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Abstract 

 
Computer systems do not learn from previous 

experiences unless they are designed for this purpose. 
Computational intelligence systems (CIS) are inherently 
capable of dealing with imprecise contexts, creating a new 
solution in each new execution. Therefore, every execution 
of a CIS is valuable to be learned. We describe an 
architecture for designing CIS that includes a knowledge 
management (KM) framework, allowing the system to 
learn from its own experiences, and those learned in 
external contexts. This framework makes the system 
flexible and adaptable so it evolves, guaranteeing high 
levels of reliability when performing in a dynamic world. 
This KM framework is being incorporated into the 
computational intelligence tool for software testing at 
National Institute for Systems Test and Productivity. This 
paper introduces the framework describing the two 
underlying methodologies it uses, i.e. case-based 
reasoning and monitored distribution; it also details the 
motivation and requirements for incorporating the 
framework into CIS. 

 
 

I. Introduction 
 
Knowledge management (KM) comprises a large 

umbrella of initiatives that focus on the rational allocation 
of knowledge assets from the perspective of humans, 
organizations and computer systems. KM is typically 
implemented through the performance of knowledge tasks, 
e.g. create, distribute, reuse. Computational intelligence 
systems (CIS) use a variety of techniques, e.g. 
evolutionary computing, to derive solutions to real world 
problems. They make good candidates for a KM approach 
because they build new solutions at every execution. In 
this paper, we introduce a KM framework that performs 
knowledge tasks to streamline the performance of CIS. 

Intelligent systems in general only learn from 
experience when they are designed with this specific 
purpose. Some learning systems are designed to learn from 
inputs but not from their own executions. Computer 
systems that deliver tasks interfacing with a dynamic 
environment can only be considered reliable if they are 
prepared to learn, adapt, and evolve. The KM framework 

we present allows CIS to learn, adapt, and evolve; 
potentially resulting in continuous improvement and 
increased reliability because it is designed to enhance a 
system’s capabilities. Managing knowledge in CIS means 
giving these systems the ability to learn from their own 
executions. The KM framework represents an additional 
effort to guarantee a system performs as required; 
therefore, reaching the core of high assurance [1]. In 
addition, systems engineering pursues high assurance in 
systems interfacing with a dynamic world where task 
environments evolve. Consequently, enabling systems to 
respond to dynamic environments and behave in 
conformity with the context’s changes is beneficial to high 
assurance systems engineering. 

The system that incorporates the proposed KM 
framework evolves because it observes its executions and 
uses metrics to evaluate its performance. For example, in a 
CIS that trains an artificial neural network (ANN), its 
accuracy can be used as a measure of its performance. We 
describe an example (Section V B) where these 
observations can help improve the quality and efficiency 
of the system. The resulting system can be configured to 
submit every new thing it learns to be validated by 
humans, so it will not act in unexpected ways.  The 
architecture keeps the KM framework independent from 
the core system. 

The KM framework manages knowledge bases of 
different scopes. In addition to storing entire executions, it 
also includes a module to handle lessons-learned (LL), i.e. 
pieces of knowledge that teach a strategy to improve 
individual tasks. Lessons can be learned in any context and 
the system will be able to incorporate them.   

The KM framework is currently being implemented for 
the first time and hence it has not yet been validated. 
However, the framework uses two validated methods: 
case-based reasoning (CBR) and monitored distribution 
(MD). Both these methods have demonstrated their 
effectiveness and the wide range of techniques developed 
for CBR substantiates the application of the KM 
framework. For example, maintenance methods studied for 
CBR provide many alternatives for case base maintenance 
(Section VI).  

In Section II, we present the motivation for this work, 
showing why CIS are amenable to KM. Section III 
describes the underlying methodologies used in the KM 
framework. We describe the framework in Section IV and 
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in Section V detail requirements for its integration and an 
example. Section VI discusses some issues related to 
managing expertise and covers related work particularly 
with respect to maintenance. Section VII presents a 
summary and future work. 

 
II. Motivation 

 
Knowledge management (KM) refers to the rational 

allocation of knowledge assets by means of effective and 
efficient organizing, planning, leading, controlling, and 
coordination. Typical KM solutions are described in terms 
of a knowledge cycle that entails knowledge tasks such as 
capture, distribution, and reuse [2]. KM goals are also 
described in terms of knowledge, such as knowledge 
sharing and leveraging. In fact, KM goes far beyond 
knowledge. It refers to a number of human abilities 
(henceforth referred to as KM abilities) that allow them to 
interface with a dynamic world, learn, evolve, adapt, and 
keep performing tasks they are intended to deliver. 

Recent interest in this field has shown that although 
humans are equipped with a series of KM abilities that 
allow them to adjust to the world’s changing conditions; 
they lose these abilities when organized in systems. Such a 
fact represents one of the KM’s biggest challenges, i.e. 
transferring individual KM abilities to organizational 
contexts. Not surprisingly, few strategies have resulted in 
success (e.g. Senge [3]). The problem is that systemic KM 
outside humans has to be artificially conceived, 
implemented and managed to succeed. One of the 
difficulties is in trying to incorporate KM processes into 
existing systems i.e. that were conceived without it. Better 
results can be obtained when KM processes are part of the 
original and integral design and development of systems. 
Although challenging to conquer, KM abilities allow 
systems to learn, evolve, adapt, and successfully perform 
in the context of a dynamic world.  

Similar challenges are faced by computer systems 
designed to deliver tasks in the context of the same 
dynamic world. Therefore, it is reasonable to assume that 
computer systems can also benefit from KM strategies. 
The needs and respective benefits are directly proportional 
to the complexity of the system’s task and to the assurance 
levels a problem context requires. A reliable computer 
system should be able to learn, evolve, and adapt in order 
to guarantee its successful performance in the context of a 
dynamic world. 

The simplest form of KM in a computer system occurs 
when it is maintained.  Reasons for maintenance may 
originate from flaws or changing conditions. When a 
computer system monitors its own performance and is able 
to learn from it, it can guarantee longer periods of response 
without the need for maintenance. This self-monitoring 
also gives the system the ability to recognize when it fails 
and cannot learn, flagging its need for maintenance. Fast 
adaptation to changing conditions has the potential to 

increase assurance levels, justifying the incorporation of 
KM strategies into high assurance systems. 

 
A. Why CIS need Knowledge Management? 

 
Computational intelligence (CI) is an emerging 

paradigm of information processing aimed at the design of 
highly intelligent systems [4]. Although there is no 
consensus on the definition of CI [5], there is a widely 
accepted view on what components CI should have [4][6], 
namely  evolutionary computing, fuzzy computing, and 
neurocomputing.  Consequently, CIS are characterized by 
a variety of methods, e.g. data-intensive learning methods, 
evolutionary methods, knowledge-based methods, that 
perform complex tasks. Contrasting traditional, logic-
based, top-down artificial intelligence methods, CI  
methods are generally bottom-up, exploiting tolerance for 
imprecision,  uncertainty, robustness, partial truth to 
achieve tractability, and  better rapport with reality [6]. In 
CI methods, order and structure emerge from an 
unstructured beginning. These features and the ability to 
perform intelligent tasks make CIS even more suitable for 
KM strategies because experience can be directly reused in 
the performance of complex tasks. 

Some evidence revealing why CIS need KM resides on 
the parameter configuration of CI methods, e.g. genetic 
algorithms (GA), artificial neural networks (ANNs). As 
inputs vary, the parameter configuration should also vary 
to conform to each input. However, there are no means 
available to find the optimum parameterization of 
operators for GAs [7] or no standard way of finding the 
optimal architecture for ANNs [8].  Hybrid algorithms 
have been designed to find the optimal design for ANNs in 
[9]. The benefit of learning from experience is that 
previous experiences can help in finding a more 
appropriate parameter configuration, potentially decreasing 
the chance of failure. 

Table 1.Impact for different mutation rates 
Mutation 

Rate BestX %OffOptimal BestY %OffOptimal 

0.10 1.85 0 2.85 0 
0.20 1.85 0 2.85 0 
0.30 1.85 0 2.85 0 
0.40 1.849 -0.05 2.849 -0.04 
0.50 1.852 0.11 2.848 -0.07 
0.60 1.857 0.38 2.807 -1.51 
0.70 1.86 0.54 2.766 -2.95 
0.80 1.63 11.9 2.325 -18.4 
0.90 1.236 33.2 2.127 -25.4 
 
Table 1 shows an example of the benefit that 

experience can bring to the definition of parameters in CI 
methods. We used a genetic algorithm to search for the 
global maximum of a given graph 
(http://ai.bpa.arizona.edu/~mramsey/ga.html). The 
required parameters to run the algorithm are number of 
genes, number of agents, crossover rate, and mutation rate. 



Figure 1. Conceptual KM process [2] 

The results obtained 
represent values for the 
two axes x and y and the 
percentage of their 
difference from the 
optimal values. The 
results in Table 1 
demonstrate how the 
different values for 
mutation rate impact the 

final 

results. This parameter specifies what percentage of genes 
in the population will be replaced each generation. A value 
that is too high may affect the accuracy of the results; on 
the other hand, a value that is too low may not keep the 
population diverse enough and lead to premature results. In 
order to select an appropriate value for mutation rate, we 
collected the search results by setting different mutation 
rates. As the results show in this example, appropriate 
values should be between .2 and .4. As this example 
suggests, the use of different experiences can help finding 
proper parameter configurations. This indicates that GA 
methods have a knowledge need, and therefore can benefit 
from a KM approach. Given the difficulty of determining 
parameters for ANN, the benefit also applies to ANN 
methods. 

Information systems (IS) can also benefit from 
incorporating a KM strategy into their design. The idea of 
learning its own executions to improve efficiency in 
databases has already been studied in [10]. Although 
traditional IS are meant to produce information rather than 
tasks, they can also benefit from KM. One important 
element missing today in IS of high consequence (e.g. 
hospital IS) is a sound security strategy. Developing and 
incorporating a security strategy into IS implies complex 
tasks that can benefit from useful knowledge. 

In the essence of high assurance systems is the ability 
to guarantee that a given system will behave the way it is 
expected [1]. Hence, computational intelligence techniques 
can increase assurance to systems engineering, given their 
ability to handle knowledge and data in a coherent manner 
[4]. Along these lines, a KM approach that oversees the 
intensive flow of solutions derived in CI systems, 
represents an additional instrument to guarantee coherence, 
resulting in higher quality software. 

The same caveat from human-based systems applies to 
computational intelligent systems: the KM strategy has to 
be incorporated into system design. Attempts to integrate a 
KM framework after a system is developed endanger the 
final intended result. The only exception is to systems 
whose architecture is designed to grow, such as research-
oriented architectures. An example of such architecture is 
given in Section V, Subsection B.  

III. Background 
 
The KM framework we introduce in this paper is 

currently under development and therefore is yet to be 
validated. Nevertheless, this KM framework combines 
well validated elements of two methodologies: case-based 
reasoning [10] and monitored distribution [12][13]. This 
section describes the underlying concepts and methods 
used to implement the KM framework.  

 
A. Conceptual Knowledge Management Process 

 
KM solutions are typically presented through KM 

processes that detail knowledge tasks. An analysis of 
different KM processes described in the context of 
technological KM solutions resulted in the conceptual 
cycle [2] presented in Figure 1. It consists of the tasks 
create, understand, distribute and reuse. 

The create task refers to applying different methods to 
collect or generate knowledge (and information) within the 
application’s context. The understand task is responsible 
for performing all necessary steps (e.g. validate, represent, 
store) to make collected knowledge ready to be distributed. 
The distribute task matches stored knowledge to the 
knowledge needs of its proper recipients. The reuse task 
oversees that knowledge is properly reapplied back into 
the application’s context. 

This conceptual process has many tasks in common 
with the CBR cycle. Next, we describe the CBR 
methodology and then discuss its use to support KM 
solutions. CBR is the underlying methodology for 
knowledge storage (i.e. understand). MD supports 
distribution and reuse. 

 
B. Case-based reasoning 

 
Case-based reasoning [10][14][15][16] is a reasoning 

methodology [17] inspired by the human process of 
remembering a previous similar episode to solve a new 
problem. The act of being reminded of a previous episode 
is modeled in case-based reasoners by comparing a new 
problem with a collection of stored cases (the case base), 
often based on indexes describing the contents of the 
stored cases. The most similar cases are then retrieved, and 
can be used as references to classify the new case or the 
solutions from the retrieved similar case(s) can be adapted 
to fit the new problem. If the adaptation results successful, 
a new case has been created and is retained in the case 
base. However, adaptation is one way of acquiring cases. 
Other case bases consist exclusively of real experiences, 
where adapted cases are not learned. Cases can also 
describe prototypical situations or be artificially authored. 

There are four basic steps in the CBR process [16]:  
retrieve, reuse, revise and retain. Applications that include 
iterative learning will also include a review step [18], as 
illustrated in Figure 2. 



Figure 2. The CBR cycle 

Indexing is the essence of case-based reasoning as it 
guides similarity assessment and retrieval. The collection 
of indexes model the answer for the question, “What 
makes a case similar to another, such that the solution of 
one can be reused in the other?”, representing the 
relevancy of the cases. Indexing determines what has to be 
compared between cases to assess their similarity for 
retrieval. Retrieval allows the reasoning task: retrieving 
cases with usefulness to solve or interpret the new case. 

Another way to look at CBR systems is by examining 
knowledge representation methods involved in building a 
case-based reasoner. Richter [19] defined CBR systems as 
a reasoning method that uses four knowledge containers 
(KC). The four KC, sketched in Figure 3, are vocabulary, 
similarity measure, case base, and solution transformation. 

The vocabulary includes attributes and predicates used 
to describe cases in different levels of abstraction. The 
similarity measure includes indexing, similarity functions, 
aggregation of similarities, and selection; also including 
methods to learn similarity measures, feature weights, and 
indexing. The case base includes case base maintenance, 
case acquisition, and the organizational structure of cases, 
which can use a flat scheme, hierarchies or networks. The 
solution transformation refers to knowledge used in the 
reuse and revise steps of the CBR cycle. The automatic 
adaptation of cases entails the previous determination of 
incoming problems and the expected contrasts between 
stored cases and new problems. The contrasts can be 
covered by new knowledge added to the system or by 
modifications to the knowledge. 

 
Learning in Case-Based Reasoning.  Case-based 
reasoners can learn by acquiring new knowledge in all of 
its knowledge containers. However, the most frequent 
targets of learning are the cases and case bases.  Learning 

in cases occurs as an expression of learning from 
experience. The outcome part of a case is designated with 
this goal. The case keeps records of its performance when 
used to attempt to solve new situations. Thus, both 
successes and failures can be added, enhancing the 
knowledge and the lessons embedded in a case. The record 
of the outcome resulting from reusing a given case can 
warn the user of possible consequences in its reuse. This 
process is worthwhile because it prevents the system from 
reusing less indicated suggestions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case bases grow through incremental learning if the 

task and design of the system allows. From a limited set of 
seed cases [15], the case base can be augmented with new 
cases. The generation of these new cases stems from new 
inputs from users or from external sources. In problem-
solving systems, new cases may undergo adaptation before 
they are added to the case base. In interpretive systems, 
new cases are added after proper indexing.  

Since the first case-based reasoner ever developed [10], 
CBR has become a well established reasoning 
methodology [14][15][16][18]. Today, there are several 
significant deployed applications using CBR and a great 
variety of techniques have been developed. Conversational 
case-based reasoning (CCBR) [20] is the underlying 
methodology of one the most successful tools for call 
centers in the market today: eGain Knowledge Agent 
(www.egain.com). A number of sophisticated CBR 
systems have been developed and deployed at GE 
Transportation Systems, GE Medical Systems and GE 
Aircraft Engines [21]. 

 
Case-Based Reasoning and Knowledge Management. 
CBR is often recommended for KM tasks [22]. Among 
some of the possible reasons are the commonalities 
between the CBR cycle and the KM process [23] and the 
fact that CBR uses different techniques to manage a set of 

Figure 3. CBR knowledge containers 



knowledge containers [19]. In addition, CBR is a 
methodology [17], and poses less engineering 
requirements than techniques that represent knowledge 
explicitly and exhaustively (e.g. rule-based) [24][25]. And 
yet, the real evidence is in the number of KM solutions 
that use CBR [2][27]. Recently, several members of the 
CBR community have selected two research publications 
as the most representative illustrations of the importance of 
CBR to KM [27][28].  

Table 2. Example of a lesson-learned 
Indexing Elements Reuse Elements 

Applicable task: training 
ANN; 

Lesson suggestion: check range of 
values for each part of field to verify 
if date format in data from foreign 
country is the same so results are 
interpreted the same way;  

Preconditions:  
1) input uses data from 
foreign country; 
2) data contain field format 
date. 

Rationale: data format varies from 
MM/DD/YYYY to DD/MM/YYYY 
Outcome: This lesson was used on 
12/03/2003 at 10h04min on input case 
register 83245. The format date did 
not need to be changed. 

 
C. Monitored Distribution 

 
Monitored Distribution [12][13] is an approach for the 

proactive distribution of knowledge artifacts [29]. 
Examples of knowledge artifacts are best practices, 
lessons-learned, and alerts. The knowledge artifacts that 
MD distributes are lessons-learned (LL).  

LL teach a strategy to perform a task, resulting in a 
positive impact on that task [30][28]. It may indicate how 
to avoid a problem or simply how to proceed in a way that 
may be safer, cheaper, or faster. It is a requirement that LL 
positively impact the task they are applied to; this forces a 
strong association between the lesson and its applicable 
task. This association demands that lessons are only 
retrieved in the context of the task that they apply to. LL 
also include preconditions for applicability. MD monitors 
when LL should be distributed by matching the lesson to 
the retrieval’s context. MD’s distribution module relies on 
CBR methodology. 

A representation for LL is exemplified in Table 2, 
which combines indexing elements (i.e. applicable task, 
preconditions) and reuse elements (i.e. lesson suggestion, 
rationale, and outcome). This structure is responsible for 
facilitating the process of creating, understanding, 
distributing, and reusing LL. The indexing elements are 
used by MD to assess the similarity of a lesson with a 
context in order to guarantee a retrieval that is oriented to 
its applicability. LL are only retrieved if the context’s 
current task and state match the applicable task and the 
preconditions. Lesson suggestion provides the decision or 
action recommended by the lesson, which replaces or 
modifies the original and expected decision that would be 
taken had the lesson not be distributed. The rationale 
describes reasons to store and reuse a lesson. The outcome 

records the usage of the lesson, giving it another 
opportunity for the system to learn.  
Empirical Validation. The impact of the MD approach 
was demonstrated in an empirical experiment [12][13] that 
planned military operations with and without the reuse of 
LL. The result of the experiment was that plans generated 
with the reuse of lesson-learned have reduced the number 
of friendly casualties by 30%, reduced the number of 
casualties among civilians being rescued by 24%, 
decreased the total time of the operation by 18%, and 
increased the number of casualties among enemies by 2%. 

 
IV. KM Framework 

 
This section describes the KM framework incorporated 

into the architecture of CIS. The framework can potentially 
be beneficial to other kinds of computer systems, but here 
the description is limited to CIS.  

The framework consists of two modules interconnected 
to the target CIS (Figure 4). Both modules consist of a case 
base container and four KM processes. The top module is 
designated to describe experiences of executing the CIS in 
the main case base (MCB). The bottom is a lessons-
learned module that describes lessons applicable to the CIS 
in the LL base. The top module manages experiences that 
reflect entire executions of the CIS. The bottom module 
manages experiences that are useful to individual tasks 
throughout the CIS.  

The KM framework encircles the CIS with two 
modules having the same basic structure: a case base 
container and four processes: creator, distributor, reuser, 
and understander. The base containers can include several 
case bases, depending on the system’s scope. For example, 
if the CIS produces outputs of distinct natures, two 
different MCBs may be used. If, for the same output, the 
CIS offers choice of methods, then additional individual 
case bases (ICB) may be added to store different variations 
of each method. Analogously, the use of two separate LL 
bases may be more efficient for two distinct task 
environments.  

 
A. Case Bases 

 
The MCB stores entire executions of the CIS. One 

MCB is needed for each main type of output the CIS 
produces. For example, if the CIS uses artificial neural 
networks (ANN) for both diagnosis and routing, the nature 
of the inputs and the task is sufficiently distinct to require a 
separate MCB. In addition to one or more main case bases, 
the use of additional ICBs may be necessary. For example, 
suppose the training for classification can be executed 
using two variations of the ANN architecture. In this case, 
an additional ICB will store data about additional 
executions using different methods. The execution stored 
in the MCB can be determined by metrics or by 
customization. The purpose of separating main and 



individual case bases is to define parameters for similarity 
assessment.  

 
B. Processes 

 
The four processes creator, understander, distributor, 

and reuser are in the same context as the case bases where 
they exchange data. These processes are described next. 

 
Creator: This process is responsible for acquiring data to 
populate the case bases. The creator collects data for both 
case base containers. For the MCBs and the ICBs, it 
collects data from the CIS about its inputs, parameters 
used and produced during its execution, and its outputs. 
Creator also collects lessons-learned for the LL base. It 
communicates with knowledge engineers (KE) so they can 
verify what has been collected. 

 
Understander: This process refers to all methods 
designed to prepare the data acquired by the creator 
process. The understander process has to prepare the data 
and verify its status as knowledge, i.e. its usefulness to 
solve problems. Understander prepares the data to be used 
as knowledge by assigning similarity functions and 
weights for each case feature. Understander is also 
responsible for computing maintenance metrics that 
determine the stage of life cycle in which a case base 
belongs. The life cycle stage determines maintenance 
requirements. The understander converses with knowledge 
engineers and additional CI methods. It is a design 
decision to determine the extent to which it is worth 
keeping these additional algorithms within the architecture 

or let the KE compute them and enter results directly to the 
understander. 
 
Distributor. This process accounts for retrieving relevant 
and applicable knowledge to all knowledge needs of the 
CIS. The distributor uses the similarity parameters defined 
by the understander to match cases from all case bases (i.e. 
MCB, ICB, LLB) to processes that correspond to 
knowledge needs. The identification of knowledge needs is 
discussed in Section V A. For example, before training an 
ANN, the CIS has to define a configuration of the ANN’s 
parameters. This step represents a knowledge need because 
there may be knowledge available that allows the system 
to define the most appropriate parameters for a given 
input. If this knowledge is in fact available, it is stored in a 
case and will be retrieved when the CIS is performing this 
step and the input characteristics match the ones described 
in the case. Then, distributor calls the reuser process. 
  
Reuser. This process triggers commands stated by 
knowledge retrieved by the distributor process. In the 
example given above, the reuser process takes the 
parameters and assigns them to the ANN. The reuser will 
also assess the need for adaptation, triggering proper 
methods accordingly. 

 
C. Interfaces 

 
The inclusion of the framework also requires additional 

interfaces so KE can verify data processed by the different 
processes, e.g. creator, understander. Another interface is 
needed for entering LL directly into the LLB. 

Internally, the KM framework interfaces with the CIS 
through its processes. Figure 4 shows arrows representing 
the flow of data, information, and knowledge between CIS 
and the framework’s processes. 

The interference of KE characterizes the first two of a 
three-phase implementation of the framework. The 
implementation phases are described in the next section.  

 
V. Integrating the KM framework 

 
The integration of the KM framework into a CIS 

design becomes part of its development life cycle. The KM 
framework’s development life-cycle has three stages: 
childhood, adolescence, and maturity. The first two phases, 
childhood and adolescence are characterized by full 
control from the knowledge engineers. During childhood, 
the methods and processes are implemented and tested and 
the first experiences are collected. In adolescence, the 
system is making decisions trying to find assurance of the 
way it learns. This is when similarity and maintenance 
methods are defined. In maturity, minimum human 
interference is needed because if the system needs 
maintenance, proper maintenance methods will determine 
the need and the system will flag it.  

Figure 4. Architecture: CIS + KM framework 



Figure 5. CI-Tool design including KM framework 

A. Requirements for Integration 
 
First of all, it is necessary to assess the potential 

benefits of integrating a KM framework into any system. 
The most important question to answer is whether the 
system performs tasks that can be improved. For example, 
when task environments change, requiring small variations 
in the way tasks are performed. If a system includes tasks 
that are amenable to improvement, then the system is 
suitable for a KM approach. 

The most important requirement to integrate the KM 
approach is to identify where and when these tasks are 
performed. The moment of performing a task that is 
amenable to KM represents a knowledge need. All 
knowledge needs of the system must be identified a priori 
in order to integrate the KM framework that will focus on 
these knowledge needs. The next subsection describes an 
example where this aspect can be better understood. 

Finally, it is essential that the KM framework be 
integrated into the design of CIS. The only exception to 
this requirement is the case of flexible architectures that 
are designed to be constantly changing and therefore are 
flexible enough to incorporate the KM processes without 
jeopardizing its effectiveness. The CI-Tool is an example 
of such flexible architecture.  

 
B. KM Framework in the CI-Tool  

 
The KM framework is being integrated into a 

computational intelligence tool for software testing (CI-
Tool) currently under development at the National Institute 
for System Test and Productivity (NISTP) at the 
University of South Florida. CI-Tool uses different CI 
methods to support testing of software programs. Figure 5 

shows the resulting architecture of the CI-Tool 
contemplating the KM framework. 

CI-Tool meets the most important requirements to use 
knowledge management: it performs tasks in changing 
environments, uses multiple CI methods to perform them, 
and exhibits flexible design architecture. The changing 
task environments in the CI-Tool originate from the 
different nature of software to be tested. Some of the CI 
methods used by the CI-Tool are genetic algorithms and 
artificial neural networks. Its design architecture 
characterizes the development of a tool constantly ready to 
incorporate the latest research findings. 

The CI-Tool has knowledge needs while performing its 
main task and also within the CI methods it employs. For 
example, when calling a CI method, one specific 
parameter configuration may have demonstrated more 
effective in previous executions; or after generating test 
cases, lessons may be applicable to include an additional 
test case for a specific input. 

The KM framework in the CI-Tool has one main case 
base (MCB), four individual case bases (ICB), and one 
lessons-learned base (LLB). It has one of each (i.e. MCB 
and LLB) because the current integration targets a version 
of the CI-Tool designed to perform one task, i.e. 
generation of test cases. The flexibility of the architecture 
of the CI-Tool remains with the incorporation of the KM 
framework. As the CI-Tool adds new tasks, new MCBs, 
ICBs and LLBs can be included. 

The four ICBs displayed in the current implementation 
are respective to the four methods represented in Figure 5 
by four process symbols. Although the detailing of these 
methods is outside the scope of this paper, they are 
currently used in the CI-Tool to generate test cases for 
software testing. The KM framework stores multiple 
experiences describing each of the methods solving 
different inputs. What distinguishes the ICB from the 
MCB is that the MCB stores experiences for each input 
with one and up to four methods. The value of the MCB is 
to preserve the experience of each input in order to unravel 
variable performance of the methods for each input. Each 
ICB stores experiences of one method only.  

 
VI. Discussion and Related Work 

 
Computational intelligence (CI) methods are designed 

to perform a great variety of complex tasks. Some of these 
tasks are associated with human thinking [31], and hence 
they embed a component of uncertainty that may result in 
two features: one is that their performance can improve 
with experience, and other is that there may be a number 
of small variations to the way they can be performed. Our 
assumption is that CI methods are amenable to knowledge 
management because of these features. 

The CI-Tool is an example of a CIS for software 
testing (ST). ST is an example of domain expertise where 
experienced experts are more likely to design effective 



testing strategies. Experience also helps human experts to 
adapt to changing task environments because it is through 
experience that humans learn, adapt, and evolve. The 
proposed KM strategy aims at these same goals so that CIS 
can deliver high levels of assurance. 

The topic of human expertise replicated in computer 
systems has been extensively studied mostly in the context 
of expert system (ES) methodology. Expert systems [32] 
and, particularly, rule-based expert systems, have dealt 
with this challenge offering results that are somehow 
limited. The proposed KM framework offers a new 
perspective to replicating human expertise, one that 
originates from human KM abilities and how they improve 
the quality of tasks. Although we do not intend to compare 
the two methodologies here, it is interesting to highlight 
the issues that have limited the performance of rule-based 
expert systems and how they are addressed in this KM 
framework, namely knowledge acquisition and 
maintenance. 

Knowledge acquisition in expert systems is conducted 
either as an initial step of development or as a continuous 
effort. An acquisition component is sometimes included in 
the basic description of the ES methodology, and 
knowledge is either elicited directly from experts or 
induced with machine learning methods. The worst 
problem in rule-based ES is that if new rules are acquired 
after system’s development, these new rules will not have 
been included in the analysis of the domain and the 
influence these new rules may have over existing rules in 
the system is not captured. Such a characteristic means that 
typical ES do not meet one of the grounds for computer 
understanding, which says that computer programs should 
be able to learn new knowledge and integrate it to the 
overall knowledge of the system [32]. 

The KM framework introduced here relies substantially 
on case-based reasoning, and therefore knowledge is 
acquired in the same fashion as in case-based reasoners. 
After a CBR system is operational, additional knowledge 
is learned in a demand-driven fashion, as a lazy learner 
[18]. Because knowledge is applied as a result of similarity 
assessment and retrieval, new cases do not interfere with 
existing cases and therefore case-based reasoners are able 
to integrate new knowledge to the overall existing 
knowledge without demanding any additional effort. Case-
based reasoners meet all grounds for computer 
understanding from [32]. 

Although able to incorporate new knowledge, case-
based reasoners still need to employ maintenance to 
guarantee good levels of effectiveness and efficiency in the 
case bases. A system that can capture new knowledge 
imposes a third source of maintenance in addition to 
existing flaws and environment changes. We described 
earlier about the mechanisms the KM framework employs 
to adapt to a changing world. We now discuss previous 
work on maintenance methods for the framework.  

Verification parameters are the simplest form to control 
the performance of a CBR system [14]. Some of these 
parameters are retrieval accuracy, which is verified by 
observing the retrieval result when the target case is part of 
the case base; retrieval consistency, case duplication case 
coverage, retrieval time and sorting, and consistency [14]. 
The constant verification of these parameters can suggest 
maintenance needs.  

The research in maintenance methods for CBR offers a 
great variety of techniques. A noteworthy view of current 
state-of-the art in maintenance methods for CBR systems 
is given in [33]. The methods cover both tasks of 
determining whether maintenance is necessary and of 
defining maintenance strategies. Some strategies suggest 
ways to determine when knowledge is needed and then 
recommend artificial cases for addition, we plan to use 
these methods as a way to estimate future maintenance 
needs. 

Significant contributions to CBR maintenance were 
provided by competence-based models. Competence 
represents how well a case base solves a collection of 
potential problems. These methods are surveyed in [34]. 
These methods would not directly apply to the KM 
framework because they are designed for case-based 
reasoners whose cases are artificially engineered and the 
KM framework is composed of cases that have actually 
been tested in the CIS. On the other hand, these methods 
can suggest problems to be executed in the CIS to 
complement sparse areas in the case base.  

Some deletion methods can also produce benefits when 
maintaining the KM framework. Two useful deletion 
strategies are based on replacing a number of cases with 
one more general case and on keeping track of the 
usefulness of stored cases during problem solving [35]. 

A maintenance method that is directly useful in our 
framework aims at maintaining knowledge in the similarity 
measure [36]. First, it can be used because it allows 
refinement of feature weights. This is useful because we 
will start operating the case bases even before we have a 
sufficient number of cases to determine final similarity 
parameters. Another reason for choosing this method is 
that it has demonstrated its benefits when a case base 
expands due to changes in external conditions. Finally, this 
method uses genetic algorithms (GA), allowing us to 
extend the utility of the GA module to maintenance. 

Other maintenance approaches that can make use of CI 
methods already included in the CIS are the ones that use 
artificial neural networks. Two research projects have 
focused on using ANN to select cases[37][38]. In [38], an 
ANN was used for clustering cases to identify redundant 
and representative cases within clusters. The resulting 
clusters are considered to be representative of solution 
prototypes. Each cluster is supposed to contain 
representative and redundant cases, which are determined 
by the computation of the case density with a similarity 
measure. The clusters are then reduced with the 



elimination of its redundant cases. The combination of 
ANN-based methods with others mentioned above can 
potentially produce highly sophisticated maintenance 
results.  

Finally, one last group of research in CBR maintenance 
refers to systems that have employed maintenance in CBR 
for KM purposes. Obsoletism and redundancy problems 
are discussed in [39] in the context of a deployed case base 
that grew too fast given the abundant availability of new 
cases. The author warns for the need for unnecessary 
maintenance when proper maintenance methods are not 
included in design and implementation phases. 
Maintenance methods for case bases describing real 
experiences have also been studied from a KM perspective 
in the context of the experience factory [40]. The authors 
have investigated the tasks associated with maintaining an 
experience repository from an organizational perspective 
and proposed a maintenance and evaluation framework for 
experience bases. 

When adopting a KM framework, we seek for 
assurance, not presumption. Presumption may lead to 
acceptance of knowledge that is not necessarily ideal. 
Systems need to learn, evolve, and adapt as long as they 
are able to guarantee high assurance levels. An important 
benefit of using the CBR methodology is that research in 
the area has already produced a reasonable number of 
maintenance techniques allowing a severe control of the 
learned experiences.  

 
VII. Summary and Future Work 

 
This paper introduces a knowledge management (KM) 

framework for integration into the design of computational 
intelligence systems (CIS). The main advantages of 
adopting this KM strategy relate to giving CIS the ability 
to learn from its own executions and to adapt and evolve. 
The KM framework also allows CIS to incorporate 
experiences learned in external contexts. We described the 
underlying methodologies used by the KM framework and 
the requirements for its integration. An example is given 
showing the KM framework integrated into the design of 
NISTP’s CI-Tool. 

We briefly discuss the role of managing knowledge in 
intelligent systems and how it relates to expert systems and 
known challenges for expert tasks. The KM framework 
brings new hope in the attempt to deliver intelligent 
methods that can replicate human skills. 

The KM framework introduced here is currently under 
development for the first time and therefore an empirical 
validation of its effectiveness will soon be possible.  
Because implementing this KM framework includes a 
three step life cycle, different validation studies can be 
conducted to evaluate each of its phases. The validation 
targeting specific phases allows conclusions and following 
steps to be drawn to address each phase.  

Nevertheless, the KM framework presented here uses 
two well validated methods: monitored distribution (MD) 
and case-based reasoning (CBR). MD [12] has been 
demonstrated to improve the quality of the final result 
produced by the system it targets. MD contributes to the 
framework with its capability to improve a task result by 
supporting it with the right knowledge at the right time. 
CBR, on the other hand, contributes to the framework with 
a solid array of techniques developed and implemented in 
real world applications. In addition, the extensive literature 
in maintenance methods for CBR provides a sound 
foundation for the success of our framework. Besides, the 
possibility of leveraging CI methods (e.g. ANN, GA) 
performing main tasks to also support maintenance 
processes has the potential to characterize the resulting 
CIS as not only effective and reliable, but also efficient. 
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