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Outage analysis in wireless channels with multiple interferers subject to shadowing 

and fading using a compound pdf model 

P. M. Shankar 

Department of Electrical and Computer Engineering 

Drexel University 

3141 Chestnut Street, Philadelphia, PA 

19104 U S A 

Abstract 

Wireless communication systems are subject to short term and long term fading of the 

channel. Instead of the commonly used Nakagami-lognormal model to account for the 

conditions existing in these shadowed fading channels, a compound probability density 

function (pdf) model is used to evaluate the performance of wireless systems. While the 

Nakagami-lognormal lacks a closed form solution to the pdf of the received power in 

shadowed fading channels, the compound pdf has an analytical expression for the pdf of 

the received signal power. The synergy between these two models for the analysis of 

wireless systems is explored by calculating the bit error rate in a DPSK modem as well as 

the outage probability in a wireless system in a shadowed fading channel. This is 

followed by the computation of the outage probability in the general case where both the 

desired and cochannels are subject to shadowing and fading. The analyses were carried 

out for both fixed number of cochannels and random number of cochannels. Results 

demonstrate the usefulness of the compound pdf model for the performance analyses of 

wireless systems in shadowed fading channels. 

 

Key words: Fading. Shadowing. Shadowed fading channels. Outage Probability. 

Nakagami-lognormal. Suzuki. Compound fading. Compound pdf  
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1. Introduction 

In wireless communication systems, the received signal is likely to suffer from the 

damaging effects of the channel in the form of short term fading and long term fading, 

also known as shadowing [1]–[3]. While short term fading arises from the existence of 

multiple paths between transmitted and receiver, shadowing is the result of the 

topographical elements such as tall buildings, trees and other structures in the 

transmission path. Several statistical distributions have been used to model the envelope 

of the signal under short term fading conditions. Of these, the Nakagami distribution 

provides significant flexibility to model variations in signal strengths whether the fading 

is severe or weak [3]. Long term fading has been generally modeled using the lognormal 

distribution [1]. Since both short term and long term fading conditions coexist in wireless 

systems, it is necessary to have models that can simultaneously take these into account. 

The Suzuki and the Nakagami-lognormal models available in literature accomplish this 

goal [4,5]. While the former takes short term fading as Rayleigh and long term fading as 

lognormal, the latter takes short term fading as Nakagami and long term fading as 

lognormal. One of the major shortcomings of these two models is the absence of any 

closed form solution to the received signal power in the shadowed fading channels 

leading to serious difficulties in assessing the performances of wireless systems. These 

are compounded by the fact that the wireless systems are also subject to the unwelcome 

effects of cochannel interference (CCI) arising from other channels operating at the same 

frequency located away from the desired channel [6]-[10]. These cochannels are also 

subject to both short and long term fading and it is necessary to incorporate these effects 

in assessing the performance of the wireless systems.  
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Outage probabilities have been calculated by treating the interferers to be either 

Nakagami distributed or lognormal distributed [10]-[13]. The absence of a closed form 

expression for the received signal in the presence of short and long term fading, has 

hindered the calculation of the outages under these conditions. Recently, a new model 

was proposed which provided a closed form solution to the received signal power in 

shadowed fading channels [14]-[16]. The error rates for the BPSK modem in the 

shadowed fading channels were evaluated in one case [14]. In the other case, the outage 

probabilities in shadowed fading channels were evaluated with the cochannels 

undergoing only short term fading [15]. The compound pdf model is used in this work to 

calculate the outage probabilities when both the desired signal and interferers undergo 

fading and shadowing simultaneously. 

 

The compound pdf and its relationship to the Nakagami-lognormal are reviewed first. 

This is followed by the analysis of outage in shadowed fading channels. A discussion of 

the results is given at the end. 
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2. Compound pdf model for the shadowed fading channel and relationship to 

Nakagami-lognormal 

 

The short term fading observed in wireless systems can be modeled using the Nakagami 

distribution. The probability density function of the envelope of the signal is expressed as 

 ( ) ( )

2-
2 -12 , 0

m x
m m y

X m

m x ef x x
m y

= >
Γ

 (1) 

where m is the Nakagami parameter [1]-[3]. The effects of fading on wireless channels 

are measured in terms of m, with severe fading occurring when m is small and weak 

fading occurring when m is large. In the absence of any shadowing or long term fading, 

the average power of the received signal, expressed in terms of y of eqn. (1), is 

deterministic. When shadowing is present, y is random and the expression for the density 

function envelope needs to be expressed in conditional form as [1] 

 ( ) ( )

2-
2 -12

m x
m m y

X Y m

m x ef x y
m y

=
Γ

. (2) 

The pdf of the envelope in a shadowed short term fading channel becomes 

 ( ) ( ) ( )
0

X

SL
YX Yf x f x y f y dy

∞

= ∫  (3) 

where ( )Yf y  is the pdf of the power. The superscript SL of ( )
X

SLf x  indicates that the 

envelope pdf accounts for both short term and long term fading. The Nakagami-

lognormal pdf is obtained by taking ( )Yf y  to be a lognormal ( )
Y

Lf y given by 

 ( )
[ ]2

10
2

10 log -
-

2
22Y

y
L Kf y e

y

µ
σ

πσ
=  (4) 
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resulting in 

 ( ) ( )

[ ]
2 2

10
2

- 10 log -2 -1 -
2

2
0

2
2X

m x ym m y
NL

m

m x e Kf x e dy
m y y

µ
σ

πσ

∞

=
Γ∫ . (5) 

The superscript NL of ( )
X

NLf x indicates the Nakagami-lognormal pdf [1,5]. In eqn. (4), 

both σ and µ are in decibel (dB) units and represent the standard deviation and mean 

respectively. K is equal to 10
log 10e

⎡ ⎤
⎢ ⎥
⎣ ⎦

. Equation (5) does not lead to a closed form 

expression for the pdf, thus making its application to the performance evaluation of 

wireless systems computationally tedious. Instead of using the lognormal pdf of eqn. (4), 

one can use the gamma pdf to describe the long term fading [14]-[21]. This means that  

( )Yf y  is a gamma pdf ( )
Y

Gf y  given by 

 ( ) ( )
0

-
-1

0

, 0, 0
Y

y
yM

G
M

y ef y y M
M y

= > >
Γ

 (6) 

with 0Y y M=  where <.> is the statistical average. The density function of the signal 

envelope in shadowed fading channels becomes 

 ( ) ( ) ( ) ( )
-1

-
2 ,  0,   0.5,  0

2X

M m
C

M m
b bxf x K bx x m M

m M

+
⎛ ⎞= > > >⎜ ⎟Γ Γ ⎝ ⎠

 (7) 

where ( )-M mK  is the modified Bessel function [14] of order (M-m) and  
0

2 mb
y

= . The 

level of shadowing is measured in term of M. The superscript C of ( )
X

Cf x indicates that it 

is a compound pdf incorporating both short term fading and shadowing [14,15]. Use of 

the gamma distribution can be justified on the premise that it is a very versatile 
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distribution and it can approximate to several distributions including lognormal and 

Gaussian [17]-[21]. It must be mentioned that the similarities between lognormal and 

gamma distributions were explored and suggested by other researchers, specifically by 

Ohta and Kozumi in 1969 [22] and Clark and Karp in 1970 [23]. Some aspects of the 

compound fading model  given in eqn. (7) were explored by this author where the error 

rates for the BPSK modem [14] and the outage probabilities in shadowed fading channels 

(cochannels being Nakagami) were evaluated [15].  

 

Equation (7) can model pure short term fading when ( )M → ∞ and for various values of 

M and m, the amount of fading (AF) given by [1,3] 

 
24 2 4

2 22 2

- 1 1 1-1 0
X X X

AF
m M mMX X

= = = + + >  (8) 

allowing it to vary from zero (no fading/no shadowing) to infinity (severe fading, severe 

shadowing or both). Thus, eqn. (7) provides a closed form expression to model fading 

and shadowing simultaneously, offering a significant advantage over the Suzuki 

(Rayleigh-lognormal) and Nakagami-lognormal models [1,4,5].  

 

Before describing the effects of CCI on the performance of the wireless systems, it is 

appropriate to establish that there is a reasonable and sufficient synergy between the 

Nakagami-lognormal and the compound pdf. First, the error rates of DPSK in shadowed 

fading channels are evaluated using both the Nakagami-lognormal and the compound 

pdf. The error rate of DPSK in a Nakagami channel is given by [1] 
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 ( ) 1 1
2

m
mp e y m

m y
⎡ ⎤

= ⎢ ⎥+⎣ ⎦
. (9) 

The conditioning reflects the existence of shadowing in the channels. The parameter y is 

the signal-to-noise ratio which accounts for shadowing having, either the lognormal 

distribution ( )
Y

Lf y  of eqn. (4) or the gamma distribution ( )
Y

Gf y of eqn. (6). The bit error 

rate in shadowed fading channels can be obtained by removing the conditioning as 

 ( ) ( ) ( )
0

Yp e p e y f y dy
∞

= ∫  (10) 

where ( )f y is either eqn. (4) or eqn. (6). The relationships between the parameters of the 

gamma pdf and the lognormal have been derived and are available in literature as given 

below [15,22,23]. 

 ( ) ( )'dB K Mσ ψ=  (11) 

 ( ) ( )log av
e

ZdB K M
M

µ ψ⎡ ⎤⎛ ⎞= +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. (12) 

In eqns. (11) and (12), ( )ψ  and ( )'ψ  are the digamma and trigamma functions 

respectively [24]. The parameter Zav is the signal-to-noise ratio, expressed as the average 

value of a gamma random variable having a pdf in eqn. (6) as 

 0avZ Y y M= = . (13) 

The bit error rates are plotted as a function of the average signal-to-noise ratio in Fig. 1. It 

shows that for the shadowing typically observed in wireless channels (σ = 2 to 12 dB), 

the agreements between the error rates computed using the compound pdf and the 

Nakagami-lognormal are very excellent.  
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Next, the outage probability in the absence of any CCI was calculated using both models. 

Outage occurs when the signal-to-noise ratio fails to reach a threshold that is determined 

by the specific modulation format, multiple access scheme used, etc [1,2,7]. If TZ  is the 

threshold, the outage in the absence of any CCI can be expressed as 

 ( )
0

T

X

Z
C

outP f x dx= ∫   (14) 

where ( )
X

Cf x is the pdf of the envelope given in eqn. (7). The outage probability in terms 

of the compound pdf model can be expressed by using eqn. (7) in eqn. (14) leading to  

 

( )

( ) ( ) [ ]

( )

( ) ( ) [ ]

2

2

1 2

2

2

1 2

-
4

, 1- ,1 ,
1 4

-
4

                              , 1- ,1 ,
1 4

out

m

T

C T

M

T

T

Z bM m
Z bP F m M m m

M m

Z bm M
Z bF M m M M

M m

⎛ ⎞
Γ ⎜ ⎟ ⎛ ⎞⎝ ⎠= + +⎜ ⎟Γ Γ + ⎝ ⎠

⎛ ⎞
Γ ⎜ ⎟ ⎛ ⎞⎝ ⎠+ + +⎜ ⎟Γ + Γ ⎝ ⎠

.   (15) 

In eqn. (15), ( )1 2F  is the hypergeometric function [24]. The average signal-to-noise 

ratio Zav  is equal to 2

4Mm
b

⎡ ⎤
⎢ ⎥⎣ ⎦

.The outage probability under the Nakagami lognormal 

model was evaluated as 

 

( )

( )

[ ]
2 2

10
2

0

- 10 log -2 -1 -
2

2
0 0

 

2
2

T

out X

T

Z
NL NL

m xZ ym m y

m

P f x dx

m x e K e dy dx
m y y

µ
σ

πσ

∞

=

=
Γ

∫

∫ ∫

. (16) 

Eqn. (16) can be simplified to 

 
[ ]2

10
2

10 log -
-

2
2

0

,
2out

y
NL TmZ KP P m e dy

y y

µ
σ

πσ

∞ ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫ . (17) 
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In eqn. (17), ( ),P  is the incomplete gamma function [24].  Equations (15) and (17) can 

be evaluated using MATLAB (The Mathworks, Natick, MA, USA). The results of this 

study are shown in Figure 2. A value of 5TZ dB= was used as the threshold. For a set of 

parameters of the compound pdf, the corresponding values of µ and σ for the Nakagami-

lognormal pdf were computed from eqns. (11) and (12). The values of σ are indicated in 

the figure caption. It seen that the outages for the Nakagami-lognormal and the 

compound pdf model are relatively close [15].  

 

3. Outage in presence of a fixed number of shadowed fading cochannels 

 

Having shown that there is considerable synergy between the Nakagami-lognormal and 

compound pdf in modeling shadowed fading channels, the compound pdf model was 

applied to the computation of outage probabilities when the cochannels also underwent 

fading and shadowing along with the desired channel. Most of the existing work on the 

outage probability calculations has been undertaken by treating the interfering channels 

to be either Nakagami or lognormal while the desired signal channel has been considered 

to be Nakagami or Nakagami-lognormal. Recently, the outage probability was evaluated 

for the desired channel which is modeled using a compound pdf with the interferers being 

Nakagami distributed [15]. However, the cochannels will also be undergoing fading and 

shadowing simultaneously and it is essential to incorporate this aspect of the cochannels 

in the computation of the outage probabilities.  This task, the performance analysis of 

wireless systems where the desired channel and the interfering channels operate in 

shadowed fading channels, is undertaken here. 
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We will assume that there are N cochannels operating in the same frequency band as the 

desired signal [25]. Each of these is considered to be a shadowed fading channel 

undergoing Nakagami fading and gamma shadowing, described in terms of a pdf similar 

to the one in eqn. (7). It is assumed that all the cochannels are independent and identically 

distributed. If iW is the power of each of these channels at the receiver, we can write the 

expression for the pdf of the interfering power of the ith cochannel ( )
iW if w , as  

 ( ) ( )
-1

exp - , 0, 0, 0
i

i
W i a i i a

a a

wf w w w w w
w w

ν νν ν ν
ν

⎛ ⎞ ⎛ ⎞
= > > >⎜ ⎟ ⎜ ⎟Γ⎝ ⎠ ⎝ ⎠

 (18) 

where aw is the average power (in each cochannel)  and ν  is the Nakagami parameter of 

the interfering component. The conditioning in eqn. (18) indicates the existence of 

shadowing where aw is gamma distributed with a density function given by 

 ( ) [ ]
( )

1

1

1

1

aw
M

a
a M

w e
f w

M

−− Ω

=
Γ Ω

 (19) 

with 1aw M= Ω . The parameter M1 is the order of the gamma density function and is 

related to the lognormal fading parameters existing in the cochannels similar to the 

descriptions in eqn. (11) and (12). If W is the total interference power from all the N 

independent identically distributed channels, the pdf of W, ( )W af w w becomes 

 ( ) ( )
-1 -

, 0, 0, 0a

N N w
w

W a a
a

wf w w e w w
w N

ν ννν ν
ν

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
= > > >⎜ ⎟ Γ⎝ ⎠

. (20) 
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The conditioning of the pdf in eqn. (20) once again accounts for the existence of 

shadowing in the cochannels. Using eqn. (19) for the density function of the shadowing 

component, the density function ( )Wf w can be obtained as 

 

( ) ( ) ( )

( )
[ ]

( )

1 11

1

0

1-1 -

1 10

a

a

a

W W a W a a

w
N MN w

w a
aM

a

f w f w w f w dw

w ew e dw
w N M

ν
ν

∞

−⎛ ⎞ −∞ Ω⎜ ⎟
⎝ ⎠

=

⎛ ⎞
= ⎜ ⎟ Γ Γ Ω⎝ ⎠

∫

∫
 (21) 

where 1N Nν= . Equation (21) simplifies to 

 ( ) ( ) ( )

1 1 1 1

1 1

1
2 2

1 1
1 1

2 2 , 0, 0, 0

M N M N

W M N
w wf w K M N w
N M

ν ν
+ +−

−

⎛ ⎞⎛ ⎞= > > >⎜ ⎟⎜ ⎟ ⎜ ⎟Γ Γ Ω Ω⎝ ⎠ ⎝ ⎠
. (22) 

The cumulative distribution function of the interference power ( )WF w  becomes 

 
( )

( )

( ) ( ) [ ]

( )

( ) ( ) [ ]

1

1

1 1

1 2 1 1 1 1
1 1

1 1

1 2 1 1 1 1
1 1

, 1 ,1 ,
1

              , 1 ,1 ,
1

N

W

M

wM N
wF w F N M N N

M N

wN M
wF M N M M

N M

ν
ν

ν
ν

⎛ ⎞Γ − ⎜ ⎟Ω ⎛ ⎞⎝ ⎠= − + +⎜ ⎟Γ Γ + Ω⎝ ⎠

⎛ ⎞Γ − ⎜ ⎟Ω ⎛ ⎞⎝ ⎠+ − + +⎜ ⎟Γ Γ + Ω⎝ ⎠

 (23) 

The outage probability in presence of N interferers can be written as [10]-[13], [25] 

 ( ) ( )

2

0

1
X

T

x
q

C
outN W

Z

P f x f w dw dx
∞

⎡ ⎤
⎢ ⎥

= − ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫ . (24) 

In eqn. (24), q is the system protection ratio which depends on the modulation technique 

as well as the performance levels required [6]-[9], [25].  The signal-to-interference ratio 

(SIR), R is given by 
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1

av av

a

Z ZR
w M

= =
Ω

. (25) 

The practical values of q are in the range of 15-20 dB, the higher the value of q, the better 

the performance. Equation (24) can be written in terms of R, q, and avZ as 

 
( ) ( ) ( ) ( )

-1

-
21

2
T

M m

outN M m
Z

b bxP K bx x dx
M m

ξ
+∞ ⎛ ⎞= − ⎜ ⎟Γ Γ ⎝ ⎠∫  (26) 

where  

 
( )

( )

( ) ( ) [ ]

( )

( ) ( ) [ ]

1

1

2
1

1 1 2
1

1 2 1 1 1 1
1 1

2
1

1 1 2
1

1 2 1 1 1 1
1 1

, 1 ,1 ,
1

              , 1 ,1 ,
1

N

av

av

M

av

av

x M RM N
Z q x M Rx F N M N N

M N Z q

x M RN M
Z q x M RF M N M M

N M Z q

ν
νξ

ν
ν

⎛ ⎞
Γ − ⎜ ⎟ ⎛ ⎞⎝ ⎠= − + +⎜ ⎟Γ Γ + ⎝ ⎠

⎛ ⎞
Γ − ⎜ ⎟ ⎛ ⎞⎝ ⎠+ − + +⎜ ⎟Γ Γ + ⎝ ⎠

. (27) 

The outage probability given in eqn. (26) was evaluated for different values of M, m, ν, 

M1 and N. The value of q was fixed at 17 dB. An average signal-to-noise ratio of 10 dB 

(Zav) was chosen. The threshold ( TZ ) was chosen to be 5 dB. The results are plotted in 

Figure 3. They show the effects of fading and shadowing, resulting in ‘floors’ of outage 

probabilities. Higher values of M correspond to negligible shadowing in the desired 

channel and the outage floors are lower in these cases compared to those when M is small 

(high shadowing). These observations are consistent with the results expected in 

shadowed fading channels. 
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4. Outage in presence of a random number of shadowed fading cochannels 

 

Generally, the number of interfering channels may not be fixed and it is likely to be 

random [7,8], [25]. It is possible to extend the results to the case where the number of 

cochannels is random. The average outage probability can now be expressed as 

 ( )
0

*
out

L
av

N
P PoutN P N

=

= ∑  (28) 

where PoutN is the outage in eqn. (26) for N=0,1,2,..L and P(N) is the probability that the 

number of interfering channels is N [7,8], [25]. This probability P(N) is determined by 

the number of voice channels (Ns) and the blocking probability B. It can be expressed as 

 ( ) 1s s

L NN N
N N

L
P N B B

N

−⎛ ⎞ ⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

. (29) 

Equation (28) can now be evaluated using eqns. (27) and (29) with maximum value of N 

being 6. Outage probabilities in random number of cochannels were evaluated for Ns =10 

and B=0.02 for several values of M, m, ν, and M1. The results are shown in Figure 4. The 

values of q, Zav and ZT were the same as the ones used for the case of fixed number of 

cochannels. Once again, the results are consistent with the outage probabilities evaluated 

by other researchers [7,8], [25]. 

 

5. Concluding remarks 

 

A simple model for the shadowed fading channels is used to compute the outage 

probabilities in wireless communication channels. This model, namely the compound 

pdf, can replace with the Nakagami-lognormal model used to take shadowing and fading 
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into account. The equivalence of the compound model and the Nakagami model is 

demonstrated through the computation of the error probabilities of the DPSK modem in 

shadowed fading channels using the compound pdf and the Nakagami-lognormal pdf. 

Outage probabilities in wireless channels (in the absence of CCI) in shadowed fading 

channels are also similarly computed. These studies showed that the results using the two 

models are close enough and that the compound pdf is reasonably sufficient to describe 

flat fading and shadowing. The compound pdf is used to calculate the outage probabilities 

in cases where both the desired signal and the cochannels undergo flat fading (Nakagami) 

and shadowing simultaneously. The availability of a closed form expression for the 

envelope or the power of the signal under shadowed fading channels makes the 

compound pdf computationally efficient in the analysis of the performance of wireless 

communication systems.  
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Figure Captions  

Figure 1 The error probabilities in shadowed fading channels are shown for the 
compound pdf and the Nakagami-lognormal pdf. 
 

(a) M=0.35; m=0.90; σ = 13dB 
 

(b) M=0.63; m=0.75; σ = 8.0dB 
 

(c) M=4.00; m=0.98; σ = 2.3dB 
 

(d) M=2.00; m=1.25; σ = 3.4dB 
 

Figure 2 Outage probabilities in shadowed fading channels (no cochannel interference) 
are shown for the compound pdf and the Nakagami-lognormal pdf. 
 

(a)  M = 0.38; m=0.9; σ =12.3 dB 
 

 (b)    M = 0.67; m=0.75; σ =7.6 dB 
 

(c) M=2; m=1.2; σ =3.6 dB 
 

(d) M=6; m=1.3; σ =1.8 dB 
 
Figure 3 Outage probabilities in shadowed fading channels in presence of fixed number 
of CCI channels undergoing fading and shadowing.  
 

(a) M= 1.5, m =1.1, N= 4, ν = 0.75, M1= 0.35 
 

(b) M=1.5, m =1.1, N=2, ν =0.75, M1=0.35 
 

(c) M=3.75, m =1.8, N=3, ν =1.1, M1=0.5 
 

(d) M=10.75, m =2.0, N=1, ν =0.75, M1=0.35 
 

(e) M=8.75, m = 2.5, N= 1, ν =0.75, M1=1.5 
 
Figure 4 Outage probabilities in shadowed fading channels in presence of random 
number of CCI channels undergoing fading and shadowing.  
 

(a) M=2.65,m=.75, ν=0.85, M1=0.5 
 

(b) M=2.65,m=1,0, ν=0.85, M1=0.5 
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(c) M=2.65,m=5,ν=0.85, M1=0.5 
 

(d) M=8.5,m=5, ν=0.85,  M1=0.5 
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Figure 1 The error probabilities in shadowed fading channels are shown for the 
compound pdf and the Nakagami-lognormal pdf. 
 
(a)   M=0.35; m=0.90; σ = 13dB 
(e) M=0.63; m=0.75; σ = 8.0dB 
(f) M=4.00; m=0.98; σ = 2.3dB 
(g) M=2.00; m=1.25; σ = 3.4dB 
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Figure 2 Outage probabilities in shadowed fading channels (no cochannel interference) 
are shown for the compound pdf and the Nakagami-lognormal pdf. 
(a) M = 0.38; m=0.9; σ =12.3 dB 
(b) M = 0.67; m=0.75; σ =7.6 dB 
(b) M=2; m=1.2; σ =3.6 dB 
(c) M=6; m=1.3; σ =1.8 dB 
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Figure 3 Outage probabilities in shadowed fading channels in presence of fixed number 
of CCI channels undergoing fading and shadowing.  
 
(a)  M= 1.5, m =1.1, N= 4, ν = 0.75, M1= 0.35  
(f) M=1.5, m =1.1, N=2, ν =0.75, M1=0.35  
(g) M=3.75, m =1.8, N=3, ν =1.1, M1=0.5  
(h) M=10.75, m =2.0, N=1, ν =0.75, M1=0.35  
(i) M=8.75, m = 2.5, N= 1, ν =0.75, M1=1.5  



 23

5 10 15 20 25
10

-4

10-3

10
-2

10
-1

10
0

SIR/q dB

O
ut

ag
e 

pr
ob

ab
ilit

y

a 
b 

c 

d 

 

 

Figure 4 Outage probabilities in shadowed fading channels in presence of random 
number of CCI channels undergoing fading and shadowing.  
 
(e) M=2.65,m=.75, ν=0.85, M1=0.5  
(f) M=2.65,m=1,0, ν=0.85, M1=0.5  
(g) M=2.65,m=5,ν=0.85, M1=0.5  
(h) M=8.5,m=5, ν=0.85,  M1=0.5  
 
 
 


