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Abstract

Adaptive Link Optimization for 802.11 UAV Uplink Using A Reconfigurable
Antenna

Stephen A. Wolfe

Advisor: Kapil R. Dandekar, Ph.D.

This thesis presents a low-cost and flexible experimental testbed for aerial

communication research along with an implementation and experimental evalua-

tion of an aerial-to-ground 802.11g link with an adaptive beamsteering antenna

system. The system consists of a software-defined radio (SDR) platform, and a

pattern reconfigurable antenna mounted on a hexacopter unmanned aerial vehicle

(UAV). First, the system design aspects of the testbed are described. The per-

formance of the reconfigurable antenna is characterized through radiation pattern

measurements while the antenna is mounted on the underbelly of the UAV. A

low complexity reinforcement learning based adaptive antenna selection algorithm

is implemented on the aerial SDR testing platform to enhance the link quality.

We present SNR measurements obtained during various indoor and outdoor flight

scenarios. The results show that utilizing a reconfigurable antenna and intelligent

antenna selection strategy onboard a UAV provides a higher mean SNR compared

to an omni-directional antenna in both line of sight (LOS) and non-line of sight

(NLOS) scenarios, and is more resilient to co-channel interference and reactive

jamming.
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1. Introduction

1.1 Motivation

Historically, UAV communications research has been primarily focused on

medium to high-altitude fixed-wing UAVs on long endurance flights [6–9]. With

the decrease in cost and increase in stability, multicopters have recently become

very popular for commercial and consumer applications.

For many applications and environments, the mobility patterns of multi-

copters are desirable over fixed-wing UAVs. Unlike fixed-wing UAVs, multicopters

possess the ability to land and takeoff vertically, and hover to hold a payload at

a fixed aerial position. This makes multicopters easier to control and more suit-

able for situations where low-altitude flight is required, or when UAV movement is

undesirable, especially in urban environments where aerial obstacles are present.

Commercial Off-The-Shelf (COTS) drones, such as the DJI Phantom 4 [10], utilize

WiFi links for video streaming and even UAV control. Multicopter based UAVs

are currently being produced that are designed to carry surveillance systems and

4G base station payloads [11]. Also, Multicopter UAVs are being proposed as a

solution for fast networking deployment in search-and-rescue and disaster relief

scenarios [12].

Directional antennas on UAVs have been shown to increase the coverage

of 802.11 systems [13] and increase system capacity [14]. However, the difficulty

with using directional antennas on UAVs is that the antennas need to always be

properly oriented, which is difficult to do in mobile environments such as UAV

flight. Failure to maintain proper directional antenna orientation can result in
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significant link degradation. As a result, most research utilizes omni-directional

antennas on the UAV [9, 13, 15, 16].

Gu et al. [12] tackle the problem of adaptive antenna beamsteering for UAV-

to-UAV IEEE 802.11 links by using a mechanical steering device onboard the UAV

to keep the antenna pointed at the UAV. This approach is viable for aerial UAV-to-

UAV links where line-of-sight (LOS) component are very likely to exist, however

ground-to-UAV channels cannot assume LOS component exists and have more

significant multipath scattering. Also, mechanical beamsteering devices are heavy

and incur significant delays compared to electromagnetic beamsteering.

In this thesis, a system design for an aerial communication testbed is pre-

sented which consists of a low-cost UAV equipped with a compact SDR, and

electrically reconfigurable directional antenna. The total weight of the platform

is 2.2 kg, and maximum flight time of 15 minutes. The effect on the antenna

radiation pattern due to near field scattering from the UAV body is characterized.

The onboard SDR is highly programmable and is capable of running GNU

Radio, which is a popular open-source SDR development platform [17]. There

are many open-source GNU Radio projects for various purposes such as wireless

channel characterization, spectrum monitoring, and communication links. The

onboard radio system is capable of running these projects in an aerial environment.

Furthermore, the aerial SDR platform is used to address the issue of adaptive

antenna beamsteering on UAVs by using an electrically reconfigurable directional

antenna combined with reinforcement learning based antenna beam selection al-

gorithm for 802.11 links. The general strategy of the adaptive beamsteering algo-

rithm was introduced by [18, 19]. The algorithm is tuned with the data obtained
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from the SNR characterization flights, and we compare the performance of the

algorithm to an omni-directional antenna under various scenarios (Figure 1.1).

SDR Payload

Aerial SDR Testbed
Chapter 3

SNR Estimator

Chapter 5

802.11 PHY

Chapter 2

Adaptive
Pursuit

Chapter 6

Reconfigurable
Antenna

Chapter 4

Adaptive Beamsteering

Received
LTS Symbols

Reward

Antenna
Mode

RX Signal

Reactive Jammer
Chapter 10

Ground Node

802.11

Frames

Jammer

Interference

Control Link

Figure 1.1: Aerial SDR system and adaptive beamsteering concept diagram

1.2 Contributions

The idea of adaptive beamsteering has been proposed and analyzed in sim-

ulation for fixed-wing UAVs [20], however there is a lack of experimental results.

There is even less literature regarding adaptive beamsteering methods geared to-

ward multicopter UAVs. In this thesis, we take a reinforcement learning algorithm

called adaptive pursuit [21] which has been previously used for terrestrial beam-

steering [19] and evaluate its performance in UAV-to-ground channels. To the
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best of our knowledge, this work in this thesis presents the first experimental re-

sults that utilize electrically reconfigurable antennas and adaptive beamsteering in

multicopter-to-ground wireless links to optimize link quality and avoid adversarial

reactive jammers.

All previous multicopter-based wireless experimentation has been performed

with inflexible components such as very basic transmitters and COTS access points

[9, 12, 13, 15, 16], The system design for the aerial SDR platform is the first

multicopter-based aerial SDR platform that is highly reprogrammable.

The SDR software configuration to implement 802.11-based adaptive beam-

steering involved enabling ARM support on the gr-ieee-80211 GNU Radio project,

which was previously only compatible with x86-based devices, so it can be used

on a Raspberry Pi 3 [22]. The relevant changes were accepted by the project

maintainer [23] so that future users can use the project on ARM devices.

A conference paper that describes the system design of the aerial SDR

testbed and adaptive beamsteering algorithm is currently under review [24]. An

IEEE transactions letter is in progress which describes anti-reactive jamming re-

lated experiments and results.
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2. Background

Most modern COTS multicopter UAVs communication links are 802.11-

based. Some commercial multicopter systems may contain proprietary encoder

modifications [25], and open source projects seek to modify the Medium Access

Control (MAC) layer to support unidirectional broadcasts for low-latency UAV

video streaming. The 802.11 physical layer remains mostly unchanged.

There are several reasons why 802.11 is prevalent in COTS multicopter links.

The most significant reason is consumer demand for live video streaming and con-

trol from common electronic devices such as smart phones and tablets, which

generally have 802.11 capabilities. 802.11 also offers good performance in mo-

bile links. It has been shown that Orthogonal Frequency Division Multiplexing

(OFDM)-based 802.11 links provide good performance in high-speed UAV wire-

less channels, which have larger Doppler shift and Inter-Carrier Interference (ICI)

[26]. Multicopter UAVs are typically used for low-speed low-altitude flights, which

better facilitates 802.11 links than high-speed fixed-wing UAVs.

A significant portion of the work presented in this thesis focuses on adaptive

optimization the quality of wireless IEEE 802.11 links utilizing physical layer char-

acteristics. This chapter presents the background theory behind this thesis work,

which includes channel modeling and the basic structure of the 802.11 physical

layer.

2.1 OFDM Basics

OFDM is the 802.11 modulation format. OFDM utilizes multiple QAM

subcarriers in a manner that is both spectrally efficient and minimizes ICI. These
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characteristics are achieved by spacing subcarriers such that the spectral peak of

a given subcarrier is at a null for all other subcarriers, which is possible because

each subcarrier has a sinc shaped frequency profile (Figure 2.1). The subcarriers

should be spaced at 1
Td

Hz intervals, where Td is the symbol duration. 802.11

symbols have a length of 4 µs, which includes a guard interval of 0.8 µs, so the

symbol duration is 3.2 µs. The subcarrier spacing of 312.5 KHz can therefore be

calculated as follows:

∆f =
1

Td
=

1

3.2µs
= 312.5 KHz (2.1)

The OFDM symbol is based on a 64-point DFT, which leads to a total

bandwidth of 64 (312.5 KHz) = 20 MHz.

Figure 2.1: ODFM subcarrier layout[1]

For each symbol, the receiver downconverts the received I/Q channels to

baseband to form the extracted complex time-domain signal ys[n]. The receiver
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computes the N -point Discrete Fourier Transform (DFT), to determine the re-

ceived constellation point, Ys(k) at each subcarrier1 (Equation 2.2).

Ys(k) =
N−1∑
n=0

ys[n] e−
2πj
N
kn (2.2)

The received symbol is then equalized via a process explained in Chapter 5,

and the transmitted symbol is estimated.

2.2 Channel Model

Each ODFM subcarrier is modelled individually as a flat-fading channel. At

each subcarrier, the receiver recovers a constellation point Y , which is a rotated

and scaled (typically attenuated) version of the transmitted constellation point X

caused by channel effects, plus Additive White Gaussian Noise (AWGN) caused

by various noise sources, such as electrical noise on the receiver’s RF frontend,

co-channel interference, and ICI due to the increased Doppler effects caused by

the mobile channel conditions. The received constellation point on symbol s at

subcarrier k can be therefore be modeled as:

Ys (k) = H (k)Xs (k) +W (k) (2.3)

Where Xk [n] and Yk [n] are the transmitted and received complex symbols

for subcarrier i, respectively. W (k) is AWGN with subcarrier noise power N(k)

(i.e. W (k) ∼ Nc (0, Nk) ). H is the Channel State Information (CSI) which is a

complex number describing channel’s scaling and rotation of the received symbol.

1The work on this thesis focuses on the receiving end of an 802.11 link. The OFDM modu-
lation, which basically is the inverse of the demodulator, is not explained in this thesis.
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It is assumed that the OFDM frame duration is less than the channel coherence

time, therefore H(k) is treated as a constant throughout the duration of a frame.

The amplitude of CSI is proportional to the amplitude of the received signal,

Therefore, |H(k)| =
√
PRX(k), where PRX(k) is the received subcarrier signal

power.

2.3 Channel Fading

Due to various channel factors such as multipath propagation and movement,

the channel characteristics are time-varying. CSI and therefore received signal

power is not constant and are constantly fluctuating. The effects of channel fading

can be modeled by treating the magnitude2 of the observed CSI at each frame an

Independent and Identically Distributed (IID) random variables. The distribution

of CSI is dependent on assumptions about the channel, particularly the prominence

of a Line-of-Sight (LOS) component of the received signal.

In high multipath conditions where no dominant LOS path exists, it is as-

sumed that CSI has real and complex components distributed as IID Gaussian

distribution with zero mean and a variance σ2. Therefore, H = X + jY , where

X, Y ∼ N (0, σ2). The CSI amplitude |H| can then be calculated via
√
X2 + Y 2,

which implies |H| ∼ Rayleigh (σ). Where a Rayleigh distribution is defined via

the following Probability Density Function (PDF):

X ∼ Rayleigh (σ) =⇒ fX(x) =
x

σ2
e−

x2

2σ2

and the total received signal power is PRX = 2σ2

2CSI phase is also fluctuating, however phase has no effect on received signal strength,
therefore it is not analyzed in the context of fading
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In UAV air-to-ground, it is not uncommon for there to also be a LOS signal

component [27, 28]. When a LOS path is present, the received signal consists of

both LOS and multipath components. The multipath component of the received

signal is modeled in a similar manner as in the Rayleigh distribution, and the

LOS portion shifts the mean of the H. CSI in a fading channel with multipath

power 2σ2 and LOS power ν2 is can be modeled as H = X + jY , where X ∼

N (ν cos θ, σ2) and Y ∼ N (ν sin θ, σ2). This implies that |H| ∼ Rician (ν, σ). A

Rician distribution has the following PDF:

f(x) =
2 (K + 1)x

PRX
exp

(
−K − (K + 1)x2

PRX

)
Io

2

√
K (K + 1)

PRX
x

 (2.4)

Where Io is the 0th order modified Bessel function of the first kind. PRX is the

scale parameter which is the total power from both LOS and multipath components

(PRX = ν2 + 2σ2). K is the shape parameter, which is the ratio between the LOS

power (ν2) and scattered multipath power (2σ2)

K =
ν2

2σ2
(2.5)

2.3.1 UAV air-to-ground Channels

Preliminary air-to-ground channel measurements have been presented in [27],

however these measurements were taken in military fixed-wing aircrafts at unspec-

ified altitudes and velocities3. The measured Rician K -factor varied from 5 to 250.

3It is safe to assume the fixed-wing aircraft was still at a much higher speed and altitude
than the UAV experiments conducted in this thesis.
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The experiments conducted in this thesis is at a lower altitude in urban environ-

ments which likely has much more significant scattering than observed from high

altitude fixed-wing aircrafts. Therefore, it is safe to assume the Rician K -factor

will be lower than the measurements provided by [27]. This assumption agrees with

measurements provided in [28] which shows that lower elevation angles4 leads to

lower Rician K -factors.

2.4 802.11 OFDM Frame Structure

IEEE 802.11 is a set of Physical Layer (PHY) and Media Access Control

(MAC) specifications for a Wireless Local Area Network (WLAN) [29]. Many

IEEE 802.11 standards exist, and the most recent standards are nearly all based

on OFDM modulation format. While the experimental work in this thesis utilizes

802.11g, the adaptive link optimization technique utilizes portions of the frame

that is present in most OFDM-based 802.11 standards including 802.11a/g/p.

IEEE 802.11 frames begin with a preamble that consists of two types of

training sequences: a Short Training Sequence (STS), followed by a Long Training

Sequence (LTS) (Figure 2.2). The STS is used for frame detection, AGC and

coarse frequency offset estimation, while the LTS is used for channel estimation

and fine frequency offset estimation. This chapter focuses on how the receiver

acquires channel estimates from the LTS training sequence using a least-squares

(LS) channel estimation approach.

IEEE 802.11 frames consist of 64 subcarriers across 20 MHz. There are 48

subcarriers, and 4 pilot subcarriers, and 12 null subcarriers. Therefore, only 52

subcarriers are utilized (Figure 2.3). Each subcarrier uses Quadrature Amplitude

4The angle above the horizon between the UAV and ground node
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Figure 2.2: Temporal IEEE 802.11 OFDM frame structure [2]

Modulation (QAM) of bit-rates ranging from Binary Phase Shift Keying (BPSK)

to 64-QAM.

Figure 2.3: Spectral IEEE 802.11 ODFM frame structure [2]
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3. System Design

The aerial SDR system consists of a multicopter UAV, hosting a radio system

payload. The radio system payload of a SDR, host computer, and reconfigurable

antenna (Figure 3.1). Other than the reconfigurable directional antenna, the aerial

SDR system is made entirely of affordable COTS components. The UAV system

weight is 1.9 kg, and radio payload weighs 0.3 kg, which produces a gross system

weight of 2.2 kg. The aerial SDR system is capable of 15-minute flight time and

has a 2.1 thrust-to-weight ratio.

Figure 3.1: Aerial SDR System

3.1 UAV

The aerial SDR system was based around the DJI F550 hexacopter airframe

[10] which provides additional assembly space, stability, and payload capacity

compared to quadcopter airframes (Table 3.1), but is cheaper and more suitable for

indoor testing than an octocopter. However, increasing the number of rotors from
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Table 3.1: Multicopter decision matrix

Attribute Quadcopter Hexacopter Octocopter

Efficiency / Flight Time High Medium Low

Maneuverablility High Medium Low

Indoor Suitability High Medium Low

Stability Low Medium High

Payload Capacity (Weight) Low Medium High

Assembly Space Low Medium High

Cost Low Medium High

Redundancy Low Medium High

four to six does lead to reduced power efficiency. The F550 airframe is commonly

used for prototyping, and has been previously utilized for aerial communication

experimentation [12].

The entire aerial SDR system is powered by a 4S 5500 mAh 35C LiPo battery.

The battery has a nominal voltage of 14.8 V and weighs 538 g. A step-down

converter and regulator were used to create an onboard a 5 V DC power source,

which is used to power the SDR system and antenna. The battery terminals (Vbatt

and GND), are connected to the power distribution board (PDB) on the F550

airframe (Figure 3.2). The PDB routes battery power to the base of all rotor

arms, to power ESCs and motors, and to the center of the airframe to power the

flight control system and SDR payload (Figure 3.2). Both flight control system and

SDR payload system require DC at a specific voltage. A Power Management Unit

(PMU) module is used to regulate power supplied to the flight control system. A

DC/DC converter is used to regulate power supplied to the SDR payload system.

Power efficiency is important for battery powered aircrafts. UAVs that have

poor power efficiency suffer from shorter flight times. Over 95% of the battery
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Figure 3.2: Onboard system power flow diagram. Antenna is described in [3]

power is consumed by the UAV’s propulsion system, which consists of Brushless

DC (BLDC) motors, propellers, and electronic speed controllers1 (ESC). There-

fore, a power efficient propulsion system will significantly increase the UAVs max-

imum flight time. The propulsion system components should be selected based on

interoperability and suitability for the aircraft’s weight and dimensions, and bat-

tery voltage. The aerial SDR system uses the DJI E310 Tuned Propulsion System

which is designed to be suitable for F550 airframe [10]. The E310 system consists

of 960 kV brushless motors, 9.4 in diameter propellers with a pitch of 5 in, and

ESCs rated for 20 A continuous current. The maximum thrust (FT ) of the E310

1BLDC motors do not have an internal mechanical commutator, and therefore require the
ESCs to perform commutations. The ESC drives the motors by controlling current through the
motor coils via three phase leads connected in a wye configuration.
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propulsion system is 800 g/rotor, which totals 4.8 kg of thrust. This produces

a thrust-to-weight ratio of approximately 2.1, providing enough control authority

for the system to be capable of handling moderate wind conditions.

The DJI Naza-M V2 flight controller is used to stabilize and control the UAV

[10]. The flight controller detects its attitude and altitude via onboard sensors 3-

axis gyroscope and a 3-axis accelerometer, and barometer, and then controls the

speed of each motor to maintain stability. The flight controller also supports

GPS assisted flight, however the GPS was not used as most testing was performed

indoors. The flight controller responds to movement commands sent by the remote

pilot using a FrSky Taranis transmitter, which sends UAV movement commands

to a FrSky X8R receiver onboard the vehicle over a 2.4 GHz FHSS control link.

The X8R receiver recovers the control commands and sends them directly to the

flight controller (Figure 3.4).

Figure 3.3: Naza V2 flight controller mounted in the center of the vehicle
next to the PMU. (The SDR payload was not mounted on the vehicle in this

photograph.)
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Figure 3.4: System logic flow diagram. The UAV system and radio payload
are logically isolated. Antenna is described in [3].

3.2 SDR

The SDR system consists of lightweight, small form factor components,

which are ideal for UAV applications due to weight and mounting space con-

straints. The selected components are as lightweight as possible while still pro-

viding reasonable performance. The onboard radio system consists of a USRP

B200mini, which is a credit-card sized PCB weighing only 24 g [30]. A Rasp-

berry Pi 3 Model B, which is a small single-board computer weighing 42 g. with

an quad-core ARM Cortex-A53, was used to serve as a host to the B200mini.

The B200mini and Raspberry Pi 3 communicate over a USB 2.0 interface. The

SDR system is logically isolated from the UAV flight control system logic. No

information about the UAV state is passed to the radio payload, and vice versa.

The adaptive beam-steering implementation work was based off the frame-

work of a GNU Radio recipe containing a IEEE 802.11a/g/p SDR transceiver



17

design [22]. Only the physical layer of this transceiver was utilized, which was

modified to enable reconfigurable antenna state control and implement the adap-

tive beamsteering algorithm. The physical layer of this transceiver was modified

to enable reconfigurable antenna control and the adaptive beamsteering algorithm

explained in Chapter 6.

3.2.1 Enabling ARM support in gr-ieee-80211

GNU Radio does support ARM platforms [31] such as the Raspberry Pi 3,

but it is primarily used on x86 platforms. While generic GNU Radio offers support

for ARM platforms, not all GNU Radio recipes support ARM architecture. The

gr-ieee-80211 recipe only supported x86, and had never been previously used on

any ARM-based platform.

The primary reason for the lack of support for ARM platforms were un-

conditional calls to x86 intrinsic instructions in the punctured Viterbi decoder

implementation. The existing Viterbi decoder utilized Streaming SIMD (Single

Instruction Multiple Data) Extensions (SSE2) to increase performance. SIMD in-

structions are processor instructions that operates on multiple data elements per

instruction in a vector-like manner [32]. SSE2 is an SIMD instruction set specific

to x86 architecture. Non-x86 architectures are not able to utilize SSE2 instruction

set, but typically offer SIMD instruction sets similar to SSE2. The solution was to

write an additional generic punctured Viterbi decoder implementation that does

not use SIMD instructions. The implemented generic punctured Viterbi decoder

was heavily based off of the Viterbi decoder in a different GNU Radio recipe for

digital TV broadcasting called gr-dtv which is also OFDM-based and utilizes a

similar decoder [33]. This new generic Viterbi decoder was added alongside the

SSE2 implementation. The proper Viterbi decoder is selected based on compiler
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flags which denote the supported SIMD instruction sets at compile time (Figure

3.5).

Base Viterbi Decoder Class

MSSE2 Optimized
Viterbi Decoder

Generic Viterbi
Decoder

x86 non-x86

Figure 3.5: Viterbi Decoder Structure

The Viterbi decoder changes that provide cross-platform support are valu-

able to the GNU Radio community as they allow anyone to use the 802.11 recipe

on an ARM device. The changes were presented to the gr-ieee-80211 author and

maintainer, who decided to merge the changes to the upstream gr-ieee-80211 repos-

itory [23].

3.3 Aircraft Evaluation

3.3.1 Flight Time Estimate

A rough maximum flight time estimation can be obtained from the battery

specifications and the average current draw during flight.

The cell voltage of a LiPo battery is 4.2 volts when fully charged, and 3.3

volts when fully depleted. The battery cell voltage should never be outside of this

range to prevent risk of damage. A balanced LiPo charger is used to charge the

battery to 4.2 V. During flight, the flight controller is programmed to land when

the cell voltage is within 0.1 V of the minimum voltage of 3.3 V. LiPo batteries

also experience voltage sag (∆Vsag) when supplying power, which decreases battery
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efficiency. The higher the current draw, the larger the voltage sag. Voltage sag

leads to battery inefficiency, as the voltage sag was measured to be 0.2 V. A battery

inefficiency factor can be calculated based on voltage sag and unused battery power

under the assumption that current draw is not affected by cell voltage:

η = 1− ∆Vsag + ∆Vunused
∆Vtotal

= 1− 0.2V + 0.1V

4.2V − 3.3V
= 1− 0.33 = 0.67

Total flight time can now be calculated by the ratio of the batteries 1C current

draw2 of 5.5 A, and the vehicle’s average current draw of approximately 16 A

during flight (Table B.2), multiplied by an efficiency factor η.

Tflight = (60 min)
I1C
Itotal

η = (60 min)
5.5 A

14.6 A
(.67) = 15.1 min

Later flight tests confirmed flight time is slightly over 15 minutes.

Further inefficiencies are incurred during outdoor operation, as the vehicle

needs to utilize battery power to overcome wind loading and other aerodynamical

forces and disturbances. More aggressive flights that require frequent accelerations,

will also consume a higher average power. These factors will lead to reduced

flight time, but were not estimated because the majority of flights the vehicle was

hovering indoors.

21C current draw is the amount of current it takes to deplete the fully charged battery in 1
hour
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3.3.2 Thrust-to-Weight Ratio

The two most important metrics for evaluating aircraft performance and air-

worthiness are TWR and disk loading. Disk loading is an indicator of propulsion

efficiency. Since this thesis does not involve propulsion system design, disk loading

is not analyzed. TWR is analyzed because it involves analyzing how vehicle per-

formance decreases as gross vehicle weight increases. This is an important metric

for weight budgeting and battery selection. TWR is a measure of the strain the

vehicle propulsion system will experience during flight [34]. TWR is calculated by

dividing the maximum thrust the vehicle propulsion system is able to produce by

the gross vehicle weight [35].

TWR =
FT
Mg

=
4.8kg

2.2kg
= 2.1 (3.1)

The higher the TWR, the greater the acceleration, top speed, and respon-

siveness of the vehicle [34]. While higher TWR provides better flight performance,

it requires a higher performance propulsion system which is typically more expen-

sive. Furthermore, increasing the vehicle’s maximum thrust typically increases the

maximum peak power consumption which the onboard power source may not be

able to provide.

A reasonable target for TWR may be determined via the propulsion system

specifications for maximum thrust and recommended MGTW. At sea level, the

E310 system is capable of producing a maximum thrust of 800 g/rotor with 12V

supply voltage. The higher supply voltage of a 4S LiPo battery (14.8 V nominal),

will slightly increase the maximum thrust per rotor, the 800 g/rotor is used for
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calculations because it serves as a safe lower bound of the vehicles maximum thrust

capability. The recommended takeoff weight for an E310 system is 400 g/rotor

with a 4S LiPo battery, which produces a target TWR of 2 for with a 4S LiPo

battery. The vehicle’s TWR of 2.1 is slightly above the recommended TWR of 2.0.

This TWR is fairly close to ideal, and it shows that that the vehicle can support

a slightly heavier payload if needed.
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4. Antenna and Radiation Pattern

This chapter explains how the electrically reconfigurable antenna is mounted

on the UAV and controlled by the SDR system. Radiation pattern of the antenna’s

directional modes that were measured in DWSL’s anechoic chamber (Figure 4.4)

are presented in this chapter.

The reconfigurable antenna consists of four dipole elements, forming a square

shape outline while fed from the center of the square through quasi-microstrip lines

(Figure 4.1) [3]. By using PIN diode switches, each element can be switched on

or off via control signals directly from the USRP B200mini GPIO pins. There

are totally 5 selectable modes including 1 omni-directional mode and 4 directional

19.4 mm

2 mm

3 mm

17 mm

9 mm

Figure 4.1: Antenna Diagram
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Figure 4.2: Simulated Alford Loop antenna normalized radiation patterns for
directional modes

modes. While all the elements are switched on, the antenna is configured as an

Alford Loop antenna working in a horizontally polarized omni-directional mode,

as recommended by [13], with a maximum gain of approximately 2 dBi. While

switching on two adjacent elements, the antenna is operating in a directional

antenna mode with maximum gain of about 3.5 dBi and front to back ratio larger

than 10 dB. The radiation pattern for directional modes can be rotated horizontally

90 degree increments by selecting different adjacent element pairs (Figure 4.2a).

The antenna is mounted horizontally on the underbelly of the UAV by a

cardboard tube that extends 10.5 cm below the lower airframe plate (Figure 4.3).

The lower plate is also serves a Power Distribution Board (PDB) PCB which

routes battery power to the base of each rotor arm (Figure 3.3). The antenna

is horizontally planar, but since the antenna is mounted on UAV with a metallic

environment of the PDB module above, the radiated field is reflected by the ground

layer of metal board so that maximum gain does not appear in the horizontal plane,

but about 45 degree downwards to the ground (Figure 4.5b), unlike the originally
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proposed antenna in [3] (Figure 4.2b).

Figure 4.3: Alford Loop antenna mounting

Figure 4.4: Measuring reconfigurable antenna’s azimuth pattern in DWSL’s
anechoic chamber when mounted on the UAV.
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5. Channel Estimation

The implemented antenna selection algorithm attempts to select antenna

modes in a manner to increase average SNR which must be estimated on the

receiver in an 802.11 compliant manner. The SNR estimation approach is tied into

the channel estimation portion of the receiver. This chapter explains how channel

estimation and equalization are performed with the least-squares (LS) method

described in [36], and how SNR estimation is derived from the CSI. This chapter

also analyzes the performances of LS channel estimation and SNR estimation via

MATLAB simulation.

LS channel estimation is the simplest to implement and is the most com-

mon benchmark for 802.11 channel equalizers. There are more complex dynamic

channel estimation and equalization methods for 802.11 vehicle-to-vehicle chan-

nels that utilizes data symbols to adapt to CSI variations throughout the frame

duration [36]. Most of these methods still utilize the LS technique for initial CSI

estimates from the 802.11 preamble.

Since experimental results do not utilize payload symbols, the LS equalizer

was used for speed and simplicity. The link optimization methodology will work

with more complex channel estimation methods.

5.1 Channel Estimation and Equalization

The LS channel estimation and equalization technique utilizes the LTS por-

tion of the 802.11 preamble. There are two LTS symbols, each transmitting a

known symbol on all 52 utilized subcarriers. The DFT of these symbols are Y1(k)

and Y2(k), which are calculated via Equation 2.2. The goal of channel estimation
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is to estimate CSI, H(k), for each subcarrier based on Equation 2.3. As mentioned

in Section 2.2 the LS channel estimation method assumes the frame duration is

well within the coherence time of the channel1. Therefore, the channel estimate

can be considered to be constant for the duration of the OFDM frame.

The first equalization step is to estimate the received LTS constellation point,

Ȳi(k) = H(k)Xi(k), which is the received LTS constellation point when no noise

is present in the channel. Since Yi (k) is the sum of a constant, H(k)Xi(k), and

AWGN noise, W (k) with variance N(k), has a probability density function with

the following distribution:

Yi(k) ∼ Nc (H(k)Xi(k) , N(k)) (5.1)

Since Yi(k) is normally distributed, the maximum likelihood estimate for

Ȳ (k) is the mean of the received LTS constellation points.

ˆ̄Y (k) = E
[
Ȳ (k) |Y1 (k) , Y2 (k)

]
=
Y1 (k) + Y2 (k)

2

For the pilot frames Xi(k) is known and X1(k) = X2(k), therefore we can

then estimate the subcarrier CSI:

Ĥ(k) =
ˆ̄Yi(k)

X(k)
=
Y1(k) + Y2(k)

2X(k)
(5.2)

1Research in mobile ground vehicle channels suggest this is may not always true when vehi-
cles are moving at high speeds where Doppler effects are significant. Requiring a more advanced
equalizer [36]. In these scenarios Average EVM Squared (AEVMS)-based SNR estimation de-
scribed in [37] can be implemented with minimal change to the beamsteering methodology
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Equalization is performed on the following payload symbols by dividing the

received symbol by the estimated subcarrier CSI:

X̂i(k) =
1

Ĥ(k)
[H(k)Xi(k) +W (k)] i > 2 (5.3)

5.2 SNR Estimation

It is possible to estimate signal power is from the CSI magnitude, and noise

power can be estimated by Error Vector Magnitude (EVM) of the received LTS

symbols. SNR can then be estimated by dividing the signal power estimate by the

noise power estimate. Due to receiver gains applied to the signal it is not possible

to estimate raw signal and noise power at this stage of the receiver. The estimated

signal power (S) and noise power (N) are not the true estimates. Since the same

gains are applied to both the signal and noise, the relative magnitude of power

estimates are still accurate. Therefore SNR can still be accurately estimated.

The subcarrier received signal amplitude was estimated to be |Ĥ(k)|. There-

fore, the subcarrier signal power, Si(k), can be estimated as:

Ŝ(k) = |Ĥ(k)|2 (5.4)

The subcarrier noise power estimate, N̂(k), is obtained from difference be-

tween Y1(k) and Y2(k). Equation 5.1 shows that the received LTS constellation

points, Yi(k), has a complex normal distribution with a variance of N(k). The

difference between the two received LTS constellation points Y1(k) and Y2(k) is

also has a complex normal distribution with variance of 2N(k).
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Y1(k)− Y2(k) ∼ Nc (0, 2N(k))

The squared magnitude of the difference between the two received LTS con-

stellation points is then exponentially distributed:

|Y1(k)− Y2(k)|2 ∼ Expo

(
1

4N(k)

)

The expected value of an exponentially distributed random variable with

rate parameter 1
4N(k)

is 4N(k), therefore:

E
[
|Y1(k)− Y2(k)|2

]
= 4N(k)

As a result, the subcarrier noise power can be estimated via:

N̂(k) =
1

4

(
|Y1(k)− Y2(k)|2

)
(5.5)

Total SNR can be estimated by summing noise power and signal power over

all 52 subcarriers and dividing the results:
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SNR =

∑52
k=1 Ŝ(k)∑52
k=1 N̂(k)

= 4

∑52
k=1|

Y1(k)+Y2(k)
2X(k)

|2∑52
k=1|Y1(k)− Y2(k)|2

=

∑52
k=1|Y1(k) + Y2(k)|2∑52
k=1|Y1(k)− Y2(k)|2

(5.6)

5.3 Simulated SNR Estimate Performance

The LS-based SNR estimation was simulated for 30 true SNR values ranging

from -10 dB to 20 dB. At each SNR value, 10,000 SNR estimates were obtained

under the previously described channel model (Equation 2.3) and SNR estimation

method (Equation 5.6). It is important to determine how the SNR estimation

performs in both high multipath conditions and high LOS conditions2. The simu-

lation evaluates the performance of SNR estimation under a under various Rician

K -factors.

5.3.1 Least-Squares Estimation Bias

While SNR estimation may have bias and measurement error, it is critically

important that the expected SNR estimate under channels with different Rician K -

factors are equal under a given true SNR as the adaptive beamsteering algorithm

will need to compare SNR estimates between antenna modes with varying degrees

of LOS components.

2In reality, the fading model will contain both LOS and multipath components. This simu-
lation analyzes the two extremes to show best-case and worst-case channel conditions.
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Figure 5.1: LS equalizer SNR estimate bias and 90% confidence intervals in
various Rician K -factor channels

The bias was estimated by taking the mean of SNR estimates at various

true SNR values (Figure 5.1). The simulation results show that in low SNR con-

ditions, noise has a significant effect on the received symbols. This often causes

signal power estimates, and therefore SNR estimates, to be overestimated by the

LS equalizer. At SNR values above 5 dB, the bias is small and can be considered

negligible in the context of antenna selection algorithms. Considering the mini-

mum SNR to maintain a link is typically around 10 dB, the bias is negligible at all

SNR values high enough to maintain a stable link. Experimental measurements

in this thesis were conducted in channel conditions where the mean SNR was in

the range of 13-25 dB.
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5.3.2 Least-Squares Estimation Error

It is important to see if the variance in SNR estimates change as true SNR

changes. the variance in SNR estimates was calculated for each true SNR value

and graphed (Figure 5.2).
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Figure 5.2: LS equalizer SNR estimate variance in various Rician K -factor
channels

The variance in SNR estimates under K=0 fading model appears to be

unaffected by changes in true SNR. This means that distribution in estimated SNR

will have a variance of approximately 0.73 dB, for all true SNR values. Under a

Rician fading model, SNR estimation variance decreases from 0.73 to 0.37 dB as

true SNR increases. Since SNR is above 10 dB most experimental results, SNR

estimation variance can be expected to be in the range of 0.37-0.40 dB.

To get an idea of the probability density function of SNR estimates, a his-

togram of the equalizer estimate error was obtained via simulation at a true SNR
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of 20 dB where the estimation bias was negligible. The SNR estimation error

histogram under K = 0 Rician (Figure 5.3a) and K = 1000 Rician (Figure 5.3b)

fading models show that SNR estimation is approximately normal. Overall, the

simulation results show that SNR estimation works best under high K -factor Ri-

cian fading with a high SNR. Realistically, the fading distribution observed at each

antenna mode be somewhere between the K = 0 Rician and K = 1000 Rician mod-

els. Therefore SNR estimation performance best-case and worst-case performance

can be bounded by these two models.
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Figure 5.3: Simulated histogram of LS equalizer SNR estimate error at a true
20 dB SNR in various Rician K -factor channels
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6. Antenna Selection Algorithm

The reconfigurable antenna modes allow the onboard UAV radio to steer

the directional antenna radiation pattern described in Chapter 4 in four different

directions. At a given time in flight, some modes will provide a higher link quality

than others (Figure 6.1). The goal of link optimization via reconfigurable antenna

mode selection is to learn and exploit the reconfigurable antenna mode provides

the best link quality. The link optimization is done in an adaptive manner because

the best antenna mode may change during flight due changing channel conditions

Low SNR
Antenna Mode

High SNR
Antenna Mode

Ground Node

Transmits
802.11 Frames

Figure 6.1: Link optimization concept diagram
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and movements of the UAV and/or ground node. The key challenge in effectively

integrating reconfigurable antennas into practical wireless systems is the selection

of an optimal radiation pattern among all available patterns for a transceiver in a

given wireless environment.

The selection of the optimal mode requires additional channel state infor-

mation (CSI) for each antenna mode and the overhead associated with obtaining

complete and instantaneous CSI can be significant due to mobility, changes in the

antenna orientation and the dynamic nature of the wireless channel. To address

these challenges, an online learning approach is adopted for reconfigurable antenna

mode selection based on Multi-Armed Bandit (MAB) theory presented in [18].

The MAB problem is a classic reinforcement learning problem, where an

agent chooses a sequence of mutually exclusive actions that are each associated

with a stochastic reward in the hopes of maximizing the cumulative reward over

time. In the context of wireless link optimization, the set of antenna patterns make

up the K possible actions and the received signal-to-noise ratio (SNR) estimate is

the reward associated with each action.

Due to movements by the UAV and changes in the environment, the SNR

distribution, and therefore reward distribution at each antenna mode is time-

varying. An selection policy called adaptive pursuit (AP) is an adaptive strategy

that is designed for non-stationary MAB problems where reward distributions are

time-varying [21]. The AP strategy has been previously used to optimize wireless

link quality using signal-to-interference-and-noise ratio (SINR) as reward in the

context of interference alignment [19]. However, to the best of our knowledge, this

approach has not been utilized in mobile (or aerial) environments.
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The AP strategy is an psuedo Expectation-Maximization approach. The goal

of the AP strategy is to adapt an arm selection probability vector (P), containing

the probability of selecting each antenna mode (arm), to increase the probability of

selecting the estimated best arm. The expected reward from each arm is tracked

by an arm quality vector (Q), which is updated every time a new reward (i.e.

SNR measurement) is obtained. The arm with the highest expected reward is

considered the best arm. The AP is a recursive strategy, where on each iteration

a random arm i is chosen based on the distribution determined by P. An Ri [n]

is obtained from the selected arm. The algorithm updates the expected future

reward for selected arm via a first-order low pass filter.

Qi [n+ 1] = (1− α)Qi [n] + αRi [n]

Where i ∈ {1, · · ·, K}, and quality adaption rate is controlled by α : 0 <

α ≤ 1.

The arm selection probability vector P is then updated to increase the se-

lection probability of the arm with the highest expected quality (i∗), and decrease

the probability of selecting other arms. It is undesirable for an arm’s selection

probability to be extremely low as this would prevent the algorithm from explor-

ing that arm, so a restriction is imposed which requires the selection probability

of any given arm to be no less than Pmin. The probability vector P is updated

in the following manner, which increases the probability of selecting i∗, but also

enforces the minimum arm selection probability constraint.
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Pi [n+ 1] =


Pi [n]− β (Pmax − Pi [n]) i = i∗

Pi [n]− β (Pmin − Pi [n]) else

The probability adaption rate is determined by β : 0 < β ≤ 1. To ensure

total probability of selecting all states is unity:

Pmax = 1− (K − 1)Pmin

The selection of Pmin controls the tradeoff between exploiting the arm and

exploring other arms. The AP strategy will exploit the best state with a maxi-

mum probability Pmax, and explore each other state with a minimum probability

of Pmin. The selection of adaption rates α and β control how quickly the AP strat-

egy will adapt it’s quality vector and probability vector to changing arm reward

distributions. α determines how much previous reward measurements contribute

to the current quality estimate. β controls the greediness of the algorithm as it

determines how rapidly the selection distribution will adapt to a change in i∗ .

The entire AP policy is shown in Algorithm 1.

The UAV implementation of AP strategy for adaptive beamsteering uses the

802.11 SDR PHY implementation [22] to receive the 802.11 frames. The reward

is calculated by SNR estimator analyzed in Chapter 5, and the output of the AP

policy controls the reconfigurable antenna state (Figure 6.2)

The received SNR estimate was chosen as the quality metric because it can be

estimated on the receiver from the magnitude and Error Vector Magnitude (EVM)

of the received symbols in the Long Training Sequence (LTS) portion of the 802.11
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Algorithm 1 Adaptive Pursuit

1: function AdaptivePursuit(P ,Q, K, Pmin, α, β)
2: Pmax ← 1− (K − 1)Pmin
3: for i← 1 to K do
4: P (i)← 1

K
; Q (i)← 1.0

5: while NotTerminated?() do
6: as ← ProportionalSelectOperator(P)
7: Ras (t)← GetReward(as)
8: Qas (t+ 1) = Qas (t) + α [Ras (t)−Qas (t)]
9: a∗ ← argmaxa (Qa (t+ 1))

10: Pa∗ (t+ 1) = Pa∗ (t) + β [Pmax − Pa∗ (t)]
11: for a← 1 to K do
12: if a 6= a∗ then
13: Pa (t+ 1) = Pa (t) + β [Pmin − Pa (t)]

802.11 PHY

SNR Estimator

Adaptive
Pursuit

Reconfigurable
Antenna

Received
LTS Symbols

Reward

Antenna
Mode

RX Signal

Figure 6.2: Onboard adaptive antenna selection flow diagram

preamble, and therefore does not require any additional overhead. SNR estimation

is explained in great detail in Chapter 5. Also, higher SNR directly corresponds
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to lower BER rates, which will very likely lead to an increase in throughput.

The current antenna mode selection implementation only optimizes the ground-

to-UAV link, and the reverse link is not analyzed in this thesis. However, because

the system operates in a Time Division Duplex (TDD) mode, it is reasonable to

assume reciprocity between the uplink and downlink channels. Thus, at each time

instant the best antenna mode for the ground-to-UAV and UAV-to-ground links

will be the same.

6.1 Antenna Mode Selection Policy Discussion

Adaptive Pursuit was the chosen antenna mode selection policy and is the

only policy that is implemented in an online manner. However, it is important to

discuss other more commonly used policies.

6.1.1 ε-greedy Policy

A common strategy for non-stationary MAB problems is a selection pol-

icy called ε-greedy. This policy maintains a quality vector reward-based update

Adaptive Pursuit’s Q vector. However, rather than maintaining an arm selection

distribution vector P, ε-greedy selects the best arm (i∗) with probability 1 − ε

and selects a random arm (with uniform probability) with probability ε. The pa-

rameter ε in the ε-greedy policy determines the tradeoff between exploration and

exploitation, and is very similar to AP’s parameter Pmin.

The main difference between ε-greedy and AP policies is the transient be-

havior of arm selection probabilities when there is a change in the best arm (i∗).

When the best arm changes, both algorithms will reconverge their selection proba-

bilities to increase the probability of selecting the new best arm. ε-greedy does this

reconvergence instantaneously, while AP selection probability more slowly adapts
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at a rate governed by the β parameter. AP policy with β=1 is effectively the same

as the ε-greedy policy. When AP has converged to steady-state1, its arm selection

distribution is identical to ε-greedy, where Pmin = ε
K

.

High exploration rates can lead to decreased cumulative reward due to the

increased probability of selecting arms that yield poor rewards. However, high

exploitation rates causes the policy to have less accurate expected reward for each

arm, which increases the chance of exploiting the sub-optimal arm. It is often

desirable to decrease ε when the reward distributions are relatively stationary,

and increase ε when there is uncertainty in the arm quality estimates. This is

called an adaptive ε-greedy policy. AP is similar to an adaptive ε-greedy strategy

as the arm with the highest selection probability will be decreases when there is

higher uncertainty in the best arm.

While it is expected that an adaptive ε-greedy and AP policies will provide

fairly similar performance (and will also likely outperform traditional ε-greedy

for beamsteering application), the primary reason AP policy was chosen for UAV

beamsteering is because it has been previously utilized for terrestrial antenna

wireless beamsteering experiments [19].

6.1.2 Non-Reinforcement Learning Approaches

Other non-reinforcement learning-based strategies could be implemented for

antenna mode selection in UAV-to-ground communications. The most obvious

strategy, which will be referred to as the straw man policy, would be to always

utilize the antenna mode that points in the direction of the ground node (i.e. the

1This occurs when the best arm has not changed for a relatively long period of time, so it’s
selection probability is near Pmax and the selection probability of all other arms are near Pmin.
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”LOS” antenna mode2). Unlike reinforcement learning approaches to beamsteer-

ing straw man policy makes a naive assumption that the best antenna orientation

points in the direction of the ground node, this is a reasonable assumption in low

multipath LOS channels, and was a core assumption in UAV-to-UAV communica-

tion research [12]. The straw man policy does not have any exploration penalty,

and therefore may outperform reinforcement learning-based beamsteering algo-

rithms in these scenarios. However, the LOS antenna mode is not always the

best antenna mode. This is especially true in short-distance low-altitude UAV-to-

ground links analyzed in this thesis which are more likely to have high multipath

and/or NLOS channel conditions. In addition, channel situations involving co-

channel interference or jamming may also cause relatively poor performance on

the LOS antenna mode.

Perhaps the biggest drawback to the straw man policy is that additional sen-

sors and data overhead are required to determine the direction of the ground node

with respect to the orientation of the UAV. A GPS and magnetometer onboard

the UAV that is accessible by the onboard radio is required to establish a reference

frame based on the position and heading of the UAV. To determine the direction

of the ground node in respect to the UAV’s frame of reference, the ground node

will also need a GPS and must send the UAV it’s GPS position, thus increasing

data overhead.

The straw man policy selects antenna modes based on the relative orienta-

tion of the ground node measured by sensor data. While the limitations of the

straw man policy have been discussed, the idea of using onboard sensor data for

2This ”LOS” antenna mode may not provide true line-of-sight as it’s possible an obstacle is
interfering with the LOS path



42

beamsteering algorithms can be adapted to for use in the reinforcement learning-

based beamsteering algorithms. Even if the UAV doesn’t have a GPS, the at

least has an IMU (Inertial Measurement Unit) which consists of a gyroscope and

accelerometer3. It is possible to use this sensor data to tune the exploration/ex-

ploitation tradeoff in an online fashion. When the UAV moves, it is likely that the

reward distributions at each antenna mode change. Sensor data could be used to

detect increase the exploration rate when the UAV is undergoing movement and

maneuvers, and decrease the exploration rate when the UAV has been stationary

for a relatively long period of time. This thesis does not experiment with fusing

the UAV’s onboard sensors with the beamsteering policy to further improve link

performance, however this is an avenue for future work.

3Technically, only a gyroscope is needed to achieve stable controlled flight. However, without
an accelerometer the vehicle attitude needs to be manually controlled by the pilot.
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7. Indoor Experimental Setup

Initial experiments were conducted indoors in the arena of the Drexel MESS

Lab which allowed for more controlled experiments where aerodynamic distur-

bances such as wind are minimal. These experiments were used to characterize

the SNR distributions at each antenna mode in both flight and non-flight scenar-

ios, tune the AP policy via post-processing methods using the measured in-flight

SNR data, then test and evaluate how well the adaptive beamsteering algorithm

performs under various scenarios.

7.1 Experimental Setup

The performance of the AP policy and omni-directional antenna are com-

pared in an indoor environment under various situations. All indoor experimen-

tation was performed in a large indoor 38 ft. by 44 ft. open space with a ceiling

height of approximately 20 ft. The indoor space has a grid scaffolding structure

at a height of 12 ft.

The ground transmitter node consisted of a USRP N210 [30] with a Lenovo

Thinkpad W520 host. The implementation was using the gr-ieee802-11 GNU

Radio recipe to transmit an OFDM frame at 10 ms intervals using a 2.4 GHz

omni-directional monopole antenna. The frame structure is compliant with the

IEEE 802.11a/g/p standards, however due to the limited processing power of the

Raspberry Pi 3, the frames use a sampling rate of 5 MHz instead of 20 MHz. All

ODFM data subcarriers used the BPSK modulation format. WiFi channel 14 was

utilized for the experimental ground-to-UAV link to avoid interference from the

UAV control link or any other wireless devices.
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Figure 7.1: Indoor experimental layout showing flight position (UAV), trans-
mitter position (LOS TX), NLOS transmitter position (NLOS TX), and inter-

ference source position (INT)

The UAV’s SDR system ran the physical layer of the GNU Radio IEEE

802.11 receiver, which was modified to control the reconfigurable antenna state

and log SNR measurements [22]. The antenna control and SNR logging was im-

plemented in a separate thread, which would run the AP policy utilizing the most

recently measured SNR every 150 ms.

7.2 Channel SNR Characterization

Before implementing online adaptive antenna selection policies, the SNR

distribution under both flight and non-flight scenarios are characterized to show

how the ground-to-UAV link characteristics are affected by movement, vibration,

propellers, etc.

During channel characterization tests, the onboard radio was programmed
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Figure 7.2: UAV hanging from ceiling grid during non-flight scenario experi-
ment

to cycle through all five antenna modes (four directional states and one omnidirec-

tional state) in a round-robin manner gathering SNR measurements. This cycling

allows SNR distributions for each antenna mode can be characterized under dif-

ferent channel scenarios.

For the non-flight scenario, the UAV was hung by a rope from the ceiling

grid approximately 8 ft. above the ground (Figure 7.2). The ground transmitter

node was placed on a cart 20 ft. away from the UAV, such that the transmitter

antenna is 3 ft. above the ground. This placement creates a 14 degree elevation

angle between transmitter’s horizon and the UAV (Figure 7.1). The ground node’s

transmission power was 10 dBm. The propellers were off, therefore the vehicle’s

position and heading angle were fixed and the vehicle was not subjected to vi-

bration, minor movements, and other aerodynamic effects that occur during UAV

flight.

The cumulative distribution function (CDF) for each antenna state is calcu-

lated by the channel characterization radio configuration in the non-flight scenario
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Figure 7.3: Antenna mode SNR CDFs during the non-flight scenario

where the UAV is hanging from a rope (Figure 7.3). The mean SNR variance

measured at each mode was measured to be 2.6 dB. The difference in mean SNR

between the best and worst performing mode was in the range of 8-12 dB. The low

variance, and high deviation in mean SNR per arm leads to minimal distribution

overlap.

Using the same channel characterization radio configuration and ground

transmitter position as before, two 10 minute indoor hover flights were conducted

where the pilot tried to keep the vehicle in the same position and heading angle

as in the non-flight scenario. The measured SNR distributions during flight show

a significantly greater variance in the range of 15-17 dB. There also is a notably

smaller difference mean SNR between the best and worst performing mode was in

the range of 4-6 dB (Figure 7.4).

The increased variance and decreased mean SNR spread leads to significantly
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Figure 7.4: Antenna mode SNR CDFs during indoor hover flight

more CDF overlap per arm. This makes it more difficult for the adaptive antenna

selection policy to distinguish the best state. The adaptive pursuit strategy utiliz-

ing similar reward metrics has been previously shown to be able to optimize link

quality in scenarios similar to the hanging scenario [19], however the antenna selec-

tion policy has not been implemented in mobile or aerial changing environments.

These results show that continuous movement of the UAVs antenna reduces the

performance of the adaptive beamsteering algorithm.

7.3 Offline Adaptive Pursuit Implementation

The channel characterization data from the hover flights was also applied to

the AP and ε-greedy policies in a post-processing manner to roughly approximate

the policy performance and the tune the adaption parameters. Due to the low

sampling rates in the experiment, a 90% exploitation rate was implemented on
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both policies (Pmin = 0.1) forcing the strategy to frequently explore states other

than i∗.

The AP and ε-greedy policies were applied to the SNR data in two different

configurations. The first configuration utilized the four directional antenna modes.

The second configuration utilized the four directional antenna modes and the omni-

directional state. Each configuration was applied to the data one hundred times

and the realized mean SNR was averaged and compared to the omni-directional

antenna mode.

The offline AP implementation shows an average gain of approximately 0.9

dB SNR gain over omni-directional when using AP with the omni-directional

mode, and a 1.2 dB SNR gain when using AP without the omni-directional

mode (Figure 7.5). The ε-greedy policy produced a 0.6 dB SNR gain over omni-

directional, and the optimal antenna selection strategy provides a 4.5 dB SNR gain

over omni-directional. The optimal antenna selection shows the absolute best-case

performance that any antenna selection policy can produce. This selection policy

chooses the antenna state that has the highest SNR on each measurement cycle.

The optimal selection policy is impossible to implement in real-time because re-

quires prior knowledge consisting of the realized SNR values at each antenna mode

at every time instant.

Measurements show that AP without omni-directional mode slightly out-

performs AP with the omni-directional mode. Performance is reduced with the

omni-directional state because increasing the number of possible states of the AP

strategy increases the required exploration effort, which in turn decreases the ex-

ploitation rate. Since it is very unlikely that the omni-directional mode the highest
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average SNR in comparison to the directional states, the increased exploration ef-

fort rarely results in higher average SNR payoff. As a result, AP without the

omni-directional mode is utilized in all online implementations.

The AP parameters used in future online implementations were chosen by

tuning the AP strategy without omni-directional offline using the channel char-

acterization data. The tuned parameters were α = 0.15 and β = 0.15 which

produced the 1.2 dB offline mean SNR gain shown above.
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Figure 7.5: Offline AP SNR CDFs based on indoor hover flight data

7.4 Online Adaptive Pursuit Implementation

The AP policy was implemented online using the tuned parameters obtained

from the offline implementation. Since each UAV flight is a non-static environment

and UAV movements are not precise to be perfectly reproduced, the performance

of the antenna states and selection policies are ideally compared over the same
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flight. The online approach switches between omni-directional mode and the AP

policy every 150 ms throughout the duration of the flight.

The AP strategy and the omni-directional antenna mode were implemented

in the following scenarios (Figure 7.1).

• Hover - Hover flights were conducted in the same manner that the in-flight

channel SNR characterization tests were conducted. The only difference is

that the SDR payload was running the AP policy instead of logging SNR

data.

• Rotating Hover - The rotating hover scenario tests how the antenna se-

lection policy adapts to rapid changes in SNR distributions at each antenna

mode. A 12 minute flight was conducted in the same manner as the hover

scenario, except that the vehicle heading angle was changed by 90 degrees

on three minutes intervals.

• Non-Line of Sight Hover - The antenna selection policy is tested under

NLOS scenario. The NLOS scenario was conducted in the same manner as

the hover scenario, except the transmitter node was moved to an adjacent

room.

• Hover with Interference - A hover flight was conducted in the same

manner as the hover scenario, except that an Agilent N5182A vector signal

generator was transmitting co-channel QPSK LOS interference at -5 dBm

and 5 MHz bandwidth. The transmitter was positioned 3 ft. above the

ground approximately 20 ft. away from the UAV at an angle of 90 degrees

from the ground transmitter node.
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8. Indoor Experiment Results

8.1 Hover Scenario

The experimental results from the hover flight show that the online AP

strategy utilizing four directional modes shows a mean SNR gain of 1.23 dB over

the omni-directional antenna (Figure 8.1).

0 100 200 300 400 500 600

Time (s)

14

16

18

20

22

24

S
N

R
 (

d
B

)

Omni

AP

(a) Smoothed SNR measurements

5 10 15 20 25

SNR (dB)

0

0.2

0.4

0.6

0.8

1

C
D

F

Omni

AP

(b) Online AP performance

Figure 8.1: Online AP performance during indoor hover scenario

The rotating hover test resulted in a mean SNR gain of 1.1 dB (Figure 8.2).

The slight decrease in performance in comparison to the hover scenario likely

caused by a decrease in AP performance when the vehicle’s heading angle changes

due to the significant changes to the SNR distribution at each antenna mode.

8.2 Rotating Hover Scenario and Visualization of the AP Policy Adap-

tion

To visualize how the AP policy adapts to significant changes in reward dis-

tributions at each antenna mode, Figure 8.3 shows the normalized frequency that

each antenna mode was selected throughout the duration of the hover and rotation

hover experiments.
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Figure 8.2: Online AP performance during indoor rotating hover scenario

(a) Hover scenario (b) Rotation hover scenario

Figure 8.3: Normalized mode selection histogram for hover and rotation hover
scenarios

In the hover scenario the vehicle experienced minimal changes in heading so

the mode that yielded the highest reward likely did not change throughout the

duration of the flight. Figure 8.3a shows that State 3 was chosen over 50% of

the time, and the other modes were selected at rates in the range of 10%-20%,

suggesting that State 3 offered the highest expected reward so the AP policy

selected this mode with a high probability.

In the rotating hover scenario, the vehicle experienced large changes in head-

ing which likely caused the reward distribution at each antenna mode to vary sig-

nificantly throughout the duration of the flight. Figure 8.3b shows that AP policy
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did not constantly exploit the same antenna mode with high selection probabil-

ity throughout the duration of the flight, because the algorithm would adapt its

antenna mode selection distribution exploit to the new best antenna mode each

time the vehicle was rotated.

8.3 NLOS and Interference Scenarios

The NLOS scenario test resulted in a 0.6 dB gain over omni-directional

(Figure 8.2). The significant decrease in AP performance in the NLOS scenario as

compared to the LOS scenarios is due to the lack of a dominant LOS multipath

component, which further decreases the benefit of directionality.

0 100 200 300 400 500 600

Time (s)

10

12

14

16

18

20

22

S
N

R
 (

d
B

)

Omni

AP

(a) Smoothed SNR measurements

5 10 15 20 25

SNR (dB)

0

0.2

0.4

0.6

0.8

1

C
D

F

Omni

AP

(b) Online AP performance

Figure 8.4: Online AP performance during indoor NLOS scenario

The interference hover scenario results show AP provides a 1.4 dB mean SNR

gain over omni-directional when co-channel interference is present (Figure 8.5).

The performance increase AP provides in this scenario is likely greater than in the

hover scenario. This increased performance can be attributed to the directional

antenna patterns spatially filtering out the interfering signal since the interference

source is located at a 90 degree offset from the transmitter. While the signal

strength may be similar among the antenna modes due to multipath and scattering
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in an indoor environment, there are likely to be antenna modes that exhibit better

signal-to-interference ratio that the algorithm can exploit.

0 100 200 300 400 500 600

Time (s)

0

5

10

15

20

S
N

R
 (

d
B

)

Omni

AP

(a) Smoothed SNR measurements

5 10 15 20 25

SNR (dB)

0

0.2

0.4

0.6

0.8

1

C
D

F

Omni

AP

(b) Online AP performance

Figure 8.5: Online AP performance during indoor interference scenario

8.4 Table of Results

It can now be concluded that that AP antenna selection strategy provides

a mean SNR improvement over omni-directional antenna in high-multipath hover

scenarios. The mean SNR gain of the adaptive beamsteering algorithm over the

omni-directional antenna mode in each experiment is shown in Table 8.1. The

gains are fairly modest in comparison to the outdoor experimental results pre-

sented in later chapters. Low SNR gains can be attributed to the rich scattering

due to high multipath indoor environment, which lessens the advantages of direc-

tionality. It is important to note that for all experimental scenarios, there is no neg-

ative penalty for using the adaptive beamsteering approach over omni-directional,

as the beamsteering algorithm does not increase the probability of receiving low

SNR frames due to exploring relatively low performing antenna modes1.

1This can be observed from the CDF comparisons, where the AP curve is always to the right
of the omni-directional curve.
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Table 8.1: Mean SNR gain of AP antenna selection strategy over omni-
directional antenna mode

Scenario Mean SNR Gain over Omni (dB)

Indoor Hover 1.23

Indoor Rotating Hover 1.1

Indoor NLOS Hover 0.6

Indoor Hover with Interference 1.4
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9. Outdoor Flight Experiment

Chapter 8 shows that the adaptive beamsteering algorithm works in vari-

ous conditions in an indoor environment. This chapter focuses on outdoor flight

experiments that were conducted to compare the AP policy and omni-directional

antenna mode performance in a more realistic environment.

9.1 Experimental Setup

A 10 minute flight was conducted outdoors on Drexel University’s campus.

The ground node was placed on a cart three ft. above the ground. The UAV was

flown at an approximate horizontal distance of 42 ft. from the ground transmitter

node, and an approximate height 22 ft. above the ground, which produces a

elevation angle near 30 degrees. To account for the increased distance between

the transmitter and receiver, a higher transmission power of 19 dBm was used.

The flight was conducted in moderate weather with a slight breeze. Due to wind

disturbances and the lack of GPS assisted flight, the UAV experienced larger

position deviations than in the indoor flight. The vehicle heading was rotated 180

degrees in the middle of the flight.

9.2 Results

The AP policy produced a 2.06 dB SNR gain over omni-directional (Figure

9.4). The smoothed SNR measurements show significant SNR fluctuations of

up to 10 dB caused by UAV movements (Figure 9.3). Although the outdoor

flight experienced greater aerodynamic disturbances and changes in heading angle

in comparison to indoor hover flights, the variance in omni-directional SNR was

measured to be 11.7 dB, which is less than indoor flight variance of 16 dB.
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Figure 9.1: Outdoor flight topology showing relative positioning of the UAV
and ground node

Figure 9.2: Outdoor flight with ground node located on the cart in the far
right hand side of the image

There is a significant performance increase in the adaptive beamsteering

algorithm in outdoor environments. This is expected because the indoor setting

is a more challenging environment for exploiting directionality of wireless links

compared to an outdoor environment which has less scattering and multipath
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Figure 9.3: Smoothed SNR measurements from outdoor flight

effects. Unlike outdoor scenarios, where the LOS antenna orientation provides the

highest signal strength and is generally the best antenna configuration, there could

be multiple non-LOS antenna modes with comparable signal strength in indoor

environments, making the antenna mode selection problem more difficult.
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Figure 9.4: Online AP performance during outdoor flight
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10. Reactive Jamming Mitigation Experiment

Unlike continuous jammers which transmit a continuous jamming signal on

a specific frequency band, reactive jammers jam transmissions that are already

on-air by transmit a short jamming burst when a radio transmission is detected.

Reactive jammers are more power efficient and are harder to detect than traditional

jammers, but are much more complex and difficult to implement. The capability

of the adaptive beamsteering algorithm to avoid utilizing antenna modes the yield

low SNR rewards is also capable of combating adversarial reactive jammers. This

chapter presents experiments and results showing how our adaptive beamsteering

algorithm is capable of mitigating reactive jammers by avoiding antenna modes

that receive high jamming interference (Figure 10.1).

The reactive jammer described in [38] was utilized for these experiments.

The reactive jammer used an energy detection technique to sense when the ground

node started a frame transmission. When a transmission was detected, the reactive

jammer would transmit a jamming burst with a duration of approximately 1 ms

in hopes of jamming the ground node’s transmitted frame.

10.1 Initial Testing

In order for the adaptive beamsteering algorithm to mitigate the reactive

jammer, the AP reward metric needs to be negatively affected by the jammer. As

shown in the indoor interference hover scenario, the previously used SNR-based

reward works because it measures SINR when interference is present.

Typically 802.11 reactive jammers try to jam the frame’s preamble in hopes

of disrupting frequency offset estimation and channel estimation which likely leads
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to decoding errors [39]. Therefore it makes sense to use the previously implemented

SNR estimation method described in 5 which utilizes the 802.11 preamble to cal-

culate SNR.

In order for the jammer to be able to jam the reception of the preamble,

it needs to very quickly detect transmissions and respond with a jamming signal

within 20 microseconds. An initial test was performed to check to see if the

jamming signal arrived at the vehicle’s onboard SDR receiver before the LTS

portion of the preamble. This is necessary information, because if reactive jammer

was unable to detect the ground node’s transmission and start the jamming burst

before the UAV’s radio received the LTS symbols, the jamming signal will arrive

at the receiver during the data portion of the frame. Since the implemented

SNR estimation method utilized only the LTS portion of the 802.11 preamble, the

Low SNR ModeHigh SNR Mode

JammerGround Node

Jammer Detects
Transmission

802.11 Frame
Jammer

Interference

Figure 10.1: Reactive jamming mitigation concept diagram
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delayed jamming signal will not be detected1.

The UAV was placed in a stationary non-flight position, and the ground

node transmitted frames in a manner similar to previous experiments at a trans-

mit power of 19 dBm. The UAV would measure SNR from received frames in a

manner similar to previous experiments, except that only the omni-directional an-

tenna mode was utilized. The reactive jammer, which was transmitting 1.3 dBm

jamming bursts, was turned on and off several times in 30 second increments. The

results show that the average measured SNR decreased by 10 dBm when the jam-

mer was on (Figure 10.2). Since SNR is the reward that the AP policy receives

and is negatively affected by the jammer, the algorithm should be able to choose

the best antenna states to mitigate the reactive jammer.
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Figure 10.2: Smoothed SNR measurements from the omni-directional antenna
state in a non-flight setting with the reactive jammer toggled on and off in 30

second increments

1If the jamming signal arrived after the preamble, a different SNR estimator could be imple-
mented such as the average EVM squared method described in [37].
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10.2 Outdoor Experimental Setup

Outdoor flights were conducted on Drexel University’s campus in the pres-

ence of an adversarial reactive jammer in a realistic environment. The reactive-

jammer would detect transmissions from the ground node and immediately trans-

mit a high power jamming signal which would reduce the SNR measured at the

receiver (Figure 10.4). The UAV hovered approximately 18 ft. above the ground.

The ground transmitter node was placed on a cart 3 ft. above the ground at a

horizontal distance of approximately 35 ft. from the UAV. The jamming antenna

was positioned on a cart approximately 37 ft. away from the UAV, 4 ft. above

the ground (Figure 10.3). The jammer used the same omni-directional antenna as

the ground node.

Two flights were conducted with varying jamming powers. The first ex-

periment was a 9 minute flight where the ground node transmission power was

19 dBm and the jammer power was 1.3 dBm. The second experiment was a 10

minute flight where the ground node transmitter power remained the same, but

the jammer transmitter power was reduced to -8.3 dBm.
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Figure 10.3: Reactive jamming experiment topology showing the relative po-
sitioning of the UAV, ground position, and reactive jammer

Figure 10.4: Experimental flight with reactive jammer (leftmost cart), ground
node (rightmost cart) and UAV in the air on the right-hand side of the image
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10.3 Results

The first flight was conducted in the presence of an adversarial reactive

jammer with a transmission power of 1.3 dBm (Figure 10.5). The AP policy

produced a 2.4 dB gain over omni-directional.
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Figure 10.5: Online AP performance with high-power adversarial reactive
jammer

The second flight was conducted in a similar manner as the first flight, and

the jammer with a transmission power was reduced by 10 dB to -8.3 dBm (Figure

10.6). The AP policy produced only a 1.0 dB gain over omni-directional. The

reduced AP performance may be partially attributed to the fact that the second

flight was conducted under slightly different wind conditions.

The results show that the AP beamsteering strategy can be used to help

combat adversarial reactive jammers by providing increased SNR. It is important

to note that the results from the second anti-jamming flight showed that adaptive

beamsteering strategy offered significantly less mean SNR gain than the second.

The theory for this difference in performance is likely due to the fact that

the 90-degree antenna azimuth angle is larger than the angle between the reactive

jammer and ground node. This creates a topology where some UAV heading angles
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Figure 10.6: Online AP performance with low-power adversarial reactive jam-
mer

orient the antenna such that the modes that receive the maximum signal and

interference power are different causing high jammer mitigation performance, and

some UAV heading angles where the received maximum signal and interference

power occur at the same antenna mode which leads to low jammer mitigation

performance (Figure 10.7). Since the heading angle could vary up to 30 degrees

due to the lack of an onboard compass, we believe that deviations in heading angle
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Figure 10.7: Illustration of how heading angle may affect reactive jamming
mitigation performance in small-angle scenarios
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partially contribute to these performance differences between flights.

Further experimentation is necessary at various angles between the ground

node and jammer to develop a better understanding of how reactive jamming

mitigation performance is affected by the topology. However, these preliminary

results show that the beamsteering algorithm is still capable of providing a mean

SNR gain with various jammer power with a 60 degree angle between the ground

node and jammer.

The results from all adaptive beamsteering scenarios are shown in Table 10.1.

Table 10.1: Mean SNR gain of AP antenna selection strategy over omni-
directional antenna mode

Scenario Mean SNR Gain
Over Omni (dB)

Outdoor Flight 2.06

Outdoor with Reactive Jammer (1.3 dBm) 2.4

Outdoor with Reactive Jammer (-8.4 dBm) 1.0

Indoor Hover 1.23

Indoor Rotating Hover 1.1

Indoor NLOS Hover 0.6

Indoor Hover with Interference 1.4
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11. Conclusion and Future Work

11.1 Conclusion

This thesis shows a system design for an aerial wireless research platform

built around a hexacopter airframe. The system has a highly reconfigurable radio

system payload that includes an B200-mini SDR and an electrically reconfigurable

antenna. The wireless payload is capable of running various GNU Radio projects.

The design is the first multicopter-based aerial testbed with a highly configurable

SDR system designed for generic research purposes.

The aerial wireless research platform was used to implement adaptive beam-

steering algorithms utilizing the reconfigurable antenna. The SNR distribution at

each utilized mode of the reconfigurable antenna in both non-airborne and air-

borne flight. The results show that there is nearly always at least one directional

state that would produce a higher SNR than the omni-directional mode in a given

topology. If the radio was able to learn and utilizes the states with high SNR,

it could improve average SNR. The measured SNR gain that reconfigurable di-

rectional antenna and selection algorithms provides over omni-directional antenna

and show that reconfigurable antennas and selection algorithms can be used to

increase mean SNR by approximately 2 dB for wireless links between UAVs and

ground nodes without any negative penalties due by antenna mode exploration.

We also show that adaptive pursuit is still capable of outperforming an omni-

directional antenna in more severe scenarios, such as indoor NLOS environments

where the benefit of directionality is minimal. Lastly, this thesis presents exper-

imental results that show that the implemented beamsteering algorithm can also

be used to combat an adversarial reactive jammer by selecting avoiding antenna
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states that yield low SINR rewards. The results of all flight experiments are shown

in Table 10.1.

Experimental results shown in this thesis are the first measurements which

utilize reconfigurable antennas or adaptive beamsteering algorithms on a multi-

copter UAV.

11.2 Future Work

Embedded SDR radios are relatively new and expensive, and SDR frame-

works such as GNU Radio are computationally intensive. Embedded single-board

computers such as the Raspberry Pi 3 are just starting to become powerful enough

to run SDR applications. In the future, more powerful embedded computers will

exist at cheaper prices and smaller form-factors. Currently, only 1 in 30 frames are

used as rewards by the AP policy. In the future, we plan to utilize more powerful

onboard computers which will allow the AP policy to acquire rewards at a faster

rate.

The results show that continuous movement of the UAVs antenna reduces

the performance of the adaptive beamsteering algorithm. Wind and other aerial

disturbances cause significant deviations in the vehicle’s position and attitude

which likely increases the severity of this motion, and therefore the performance

of the adaptive beamsteering algorithm. The outdoor experiments did not have

the ability to measure these aerial disturbances and characterize their effect on

the air-to-ground link. Future work should analyze how wind and weather affects

the performance of the adaptive beamsteering algorithm.

As described in Chapter 6.1.2, work may also involve fusing onboard UAV

sensor data with the reinforcement learning-based beamsteering strategy for online
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tuning of the exploration/exploitation rates.
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Appendix A: List of Symbols

H Channel State Information (unitless)

Kv Motor Constant RPM V−1

K Rician K -factor (unitless)

P Power (UAV) watts

PTX Transmit Power watts/dBm

PRX Receive Power watts/dBm

T thrust grams

Td Symbol Duration s

FT Maximum Thrust newtons

Mg Gross Vehicle Weight grams

Nc Circularly-Symmetric Complex Normal Distribution (unitless)

N Noise Power watts/dBm

S Signal Power watts/dBm

X Transmitted Constellation Point (unitless)

Y Received Constellation Point (unitless)

y Received Signal (unitless)

W Additive White Gaussian Noise (unitless)

η Efficiency (unitless)

ν LOS Signal Amplitude (unitless)

σ Multipath Signal Amplitude per I/Q Channel (unitless)
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Appendix B: System Weight and Power Budget

Table B.1: Total System Weight Budget

Weight Budget

Component Weight (g)

Airframe 478
LiPo Battery 552
Propellers (x6) 78
Motors (x6) 360
ESCs (x6) 258
MCU 27
PMU 28
LEDs 13
RC Receiver 25
Mounting and Cabling 100

Total UAV Weight 1919

Raspberry Pi 3 45
USRP B200-mini 24
DC-DC Converter 20
Antenna 20
Mounting and Cabling 150

Total Payload Weight 259

Gross Takeoff Weight 2128

Maximum Gross Takeoff Weight 2400



73

Table B.2: Total System Power Budget

Power Budget

Component Average Current Nominal Supply Average
Draw (A) Voltage (V) Power (W)

ESCs & Motors (x6) (measured) 13 14.8 192.4
PMU, Naza, and LED [40] 0.12 5 0.6
RC Receiver [41] 0.10 5 0.5

Total UAV Power 193.5

Raspberry Pi 3 [42] 0.85 5 4.25
USRP B200-mini [30] 0.50 5 2.5
Alford Loop (measured) 0.10 5 0.5

Total SDR Power 7.25

Total System Power 201
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Appendix C: FAA UAS Regulations

Throughout the duration of this project FAA regulations of Small UAS 1

have been in flux. When the project was first proposed in October 2015, no

Small UAS regulations existed for non-commercial applications. The frequent

changing in regulations, and their ambiguity toward Small UAS applications in

academia made it difficult to determine the legality of flying the UAV in an outdoor

environment.

C.1 FAA Small UAS Regulation Timeline

FAA Modernization and Reform Act of 2012 (FMRA), prohibited commer-

cial operation of UAS in NAS. However, it was possible for commercial entities to

petition for exemption under Section 333 of FMRA. The FAA would grant Section

333 Exemptions on a case-by-case basis [43]. Over 5,000 Section 333 Exemptions

have been granted since FMRA took effect [44]. Hobbyist UAS operation was

legal, however hobbyist operation rules were declared in FMRA Section 336 [45].

In December 21, 2015, the additional Small UAS regulations took effect on De-

cember 21, 2015. Hobbyist UAS weighing more than 0.55 lbs. are required to be

registered by the FAA.

On August 29, 2016, Part 107 was added to the Title 14 Code of Federal

Regulations (14 CFR). Part 107 is an additional set of rules intended allow Small

UAS to be used for commercial purposes [46]. Part 107 operational rules are

1Terminology note: A UAV consists of only the vehicle and onboard components. FAA
documentation refers drone operation as UAS (Unmanned Aerial System) operation. The term
UAS refers to the UAV, controller on the ground, and communication links between the two.
While UAV just refers to the aerial vehicle and onboard components.
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typically similar to Section 336 hobbyist operation rules. However, operation

under Part 107 requires that the remote pilot in command passes has a remote

pilot certification. The certification requires that the remote pilot passes an FAA-

approved aeronautical knowledge exam.

C.2 Current FAA Small Unmanned Aircraft Rules

Given the desired flight plan for low-altitude aerial wireless system research,

the most relevant FAA Part 107 and Section 336 rules are as follows:

1. Ensure the aircraft complies with existing registration requirements.

2. Aircraft must remain in Visual line-of-sight (VLOS) of the remote pilot in

command.

3. Aircraft cannot exceed a maximum altitude of 400 ft. AGL.

4. Operate only in the time between 30 minutes before official sunrise and 30

minutes after official sunset).

5. Operations in Class B, C, D, and E airspace require ATC permission.

(a) Operations in Class G airspace do not require ATC permission.

6. UAS must yield right-of-way to other aircrafts

7. External load operations are allowed if the object being carried by the un-

manned aircraft is securely attached and does not adversely affect the flight

characteristics or controllability of the aircraft.
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C.3 Airspace Classsification and Regions

Airspace that is part of NAS is split into five different classes: A, B, C,

D, E, and G. Classes A through E are controlled airspace controlled by ATC

(Figure C.1). Class G is uncontrolled airspace. Each airspace class has different

restrictions and operating rules.[4].

Figure C.1: Profiles of FAA Airspace Classes [4].

Class A consists of high-altitude airspace which is typically from 18,000

ft. above MSL to 60,000 ft. above MSL. Class A airspace is heavily restricted.

Operations in Class A airspace require ATC clearance.

Class B airspace is heavily controlled high-traffic airspace surrounding busy

airports. ATC clearance is required to enter Class B airspace. The shape of Class

B airspace may vary from airport to airport, but it is typically shaped like an

upside down cone which widens at higher altitudes. Class C and D airspace is

airspace surrounding medium and small sized airports. Class C typically extends

from surface to 4,000 ft. above airport elevation, and Class C typically extends

from surface to 2,500 ft. above airport elevation. Like Class B airspace, Class B

and D may be shaped like an upside down cone. Class E airspace is controlled
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airspace that is not Class A, B, C, or D airspace. Class E airspace generally

extends from 1,200 feet AGL to 18,000 ft. MSL.

Class G is uncontrolled airspace. Class G consists of all airspace that is not

part of classes A through E. ATC permission is not required before UAV operation

in Class G airspace [46].

C.3.1 Airspace Classification on Drexel University’s Campus

Figure C.2: Sectional map of Class B airspace over Philadelphia. Drexel
University’s campus is marked in red [5].

Outdoor UAV flights would take place on Drexel University’s Campus. The

Philadelphia International Airport (PHL) is located approximately 6.5 miles south-

south-west of Drexel University. Class B airspace surrounds PHL [5]. The sectional

map of the Class B airspace over Philadelphia shows that Drexel University is in a
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section marked with 70
15

(Figure C.2). The 70
15

notation represents the minimum and

maximum height of the Class B region in hundreds of feet above MSL. Therefore,

the above airspace has a Class B region ranging from 1,500 ft. above MSL to 7,000

ft. above MSL.

Below the Class B airspace floor of 1,500 ft. above MSL over Drexel Uni-

versity’s campus, there is a Class E section extending from 700 ft. AGL to 1,500

ft. above MSL [5]. The airspace below 700 ft. AGL is uncontrolled Class C

airspace. Considering UAVs are only permitted to operate below 400 ft. AGL

(approximately 450 ft. MSL on Drexel University’s campus), the UAV will not

enter controlled airspace when operating within FAA regulations.

C.3.2 Mode C Veil

As of September 15, 2015, all Class B airports, including the Philadelphia

International Airport, are surrounded by Mode C veil. The Mode C veil consists of

all airspace within a 30 nautical mile horizontal radius from the airport, extending

vertically from ground surface to 10,000 ft. above MSL [47]. The mode C does not

specify airspace Class, however within the Mode C veil, most operational aircrafts

are required to have a Mode C transponder. The Mode C veil is not an airspace

class, nor does it affect on the airspace class within the veil.

Drexel University campus falls within the Mode C veil centered on the

Philadelphia International Airport. However, aircrafts without a engine-driven

electrical system are exempt from the Mode C veil’s transponder rule [48]. Bat-

tery powered UAS do not have a engine-driven electrical system, therefore a Mode

C transponder is not required.
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C.4 Conducted UAS Operations

Indoor airspace is not considered part of NAS and is not regulated by the

FAA [49]. Therefore, it is legal to fly any aircraft indoors without vehicle adhering

to FAA regulations and registration. Most experiments involving UAV flight were

conducted indoors both the 3rd floor atrium of Drexel University Bossone Research

Center and in Drexel MESS Lab. The UAV was registered under section 336 for

recreational flight, and flown outdoors over a grass area on Drexel University’s

campus near 3200 Market. During outdoor flight, the vehicle’s altitude was never

higher than 25 ft. MSL.
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