

College of Information Science and Technology

Drexel E-Repository and Archive (iDEA)

http://idea.library.drexel.edu/

Drexel University Libraries
www.library.drexel.edu

The following item is made available as a courtesy to scholars by the author(s) and Drexel University Library and may
contain materials and content, including computer code and tags, artwork, text, graphics, images, and illustrations
(Material) which may be protected by copyright law. Unless otherwise noted, the Material is made available for non
profit and educational purposes, such as research, teaching and private study. For these limited purposes, you may
reproduce (print, download or make copies) the Material without prior permission. All copies must include any
copyright notice originally included with the Material. You must seek permission from the authors or copyright
owners for all uses that are not allowed by fair use and other provisions of the U.S. Copyright Law. The
responsibility for making an independent legal assessment and securing any necessary permission rests with persons
desiring to reproduce or use the Material.

Please direct questions to archives@drexel.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Drexel Libraries E-Repository and Archives

https://core.ac.uk/display/190324676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.drexel.edu
http://idea.library.drexel.edu/
www.library.drexel.edu
mailto:archives@drexel.edu
http://www.ischool.drexel.edu/

Knowledge Management for Computational Intelligence Systems*

Rosina Weber, Duanqing Wu
College of Information Science and Technology, Drexel University Philadelphia, USA

Rosina.Weber@drexel.edu

Abstract

Computer systems do not learn from previous

experiences unless they are designed for this purpose.
Computational intelligence systems (CIS) are inherently
capable of dealing with imprecise contexts, creating a new
solution in each new execution. Therefore, every execution
of a CIS is valuable to be learned. We describe an
architecture for designing CIS that includes a knowledge
management (KM) framework, allowing the system to
learn from its own experiences, and those learned in
external contexts. This framework makes the system
flexible and adaptable so it evolves, guaranteeing high
levels of reliability when performing in a dynamic world.
This KM framework is being incorporated into the
computational intelligence tool for software testing at
National Institute for Systems Test and Productivity. This
paper introduces the framework describing the two
underlying methodologies it uses, i.e. case-based
reasoning and monitored distribution; it also details the
motivation and requirements for incorporating the
framework into CIS.

I. Introduction

Knowledge management (KM) comprises a large

umbrella of initiatives that focus on the rational allocation
of knowledge assets from the perspective of humans,
organizations and computer systems. KM is typically
implemented through the performance of knowledge tasks,
e.g. create, distribute, reuse. Computational intelligence
systems (CIS) use a variety of techniques, e.g.
evolutionary computing, to derive solutions to real world
problems. They make good candidates for a KM approach
because they build new solutions at every execution. In
this paper, we introduce a KM framework that performs
knowledge tasks to streamline the performance of CIS.

Intelligent systems in general only learn from
experience when they are designed with this specific
purpose. Some learning systems are designed to learn from
inputs but not from their own executions. Computer
systems that deliver tasks interfacing with a dynamic
environment can only be considered reliable if they are
prepared to learn, adapt, and evolve. The KM framework

we present allows CIS to learn, adapt, and evolve;
potentially resulting in continuous improvement and
increased reliability because it is designed to enhance a
system’s capabilities. Managing knowledge in CIS means
giving these systems the ability to learn from their own
executions. The KM framework represents an additional
effort to guarantee a system performs as required;
therefore, reaching the core of high assurance [1]. In
addition, systems engineering pursues high assurance in
systems interfacing with a dynamic world where task
environments evolve. Consequently, enabling systems to
respond to dynamic environments and behave in
conformity with the context’s changes is beneficial to high
assurance systems engineering.

The system that incorporates the proposed KM
framework evolves because it observes its executions and
uses metrics to evaluate its performance. For example, in a
CIS that trains an artificial neural network (ANN), its
accuracy can be used as a measure of its performance. We
describe an example (Section V B) where these
observations can help improve the quality and efficiency
of the system. The resulting system can be configured to
submit every new thing it learns to be validated by
humans, so it will not act in unexpected ways. The
architecture keeps the KM framework independent from
the core system.

The KM framework manages knowledge bases of
different scopes. In addition to storing entire executions, it
also includes a module to handle lessons-learned (LL), i.e.
pieces of knowledge that teach a strategy to improve
individual tasks. Lessons can be learned in any context and
the system will be able to incorporate them.

The KM framework is currently being implemented for
the first time and hence it has not yet been validated.
However, the framework uses two validated methods:
case-based reasoning (CBR) and monitored distribution
(MD). Both these methods have demonstrated their
effectiveness and the wide range of techniques developed
for CBR substantiates the application of the KM
framework. For example, maintenance methods studied for
CBR provide many alternatives for case base maintenance
(Section VI).

In Section II, we present the motivation for this work,
showing why CIS are amenable to KM. Section III
describes the underlying methodologies used in the KM
framework. We describe the framework in Section IV and

* Eighth IEEE International Symposium on High Assurance Systems Engineering (HASE 2004), 116-125. IEEE Computer Society:Los Alamitos, CA.

in Section V detail requirements for its integration and an
example. Section VI discusses some issues related to
managing expertise and covers related work particularly
with respect to maintenance. Section VII presents a
summary and future work.

II. Motivation

Knowledge management (KM) refers to the rational

allocation of knowledge assets by means of effective and
efficient organizing, planning, leading, controlling, and
coordination. Typical KM solutions are described in terms
of a knowledge cycle that entails knowledge tasks such as
capture, distribution, and reuse [2]. KM goals are also
described in terms of knowledge, such as knowledge
sharing and leveraging. In fact, KM goes far beyond
knowledge. It refers to a number of human abilities
(henceforth referred to as KM abilities) that allow them to
interface with a dynamic world, learn, evolve, adapt, and
keep performing tasks they are intended to deliver.

Recent interest in this field has shown that although
humans are equipped with a series of KM abilities that
allow them to adjust to the world’s changing conditions;
they lose these abilities when organized in systems. Such a
fact represents one of the KM’s biggest challenges, i.e.
transferring individual KM abilities to organizational
contexts. Not surprisingly, few strategies have resulted in
success (e.g. Senge [3]). The problem is that systemic KM
outside humans has to be artificially conceived,
implemented and managed to succeed. One of the
difficulties is in trying to incorporate KM processes into
existing systems i.e. that were conceived without it. Better
results can be obtained when KM processes are part of the
original and integral design and development of systems.
Although challenging to conquer, KM abilities allow
systems to learn, evolve, adapt, and successfully perform
in the context of a dynamic world.

Similar challenges are faced by computer systems
designed to deliver tasks in the context of the same
dynamic world. Therefore, it is reasonable to assume that
computer systems can also benefit from KM strategies.
The needs and respective benefits are directly proportional
to the complexity of the system’s task and to the assurance
levels a problem context requires. A reliable computer
system should be able to learn, evolve, and adapt in order
to guarantee its successful performance in the context of a
dynamic world.

The simplest form of KM in a computer system occurs
when it is maintained. Reasons for maintenance may
originate from flaws or changing conditions. When a
computer system monitors its own performance and is able
to learn from it, it can guarantee longer periods of response
without the need for maintenance. This self-monitoring
also gives the system the ability to recognize when it fails
and cannot learn, flagging its need for maintenance. Fast
adaptation to changing conditions has the potential to

increase assurance levels, justifying the incorporation of
KM strategies into high assurance systems.

A. Why CIS need Knowledge Management?

Computational intelligence (CI) is an emerging

paradigm of information processing aimed at the design of
highly intelligent systems [4]. Although there is no
consensus on the definition of CI [5], there is a widely
accepted view on what components CI should have [4][6],
namely evolutionary computing, fuzzy computing, and
neurocomputing. Consequently, CIS are characterized by
a variety of methods, e.g. data-intensive learning methods,
evolutionary methods, knowledge-based methods, that
perform complex tasks. Contrasting traditional, logic-
based, top-down artificial intelligence methods, CI
methods are generally bottom-up, exploiting tolerance for
imprecision, uncertainty, robustness, partial truth to
achieve tractability, and better rapport with reality [6]. In
CI methods, order and structure emerge from an
unstructured beginning. These features and the ability to
perform intelligent tasks make CIS even more suitable for
KM strategies because experience can be directly reused in
the performance of complex tasks.

Some evidence revealing why CIS need KM resides on
the parameter configuration of CI methods, e.g. genetic
algorithms (GA), artificial neural networks (ANNs). As
inputs vary, the parameter configuration should also vary
to conform to each input. However, there are no means
available to find the optimum parameterization of
operators for GAs [7] or no standard way of finding the
optimal architecture for ANNs [8]. Hybrid algorithms
have been designed to find the optimal design for ANNs in
[9]. The benefit of learning from experience is that
previous experiences can help in finding a more
appropriate parameter configuration, potentially decreasing
the chance of failure.

Table 1.Impact for different mutation rates
Mutation

Rate BestX %OffOptimal BestY %OffOptimal

0.10 1.85 0 2.85 0
0.20 1.85 0 2.85 0
0.30 1.85 0 2.85 0
0.40 1.849 -0.05 2.849 -0.04
0.50 1.852 0.11 2.848 -0.07
0.60 1.857 0.38 2.807 -1.51
0.70 1.86 0.54 2.766 -2.95
0.80 1.63 11.9 2.325 -18.4
0.90 1.236 33.2 2.127 -25.4

Table 1 shows an example of the benefit that

experience can bring to the definition of parameters in CI
methods. We used a genetic algorithm to search for the
global maximum of a given graph
(http://ai.bpa.arizona.edu/~mramsey/ga.html). The
required parameters to run the algorithm are number of
genes, number of agents, crossover rate, and mutation rate.

Figure 1. Conceptual KM process [2]

The results obtained
represent values for the
two axes x and y and the
percentage of their
difference from the
optimal values. The
results in Table 1
demonstrate how the
different values for
mutation rate impact the

final

results. This parameter specifies what percentage of genes
in the population will be replaced each generation. A value
that is too high may affect the accuracy of the results; on
the other hand, a value that is too low may not keep the
population diverse enough and lead to premature results. In
order to select an appropriate value for mutation rate, we
collected the search results by setting different mutation
rates. As the results show in this example, appropriate
values should be between .2 and .4. As this example
suggests, the use of different experiences can help finding
proper parameter configurations. This indicates that GA
methods have a knowledge need, and therefore can benefit
from a KM approach. Given the difficulty of determining
parameters for ANN, the benefit also applies to ANN
methods.

Information systems (IS) can also benefit from
incorporating a KM strategy into their design. The idea of
learning its own executions to improve efficiency in
databases has already been studied in [10]. Although
traditional IS are meant to produce information rather than
tasks, they can also benefit from KM. One important
element missing today in IS of high consequence (e.g.
hospital IS) is a sound security strategy. Developing and
incorporating a security strategy into IS implies complex
tasks that can benefit from useful knowledge.

In the essence of high assurance systems is the ability
to guarantee that a given system will behave the way it is
expected [1]. Hence, computational intelligence techniques
can increase assurance to systems engineering, given their
ability to handle knowledge and data in a coherent manner
[4]. Along these lines, a KM approach that oversees the
intensive flow of solutions derived in CI systems,
represents an additional instrument to guarantee coherence,
resulting in higher quality software.

The same caveat from human-based systems applies to
computational intelligent systems: the KM strategy has to
be incorporated into system design. Attempts to integrate a
KM framework after a system is developed endanger the
final intended result. The only exception is to systems
whose architecture is designed to grow, such as research-
oriented architectures. An example of such architecture is
given in Section V, Subsection B.

III. Background

The KM framework we introduce in this paper is

currently under development and therefore is yet to be
validated. Nevertheless, this KM framework combines
well validated elements of two methodologies: case-based
reasoning [10] and monitored distribution [12][13]. This
section describes the underlying concepts and methods
used to implement the KM framework.

A. Conceptual Knowledge Management Process

KM solutions are typically presented through KM

processes that detail knowledge tasks. An analysis of
different KM processes described in the context of
technological KM solutions resulted in the conceptual
cycle [2] presented in Figure 1. It consists of the tasks
create, understand, distribute and reuse.

The create task refers to applying different methods to
collect or generate knowledge (and information) within the
application’s context. The understand task is responsible
for performing all necessary steps (e.g. validate, represent,
store) to make collected knowledge ready to be distributed.
The distribute task matches stored knowledge to the
knowledge needs of its proper recipients. The reuse task
oversees that knowledge is properly reapplied back into
the application’s context.

This conceptual process has many tasks in common
with the CBR cycle. Next, we describe the CBR
methodology and then discuss its use to support KM
solutions. CBR is the underlying methodology for
knowledge storage (i.e. understand). MD supports
distribution and reuse.

B. Case-based reasoning

Case-based reasoning [10][14][15][16] is a reasoning

methodology [17] inspired by the human process of
remembering a previous similar episode to solve a new
problem. The act of being reminded of a previous episode
is modeled in case-based reasoners by comparing a new
problem with a collection of stored cases (the case base),
often based on indexes describing the contents of the
stored cases. The most similar cases are then retrieved, and
can be used as references to classify the new case or the
solutions from the retrieved similar case(s) can be adapted
to fit the new problem. If the adaptation results successful,
a new case has been created and is retained in the case
base. However, adaptation is one way of acquiring cases.
Other case bases consist exclusively of real experiences,
where adapted cases are not learned. Cases can also
describe prototypical situations or be artificially authored.

There are four basic steps in the CBR process [16]:
retrieve, reuse, revise and retain. Applications that include
iterative learning will also include a review step [18], as
illustrated in Figure 2.

Figure 2. The CBR cycle

Indexing is the essence of case-based reasoning as it
guides similarity assessment and retrieval. The collection
of indexes model the answer for the question, “What
makes a case similar to another, such that the solution of
one can be reused in the other?”, representing the
relevancy of the cases. Indexing determines what has to be
compared between cases to assess their similarity for
retrieval. Retrieval allows the reasoning task: retrieving
cases with usefulness to solve or interpret the new case.

Another way to look at CBR systems is by examining
knowledge representation methods involved in building a
case-based reasoner. Richter [19] defined CBR systems as
a reasoning method that uses four knowledge containers
(KC). The four KC, sketched in Figure 3, are vocabulary,
similarity measure, case base, and solution transformation.

The vocabulary includes attributes and predicates used
to describe cases in different levels of abstraction. The
similarity measure includes indexing, similarity functions,
aggregation of similarities, and selection; also including
methods to learn similarity measures, feature weights, and
indexing. The case base includes case base maintenance,
case acquisition, and the organizational structure of cases,
which can use a flat scheme, hierarchies or networks. The
solution transformation refers to knowledge used in the
reuse and revise steps of the CBR cycle. The automatic
adaptation of cases entails the previous determination of
incoming problems and the expected contrasts between
stored cases and new problems. The contrasts can be
covered by new knowledge added to the system or by
modifications to the knowledge.

Learning in Case-Based Reasoning. Case-based
reasoners can learn by acquiring new knowledge in all of
its knowledge containers. However, the most frequent
targets of learning are the cases and case bases. Learning

in cases occurs as an expression of learning from
experience. The outcome part of a case is designated with
this goal. The case keeps records of its performance when
used to attempt to solve new situations. Thus, both
successes and failures can be added, enhancing the
knowledge and the lessons embedded in a case. The record
of the outcome resulting from reusing a given case can
warn the user of possible consequences in its reuse. This
process is worthwhile because it prevents the system from
reusing less indicated suggestions.

Case bases grow through incremental learning if the

task and design of the system allows. From a limited set of
seed cases [15], the case base can be augmented with new
cases. The generation of these new cases stems from new
inputs from users or from external sources. In problem-
solving systems, new cases may undergo adaptation before
they are added to the case base. In interpretive systems,
new cases are added after proper indexing.

Since the first case-based reasoner ever developed [10],
CBR has become a well established reasoning
methodology [14][15][16][18]. Today, there are several
significant deployed applications using CBR and a great
variety of techniques have been developed. Conversational
case-based reasoning (CCBR) [20] is the underlying
methodology of one the most successful tools for call
centers in the market today: eGain Knowledge Agent
(www.egain.com). A number of sophisticated CBR
systems have been developed and deployed at GE
Transportation Systems, GE Medical Systems and GE
Aircraft Engines [21].

Case-Based Reasoning and Knowledge Management.
CBR is often recommended for KM tasks [22]. Among
some of the possible reasons are the commonalities
between the CBR cycle and the KM process [23] and the
fact that CBR uses different techniques to manage a set of

Figure 3. CBR knowledge containers

knowledge containers [19]. In addition, CBR is a
methodology [17], and poses less engineering
requirements than techniques that represent knowledge
explicitly and exhaustively (e.g. rule-based) [24][25]. And
yet, the real evidence is in the number of KM solutions
that use CBR [2][27]. Recently, several members of the
CBR community have selected two research publications
as the most representative illustrations of the importance of
CBR to KM [27][28].

Table 2. Example of a lesson-learned
Indexing Elements Reuse Elements

Applicable task: training
ANN;

Lesson suggestion: check range of
values for each part of field to verify
if date format in data from foreign
country is the same so results are
interpreted the same way;

Preconditions:
1) input uses data from
foreign country;
2) data contain field format
date.

Rationale: data format varies from
MM/DD/YYYY to DD/MM/YYYY
Outcome: This lesson was used on
12/03/2003 at 10h04min on input case
register 83245. The format date did
not need to be changed.

C. Monitored Distribution

Monitored Distribution [12][13] is an approach for the

proactive distribution of knowledge artifacts [29].
Examples of knowledge artifacts are best practices,
lessons-learned, and alerts. The knowledge artifacts that
MD distributes are lessons-learned (LL).

LL teach a strategy to perform a task, resulting in a
positive impact on that task [30][28]. It may indicate how
to avoid a problem or simply how to proceed in a way that
may be safer, cheaper, or faster. It is a requirement that LL
positively impact the task they are applied to; this forces a
strong association between the lesson and its applicable
task. This association demands that lessons are only
retrieved in the context of the task that they apply to. LL
also include preconditions for applicability. MD monitors
when LL should be distributed by matching the lesson to
the retrieval’s context. MD’s distribution module relies on
CBR methodology.

A representation for LL is exemplified in Table 2,
which combines indexing elements (i.e. applicable task,
preconditions) and reuse elements (i.e. lesson suggestion,
rationale, and outcome). This structure is responsible for
facilitating the process of creating, understanding,
distributing, and reusing LL. The indexing elements are
used by MD to assess the similarity of a lesson with a
context in order to guarantee a retrieval that is oriented to
its applicability. LL are only retrieved if the context’s
current task and state match the applicable task and the
preconditions. Lesson suggestion provides the decision or
action recommended by the lesson, which replaces or
modifies the original and expected decision that would be
taken had the lesson not be distributed. The rationale
describes reasons to store and reuse a lesson. The outcome

records the usage of the lesson, giving it another
opportunity for the system to learn.
Empirical Validation. The impact of the MD approach
was demonstrated in an empirical experiment [12][13] that
planned military operations with and without the reuse of
LL. The result of the experiment was that plans generated
with the reuse of lesson-learned have reduced the number
of friendly casualties by 30%, reduced the number of
casualties among civilians being rescued by 24%,
decreased the total time of the operation by 18%, and
increased the number of casualties among enemies by 2%.

IV. KM Framework

This section describes the KM framework incorporated

into the architecture of CIS. The framework can potentially
be beneficial to other kinds of computer systems, but here
the description is limited to CIS.

The framework consists of two modules interconnected
to the target CIS (Figure 4). Both modules consist of a case
base container and four KM processes. The top module is
designated to describe experiences of executing the CIS in
the main case base (MCB). The bottom is a lessons-
learned module that describes lessons applicable to the CIS
in the LL base. The top module manages experiences that
reflect entire executions of the CIS. The bottom module
manages experiences that are useful to individual tasks
throughout the CIS.

The KM framework encircles the CIS with two
modules having the same basic structure: a case base
container and four processes: creator, distributor, reuser,
and understander. The base containers can include several
case bases, depending on the system’s scope. For example,
if the CIS produces outputs of distinct natures, two
different MCBs may be used. If, for the same output, the
CIS offers choice of methods, then additional individual
case bases (ICB) may be added to store different variations
of each method. Analogously, the use of two separate LL
bases may be more efficient for two distinct task
environments.

A. Case Bases

The MCB stores entire executions of the CIS. One

MCB is needed for each main type of output the CIS
produces. For example, if the CIS uses artificial neural
networks (ANN) for both diagnosis and routing, the nature
of the inputs and the task is sufficiently distinct to require a
separate MCB. In addition to one or more main case bases,
the use of additional ICBs may be necessary. For example,
suppose the training for classification can be executed
using two variations of the ANN architecture. In this case,
an additional ICB will store data about additional
executions using different methods. The execution stored
in the MCB can be determined by metrics or by
customization. The purpose of separating main and

individual case bases is to define parameters for similarity
assessment.

B. Processes

The four processes creator, understander, distributor,

and reuser are in the same context as the case bases where
they exchange data. These processes are described next.

Creator: This process is responsible for acquiring data to
populate the case bases. The creator collects data for both
case base containers. For the MCBs and the ICBs, it
collects data from the CIS about its inputs, parameters
used and produced during its execution, and its outputs.
Creator also collects lessons-learned for the LL base. It
communicates with knowledge engineers (KE) so they can
verify what has been collected.

Understander: This process refers to all methods
designed to prepare the data acquired by the creator
process. The understander process has to prepare the data
and verify its status as knowledge, i.e. its usefulness to
solve problems. Understander prepares the data to be used
as knowledge by assigning similarity functions and
weights for each case feature. Understander is also
responsible for computing maintenance metrics that
determine the stage of life cycle in which a case base
belongs. The life cycle stage determines maintenance
requirements. The understander converses with knowledge
engineers and additional CI methods. It is a design
decision to determine the extent to which it is worth
keeping these additional algorithms within the architecture

or let the KE compute them and enter results directly to the
understander.

Distributor. This process accounts for retrieving relevant
and applicable knowledge to all knowledge needs of the
CIS. The distributor uses the similarity parameters defined
by the understander to match cases from all case bases (i.e.
MCB, ICB, LLB) to processes that correspond to
knowledge needs. The identification of knowledge needs is
discussed in Section V A. For example, before training an
ANN, the CIS has to define a configuration of the ANN’s
parameters. This step represents a knowledge need because
there may be knowledge available that allows the system
to define the most appropriate parameters for a given
input. If this knowledge is in fact available, it is stored in a
case and will be retrieved when the CIS is performing this
step and the input characteristics match the ones described
in the case. Then, distributor calls the reuser process.

Reuser. This process triggers commands stated by
knowledge retrieved by the distributor process. In the
example given above, the reuser process takes the
parameters and assigns them to the ANN. The reuser will
also assess the need for adaptation, triggering proper
methods accordingly.

C. Interfaces

The inclusion of the framework also requires additional

interfaces so KE can verify data processed by the different
processes, e.g. creator, understander. Another interface is
needed for entering LL directly into the LLB.

Internally, the KM framework interfaces with the CIS
through its processes. Figure 4 shows arrows representing
the flow of data, information, and knowledge between CIS
and the framework’s processes.

The interference of KE characterizes the first two of a
three-phase implementation of the framework. The
implementation phases are described in the next section.

V. Integrating the KM framework

The integration of the KM framework into a CIS

design becomes part of its development life cycle. The KM
framework’s development life-cycle has three stages:
childhood, adolescence, and maturity. The first two phases,
childhood and adolescence are characterized by full
control from the knowledge engineers. During childhood,
the methods and processes are implemented and tested and
the first experiences are collected. In adolescence, the
system is making decisions trying to find assurance of the
way it learns. This is when similarity and maintenance
methods are defined. In maturity, minimum human
interference is needed because if the system needs
maintenance, proper maintenance methods will determine
the need and the system will flag it.

Figure 4. Architecture: CIS + KM framework

Figure 5. CI-Tool design including KM framework

A. Requirements for Integration

First of all, it is necessary to assess the potential

benefits of integrating a KM framework into any system.
The most important question to answer is whether the
system performs tasks that can be improved. For example,
when task environments change, requiring small variations
in the way tasks are performed. If a system includes tasks
that are amenable to improvement, then the system is
suitable for a KM approach.

The most important requirement to integrate the KM
approach is to identify where and when these tasks are
performed. The moment of performing a task that is
amenable to KM represents a knowledge need. All
knowledge needs of the system must be identified a priori
in order to integrate the KM framework that will focus on
these knowledge needs. The next subsection describes an
example where this aspect can be better understood.

Finally, it is essential that the KM framework be
integrated into the design of CIS. The only exception to
this requirement is the case of flexible architectures that
are designed to be constantly changing and therefore are
flexible enough to incorporate the KM processes without
jeopardizing its effectiveness. The CI-Tool is an example
of such flexible architecture.

B. KM Framework in the CI-Tool

The KM framework is being integrated into a

computational intelligence tool for software testing (CI-
Tool) currently under development at the National Institute
for System Test and Productivity (NISTP) at the
University of South Florida. CI-Tool uses different CI
methods to support testing of software programs. Figure 5

shows the resulting architecture of the CI-Tool
contemplating the KM framework.

CI-Tool meets the most important requirements to use
knowledge management: it performs tasks in changing
environments, uses multiple CI methods to perform them,
and exhibits flexible design architecture. The changing
task environments in the CI-Tool originate from the
different nature of software to be tested. Some of the CI
methods used by the CI-Tool are genetic algorithms and
artificial neural networks. Its design architecture
characterizes the development of a tool constantly ready to
incorporate the latest research findings.

The CI-Tool has knowledge needs while performing its
main task and also within the CI methods it employs. For
example, when calling a CI method, one specific
parameter configuration may have demonstrated more
effective in previous executions; or after generating test
cases, lessons may be applicable to include an additional
test case for a specific input.

The KM framework in the CI-Tool has one main case
base (MCB), four individual case bases (ICB), and one
lessons-learned base (LLB). It has one of each (i.e. MCB
and LLB) because the current integration targets a version
of the CI-Tool designed to perform one task, i.e.
generation of test cases. The flexibility of the architecture
of the CI-Tool remains with the incorporation of the KM
framework. As the CI-Tool adds new tasks, new MCBs,
ICBs and LLBs can be included.

The four ICBs displayed in the current implementation
are respective to the four methods represented in Figure 5
by four process symbols. Although the detailing of these
methods is outside the scope of this paper, they are
currently used in the CI-Tool to generate test cases for
software testing. The KM framework stores multiple
experiences describing each of the methods solving
different inputs. What distinguishes the ICB from the
MCB is that the MCB stores experiences for each input
with one and up to four methods. The value of the MCB is
to preserve the experience of each input in order to unravel
variable performance of the methods for each input. Each
ICB stores experiences of one method only.

VI. Discussion and Related Work

Computational intelligence (CI) methods are designed

to perform a great variety of complex tasks. Some of these
tasks are associated with human thinking [31], and hence
they embed a component of uncertainty that may result in
two features: one is that their performance can improve
with experience, and other is that there may be a number
of small variations to the way they can be performed. Our
assumption is that CI methods are amenable to knowledge
management because of these features.

The CI-Tool is an example of a CIS for software
testing (ST). ST is an example of domain expertise where
experienced experts are more likely to design effective

testing strategies. Experience also helps human experts to
adapt to changing task environments because it is through
experience that humans learn, adapt, and evolve. The
proposed KM strategy aims at these same goals so that CIS
can deliver high levels of assurance.

The topic of human expertise replicated in computer
systems has been extensively studied mostly in the context
of expert system (ES) methodology. Expert systems [32]
and, particularly, rule-based expert systems, have dealt
with this challenge offering results that are somehow
limited. The proposed KM framework offers a new
perspective to replicating human expertise, one that
originates from human KM abilities and how they improve
the quality of tasks. Although we do not intend to compare
the two methodologies here, it is interesting to highlight
the issues that have limited the performance of rule-based
expert systems and how they are addressed in this KM
framework, namely knowledge acquisition and
maintenance.

Knowledge acquisition in expert systems is conducted
either as an initial step of development or as a continuous
effort. An acquisition component is sometimes included in
the basic description of the ES methodology, and
knowledge is either elicited directly from experts or
induced with machine learning methods. The worst
problem in rule-based ES is that if new rules are acquired
after system’s development, these new rules will not have
been included in the analysis of the domain and the
influence these new rules may have over existing rules in
the system is not captured. Such a characteristic means that
typical ES do not meet one of the grounds for computer
understanding, which says that computer programs should
be able to learn new knowledge and integrate it to the
overall knowledge of the system [32].

The KM framework introduced here relies substantially
on case-based reasoning, and therefore knowledge is
acquired in the same fashion as in case-based reasoners.
After a CBR system is operational, additional knowledge
is learned in a demand-driven fashion, as a lazy learner
[18]. Because knowledge is applied as a result of similarity
assessment and retrieval, new cases do not interfere with
existing cases and therefore case-based reasoners are able
to integrate new knowledge to the overall existing
knowledge without demanding any additional effort. Case-
based reasoners meet all grounds for computer
understanding from [32].

Although able to incorporate new knowledge, case-
based reasoners still need to employ maintenance to
guarantee good levels of effectiveness and efficiency in the
case bases. A system that can capture new knowledge
imposes a third source of maintenance in addition to
existing flaws and environment changes. We described
earlier about the mechanisms the KM framework employs
to adapt to a changing world. We now discuss previous
work on maintenance methods for the framework.

Verification parameters are the simplest form to control
the performance of a CBR system [14]. Some of these
parameters are retrieval accuracy, which is verified by
observing the retrieval result when the target case is part of
the case base; retrieval consistency, case duplication case
coverage, retrieval time and sorting, and consistency [14].
The constant verification of these parameters can suggest
maintenance needs.

The research in maintenance methods for CBR offers a
great variety of techniques. A noteworthy view of current
state-of-the art in maintenance methods for CBR systems
is given in [33]. The methods cover both tasks of
determining whether maintenance is necessary and of
defining maintenance strategies. Some strategies suggest
ways to determine when knowledge is needed and then
recommend artificial cases for addition, we plan to use
these methods as a way to estimate future maintenance
needs.

Significant contributions to CBR maintenance were
provided by competence-based models. Competence
represents how well a case base solves a collection of
potential problems. These methods are surveyed in [34].
These methods would not directly apply to the KM
framework because they are designed for case-based
reasoners whose cases are artificially engineered and the
KM framework is composed of cases that have actually
been tested in the CIS. On the other hand, these methods
can suggest problems to be executed in the CIS to
complement sparse areas in the case base.

Some deletion methods can also produce benefits when
maintaining the KM framework. Two useful deletion
strategies are based on replacing a number of cases with
one more general case and on keeping track of the
usefulness of stored cases during problem solving [35].

A maintenance method that is directly useful in our
framework aims at maintaining knowledge in the similarity
measure [36]. First, it can be used because it allows
refinement of feature weights. This is useful because we
will start operating the case bases even before we have a
sufficient number of cases to determine final similarity
parameters. Another reason for choosing this method is
that it has demonstrated its benefits when a case base
expands due to changes in external conditions. Finally, this
method uses genetic algorithms (GA), allowing us to
extend the utility of the GA module to maintenance.

Other maintenance approaches that can make use of CI
methods already included in the CIS are the ones that use
artificial neural networks. Two research projects have
focused on using ANN to select cases[37][38]. In [38], an
ANN was used for clustering cases to identify redundant
and representative cases within clusters. The resulting
clusters are considered to be representative of solution
prototypes. Each cluster is supposed to contain
representative and redundant cases, which are determined
by the computation of the case density with a similarity
measure. The clusters are then reduced with the

elimination of its redundant cases. The combination of
ANN-based methods with others mentioned above can
potentially produce highly sophisticated maintenance
results.

Finally, one last group of research in CBR maintenance
refers to systems that have employed maintenance in CBR
for KM purposes. Obsoletism and redundancy problems
are discussed in [39] in the context of a deployed case base
that grew too fast given the abundant availability of new
cases. The author warns for the need for unnecessary
maintenance when proper maintenance methods are not
included in design and implementation phases.
Maintenance methods for case bases describing real
experiences have also been studied from a KM perspective
in the context of the experience factory [40]. The authors
have investigated the tasks associated with maintaining an
experience repository from an organizational perspective
and proposed a maintenance and evaluation framework for
experience bases.

When adopting a KM framework, we seek for
assurance, not presumption. Presumption may lead to
acceptance of knowledge that is not necessarily ideal.
Systems need to learn, evolve, and adapt as long as they
are able to guarantee high assurance levels. An important
benefit of using the CBR methodology is that research in
the area has already produced a reasonable number of
maintenance techniques allowing a severe control of the
learned experiences.

VII. Summary and Future Work

This paper introduces a knowledge management (KM)

framework for integration into the design of computational
intelligence systems (CIS). The main advantages of
adopting this KM strategy relate to giving CIS the ability
to learn from its own executions and to adapt and evolve.
The KM framework also allows CIS to incorporate
experiences learned in external contexts. We described the
underlying methodologies used by the KM framework and
the requirements for its integration. An example is given
showing the KM framework integrated into the design of
NISTP’s CI-Tool.

We briefly discuss the role of managing knowledge in
intelligent systems and how it relates to expert systems and
known challenges for expert tasks. The KM framework
brings new hope in the attempt to deliver intelligent
methods that can replicate human skills.

The KM framework introduced here is currently under
development for the first time and therefore an empirical
validation of its effectiveness will soon be possible.
Because implementing this KM framework includes a
three step life cycle, different validation studies can be
conducted to evaluate each of its phases. The validation
targeting specific phases allows conclusions and following
steps to be drawn to address each phase.

Nevertheless, the KM framework presented here uses
two well validated methods: monitored distribution (MD)
and case-based reasoning (CBR). MD [12] has been
demonstrated to improve the quality of the final result
produced by the system it targets. MD contributes to the
framework with its capability to improve a task result by
supporting it with the right knowledge at the right time.
CBR, on the other hand, contributes to the framework with
a solid array of techniques developed and implemented in
real world applications. In addition, the extensive literature
in maintenance methods for CBR provides a sound
foundation for the success of our framework. Besides, the
possibility of leveraging CI methods (e.g. ANN, GA)
performing main tasks to also support maintenance
processes has the potential to characterize the resulting
CIS as not only effective and reliable, but also efficient.

Acknowledgements

The authors would like to thank Dr. Mark Last for his

helpful suggestions in the course of applying this
framework to the CI-Tool. This work is supported in part
by the National Institute for Systems Test and Productivity
at USF under the USA Space and Naval Warfare Systems
Command grant no. N00039-02-C-3244, for 2130 032 L0,
2002.

References

[1] V. L. Winter and J. M. Boyle, “Proving Refinement

Transformations for Deriving High-Assurance Software,”
in Proceedings IEEE High-Assurance Systems Engineering
Workshop, New York:IEEE Press, 1996, pp. 68-77.

[2] R. Weber and R. Kaplan, “Knowledge-based knowledge
management,” in Innovations in Knowledge Engineering,
R. Jain, A. Abraham, C. Faucher and B.J. van der Zwaag,
Eds. Adelaide: Advanced Knowledge International Pty Ltd,
2003.

[3] P. M. Senge, “The fifth discipline,” in Fieldbook: Strategies
and Tools for Building a Learning Organization, New
York: Doubleday, 1994.

[4] W. Pedrycz, “Computational intelligence as an emerging
paradigm of software engineering”, in Proceedings of the
14th international conference on Software engineering and
knowledge engineering, New York, NY:ACM Press, 2002,
pp. 7-14.

[5] J.C. Bezdek, "Computational intelligence defined -- by
everyone," in Computational Intelligence: Soft Computing
and Fuzzy-Neuro Integration with Applications, O.
Kaynak, L.A. Zadeh, B. Turksen, and I.J. Rudas, Eds.
Berlin:Springer, 1998, pp.10-37.

[6] L.A. Zadeh, “Roles of soft computing and fuzzy logic in the
conception, design and deployment of
information/intelligent systems”, in Computational
Intelligence: Soft Computing and Fuzzy-Neuro Integration
with Applications, O. Kaynak, L.A. Zadeh, B. Turksen, and
I.J. Rudas, Eds. Springer, 1998, pp.1-9.

[7] J.G. Digalakis, and K.G. Margaritis, “An experimental study
of benchmarking functions for genetic algorithms,”

International Journal of Computer Mathematics, 79(4), pp.
403-416, 2002.

[8] A. Kandel, P. Saraph and M. Last, Test Set Generation and
Reduction with Artificial Neural Networks, in “Artificial
Intelligence Methods in Software Testing”, M. Last, et. al.
(Eds.), World Scientific, Singapore , 2004.

[9] A. Abraham and B. Nath, “Hybrid heuristics for optimal
design of neural nets,” in Proceedings of the Third
International Conference on Recent Advances in Soft
Computing, R. John and R. Birkenhead, Eds. Berlin:
Springer Verlag, 2000, pp. 15-22.

[10] N. Roussopoulos, C.M. Chen, S. Kelley, A. Delis, and Y.
Papakonstantinou, "The Maryland ADMS project: views R
us," Bulletin of the Technical Committee on Data
Engineering, 18(2), pp.19-28, 1995.

[11] J. Kolodner, Case-Based Reasoning. Los Altos, CA:
Morgan Kaufmann, 1993.

[12] R. Weber and D.W. Aha, “Intelligent delivery of military
lessons learned,” Decision Support Systems, 34(3), pp.
287-304, 2003.

[13] D.W. Aha, R. Weber, H. Muñoz-Avila, L.A. Breslow,
and K.M. Gupta, “Lesson distribution gap,” in Proceedings
of IJCAI, Menlo Park, CA: AAAI Press, 2001, 2, pp. 987-
992.

[14] I. Watson, Applying Case-Based Reasoning: Techniques
for Enterprise Systems, San Francisco, California: Morgan
Kaufmann Publishers, Inc., 1997.

[15] D. Leake, Case-Based Reasoning: Experiences, Lessons,
and Future Directions, Menlo Park, California: AAAI
Press/The MIT Press, 1996.

[16] A. Aamodt and E. Plaza, “Case-based reasoning:
foundational issues, methodological variations, and system
approaches,” Artificial Intelligence Communications, 7 (1),
pp. 39-59, 1994.

[17] I. Watson, “CBR is a methodology not a technology,” in
The Knowledge Based Systems Journal, 12(5-6), UK:
Elsevier, 1999, pp. 303-308.

[18] D.W. Aha, “The omnipresence of case-based reasoning
in science and application,” Knowledge-Based Systems,
11(5-6), pp. 261-273, 1998.

[19] M.M. Richter, The Knowledge Contained in Similarity
Measures: Some remarks on the invited talk given at
ICCBR'95 in Sesimbra, Portugal, 10/ 25/95.
http://www.cbr-
web.org/documents/Richtericcbr95remarks.html

[20] D.W. Aha, L.A. Breslow, and H. Muñoz-Avila,
“Conversational case-based reasoning,” Applied
Intelligence 14, pp. 9-32, 2001.

[21] W. Cheetham, A. Varma, K. Goebel, “Case-based
reasoning at General Electric,” in Proceedings of the
Fourteenth Annual Conference of the International Florida
Artificial Intelligence Research Society, Menlo Park, CA:
AAAI Press, 2001, pp. 93-97.

[22] D.W. Aha, I. Becerra-Fernandez, F. Maurer and H.
Muñoz-Avila, Eds. Exploring Synergies of Knowledge
Management and Case-Based Reasoning: Papers from the
AAAI 1999 Workshop (Tech. Rep. WS-99-10), Menlo
Park, CA: AAAI Press, 1999.

[23] I. Watson, “Knowledge management and case-based
reasoning: a perfect match?” in Proc. of the Fourteenth

Annual Conference of the International Florida Artificial
Intelligence Research Society, I. Russel and J. Kolen, Eds.
Menlo Park, CA: AAAI Press, 2001, pp. 118-122.

[24] S. Slade, “Case-based reasoning: A research
paradigm”. AI Magazine Spring 1991, pp. 42-55.

[25] C. Riesbeck, and R. Schank, “Inside case-based
reasoning”. 1989. Lawrence Erlbaum.

[26] I.D. Watson, Applying knowledge management:
techniques for building corporate memories, Amsterdam;
Boston: Morgan Kaufmann, 2003.

[27] K.-D. Althoff, A. Birk, G. von Wangenheim and C.
Tautz, “Case-based reasoning for experimental software
engineering,” in Case-Based Reasoning Technology - From
Foundations to Applications, M. Lenz, B. Bartsch-Spörl,
H.-D. Burkhard, and S. Wess, Eds. Springer Verlag: LNAI
1400, 1998, pp. 235-254.

[28] R. Weber, D.W. Aha, and I. Becerra-Fernandez,
“Intelligent Lessons Learned Systems,” International
Journal of Expert Systems Research and Applications, 20,
No. 1, pp. 17-34, 2001.

[29] C.W. Holsapple and K.D. Joshi, “Organizational
knowledge resources,” Decision Support Systems, 31, pp.
39-54, 2001.

[30] D. Fisher, S. Deshpande, and J. Livingston, Modeling the
Lessons Learned Process (Research Report 123-11),
Albuquerque, NM: The University of New Mexico,
Department of Civil Engineering, 1998.

[31] R. E. Bellman, An introduction to Artificial Intelligence:
Can Computers Think? San Francisco: Boyd & Fraser
Publishing Company, 1978.

[32] P. Jackson, Introduction to Expert systems, Addison-
Wesley, 1998.

[33] D. B. Leake, B. Smyth, D. C. Wilson, Q. Yang, “Special
issue on maintaining case-based reasoning systems,”
Computational Intelligence, 17(2), pp.193-195, 2001.

[34] B. Smyth, E. McKenna, “Competence models and the
maintenance problem,” Computational Intelligenc, 17(2),
pp. 235-249, 2001.

[35] L. Portinale and P. Torasso, “Case-base maintenance in a
multimodal reasoning system,” Computational Intelligence,
17(2), pp. 263-279, 2001.

[36] S. Craw, J. Jarmulak and R. Rowe, “Maintaining retrieval
knowledge in a case-base reasoning system,”
Computational Intelligence, 17(2), pp. 346-363, 2001.

[37] R. K. De and S.K. Pal, “A neuro-fuzzy method for
selecting cases,” in Soft Computing in Case Based
Reasoning, S.K. Pal, T.S. Dillon and D.S. Yeung, Eds.
London: Springer Verlag, 2001, chapter 10.

[38] S.C.K. Shiu, X.Z. Wang, and D.S. Yeung, “Neuro-fuzzy
approach for maitaining case bases”, in Soft Computing in
Case Based Reasoning, S.K. Pal, T.S. Dillon and D.S.
Yeung, Eds. London: Springer Verlag, 2001, chapter 11.

[39] I. Watson, “A case study of maintenance of a
commercially fielded case-based reasoning system,”
Computational Intelligence, 17(2), pp. 387-398, 2001.

[40] M. Nick, K.-D. Althoff, C. Tautz, “Systematic
Maintenance of Corporate Experince Repositories,”
Computational Intelligence, 17(2), pp. 364-386, 2001.

