast sodium (with 

maximal conductance Nag ); INaP - persistent (slow inactivating) sodium  (with  maximal  

conductance NaPg );  IK - delayed  rectifier potassium (with maximal conductance Kg ); ICa,L 

- high voltage  activated  calcium  (with  maximal  conductance LCag , ); IK,Ca - calcium-

dependent  potassium  (with  maximal  conductance CaKg , ), IL - leakage (with constant 

conductance Lg ); ISynE (with conductance SynEg ) and ISynI (with conductance SynIg ) - 

excitatory and inhibitory synaptic currents, respectively. 

 Currents are described as follows: 

 )(3

NaNaNaNaNa EVhmgI  ;      (V-2) 

 )( NaNaPNaPNaPNaP EVhmgI  ;      (V-3) 

 )(4

KKKK EVmgI  ;       (V-4) 

 )( CaCaLCaLCaLCaL EVhmgI  ;      (V-5) 

 )(2

,,, KCaKCaKCaK EVmgI  ;      (V-6) 

 )( LLL EVgI  ;        (V-7) 
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 )( SynESynESynE EVgI  ;       (V-8) 

 )( SynISynISynI EVgI  ,       (V-9) 

where ENa, EK , ECa, EL, ESynE, and ESynI are the reversal potentials for the corresponding 

channels. Variables mi and hi with indexes indicating ionic currents represent, respectively, 

the activation and inactivation variables of the corresponding ionic channels. Kinetics of 

activation and inactivation variables is described as follows: 

 ii
i

mi mVm
dt

dm
V   )()( ;       (V-10) 

 ii
i

hi hVh
dt

dh
V   )()( .       (V-11) 

The expressions for steady state activation and inactivation variables and time  

constants  are  shown  in  Table V-1.  The  value of maximal conductances for all neuron 

types are shown  in Table V-2. 

 The  kinetics  of  intracellular  calcium  concentration  Ca  is described as follows 

[134]. 

 CaBLCaCa CaCaPIk
dt

dCa
/)()1( 0,  ,    (V-12) 

where the first term constitutes influx (with the coefficient kCa) and buffering (with the 

probability PB), and the second term describes pump kinetics with resting level of calcium 

concentration Ca0 and time constant τCa. 

 )/( KBCaBPB  ,       (V-13) 

where  B  is  the  total  buffer  concentration  and  K  is  the  rate parameter. The calcium 

reversal potential is considered a variable and is a function of Ca: ECa = 13.27 ∙ln(4/Ca), 

(at rest Ca = Ca0 = 5 x 10-5 mM and ECa = 150mV). 
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 The excitatory (gSynE ) and inhibitory synaptic (gSynI ) conductances are equal to 

zero at rest and may be activated (opened) by the excitatory or inhibitory inputs 

respectively: 

       mi

m

dmiEd

j tt

SynEkjji

presyn

iESynEi dwSgttwSFgtg
kj

  


/exp)( ;  (V-14) 

        mi

m

dmiId

j tt

SynIkjjiISynIi dwSgttwSgtg
kj

  


/exp)( , (V-15) 

where the function S{x} = x, if x ≥ 0, and 0 if x < 0. In equations (V-14) and (V-15), each 

of the excitatory and inhibitory synaptic conductances has two terms. The first term 

describes the integrated effect of inputs from other neurons in the network (excitatory or 

inhibitory). The second term describes the integrated effect of inputs from external drives 

dmi. Each spike arriving to neuron i from neuron j at time tkj  increases the excitatory 

synaptic conductance by jiE wg   if the synaptic weight wji > 0, or increases the inhibitory 

synaptic conductance by jiI wg   if the synaptic weight wji  < 0. Eg  and Ig are the 

parameters defining an increase in the excitatory or inhibitory synaptic conductance, 

respectively, produced by one arriving spike at |wji| = 1. τSynE and τSynE are the decay time 

constants for the excitatory and inhibitory conductances, respectively. In the second terms 

of equations (V-15) and (V-16), 
Edg and 

Idg are the parameters defining the increase in the 

excitatory or inhibitory synaptic conductance, respectively, produced by external input 

drive dmi = 1 with a synaptic weight of |wdmi|= 1. All drives were set to 1. 

 Presynaptic inhibition is simulated as an attenuator of excitatory synapses by means 

of a factor 
presyn

iF  ≤ 1. This factor is calculated according to the following equation: 
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kj

ttwSF  ,    (V-16) 

where p

jiw  ≤ 0 is the weight of presynaptic inhibitory connection that synapse i receives 

from neuron j. If a synapse i does not receive any presynaptic inhibition, then 
p

jiw  = 0 for 

and hence for this synapse 
presyn

iF = 1.  

 The relative weights of synaptic connections (wji, 
p

jiw , and wdmi) are shown in Table 

V-3. The following neuronal and synaptic parameters were used: C = 36 pF; ENa = 55 mV; 

EK = −94 mV; ESynE = −10 mV; ESynI  = ECl = −75 mV; gE = gI = gEd = gId = 1.0 nS; τSynE = 

5 ms; τSynI = 15 ms; Ca0 = 5 × 10−5 mM; kCa = 2 × 10−5 mM/C; τCa = 250 ms; B = 0.030 

mM; K = 0.001 mM. 

 

Table V-1. Steady state activation and inactivation variables and time constants for 

different ionic channels. 

Ionic Channels 
m∞(V), V in mV; τm(V), ms; 

h∞(V), V in mV; τh(V), ms; 

Fast Sodium (Na) 

)6/)8.43(exp(1/(1  Vm Na
; 

)14/)8.43cosh((/252.0  VmNa ; 

)8.10/)5.67(exp(1/(1  Vh Na ; 

)8.12/)5.67cosh((/456.8  VhNa , 

Persistent Sodium 

(NaP) 

)1.3/)1.47(exp(1/(1  Vm NaP ; 

)2.6/)1.47cosh((/1  VmNaP ; 

)9/)60(exp(1/(1  Vh NaP ; 

)9/)60cosh((/5000  VhNaP , 
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Delayed rectifier 

potassium (K) 

))5/)44(exp(1/()44(01.0  VVK ; 

))40/)49(exp(17.0  VK ; 

 KKKKm    / ; 

 KKmK    /1 , 

High-voltage 

activated calcium 

(CaL) 

))7.5/)4.27(exp(1/(1  Vm CaL
; 

5.0mCaL ; 

)2.5/)4.52(exp(1/(1  Vh CaL
; 

18hCaL , 

Calcium-dependent 
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Table V-2. Maximal conductances of ionic channels in different neuron types 

Neuron type Nag , nS NaPg , nS 
Kg , nS CaLg , nS CaKg , , nS 

Lg , nS 

Pre-I 170 5.0 180   2.5 

Post-I, post-I(e) 400  250 0.1 6.0 6.0 

Aug-E 400  250 0.1 3.0 6.0 

Early-I(1) 400  250 0.1 3.5 6.0 

Early-I(2) 400  250 0.1 11.0 6.0 

All others 400  250   6.0 
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Table V-3. Weights of synaptic connections in the network. 

Target population 

(location) 

Excitatory drive (weight of synaptic input 

from this drive) or source population (from 

single neuron) 

ramp-I (rVRG) 

drive(Pons) (0.7); post-I (−1.0); aug-E(−0.15); 

pre-I /I (0.06); early-I(2); pontine I (0.2); Pe 

(0.115) 

early-I(2) (rVRG) 

drive(Pons) (2); 

post-I (−0.5); 

Pi (−0.15) 

pre-I/I (pre-BötC) 

drive(Pons) (0.03); drive(Raphe) (0.3); 

drive(RTN) (0.2); 

post-I (−0.1625); aug-E (−0.0275); pre-I /I (0.03); 

pontine I (0.2); Pe (0.025) 

early-I(1) (pre-BötC) 

drive(Pons) (0.75); drive(RTN) (2.03); 

post-I (−0.4); aug-E (−0.2); pre-I /I (0.04); 

pontine IEi (−0.15) 

aug-E (BötC) 

drive(Pons) (0.6); drive(RTN) (1.25); 

post-I (−0.09); early-I(1) (−0.135); 

Pi (−0.075) 

post-I and post-Ie 

(BötC) 

drive(Pons) (0.5); 

aug-E (−0.025); early-I(1) (−0.15); 

pontine IEe (0.35); pontine E (0.075); Pe (0.275) 

pontine I (Pons) 

drive(Pons) (0.25) (only to tonic subpopulation); 

ramp-I (0.025); 

Pi (−0.5p ) 

pontine IEe and IEi 

(Pons) 

drive(Pons) (0.2) (only to tonic subpopulations); 

ramp-I (0.03); post-Ie (0.05); 

Pi (−0.5p ) 

pontine E drive(Pons) (0.3) (only to tonic subpopulations); 
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(Pons) post-Ie (0.05); Pi (−5.0p ) 

Pe and Pi (NTS) PSRs (1.0) 

Phrenic Nerve (PN) ramp-I (0.065) 

Lungs PN (12) 

PSRs Lungs (3.0) 

 

B-4. Modeling neural populations 

Each functional type of neuron in the model was represented by a population of 50 neurons. 

Connections between the populations were established so that, if a population A was 

assigned to receive an excitatory or inhibitory input from a population B or external drive 

D, then each neuron of population A received the corresponding excitatory or inhibitory 

synaptic input from each neuron of population B or from drive D, respectively. The pontine 

I, IEi, IEe, and E population represent an exception: only half of each population (the tonic 

subpopulation) receives tonic drive (see in the section “Pontine Feedback Loop”). To 

provide heterogeneity of neurons within neural populations, the value of EL was randomly 

assigned from normal distributions using average value ± SD. Leakage reversal potential 

for all neurons (except for the pre-I ones) was EL = −60 ± 1.2 mV; for pre-I neurons EL = 

−68 ± 1.36 mV. 

 

B-5. Modeling of lungs, PN, and PSR 

The phrenic motoneuron population and phrenic nerve (PN) were not modeled. Integrated 

activity of the ramp-I population were considered as PN motor output. An increase in lung 

volume (lung inflation) V was modeled as a low-pass filter of PN activity: 
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 PNwV
dt

dV
VPNV          (V-17) 

where τV = 100 ms is a lung time constant. The PSR output was considered proportional to 

the lung inflation V. 

 

C. Results 

C-1. Model architecture and operation in normal conditions 

The main objective of this study was to investigate the mechanisms underlying control of 

the mammalian breathing pattern that is generated in the respiratory CPG circuits in the 

medulla and modulated by two major feedback loops, one involving interactions of 

medullary respiratory circuits with the lungs, and the other resulting from interactions of 

these circuits with the pontine circuits contributing to control of breathing (Figure V-1A). 

We used an explicit computational modeling approach and focused on investigating the 

anticipated changes in the motor output (activity of the phrenic nerve, PN), specifically the 

changes in the duration of the inspiratory and expiratory phases under conditions of 

removal or suppression of the above feedback interactions (Figure V-1A). The full 

schematic of our model is shown in Figure V-1. While developing this model, we used as 

a basis and extended the well-known large-scale computational model of the brainstem 

respiratory network developed by [16]. This basic model focused on the interactions among 

respiratory neuron populations within the medullary VRC. Similar to that model, the 

medullary respiratory populations in the present model (see Figure V-1B) include (right-

to-left): a ramp-inspiratory (ramp-I) population of pre-motor bulbospinal inspiratory 

neurons and an inhibitory early-inspiratory [early-I(2)] population—both in the rostral 
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ventral respiratory group (rVRG); a pre-inspiratory/inspiratory (pre-I/I) and an inhibitory 

early-inspiratory [early-I(1)] populations of the pre-BötC; and an inhibitory augmenting-

expiratory (aug-E) and inhibitory (post-I) and excitatory (post-Ie) post-inspiratory 

populations in the BötC. As suggested in the previous modeling studies [16], [18], [19], 

these populations interact within and between the pre-BötC and BötC compartments and 

form a core circuitry of the respiratory CPG. In addition, multiple inputs and drives from 

other brainstem components, including the pons, RTN, NTS, and raphé affect interactions 

within this core circuitry and regulate its dynamic behavior and the motor output expressed 

in the activity of phrenic nerve (PN). 

 Respiratory oscillations in the basic and present models emerge within the 

BötC/pre-BötC core due to the dynamic interactions among: (1) the excitatory neural 

population, located in the pre-BötC and active during inspiration (pre-I/I); (2) the inhibitory 

population in the pre-BötC providing inspiratory inhibition within the network [early-I(1)]; 

and (3) the inhibitory populations in the BötC generating expiratory inhibition (post-I and 

aug-E). A full description of these interactions leading to the generation of the respiratory 

pattern can be found in previous publications [16], [18], [19]. Specifically, during 

expiration the activity of the inhibitory post-I neurons in BötC decreases because of their 

intrinsic adaptation properties (defined by the high-threshold calcium and calcium-

dependent potassium currents) and augmenting inhibition from the aug-E neurons Figure 

V-1B and Figure V-2A,B). At some moment, the pre-I/I neurons of pre-BötC release from 

the deceasing post-I inhibition and start firing (Figure V-2) providing excitation to the 

inhibitory early-I(1) population of pre-BötC and the premotor excitatory ramp-I 

populations of rVRG (Figure V-1B). The early-I(1) population inhibits all post-inspiratory 



200 

 

 

and expiratory activity in the BötC leading to the disinhibition of all inspiratory populations 

including the ramp-I hence completing the onset of inspiration (E-I transition). During 

inspiration early-I(1) inhibition of BötC expiratory neurons decreases due to intrinsic 

adaptation properties defined by the high-threshold calcium and calcium-dependent 

potassium currents (Figure V-2). This decrease of inspiratory inhibition leads to the onset 

of expiration and termination of inspiration (inspiratory off-switch) (Figure V-2). In the 

rVRG, the premotor ramp-I neurons receive excitation from the pre-I/I neurons and drive 

phrenic motoneurons and PN activity. The early-I(2) population shapes augmenting pattern 

of ramp-I neurons and PN. The PN projects to the diaphragm (Figure V-1B) hence 

controlling changes in the lung volume (inflation/deflation) providing breathing. 

The architecture of network interactions within the medullary VRC column (i.e., 

within and between the BötC, pre-BötC and rVRG compartments) in the present model is 

the same as in the preceding model of [16]. The extension of the basic model in the present 

study includes: (1) a more detailed simulation of the pontine compartment (in the Smith et 

al. model, the pontine compartment did not have neuron populations but simply provided 

tonic drive to medullary respiratory populations), (2) incorporation of suggested 

interactions between the pontine and medullary populations that form the pontine control 

loop in the model (Figure V-1), and (3) incorporation of the pulmonary (vagal) control loop 

that included models of the lungs and pump cells in the NTS (Figure V-1). 
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Figure V-2. Performance of the core medullary network under normal conditions (with 

both feedbacks intact). (A) The activity of main neural populations of the core respiratory 

network under normal conditions. The shown population activities include (top–down): 

post-inspiratory (post-I) and augmenting expiratory (aug-E) (both in BötC); pre-

inspiratory/ inspiratory (pre-I/I) and early-inspiratory [early-I(1)] (both in pre-BötC); 

early-inspiratory [early-I(2)] and ramp-inspiratory (ramp-I) (both in rVRG).The activity of 

each population is represented by the histogram of neuronal firing in the population 

(spikes/s; bin = 30 ms). (B) Traces of membrane potentials of the corresponding single 

neurons (randomly selected from each population). Vertical dashed line indicate the 

inspiratory (I) and expiratory (E) phases. 
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C-2. Pontine feedback loop 

As shown in multiple studies in cats and rats, many pontine neurons (including those in the 

Kölliker-Fuse and parabrachial nuclei) exhibit respiratory modulated activity, specifically 

with I-, IE-, E-, or EI-related activity [3], [64], [67], [68], [73], [82], [224]–[229]. These 

neurons may have respiratory modulated activity summarized with background tonic firing 

or may express a pure phasic respiratory activity (especially in rats, e.g., see [82], [233]). 

These pontine respiratory-modulated activities are probably based on specific axonal 

projections and synaptic inputs from the corresponding medullary respiratory neurons [3], 

[225], [229]–[233]. In turn, pontine neurons (including those in the Kölliker-Fuse and 

parabrachial nuclei) project back to the medullary respiratory neurons contributing to the 

control of the respiratory phase durations and phase switching [18], [60], [64], [74], [184], 

[236]. These mutual interactions between pontine and medullary respiratory neurons form 

what we refer to as a pontine (or pontine-medullary) control loop. 

To simulate the pontine feedback loop, we incorporated in the pontine compartment 

of the model the following populations (see Figure V-1B): the excitatory populations of 

neurons with inspiratory-modulated (I), inspiratory-expiratory-modulated (IEe) and 

expiratory-modulated (E) activities, and the inhibitory population of neurons with an 

inspiratory- expiratory-modulated (IEi) activity. As described above, pontine neurons with 

such types of modulated activity were found in both rat and cat. However, the existing 

experimental data on intrapontine and pontine-medullary interactions are insufficient and 

do not provide exact information on the specific connections between these neuron types; 

they only suggest general ideas and principles for organization of these interactions, such 

as the possible reciprocal interconnections between the pontine and medullary neurons with 
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similar respiratory-related patterns (see references in the previous paragraph) and the 

existence of pontine projections to key medullary neurons involved in the respiratory phase 

switching (such as post-I, see references above). Therefore in the model, respiratory 

modulation of neuronal activity in pontine populations was provided by excitatory inputs 

from the medullary respiratory neurons with the corresponding phases of activity within 

the respiratory cycle. Specifically, the inspiratory modulation activity in the pontine I 

population was provided by excitatory inputs from the medullary ramp-I population, the 

IE modulation in the pontine IEe and IEi populations resulted from excitatory inputs from 

the medullary ramp-I and post-Ie populations, and the expiratory-modulation in the pontine 

E population was provided by inputs from the medullary post-Ie population. In addition, to 

simulate the presence of neurons with respiratory modulated phasic and tonic activities, 

each of the above four population was split into two equal subpopulations with neurons 

having the same properties and neuronal connections, but differed by tonic drive, which 

was received only by tonically active subpopulations (not shown in Figure V-1B). 

 In turn, the pontine feedback in the model included (see Figure V-1B): (1) 

excitatory inputs from the pontine I neurons (from both tonic and phasic subpopulations) 

to the medullary pre-I/I and ramp-I populations; (2) excitatory inputs from the pontine IEe 

neurons (both tonic and phasic subpopulations) to the medullary post-I population; (3) 

inhibitory inputs from the pontine IEi neurons (again both subpopulations) to the medullary 

early-I(1) population; and (4) excitatory inputs from the pontine E neurons (both 

subpopulations) to the medullary post-I, post-Ie, and aug-E populations. These neuronal 

connections from pons to medulla (especially pontine inputs to the medullary post-I and 

pre-I/I populations) allowed the pontine feedback to control operation of the respiratory 
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network in the BötC/pre-BötC core and specifically to control the durations of the 

respiratory phases and phase switching. Specifically, the connection weights in the model 

were tuned so that (a) the durations of inspiration (TI) and expiration (TE) in the model 

without vagal feedback would be within the corresponding physiological ranges for the 

vagotomized rat in vivo (TI = 0.2–0.55 s and TE = 0.8–1.7 s, e.g., see [241], [249]) and (b) 

after full suppression or removal of the pons, the value of TI would dramatically increase 

(3–4 times or more) to be consistent with apneusis [58], [75], [227]. 

 

C-3. Pulmonary (Vagal) feedback loop 

The busting activity of phrenic motoneurons produces rhythmic inflation/deflation of the 

lungs, which in turn causes rhythmic activation of PSRs projecting back to the medullary 

respiratory network within the vagus nerve and hence providing pulmonary (vagal) 

feedback. The activity of pulmonary afferents in the medulla is relayed by the NTS pump 

(P) cells. To simulate pulmonary feedback loop, we incorporated simplified models of the 

lungs and PSRs, so that changes in the lung volume were driven by the activity of PN (see 

Figure V-1A,B). The resultant lung inflation activates PSRs that projected back activating 

the excitatory (Pe) and inhibitory (Pi) pump cells populations in the NTS. The latter finally 

projected to the VRC and pons (Figure V-1B). Hence in the model, both Pe and Pi 

populations were involved in the Hering-Breuer reflex preventing over-inflation of the 

lungs. Specifically (Figure V-1B), the Pe population excited the post-I population, which 

was based on the previous experimental data that both lung inflation and electrical 

stimulation of the vagus nerve produced an additional activation of decrementing 

expiratory neurons [250]. Following the previous model [18] we suggested that vagal 
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feedback inhibits the early-I(1) population (in this model, via the Pi population). Both these 

interactions produced a premature termination of inspiration with switching to expiration 

and a prolongation of expiration. 

 

C-4. Interactions between the loops  

As mentioned in the section “Introduction,” the respiratory-modulated activity in the pons 

is usually much stronger in the absence of lung inflation and in vagotomized animals (e.g., 

see [72], [228]). One explanation for these effects is that the respiratory-modulated activity 

in the pons is suppressed by vagal afferents via NTS neurons projecting to the pons. There 

is indirect evidence that this suppression is based on presynaptic inhibition [73], [228]. 

Therefore in our model, this presynaptic inhibition is provided by the Pi population of NTS 

and affects all excitatory synaptic inputs from medullary to pontine neural populations 

(Figure V-1B). Therefore, this presynaptic inhibition suppresses the respiratory modulation 

in the activities of pontine neurons and reduces the influence of pontine feedback on the 

medullary respiratory network operation and the respiratory pattern generated. Because of 

the lack of specific data, the synaptic weighs of connections from both pump cell 

populations (Pe and Pi) were set so that (a) significantly reduce the respiratory modulation 

in all types of pontine neurons and (b) keep the durations of inspiration and expiration in 

simulations with vagal feedback intact within their physiological ranges for the rat in vivo 

(TI = 0.17–0.3s and TE = 0.3–0.5 s, e.g., see [241]). 
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C-5. Simulation of vagotomy (pulmonary feedback removal) 

Under normal conditions the “intact” model generated the respiratory pattern with the 

duration of inspiration TI = 0.189 ± 0.046 s and the duration of expiration TE = 0.388 ± 

0.064 s (Figure V-2, Figure V-3A, Figure V-4A, Figure V-5A). “Vagotomy” was simulated 

by breaking the pulmonary feedback, specifically by a removal of afferent inputs from 

PSRs to the pump cells in the NTS (Figure V-1A). The resultant changes in the activity of 

different neural populations and in the output respiratory pattern in the model after 

simulated vagotomy are shown in Figure V-3B and Figure V-4B. As a result of vagotomy 

the pump cells (Pi and Pe populations) become silent (only the activity of Pi is shown in 

Figure V-3B and Figure V-4B; the activity of Pe population is similar, i.e., it also becomes 

silent). This eliminates the excitatory effect of lung inflation (PSR) on the post-I population 

(and post-Ie, pre-I/I, and ramp-I), mediated by Pe, and its inhibitory effect on the aug-E 

population, provided by Pi (Figure V-1B). This also eliminates the pulmonary (vagal) 

control of respiratory phase switching and phase durations. However, this breaking of the 

pulmonary feedback also removes the presynaptic inhibition of all medullary inputs to 

pontine neural populations (provided in the intact case by the NTS’s Pi population) hence 

increasing respiratory-modulated activities in the pontine neurons involved in the feedback 

control of the respiratory network operation (Figure V-1A,B). This therefore increases the 

gain of pontine feedback and its role in the control of respiratory phase switching and phase 

durations. Figure V-3 shows that the vagotomy resulted in increases in the respiratory-

modulated activity of pontine populations, a prolongation of inspiration (TI = 0.277 ± 0.108 

s), and a dramatic increase in the expiratory phase duration (TE = 0.938 ± 0.065 s). Figure 

V-4 shows that the applied vagotomy produced a significant increase of inspiratory (I), 
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inspiratory-expiratory (IE), and expiratory (E) modulation in the activity of the 

corresponding pontine neurons with tonic activity and releases the corresponding firing in 

pontine neurons with phasic I, IE, and E activities not active in the intact case. 
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Figure V-3. Simulated vagotomy (removal of the pulmonary feedback). Activity of major 

VRC (post-I, aug-E, early-I(1), pre-I/I, early-I(1), early-I(2), and ramp-I), NTS (Pi) and 

pontine (I, IEe, and E) neural populations, lung inflation and PN activity before (A) and 

after (B) simulated vagotomy. Vertical dashed line indicate the inspiratory (I) and expiratory 

(E) phases. See text for details. 
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Figure V-4. Respiratory modulation in the activity of pontine neurons before (A) and after 

(B) simulated vagotomy. The changes of phrenic activity (PN) and the lung inflation are 

shown at the top. Below these graphs, membrane potentials traces of representative single 

neurons from the Pi and pontine populations (tonic and phasic subpopulations) are shown. 

See text for details. 
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Figure V-5. The effects of pontine suppression before and after simulated vagotomy. 

Activity of major medullary [post-I, aug-E, early-I(1), pre-I/I, early-I(1), early-I(2), and 

ramp-I], NTS (Pi) and pontine (I, IEe, and E) neural opulations, lung inflation and PN 

activity under control conditions. (A) and following the 100% suppression of pontine 

activity before (B) and after (C) simulated vagotomy. The activity pattern shown in (C) 
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represents typical apneusis. Vertical dashed line indicate the inspiratory (I) and expiratory 

(E) phases. See text for details. 

 

C-6. Simulation of pontine feedback suppression with and without pulmonary 

feedback 

A complete removal of the pons (i.e., a removal of pontine feedback) in the model with an 

intact pulmonary feedback produced a prolongation of inspiration (TI = 0.337 ± 0.052 s) 

and a slightly reduced in average (in comparison to the intact model) but highly variable 

expiratory duration (TE = 0.353 ± 0.159 s) characterized by occasional deletions of aug-E 

bursts (see Figure V-5B and Figure V-6A). To compare our simulations with the existing 

experimental data on the effects of pontine suppression by local injections of MK801, a 

blocker of NMDA receptors, that might not completely suppress the excitatory synaptic 

transmission in the pontine neurons and their activity, we also simulated a partial 

suppression of excitatory synaptic weights in the pontine compartment (e.g., by 25% see 

Figure V-6A). Such partial suppression produced a visible prolongation of inspiration (TI 

= 0.262 ± 0.028 s with TE = 0.297 ± 0.028 s at 25% suppression, Figure 6A). 

 In contrast to pontine suppression with the intact pulmonary feedback, the same 

procedures after vagotomy led to a dramatic increase in the average duration of inspiration 

(making the inspiratory duration highly variable) at relatively constant duration of 

expiration (Figure V-5C and Figure V-6A). This prolongation of inspiration after 

vagotomy increased with the degree of pontine suppression (reducing the weights of 

excitatory synaptic inputs to pontine neurons) (Figure V-6A) and accompanied by a 

suppression or full elimination of post-I activity and reduced amplitude of integrated PN 

(Figure V-5C). Both these features are typical for apneusis [3], [75], [227], [251]. The 
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durations of inspiration and expiration after vagotomy at different degrees of pontine 

suppression were the following: TI = 0.437 ± 0.143 s with TE = 0.433 ± 0.030 s at 25% 

suppression; TI = 0.885 ± 0.339 s with TE = 0.417 ± 0.004 s at 75% suppression; and TI = 

571 ± 0.310 s with TE = 0.431 ± 0.003 s at 100% suppression. 

 The results of our simulations reflecting changes in TI and TE following different 

combinations of vagotomy with pontine suppression at different degrees are shown 

together in Figure V-6A. Our general conclusions made from these simulations are the 

following. (1) A suppression of pontine activity with the intact pulmonary feedback leads 

to a moderate prolongation of inspiration, slight shortening of expiration, and an increase 

in variability of TE (with 100% pontine suppression). (2) The simulated vagotomy (with 

the intact pontine-medullary interactions) causes a moderate prolongation of inspiration 

with an increase in variability of TI and a strong prolongation of expiration. (3) 

Combination of both perturbations does not produce visible effects on TE , but leads to a 

significant prolongation of inspiration (increasing with the degree of pontine suppression), 

increasing of TI variability, and other typical characteristics of apneusis (suppressed post-I 

activity and reduced PN amplitude). 
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Figure V-6. Changes in the durations of inspiration (TI) and expiration (TE) following 

pontine suppression and/or vagotomy. (A) Changes in TI and TE following the simulated 

pontine suppression at different degrees (25%, 75%, and 100%) before and after (vag. +) 

vagotomy. (B) Changes in TI and TE in the study of Connelly et al. (1992): diagrams are 

built for spontaneously breathing Wistar rats under control conditions and after 

administration of NMDA blocker MK-801 before and after vagotomy. (C) Changes in TI 
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and TE in the study of Monteau et al. 1990 performed in anaesthetized vagotomized rats 

using MK-801 administration. 

 

C-7. Comparison with experimental data 

To test our model, we performed simulation with 25%, 75%, and 100% suppression of the 

pontine control loop before and after simulated vagotomy (removal of the pulmonary 

feedback). The resultant changes in TI and TE are shown in Figure V-6A. To compare these 

simulation results with the related experimental data, we built similar diagrams from the 

early study of Connelly et al., 1992 [241], which examined spontaneously breathing in 

Wistar rats during the administration of NMDA blocker MK-801 before and after 

vagotomy (Figure V-6B). In this study, the experiments on Wistar rats (in contrast to the 

Sprague-Dawley strain) did not end with apneusis, due to (in our opinion) an insufficient 

suppression of the pontine feedback by the performed MK-801 injections. Nevertheless, 

the effects of vagotomy and MK-801 administration on TI and TE before and after 

vagotomy reported in Connelly et al. study are qualitatively similar to our simulations with 

25% suppression of pontine feedback (see Figure V-6A,B). Specifically, the 25% pontine 

suppression in our simulations and the administration of MK-801 in Connelly et al. 

experiments result in an increase of TI and slight reduction of TE before vagotomy and in a 

significant prolongation of inspiration after vagotomy. In addition, vagotomy alone without 

other perturbations in both cases results in an increase of TI and significant prolongation of 

TE (see Figure V-6A,B). Moreover, the changes in the respiratory frequency and the shape 

and amplitude of integrated phrenic activity after vagotomy and/or pontine suppression in 

our model are similar to that in the experimental studies with MK-801 administration 

(Figure V-7). The other comparison of our simulations was made with the experimental 



215 

 

 

study of Monteau et al., 1990 [249] performed in anaesthetized vagotomized rats by using 

MK-801 administration, which results are summarized in Figure V-6C. This study did 

demonstrate that MK-801 application after vagotomy produced switching from a normal 

breathing pattern to the typical apneusis. The relationships between TI and TE in our 

simulation after vagotomy and their changes following 100% pontine suppression 

(apneusis) are similar to these in the Monteau et al. study (see Figure V-6A,C). 

 

 

Figure V-7. Changes in the breathing pattern (phrenic activity, PN) following MK-801 

application (pontine suppression in the model) before and after vagotomy. (A) Changes in 

integrated phrenic nerve activity (Int. Diaph.) from spontaneously breathing Wistar rats 

before (top traces) and after (bottom traces) NMDA channel blockade, before (left 

diagrams) and after (right diagrams) vagotomy (from Connelly et al., 1992) (B) Changes 

in integrated phrenic nerve activity (PN) in our simulations before (top traces) and after 
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(bottom traces) simulated pontine suppression, before (left diagrams) and after (right 

diagrams) simulated vagotomy. 

 

D. Discussion 

The results of our simulations promote the concept that both pulmonary and pontine 

feedback loops contribute to the control of the respiratory pattern and, specifically, the 

durations of inspiration (TI) and expiration (TE). Furthermore, our modeling results are 

consistent with the previous suggestion of specific interactions between these feedback 

loops, in particular that the PSR afferents involved in the pulmonary control of TI and TE 

attenuate the gain of the pontine control of these phase durations (via the presynaptic 

inhibition of excitatory inputs from medullary to pontine populations) [3], [60], [71]–[73]. 

Nevertheless, according to our simulations, pontine activity still plays a role in the control 

of inspiration and expiration even when the pulmonary feedback is intact, although the gain 

of this pontine control is significantly reduced by the presynaptic inhibition. This 

presynaptic inhibition is expected to suppress the respiratory modulation in the activity of 

pontine neurons expressing either tonic or phasic firing patterns [3], [67], [68], [71]–[73], 

[82], [226]–[229], which is reproduced by our model (Figure V-4). Also, the model offers 

a plausible mechanistic explanation for the previous experimental findings that injection 

of NMDA antagonists in the dorsolateral pons (specifically in the Kölliker-Fuse area) leads 

to a prolongation of inspiration and to apneusis in the case of a lack of pulmonary feedback 

[5], [58], [227], [237], [240], [241], [243], [244]. 

 In contrast to previous suggestions and models [18], [60], [64], [74], [184], [236], 

the mechanisms of action of the two feedbacks considered in the current model are not 

exactly symmetric. Excitatory inputs from both these feedbacks (from PSRs via the NTS’s 
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Pe cells, and from the pontine I, IEe, and E populations) activate the ramp-I, pre-I/I, post-

Ie, and post-I medullary populations (see Figure V-1B). The majority of these excitatory 

connections are the ones activating the inhibitory post-I population that controls the 

inspiratory off-switching, i.e., the timing of inspiratory phase termination and TI, and those 

activating the excitatory pre-I/I population which, in a balance with the inputs to post-I, 

control the onset of inspiration (and TE). However the effect of these excitatory inputs from 

the two feedbacks on the medullary circuitry is not identical and depends on the particular 

synaptic weights and the activity pattern of the inhibitory NTS’s Pi cells providing 

presynaptic inhibition of medullary inputs to the pontine neurons (Figure V-1B). The 

organization of inhibitory inputs of these feedbacks to the medullary populations in the 

model is different. While the pulmonary feedback inhibits the aug-E population (via PSRs 

and Pi cells) causing a complex effect on the respiratory pattern, the pontine IEi population 

inhibits the early-I(1) population hence promoting expiration, which is clearly seen after 

vagotomy (Figure V-1B). 

 It is important to mention that the current model of the medullary core respiratory 

circuits in the VRC (including the BötC, pre-BötC, and rVRG) used in our model was 

derived from the model of Smith et al. 2007 without significant changes. Starting with that 

first publication, this basic model (with necessary additions) was able to reproduce multiple 

experimental results, including the characteristic changes of the respiratory pattern 

following a series of pontine and medullary transections and effect of riluzole (persistent 

sodium current blocker) on the intact and sequentially reduced in situ preparation [16], 

[19], the emergence of the additional late-expiratory oscillations in the RTN/parafacial 

respiratory group (RTN/pFRG) during hypercapnia and interactions between the BötC/pre-
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BötC and RTN/pFRG oscillators [17], [41], [88], the effects of baroreceptor stimulation 

and the respiratory-sympathetic coupling including this following the intermittent hypoxia 

[245], [246], etc. The extended model described here was also able to reproduce the above 

behaviors, including the biologically plausible changes of membrane potentials and firing 

patterns of different respiratory neurons (Figure V-2B). The ability of the extended model 

to reproduce the experimentally observed effects of the two feedback loops provides an 

additional support for the model of the core respiratory circuits used in all these previous 

models. 

 The exact mechanisms of pontine control of breathing are not well-understood and 

the pontine-medullary connections incorporated in the model are currently speculative. 

However, the general importance of the pons in the control of the respiratory pattern is 

well-recognized (see [64], for review). Studies utilizing the classic neurophysiological 

approaches of lesioning, stimulating and recording neurons have established that the lateral 

pons influences not only phase duration, phrenic amplitude, and response to afferent 

stimulation, but also the dynamic changes in respiratory pattern associated with persistent 

stimuli. For instance, blocking neural activity in the dorsolateral pons not only prolongs 

inspiration but also blocks the adaptation to vagal stimulation [252], and the shortening of 

expiration associated with repeated lung inflation [60]. Thus, the pons is not only intimately 

involved in the initial response to various stimuli, but also in the complex processes of 

accommodation and habituation. In the cardiovascular control system, parabrachial 

stimulation attenuates the NTS response to carotid sinus nerve stimulation by inhibition of 

NTS neurons receiving these inputs [253]. 
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 With normally operating pontine-medullary interactions, the simulated vagotomy 

results in a prolongation of inspiration and significant increase of the expiratory duration 

(Figure V-3B and Figure V-6A). However, despite these changes, the breathing pattern 

after vagotomy remains similar to that in eupnea (Figure V-3). This maintenance of the 

eupneic breathing pattern occurs because the control performed by the pulmonary loop is 

now partly mimicked by the pontine loop, whose gain is increasing after vagotomy, as the 

latter removes the presynaptic inhibition of medullary inputs to pontine neurons (Figure 

V-1B). Our model suggests that the pulmonary feedback yet performs the major function 

in the control of respiratory phase transitions and phase durations, and that a removal of 

this control loop places the full responsibility for this control on the pontine feedback loop. 

 The complementary role of the pontine and pulmonary feedbacks in control of 

phase duration (especially TI) in our model is consistent with the classical interpretation of 

their function in respiratory control (see [64], for review). In particular, a premature 

termination of inspiration and switching to expiration can be elicited by stimulation of 

either the rostral pons or the pulmonary afferents [3], [18], [184], [224], [227], [236]. This 

observation was explained by their common excitatory input on the post-inspiratory 

neurons in the medullary VRC which are critically involved in this phase transition [18], 

[60], [184], [236].  

Alternatively, our results suggest that the pontine-medullary feedback does not 

simply function as an “internal pulmonary feedback,” performing a redundant function and 

compensating for the potential loss of vagal input. The specific increase in the variability 

of TE with the suppression pontine activity and the significant prolongation of TE after 

vagotomy (Figure V-6A) indicate that the pontine and pulmonary feedbacks differ in the 
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control of TE. Indeed, our modeling results show that these control loops may complement 

each other in differential control of phase duration and breathing pattern variability. For 

example, an increase of TE variability with pontine suppression, as seen in Figure V-5B 

and Figure V-6A, may be the case during various breathing disorders, such as sleep apnea 

or ventilator weaning [254]. In this connection, the stability of TE can be critically 

important and is primarily being controlled by the pons. Moreover, the Kölliker-Fuse area 

of the dorsolateral pons was explicitly identified to contribute to breathing disorders in a 

mouse model for a neurodevelopmental disease called Rett-syndrome [255], [256]. 

Consistent with the many earlier and recent experimental data from cats and rats 

[3], [50], [75], [227], our simulations show that a strong pontine suppression (e.g., 75%) 

or its removal after vagotomy leads to apneusis, characterized by a significant increase of 

inspiratory duration and its variability (Figure V-5C and Figure V-6A). The other specific 

characteristics of apneusis are a lack of post-inspiratory activity and a reduction of phrenic 

amplitude during inspiration [3], [50], [75], [227], which were reproduced in our 

simulations (Figure V-5C). 

Our understanding of interactions between individual components of complex 

systems is often insufficient to explain emergent properties of these systems. The present 

study elucidates the important role of two major feedback loops and interactions between 

them in regulation of the respiratory rate and breathing pattern allowing the brainstem 

respiratory network to maintain system’s homeostasis and adjust breathing to various 

metabolic and physiologic demands. 
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E. Summary of predictions 

System level predictions: The main topic of this work concerned the inspiratory off switch 

(IOS) that was governed by the pulmonary and pontine feedback loops. Our model 

predicted that the IOS mechanism of both loops operated via excitation of the post-I 

neurons in the pre-BötC. Moreover, we predict that, under intact conditions, i.e. present 

pulmonary and pontine feedback loops, the pulmonary feedback loop provides the main 

source of inspiratory termination. However, when the pulmonary feedback loop is removed 

(analogous to vagotomy), phasic pontine activity emerges and assumes control of the IOS. 

Our results suggest that: (i) the pons assumes control of the IOS when the pulmonary 

feedback loop fails and (ii) the pons minimizes variability of the expiratory phase duration. 

 Excitation of the post-I neurons for the IOS builds on the conclusion that the 

“release” mechanism, and not “escape,” causes the inspiration to expiration transition. In 

the previous chapter, we showed that the escape mechanism appears to increase the 

robustness of phase duration relative to the release mechanism. Future work in this area 

could use phase plane analysis to determine if the IOS exploits the escape/release 

framework. However, it would be consistent with our findings if the transition from 

inspiration to expiration is governed by escape and release when the feedback loops are 

present and absent, respectively.  
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Chapter VI: Summary 

 

The work presented in this dissertation is the result of several, related projects completed 

since joining the Rybak lab in May 2009. The overarching goal was to create a 

progressively more extensive model of the respiratory CPG network that would offer 

insights into the mechanisms underlying the neural control of respiration in mammals. 

However, my secondary goal was to make computational neuroscience, and applied 

mathematics in general, more accessible to experimentalists and the public at large. 

Software for several models presented in this dissertation are readily available from our 

lab’s webpage.  

 My first specific aim was to address the existence of mixed mode oscillations in the 

pre-Bötzinger complex (pre-BötC) of inspiratory neurons. I used a large-scale model of 

100 spiking neurons with sparse connectivity and heterogenous values of baseline 

excitability (set by distributing the reversal potential of the leak current, EL). When 

connection weights were varied, mixed mode oscillations emerged for a broad range of 

parameter sets. Careful observation of the participating neurons showed that small 

amplitude bursts were comprised of mostly high excitability neurons, and large amplitude 

bursts only occurred when low excitability neurons participated. A reduced model was then 

constructed to demonstrate that the slow recovery of the low excitability neurons 

determined the timing of large amplitude population bursts. This study indicates the critical 

nature of a core sub-group of low excitability neurons in the pre-BötC that ultimately 

determine the timing of motor outputs needed for inspiration. This model predicts the 
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emergence of MMOs when INaP is attenuated, a specific finding that is under investigation 

by researchers in Jeff Smith’s lab at NIH/NINDS. 

 My second and third specific aims addressed the interactions between the pre-BötC, 

BötC, RTN/pFRG, and the pontine regions of the VRC. A similar pre-BötC population 

from Aim 1 was used in this model, although mixed mode oscillations were not a concern. 

The interactions studied in Aims 2 and 3 involved the emergence of RTN/pFRG activity 

during conditions with elevated CO2 (hypercapnia). Experimental evidence demonstrated 

that the abdominal nerve activates just before inspiration in quantal (i.e. integer ratios) 

increments relative to the main inspiratory motor nerves (phrenic and hypoglossal nerves), 

and approaches a 1:1 ratio when carbon dioxide is at a maximum. Moreover, this 

abdominal nerve activity was likely caused by pre-motor activity of the RTN/pFRG as 

inhibition of the RTN/pFRG caused silencing of the abdominal nerve. Experimental 

evidence also indicated a transformation to a biphasic (late-expiratory, early-inspiratory) 

pattern of RTN/pFRG (and abdominal nerve) activity when O2 was reduced (hypoxic 

conditions). Moreover, application of opioids caused a quantal slowing of the BötC/pre-

BötC relative to the RTN/pFRG. 

 In Aim 2, I used a large-scale model to fully recreate the experimental evidence and 

in Aim 3 I used a reduced model to understand the dynamics of the large-scale model from 

a dynamical systems perspective. These models made several assumptions that were 

ultimately model predictions: (i) the RTN/pFRG had to have intrinsic rhythmicity, in this 

case rhythmicity came from the persistent sodium current; (ii) the RTN/pFRG received 

inhibition from the post-I neurons of the BötC, thus restricting the onset of RTN/pFRG 

activity to the end of the expiratory phase; (iii) the RTN/pFRG projected to the pre-motor 
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neurons of the pre-BötC and excited these inspiratory neurons, facilitating the onset of the 

inspiratory phase; (iv) the RTN/pFRG either has intrinsic chemosensitivity or receives a 

tonic drive from chemosensitive regions; (v) the pons is particularly sensitive to hypoxia 

and reducing pontine involvement caused a reduction of post-I activity in the BötC, leading 

to less inhibition of the RTN/pFRG during expiration, ultimately enabling the biphasic-E 

pattern; (vi) application of opioids caused a decrease in the strength of excitatory 

connection between respiratory neurons, particularly in the pre-BötC, and this led to a 

quantal slowing of the BötC/pre-BötC with respect to the RTN/pFRG. The work done in 

these modeling studies increased our understanding of the connectivity architecture of the 

brainstem respiratory network and the intrinsic properties of neurons in the RTN/pFRG 

region of the medulla. 

  In Aim 4 I incorporated several elements of the models in Aims 1-3 to model not 

only the interactions of the VRC, but also lung inflation and its effect on neurons in the 

NTS. The interactions between the BötC/pre-BötC, pons, and NTS are not well understood, 

and this modeling study provided several specific predictions regarding these interactions. 

Namely, (i) excitatory pump cells in the NTS project to neurons in the BötC, facilitating 

the termination of inspiration and the onset of expiration; (ii) inhibitory pump cells 

presynaptically neurons in the pons, reducing their phasic modulation; (iii) vagotomy 

eliminates NTS activity and allows the pons, which is now disinhibited, to function as an 

inspiratory off switch. This modeling study built on the work presented in Aims 1-3 to 

further increase our understanding of the connectivity between key parts of the brainstem 

respiratory network.  
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 The multi-scale, hierarchal approach presented in this thesis enabled me to analyze 

interactions in complex systems in a logical fashion. I started with a single population (the 

pre-BötC) and studied particular features of that population, then incorporated more 

populations (BötC, RTN/pFRG, and the pons) to understand how the larger respiratory 

network functioned, finally I incorporated a model of the lungs and the NTS to further 

understand the dynamics of this system. That said, the work presented in this dissertation 

is far from a complete understanding of the neural control of respiration. However, several 

models presented in this dissertation have been expanded for use in other computational 

studies [245], [246], [257]–[260], that have continued to increase our understanding of the 

generation and control of respiration. It is my hope that work of the type presented here, 

i.e. collaborative efforts between experimentalists and computational modelers, continues 

to further our understanding of many basic processes and clinical interventions. 
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