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Rapid Inactivation of Airborne Bacteria Using
Atmospheric Pressure Dielectric

Barrier Grating Discharge
Michael J. Gallagher, Jr., Nachiket Vaze, Shailesh Gangoli, Victor N. Vasilets, Alexander F. Gutsol,

Tatyana N. Milovanova, Shivanthi Anandan, Donna M. Murasko, and Alexander A. Fridman

Abstract—Dielectric barrier discharge plasma has been known
to inactivate many different microorganisms on surfaces when
treatment times are on the order of seconds or minutes in duration.
In this paper, a unique plasma air cleaning facility was created
which combines a dielectric barrier grating discharge (DBGD)
with a filterless laboratory-scale ventilation system and is used
to treat concentrated bacterial bioaerosol in a moving air stream
at air flow rates of 25 L/s. Results indicate that plasma treat-
ment times on the order of milliseconds corresponding to one
pass through the DBGD device can achieve 1.5-log reduction in
culturable E. coli immediately after contact with plasma and 5-log
reduction totally following in the minutes after the plasma treat-
ment. A numerical characterization study was performed to help
predict and understand the mechanism of bacteria inactivation in
the DBD plasma from a variety of plasma factors.

Index Terms—Airborne microorganism, air sterilization, dielec-
tric barrier discharge, E. coli, nonthermal plasma.

I. INTRODUCTION

NONTHERMAL plasma-based technologies have demon-
strated success in inactivating many different types of

microorganisms such as viruses, Gram-negative, and Gram-
positive bacteria on the surfaces and in aqueous solutions
[1]–[6]. Several inactivation mechanisms by atmospheric pres-
sure plasma have been proposed and are still under continuous
debate in current review papers [4]. The most common plasma
inactivation mechanisms that cause lethal effects to microor-
ganisms are summarized in the following.
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1) UVC and VUV irradiation in the wavelength range
(< 300 nm) leads to the inactivation of microorganisms
as a result of dissociation and/or crosslinking of DNA
strands.

2) The diffusion of oxygen species (O, O3, and O∗
2) or

oxygen-containing radicals (e.g., OH and NO) through
the bacteria cell wall causes the local damage possibly by
oxidation of cytoplasmic membrane, proteins, and DNA
strands.

3) Bombardment on the cell wall by charged particles
(electrons and ions) could induce breaking of chemical
bonds, erosion, and localized occurrence of openings in
the membrane with further penetration of plasma toxic
compounds inside the cells.

4) Localized, periodical, and short-term heating of bacteria
by their contact with plasma channels could enhance all
of the previously listed lethal effects.

5) All of the various plasma active components can syn-
ergistically interact, resulting in a combination of the
previously listed mechanisms that when combined will
significantly enhance or even mainly determine the over-
all process of inactivation.

In comparison with plasma-based surface and water ster-
ilization, only a few plasma researchers have focused on
air decontamination using nonthermal plasma. Most of them
have been successful only when coupling plasma technology
with high-efficiency particulate-air (HEPA) filters to both trap
and kill microorganisms [6]–[8]. The downside of relying on
HEPA filters is that they have a limited efficiency in trapping
submicrometer-sized airborne microorganisms [9] and they also
cause significant pressure losses in heating, ventilation, and
air conditioning systems, giving rise to higher energy and
maintenance costs.

In this paper, a unique experimental facility, named the
Pathogen Detection and Remediation Facility (PDRF), was
designed to perform air-decontamination experiments using
a dielectric-barrier-grating-discharge (DBGD) plasma device
combined with a laboratory-scale ventilation system with
bioaerosol sampling capabilities. Dielectric barrier discharge
plasma was chosen as the primary discharge for air-
decontamination experiments because it has been proven as
microbial disinfectant in many surface sterilization studies
[10]–[12], and it is a low-power consuming nonthermal

0093-3813/$25.00 © 2007 IEEE



1502 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 35, NO. 5, OCTOBER 2007

discharge that is relatively easy to construct, requiring simple
power supplies.

The results of this paper show that direct contact of
bioaerosol with the DBGD device with very short duration
can cause a 1.5-log reduction (97%) in culturable Escherichia
coli and an ∼5-log reduction (99.999%) finally measured in
the 2-min following exposure. Fast treatment times within
plasma are due to a high air flow rate and high velocity of the
bioaerosol particles in flight and a small discharge length of the
DBGD device, which results in a residence time of treatment of
approximately 1 ms. These findings are somewhat remarkable
because, in most DBD surface sterilization studies, treatment
times are always at least 1000 times longer on the order of
seconds and, in some cases, even minutes in duration [1]–[5].
Standard colony-forming-unit (CFU) culture techniques and
flow cytometry were used to detect culturability and presence
of bacteria in the air flow before and after passing through
the DBGD. Flow cytometry, in conjunction with different flu-
orescent dyes, represents a sensitive and culture-independent
method to rapidly detect bacteria in environmental samples
[13], [14]. This method, in addition to the CFU culturing
technique, allows the quantification of the whole bacterial pop-
ulation, including both the culturable and inactivated fractions
with high accuracy even for low microbial concentrations. It is
important to verify the presence of inactivated bacteria because
it eliminates the possibility that the DBGD device acts as an
electrostatic precipitator, which could charge the bioaerosol
droplets and remove them from the air flow inside the PDRF
system. The results of this paper show that our DBGD plasma
device is acting not as an electrostatic precipitator but as a
device that is capable of deactivating high concentrations of
bacterial bioaerosol in flight at high flow rates in a ventilation
system.

To understand the mechanism of rapid deactivation, a nu-
merical characterization study has been performed to identify
which plasma factors (active chemical species and charged
and excited species) are most effective for sterilization and
help predict the success of DBD plasma inactivation on other
types of airborne microorganisms. Since each type of individual
microorganism has a different cellular composition and each
responds differently to external factors, it is our ultimate goal
to construct a model that can describe disinfection kinetics
for all types of microorganisms in the DBD plasma. However,
in this paper, we begin with simple kinetic estimations to
identify trends and reactions based on disinfection empirical
data from other researchers, as well as our own, and establish
a methodology to quantify the sterilization effect of different
plasma factors on E. coli bacteria.

II. DESIGN OF THE PDRF

The PDRF system is a bioaerosol treatment facility that was
designed to provide a recirculating air flow environment for the
DBD air-decontamination experiments. One obvious feature
of a recirculating system is that the bioaerosol can be treated
with repeated passes through the same plasma discharge. Ad-
ditionally, a sealed recirculating system allows for complete
control over relative humidity (RH) inside the system, which

is important because even small fluctuations in RH have been
shown to significantly decrease the survivability of airborne
bacteria [15]. The PDRF system was designed as a plug flow
reactor, i.e., air flow inside the system is turbulent so that
radial variation of the bacterial concentration in the airflow is
minimized. Fig. 1 shows a general scheme of the PDRF. The
PDRF system has a total volume of 250 L and is designed to
operate at high air flow rates (∼25 L/s or greater), which are
typical for indoor ventilation systems. The system has an inlet
with attached Collison nebulizer for bioaerosol generation and
two air sampling ports connected to a vacuum air sampling sys-
tem. The system also has a large volume barrel that contains a
series of aluminum baffle plates and a variable speed centrifugal
blower motor that drives the air through the DBGD treatment
chamber. The system recirculation time, i.e., the time for one
bioaerosol particle to make one complete revolution through the
system, is approximately 10 s.

A. Air Sampling System

To separate the decontamination effect of direct exposure to
the DBD plasma from the remote exposure of ozone and other
long-lived chemical species that can interact with bioaerosols
downstream of the discharge, a sampling method was devised
so that air samples are taken just before and after the bioaerosol
passes through the discharge area. As there are only two
sample ports (located on either side of the DBGD device),
each set of two air samples measures the change in viability
of bacteria on a “per pass” basis through the discharge. For
each of the subsequent sets of air samples, the sample taken
“before plasma” can give a measurement of the change in
viability due to the effect of residual ozone from the previous
“after plasma” sample. Liquid impingement was the chosen
air sampling method because it minimizes desiccation stress
on the bacteria by directly depositing them into a buffered
saline solution. Liquid impingers operate by drawing a sample
of air through an inlet tube submerged in a solution, thereby
causing the air stream to strike the liquid bed trapping aerosols
in the solution through forces of inertia [16]. The AGI-30 is
the most commonly used liquid impinger which contains a
critical orifice that limits the maximum air sampling rate to
12.5 L/s. The vacuum air sampling system was designed to take
as large volume air sample as possible (∼1 L) in the shortest
period of time (∼1 s) so as not to significantly disturb the flow
inside the system. To accommodate this high air sampling rate,
the AGI-30 impinger was modified by replacing the standard
critical orifice with a hollow tip with several jet ports. The
efficiency of these modified liquid impingers was measured
in several control experiments in the PDRF system and was
found to be reproducible. The efficiency of the samplers was
calculated by comparing the theoretical amount of nebulized
bacteria into the system for each experiment with the CFUs
recovered in the modified impingers. A total of eight modi-
fied impingers were constructed, and variations in sampling
efficiency between them were found to be negligible for the
same bacteria; however, the overall efficiency of this type of
sampler was in the range of 6% ± 3%. To some, this may
seem to be a low efficiency rating; however, when sampling
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Fig. 1. Schematic of the PDRF.

bioaerosols, reproducibility is often considered more important
than the efficiency rating because the final conclusions are
derived from the internal comparisons between various data
collected using the same samplers [17]. Additionally, the ef-
ficiency of the modified impingers was also dependent on the
growth phase (exponential, stationary, etc.) and the strain type
for microorganisms used in experiments (E. coli type K-12 was
used in all trials reported here).

B. Dielectric Barrier Grating Discharge (DBGD)

The DBGD consists of a thin plane of wires with equally
spaced air gaps of 1.5 mm. The high-voltage electrodes are
1-mm diameter copper wire shielded with a quartz capillary
dielectric that has an approximate wall thickness of 0.5 mm.
The total area of the DBGD discharge including electrodes is
214.5 cm2 and without electrodes is 91.5 cm2. Fig. 2 shows
an image of the DBGD device. The DBGD device has two air
sample ports located at a distance of 10 cm from each side of
the discharge area so that the bioaerosol can be sampled right
before and after it enters the plasma discharge. When the PDRF
system is operated at a flow rate of 25 L/s, the air velocity
between the electrodes of DBGD is 2.74 m/s, and the residence
time of treatment, i.e., the duration of one bioaerosol particle
(containing one E. coli bacterium) passing through the DBGD
device, is approximately 0.73 ms, assuming a plasma thickness
of 2 mm which is equal to the quartz capillary diameter.

Fig. 2. DBGD air sterilization chamber.

The DBGD device is operated using a quasi-pulsed power
supply that delivers large voltage pulses with the following
damped oscillations. An image of the current and voltage wave-
forms is shown in Fig. 3. Oscilloscope measurements indicate
that the duration of one pulse period is approximately 600 µs,
the maximum peak-to-peak voltage is 28 kV, and the pulsed
current is nearly 50 A (peak-to-peak value). The average power
of the discharge over one pulse period is approximately 330 W,
and considering the discharge area of 91 cm2, the power den-
sity is 3.6 W/cm2. Since the majority of power is discharged
within the pulse duration (within the duty cycle of the pulse
period), it is useful to describe the power in terms of the pulse
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Fig. 3. Voltage and current waveforms of the DBD device, as shown on
channels 1 and 2, respectively.

duration itself since there is essentially no discharge between
pulses. Measurements indicate that the pulse duration is 77 µs,
nearly an order of magnitude less than the complete pulse
period, which gives a duty cycle of 0.1283. The average power
in the pulse duration is then 2571 W. Given that the residence
time of a bioaerosol particle passing through the discharge
area is 730 µs and the pulse period is 600 µs, this means
that each bioaerosol particle that passes through the DBGD
area experiences about one pulse of DBD discharge power.
The typical concentration of bioaerosol in an experiment is
approximately 5 × 105 bacteria per liter of air, which translates
to approximately 9 × 103 bacteria within the cross section of
discharge area at any given time (in each 2-mm wide cross
section of flow passing through the DBGD, assuming plug flow
conditions in the DBGD chamber).

A steady-state concentration of ozone of 28 ppm was mea-
sured in the PDRF system by the calibrated optical ozone
meter MedOzon-254/5 (“MedOzone,” Russia) after 10 s of
DBGD operation (time required for one volume treatment).
UV radiation intensity from the discharge in the UVC spectral
region was measured with a Radiometer IL1700 equipped with
sun-blind SED220 photodiode (International Light, USA). The
measured UVC intensity was approximately 30 µW/cm2.

III. MATERIALS AND METHODS

A. Nebulization and Air Sampling Procedures

The PDRF system was initially presterilized using an internal
heating system and prehumidified to 70% RH. The bacterial
culture was placed into a BGI 24-jet Collison nebulizer, and the
nebulizer was operated at 40 psi for a period of 45 s (nebulizing
rate: 1.1 ml/min). According to the manufacturer’s specifica-
tions, the Collison nebulizer generates bioaerosol droplets with
a median diameter of 2 µm at the operating conditions that are
used in experiments (40-psi static pressure of air that drives

the nebulizer). The DBGD device was then switched ON for a
period of 10 s so that the entire volume of bioaerosol in the sys-
tem is treated with one pass through the discharge. Subsequent
volume treatments are made within a 2-min interval to allow
for time to remove used air samplers and replace them with
sterile samplers. Air samples are taken in pairs and in sequential
order: before and after passing through plasma. Therefore, the
decontamination effectiveness of the DBGD device is measured
on a per pass basis with each set of air samples, and subsequent
volume treatments can show an additive effect of multiple
passes through the discharge. Each of the presterilized air
samplers was initially filled with 30 ml of sterile phosphate-
buffered-saline (PBS) solution, and after sampling, each sample
solution was serially diluted in accordance with the standard
practices outlined in Section III-B.

B. Culture Preparation and Assay

Escherichia coli (K-12 strain) was used in all trials. Fol-
lowing each experiment, liquid samples from each impinger
were serially diluted in the PBS, plated onto Luria–Miller agar
plates, and incubated at 37 ◦C overnight. Visible colonies were
counted and recorded within the following 24-h period. All
preparation activities were followed in accordance with the
standard microbiological procedures outlined in [18].

C. Flow-Cytometry Procedures

Flow-cytometric measurements were made using FACS cal-
ibur (Becton Dickinson, USA) flow cytometer with a 488-nm
excitation from an argon ion laser at 15 mW. Fluorochromes
with a high affinity for nucleic acid SYBR Green I and
propidium iodide (PI) (molecular probes) were used for flow
cytometry. The SYBR Green I, which is a green fluorescent
nucleic acid stain, has been shown to stain the living and dead
Gram-positive and Gram-negative bacteria [19]. PI is a red
fluorescent dye that intercalates with dsDNA and only enters
permeabilized disintegrated cytoplasmic membranes [20].

Liquid samples taken from the nebulizer and from each
impinger were divided into five subsamples. Two of the sub-
samples were stained by the SYBR Green I, one with the PI,
one with the SYBR Green I and PI, and the last one was
nonstained and used as a control. For total bacteria counts,
5 µl of SYBR Green I and (or) 5 µl of PI were added to 500 µl
of the sample and incubated for 15 min in the dark at room
temperature. Concentrated culture prepared for nebulization
and stained by SYBR Green I was used as a positive control,
and PBS with SYBR Green I or PI was used as a negative
control to provide the total bacteria count. The positive control
sample for the PI staining of only dead bacteria was prepared
by adding 50 µl of disinfectant (97% ethanol) in the bacteria
solution and waiting for a period of 5 min to ensure 100% dead
E. coli. The sensitivity of flow-cytometric measurements to
E. coliwas determined by measuring the additional five samples
obtained by serial dilution of the concentrated original culture
used for nebulization (102, 103, 104, 105, and 106 times diluted
in the PBS). The flow-cytometry method in these particular
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Fig. 4. Survival curve showing results of the DBD-treated E. coli bioaerosol in
PDRF system. The gray shaded area of the curve depicts one plasma treatment
cycle in which the entire system volume was treated with one pass through
the discharge. The plasma treatment time is 10 s, but during this treatment,
each bioaerosol particle passes once through the discharge with a duration of
approximately 1 ms (due to the large volume and high air flow rate inside the
system). Samples 4 to 6 were omitted from this figure because no culturable
bacteria were detected. Control experiments show a negligible change in viable
E. coli concentration.

conditions was shown to be able to detect ≤ 102 bacteria
(E. coli) per milliliter of PBS solution.

IV. RESULTS AND DISCUSSION

A. Experimental Results

The culture test results from seven replicate trials of the
DBGD-treated E. coli bioaerosol in the PDRF system are
shown in Fig. 4. Control experiments indicate a small but
negligible change in the surviving fraction of E. coli over
the total experimental period. In the DBGD-treated trials, an
approximate 1.5-log reduction (97%) in the surviving fraction
of E. coli was measured between samples 1 and 2, which
corresponds to an approximate 1-ms treatment time (one pass
through the DBGD plasma). It is important to restate here that
the plasma was ignited for 10 s for each set of two samples
(as indicated by the gray shaded area on Fig. 4), and this is
the time required to treat the entire volume of bioaerosol in the
system once. It is our assumption that, with each 10-s plasma
treatment cycle, each airborne E. coli makes only one pass
through the DBGD, and due to the high velocity in the system,
their residence time within the discharge is estimated to be
on the order of 1 ms. An interesting second decrease in the
surviving fraction of E. coli is shown between samples 2 and 3,
which occurred in the time between the plasma treatments. In
this second decline, the number of culturable bacteria decreased
by an additional 99.95% (3.5 logs) in the time when the plasma
discharge was switched off. Sample 4 was taken after the
second plasma treatment (not shown), and samples 5 and 6
were taken before and after the third plasma treatment. Samples

Fig. 5. Flow-cytometric histograms for the total number of E. coli (alive +
dead) stained by SYBR Green I. Stock solution used for nebulization was
considered as a positive control, while PBS solution with the same amount of
SYBR Green I was considered as a negative control.

4 to 6 did not reveal any culturable bacteria; therefore, those
experimental points were omitted from Fig. 4.

Flow cytometry was also employed to detect the presence of
E. coli in each of the six air samples taken during experiments.
While colony counting techniques are limited to detect only
the culturable (i.e., visibly growing) bacteria, flow cytometry
is capable of detecting the physical presence of bacteria in a
sample regardless of culturability. The flow cytometry utilizes
two florescent dyes: SYBR Green I to detect the presence of
all bacteria (dead and alive) and PI to detect the bacteria with
disintegrated cytoplasmic membranes. Fig. 5 shows the flow-
cytometry results for the DBGD-treated air samples using only
the SYBR Green I florescent dye. The florescent intensity peak
for air samples one through six is identical, which means that
there are the same numbers of total bacteria present for each
air sample taken during experiments. The stock positive control
sample is a pure untreated sample of E. coli whose intensity
(horizontal axis) peak was two orders of value greater than
the intensity of the air samples. Additionally, the intensity of
PI red fluorescence (not shown) was found to be negligible in
comparison with the expected PI positive control, and therefore,
the outer membranes of treated E. coli were not disintegrated
after an interaction with the DBGD.

Flow-cytometry analysis of air samples taken during these
trials indicates that the total number of bacteria (both active and
inactive) remains almost constant; therefore, the DBGD device
is not acting as an electrostatic precipitator, and the concentra-
tion of bioaerosol particles remains undisturbed for the duration
of each experiment. The flow-cytometry results also showed
that bacterial outer membranes of E. coli were not damaged
with up to three passes of direct exposure in the DBGD plasma
device. However, culture test results demonstrated a 97% reduc-
tion in culturable E. coliwith a millisecond exposure time in the
DBGD plasma (one pass through discharge) and a subsequent
3.5-log reduction in the 2-min following treatment. The direct
plasma exposure time of 0.73 ms (per pass) allows enough time
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for bacteria to be attacked by all chemically active components
of plasma: charged particles, UV radiation, OH radicals, atomic
oxygen, and ozone, which is one explanation for the initial 97%
reduction in culturability. Subsequent remote exposure to the
remaining ozone in the 2-min following direct plasma treatment
may account for the additional 3.5-log reduction.

B. Plasma-Based Sterilization: A Numerical Characterization

The plasma-based sterilization community has performed a
great deal of effort to study the sterilizing effects of various
types of plasmas on microorganisms of all types. However,
there is still a lack of understanding to describe the mecha-
nism causing the sterilization effect observed in experiments.
There are many theories as to which plasma active species
are responsible for inactivation, but there is no real numerical
model to quantify the role of each specie and/or a synergistic
coupling of species which can accurately describe the exper-
imentally observed phenomena. In this section of this paper,
a numerical characterization of the sterilizing effect of plasma
factors responsible for sterilization will be established as a basis
for a larger more comprehensive model to be developed and
refined sometime in the near future. This numerical characteri-
zation study utilizes a chemical kinetics approach that uses rate
equations to describe the change in concentration of a viable
microorganism by considering the effect of each plasma factor
individually. The following differential equation describes the
rate of change in concentration of a viable microorganism [M ]
with time

d[M ]
dt

= −
n∑

i=1

ki[M ][Ai] (1)

where n is the number of plasma species interacting with
microorganisms, ki is the reaction rate constant given as volume
per unit time, [M ] is the concentration per unit volume of
viable microorganisms, Ai is the concentration per unit volume
of ith species. Here, concentration [M ] is specific to a given
experiment, the number n and concentration [A] of interacting
species are dependent on the type of plasma discharge, and ki

is specific to the type of species Ai.
The foundation of this approach is the reaction rate constant

(k) that is invoked to describe the sole interaction of each
plasma factor with the microorganism of interest. The reaction
rate constants can be derived from basic experimental data
based on the following formula:

ki,m =
ln

(
1
S

)

[Ai] · t
(2)

where S is the surviving fraction of microorganism population,
and t is the time of exposure. The product [A1] ∗ t is also known
as the CT value or the contact time. It is important to state here
that the reaction rate constants are each specific to one plasma
factor and one microorganism. For example, Table I shows the
reaction rate constants for the sterilizing effect of three plasma
factors O3, OH, and UV on the E. coli bacteria.

TABLE I
RATE CONSTANTS CALCULATED FROM EMPIRICAL DATA FOR THE

INTERACTION OF E. coli BACTERIA WITH O3, OH, AND UV

Because the reaction rate constants are derived from empiri-
cal data, they are not always available for all plasma factors and
all microorganisms. There is, however, a great deal of empirical
data (available in the food and water decontamination literature)
in which the well-known plasma factors of O3, UV, and OH
were used to destroy a variety of bacteria, viruses, and spores
in various liquids and surfaces [23]–[25]. In the next section, the
reaction rate constants from Table I and species concentration
measurements from our DBGD discharge are combined in (1)
to yield a numerical estimation of the sterilizing effect from
each plasma factor on the survivability of E. coli in direct
contact with the DBGD.

C. Numerical Characterization of the PDRF

In this section, the numerical characterization principles
previously described are applied to the PDRF system, and a
comparison is made to our experimental results, taking into
account the concentrations of plasma factors in our system.
The plasma factors considered here will be those of O3, OH,
and UV with the E. coli bacteria. The effect of other very
important plasma factors—charged species (electrons and ions)
and other chemically reactive species like radicals (atomic
oxygen and nitrogen oxide) and excited molecules was not
taken into account at this time simply for a lack of empirical
data to formulate a rate constant. It is our goal to continue to
search for empirical data involving those factors so that they
may be incorporated in this characterization study in the near
future.

The concentrations of each plasma factor in the DBGD are
quantified, and the reaction rate constants for these plasma
factors and E. coli bacteria are established in the following.

1) Ozone (O3). In a recent publication [21], the CT value
for the exposure of E. coli to the ozone is 4 · 10−2 mg ·
min/l with a two-log reduction in the viable microorgan-
ism concentration. Hence, the reaction rate constant for
the interaction of ozone with E. coli was calculated as
1.56 · 10−16 cm3/s. This is further confirmed from other
experimental data in [26]. Based on our experimental
measurements, the steady-state ozone concentration in
the PDRF system after 10 s of DBGD operation is about
28 ppm.

2) Hydroxyl (OH) radical. According to [21], the CT value
for the exposure of E. coli to OH is 0.8 · 10−5 mg · min/l
for a two-log reduction in the viable microorganism
concentration. Based on (2), the reaction rate constant
is 3.6 · 10−13 cm3/s. Hence, it is suggested that the rate
of inactivation of E. coli by OH is about 103–104 times
faster than O3. This is an expected result due to the highly
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Fig. 6. Comparison of experimental results from the PDRF system for the
DBGD treatment of E. coli and results of the numerical characterization study
showing the sterilizing effect from only three selected species in DBD plasma:
ozone, hydroxyl, and UV radiation. In all cases, E. coli is treated with one pass
through the discharge with a particle residence time of ∼1 ms. Hydroxyl is
the largest contributor of the species investigated; ozone and UV are almost
negligible with these very short residence times.

reactive nature of hydroxyl radicals. The concentration
of OH radicals in the PDRF system was not measured;
however, Laroussi [4] estimated the OH concentration in
DBD based on relative spectroscopic measurements and
reported a linear increase of OH with power, and there-
fore, we scaled these estimations to our corresponding
power level arrived at a value of 1014 cm−3. Others report
typical concentrations of OH in atmospheric pressure
discharges in the range of 1012–1015 cm−3 [28].

3) Ultraviolet (UV) radiation. Studies of inactivation of
microorganisms using UVC radiation (≤ 300 nm) have
long been conducted by researchers. There is an abundant
amount of empirical data available for inactivation of
various microorganisms from the UVC radiation [22]. For
UV interaction with E. coli, we have a reaction rate con-
stant of 3.76 · 10−3 cm2/µJ [22]. Measurements of UV in
the PDRF system showed an intensity of approximately
30 µW/cm2.

A 1-ms timescale was used for E. coli’s direct contact with
the DBGD plasma as this corresponds to the approximate time
of exposure estimated in the experimental system. The effect
of E. coli in contact with postplasma products (namely, ozone)
during recirculation through the system is not estimated at this
time. Control losses, or physical losses of bioaerosol particles
on the walls of the PDRF system, were incorporated in these
estimations; however, these losses are almost negligible both in
comparison to the effect of the chemical species and due to the
very short timescale used here. The rate constant of control loss
is approximately 4.5 · 10−3 per CFU per second.

The simulation results shown in Fig. 6 predict a 13.49%
decrease in viable E. coli with a 1-ms exposure time in DBGD

plasma with a consideration of ozone, hydroxyl, and UV only.
Hydroxyl itself is shown to cause a 13.44% reduction in viable
E. coli, while ozone and UV have an almost negligible impact
with reductions of 0.04 and 0.01%, respectively. It is apparent
that these results cannot completely explain the experimental
result achieved with the PDRF experimental system (97%
decrease during the same times and modes of treatment). How-
ever, the simulation results both coincide with and quantify the
conclusions of many plasma sterilization researchers, which is
that ozone, hydroxyl, and UV radiation have a limited role in
the bacterial sterilization process in direct exposure with the
DBD plasmas. Charged species, such as ions and electrons,
atomic oxygen, and electronically excited species have been
shown to have a significant role in sterilization and may act in
tandem with other radicals and chemical species in a synergistic
way. Choi et al. [30] have shown the importance of physical
damage to the structure of bacteria from ions present in DBD
discharges. One explanation of this mechanism is the initial
negative charging of a bioaerosol droplet (containing microor-
ganisms) within plasma due to the attachment of fast-moving
electrons, followed by ion bombardment onto the microorgan-
ism’s surface at relatively high energies. This is analogous to
etching (“strong etching,” as described by Park [31] and Moisan
[32]). Such etching can provide openings for active species to
interact faster with the microorganism, leading to a synergistic
sterilization effect.

Additionally, Hermann et al. [33] discuss the possibility
of inactivation by excited species from the afterglow of an
atmospheric pressure plasma jet. Usually, operated in helium
to avoid instability, the discharge is doped with a few percent
of molecular gases such as O2. These oxygen-containing active
species may play a role via deexcitation and subsequent energy
transfer onto the microorganism’s surface. This may further
provide assistance to overcome energy barriers, if any, during
synergistic chemical interactions between the active species and
the microorganisms. Similarly, Pointu et al. [34] showed that
the excited species play a more important role in comparison to
UV in their atmospheric plasma system.

While the numerical characterization scheme presented here
is somewhat oversimplified, in that it only takes into account the
effect of ozone, hydroxyl, and UV radiation, it remains a useful
tool that researchers can exploit to identify which species and
combinations of species are responsible to inactivation. Further
investigation and development is needed, with an emphasis on
empirical data of the sterilizing effect of individual plasma fac-
tors on microorganisms, in order to advance these estimations
into a full working model.

V. CONCLUSION

The PDRF is a bioaerosol decontamination installation that
combines DBGD with a filterless ventilation system for the pur-
pose of destroying high concentrations of bacterial bioaerosols
from indoor air.

The PDRF system is unique and has the capability of ex-
perimenting with virtually any type of airborne microorganism.
The results presented here show that the PDRF system can
achieve an ∼5-log reduction (99.999%) in viable E. coli with
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a millisecond direct exposure time in the DBD ventilation
grating (DBGD) device without the use of a filter to trap and
treat airborne particles. These results are unique because, in
most DBD surface sterilization studies, treatment times are
always at least 1000 times longer on the order of seconds and,
in some cases, even minutes in duration. This concept of a
filterless system has shown that a very short exposure time of
bioaerosol to DBGD plasma can cause rapid inactivation of
microorganisms.

A simple numerical characterization study was performed
in an attempt to quantify the sterilizing effect of three well-
known plasma factors (O3, OH, and UV) on the E. coli bacteria
when treated inside our DBGD plasma device. The results
show that hydroxyl itself has a significant effect (responsible
for ∼13.5% of those killed); however, ozone and UVC have a
negligible effect at very short exposure times (∼1 ms) inside
plasma. These numerical estimations must be expanded to
include other chemically active species: radicals (e.g., atomic
oxygen), charged particles (ions and electrons), and electron-
ically excited molecules in order to completely characterize
and quantify the sterilization effect from the DBD plasma. In
order to achieve this, using our methods, experimental data of
the individual effect of additional species on microorganisms
must be provided. A refined and expanded kinetic model that
considers all biologically active plasma components and can
accurately predict sterilization could have a strong and lasting
impact in many areas of biomedical applications of nonthermal
plasma.

Additionally, the experimental conditions of this paper
closely mimic the conditions that might exist during a bioter-
rorist attack, namely, the release of a high concentration of
bioaerosol moving at high flow rate inside of a ventilation duct.
If proven robust and safe enough for use indoors, nonthermal
plasma air cleaning technology could be employed in com-
mercial and military buildings for the purpose of mitigating
the detrimental effects of a pathogenic bioaerosol release by
terrorists. Currently, there is no such bioterrorism prevention
technology used in the majority of buildings in the U.S.
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