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ABSTRACT 

Inactivation of Airborne Bacteria by Direct Interaction with Non-Thermal Dielectric Barrier 
Discharge plasma: The Involvement of Reactive Oxygen Species                                                                 

Nachiket D. Vaze                                                                                                             
Advisors: Suresh G. Joshi, MD, PhD and Kambiz Pourrezaei, PhD 

 

 

The present study examined the effect of Dielectric Barrier Discharge (DBD) plasma on 

bioaerosol particles. Different DBD plasma devices were designed and tested for their efficacy in 

inactivation of airborne bacteria. Bacterial aerosols were injected in / through the plasma stream 

and the treated bioaerosols were analyzed. The results indicated a complete inactivation of 

bioaerosol upon a very short exposure in the range of milliseconds to plasma discharge. A large 

system was designed to evaluate its efficacy to inactivate bacterial spores. 

After preliminary studies, to study the underlying mechanisms of inactivation, a single 

filament DBD plasma generating probe was developed and used for subsequent studies. In 

parallel, a near uniform aerosol generator (nebulizer) was optimized, and aerosol particle size 

characterized. The kinetics of bacterial inactivation produced by this system was investigated, 

and sub-lethal dose determined. We hypothesized that the prototype bacteria, Escherichia coli 

when present in aerosols and exposed to single filament DBD plasma system, activates 

intracellular reactive oxygen species (ROS).  

The predetermined sub-lethal dose of DBD plasma was used to study the cellular 

responses of Escherichia coli during its inactivation. Cell membrane is more vulnerable when 

bacteria are present in aerosols, and hence the changes in features, such as cellular respiration 

and growth, permeation, and depolarization were investigated following exposure to single 
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filament DBD plasma system. During studies, the catalase mediated defense system was found to 

be involved predominantly in the management of intracellular ROS pool. Through the use of E. 

coli derivatives of specific gene mutation, we analyzed the involvement of heat stress-responsive 

genes. Although the plasma is considered non-thermal, localized heating and the generated 

interactive stress is likely involved in the inactivation of E. coli bioaerosol. These findings 

provide a new dimension in underlying mechanisms of E. coli inactivation during DBD plasma 

exposure.   
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1. BACKGROUND AND LITERATURE SURVEY 

1.1 Plasma Discharge 

The word “Plasma” is used to describe the fourth state of matter in Physics. The term was 

first coined by Irvin Langmuir who noticed the similarities between the biological liquid and the 

ionized gas [1, 2]. Plasmas have historically been used in applications related to electronics and 

chemistry, but recently there have been a large number of studies related to the biomedical 

applications of plasma [3-7]. The plasma state can be described as ionized form of the gas that 

they are produced in with the total net charge being neutral [8]. Besides charged particles, 

plasmas also contain neutral atoms and molecules, excited atoms and molecules, radicals and UV 

photons.  

1.1.1 Non-thermal Plasmas 

The broadest classification of plasma is done in terms of their temperature profile as 

‘Thermal’ and ‘Non-thermal’ Plasmas. Thermal plasmas are characterized by very high 

temperatures of electrons and heavy particles, both charged and neutral. In non-thermal plasmas, 

the gas temperature is closer to room temperature while the electron temperature is high [8, 9]. 

Since the gas temperature of these non-thermal plasmas is low, it can be used in applications that 

require the treatment of temperature sensitive materials. This characteristic has opened up the 

possibility to use these non-thermal plasmas for the treatment of such materials as biological 

matter such as cells and tissues [10].  Non-thermal plasmas are already being used heavily in 

material processing applications, such as etching, activation and deposition [11-16]. Recently, 

there have been many studies into the sterilization effect produced by plasma.  



2 
 

1.1.2 Plasma as a Tool for Sterilization: 

Electrical Plasma is an emerging technology for sterilization. Plasma has been used as an 

effective tool in sterilizing surfaces, cleaning water, medical devices etc. However, there has not 

been a study that delved deeper into the effect of plasma on bacteria and the role that plasma 

generated species play in microbial death. DBD is a non-thermal discharge is cold to touch. The 

gas temperature in this discharge is room temperature (about 25°C) [17]. The electron 

temperature however, is ~1eV. These high energy electrons are helpful in producing various 

species. These species are ozone, UV radiation (including VUV) and Reactive Oxygen Species 

(ROS) [18]. This plasma chemistry is very important in sterilization of microbes. The plasma 

species stated above, both individually and synergistically, inactivate bacteria.  The bactericidal 

properties of ozone, UV and ROS are well known. This study investigates the sterilization effect 

using non-thermal plasma discharge (DBD).  

1.1.3 Dielectric Barrier Discharge  

The Dielectric Barrier Discharge was developed over a century ago by Siemens. Its 

configuration is quite basic. There are two electrodes that are separated by a gap. The gap can 

have any gas, such as Air, N2 etc. There are one or more dielectric layers between the two 

electrodes. A high voltage AC current is applied across the electrodes. Due to the high voltage, 

the resulting electric field produces ionization in the gap between the two electrodes.  



 

 

 

Conventional sterilization is based on methods such as 

These methods, while widely used, all have certain disadvantages and limitations. Plasma 

discharge produces many highly reactive species

reduction in 6 log in the bacterial concentration has been observed for treatment times of 30 

seconds or less [19]. This short exposure time makes plasma an exciting alternative to 

conventional sterilization systems. However, the mechanis

against plasma needs to be studied. Plasma is known to produce reactive oxygen species (ROS).  

Gaunt et.al [20] reviewed the effect of different plasma species on bacteria.  

Depending on the gas medium, applied voltage, plasma geometry and electrode gap 

distance, plasma species vary. The parameters 

density, gas temperature and the type and amount of 

such as ozone. The amount of ROS generated per electron volt is measured by the g

thermal DBD plasma has a g-factor between 0.3

 

 

Figure 1: Basic Schematic of a DBD 

Conventional sterilization is based on methods such as ozone, UV or Heat Sterilization. 

These methods, while widely used, all have certain disadvantages and limitations. Plasma 

highly reactive species and therefore is a great sterilization 

log in the bacterial concentration has been observed for treatment times of 30 

. This short exposure time makes plasma an exciting alternative to 

conventional sterilization systems. However, the mechanism of sterilization and bacterial defense 

against plasma needs to be studied. Plasma is known to produce reactive oxygen species (ROS).  
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. The amount of ROS generated per electron volt is measured by the g
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1.2 Bio-aerosols  

Bioaerosols are viable and/or nonviable biological particles, such as bacteria, virus, 

fungal spores, and pollen grains and their fragments and by-products (e.g., endotoxins, 

mycotoxins), that are suspended in the air [21]. These are generated as droplets and dry solid 

particles, having different aerodynamic diameters that range from 0.5 to 100 µm [22, 23]. The 

generation of bioaerosol occurs during bubble bursting, where larger droplets of water are broken 

into smaller droplets and  microorganisms (single cells or groups) are usually surrounded by a 

thin layer of water [24]. Aside from natural activities, land spreading of slurries, pressurized 

spray irrigation events, and aeration basins at wastewater treatment plants are a few ways 

microorganisms become aerosolized. The bioaerosols that are generated from dry surfaces (e.g., 

feedlots, soils, plants) or during the land application of dry manures can be released as individual 

or groups of cells or associated with inorganic or organic particulate matter [25]. In hospitals and 

laboratories, bioaerosols are generated by cleaning of wounds, spraying of infected parts, 

wounds, sample processing and centrifugation.  
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Figure 2: Size Distribution of Various Aerosols and Bioaerosols 

 

 

 The size distribution of aerosols is shown in the figure above. Aerosol particles 1 to 5 µm 

in diameter are of the greatest concern because they are readily inhaled or swallowed, but the 

greatest retention in the lung alveoli occurs with the 1- to 2-µm particles [26].  

1.2.1 Sources of Bio-aerosols and Adverse Health Effects caused by Bio-aerosols in 

Indoor Environments 

Bio-aerosols can originate from a variety of sources and each source gives rise to a 

unique composition. HVAC ventilation systems are major culprits of bioaerosol formation and 

transport. These bioaerosol later deposits on the surfaces inside the rooms connected with the 
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HVAC systems and produce secondary bioaerosols. There are severe human health effects 

associated with the accumulation of bioaerosols inside indoor environments. 

 1.2.1.1 Buildings   

Bioaerosols are often said to be responsible for sick building syndrome (SBS) and 

building related illnesses (BRI). The major sources are building materials; fungal contamination 

within wall, ceiling, and door cavities by movement of cells, spores, and cell fragments via wall 

openings and gaps at structural joints. The populations of microorganisms multiply due to the 

lack of fresh air due to increased insulation of buildings, poorly maintained or operated 

ventilation systems, and high humidity levels. This is especially true in developing countries 

where poor design and lack of maintenance can lead to problems.   

1.2.1.2  Healthcare Facilities  

Health care facilities often house individuals with exposed wounds and respiratory 

infections. These individuals are a potential source of infection as they shed the infectious agent 

from the skin, respiratory tract and other contaminated sites. Ventilation causes dilution thus 

reducing the microbial load but still predisposing patients. Sinks, wash-basins and drains, 

nebulizers, humidifiers, and cooling towers are potential sources of Gram-negative bacilli, which 

colonize on the moist surfaces. Hospital environments often house patients with infections of 

potentially deadly pathogens such as Acinetobacter baumannii, MRSA and Clostridium difficle. 

Dressings and bedding also can be the sources of airborne microorganisms [27]. Fungal spores 

gain entry into the hospital buildings through ventilation ducts. Since exposure levels are high, 

this may be an issue in the immuno-compromised patients. 
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1.2.1.3  Infectious Diseases 

Infectious diseases that are caused by viruses, bacteria, fungi, protozoa involve the 

transmission of the causative infectious agent from a reservoir to a susceptible host through 

direct contact, airborne transmission or vector-borne transmission. Airborne transmission of 

these disease causing agents is one of the most dangerous methods of transmission. The exposure 

to bioaerosols containing these pathogens can occur in certain specific professions, for example, 

health workers (tuberculosis, winter stomach flu, measles), farmers, veterinarians (Q-fever, 

swine influenza, anthrax). Whenever people are spending large amount of time in confined 

spaces such as an office or an airplane, there is a greater possibility of disease transmission [28, 

29]. (Influenza, winter stomach flu, TB, etc.) Legionellae are Gram-negative bacteria that can 

cause potentially fatal pneumonia, particularly in susceptible subjects (e.g. elderly or immuno-

compromised subjects). Legionellae become airborne often as a result of active aerosolizing 

processes. Outbreaks have been reported in varied situations such as hospital bathrooms [30], 

meat packers [31], workplaces where water mist systems are used (fruit and vegetable stores) 

[32]. Several diseases have been attributed to fungi that include aspergillosis, histoplasmosis, 

blastomycosis, coccidioidomycosis and adiaspiromycosis [33, 34]. Thus, high-risk occupations 

for occupational infectious diseases due to bioaerosol exposure include farmers, veterinarians, 

health care workers and biomedical workers studying infectious agents.  

1.2.1.4  Respiratory Diseases: 

Respiratory symptoms and diseases have been widely studied as dust-associated health 

effects. They can range from acute mild conditions to severe chronic respiratory diseases that 

require specialist care. The symptoms can include airway inflammation caused by specific 

exposures to toxins, pro-inflammatory agents or allergens. Non-allergic respiratory symptoms 
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are caused by non-immune-specific airway inflammation, whereas allergic respiratory symptoms 

reflect an immune-specific inflammation in which various antibodies (IgE, IgG) can play a major 

role in the inflammatory response. Irritant –induced asthma is highly prevalent in farmers and 

farm-related occupations and is in these occupations assumed to be caused by bioaerosol 

exposures (particularly endotoxin). Although it is clinically characterized as asthma, it has been 

shown in some populations (e.g. swine farmers) that these symptoms are not only associated with 

a cross-shift reversible decrease in lung function (asthma) but also with an accelerated chronic 

decline in lung function (COPD, chronic obstructive pulmonary diseases) [35]. In addition to 

asthma and COPD, organic dust exposed workers may develop hypersensitivity pneumonitis 

(HP) and organic dust toxic syndrome [36]. 

 

 

Table 1: Disease Causing Microorganisms that can be transmitted through Aerosols 

Microorganisms or 

diseases 

Infectious doses 

of microorganisms 

Inoculation 

routes 

Adenovirus >150 Intranasal 

Respiratory syncytial virus > 100-640 Intranasal 

Syphilis 57 Intradermal 

Malaria 10 Intravenous 

Typhoid fever 105 Ingestion 

E. coli 108 Ingestion 

Enterohaemorrhagic E. coli O157: H7 10 Ingestion 
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Bacillus cereus 106 or 105 per gram Ingestion 

Campylobacter jejuni 500 or fewer Ingestion 

http://www.irsst.qc.ca/media/documents/pubirsst/rg-501.pdf 

 

 

1.2.2  Aerosol Generation and Sampling 

 For experimentation in the laboratory setting, aerosols and bioaerosols can be generated 

artificially and sampled using aerosol sampling apparatus. This section details different 

methodology of aerosol analysis.  

1.2.2.1  Nebulizers:  

 Artificial bioaerosols are generated in the laboratory to simulate naturally occurring 

bioaerosols, for example to simulate the release of an agent or a bioaerosol created by a 

biological process such as sneezing. In many bioaerosol studies, the generation of bioaerosols is 

performed by nebulizers. Collison nebulizers are a prominent type of nebulizers, first described 

in the scientific literature by Collison in 1935. Nebulization is taken to mean a refinement of 

fluid atomization. In an atomizer, a gas is used to aspirate the liquid into a sonic velocity gas jet, 

wherein it is sheared into droplets. In a Nebulizer, the liquid/gas jet is impacted against a barrier 

(the inside of the jar) to remove the larger fraction of the droplets. The finer droplets thus 

created, with smaller diameter are then produced as the output. The collision nebulizers are 

manufactured in 3, 6 or 24 jet form. Because Collison nebulizers are recirculating systems and 

impose large shear forces, microorganisms in suspension accumulate metabolic damage as a 
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Collison continues to operate, and may lose viability [37]. The rate of loss of viability is typically 

not rapid enough to prevent an experiment from being performed. 

Other methods of producing bioaerosols include other modes of atomization, such as 

ultrasonic nozzles that use high-frequency vibrations to produce an aerosol, and electrostatic 

nebulizers that use electrical forces. Dry powder dispersion techniques are used to produce an 

aerosol from a powder source, such as dry bacterial spores, and powder scrapers are also used for 

fungal bioaerosols [38]. 

 

 

 

Figure 3: A BGI 24-jet Collison Nebulizer 
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1.2.2.2  AGI-30 Impinger 

The All-Glass Impinger, AGI-30 (Ace Glass Inc., Vineland, NJ) is a widely used sampler 

in bioaerosol experimentation [39, 40]. The AGI-30 has a nominal air sampling flow rate of 

12.3–12.6 L/min, which is maintained by drawing a vacuum of at least 410 mm Hg to achieve 

sonic velocity at the exit plane of a 1.27 mm diameter acceleration nozzle, and typically the 

initial liquid volume is 20 mL. The jet created by the nozzle causes aerosol particles to impact on 

the bottom of the glass vessel. Sampling efficiency of an impinger depends on airflow rate, 

distance between the exit plane of the impingement nozzle and the bottom surface of the liquid 

reservoir, and the properties of the collection fluid. Liquid evaporation rate in an AGI-30 was 

measured by Lin et al. [41], who observed a rate of 0.2 mL/min when an AGI- 30 was operated 

in an environment at a temperature of 25◦C and a relative humidity of 47%. 

 

 

 

Figure 4: The AGI-30 Impinger 

http://www.opticsplanet.com/ace-glass-laboratory-glassware-and-equipment-impinger-agi-30-complete-7540-10.html 
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1.2.2.3  SKC BioSamplers 

The SKC BioSampler impinger (SKC Inc., Eighty Four, PA), was developed to improve 

the sampling and retention efficiencies of the AGI-30 [42]. A nominal sampling flow rate of 12.5 

L/min is maintained by drawing a vacuum of at least 381 mm Hg across the device. Typically, 

the initial volume of collection liquid is 20 mL. Instead of the aerosol being accelerated in a 

single jet and directed normally against an impaction surface (as is the case with the AGI-30), 

the airflow in the SKC impinger is accelerated through three nozzles that impinge tangentially on 

the cylindrical wall of the glass vessel.  

 

 

 

Figure 5: The SKC BioSampler 

http://www.skcinc.com/prod/225-9594.asp 
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1.3 Existing Methodologies for Control of Bioaerosols 

 A major motivation of this thesis is the inactivation of microorganisms in bioaerosols. 

Currently, there are various technologies that address this issue and are detailed in this section. 

These technologies however have certain limitations that make them not as effective and 

attractive as we would expect. There are two issues with respect to this challenge. 

1) The Precipitation and Capture of Bioaerosols: Certain technologies do not inactivate 

the microorganisms inside the bioaerosol droplet, but just knock them down through 

Electro-Static Precipitation or capture on a membrane. 

2) Inactivation of Bioaerosols: This thesis details the application of non-thermal plasma 

technology in inactivating the bacteria inside bioaerosols. In this method, the bacteria 

are not only out of the airflow but also unable to replicate and grown in culture. 

1.3.1 Filters: 

 While passing through filters, bacteria in bioaerosols are contained by filters such as High 

Efficiency Particulate Air Filters (HEPA). These filters typically adsorb the infectious 

microorganisms onto the filter surface and thus removed from the air stream. Since these filters 

do not inactivate the microorganisms, the microorganisms can survive and even proliferate. 

There have been efforts to introduce antimicrobial substances onto the surface of the filters to 

inactivate the microorganisms. Various chemical substances such as Iodine to Silver 

Nanoparticles have shown to be effective in inactivating bacteria on filter surfaces [43, 44]. 

Although the drawback of this is that when non-biological dust is deposited on the surface of 

these filters, the antimicrobial effect of these additive substances are negated. Additionally, 

filters with tiny wires embedded into them have been used to expose the bioaerosols to thermal 

energy.  
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1.3.2 UVGI Radiation:  

Ultraviolet irradiation is widely used for controlling bioaerosols. One study demonstrated 

a 12-fold reduction in bioaerosol inside an operating room when exposed to a high level of 

UVGI at 290 µW/cm2 [45]. For 99% inactivation of bioaerosols, the UV doses required were 

1.017 to 2.356 µW sec/cm2 for E. coli; 15.949 to 19.345 µW sec/cm2 for B. subtilis; 12.917 to 

17.497 µW sec/cm2 for yeast; and 47.984 to 89.419 µW sec/cm2 for P. citrinum [46]. A UVGI 

dosage of 289 to 860 µW sec/cm2 was required to produce a 5 log decrease in the concentration 

of Legionella pneumophila bioaerosols [47]. The advantage of UV radiation is that it consumes 

less energy than other methods, such as thermal energy. UV lamps are often employed in 

operating rooms and other healthcare related facilities. UV radiation is also used in conjunction 

with other modalities to enhance the sterilization effect. TiO2 particles are used in conjunction 

with UV to cause a photo catalytic antimicrobial reaction. In a recent test, three 18 W fluorescent 

visible white-light lamps with a TiO2 coating of 5.9 g could reduce 9–84% of culturable bacteria 

bioaerosols and 3–74% of culturable fungal bioaerosols in a 2 m × 2 m × 2m chamber within 30–

480 min of irradiation [48]. 

1.3.3 Thermal Energy:  

Thermal energy has been used for a long time to control aerosols. There are two main 

modalities in which heat can be used; moist heat and dry heat. Moist heat employs pressure with 

steam whereas dry heat employs very high temperature. Airborne microorganisms have been 

known to be inactivated with very short exposure to very high temperatures such as 100-140°C. 

High-temperature exposure at 400°C via simulated combustive explosion was found to inactivate 

more than 99.99% of B. subtilis spores in bioaerosols [49]. It is well known that high 
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temperature causes the denaturation of the proteins through the breakage of polypeptide bonds 

and thus alteration in structure [50]. 

1.3.4 Ion Emission: 

Ion emission has emerged as a new technology for inactivating bioaerosols in recent 

years. Various studies have reported that air ions inhibit the growth of bacterial and fungal 

species [51-53].  Aerosols can be removed through the deposition of ions on the surface of 

aerosols particles. The same applies to bioaerosols as well, as these particles can be knocked out 

of the airflow and deposited onto the surface. There is however not much evidence about the 

exact mechanisms of the action of ions in inactivating bioaerosols. One study [54] has suggested 

that the air ions cause bactericidal effects through the electro-poration of bacteria in addition to 

ozone exposure. Kim et al. [55] suggested that electro-poration plays a primary role in the 

antibacterial effects of air ions. The attachment to and accumulation of air ions on the surfaces of 

airborne microorganisms induce distortion of the nearby electric fields of cell walls, which then 

disrupt the transport of electrons and protons inside microorganisms. 
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2. DEVELOPMENT AND TESTING OF A LABORATORY SCALE SY STEM FOR THE 

INACTIVATION OF BACTERIA IN BIOAEROSOLS WITH NON-TH ERMAL 

PLASMA 

2.1 Inactivation of Airborne Microorganisms 

 The inactivation of airborne microorganisms is discussed in the first chapter[56]. Here we 

are attempting to demonstrate the effectiveness of Non-thermal Plasma technology and 

especially the Dielectric Barrier Discharge (DBD) for the inactivation of airborne 

microorganisms.  

2.1.1  Materials and Methods 

2.1.1.1  Dielectric Barrier Grating Discharge 

 The treatment of a volume of treatment medium such as airflow required the building of a 

device having specific geometry. The normal one electrode to one electrode planar would not 

work in this case. Hence this necessitated the development of a new geometry of discharge. 

Hence a multiple electrode arrangement was used which alternated the electrode and the 

dielectric covered electrode. The entire assembly had 22 high voltage and 21 ground electrodes. 

This discharge was called the Dielectric Barrier Grating Discharge (DBGD). The discharge was 

to be placed perpendicular to the airflow to intercept it. The airflow would flow through the gap 

between the electrodes of the discharge and be treated with the DBD plasma. 
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Figure 6: The Dielectric Barrier Grating Discharge (DBGD) 

© [2010] IEEE 

 

 

2.1.1.2  Discharge Power Measurements  

The DBGD device was operated using a quasi-pulsed power supply that delivers large 

voltage pulses followed by low voltage oscillations. Oscilloscope measurements indicated that 

the duration of one pulse period was approximately 600 µs, the maximum peak-to-peak voltage, 

28 kV, and the pulsed current was nearly 50 A (peak-to-peak value). The average power of the 

discharge over one pulse period was approximately 330 W, and considering the discharge area of 

91 cm2, the power density was calculated as 3.6 W/cm2. Since the majority of power was 

discharged within the pulse duration (within the duty cycle of the pulse period), it is useful to 

describe the power in terms of the pulse duration itself since there is essentially no discharge 

between pulses. Measurements indicated that the pulse duration is 77 µs, nearly an order of 

magnitude less than the complete pulse period, which gives a duty cycle of 0.1283. The average 

power in the pulse duration was calculated as 2571 W. Given that the residence time of a 

bioaerosol particle passing through the discharge area was 730 µs and the pulse period being 600 
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µs, this meant that each bioaerosol particle that passes through the DBGD area experienced about 

one pulse of DBD discharge power. The typical concentration of bioaerosol in an experiment 

was approximately 5 x 105 bacteria per liter of air, which translated to approximately 9 x 103 

bacteria within the cross section of discharge area at any given time (in each 2-mm wide cross 

section of flow passing through the DBGD, assuming plug flow conditions in the DBGD 

chamber). 

2.1.1.3   The PDRF System 

  To test the efficacy of the treatment, a laboratory scale model of an actual HVAC 

system was designed. This system was termed the Pathogen Detection and Remediation Facility 

(PDRF). This consisted of a DBGD and sampling test chamber connected by two pipes to a large 

volume cylinder. The cylinder contained plate modifiers which increased the residence time 

inside the system. Two sampling ports were connected on either side of the DBGD, for pre and 

post plasma treatment sampling. 

 

 



 

Figure 7: The Pathogen Detection and R

 

 

2.1.1.4   Aerosol Injection and Sampling 

The PDRF system was initially presterilized using an internal heating sy

prehumidified to 70% Relative Humidity

Collison nebulizer, which was operated at 40 psi for a period of 45 s (nebulizing rate: 1.1 

ml/min). According to the manufacturer’s specifications, the Collison nebulizer generates 

bioaerosol droplets with a median diameter of 2 

experiments (40-psi static pressure of air that drives the nebulizer). The nebulizer had a tapered 

glass opening into the impingement solution. It was observed that high speed of nebulization was 

not good for sampling bioaerosols. Therefore, the tip of t

: The Pathogen Detection and Remediation Facility 

Aerosol Injection and Sampling  

The PDRF system was initially presterilized using an internal heating system and 

prehumidified to 70% Relative Humidity. The bacterial culture was placed into a BGI 24

was operated at 40 psi for a period of 45 s (nebulizing rate: 1.1 

ml/min). According to the manufacturer’s specifications, the Collison nebulizer generates 

bioaerosol droplets with a median diameter of 2 µm at the operating conditions that are used i

psi static pressure of air that drives the nebulizer). The nebulizer had a tapered 

glass opening into the impingement solution. It was observed that high speed of nebulization was 

not good for sampling bioaerosols. Therefore, the tip of the nebulizer was modified with an 
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aluminum assembly. This assembly was connected at the end of the nebulizer and contained 

radial holes for impingement of bacteria into solution.  

2.1.1.5  DBGD Device Operation 

The DBGD device was then switched ON for a period of 10s so that the entire volume of 

bioaerosol in the system gets treated with one pass through the discharge. Subsequent volume 

treatments were made within a 2-min interval to allow for time to remove used air samplers and 

replace them with sterile samplers. Air samples were taken in pairs: before and after passing 

through plasma. Therefore, the decontamination efficiency of the DBGD device was measured 

on a per pass basis with each set of air samples, and subsequent volume treatments can showed 

an additive effect of multiple passes through the discharge. Each of the presterilized air samplers 

was initially filled with 30 ml of sterile phosphate buffered- saline (PBS) solution, and after 

sampling, each sample solution was serially diluted and plated onto agar plates. 

 

2.2  Results  

2.2.1  Testing of E. coli survival inside system  

To assess the survival of bacteria in flight, control experiments were performed on the 

system.  These experiments were aimed at determining the feasibility of this system for 

inactivation of E. coli. We ran experiments in PDRF system without plasma treatment. The 

results clearly showed that the E. coli survived inside the system and also the sampling process. 

The concentration of bacteria was reduced by less than 1 log10 10 minutes after introduction into 

the system. The experiment run at two different humidity levels displayed no significant 

difference in the concentration of the bacteria over time and that the concentrations were based 
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mainly on the initial concentration. As for the sampling efficiency, the expected concentration of 

bacteria in the air can be calculated as: 

Concentration of Bacteria = Total Bacteria Aerosolized/ Total Volume of PDRF 

                                          = 1x109 / 250 Liters = 4x106 Bacteria/Liter of Air 

 The control runs indicated that, the first sample taken contained ~105 Bacteria/Liter. This 

indicates a good sampling efficiency of about 10%.  

 

2.2.2 Inactivation of Airborne E. coli 

The control experiments show a small reduction in the number of viable E. coli inside the 

system. For plasma treatment experiments, there was reduction in bacterial viability. The 

samples were taken at the same time points as the control experiments. Due to the restrictions of 

the system, there was a gap of one minute between each set of pre and post treatment samples. 

As described earlier, the plasma discharge was kept ON only for 10 seconds. This time of 

treatment is displayed as the Grey shaded area in Figure 8. 
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Figure 8: Results of Air Sterilization Experiments inside the PDRF System. The shaded region shows the 
duration of plasma exposure[56]. 

 

       

The first two samples were analyzed and an approximate reduction of ~1.5logs (97%) 

was observed between first (pre treatment) and second (post treatment) sample. When the next 

pre treatment sample i.e. the third sample was taken, there were no viable bacteria observed on 

the plate. This constitutes a reduction of ~3.5log (99.95%) from the second sample 

concentration. This rapid reduction took place during the time that plasma was switched OFF. 

Sample 4 (post treatment) was taken and samples 5 and 6 were taken before and after the third 

plasma treatment. For samples 4, 5 and 6 there were no culturable bacteria found on plate; 

therefore they were omitted from Fig.8 

2.2.3  Flow Cytometric Analysis of Samples  

Flow cytometry is emerging as a real-time technique for detecting bacteria in various 

environmental samples. This method has been used to detect the number of viable bacteria in 
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aquatic samples [57, 58] and food samples[59]. In our experiments, flow-cytometric 

measurements were made using FACS calibur (Becton Dickinson, USA) flow cytometer with 

488 nm excitation from an argon ion laser at 15 W. Fluorochromes with a high affinity for 

nucleic acid SYBR Green I and propidium iodide, PI (Molecular Probes) were used for flow 

cytometry. The SYBR Green I, a green fluorescent nucleic acid stain, has been shown to stain 

living and dead Gram-positive and Gram-negative bacteria [57]. PI is a red fluorescent dye that 

intercalates with dsDNA and only enters permeabilized/disintegrated cytoplasmic membranes [1] 

The flow cytometer measures the intensities of signal produced in the Green (530nm) as well as 

Red (670nm) spectrum. Since all bacteria are permeable with the Green dye, the intensities of the 

signal in the green region can be used to detect the number of bacteria in each sample. The red 

dye can only enter cells whose membranes have been permeated; hence it can be used as an 

indicator of such. 

 

 

 

Figure 9: Results of Flow Cytometric Analysis of Air Samples after Plasma Treatment[56]. 
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The results, as shown in the figure above, indicate that the florescent intensity peak for 

air samples one through six is identical, this means that there are the same number of total 

bacteria present for each air sample taken during experiments. The stock positive control sample 

is a pure untreated sample of E. coli whose intensity peak was two orders of value greater than 

the intensity of the air samples. The results Propidium Iodide (not shown here) indicated weak 

permeation of the dye into the samples. This would indicate that the membrane has not been 

compromised to the extent that it would cause leakage or lysis. These results are expected as the 

very short residence time inside the plasma zone is not considered sufficient to completely lyse 

the membranes of bacteria.  

2.3 Inactivation of Spores 

This task was a continuation of the air sterilization experiments. Experiments were 

carried out using B.Cereus spores as well as B. Subtilis vegetative cells. The B. Subtilis 

vegetative cells can help us see if there is any difference between the degree of inactivation of 

Gram-negative and Gram-positive bacteria. Experiments with spores are important as they 

determine if plasma has any effect on a bacterial spore, which has a different structure than the 

vegetative cell. 
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Figure 10: Different layers of an Endospore. 

 

 

Above illustration shows the structure of a spore cell. The major layers of the endospore 

are the exosporium, the cortex and the membrane. Each of these layers provides protective 

coating to the spore cell located in the center. When faced with adverse conditions, spore 

forming bacteria undergo sporulation and form spores. The water content of these spores is 

10~30% less than that of vegetative cells. The enzymatic activity inside the spore is also reduced 

and the metabolic rate is reduced. This in turn makes the spore more resistant to sterilizing 

agents.  Plasma has been used to treat spores on surface. An electrode array sterilized 106 spores 

in 240 seconds 15W (He), 13W (Air) [60]. Lerouge et al, observed 2 log reduction in the 

viability of B. Subtilis spores after 15 minutes of treatment [61]. The efficiency of sterilization 

was the least in pure O2 plasma and the highest in O2/CF4 plasma. The main mechanism of 

sterilization as proposed by them is etching. SEM images showed that spores are significantly 

etched after 30 min of plasma exposure, but not completely destroyed[62]. The achievement of 

high efficiency with the addition of CF4 was attributed by them to high etch rate of organic 
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solids. In another study of treatment of B. subtilis spores on filter [63], for an initial spore density 

of up to 106 per filter, a 3-log reduction was achieved in less than 200s, whereas an initial spore 

density of 109 per filter required a longer plasma treatment of about 360s. With a capillary 

plasma electrode discharge, reductions in CFUs ranged from 104(Helium plasma) to 108(air 

plasma) for plasma exposure times of less than 10 min [64]. Different spore forming bacteria 

have been used to study their inactivation in comparison. Using a glow discharge plasma, B. 

pumulus spores on paper were inactivated in 2.4 minutes on paper whereas B. subtilis niger 

spores took 4 minutes for the same degree of inactivation i.e. ~4 logs [65].  From these studies it 

can be inferred that it takes much longer to inactivate the bacterial spore than their counterpart, 

the vegetative cell. Also, the mechanism of inactivation seems to be more complex than that of 

bacterial inactivation. 

2.3.1 Development of Setup for Inactivation of Spores 

The setup consisted of a spore input unit, plasma unit and collection plates. The spores 

were introduced into the system using nebulization (Producing a mist containing spore cells). A 

fan on the top of the setup pushed the light bioaerosol downwards to the spores. The spores were 

collected on agar plates kept at the bottom of the setup. A filter was connected to the exhaust to 

capture the remaining spores. The entire unit was kept inside the biosafety hood. The geometry 

of the discharge aerosol interaction was changed in order to better facilitate the treatment and 

collection of the spore cells.  
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Figure 11: The Setup for the Inactivation of Spores. The aerosolized cells are introduced into the system at 
the top. Plasma treated samples are collected at the bottom on an agar plate. 

 

 

2.3.2 The results of bacterial spore inactivation 

As a control, B. Cereus spores were introduced inside the system for 10 and 20 seconds. 

The plasma discharge was then initiated and the experiment was repeated for the same time 

points. For 10 second exposure to plasma, there was ~50% reduction in concentration of spore 

cells. For longer (20 second) treatment, there was ~90% reduction. The findings are shown in 

Figure 12. There was a linear decrease in the concentration of the spores. 
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Figure 12: The Results of Inactivation of Spores with the DBGD Device 

 

 

2.4  Discussion  

The PDRF is a bioaerosol decontamination installation that combines DBGD with a 

filterless ventilation system for the purpose of destroying high concentrations of bacterial 

bioaerosols from indoor air. The results presented here show that the PDRF system can achieve 

an ∼5 log reduction (99.999%) cfu of E. coli in a millisecond of direct exposure in the DBD 

ventilation grating (DBGD) device without the use of a filter (to trap and treat airborne particles). 

These results are unique because, in most DBD surface sterilization studies, treatment times are 

always at least 1000 times longer on the order of seconds and, in some cases, even minutes in 

duration. This concept of a filterless system has shown that a very short exposure time of 

bioaerosol to DBGD plasma can cause rapid inactivation of microorganisms. The detection with 

flow cytometry indicated that the processed air samples indeed contained bacteria that were 

nebulized in the form of bioaerosol. This in part confirmed our theory that the plasma does not 
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act as an electrostatic precipitator. Further analysis of the samples with fluorescent dyes 

indicated that the bacteria were largely intact i.e. their membranes were not compromised by 

exposure to plasma. This meant that the species produced by plasma enter the bioaerosol droplet 

and into the bacterial cell and cause cell death.  

In additional, the experimental conditions closely mimic the conditions that might exist 

during a bioterrorist attack, namely, the release of a high concentration of bioaerosol moving at 

high flow rate inside of a ventilation duct, a possibility for mass casualties. Looking at the 

rapidity, efficacy advantages of this technology, non-thermal plasma air cleaning technology 

could be employed in commercial and military buildings for the purpose of mitigating the 

detrimental effects of a pathogenic bioaerosol. There is a scope in prevention of bioaerosol-

related outbreaks in high density civilian population. 
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3. ANALYSIS OF THE STERILIZATION EFFECT OF PLASMA G EOMETRY AND 

LONG LIVED SPECIES 

3.1 Introduction:  

            The results detailed in chapter 2 indicated that the DBGD system is effective in sterilizing 

large volumes of airflow and led to the investigation into the mechanisms of the inactivation and 

the species mediating it. Plasma produces various short lived and long lived species that have 

bactericidal effects. The major species produced by plasma is ozone. This study intended to 

separate the effects ozone from the other species produced. Since ozone itself is used as a 

sterilizing agent, it was necessary to determine the need to have direct interaction with plasma in 

the system. The effect of ozone can be separated from the effect of plasma by adding ozone 

filters, but these filters can only be used post-treatment and there is still certain degree of 

exposure to ozone that the airborne bacteria see. Hence, it was determined that the degree of 

exposure to direct discharge can be used to determine how much of an effect plasma filaments 

themselves have on the bioaerosol.  

The previously-described pathogen detection and remediation facility (PDRF) was used to 

perform air flow sterilization experiments (Chapter 2). In general, the PDRF setup is a closed-

loop air circulating system that consisted of a large 250 liter drum connected by pipes to a square 

box that contains the electrode arrangement of the dielectric barrier grating discharge (DBGD). 

The drum with internal baffles provides desirable volume of air for experiments and arranges the 

air flow treatment in the plug flow reactor mode. Air sampling ports on both sides of DBGD 

were used to sample air from inside the system. The flow inside the system was not interrupted 

throughout the plasma treatment or the sampling procedure. The flow rate is maintained at 25 

liters per second so the entire volume is circulated within 10 seconds; for this reason the plasma 
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treatment procedure consisted of turning the plasma discharge on for 10 seconds to treat all air in 

the chamber. The sampling time points were kept constant for all of the experiments. In order to 

analyze the effect of dosage of plasma and the effect of ozone alone, the geometry of the 

discharge was changed. This allowed a certain degree of bioaerosol to be not exposed directly to 

the plasma filaments.  All experiments were performed with the same initial conditions and the 

only parameter that was changed was the type of treatment 

a) direct plasma exposure (same as reported in chapter 2); 

b) 75% direct exposure (where 75% of bacteria pass through plasma and 25% do not); 

c) Indirect plasma exposure: treatment by ozone (injection of the same amount of ozone as 

is produced by plasma). 

3.2 Materials and Methods 

3.2.1 Design of a Variable Geometry DBGD  

The plasma discharge setup consisted of 21 high voltage wire electrodes insulated by 

quartz and 22 grounded wires. When the discharge was initiated, DBD plasma was produced in 

the air gaps between the electrodes and grounded wires. This createed a screen of plasma that 

bacteria had to pass through. This arrangement of the plasma discharge is shown in the figure 

below. 
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Figure 13: The plasma unit with its multiple-electrode configuration (top). The same plasma unit, with the 
plasma discharge initiated (bottom). Notice the screen of plasma covering the entire cross-section of air 

passage[66]. 

 

 

 

3.2.2  Reducing the Degree of Exposure to DBGD  

75% direct exposure: The two ways of investigating the effect of direct exposure to plasma 

are: 

a) Introducing a barrier between the plasma and the sample to be treated, thus removing the 

influence of the ions and reactive oxygen species produced by plasma: This method is not 

possible for these experiments as the flow of air is perpendicular to the electrodes and 

any obstruction will lead to changes in airflow and a pressure drop will be introduced 

inside the system; and 
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b) Reducing the total area of direct exposure and letting certain percentage of the sample (in 

this case, the bioaerosol) is treated indirectly by the long living species such as ozone. In 

the DBGD setup, this can be achieved by reducing the number of active electrodes, 

creating gaps in the screen produced by plasma. This way, certain percentage of bacteria 

escape coming in contact with the plasma and are treated by plasma indirectly.  

To understand the influence of direct and indirect plasma exposure of bacteria, every fourth high 

voltage electrode in the DBGD discharge was removed and the plasma discharge initiated.  

 

 

 

 

Figure 14: The plasma unit with every fourth high voltage electrode wire removed (left). The quartz tubes are 
retained in order to maintain the same airflow. This produces zones of indirect exposure (A). The image 

shown on the bottom is with the plasma[67]. 

 

 

This discharge is shown in Figure 14. This discharge occurs across the air gaps between 

the wires. Since the area of the discharge is 75% of the total cross sectional area, this can be 

termed as a 75% direct and 25% indirect exposure. In this case, as the plasma discharge is away 

from the path of 25% of the bacteria flow, it can be considered indirect treatment for the area 

A A A A A 
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where there is no discharge. The selection of the electrodes to be removed was done in such a 

way that the indirect treatment is distributed across the cross section of the airflow. The pulsed 

voltage that is input to the plasma discharge is 28 kV and the current was measured to be 50 A 

(peak-to-peak value). The total power dissipated in the plasma was 100 W. 

3.2.3 Growth and Preparation of Bacterial Strains for Nebulization 

The microorganism used in our studies was Escherichia coli K12 substr. MG1655. 

Strains were revived from frozen stocks. The frozen stock was transferred to 10 ml culture tube 

containing Luria Bertani (LB) media. The culture was grown overnight in an orbital shaker 

incubator at 37ºC. The culture was then transferred to centrifuge tubes and spun at 3500 rpm for 

1 minute. The supernatant was removed and the pellet was again washed with deionized water. 

The final solution was prepared by adding the bacterial pellet to 30 ml of deionized water. 

3.2.4 Injection of Bacteria and Air Sampling 

A 24 jet collision nebulizer (BGI Inc., Waltham MA) was connected to the system. 

Deionized water was added to the nebulizer and the nebulizer was operated at 40 psi input 

pressure. This injection was performed to increase the humidity inside the system. The humidity 

was increased to 70% RH and the nebulizer was disconnected. The bacterial solution was then 

added to the nebulizer and it was connected back to the system. The nebulizer was run again at 

40 psi for 45 seconds. The nebulizer was then disconnected and removed. The sampling of the 

air inside the system was performed using specially modified AGI impingers (Ace Glass Inc., 

Vineland NJ). A negative air pressure system was used for acquiring the samples from the 

uninterrupted circular flow system.  
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3.2.5 Analysis of Surviving cells 

The samples were taken in 1X Phosphate Buffered saline (PBS) solution. Each sample 

was then diluted with PBS using the serial dilution method. The dilutions were then plated on 

BHI agar plates (BD BBL, Franklin Lakes, NJ). These plates were incubated overnight at 37°C 

inside a stationary aerobic incubator. The number of colonies growing on the plates was counted 

on next day to determine the number of bacteria present in the sample.  

 3.3 Analysis of Long Lived Species 

As discussed earlier, the plasma produces highly reactive products that are stable enough to 

be considered as long lived species. Ultraviolet radiation and ozone are the major products of 

plasma that are bactericidal. In order to test the influence of these species on the sterilization 

effect, a separate study of treatments with ozone and UV was performed.  

3.3.1 Ozone Production in DBD  

The major long-living specie created by DBD plasma in volume is ozone. The 

dissociation of O2 molecules in air by energetic electrons is the first reaction in this process. This 

reaction is followed by a three-body reaction between O, O2, and M leads to the formation of 

ozone where M is another molecule or wall: 

                              O+O2+M→O3
*+M→O3+M                                  (1) 

To isolate the effect of plasma-generated ozone on the airborne bacteria we produced ozone 

elsewhere and injected it into the chamber. For this, ozone concentration generated by DBGD 

inside the system was measured, total ozone production was calculated, and then the ozone 

generator (Medozone, Russia) was adjusted to produce the same amount of ozone. The bacteria 

were introduced into the system through the process of nebulization as usually. Pre-treatment air 

sample was taken and the ozone generator was switched on for 10 seconds, the same time as 



36 
 

plasma treatment. The ozone was allowed to pass through the experimental system and a post 

ozone treatment sample was taken. The time of sampling was kept the same as that in plasma 

experiment. Further samples were taken pre and post ozone exposure. 

3.3.2  Measurement of Ozone Produced by DBGD 

 The concentration of ozone produced by plasma was measured using an ozone meter. The 

plasma discharge was initiated and kept on for 10 seconds, where the concentration of ozone 

generated was 28 ppm. As a parallel experiment, a separate ozone generator was employed for 

producing pure ozone. It had an intake for air and outlet for the generated ozone. It was observed 

that at 0.5 SLPM, the amount of ozone generated inside the system by the generator was the 

same as generated by DBD plasma for 10 seconds i.e. 28 ppm. The results are shown in Figure 

15 below. 

 

 

 

Figure 15: Evolution of ozone generated by DBGD discharge and relative humidity inside the system. 
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3.3.3  Generation of Pure ozone 

The generation of pure ozone was performed using a Medozone ozone generator as 

mentioned. This device has an inlet port for atmospheric air and an outlet for ozone to be injected 

into the system. The ozone produced by the device is proportional to the input air pressure. The 

test was carried out to determine what pressure would produce ozone comparable to the plasma 

system. The ozone generator was run at four different input pressures and the results measured. 

As the plasma discharge produces 28 ppm of ozone, the value of input pressure that is closest to 

that value was identified. The input pressures of 1, 1.5 and 2 SLPM produced ozone at 

concentrations much greater than what was detected by plasma. For 0.5SLPM input pressure, the 

output produced is 27ppm for 10 seconds. Around 30 seconds, the concentration of ozone inside 

increased to 30ppm and higher. Because of this, the ozone generator was only kept ON for the 

duration of 10 seconds. The injection and sampling of bioaerosol was identical to that of plasma 

studies.   

3.4 Results of E. coli Inactivation 

Figure 16 below shows the summary of experimental results performed with the PDRF 

system. 100% direct exposure to plasma led to the greatest degree of inactivation. A 25% drop in 

the direct exposure led to the inactivation due to plasma exposure to drop to 29% from the 97% 

observed in 100% direct exposure experiments. Inactivation experiments with pure ozone 

produced the least degree of inactivation.  
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Figure 16: Results of the Experiments. The dark shaded region denotes the first 10 second treatment with 
100% plasma (■), 75% plasma (●)/ ozone (▲) as compared to the control runs with no plasma/ozone (▼)[67]. 

 

 

The 10 second exposure to ozone resulted in only 10% inactivation of airborne E. coli. 

Pure ozone failed to produce complete inactivation by the time the next sample was taken. The 

third sample represents the pre-treatment sample for the 2nd 10 seconds treatment (second pass 

through plasma). By this time, no viable E. coli were detected in either plasma treatments, 

indicating the clear superiority of plasma exposure over pure ozone. 

3.5 Ultraviolet Production in DBD 

Ultraviolet radiation is one of the products of DBD plasma discharge. Here we analyzed 

the UV products produced by DBGD in terms of the spectra and the intensities. 

 

3.5.1 Spectrum of Ultraviolet Radiation Produced by DBGD 
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Figure 17: The ultraviolet spectrum of the DBGD Discharge analyzed for the 220nm to 300nm range. 

 

 

It is well-established that Ultraviolet radiation is produced by plasma discharges, 

including DBD. The PDRF system was analyzed for UV production and the results are detailed 

above. The range of the UV wavelengths investigated was in the UVC range. The highest 

intensities observed were at the 209nm, 254nm and 270nm. The wavelength of greatest interest 

is 254nm, which is known to be the wavelength producing bacterial inactivation. The intensity of 

UV at this wavelength was 2.1e3 au. This indicates that UV produced can be involved in the 

sterilization effect produced by the DBGD. This led us to investigate the intensity of the dosage 

produce by the DBGD.  

3.5.2  Measurement of Ultraviolet Intensities near DBGD 

 The intensities of the UV produced by plasma were measured. Figure 18 shows the 

intensities of the UV along the axis of bioaerosol flight, and denotes the maximum intensity 
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measured was 30µW/cm2. The intensities gradually decreased further away from the DBGD. 

This level of intensities for a short period of interaction between bacteria and the aerosols is not 

enough to produce the amount of inactivation observed in the earlier results. 

 

 

 

Figure 18: Ultraviolet power densities measured near the DBGD plasma device. 

 

 

3.6  Discussion 

In this study, two major factors affecting the plasma-induced sterilization of air using 

plasma were investigated – direct plasma treatment and ozone treatment. On one hand, it is 

known that ozone is a relatively slow sterilization agent. On the other hand, experiments shows 
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significant sterilization effect during the time when plasma is off and ozone is probably the only 

active agent. If ozone was indeed the major inactivating agent in plasma, the same dosage of 

pure ozone would produce the same inactivation as seen with plasma discharge. The experiments 

with ozone injection have confirmed that ozone alone have slow damaging action. To determine 

the effect of direct exposure and the ions and charges associated with it, the total direct exposure 

was reduced to 75% and sterilization experiments were performed. The results indicate that the 

inactivation dropped from 97% to 29%. Hence, a small reduction in the direct exposure results in 

a much larger reduction in the inactivation immediately after plasma exposure, so the effect of 

direct exposure has significant non-linearity. The simplest explanation of this non-linearity is 

synergism between ozone and direct plasma exposure in bacteria inactivation. In addition, our 

assumption that 25% reduction in plasma area means that 25% of bacteria are not subject of 

direct plasma exposure is probably oversimplification. After 4 minutes all bacteria were inactive 

with 75% treatment, and it probably meant that all bacteria received a dosage of direct treatment, 

e.g. in the form of UV radiation.  

The direct exposure to plasma disturbs the bacteria membrane and the charges stick to the 

membrane. While complete membrane breakdown requires a field of several kV/cm and longer 

time periods[68], we know that charge absorption leads to pores opening much faster – in 

millisecond and tens of microseconds time range [69].  Follow-up 2-minute ozone action on 

bacteria with disturbed membranes provides complete sterilization.  

Investigation of the influence of direct exposure shows that there is 3.5 log reduction 

during the much longer post-plasma exposure. This means that after the initial 97% reduction, 

remaining bacteria keep flowing through the system, when ozone enters the bacteria and further 

reacts with the membrane to inactivate them. Fan et al  [70] observed that there is a synergism 
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between negative air ions produced by DBD plasma and ozone on bacterial cell death. 

Bactericidal effect of negative air ions in addition to ozone was found to be far greater than 

ozone by itself. In their experiments, viability of Escherichia coli was reduced to 40% of first 

sample after 11 hours of negative air ion (NAI) treatment, as compared with 70% in the ozone 

alone treatment.  

The humidity inside the system plays a role in the inactivation. The bacteria in our experiments 

are in the form of a bioaerosol. This bioaerosol consists of the bacteria enclosed in a fine droplet 

of water. As the bioaerosol travels inside the system, the droplet shrinks. Dunklin et al [71] show 

that the shrinkage of the water droplet depends on the relative humidity and that at 50% Relative 

Humidity (RH), the droplets shrink to one tenth of their size in 4 msec. Our experiments were 

made at higher RH. As the liquid can act as a protective shield around the bacteria, shrinking of 

the droplet causes the bacteria to be more vulnerable to the charges and ROS produced by 

DBGD plasma. Though Muranyi et al [72] have recently demonstrated that the fastest 

inactivation of plasma treated Aspergillus Niger spores occurs at high relative humidity (70%), 

their experiments consisted of treating bacteria placed on surfaces, whereas in this study we 

discuss the inactivation of airborne bacteria. 

Due to the humid air inside our system, OH radical is expected to be formed. It is known 

that one main path for the generation of the hydroxyl radical in a DBD system is the photo-

dissociation of ozone into atomic singlet oxygen and the reaction of this radical with water 

molecule [73]. This can be another synergetic mechanism that explains non-linearity in direct 

plasma treatment. With this knowledge and our experimental results, we can conclude that the 

main cause of inactivation is the synergetic action of short-living plasma agents (charges, 
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radiation, and radicals such as OH-) that disturb the membrane and ozone. This synergy creates a 

toxic environment for the bacteria, ultimately resulting in inactivation. 

In this section of the thesis work, we intentionally did not consider potential influence of 

plasma product on environment in the case of indoor application of the method presented here 

for several reasons. First, we believe that in the case of bio-terrorist attack, damage caused by 

plasma products is negligible in comparison with bio-contamination. Secondly, there are known 

methods of ozone and NOx absorption and destruction that can be combined with plasma air 

sterilization.  
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4. DEVELOPMENT OF A SINGLE FILAMENT DBD BIOAEROSOL 

INTERACTION SYSTEM AND TESTING ITS EFFICACY AGAINST  VARIOUS 

MICROORGANISMS  

 

The results of chapter 3 have led to the following observations: 

• The DBGD plasma discharge is effective in inactivating airborne bacteria in flight, with 

very short residence time inside the zone of plasma. 

• Modified geometry experiments have shown that the direct interaction of bioaerosol 

particle with the DBD produces significant inactivation. 

• The inactivation of the remaining bioaerosol suggest that the species produced by plasma 

diffuse through the droplet and damage the bacteria so that it is inactivated by the ozone 

produced in volume by the DBGD. 

With these results, it is necessary to determine the effect of the plasma discharge itself on the 

aerosol, removing completely the effect of long lived plasma species such as ozone. The 

interaction of the plasma discharge and aerosol droplet would lead us to understand the effect of 

the short lived species produced by plasma. This chapter details the development of a discharge 

consisting of only one filament of DBD plasma. 

4.1 Filamentary nature of DBD 

As discussed in earlier chapters, the Dielectric barrier Discharges are filamentary in nature. 

The basis construction of a DBD system is two electrodes separated by a dielectric layer. 

Breakdown of an atmospheric pressure gas or room air with the presence of at least one dielectric 

barrier in the gap results in multistreamer mode of operation with formation of microdischarges 

[8] and these filaments are visible to the naked eye.  The current passes through these 
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microdischarges which typically have a diameter of the order of 100 µm. These microdischarges 

move laterally along the surface of the electrode. This movement has been studied and 

modeled[74]. This movement gives the impression of the plasma discharge being a volume 

discharge. For understanding the species produced in one plasma filament, we needed to produce 

a point to point discharge where the microdischarge is stationery. Such discharge has been 

studied by Ayan et.al. [75].This arrangement is discussed below. 

4.2 Single Filament System 

4.2.1 The DBD Plasma Producing Device  

The setup consists of a DBD-bacterial treatment chamber. It consists of an injection port, 

a DBD plasma chamber and a sampling system. The entire assembly is shown in Figure 1. One 

electrode of the system is made of steel and the other is steel covered with quartz. The DBD is 

initiated between these two electrodes. The DBD behaves as a point to point discharge. 

 

 

 

Figure 19: The Single Filament DBD Discharge. The purple discharge is initiated between two electrodes is 
shown on the right. 

 



 

4.2.2 Plasma Discharge Geometry

The plasma discharge was initiated between 

discharge was designed to be closely mimicking the individual filaments of our original system. 

In the original system, the discharge was initiated between two cylindrical e

plasma discharge across the gap, perpendicular to the length of the electrode wires. Since it is not 

possible to isolate a single filament with that geometry, the setup and the injection geometry was 

changed to the new setup. Aerosol i

volume and it was pushed towards the system using fans. This would not be feasible in the new 

system as the singe filament discharge is much weaker and smaller. Therefore the system was 

designed for direct injection of the bioaerosol onto the plasma discharge. 

tip was placed about 2mm from the single filament discharge, perpendicular to its plane. The 

schematic of the system is shown in 

 

 

 

Figure 20: The Schematic of Single Filament DBD Bioaerosol Interaction System

 

 

Plasma Discharge Geometry 

The plasma discharge was initiated between the two electrodes. The geometry of the 

discharge was designed to be closely mimicking the individual filaments of our original system. 

In the original system, the discharge was initiated between two cylindrical electrodes

plasma discharge across the gap, perpendicular to the length of the electrode wires. Since it is not 

possible to isolate a single filament with that geometry, the setup and the injection geometry was 

changed to the new setup. Aerosol injection in the original system was performed into the 

volume and it was pushed towards the system using fans. This would not be feasible in the new 

system as the singe filament discharge is much weaker and smaller. Therefore the system was 

rect injection of the bioaerosol onto the plasma discharge. A modified nebulizer’s 

tip was placed about 2mm from the single filament discharge, perpendicular to its plane. The 

schematic of the system is shown in Figure 20. 

: The Schematic of Single Filament DBD Bioaerosol Interaction System
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4.2.3 Pulsed AC Plasma Power Supply 

The device is operated with an alternating current (AC) pulsed power supply. The power 

supply consists of a step up transformer that produces a high voltage between the output 

terminals. The microsecond plasma device produces a sharp discharge peak voltage, whose 

frequency can be adjusted. As per our earlier results regarding air sterilization technology, the 

frequency was set at 1.5 kHz. This power supply has a range of 50-3500Hz frequency and 17.8-

31.8kV Peak voltage. This translates to 1.4-18.2W Peak power. For the purpose of this study, the 

two settings chosen were 20kV Peak Voltage@ 1.5kHz which translates to 2.1W peak (Low 

Power) and 22kV peak Voltage @1.5kHz which translates to 3.2W peak (High Power). These 

voltage settings chosen were similar to our earlier experimentation [67]. The inactivation 

efficacy was determined at both power levels for variable loads of bioaerosol. 

4.2.4 Bioaerosol Production and Sampling  

Injection and Sampling: For this purpose, a high volume Nebulizer (Teleflex Medical, 

Research Triangle Park, NC) was used. 100ml of the bacterial culture was used as the liquid for 

nebulization. The output of the nebulizer was modified to inject a fine stream of aerosol. The 

input to the nebulizer was connected through a filter to a cylinder of medical grade air (Airgas 

Inc., Radnor Township, PA). Tests were performed to obtain the optimum input pressure and 10 

psi was chosen as the input pressure for all tests. After passing through the plasma zone, the 

bioaerosol was collected at the sampling port. The major methods for collecting bioaerosol 

particles are impingement and impaction [76-78] Here due to the geometry of the setup, 

impaction method was used. A 50ml conical micro-centrifuge tube (Fisher Scientific 

International, Hampton, NH) was connected to the port and the treated bioaerosol was deposited 

on the inside of this tube. 10ml of deionized water (EMD Millipore, Billerica, MA) was then 
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added to the tube and mixed thoroughly to collect the bioaerosol particles. This suspension was 

used as the sample for colony counting. 

4.3 Materials and Methods 

4.3.1 Modified Nebulizer for Injection of Bioaerosol 

The original system consisted of a 24 jet Collison nebulizer as detailed in chapter 1. That 

nebulizer is very large for this system and could not be incorporated. After extensive research, 

we isolated a nebulizer that we could connect to the system. The large volume nebulizer is a 

clinical use nebulizer produced by Teleflex Medical. This nebulizer is not ordinarily used in 

research studies. It is mostly used to administer drugs in aerosol form. It produces aerosol 

through a 6 cm diameter outlet. No document exists about its characterization. For getting 

accurate results through the interaction aerosol with plasma, the stream of aerosol produced 

needed to be extremely fine. This meant a certain degree of modification of the output of the 

nebulizer was required. This was performed by designing a nozzle system using a cork and a 

Pasteur pipette as shown in figure. The modified nozzle had a diameter of 2mm, which is 

roughly the gap between the two electrodes where plasma is produced. This custom output 

needed to be analyzed for the properties of aerosols. Therefore, an Optical Particle Counter 

(OPC) was used to detect the size distribution and number of particles produced.  

4.3.2 Collection of Microorganisms from Bioaerosol  

The original system as detailed in earlier chapters, employed impingement as the method 

for collection of bioaerosol. Since the PDRF system is a closed loop system, it can only be 

sampled in parallel, which is where the impingement process is useful. Here, the single filament 

system is designed to be a single pass system. For such a system, the impaction method is the 
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best method for analysis. Impaction is generally used for aerosols that have large particle in 

them. These large particles, such as micron sized bacteria, are impacted onto a collection surface 

whereas smaller nanosized particles are evaporated [79]. Some of the most popular air samplers 

employ multi stage impactors that collect aerosol and bioaerosol particles onto a filter surface 

[80]. These filters are then removed and analyzed. Since our plasma system is filterless and does 

not employ filters, we used a conical collection tube to collect the treated bioaerosol particles on 

the inside surface.  

The treated bioaerosol deposited such could be analyzed either by sampling with a swab 

or adding collection liquid to it. The swab sampling method was considered as less precise and 

further experimentation could not be performed on the samples. Therefore, for further analysis, 

the collection tube was then removed from the DBD assembly and collection liquid was added to 

it. This liquid was the same deionized water that was used to produce the bioaerosol. In cases 

where there was post treatment addition of certain substances such as scavengers, appropriate 

collection medium was used. The liquid containing the collected bioaerosol was then used for 

analysis.   

4.3.3 Methods of Analysis 

4.3.3.1  Plate Counts 

  The collected bioaerosol samples were analyzed using standard plate counting 

methods. Serial dilutions were performed in deionized water and the dilutions were plated out on 

Tryptic Soy Agar (TSA) plates (BD BBL, Franklin Lakes, NJ). The plates were incubated 

overnight at 37°C inside a stationary incubator and the numbers of colony forming units were 

counted at 24 and 48 hours post incubation.  
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4.3.3.2  Flow Cytometry 

Flow cytometry was used to detect the presence of bacteria in collected samples. For this, 

we employed a bacterial cell counting kit [81](Life Technologies, Grand Island, NY). This kit 

contains a florescent dye (SYTO 9) along with a polystyrene microsphere standard which is 6µm 

in size. The microsphere standard is significantly larger than the bacterial particles and is used to 

differentiate populations grouped on size. SYTO 9 is a cell permeable dye that penetrates the 

bacterial cells. It is a nucleic acid stain that permeates both gram positive and gram negative 

bacteria to give a very distinct Green Fluorescence. The Guava Flow Cytometer (EMD 

Millipore, Millerica, MA) was used for the experimentation.  

The control and DBD treated bioaerosol was collected in 10 ml of deionized water. For 

each sample, 1ml aliquots were made, in order to get data in triplicates. 1µl of SYTO 9 and 10µl 

of the Microsphere Standard was added to each aliquot. This sample was analyzed using the 

Guava Easycyte Flow cytometer with the Guava ExpressPlus Assay. In this assay, the green 

fluorescence produced by the bacterial cells was measured against the forward scatter (FSC). The 

sizing of the cells was determined using the FSC. Since the 6µm Microsphere standards are 

considerable larger than the 1µm E. coli cell, two distinct populations were observed. The 

number of cells fluorescing Green was considered the as the number of cells detected.  

4.4  Results 

4.4.1 Results of Inactivation Studies with the Single Filament DBD 

 The Single Filament system was tested by challenging it with various amounts of 

bioaerosol. Control testing was performed to determine the efficacy of bioaerosol production and 

collection. The tests indicated that for 30 seconds of nebulization, the concentration of bacteria 
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collection in the control untreated bioaerosol was about 103 cfu/ml. This was considered as the 

lower end of initial inoculum for the sterilization efficacy experiments.  

 For testing the efficacy of the single filament system, three power settings were chosen 

on the adjustable power supply. The power input parameters were kept as close as possible to the 

original system. Three settings were chosen for the initial experimentation. These were 

a) High Power: 22kV Peak-to-Peak Voltage with 1.5kHz Frequency which translates to   

3W Power 

b) Medium Power: 21.4kV Peak-to-Peak Voltage with 1.5kHz Frequency which translates 

to 2.5W Power 

c) Low Power: 20kV Peak-to-Peak Voltage with 1.5kHz Frequency which translates to 

2.1W Power 

The results of the DBD treatment are shown in Figure 21. The control bioaerosol 

contained 2.14x103 viable bacteria. All three treatments resulted in no viable growth on agar 

plates.  The plasma was efficient in completely inactivating all the bacteria.  
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Figure 21: Inactivation of E. coli Bioaerosol at Various DBD Power Levels 

 

 

This held true for all of the strains tested. For further studies, E. coli, being the most 

widely studied bacteria, was chosen as model organism. To understand the mechanism of 

bacterial cell death, it is essential to subject the bacteria to sub lethal dose of plasma so that the 

various responses to various pathways that are activated, can be studied. Due to the efficiency of 

plasma of producing complete inactivation in low amount of bacteria, the initial bacterial load 

needed to be increased. This was achieved by injecting aerosol into the system for a greater 

period of time. At larger nebulization times, the plasma is not able to produce complete 

inactivation and some of the bacterial population survives. For 3min nebulization, the 

inactivation efficiency dropped. For E. coli, it produced 2log reduction from an initial control 

aerosol of ~106 bacteria/ml. For this high inoculum, it was observed that if the power input was 
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increased, the complete inactivation efficacy was restored. This dependence on the bacterial load 

and power has been observed in many other plasma studies [82-84] For the treatment samples 

that produced complete inactivation, the entire sample was added to Tryptic Soy Broth (TSB) 

(Fisher Scientific, Pittsburgh, PA) and incubated overnight and visually observed for the 

presence of growth at 24 and 48 hours. No colonies were observed on the agar plates. 

4.4.2 Inactivation of Various Microorganisms 

The efficacy of the plasma discharge in inactivating airborne E coli has been detailed in 

chapter 1. However, the large volume PDRF system was not used to determine efficacy against 

other microorganisms. Therefore, it was necessary to use the single filament system to test 

against bioaerosols of other relevant bacteria. For these studies, we tested some of the most 

clinically relevant bacteria used in antimicrobial susceptibility testing. This is especially relevant 

in the clinical setting. 

Epidemiological studies on the prevalence of microorganisms in health care facilities 

have determined that there are certain species of bacteria that are most prevalent and can cause 

major nosocomial infections. We tested gram-negative strains E. coli as well as Acinetobacter 

baumannii. A.baumannii is a third most prevalent nosocomial pathogenic species. It has been 

isolated from various hospital environments and has been shown to colonize patients [85]. It has 

been identified as the causative agent in many serious medical conditions such as sepsis and 

nosocomial pneumonia. Since Acinetobacter can colonize respirators and propagate respiratory 

illness, it is especially dangerous in aerosol form.  

Staphylococci are also a major cause of hospital-acquired infection (HAI) [86].  Since 

these organisms are present abundantly on the skin, the principle route of S. aureus transmission 

is from patient to patient via transiently colonized hands of hospital personnel, who acquire the 
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Figure 22: Testing of a Battery of Microorganisms against Single Filament DBD.
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recent evidence has suggested that airborne transmission may also be important. 

For example, a methicillin-resistant S. aureus (MRSA) outbreak originating from the 

exhaust ducting of an adjacent isolation room ventilation system was terminated once the 

ventilation system was repaired and an opening in a window sealed [88]. There have been reports 

of HAI outbreaks due to MRSA contaminated dust in air exhausts [89, 90]. 

Hence, we investigated the effect of plasma on six (6) strains as detailed in the F

that the plasma was able to inactivate all six strains. The test 

strains were nebulized for 30s seconds and treated with plasma. The resulting bioaerosol was 
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Figure 23: Time of Nebulization affects the Inactivation of Bioaerosol
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Power dependency and Identifying the Sub-lethal Dose 

One of the major parameters of plasma discharges is the power. There have been major 

studies detailing the dependence of inactivation on the plasma power [6, 91, 92]. 
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The results are show in Figure 23. The dependence of the inactivation effect on the initial 

load and the power was tested. The following power settings used were as discussed earlier in 

the chapter. 

a) High Power: 22kV Peak-to-Peak Voltage with 1.5kHz Frequency which translates to   

3W Power 

b) Medium Power: 21.4kV Peak-to-Peak Voltage with 1.5kHz Frequency which translates 

to 2.5W Power 

c) Low Power: 20kV Peak-to-Peak Voltage with 1.5kHz Frequency which translates to 

2.1W Power 

For shorter nebulization time, number of viable E. coli captured from bioaerosol was about 

103 cfu/ml. The DBD plasma was able to completely inactivate bacteria for both treatment power 

conditions. When the initial inoculum was increased through longer nebulization, there was 

survival observed. A similar dependency on the bacterial load (cell densities) and power has 

been reported by other investigators [93, 94]. 

4.4.4 Analysis of Inactivation through sustained incubation and growth curve 

 The results of the plasma treatment studies have indicated that the bacteria are inactivated 

when exposed to lethal dose of plasma. However, the method use for determining this 

inactivation was the agar dilution method, where the treated samples were plated on agar plates 

and incubated overnight. A study was required to demonstrate complete inactivation of bacteria 

in bioaerosols. Plasma is expected to produce stress on the bacterial cell, and when the stress 

overwhelms the defense mechanism of the bacteria, it leads to bacterial cell death.  

            There have been studies where antimicrobials agents have demonstrated the ability of 

bacterial cells to recover from the stress put on them by the treatment [95-97]. This recovery is 
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generally slower than original growth of the bacterial cell. To confirm the inactivation of 

microorganism tested in our studies, we incubated the treated samples for longer periods of time. 

Two sub-lethal doses of plasma and a lethal dose were selected. One ml of control bioaerosol as 

well as each of the treated samples was added to 5ml of nutrient rich Tryptic Soy Broth. Swabs 

of the samples were also streaked onto Tryptic Soy Agar plates. Both the plates and the samples 

cultured in broth were incubated for 24 and 48 hours post treatment. Visual inspection was 

performed after both incubation periods, to detect growth. The results are shown in Figure 24. 

 

 

 

Figure 24: The control and plasma treated bioaerosol inoculated onto agar plates 
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Figure 25: Treatment Samples from the Lethal and sub-Lethal Doses of DBD, incubated for 24 and 48 hours 
after treatment. The samples are, from L to R: Control, Sub-lethal dose, Sub-lethal dose and lethal dose 

 

 

 The results of the inactivation are shown in Figure 25. For lethal dose of DBD plasma, no 

visible colony growth was observed on the agar plates. For 24 and 48 hours of incubation in 

media, the lethal dose did not produce any visible turbidity. For the control samples, there was 

growth observed on the agar plates as well in medium. The same was observed for the sub lethal 

doses tested. For both sub lethal doses, the growth of colonies observed on agar plate was more 

prominent to the eye than the control sample. This result is interesting since it indicated that the 

bacteria that were treated with sub lethal doses actually grew faster. To determine the growth 

patterns of sub-lethal doses of plasma, cell growth measurement and respiration analysis studies 

were performed.  
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4.5 Analysis of the Sterilization Effect Produced by Single Filament DBD Discharge 

4.5.1 Materials and Methods 

4.5.1.1  Optical Density and XTT studies 

    One of the most widely use methods of analyzing cell growth is the optical 

density (O.D.) measurement method. When the bacteria grow they absorb light of wavelength of 

600 nm. The cell density is proportional to this number.  For this, the treated samples were 

collected in 10 ml dH2O. The samples, being too dilute, were concentrated using a Vivaspin 

(Vivaproducts, Inc., Littleton, MA) concentrator to 50µl. 950µl of TSB was added to the samples 

and samples were incubated at 37°C in a stationery incubator. The optical density of the 

suspension was measured using the MULTISKAN GO Spectrophotometer (Fisher Scientific, 

Pittsburgh, PA).  

XTT (2, 3-Bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) assay 

is a quantification method based on the respiratory metabolic activity of viable cells. 

XTT is a tetrazolium salt, which is based on the modification of the yellow tetrazolium 

salt XTT to form an orange formazan dye by metabolic active cells [98]. 

The stock solution of 10 mg/mL XTT was prepared in 10 mL 1X sterile PBS solution. 

Aliquots of 100µl XTT were stored at -20°C. The working solution was prepared by adding 50 µl 

stock solution in 1 ml dH2O to yield a final concentration of 0.5 mg/mL, and 1µl of 50 mM 

Menadione to yield a final concentration of 50 µM. 900µl of this solution was added to 50µl of 

the treatment samples, along with 50µl of TSB.  

A negative growth control containing overnight culture was used. The absorbance of the 

samples at 492 nm was measured with the MULTISKAN GO Spectrophotometer (Fisher 

Scientific, Pittsburgh, PA) for 2hr, 4hr, 6hr and 8 hours and overnight after treatment.  
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4.5.1.2  Flow Cytometric Measurement of Microorganisms in Samples  

Three test conditions were used, control, low power plasma treatment and high power 

plasma treatment. The results were obtained by observing the populations by their fluorescence 

in the green channel. Sizing beads were added to identify the bacterial populations by correct 

size. The plot showed two distinct populations. The 6µm beads were observed as a population 

with higher Fluorescence and the population with smaller green fluorescence was identified as 

the bacteria in the aerosol sample. The population identified as bacteria were gated and the 

number of events inside the gated area were measured. Three replicate readings were taken for 

each bioaerosol sample and averaged. The numbers obtained were compared with the number of 

viable bacteria observed through colony counting assay. 

 

4.5.1.3  Membrane Permeation 

LIVE/DEAD® BacLight Bacterial Viability Kit was purchased Life Technologies (Grand 

Island, NY). The LIVE/DEAD BacLight Viability Assay Kit contains SYTO® 9 green-

fluorescent nucleic acid stain and propidium iodide red-fluorescent nucleic acid stain. SYTO 9 

dye can penetrate and stain all bacteria with both intact and damaged membranes. Propidium 

iodide can only penetrate to cells with damaged membranes. When SYTO 9 and propidium 

iodide present together, propidium iodide reduces SYTO9 fluorescence. Thus, when bacteria are 

stained with the mixture of SYTO9 and propidium iodide, cells with intact membrane, whereas 

stained green and cells with damaged membrane, whereas stained red can be detected. Both dyes 

are provided as powders in sealed plastic Pasteur pipettes. Both dyes were dissolved in 5 ml of 

sterile deionized water in order to produce 6 µM SYTO 9 and 30 µM propidium iodide solutions. 
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4.5.1.4  Membrane Depolarization 

The BacLight™ Bacterial Membrane Potential Kit provides solutions of the carbocyanine 

dye DiOC2(3) (3,3′-diethyloxacarbocyanine iodide) and CCCP (carbonyl cyanide 3-

chlorophenylhydrazone), both in DMSO, and a 1X phosphate-buffered saline solution. DiOC2(3) 

exhibits green fluorescence in all bacterial cells, but the fluorescence shifts toward red emission 

as the dye molecules self-associate at the higher cytosolic concentrations caused by larger 

membrane potentials. For the experiment, 10µl of the DiOC2(3) was added to 1ml of the treated 

samples. The green and red fluorescence was measured with the Guava flow cytometer. 

 

4.5.1.5  Positional Dependence of Sterilization 

  The results of the inactivation have indicated that the single filament DBD plasma 

is indeed capable of inactivating bacteria in flight. This study deals with the interaction of 

microdischarge with the bioaerosol droplet. There have been studies regarding the interaction of 

particles and droplets interacting with streamer discharges. Whereas low pressure systems are 

mostly glow discharges having gradients in plasma densities that are small on the scale length of 

any given aerosol or dust particle. In contrast, the diameter of the streamer in atmospheric 

pressure discharges can be comparable with the size of the particle. The dynamics of the 

propagation of streamers that intersect with particles can therefore be significantly perturbed. 

The intersection of streamers with these aerosols can be expected to change the rate of radical 

generation by both changing the properties of the streamer and by transferring heat to the droplet, 

thereby increasing its rate of evaporation. This is evident in the results in chapter 5 relating to 
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heat stress produced by the streamer on the bioaerosol droplet. The study by Babaeva et.al [99] 

indicates that small particles of moderate permittivity are enveloped by the streamer. Larger 

particles such as bacterial bioaerosol droplets can intercept the streamer while charging. As 

plasma envelopes the particle, it provides hot ionizing radiation that can affect the bacterial cell 

inside the bioaerosol droplet. 

4.5.2  Results 

4.5.2.1  Optical Density and XTT Studies 

 

 

 

Figure 26: Optical Density Measurements of Samples Post Plasma Treatment 
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 The results of the optical density measurement are shown in Figure 26. Sub-lethal and 

lethal conditions were tested along with positive and negative control aerosol. The samples were 

analyzed for 1hr, 2hr, 4hr, 6hr, 8hr and overnight post treatment. Duplicate readings were 

performed. The control aerosol showed linear growth. The lethal dose of plasma showed 

insignificant growth for the entire duration of testing. The sub-lethal samples showed dormancy 

till the 8hr reading, when there was a sharp increase in the concentration. This time point also 

coincides with beginning of the exponential phase. This indicates the cells damaged by sub-lethal 

dose of plasma showing recovery effect. This effect was further analyzed with cellular 

respiration studies. 

 

 

 

Figure 27: Cellular Respiration Measured with the XTT Assay 
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The XTT studies are detailed in Figure 27. Sub-lethal and lethal conditions were tested 

along with control aerosol as well as negative control aerosol. The samples were analyzed for 

1hr, 2hr, 4hr, 6hr, 8 hours and overnight post treatment. The readings were taken at 492nm. 

There was negligible signal for the first two hours post treatment for all samples. The aerosol 

samples showed greater respiration than the untreated negative control. The growth of the control 

aerosol was linear for the 4hr, 6hr, 8 hour samples, whereas the sub lethal dose sample showed 

delayed response. Similar to the optical density measurements, there was increased respiration at 

the 8 hr. sample for the sub lethal dose. This value was comparable to the control aerosol. 

However, the respiration in the sub lethal sample significantly decreased overnight. Apart from 

the negative control, the aerosol samples showed decreased respiration overnight. But this could 

be due to the cytotoxicity of XTT. This led us to further investigate the effect of plasma on the 

cell membrane as the respiration is affected by ROS entering the cells and disturbing the 

respiratory chain. 

 

4.5.2.2  Flow Cytometric Measurement of Microorganisms in Samples 

  For the DBGD system, we employed the flow Cytometric method for the rapid 

detection of bacteria in treated samples. This methodology was again employed for the single 

filament treatment.   

 



 

Figure 28: Detection of Bacteria in Treated and Control Aerosol
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can lead to membrane rupture and disintegration of bacteria [84]. The membrane effects were 

thus analyzed with fluorescent dyes. 

4.5.2.3  Membrane Permeation 

 

 

 

Figure 29: The Red and Green Fluorescence of Plasma Treated Aerosol Samples. 
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have a much higher fluorescence in the green spectrum, indicating intact membranes. For the sub 

lethal and lethal doses, this reduces whereas the red fluorescence increases. The increased 

permeation is observed according to the lethality of the plasma dosage. This would lead us to 

believe that there is increasing membrane permeation with plasma exposure.  

4.5.2.4  Membrane Depolarization  

 

 

 

Figure 30: The DiOC2(3) Fluorescence of Plasma Treated Bioaerosol Samples, Measured in the Green and 
Red Spectrum. 
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  The results are shown in Figure 30. The DiOC2(3) fluorescence was measured 

with the Guava flow cytometer. The average fluorescence values were obtained for the green and 

red channels. The depolarization is indicated by the shift in DiOC2(3) fluorescence to the red 

spectrum. The results indicate that the opposite occurs in the plasma treated aerosol samples. 

Compared to controls, there is shift in the DiOC2(3) spectrum towards the green spectrum. This 

is an indication of the hyper-polarization of the bacteria after plasma exposure. The increase in 

the net negative charge can be attributed to the deposition of charged species on the surface of 

the bacteria. 

4.5.2.5  Positional Dependence of Sterilization 
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Figure 31: Dependence of Sterilization on Position of Aerosol Injection 

 

  

 The spatial geometry of the discharge was analyzed. The dosage used was the sub lethal 

dose of plasma. Three positions of injection were employed. The injection of the bacteria above 

plasma discharge produced significant sterilization. However, the survival of the bacteria was 

significantly higher than the normal injection. When the bacteria were injected below the plasma 

discharge, there was no significance of inactivation. The effect of inactivation produced when 

the aerosol is injected above single filament  

4.6 Conclusion 

Plasma technology is emerging as a new approach to inactivating aerosols. The point to 

point DBD discharge developed was efficient in inactivating up to 3 logs of bacteria, determined 

by the flowrate. The efficacy of the discharge was also dependent on the total flow of bioaerosol. 

Plasma discharge has been used to inactivate certain antibiotic resistant bacteria and this was 

demonstrated for aerosols of such species in this study. These results have significance in a 

clinical setting.   

Flow Cytometry was useful in determining the presence of bacteria in the post treatment 

flow. The results indicate that although most of the bacteria in bioaerosol are captured through 

the impaction process, the viability is decreased greatly by the interaction with DBD discharge. 

For high power plasma treatment, no viable bacteria were observed through plate counts and 

almost a log fewer bacteria were observed through flow cytometry. This could be due to the 

rupture of the cell walls after interaction with plasma, changing the size of the cells.  
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Membrane effects were analyzed using fluorescent staining method. The results indicate 

that there is significant membrane permeation after plasma exposure. The results with the 

depolarization experiments were interesting as there was hyper-polarization, as opposed to 

depolarization, in the plasma treated bacteria. This would indicate that the species produced by 

plasma are indeed entering the bacterial cells through permeated membranes and causing 

inactivation through interfering with cellular processes. The major species produced by plasma 

are the Reactive Oxygen Species (ROS) and their involvement is studied in the next chapter. 

 

 

 

 

 

 

 

 

 

 

 



 

5.  ANALYZING THE OXIDATIVE AND PEROXIDATIVE STRESS PRO DUCED 

BY SINGLE 

5.1 Reactive Oxygen Species

This chapter deals with the effect of the Reactive Oxygen Species (ROS) produced by the 

single filament plasma discharge on the bacteria in aerosol. The cascade of ROS production is 

shown below. In plasma discharges

32 indicates the cascade of species produced by plasma through the reduction of oxygen. The 

species that are of the greatest interest due to their bactericidal properties are the superoxide 

radical (O2
-), hydrogen peroxide (H

in the biological processes of the bacterial cell, and the bacterial cell has defense mechanisms 

against them. In this chapter, we will explore whether the cellu

are triggered after exposure to non

 

Figure 32: Production of ROS through the reduction of Oxygen 

 

   

ANALYZING THE OXIDATIVE AND PEROXIDATIVE STRESS PRO DUCED 

BY SINGLE FILAMENT DBD 

Reactive Oxygen Species 

This chapter deals with the effect of the Reactive Oxygen Species (ROS) produced by the 

single filament plasma discharge on the bacteria in aerosol. The cascade of ROS production is 

shown below. In plasma discharges, the free electron is provided by the electric field. The Figure 

32 indicates the cascade of species produced by plasma through the reduction of oxygen. The 

species that are of the greatest interest due to their bactericidal properties are the superoxide 

, hydrogen peroxide (H2O2) and hydroxyl radical (OH·). These species are involved 

in the biological processes of the bacterial cell, and the bacterial cell has defense mechanisms 

against them. In this chapter, we will explore whether the cellular defenses of the 

are triggered after exposure to non-thermal plasma.    

: Production of ROS through the reduction of Oxygen [100] 
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stable and long living species as it has no unpaired electrons.  Due to their small size and neutral 

charge, H2O2 molecules freely dissolve in solution and readily diffuse int

membrane aquaporins [180, 181]. The reaction of hydrogen peroxide with transition metals 

The superoxide radical (O2
-) is generated within aerobic biological systems during both 

enzymatic oxidations. O2
 − differs from H2O2 in that it is a charged species at 

physiological pH (pKa = 4.8), so it cannot penetrate membranes [101, 102]. However, aqueous 

ydroperoxyl radical (HO2
-), which can enter the cell easily. The reaction 

1, and the reaction proceeds four orders of magnitude faster in 

the presence of the enzyme superoxide dismutase [103].  

contains three SODs: cytoplasmic iron- and manganese-cofactored enzymes (Fe

SOD) and a periplasmic copper–zinc-cofactored enzyme (Cu–Zn-SOD). The two 

SOD are coordinately regulated in response to iron levels 

SOD is the default isozyme and Mn-SOD is synthesized when Fe-SOD cannot be 

SOD synthesis is also stimulated whenever O2
−-generating antibiotics are present, 

with the control being exerted by the KatG system [106, 107]. KatG is not active during normal 

aerobiosis, in the absence of these exogenous O2
− sources. 
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also be produced by the dismutation of the superoxide ion. H2O

stable and long living species as it has no unpaired electrons.  Due to their small size and neutral 
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introduction of oxidative lesions by hydrogen peroxide conditions [108]. 

The bacterial cell employs multiple pathways to scavenge H2O2. There are

enzymes being involved in the defense against H2O2. Of these, there are three major ones that 

have important roles in vivo. These enzymes are: alkyl hydroperoxide reductase (
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Figure 33:The transition between Reactive Oxygen Species
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5.1.3 The Oxidative Stress Regulon oxyR 

OxyR, is a 34kDa protein [113] , is a homolog of the LysR family of transcriptional 

regulators in E. coli [110, 114], and characteristic of this protein family [115], OxyR controls the 

regulon system consisting of about 40 genes, which protect the cell from hydrogen peroxide 

toxicity. Hence, oxyR mutants have been shown to be hypersensitive to H2O2, and constitutive 

expression of the OxyR regulon due to dominant mutations in oxyR, such as found in mutants 

oxyR1 of S. enterica and oxyR2 of E. coli, has been shown to increase the resistance of the cell to 

H2O2 [116]. OxyR also has a role in protecting against heat stress [116], near-UV [117], singlet 

oxygen [118] and lipid peroxidation-mediated cell damage [119]. 

5.2 Materials and Methods 

5.2.1 Bacterial Strains 

 The bacterial strains were obtained from multiple sources. The table denotes their 

sources.  

 

 

Table2: Gene deletion mutants used to study the inactivation produced by single filament 

Strain no. Relevant genotype Source 
BW25113 Wild type CGSC #7636 

3144 BW25113 ∆sodA Dr. Xilin Zhao 
3145 BW25113 ∆sodB Dr. Xilin Zhao 
3156 BW25113 ∆sodA∆sodB Dr. Xilin Zhao 
3157 BW25113 ∆katG Dr. Xilin Zhao 
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3202 BW25113 ∆katE Dr. Xilin Zhao 

3201 BW25113 ∆katG∆katE Dr. Xilin Zhao 

3200 BW25113 ∆ahpC Dr. Xilin Zhao 

TA4110 oxyR2 oxyR Constitutive Dr. Gisela Storz 

TA4112 oxyR∆3 oxyR Deletion Dr. Gisela Storz 

JW4103-1 groEL: groL768(del)::kan CGSC#: 10954 
SX1398 groES: groS791-YFP(::cat) CGSC#: 12953 
MF634 DnaJ: dnaJ259(ts) CGSC#: 5828 
GR756 DnaK: dnaK756(ts) CGSC#: 5829 
DA16 grpE: grpE280 CGSC#: 7795 

JW0462-1 HtpG: htpG757(del)::kan CGSC#: 8616 

JW0866-1 clpA: clpA783(del)::kan CGSC#: 8898 
JW2573-6 clpB: clpB757(del)::kan CGSC#: 11763 
JW0428-1 clpX: clpX724(del)::kan CGSC#: 8591 

 

 

The strains were grown in Tryptic Soy Broth and subcultured onto agar plates, and stored 

at 4°C. For experimental purposes, colonies were picked from the plate and inoculated into 20ml 

of Tryptic Soy Broth and incubated at 37°C overnight in a shaker incubator at 200 r.p.m. 

For strains containing antibiotic resistance gene, LB medium was used for growth. 

50µg/ml Kanamycin was added to the culture. The strain of interest was added to the selective 

culture and incubated at 37°C overnight in a shaker incubator operating at 200r.p.m. The 

overnight culture was then added to 80 ml of deionized water (Millipore, MA) to obtain the 

working solution for nebulization purposes. This cell suspension was then added to the nebulizer.  

5.2.2 Experimental Conditions 

 The nebulizer input pressure was maintained at 10 p.s.i. The samples were obtained from 

running the test conditions. Deionized water was used as the collection liquid for the samples. 
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10ml of deionized water was added to the collection tubes and the collected bioaerosol was 

collected in the liquid through thorough mixing. This sample was then used for further analysis.  

5.2.3 Colony Count Assay 

 Standard plates count assay was performed to assess the survival of each strain. Each 

sample was plated in triplicate. Experiments were run in duplicates. Standard t-test was 

employed to ascertain the statistical significance.  

5.2.4 D-Mannitol and Thiourea 

 The D-Mannitol was obtained in powder form (Sigma Aldrich, St Louis, MO). Aliquots 

were made by dissolving required amount of the powder in distilled water. Thiourea was 

obtained in powder form and aliquot in similar way. The working solutions used in the 

experiments were prepared fresh for each experiment. 

5.2.5 Catalase 

 The catalase was obtained in lyophilized powder form. Phosphate Buffer (50 mM 

Potassium Phosphate Buffer, pH 7.0 at 25 °C) (Sigma) was prepared and a stock solution of 10 

mg/ml was prepared in this Phosphate Buffer. The assay to determine the enzymatic activity was 

performed according to protocol. Solutions of the experimental concentrations were prepared 

fresh before each experiment.  

5.2.6 Mediation of Heat Stress 

 For the experiments involving the mediation of heat stress through temperature, the 

overnight cultures to be nebulized were suspended in water that was maintained at 4°C. The 

collection of treated samples was also processed in water and collected at 4°C.  
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5.2.7 Detection of H2O2 by DCFH-DA Fluorescence 

The DCFH-DA was obtained from Cayman Chemical (Ann Arbor, MI). A 10mg/ml 

solution was made in DMSO. From this, 48.7µl was added to 100ml of H2O to get 10µM 

working solution. The Mannitol solution was prepared by adding 728mg of mannitol powder to 

40 ml dH2O to make 100mM working solution. Six samples were analyzed for three treatment 

conditions. The overnight culture to be nebulized was incubated for 30 mins at 37°C in a solution 

of PBS containing the DCFH-DA. The samples of the control and treated bioaerosol were 

collected in PBS or the Mannitol solution prepared. The samples were analyzed by flow 

cytometry for their relative fluorescence in the green spectrum.  

5.2.8 Statistical Analysis 

 Data sets were analyzed using Microsoft Excel and verified using GraphPad Prism 4 

software (GraphPad, San Diego, CA). The P values are derived against corresponding untreated 

conditions, unless and otherwise stated, and a P value of <0.05 is considered significant. All 

experiments were repeated minimum three times unless stated, and data are means ± standard 

error. 

5.3 Results 

5.3.1  Inactivation of Superoxide Dismutase Deficient Mutants 

 The findings of the inactivation of sod deficient mutants are shown in the Figure 34. The 

single and double knockouts were tested and compared to the controls. 
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Figure 35: Inactivation of catalase/peroxidase deficient mutants
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The susceptibility of the catalase and hydroperoxidase mutants led us to further 

investigate the involvement of the oxidative stress pathways.  

Figure 36: Inactivation of oxyR mutant strains. 
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Figure 37: DCFH-DA Fluorescence of Treated Samples. 

 

 Flow cytometry was employed to detect the production of H2O2 inside bacterial cells. The 
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Figure 38: External Catalase Scavenging the Effect of Plasma Exposure
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increasing values of catalase, the protective effect increased, but complete protection was not 

achieved. 200 units of catalase addition provided the greatest protection (p=0.0001). For higher 

values such as 500 units, the level of protection deceased but was still significant (p=0.001). This 

validates our earlier statement about the involvement of peroxide in the inactivation of E. coli 

during plasma exposure. Complete protection was not observed and indicates the involvement of 

other species produced by plasma.  

5.4.2 Mannitol and Thiourea as ROS Scavengers 

Two non-enzymatic scavengers of ROS, D-mannitol and Thiourea were also used. D-

mannitol is a sugar that has been shown to defend against peroxidative stress [121]. Thiourea is 

an organospulphur compound that has been used as an OH- scavenger [122]. OH- is one of the 

major ROS that is deleterious to bacteria. The two scavengers are not endogenous to bacterial 

cell. Therefore, the wildtype was also tested to determine their efficiency in protection. Both 

scavengers were added to the test strains pre and post treatment. Pretreatment in this case 

provided no significant protection. 

 

 



 

Figure 
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Figure 39: Protective Effect of Mannitol Addition 
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Figure 40: Protective Effect of Thiourea Addition 
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Energy dissipation is minute but highly localized and can be very important when the surface to 

be treated is temperature sensitive, such as biological materials.  

5.5.1 Heat Stress Mutants 

The results from the oxidative mutant studies indicate that there is involvement of katE 

gene in the defense against stress generated by plasma. It has been observed that katE is involved 

in defense against multiple types of stresses, including heat shock and osmotic stress[123]. 

Therefore other genes involved in heat and general stress mechanism needed to be investigated. 

Two families of hsp, hsp60 and hsp70 (60- and 70-kDa hsp) have been implicated in protein 

folding and assembly [124]. These are the groES/groEL system and the dnaJ/dnaK/grpE system, 

respectively. These systems constitute 15–20% of the total protein content of E. coli cells heat 

stressed at 46°C [124]. 

5.5.1.1  The dnaJ/dnaK/grpE system: 

   DnaK, the Hsp70 homolog of E. coli, is controlled by the two co-chaperones DnaJ (41 

kDa) and GrpE (22 kDa), which if acting together increase the weak ATPase activity of DnaK by 

2 orders of magnitude [125-127]. DnaJ accelerates the rate of γ-phosphate cleavage of DnaK-

bound ATP [126, 128], whereas GrpE promotes the release of ADP. Several model cycles for the 

DnaK/DnaJ/GrpE molecular chaperone machinery and their interaction with target polypeptides 

have been proposed. In two of those models [129, 130], dnaJ interacts with substrate polypeptide 

first and then through the DnaJ-induced hydrolysis of DnaK·ATP to DnaK·ADP·Pi, a ternary 

DnaJ·substrate·DnaK·ADP·Pi complex is formed. This complex is responsible for the chaperone 

effect by sequestering the substrate protein and thereby preventing it from aggregation [129]. 

Another model of the system states that [126], the role of DnaJ is to convert the low-affinity 

DnaK·ATP form to the high-affinity DnaK·ADP·Pi form, thereby locking the chaperone onto the 
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target polypeptide. In this model, DnaJ may act in a catalytic manner and fulfill its action without 

forming a stable ternary complex with peptide·DnaK·ATP. This way, dnaJ has a catalytic effect 

on the binding of the ς32 heat shock transcription factor to DnaK; DnaJ promotes the binding 

without becoming itself part of the DnaK·ς32 complex [128] 

5.5.1.2  groES/groEL system 

 The groES and groEL genes of E. coli constitute the groE operon. The products of these 

genes are required for bacterial cell growth at high temperature (42°C). These genes are 

members of the heat shock regulon. The groES and groEL genes code for 10,368- and 57,259-Mr 

acidic polypeptides, respectively, found at high intracellular levels (about 2% of total cell 

proteins at 37°C) [131-133]. Furthermore, as members of the heat shock regulon, the intracellular 

levels of their products increase with temperature through a positive transcriptional control 

exerted by the rpoH (U32) gene product [134].  

5.5.1.3  htpG system 

Hsp90 of E. coli, encoded by the htpG gene, is an abundant protein that is further induced 

during heat stress. Although not essential for viability, deletion of htpG results in slower growth 

at higher temperatures [135], and a slight increase in protein aggregation in heat-stressed cells. 

Thomas and Baneyx [136] showed that at 42 ◦C, the absence of either clpB or htpG led to 

increased aggregation of preS2--galactosidase, a fusion protein whose folding depends on 

DnaK–DnaJ–GrpE, but not GroEL–GroES. Recently, Genest et al. [137] demonstrated that htpG 

promotes reactivation of heat-inactivated luciferase in a reaction that requires the prokaryotic 

Hsp70 chaperone (DnaK) system. It was suggested by them that the DnaK–DnaJ–GrpE system is 

the first to act on the client protein, and then htpG and DnaK act in a synergistic way to complete 
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Figure 42: Mediating Heat Stress through Low Temperature Experimentation
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knockout of kat genes and the katG knockout showed no significant difference from wildtype. 

For the superoxide dismutase mutants, no significant change was observed, as compared to 

wildtype. The double knockout of the sod genes was protected better than the wildtype. This 

maybe be partly due to the ability of O2
- to permeate the bacterial membrane poorly as compared 

to H2O2 [138]. The superoxide anion might also be getting converted to the more stable H2O2 

within the water in the bioaerosol droplet. On the regulon level, the oxyR over-expressor was 

stronger than all the other strains, including wildtype. The involvement of oxyR in the defense 

against oxidative stress has been studied before [119]. The mutant deficient in alkyl 

hydroperoxide reductase (ahpC) also showed greater sensitivity. ahpC has been shown to be the 

major contributor to the defense against ROS [109, 139]. Both ahpC and katE are controlled by 

oxyR and katE is also induced by RpoS activation [123]. Therefore the susceptibility shown by 

the katE and the ahpC mutants indicates the involvement of both oxyR and rpoS pathways in the 

defense against plasma. The interesting part is that katG mutant did not show any significant 

change in inactivation from wildtype. This might be due to the fact that both oxyR and rpoS 

pathways are functional, even if you take out katG. The loss of either katE or ahpC seems to 

have overwhelmed the defenses of the bacteria, causing greater cell death. The reduction in the 

number of bacteria detected in the bioaerosol with Flow Cytometry also points to physical 

damage imparted upon the bacterial cell by the discharge. Plasma discharge is known to destroy 

the membranes of cells. There is localized heating inside the zone of the plasma and bioaerosol 

that interacts with this zone is bound to be affected by it. The importance of katE to bacterial 

survival is an indication of great stress as katE has been shown to be involved in heat stress as 

well as osmotic and weak acid stress [116, 123]. This was investigated with heat shock 

susceptible mutants. Genes responsible for the production of various Hsp were investigated. 
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There was susceptibility observed in all of the heat stress mutants tested. Mediation of this heat 

stress by temperature control did protect the bacteria significantly but there was not a complete 

protection afforded by this method. This indicated potential involvement of heat stress in 

conjunction with the oxidative stress.   
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6. CONCLUDING REMARKS AND FUTURE DIRECTIONS 

6.1 Summary 

 This thesis investigates the efficacy of DBD plasma for the inactivation of airborne 

bacteria. The investigation began with the development of a prototype system for air 

sterilization. HVAC systems account for the greatest amount of interaction we have with 

aerosols. A lab scale model of an HVAC system was developed for testing. The treatment of 

airflow necessitated the development of a specific geometry of discharge. A unique Dielectric 

Barrier Grating Discharge (DBGD) was developed. The efficacy of this discharge was 

investigated through the production and introduction of artificial bioaerosols of E. coli with a 

nebulizer. The results measuring survival of the bacteria indicated complete sterilization for a 

very short period of interaction between bioaerosol particle containing the bacteria and plasma. 

This unexpectedly rapid sterilization effect led us to analyze further the mechanisms underlying 

this rapid inactivation. 

 Plasma discharge produces a large number of stable and unstable reactive species in the 

medium that it is ignited. The most prevalent species produced by plasma is ozone. DBD in 

particular has been used to produce ozone in large quantities for industrial purposes. Therefore, 

we investigated the effect of the ozone produced by our DBGD system. It was observed that the 

ozone produced by plasma was not the major contributor to the inactivation effect, and indicated 

that it is involved in the inactivation. Since most of the energy in the plasma discharge is 

concentrated in the zone of the plasma, the direct interaction of the plasma with the bacteria in 

the aerosol droplet is important to the sterilization effect. This was demonstrated in experiments 

conducted to analyze the influence of plasma geometry on the sterilization of airflow.  
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 These results led to further investigation into direct interaction of plasma microdischarge 

with bioaerosol droplet. We further hypothesized that lived reactive oxygen species are another 

major contributors to the sterilization effect. Experiments were designed to test this hypothesis 

with unique single filament DBD discharge developed for this purpose. The efficacy of this 

discharge in inactivation of bacteria was determined. To understand the pathway involvement, a 

sub lethal dose of plasma was determined. Systems that are involved in the defense against 

oxidative stress were analyzed using mutants. Out of the mutants tested against plasma, the 

catalase mutants were found to be significantly more susceptible. The genes katE and ahpC were 

the most susceptible. ROS scavengers were employed to mediate the ROS produce by plasma.  

 The involvement of katE in multiple bacterial stress defense mechanisms led us to 

investigate another closely related system i.e. the heat stress system. The work was performed 

with heat stress deficient mutants. The results indicate involvement of localized heat stress 

produce by the DBD single filament affecting the bioaerosol. The observations lead us to believe 

that the hydrogen peroxide stress, combined with heat stress and membrane changes cause the 

bacterial inactivation.  

6.2  Future Work 

 The effectiveness of plasma technology in inactivating bioaerosols rapidly has opened a 

whole new area of plasma sterilization. There is scope to further investigate the sterilization 

effect through transcriptional analysis. The genes that are indicated to be involved in the defense 

can be studied for their expression.  
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 The development of larger prototypes was successfully performed in this study. There is 

scalability to the technology and it can be applied to various modalities where bioaerosols are a 

problem, such as hospital ventilators and other respiratory apparatus. 
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