
i

NeuroHub Networking Integration: Time Synchronization Device for

Multimodal Brain Imaging and Hyperscanning Research

A Thesis

Submitted to the faculty

of

Drexel University

by

Neha Thomas

in partial fulfillment of the

requirements for the degree

of

Masters of Science in Biomedical Engineering

June 2017

© Copyright 2017

Neha Thomas. All Rights Reserved.

i

Acknowledgements

I would like to thank my parents and friends for their support and their belief in me. I would

also of course like to thank Dr. Ayaz for his advice, guidance, and mentorship throughout

the duration of this thesis.

ii

Table of Contents

List of Tables .. v

List of Figures .. vi

Abstract .. viii

1. Introduction ... 1

1.1 Motivation ... 1

1.2 Objective ... 1

1.3 Outline ... 2

2. Background ... 3

2.1 Brain Imaging Methods ... 3

2.1.1 Functional Near Infrared Spectroscopy .. 3

2.1.2 Electroencephalography ... 4

2.1.3 Multimodal Research .. 5

2.1.4 Hyperscanning Research .. 7

2.2 Common Data Transmission Protocols ... 7

2.2.1 Parallel Port .. 7

2.2.2 Transistor-Transistor Logic .. 8

2.2.3 Serial ... 8

2.2.4 Transmission Control Protocol ... 9

2.2.4 User Datagram Protocol ... 10

iii

2.3 Current Time Synchronization Methods ... 10

2.3.1 Lab Streaming Layer .. 11

2.3.2 Original NeuroHub core module .. 11

2.4 Problem Definition .. 12

3. Device Design and Development.. 13

3.1 Device Design ... 13

3.1.1 Device Requirements .. 13

3.1.2 Device Specifications ... 13

3.2 Device Development ... 13

3.2.1 Board Selection... 13

3.2.2 Hardware Add-ons and Programming of the NeuroHub Network Module 14

4. Testing and Validation .. 19

4.1 Test Configurations ... 19

4.2 Testing Program Design and Development .. 24

4.3 Data Analysis .. 24

4.4 Results ... 25

4.4 Model .. 37

4.5 Discussion ... 43

5. Representative Use Case ... 44

5.1 Introduction ... 44

iv

5.2 Results ... 45

6. Conclusion and Future Work .. 46

6.1 Conclusion ... 46

6.2 Future Work .. 46

List of References ... 48

Appendix A: NeuroHub Network Module Development and Setup 55

Materials List... 55

Setup OS, programs, and files ... 55

Wireless Mode Configuration (Raspberry Pi 3 only) .. 57

Writing and saving the network module server code .. 59

Attaching Add-On Boards and Case ... 61

Connecting multiple network clients in Ethernet or wireless mode.............................. 62

Appendix B: Source Code .. 65

Network Module Server .. 65

(Starting Serial) C# Testing Program .. 77

(Starting Ethernet) C# Testing Program.. 90

(One computer networking round trip) C# Testing Program 100

MATLAB Data Analysis Code ... 107

Appendix C: Creating Custom Box in OpenViBE ... 112

v

List of Tables

Table 1 Comparison chart for Raspberry Pi Model 1 and 3 ... 166

Table 2 Computer specifications .. 20

Table 3 Summary of tests for Lenovo laptop.. 31

Table 4 Summary of tests for Dell XPS laptop... 31

Table 5 Summary of tests for desktop computer .. 32

Table 6 Variable summary .. 37

Table 7 Average NeuroHub core module latencies .. 39

Table 8 Average NeuroHub core module latencies .. 40

Table 9 NeuroHub Network Module Average Latencies ... 43

vi

List of Figures

Figure 1 NeuroHub core module with 4 RS232 ports, 1 TTL port, and 1 parallel port ... 12

Figure 2 A) NeuroHub network module B) complete NeuroHub: network module

connected with core module ... 15

Figure 3 A) NeuroHub Network Module Version 2 B) Network module version 2

connected to core module ... 16

Figure 4 NeuroHub Network Module GUI ... 17

Figure 5 Network Module block diagram. A) and B) reflect different paths for incoming

event markers, depending on the initial modality (serial vs networking) 17

Figure 6 Block diagram for network module programming code 18

Figure 7 Ethernet to Serial test configurations involving NeuroHub. A) With core

module. B) Without core module.. 20

Figure 8 Serial to Ethernet test configurations involving NeuroHub. A) With core

module. B) Without core module.. 21

Figure 9 Ethernet to Ethernet test configuration. A) with network module B) without

network module .. 21

Figure 10 Serial to Serial test configuration. A) with core module B) without core module

... 22

Figure 11 Ethernet mode test configuration with multiple clients 23

Figure 12 Wireless mode test configuration with multiple clients 23

Figure 13 Success rates for 10 trials of test configuration 3 on Dell XPS laptop............. 25

Figure 14 Lenovo average round trip times for all tests ... 26

Figure 15 Dell XPS average round trip times for all tests .. 26

file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239833
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239834
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239834
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239835
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239835
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239837
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239838
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239838
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239839
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239841
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239841
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239842
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239842
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239843
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239843
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239844
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239844
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239845
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239846
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239847
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239848
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239849

vii

Figure 16 Desktop average round trip times for all tests involving serial ports 27

Figure 17 Average round trip times for Ethernet-Ethernet tests on all computers 27

Figure 18 Desktop computer tests using the same USB-Serial converter as for the laptop

tests ... 29

Figure 19 Histogram of latencies for Dell XPS at 9600 bps for test configuration 1 30

Figure 20 Sabrent USB-Serial Lenovo round trip times without core module 33

Figure 21 Sabrent USB-Serial Dell XPS round trip times without core module 34

Figure 23 Latency for multiple clients in wireless mode .. 35

Figure 22 Network module Ethernet mode latencies for simulateanou byte transmission

on multiple clients ... 35

Figure 24 Comparison of latencies A) with and B) without the core module for Lenovo

laptop, test configuration #1 at 9600 bps .. 39

Figure 25 Network Module Latencies for Lenovo laptop .. 40

Figure 26 Network Module latencies on Dell XPS laptop ... 41

Figure 27 Network Module latencies for Desktop .. 41

Figure 29 Average Network Module Latencies for All Computers 42

Figure 28 Average Latencies within Network Module for Ethernet only tests 42

Figure 30 Flow diagram for use case with OpenViBE and COBI Studio 45

Figure 31 Average time differences between OpenViBE and COBI studio temporal

markers at 9.6 and 115.2 kbps .. 45

file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239850
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239851
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239852
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239852
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239853
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239857
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239858
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239859
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239860
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239860
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239863
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239863
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239865
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239866
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239867
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239868
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239869
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239871
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239872
file:///C:/Users/Neha/Documents/Ayaz%20Research/Thesis%20Documentation/MSThesis_NehaThomas_Final.docx%23_Toc486239872

viii

Abstract

NeuroHub Network Integration: Time Synchronization Device

for Multimodal Brain Imaging and Hyperscanning Research

Neha Thomas

Dr. Hasan Ayaz, PhD

Significant progress has been made over the last decades in understanding the

physiological and neural bases of cognitive processes and behavior. The advent of new

and improved sensors enables monitoring the human body and brain activity in natural

environments, with cost-effective, mobile and wearable form factor systems. As

neuroimaging and brain sensing technologies are further developed, there’s an expanding

interest for using multiple systems concurrently on i) the same brain: multimodal/hybrid

measurements for better identification of neurophysiological markers, and ii) multiple

brains: hyperscanning for novel investigations of brain functions during social

interactions. Particularly for functional neuroimaging, such as Functional Near Infrared

Spectroscopy (fNIRS) and Electroencephalography (EEG), precise time synchronization

of experimental events with acquired datasets is necessary for proper analysis and

interpretation of results. However, there are currently no standards for interoperability

and neuroimaging systems have many different designs and interfaces. Furthermore, it is

often cumbersome to come up with a custom solution to each new research setup based

on the devices involved. The original NeuroHub, a plug-and-play time synchronization

device developed at Drexel University, attempted to alleviate some of the complications

associated with custom setups and time synchronization. The original NeuroHub relayed

any incoming signal to one of its four serial ports, TTL port, and parallel port, to all other

ix

ports on the device and can be connected to multiple sending/listening devices or

computers. Although one or more of these legacy ports are present in various

neuroimaging systems, modern computing systems require more sophisticated

alternatives.

This thesis proposes a solution and improvement to the original NeuroHub, by

incorporating time synchronization over a network as an information transfer layer. The

network solution enables more flexible experimental configurations and expands the

compatible plug-and-play system range. Moreover, this new approach eliminates the need

for multiple wires, while still being able to service large number of clients. The new

NeuroHub is also able to directly interface with typical RS-232 serial ports and offers the

best of both worlds – ability to interface with network and legacy hardware ports for

complete customizability, flexibility and backward compatibility.

The new NeuroHub network module consists of a Raspberry Pi Model 1B fitted

with a serial port add-on board. The device transmits any event markers received from

either networked or serial ports and relays them to the other opened ports. Verification

testing confirmed that the device transmits with 100% accuracy and the latency to send a

byte from one computer to the other via the network module was minimal, ranging from

sub-millisecond speeds to 7 ms depending on the use of serial ports, baud-rate, and

configuration order.

The new NeuroHub network module was tested in Brain Compute Interface (BCI)

setups using OpenViBE as a stimulus presenter and EEG data recording, with COBI

Studio as the fNIRS data recording software to receive markers all through NeuroHub.

This simple use case demonstrates the utility of the new NeuroHub for simplification of

x

complex functional neuroimaging, neuroergonomics and BCI research experimental

setups.

1

1. Introduction

1.1 Motivation

In the field of neuroscience and brain imaging research, there are a growing number of

studies that require recording from multiple modalities. For example, researchers may want

to use both EEG and fNIRS to extract important features about cognition that may not be

otherwise possible with just one modality. Using multiple systems requires that all datasets

collected are properly synchronized in time. This is done through event markers, which

represent information about important events throughout the course of the study such as

the task start/end or onset of stimuli. The difficulty arises when trying to send event markers

from multiple devices to other devices. Such setups usually require careful planning and

can be burdensome to implement, especially when trying to coordinate devices

manufactured by different companies. Each device may use a different data transmission

protocol that makes event markers synchronization between different systems complicated

and tedious. Additionally, certain devices require very fast and accurate transmission rates,

such as EEG, which has a high sampling rate.

1.2 Objective

This thesis aims to develop a portable device that can act as an interface between multiple

systems that may have different communication protocols. Such a device would accelerate

experimental research setups that utilize multiple recording devices and need fast, reliable

timestamping and marker transmission. Such device would implement protocols for

transmission of data over a network as well as a physical connection for serially transmitted

data. This ensures versatility and practicality for a variety of experimental setups.

Essentially, the device would serve as a bridge between older methods of communicating

2

event markers like the RS-232 and newer methods, such as networking protocols. Finally,

the device would be tested for fast and accurate data transmission in a variety of test

configurations.

1.3 Outline

In the background section, brain imaging methods will be described to provide context

for the device need. Next, common data transmission protocols will be covered that are

used for time synchronization. Time synchronization platforms will then be discussed,

and some of the shortcomings of these platforms will be addressed in the proposed

solution. In the device design section, the design requirements and specifications are

reviewed and implemented into a device. The device is then finally tested for its lag time

and reliability.

3

2. Background

2.1 Brain Imaging Methods

2.1.1 Functional Near Infrared Spectroscopy

Functional Near Infrared Spectroscopy (fNIRS) is an optical brain activitymonitoring

method that uses near-infrared light to measure concentration changes of deoxygenated

and oxygenated hemoglobin (HbR and HbO, respectively) (Quaresima & Ferrari, 2016;

Villringer & Chance, 1997; Villringer et al., 1993; Chance et al., 1993; Chance, 1991). It

is portable, wearable, cost-effective, and its data is not as susceptible to electrical noise as

compared to EEG (Naseer & Hong, 2015). Modern fNIRS systems are miniaturized and

can be even built battery operated and wireless to allow untethered monitoring of

particpants (Quaresima & Ferrari, 2016; Ayaz et al., 2013). The changes of HbR and HbO

are related to the brain activation in the area of measurement through neurovascular

coupling theory (Ayaz et al., 2013; Izzetoglu et al., 2005). Light that is transmitted by the

fNIRS light source over the scalp penetrates through tissue layers in the brain and a fraction

of the scattered photons can reach back to photodetectors strategically placed over the

scalp. There are different absorption coefficients for different wavelengths of light for HbR

and HbO, which allows calculation of their concentration changes using the modified Beer-

Lambert Law (Ayaz et al., 2011; Izzetoglu et al., 2005). The fNIRS signal is sampled at a

lower rate compared to EEG (lower temporal resolution) since the underlying

hemodynamic response measured by fNIRS is a relatively slow signal (Batula et al.,

2017a). On the other hand, fNIRS’ spatial resolution is higher than that of EEG and is

generally free from artifacts such as eye-blinking and muscle movements (Hirshfield et al.,

2009; Sweeney et al 2012; Ayaz et al 2010).

4

 fNIRS has growing range of applications in brain-computer interface that run the

gamut from neurofeedback to mental workload and training assessment (Ayaz et al., 2013;

Gramman et al., 2017; Izzetoglu et al., 2011; Mckendrick et al., 2016; Mark et al., 2018).

For example, Ayaz et al. (2012) used fNIRS to demonstrate the development of expertise

in cognitively demanding and complex tasks such as piloting and air traffic control and that

hemodynamic changes detected by fNIRS from prefrontal cortex are indicative of task

related mental workload. fNIRS has also been shown to be helpful in rehabilitation

purposes as a neurofeedback tool for motor imagery. For example, Mihara et al. (2013)

showed that it was possible to use fNIRS to enhance the efficacy of imagery-based

rehabilitation in hemiplegic stroke patients. Recent reviews of clinical applications are

available in Izzetoglu et al (2011) and Teo et al (2016). It is also possible to develop active

brain-computer-interfaces (BCI) using fNIRS signals that are captured, processed and

classified in real-time during the experiment. For example, Batula et al (2017, 2016)

developed an fNIRS based BCI to control a humanoid robot using upper and lower limb

motor imagery tasks. And Ayaz et al used prefrontal cortex based fNIRS for control of

objects and avatars in virtual environments (Ayaz et al., 2011; Ayaz et al., 2009). For a

review of fNIRS based BCI applications, see Naseer & Hong (2015).

2.1.2 Electroencephalography

Electroencephalography (EEG) uses electrodes to measure fluctuations in voltage at the

level of the scalp to determine brain activity. These electrodes may sit on the surface of the

scalp and can either be dry or stuck with electrode paste. The electrodes are commonly

placed using the 10-20 International System of electrode positions (Kennett, 2012). The

sub-millivolt voltages recorded from the electrodes are amplified by gains greater than or

5

equal to 2000, and often digitally sampled from 256 Hz to over 1000 Hz (Schomer & Silva,

2010). EEGs tend to have low signal-to-noise ratios due to the electrodes picking up the

activity of millions of cortical neurons. It has low spatial resolution as well, on the order

of centimeters, and is generally lower than that of fNIRS (Berka et al., 2004). Therefore,

one of the biggest challenges in using EEG is extracting and classifying features that will

elicit useful information about the state of the brain. Such features can include event-related

desynchronization, event-related potentials like the P300 or steady-state visually evoked

potentials (SSVEP) (Amiri et al., 2013).

 EEG is a primary brain-imaging mode for BCI (Lebedev & Nicolelis, 2017; Choi

et al., 2017; Fazel-Rezai et al., 2012). One study used motor imagery and P300 potential

in certain frequencies of brain waves to control the horizontal and vertical movements of a

cursor (Li et al., 2010). Similarly, EEG could be used to elicit event-related

desynchronization to differentiate right and left imagined movement and use this to control

wheelchair direction and movement (Huang et al., 2012). EEG has also been used

extensively in epilepsy research. It can be used to diagnose, localize, and detect epilepsy.

Diagnosis indicates whether a patient has epilepsy or not, localization refers to the

epileptogenic foci, and detection is determining whether a patient is in a seizure state or

between seizures (Pouliot et al., 2014). For a review of clinical applications, see Lebedev

and Nicolelis (2017).

2.1.3 Multimodal Research

Multimodal research involves the use of more than one sensing mechanism or technique

in order to obtain more information than could be possible by using only one modality.

One such example is the combination of simultaneous EEG and fNIRS to improve BCI

6

performance or more accurately discern mental workload states (Liu, Ayaz & Shewokis,

2017; Zich et al., 2016; Aghajani & Omurtag, 2016; Liu et al., 2015; Putze et al., 2014;

Liu et al., 2013; Leomy, Collins & Ward, 2011). Combining these two modalities has

also been shown to improve the overall BCI performance such as in decoding of motor

imagery for BCI use (Yin et al., 2015) and working memory related mental workload

classification (Liu, Ayaz & Shewokis, 2017). These hybrid setups provide a more robust

way to classify brain activity and reduce false negatives or positives. Since EEG and

fNIRS are complimentary and recording seonsors are becoming more and more

miniaturized, hybrid systems are realistic and effective ways to improve performance

over single modality systems (von Luhmann et al., 2016).

 In addition, multimodal research may also include monitoring of other body

peripherals such as eye movements and muscle artifacts through electrocoulugram (EOG)

and electromyogram (EMG) as well as neurostimulation such as transcranial direct

current stimulation (tDCS) and transcranial magnetic stimulation (TMS). Recently

wearable fNIRS and tDCS has also been used simultenously over prefrontal cortex

(McKendrick, Parasuraman & Ayaz, 2015). Supplementary use of signals is also

possible, for example, EOG and EMG can be used to filter these artifacts form the EEG

data (Kothe & Makeig, 2013; Cao, Guo & Su, 2015). Among other modalities, eye

tracking, pulse oximetry, and galvanic skin response systems are some of the additional

body sensors that can be used in a single research setup or together with neuroimaging

systems.

7

2.1.4 Hyperscanning Research

Hyperscanning is a when one modality is used to record the brain activity of multiple

subjects that interact with each other as a unique system (Babiloni & Astolfi, 2014). It is

predominantly used to investigate social situations, and how one subject’s brain activity

is related to their behavior as well as that of the partner in the task. EEG and fNIRS are

both tools that can be used for hyperscanning research. For example, Liu et. al (2017)

investigated brain-to-brain coupling during verbal communication using fNIRS and

fMRI. It was found that the brain activity of the listener mirrored that of the speaker but

with a delay. Growing number of studies highlight the potential of hyperscanning

research for providing new insights for social interaction settings and neuroscience (Liu

et al., 2017; Hirsch et al., 2017; Pan et al., 2017; Vanutelli et al., 2016).

2.2 Common Data Transmission Protocols

This section outlines some of the common methods used for communicating data and

event markers to other listening devices. Event markers represent information about

important events that happen during the duration of the study. They are generated by the

stimulus presenter, which is typically the computer that the subject interacts with. Some

common events that often need to be marked are the start and end of the task or trial.

These markers need to be present on all computers or devices in the research setup for

accurate data analysis.

 2.2.1 Parallel Port

The standard parallel port (SPP) allows 8 bits to be transferred at the same time.,

typically meaning they transfer one byte at a time. Most parallel ports use a connector

8

with 25 pins, termed DB25 connector. With parallel port, speeds of 150 kbps and higher

are achievable (IEEE 1284, 2002).

 2.2.2 Transistor-Transistor Logic

Transistor-Transistor logic (TTL) is based on an elemental logic block that outputs either

a high or low voltage that indicates the logical bit 1 or 0. When the top transistor in the

pair of transistor conducts, the output is high. When the bottom transistor conducts, the

output is low. In the transition between high and low states, both transistors conduct

heavily (Lancaster, 1991). TTL is overall low-cost and has high speeds of up to 20 MHz.

Depending on the logic gates used in the TTL circuit, different functions are achieved

from counters to data selectors (Lancaster, 1991).

 2.2.3 Serial

Serial port transmission or RS-232 communication is done by sending data one bit at a time

in sequence (Axelson, 2007). Serial ports are usually bidirectional, meaning that it is

possible to receive and send data on the same port. In asynchronous communication,

sending and receiving can occur at the same time. The hardware for serial ports is

inexpensive and relatively commonplace. Even though native serial ports are rare to find

on new models of laptops and computers, it is possible to use USB-Serial converters.

Devices with serial ports will generally contain a hardware component called the Universal

Asynchronous Transmitter/Receiver (UART). The UART handles low-level details of

serial communications such as sending and storing received bits on the serial port (Axelson,

2007).

 The UART transmits data in chunks called words. Each word typically contains a

Start bit, data bits, an optional parity bit, and at least one Stop bit. A common format for

9

transmission is to send 1 Start bit, 8 data bits, and 1 Stop bit. Parity bits are used for error

detecting. Depending whether the parity is even or odd, the receiving computer can tell

whether there was an error if there is an odd or even number of 1s (Axelson, 2007).

 Another important feature of the serial port is the baud rate. The baud rate is the

number of bits per second (bps) transmitted or received. The highest baud rate seen on

most serial ports is 115,200 bps (Axelson, 2007).

 As mentioned before, it is possible for computers without native serial ports to

communicate via RS-232 through USB-Serial converters. This requires specific drivers to

indicate how applications can access the device as a serial port. In most computer’s devices

and managers, the serial port shows up under a specific COM Port number. The USB-Serial

device will also similarly be assigned to a COM Port, and then access to this port is just

like accessing any other port (Axelson, 2007).

 2.2.4 Transmission Control Protocol

Transmission Control Protocol (TCP) is a network protocol that guarantees data delivery

between two locations. It is considered a 4-layer system, consisting of the application,

transport, network and link layer. The application is the most high-level and examples

include email, Telnet, and File Transfer Protocol. The transport layer provides a flow of

data between two hosts; in this case it is TCP. The network layer handles movement of

packets around the network. Internet Protocol (IP) provides the network layer in the

TCP/IP protocol suite. Finally, the link layer includes the device driver and network

interface card within the computer and handles the hardware details of interfacing with

the Ethernet cable or other media for transferring packets. When the application sends

data, it is sent down the protocol stack where each layer adds information to the data by

10

prepending headers. Finally, it is sent as a stream of bits across the network. With all

headers, the minimum size for a TCP packet is 46 bytes (Stevens and Wright, 1994).

 For reliability, every segment that is transmitted has a sequence number assigned

to it. For each segment that is sent, the receiver must return an acknowledgement (ACK)

to confirm that the bytes are received within a period of time. If the ACK is not received,

the data is retransmitted (TCP/IP, 2003).

 Finally, the fields in the TCP header are the source port, destination port,

sequence number, acknowledgement number, window, and checksum. The window is the

TCP buffer on the host to store incoming segments. The checksum exists as a way to

verify the bit-level integrity of the header and data (Stevens & Wright, 1994).

 2.2.4 User Datagram Protocol

Unlike TCP, User Datagram Protocol (UDP) does not provide reliability in data

transmission, and there is no guarantee that data will be received in the correct order that

it was sent in. Like TCP, UDP is also a 4-layer system and contains a header, which is

only 8 bytes, substantially smaller than TCP (Stevens & Wright, 1994). UDP may

provide faster data transmission, but there is a tradeoff between speed and reliability. In

situations where accurate transmission is necessary, TCP is the better protocol.

2.3 Current Time Synchronization Methods

This section will cover some of the current flexible methods used to synchronize time

markers in research setups. These solutions are generalizable to many custom setups, and

focus on purely hardware or purely software solutions to achieve synchronization.

11

 2.3.1 Lab Streaming Layer

Lab Streaming Layer (LSL) is a system to collect measurement time series in research

setups using networking with TCP. LSL was developed at the Swartz Center for

Computational Neuroscience at University of California, San Diego (Kothe, 2013). It

requires programming knowledge to use, and thus is not ideal for researchers who do not

have the necessary background. The built-in time synchronization is designed after

Network Time Protocol (NTP). A timestamp is sent with each data using the high-

resolution clock of the host computer. Clock synchronization information consists of

measurements of the momentary offset between the involved clocks that are made every

few seconds. A brief sequence of packet exchanges provides information about the

estimate of the round-trip time between the two computers and the estimate of the clock

offset with round-trip time factored out. This offset is used to remap the local time

domain so that data is comparable across all connected computers (Kothe, 2013).

Previous research (Grzeczkowski & Ayaz, 2014) indicates that one caveat is that there

may be random delays or interruptions which can result in unknown lag times and

therefore inaccurate conclusions about the time synchronization using LSL.

 2.3.2 Original NeuroHub core module

The original NeuroHub core module is a plug-and-play device built at Drexel University

that accepts event markers in the range of 1-255 via four serial ports, 1 parallel port, and 1

BNC cable for TTL communication. Any marker that arrives on a port is replicated and

sent to all other ports. This enables different systems that may have different protocols for

hardware communication to synchronize event markers easily. The core module accepts

and sends bytes at 9600 bps and is built on an Arduino Mega. It was fitted with a custom

12

shield, or add-on printed circuit board (PCB) to enable interfacing with serial, parallel and

BNC ports. It has a consistent latency of 1.02 ms between receiving a byte and sending the

byte out (Grzeczkowski & Ayaz, 2014). Fig. 1 displays the core module. The baud rate is

not customizable and additionally, newer systems are less likely to have the legacy ports

that are present on the core module.

2.4 Problem Definition

The complexity of multimodal and hyperscanning research studies calls for accurate and

precise time synchronization across all platforms. The NeuroHub core module allows

interfacing with serial port, TTL, and parallel port, but these types of ports are seen less

and less on modern computers. To provide more flexibility and customizability,

networking ability should be incorporated into the NeuroHub. This type of device would

also reduce the number of wires in the setup while still servicing multiple clients and

ensuring small lag times.

Figure 1 NeuroHub core module with 4 RS232 ports, 1 TTL port, and 1 parallel port

13

3. Device Design and Development

3.1 Device Design

 3.1.1 Device Requirements

The device should also be easily portable and simplify the event marker synchronization

among common communication protocols in multimodal and hyperscanning research

studies. The device should easily interface with the NeuroHub core module and have

networking capabilities. Therefore, it should be able to send and receive via TCP, UDP,

and serial port protocol. It should also be linked to a graphical user interface so that users

can select which network protocol, serial port baud rate, and number of networked clients

in the setup. The device should have submillisecond latencies since EEG has high temporal

resolution (256-1000 Hz) and precision timing is critical in research setups with EEG.

 3.1.2 Device Specifications

The computing board that the device is built on should have at least a 16 Mhz processor,

and should include a networking component such as Ethernet or Wi-Fi card. Ethernet card

is preferred because it is more reliable and faster than Wi-Fi. The board should be

programmable in a low-level language like C++ for efficient code and optimized error

handling. The board should include at least 1 UART to be able to interface with a standard

serial RS-232 port to easily connect to the NeuroHub core module. Finally, the board

should be well documented and inexpensive.

3.2 Device Development

 3.2.1 Board Selection

There were a few boards to choose from in the initial device planning stage. Since the

original core model is constructed from Arduino, it would be possible to add an Arduino

14

shield with Ethernet networking capabilities. However, this would require a complete

redesign of the original NeuroHub to incorporate the additional shield. There is also no

way to create a GUI by programming in the Arduino environment. It requires linking to

some external GUI developing platform and increases the complexity of setup with the

NeuroHub core module. The other option was to build a separate networking module that

would be a modular and optional expansion to the core module. Some of the boards that

already included network capability were the Raspberry Pi, Minnowboard, and

DragonBoard. It was decided that Ethernet should be used for the first generation of the

networking module since Ethernet offers speed, minimal latency, and reliability over

wireless protocols. This narrowed down the choices to the Raspberry Pi and Minnowboard.

The Minnowboard costs more than four times the cheapest Raspberry Pi model; for this

reason, the Raspberry Pi 1 Model B was selected. Upgrading to the Raspberry Pi Model 3

B woud also allow more flexible options since it has both Ethernet and Wi-Fi capability.

In total, Raspberry Pi was the best documented, and the least expensive and smallest board

that met the selection criteria.

 3.2.2 Hardware Add-ons and Programming of the NeuroHub Network Module

A DTronix Mini Piio RS232 add on PCB or Raspberry Pi “hat” was chosen as a simple

way to add an RS232 interface to the Raspberry Pi. This would enable a straightforward

way to connect the NeuroHub network module with the NeuroHub core module. C++ was

chosen as the coding language of choice since it is efficient and fast compared to other

languages, and easier to perform error handling and maintain than with C. The complete

15

network module is shown in Fig. 2A. Fig. 2B shows the network module connected to the

core module.

In a subsequent revision, the Raspberry Pi 3 Model B was used, since the Pi 3

included both Wi-Fi and Ethernet capability, which made it the most flexible option. A

comparison table for the two models is shown in Table 1. The Raspberry Pi 3 boasts

superior performance to the older generation in various categories, most importantly, the

processor and number of cores. Fig. 3A and 3B show the revised network module using

the Raspberry Pi 3.

Figure 2 A) NeuroHub network module B) complete NeuroHub: network module connected with core module

A B

16

 Table 1 Comparison chart for Raspberry Pi Model 1 and 3

 Raspberry Pi Model 1 B Raspberry Pi Model 3 B

CPU 700 MHz single-core 1.2 GHz 64-bit quad-core

Ethernet 10/100 Mbit/s 10/100 Mbit/s

SD Card Full-size SD card MicroSDHC

GPIO pins 26 40

USB slots 2 4

Wi-Fi NA 802.11n wireless

Bluetooth NA 4.1

 A GUI was programmed using gtkmm 3.0 libraries and Glade. The GUI allows the

user to select the networking protocol, serial port baud rate, and number of networking

clients. The underlying code uses standard C++ libraries to connect to, read from, and write

to TCP and UDP sockets. WiringPi library was installed on the Raspberry Pi in order to

easily write to and read from the serial ports. Once the connect button on the GUI is

pressed, the server listens for the number of clients defined by the user. When the number

of clients meets the maximum, threads are generated for each client and for the serial port.

Each thread contains a blocking read operation. After the read operation returns, the

A B

Figure 3 A) NeuroHub Network Module Version 2 B) Network module version 2 connected to core module

17

character message is sent to all other clients and then written to the serial port. At any time,

the user may choose to “quit” and close all connections. It is possible to restart connections,

at which point the server will again begin listening for clients. A figure of the GUI is shown

in Fig. 4. The block diagram of the event marker flow through the network module is shown

in Fig. 5. Fig. 6 shows the flow diagram for the network module code.

A

Serial port, TCP or UDP

Serial port
Serial client

event markers

TCP or UDP
Network

Client Event

markers

TCP or UDP

Network clients

receive event

markers

Network and/or

serial clients

receive event

markers

Network
Module

(Raspberry
Pi)

Figure 5 Network Module block diagram. A) and B) reflect different paths for incoming event markers, depending on the

initial modality (serial vs networking)

B

Figure 4 NeuroHub Network Module GUI

18

Figure 6 Block diagram for network module programming code

Listen on
serial port

Listen for
clients

Create a thread for each
client and one thread for
receiving on serial port

Listen on TCP or
UDP ports

Receive event
marker byte

Receive event
marker byte

Send byte to
serial port

Send to other TCP or
UDP clients

Send byte to all
TCP or UDP

clients

clients
reached

19

4. Testing and Validation

4.1 Test Configurations

There were four configurations to test the NeuroHub network and core modules connected

to a single computer: 1) Receiving via Ethernet and sending via serial, 2) Receiving via

serial and sending via Ethernet, 3) Receiving via Ethernet and sending via Ethernet, and 4)

Receiving via serial and sending via serial. With the core module, it is possible to add an

additional path for byte transmission in tests 1 and 2, shown in Fig. 7A and 8A. The core

module can also be used without the network module, as indicated in Fig. 10. In these

scenarios, an external computer such as a laptop or desktop would send a byte via Ethernet

or Serial to the network module. The network module would then send the same byte back

to the sender. Additional tests are to constrain the path of byte transmission to the just host

computer for Ethernet to Ethernet and Serial to Serial communication, as indicated in Fig.

9B and 10B. For each of the tests involving Ethernet, both UDP and TCP were tested. For

each of the tests involving serial ports, either 9600 or 115200 bps baud rate was used. All

tests were done on three different computers – two laptops and one desktop computer.

Their specifications are summarized in Table 2. Since the laptops do not have native serial

ports, Prolific 2303 USB-to-Serial adapters were used. It was later determined that the type

of USB-Serial adapter used can significantly alter the round-trip latency, so the adapter

type was another variable that was changed in testing configurations. The adapters used

were the Prolific 2303 USB-serial and Sabrent USB-Serial. To characterize the data

transmission delay in the networking module, a program was designed in C# to measure

the round-trip times for each of the test configurations. The test configurations shown in

Figs. 7-10 were completed on version 1 only because of time constraints, as version 2 was

20

finalized much later. It is important to note that the latencies will be faster on version 2

since the Raspberry Pi 3 Model B is faster than Raspberry Pi 1 Model B.

 Table 2 Computer specifications

Computer Type Lenovo P400 laptop Dell XPS laptop Desktop computer

Operating System Windows 10 Home Windows 10 Pro Windows 7

Professional

Processor
Intel core i7-3632QM

CPU 2.2GHz

Intel core i7-

3612QM CPU

2.1 GHz

Intel core i7 CPU

920 2.67 GHz

Register size 64-bit 64-bit 64-bit

RAM size 8 GB 16 GB 6 GB

Windows

Experience Rating
5.9 6.9 7.3

A B

Ethernet

 Computer
C#

program

serial port

Se
ri

al

Po
rt

Core
Module

Network
Module

serial port

Ethernet Computer
C#

program
Network
Module

Figure 7 Ethernet to Serial test configurations involving NeuroHub. A) With core module. B) Without core module

21

Figure 9 Ethernet to Ethernet test configuration. A) with network module B) without network module

 Computer
C#

program

Network
Module

Ethernet

 Computer
C#

program

Networking:
UDP or TCP

B A

Computer
C#

program Serial
P

o
rt

Ethernet

Core
Module

Network
Module

Computer
C#

program

Network
Module

Serial port

Ethernet

Figure 8 Serial to Ethernet test configurations involving NeuroHub. A) With core module. B) Without core module

A B

22

Another set of experiments was done to characterize the latencies for marker transmission

for several networked clients at the same time for both version 1 and version 2. Version 1

must be connected to the host computer via Ethernet (Ethernet mode). In this setup, it is

necessary to connect the host computer to the other clients via an ad-hoc network for

multi-client network communication. Version 2 can be connected with Ethernet the same

way that Version 1 is, or it can be connected wirelessly via an ad-hoc network initiated

by the Raspberry Pi to the clients. The multi-client test configurations are depicted in

Figs. 11 and 12.

 Computer
C# program

Core
Module Serial port

Computer
C#

program

Serial Port

Figure 10 Serial to Serial test configuration. A) with core module B) without core module

A B

23

Network Module Ethernet

Figure 11 Ethernet mode test configuration with multiple clients

Network Module

Figure 12 Wireless mode test configuration with multiple clients

24

4.2 Testing Program Design and Development

Two testing programs were coded in C# as a Windows form application because it is a

simple environment to read and write to the serial port. The form enables selection of which

COM ports to use, protocol communication selection, and the number of data points. 10

trials of 1000 data points were completed for each test configuration, for a total of 10,000

points per test. The first testing program sends bytes out through either TCP or UDP and

receives through the UDP, TCP or serial port. The second testing program sends through

the serial port, and receives through either UDP, TCP, or serial port. It should be noted that

for the special case of sending through serial port and receiving via Ethernet with TCP, it

was necessary to send an “acknowledgement” byte back to the server. Without this

acknowledgement byte, the round-trip latency was more than 50 ms for this particular

configuration. After adding this byte, the latency dropped to less than 5 ms. The elapsed

time between sending and receiving the byte is recorded in milliseconds. The sending and

receive methods for these programs operate in separate threads. Once a byte is sent, the

program waits to receive the same byte back before sending out a new byte. It is extremely

important that the byte received matches the byte sent; 1 is recorded for a matching byte,

while 0 is recorded for an incorrectly received byte. The data is saved in a tab delimited

text file for further data analysis.

4.3 Data Analysis

A program in MATLAB was created to analyze the .txt files generated by the C# testing

program. The program is designed to analyze all data from a specific set, such as all

Ethernet – Ethernet tests or all Ethernet – Serial tests. This is because the program checks

all data for the minimum and maximum latencies within that test set. It uses this

25

information to set the x axis limits on the figures so that tests that vary the baud rate or

network protocol within the same test configuration are easily comparable. The MATLAB

program outputs a .csv file with basic statistics for the overall test as well as each of the

ten trials. It generates figures and saves them as .jpeg. The types of figures it generates are

a histogram of all 10,000 data points, average values in each trial, histograms for each trial,

plot point of all 10,000 data points, the success rate bar graph (percentage of correct bytes

returned), and box plot of each trial.

4.4 Results

All tests done had a 100% success rate, meaning that the same bytes sent to NeuroHub

were received successfully on the C# program. Fig. 13 is an example of the success bar

graph for one test configuration. Other test configurations produced the same

success graph. Figs. 14 - 17 show the average latencies for round trip times among all

three computers and baud rates, with no core module involved.

Figure 13 Success rates for 10 trials of test configuration 3 on Dell XPS laptop

26

0

1

2

3

4

5

6

7

9600 Bit/s 115200 Bit/S

Ti
m

e
D

el
ay

 (
m

s)

Dell XPS Baud Rate Comparison

Figure 15 Dell XPS average round trip times for all tests

Serial to Ethernet (UDP)

Serial to Ethernet (TCP)
Ethernet (UDP) to Serial)

Ethernet (TCP) to Serial

 Serial to Serial

0

1

2

3

4

5

6

7

9600 Bit/s 115200 Bit/s

Ti
m

e
D

le
ay

 (
m

s)

Lenovo Baud Rate Comparison

Figure 14 Lenovo average round trip times for all tests

Serial to Ethernet (UDP)

Serial to Ethernet (TCP)
Ethernet (UDP) to Serial)

Ethernet (TCP) to Serial

 Serial to Serial

27

0

1

2

3

4

5

6

7

9600 Bit/s 115200 Bit/s

Ti
m

e
D

el
ay

 (
m

s)
Desktop Computer Baud Rate Comparison

Figure 16 Desktop average round trip times for all tests involving serial ports

Serial to Ethernet (UDP)

Serial to Ethernet (TCP)
Ethernet (UDP) to Serial)

Ethernet (TCP) to Serial

 Serial to Serial

Figure 17 Average round trip times for Ethernet-Ethernet tests on all computers

0

1

2

3

4

5

6

7

Lenovo XPS Desktop

Ti
m

e
D

el
ay

s
(m

s)

Eth-Eth Time Delays in Network Module

UDP

TCP

28

The round-trip times for the two laptops using USB-serial ports are very similar

across all tests and baud rates. The Serial-Ethernet TCP test at 115200 bps on the Dell

XPS laptop was slower than its UDP counterpart and the Serial-Ethernet TCP and UDP

tests on the Lenovo. This is probably because TCP receiving in the serial to Ethernet

configuration is the less efficient on the Dell XPS due to the need for the

acknowledgment byte. It seems to be a computer specific issue since this same

phenomenon is not present on the other computers. Compared to the desktop computer,

increasing the baud rate for the laptop tests that involve the serial port receiving bytes

does not improve the latency by much. Since the biggest difference between the desktop

computer and laptop computers test configurations is the use of either native or USB-

serial port, the lack of improvement in the increased baud rate for the laptops can be

attributed to the use of USB-serial converter. Using a USB-Serial converter on the

desktop instead of using the native serial ports yielded similar results to the laptops.

These results are shown in Fig. 18.

29

Wherever the USB-Serial adapter is used to receive event markers, the latency is

high and comparable to that of the Lenovo and Dell XPS laptops. When native serial

ports are used to receive data, the latency drops below one millisecond at the higher baud

rates. This data confirms that the USB-Serial adapter is the likely cause for only a small

improvement in latency at the faster baud rate. This is most likely due to the use of

software based interrupts in USB-Serial converters. Native serial ports use hardware

interrupts, which are more reliable and efficient. This result indicates that the USB-Serial

converter has a strong influence on the round-trip time.

All latencies found were less than 7 ms which is more than acceptable for fNIRS

since its sampling rate is not very high. EEG is high resolution, and requires at the very

least under 2 ms latencies, which was only achieved in Ethernet receiving configurations

0

1

2

3

4

5

6

7

9600 Bit/s 115200 Bit/s

Ti
m

e
D

el
ay

 (
m

s)

Desktop Computer using USB serial Baud Rate
Comparison

Figure 18 Desktop computer tests using the same USB-Serial converter as for the laptop tests

USB-Serial to Ethernet (UDP)

USB-Serial to Ethernet (TCP)

 Ethernet (UDP) to USB-Serial)

 Ethernet (TCP) to USB-Serial

 USB-Serial to USB-Serial

30

at 115,200 bps for the laptops using USB-Serial converters. However, at 115,200 bps on

the desktop computer with native serial ports, all round-trip times were sub-millisecond,

which is appropriate for EEG sampled at 1000 Hz or fNIRS.

This histogram for all the tests shows a Gaussian distribution for the latencies. An

example is shown in Fig. 19. The standard deviation for the tests were all sub

millisecond, indicating that the latencies are steady around a certain point. A summary of

the results for each of the computers is presented in Tables 3–5 depicting the average

latencies with standard deviation.

Figure 19 Histogram of latencies for Dell XPS at 9600 bps for test configuration 1

31

Table 3 Summary of tests for Lenovo laptop

Test type
Lenovo P400 Ideapad (avg ms)

Baud Rate (bps) UDP TCP

Ethernet to Serial
9600 4.97 ± 0.11 4.73 ± 0.09

115200 3.75 ± 0.08 3.77 ± 0.08

Serial to Ethernet
9600 4.64 ± 0.10 4.81 ± 0.10

115200 0.54 ± 0.08 0.65 ± 0.11

Ethernet to Ethernet NA 0.58 ± 0.08 0.62 ± 0.09

Serial to Serial
9600 4.01 ± 0.10

115200 2.85 ± 0.07

Table 4 Summary of tests for Dell XPS laptop

Test type
Dell XPS laptop (avg ms)

Baud Rate (bps) UDP TCP

Ethernet to Serial
9600 4.64 ± 0.07 4.66 ± 0.09

115200 3.69 ± 0.16 3.71 ± 0.08

Serial to Ethernet
9600 4.89 ± 0.07 4.94 ± 0.10

115200 0.69 ± 0.07 1.37 ± 0.17

Ethernet to Ethernet NA 0.77 ± 0.09 0.78 ± 0.13

Serial to Serial
9600 4.08 ± 0.06

115200 2.93 ± 0.05

32

Table 5 Summary of tests for desktop computer

Test type
Desktop computer 9600 bps (avg ms)

Baud Rate (bps) UDP TCP

Ethernet to Serial
9600 6.74 ± 0.09 6.77 ± 0.19

115200 1.22 ± 0.08 1.24 ± 0.07

Ethernet to USB Serial
9600 4.97 ± 0.07 4.98 ± 0.06

115200 3.98 ± 0.05 3.98 ± 0.04

Serial to Ethernet
9600 4.68 ± 0.07 4.74 ± 0.09

115200 0.67 ± 0.06 0.78 ± 0.11

USB Serial to Ethernet
9600 4.26 ± 0.29 4.29 ± 0.23

115200 0.76 ± 0.09 0.81 ± 0.46

Ethernet to Ethernet NA 0.52 ± 0.08 0.54 ± 0.08

Serial to Serial
9600 6.05 ± 0.06

115200 0.52 ± 0.04

USB Serial to USB

Serial

9600 3.99 ± 0.03

115200 2.99 ± 0.05

Serial to USB Serial
9600 4.04 ± 0.29

115200 3.94 ± 0.01

USB serial to serial
9600 5.72 ± 0.28

115200 0.61 ± 0.03

It was additionally found that the type of USB-Serial converter would affect the

round-trip times. Changing to the Sabrent USB-Serial converter with the same driver

installed as the Prolific 2303 USB-Serial converter reduced the latencies in the serial

receiving cases, as shown in Figs. 20 and 21 for the laptops. However, there also appears

33

to be a higher standard deviation with the Sabrent, as indicated clearly by the error bars in

Fig. 21.

0

1

2

3

4

5

6

7

9600 bps 115200 bps

Ti
m

e
D

el
ay

 (
m

s)

Baud Rate

Lenovo P400 Laptop Baud Rate Comparison (Sabrent USB-
Serial)

Figure 20 Sabrent USB-Serial Lenovo round trip times without core module

Serial to Ethernet (UDP)

Serial to Ethernet (TCP)
Ethernet (UDP) to Serial)

Ethernet (TCP) to Serial

 Serial to Serial

34

As shown by figures 18, 20, and 21, the USB-Serial converter does affect the round-trip

times, and this should be taken into consideration when using computers without native

serial ports.

 The next round of tests was to investigate the latency that arises when multiple

clients are sending event markers at the same time. 2, 3, and 4 clients were tested on

version 1 and version 2 network module in Ethernet and wireless mode (see Figs. 11 and

12 for the configuration diagram). The results for each version and mode is shown in

Figs. 22 – 24. Each graph has a trendline to show the effect for each additional client.

0

1

2

3

4

5

6

7

9600 bps 115200 bps

Ti
m

e
D

el
ay

 (
m

s)

Baud Rate

Dell XPS Laptop Baud Rate Comparison

Figure 21 Sabrent USB-Serial Dell XPS round trip times without core module

Serial to Ethernet (UDP)

Serial to Ethernet (TCP)
Ethernet (UDP) to Serial)

Ethernet (TCP) to Serial

 Serial to Serial

35

Figure 22 Network module Ethernet mode latencies for simulateanou byte transmission on multiple clients

y = 0.5239x + 1.2892

y = 0.0848x + 1.4701

0

1

2

3

4

5

6

7

8

9

2 clients 3 clients 4 clients

La
te

n
cy

 (
m

s)

Number of Clients

Comparison of Transmission Latency with Increasing Number of Clients

Version 2

Version 1

y = 0.9108e0.559x

R² = 0.9833

0

2

4

6

8

10

12

14

16

18

2 clients 3 clients 4 clients

La
te

n
cy

 (
m

s)

Number of Clients

Version 2 Wireless Mode Marker Transmission
Latency

Figure 23 Latency for multiple clients in wireless mode

36

Out of all the multi-client configurations, Version 2 Ethernet Mode provided the

best results with the smallest and most consistent latencies across different numbers of

clients, and the lowest standard deviations. Its trendline indicates a slower increase in

latency for additional clients compared to Version 1 and Wireless mode. Version 1

Ethernet mode had a worse performance than Version 2 Ethernet mode because of the

older Raspberry Pi model. The Raspberry Pi Model 1 B used in Version 1 has a slower

CPU and only one core, whereas the Model 3 B has a significantly faster CPU and four

cores. The larger number of cores allows the latencies in version 2 Ethernet mode to be

stabilized even with an increasing number of clients.

The wireless mode provided similar latencies for 2 and 3 clients as Version 1

Ethernet mode, but the additional fourth client doubles the latency compared to the other

configurations, as shown in Fig. 23. Even though the Model 3 B is being used, Wi-Fi

connection is inherently slower and less reliable than a wired connection. The wireless

connection latency for 3 clients is nearly the same as the version 1 Ethernet mode for 3

clients. This actually indicates that the Model 3 B is still outperforming the Model 1 B,

because in Ethernet mode, 1 of the clients is communicating through the wired

connection, while the other 2 are through a wireless peer-to-peer connection that relays

through Ethernet. On the other hand, in wireless mode, all 3 clients are connected with an

ad-hoc network. It should be noted that the Ethernet mode results presented are a worst-

case scenario. It is possible to connect the Network Module to a router instead of using

ad-hoc networks, which will decrease the latencies. Table 6 discusses the pros and cons

for each version and mode.

37

Table 6 Pros and cons for each network module version and mode

Version and Mode Pros Cons

Version 1 Ethernet Mode

• Most tedious to

implement in terms

of plug-and-play

• Smaller latency

than Version 2

wireless mode

• Variability

increases with more

clients

• Additional clients

show exponential

increase in latency

• Wired connection

required

Version 2 Ethernet Mode

• Most tedious to

implement in terms

of plug-and-play

• Latency under 3 ms

for 4 clients or less

• Most reliable

(smallest standard

deviation)

• Additional clients

do not cause large

increase in latency

• Wired connection

required

Version 2 Wireless Mode

• Easiest to

implement in terms

of plug-and-play

• No wires needed

• Latency under 3 ms

for 3 clients or less

• Most unreliable

(highest standard

deviation)

• Large (exponential)

increase in latency

with additional

clients

4.4 Model

The round-trip times for all test configruations was measured, but the individual

subcomponents that make up that total round-trip time are not immediately known or

easily measured. It is possible to create a system of equations for each test configuration

and solve this system to characterize the latencies within just the network and core

modules alone. For example, to determine the latency of the core module, round trip

measurements were taken with and without the core module. All equations are as follows:

38

𝑁𝐸𝑟 + 𝑁𝐸𝑠 + 𝐶𝐸𝑟 (1)

𝑁𝐸𝑟+ 𝑁𝑆𝑠 + 𝑁𝐶 + 𝐶𝑆𝑟 (2)

𝑁𝐶 + 𝑁𝑆𝑟 + 𝑁𝐸𝑠 + 𝐶𝐸𝑟 (3)

𝑁𝐶 + 𝐶𝑆𝑟 (4)

𝐶𝐸𝑟 ≈ 0 (5)

𝑁𝐸𝑟+ 𝑁𝑆𝑠+𝐶𝑆𝑟 (6)

𝑁𝑆𝑟 + 𝑁𝐸𝑠 + 𝐶𝐸𝑟 (7)

𝐶𝑆𝑟 (8)

NEr signifies the time it takes to receive a byte through Ethernet on the network module.

Similarly, NEs is the time it takes to send the byte through Ethernet on the network module.

CEr is the time it takes for the C# program to receive the byte via Ethernet. Equation 1 is

represented by Fig. 9A. NSS is the time it takes to send the byte through the serial port on

the network module, and CSr is the time it takes for the C# program to receive the byte on

the serial port. NC is the amount of time for the core module to receive and send a byte.

Equation 2 is represented by Fig. 7A. NSr is the amount of time it takes to receive one byte

on the serial port in the network module. Equation 3 is visually depicted in Fig. 8A.

Equation 4 is depicted by Fig. 10A, and Equation 5 by Fig. 9B. The variables are

summarized in Table 7. Equations 6 – 8 are the counterparts to Equations 2 – 4 since they

forgo the use of the NeuroHub core module, and are depicted in Figs. 7B, 8B, and 10B.

39

Table 7 Variable summary

Variable Name Description

NEr Network module receive via Ethernet

NEs Network module send via Ethernet

CEr C# program receive via Ethernet

NSs Network module send via serial

NC NeuroHub Core module receive and send

NSr Network module receive via serial

CSr C# program receive via serial

The goal was to determine the latencies of each of the variables to understand the

characteristics of the entire system. Finding NC was straightforward, since it is simply a

matter of subtracting Equations 6 – 8 from their counterparts in Equations 2 – 4.

As seen in the example for the Lenovo laptop at 9600 bps in Fig. 24 for the

Ethernet to serial test configuration, there is about a 1 ms difference between including

the core module and forgoing it. Similar results are seen across the different computers

and test configurations involving the serial port. The mean times are summarized in Table

8.

Figure 24 Comparison of latencies A) with and B) without the core module for Lenovo laptop, test

configuration #1 at 9600 bps

40

Table 8 Average NeuroHub core module latencies

Computer Type NC Mean and standard deviation

Lenovo laptop 1.064 ± 0.11

Dell XPS laptop 1.028 ± 0.02

Desktop 1.044 ± 0.09

Average: 1.05 ± 0.08 ms

The average NeuroHub core module latency found was 1.05 ms. There is a 2.94% error

from the expected value found in Grzeczkowski & Ayaz’s previous work of 1.02 ms.

This error is most likely attributed to the fact that the measurement done in the previous

work was with the oscilloscope, while the 1.05 ms measurement was found with software

measurement.

In order to characterize the latencies within just the network module, equations 5

and 8 were subtracted from equations 1, 6, and 7. This isolates the network module terms

for each of the test configurations. This was done for all test computers. Figs. 25 - 27

shows the latencies for solely the network module across the three computers.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

9600 Bit/s 115200 Bit/s

Ti
m

e
D

le
ay

 (
m

s)

Lenovo Baud Rate Comparison Network Module

Figure 25 Network Module Latencies for Lenovo laptop

𝑁𝑆𝑟 + 𝑁𝐸𝑠 (UDP)
𝑁𝑆𝑟 + 𝑁𝐸𝑠 (TCP)

𝑁𝐸𝑟+ 𝑁𝑆𝑠 (UDP)
𝑁𝐸𝑟+ 𝑁𝑆𝑠 (TCP)

41

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

9600 Bit/s 115200 Bit/s

Ti
m

e
D

el
ay

 (
m

s)

Desktop Baud Rate Comparison Network Module

Figure 27 Network Module latencies for Desktop

𝑁𝑆𝑟 + 𝑁𝐸𝑠 (UDP)

𝑁𝑆𝑟 + 𝑁𝐸𝑠 (TCP)
𝑁𝐸𝑟+ 𝑁𝑆𝑠 (UDP)
𝑁𝐸𝑟+ 𝑁𝑆𝑠 (TCP)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

9600 Bit/s 115200 Bit/S

Ti
m

e
D

el
ay

 (
m

s)

Dell XPS Baud Rate Comparison Network Module

Figure 26 Network Module latencies on Dell XPS laptop

𝑁𝑆𝑟 + 𝑁𝐸𝑠 (UDP)

𝑁𝑆𝑟 + 𝑁𝐸𝑠 (TCP)
𝑁𝐸𝑟+ 𝑁𝑆𝑠 (UDP)
𝑁𝐸𝑟+ 𝑁𝑆𝑠 (TCP)

42

The NeuroHub network module was consistent across the laptops and the desktop. This

verifies that the network module works the same regardless of what computers it is

connected to. See Fig. 17 for the network module latencies for Ethernet only tests on all

three computers. Figs. 28-29 show the average latencies across all computers, and Table

7 summarizes the variables and their associated average latencies.

0

1

2

3

4

5

6

UDP TCP

La
te

n
cy

 (
m

s)

Protocol

Network Module Latencies Using Ethernet Only
(NEr+ NEs)

Figure 28 Average Latencies within Network Module for Ethernet only tests

0

1

2

3

4

5

6

NSr+NEs(UDP) NSr+NEs (TCP) NEr(UDP)+NSs NEr(TCP)+NSs

La
te

n
cy

 (
m

s)

Configuration

Network Module Latencies Involving Serial Port

9600 bps

115200 bps

Figure 29 Average Network Module Latencies for All Computers

43

Table 9 NeuroHub Network Module Average Latencies

Variable Network Protocol Baud Rate (bps) Latency (ms)

𝑵𝑬𝒓 + 𝑵𝑬𝒔
TCP ---------- 0.64 ± 0.10

UDP ------------ 0.62 ± 0.08

𝑵𝑺𝒓 + 𝑵𝑬𝒔

TCP
9600 4.83 ± 0.31

115200 0.93 ± 0.36

UDP
9600 4.74 ± 0.28

115200 0.63 ± 0.26

𝑵𝑬𝒓+ 𝑵𝑺𝒔

TCP
9600 0.65 ± 0.31

115200 0.80 ± 0.26

UDP
9600 0.62 ± 0.28

115200 0.78 ± 0.29

𝑵𝑪 ------- 9600 1.05 ± 0.08

4.5 Discussion

The NeuroHub network module provides a plug-and-play mechanism to send event

markers with minimal latency through TCP, UDP, and serial port. It can be connected to

the NeuroHub core module for additional serial ports, TTL, or parallel port. It was found

that the latencies across the laptops were very similar due to the use of the USB-serial

converters. Additionally, the type of USB-Serial converter will affect the latency. Using

native serial ports, however, had much more improved latencies at the higher baud rate

for the configurations with receiving on the serial port. It is advisable to use native serial

ports over USB-serial converters since there may be unknown lag based on the type of

converter. This is because native serial ports use hardware interrupts to receive data,

while USB-serial converters are using software interrupts. Hardware-dedicated interrupts

are more reliable than software interrupts. Overall, the network module achieved

consistent latencies below 7 ms and for certain configurations, below 1 ms.

44

5. Representative Use Case

5.1 Introduction

To test how the device can be used in a real-world research application, a simple test

experiment was done using OpenViBE and COBI Studio. OpenViBE is an open-source

software platform designed to record, filter, process, classify and visualize brain signals

in real time and is customizable through graphical programming. Users who do not have

programming experience can still use OpenViBE. Users drag and drop desired boxes into

their scenario window and connect the boxes to complete the signal flow. An OpenViBE

scenario using a P300 speller was used for the demonstration. The event markers are

automatically generated by OpenViBE. These markers were sent to the NeuroHub

network module through TCP. To do this, a custom OpenViBE box was coded in C++ to

interface with the network module. Markers received from the network module were then

sent via serial port at 9,600 bps and 115,200 bps to COBI studio, the fNIRS recording

software designed and developed at Drexel University. COBI studio received the markers

through an FTDI based USB-Serial converter, because it worked the most reliably with

COBI studio. This test setup highlights the ability of the NeuroHub network module to

convert one type of data stream into another. In this setup, Version 1 Ethernet Mode is

used. The configuration is shown in Fig. 30. The event markers were logged by

OpenViBE and COBI studio in separate files. To ascertain the delay between sending the

marker from OpenViBE to COBI studio via the network module, the time differential

from the first marker in OpenViBE was computed for all the following markers and

compared to that of the markers logged in COBI studio.

45

5.2 Results

Fig. 31 shows the histogram of delays between OpenViBE and COBI. The average

latency for transmission for both baud rates combined was 0.54 ms ± 0.37 ms. This result

confirms that the network module is able to provide submillisecond latencies.

Figure 30 Flow diagram for use case with OpenViBE and COBI Studio

NeuroHub
Network
Module

Event
markers via

TCP

Event
markers via

RS-232

fNIRS recording

EEG
recording

Figure 31 Average time differences between OpenViBE and COBI

studio temporal markers at 9.6 and 115.2 kbps

46

6. Conclusion and Future Work

6.1 Conclusion

The NeuroHub network module supports TCP, UPD, and serial port transmission of

event markers values between 1 and 255. The number of networked clients. baud rate,

and networking protocol is customizable through a GUI. It has been established that the

latency while using the network module version 1 will be less than 7 ms, and in most

cases sub millisecond, which is appropriate for the temporal needs of both fNIRS and

EEG. Upgrading to Version 2 further improved the latencies due to the faster Raspberry

Pi model used. Version 2 Ethernet mode has proven to be the most scalable version since

the addition of multiple clients does not substantially change the average latency. In

summation, the device met all the desired requirements.

6.2 Future Work

There are various features and approaches that could improve current NeuroHub. One

coding improvement for the NeuroHub Networking Module would be to enable use of

the USB ports on the Raspberry Pi to send or receive markers through a virtual serial

port. This could be used in setups where a USB stick is used to wirelessly send markers

to the software, such as with Cognionics EEG acquisition. A dynamic library link (DLL)

should be created so that code for existing programs can easily be configured to be able

to connect, send, and receive markers to the network module through TCP. The server

code on the Raspberry Pi could further be improved by applying a real-time patch to the

Linux kernel that the Pi runs on so that latencies can be reduced. Linux is not a real- time

operating system, so the time it takes to finish a task is not important and is not strictly

overseen as in a real-time operating system. The NeuroHub core module can also be

47

improved by changing two of the serial port connections from female to male; this will

allow more flexible setups based on whatever serial cables the lab has available. The

core module’s baud rate should also be increased from 9,600 bps to decrease the latency

from its current 1 ms setpoint.

The NeuroHub Network Module serves to bridge the divide between older and

newer systems. With its serial port interface, it can easily attach to the core module

which provides legacy port interface, and with its networking capability, it is able to

communicate with newer protocols as well. The future of communication technology is

the universal port, a single port that can be used for multiple purposes. An example of

this kind of technology is USB-C ports. Many newer computers have USB-C charging

and this port can also be used to receive and transmit data. Apple has already attempted

to eliminate the use of different ports for different devices by allowing users to connect

headphones and charge their Apple products through their patented lightning connector.

Technologies like Wi-Fi direct, Bluetooth are also becoming more prevalent as methods

to connect multiple devices together. Although neuroimaging systems and their

synchronization methods will not change in the short-term, the long-term future goals for

the NeuroHub network module is to consider these new technologies and how they can

be implemented to serve the needs of both old and emerging brain and body research

systems.

48

List of References

IEEE 1284: Parallel Ports. (2002). Retrieved from http://lavalink.com/wp-

content/uploads/white_papers/ieee1284_parallel_ports.pdf

How TCP/IP Works: TCP/IP. (2003). Retrieved from https://technet.microsoft.com/en-

us/library/cc786128(v=ws.10).aspx

Aghajani, H., & Omurtag, A. (2016, 16-20 Aug. 2016). Assessment of mental workload

by EEG+FNIRS. Paper presented at the 2016 38th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

Allison, B. Z., Wolpaw, E. W., & Wolpaw, J. R. (2007). Brain-computer interface

systems: progress and prospects. Expert review of medical devices, 4(4), 463-474.

doi:10.1586/17434440.4.4.463

Al-shargie, F., Tang, T. B., Badruddin, N., Dass, S. C., & Kiguchi, M. (2016). Mental

stress assessment based on feature level fusion of fNIRS and EEG signals.

Axelson, J., & Books24x, I. (2007). Serial port complete: COM ports, USB virtual COM

ports, and ports for embedded systems, second edition (2nd ed.). Madison, Wis:

Lakeview Research.

Ayaz, H., Izzetoglu, M., Shewokis, P. A., & Onaral, B. (2010). Sliding-window motion

artifact rejection for Functional Near-Infrared Spectroscopy. Conf Proc IEEE Eng

Med Biol Soc, 2010, 6567-6570. doi:10.1109/iembs.2010.5627113

Ayaz, H., & Onaral, B. (2009). Assessment of Cognitive Neural Correlates for a

Functional Near Infrared-Based Brain Computer Interface System (Vol. 5638, pp.

699-708). Berlin, Heidelberg: Springer Berlin Heidelberg.

Ayaz, H., Onaral, B., Izzetoglu, K., Shewokis, P. A., McKendrick, R., & Parasuraman, R.

(2013). Continuous monitoring of brain dynamics with functional near infrared

spectroscopy as a tool for neuroergonomic research: empirical examples and a

technological development. Frontiers in human neuroscience, 7, 871.

doi:10.3389/fnhum.2013.00871

Ayaz, H., Shewokis, P. A., Bunce, S., Izzetoglu, K., Willems, B., & Onaral, B. (2012).

Optical brain monitoring for operator training and mental workload assessment.

Neuroimage, 59(1), 36-47. doi:10.1016/j.neuroimage.2011.06.023

49

Ayaz, H., Shewokis, P. A., Bunce, S., & Onaral, B. (2011). An optical brain computer

interface for environmental control. Conf Proc IEEE Eng Med Biol Soc, 2011,

6327-6330. doi:10.1109/iembs.2011.6091561

Ayaz, H., Shewokis, P. A., Curtin, A., Izzetoglu, M., Izzetoglu, K., & Onaral, B. (2011).

Using MazeSuite and functional near infrared spectroscopy to study learning in

spatial navigation. J Vis Exp(56). doi:10.3791/3443

Babiloni, F., & Astolfi, L. (2014). Social neuroscience and hyperscanning techniques:

past, present and future. Neuroscience and biobehavioral reviews, 44, 76-93.

doi:10.1016/j.neubiorev.2012.07.006

Batula, A. M., Kim, Y. E. & Ayaz, H. (2017). Virtual and Actual Humanoid Robot

Control with Four-Class Imagery Based Optical Brain Computer Interface.

BioMed Research International.

Batula, A. M., Mark, J., Kim, Y. E., & Ayaz, H. (2016). Developing an Optical Brain-

Computer Interface for Humanoid Robot Control. In D. D. Schmorrow & C. M.

Fidopiastis (Eds.), Foundations of Augmented Cognition: Neuroergonomics and

Operational Neuroscience: 10th International Conference, AC 2016, Held as Part

of HCI International 2016, Toronto, ON, Canada, July 17-22, 2016, Proceedings,

Part I (pp. 3-13). Cham: Springer International Publishing.

Batula, A. M., Mark, J. A., Kim, Y. E., & Ayaz, H. (2017). Comparison of Brain

Activation during Motor Imagery and Motor Movement Using fNIRS. Comput

Intell Neurosci, 2017, 5491296. doi:10.1155/2017/5491296

Berka, C., Levendowski, D. J., Cvetinovic, M. M., Petrovic, M. M., Davis, G., Lumicao,

M. N., . . . Olmstead, R. (2004). Real-Time Analysis of EEG Indexes of

Alertness, Cognition, and Memory Acquired With a Wireless EEG Headset.

International Journal of Human-Computer Interaction, 17(2), 151-170.

doi:10.1207/s15327590ijhc1702_3

Cao, K., Guo, Y., & Su, S. W. (2015, 8-10 Dec. 2015). A review of motion related EEG

artifact removal techniques. Paper presented at the 2015 9th International

Conference on Sensing Technology (ICST).

Chance, B. (1991). Optical method. Annu Rev Biophys Biophys Chem, 20, 1-28.

doi:10.1146/annurev.bb.20.060191.000245

Chance, B., Zhuang, Z., UnAh, C., Alter, C., & Lipton, L. (1993). Cognition-activated

low-frequency modulation of light absorption in human brain. Proceedings of the

National Academy of Sciences of the United States of America, 90(8), 3770-3774.

50

Choi, I., Rhiu, I., Lee, Y., Yun, M. H., & Nam, C. S. (2017). A systematic review of

hybrid brain-computer interfaces: Taxonomy and usability perspectives. PLOS

ONE, 12(4), e0176674. doi:10.1371/journal.pone.0176674

Fazel-Rezai, R., Allison, B., Guger, C., Sellers, E., Kleih, S., & Kübler, A. (2012). P300

brain computer interface: current challenges and emerging trends. Frontiers in

Neuroengineering, 5(14). doi:10.3389/fneng.2012.00014

Grzeczkowski, N. V., Ayaz, H., Drexel University. School of Biomedical Engineering,

S., & Health, S. (2014). NeuroHub: Portable and Scalable Time Synchronization

Instrument for Brain-Computer Interface and Functional Neuroimaging

Research. (Dissertation/Thesis). Retrieved from

http://records.library.drexel.edu/record=b2487497

Harrivel, A. R., Weissman, D. H., Noll, D. C., & Peltier, S. J. (2013). Monitoring

attentional state with fNIRS. Frontiers in human neuroscience, 7, 861.

doi:10.3389/fnhum.2013.00861

Hirsch, J., Zhang, X., Noah, J. A., & Ono, Y. (2017). Frontal temporal and parietal

systems synchronize within and across brains during live eye-to-eye contact.

Neuroimage, 157, 314-330. doi:https://doi.org/10.1016/j.neuroimage.2017.06.018

Hirshfield, L. M., Chauncey, K., Gulotta, R., Girouard, A., Solovey, E. T., Jacob, R. J.

K., . . . Fantini, S. (2009). Combining Electroencephalograph and Functional Near

Infrared Spectroscopy to Explore Users’ Mental Workload. In D. D. Schmorrow,

I. V. Estabrooke, & M. Grootjen (Eds.), Foundations of Augmented Cognition.

Neuroergonomics and Operational Neuroscience: 5th International Conference,

FAC 2009 Held as Part of HCI International 2009 San Diego, CA, USA, July 19-

24, 2009 Proceedings (pp. 239-247). Berlin, Heidelberg: Springer Berlin

Heidelberg.

Huang, D., Qian, K., Fei, D.-Y., Jia, W., Chen, X., & Bai, O. (2012).

Electroencephalography (EEG)-Based Brain-Computer Interface (BCI): A 2-D

Virtual Wheelchair Control Based on Event-Related

Desynchronization/Synchronization and State Control. IEEE Transactions on

Neural Systems and Rehabilitation Engineering, 20(3), 379-388.

doi:10.1109/TNSRE.2012.2190299

Izzetoglu, K., Ayaz, H., Merzagora, A., Izzetoglu, M., Shewokis, P. A., Bunce, S. C., . . .

Onaral, B. (2011). The Evolution of Field Deployable fNIR Spectroscopy from

Bench to Clinical Settings. Journal of Innovative Optical Health Sciences, 04(03),

239-250. doi:10.1142/s1793545811001587

Izzetoglu, M., Izzetoglu, K., Bunce, S., Ayaz, H., Devaraj, A., Onaral, B., & Pourrezaei,

K. (2005). Functional near-infrared neuroimaging. IEEE Trans Neural Syst

Rehabil Eng, 13(2), 153-159. doi:10.1109/tnsre.2005.847377

51

Jaseja, H. (2015). Intractability in Epilepsy: Role of EEG Desynchronization in Early

Identification. Clinical EEG and Neuroscience, 46(3), 266-267.

doi:10.1177/1550059414528311

Kennett, R. (2012). Modern electroencephalography. Journal of Neurology, 259(4), 783-

789. doi:10.1007/s00415-012-6425-6

Kothe, C. (2013). Lab Streaming Layer. University of California San Diego.

Kothe, C. A., & Makeig, S. (2013). BCILAB: a platform for brain-computer interface

development. J Neural Eng, 10(5), 056014. doi:10.1088/1741-2560/10/5/056014

Lalitharatne, T. D., Teramoto, K., Hayashi, Y., & Kiguchi, K. (2013). Towards Hybrid

EEG-EMG-Based Control Approaches to be Used in Bio-robotics Applications:

Current Status, Challenges and Future Directions. Paladyn, Journal of Behavioral

Robotics, 4(2). doi:10.2478/pjbr-2013-0009

Lancaster, D. (1974). TTL Cookbook. Carmel, Indiana: SAMS.

Leamy, D. J., Collins, R., & Ward, T. E. (2011). Combining fNIRS and EEG to improve

motor cortex activity classification during an imagined movement-based task.

Paper presented at the International Conference on Foundations of Augmented

Cognition.

Lebedev, M. A., & Nicolelis, M. A. (2017). Brain-Machine Interfaces: From Basic

Science to Neuroprostheses and Neurorehabilitation. Physiol Rev, 97(2), 767-837.

doi:10.1152/physrev.00027.2016

Li, Y., Long, J., Yu, T., Yu, Z., Wang, C., Zhang, H., & Guan, C. (2010). An EEG-Based

BCI System for 2-D Cursor Control by Combining Mu/Beta Rhythm and P300

Potential. IEEE Transactions on Biomedical Engineering, 57(10), 2495-2505.

doi:10.1109/TBME.2010.2055564

Liu, Y., Ayaz, H., Curtin, A., Onaral, B., & Shewokis, P. A. (2013). Towards a Hybrid

P300-Based BCI Using Simultaneous fNIR and EEG. In D. D. Schmorrow & C.

M. Fidopiastis (Eds.), Foundations of Augmented Cognition: 7th International

Conference, AC 2013, Held as Part of HCI International 2013, Las Vegas, NV,

USA, July 21-26, 2013. Proceedings (pp. 335-344). Berlin, Heidelberg: Springer

Berlin Heidelberg.

Liu, Y., Ayaz, H., Onaral, B., & Shewokis, P. A. (2015). Neural Adaptation to a Working

Memory Task: A Concurrent EEG-fNIRS Study. In D. D. Schmorrow & C. M.

Fidopiastis (Eds.), Foundations of Augmented Cognition: 9th International

Conference, AC 2015, Held as Part of HCI International 2015, Los Angeles, CA,

52

USA, August 2-7, 2015, Proceedings (pp. 268-280). Cham: Springer International

Publishing.

Liu, Y., Ayaz, H., & Shewokis, P. A. (2017). Mental workload classification with

concurrent electroencephalography and functional near-infrared spectroscopy.

Brain-Computer Interfaces, 1-11. doi:10.1080/2326263X.2017.1304020

Liu, Y., Piazza, E. A., Simony, E., Shewokis, P. A., Onaral, B., Hasson, U., & Ayaz, H.

(2017). Measuring speaker–listener neural coupling with functional near infrared

spectroscopy. Scientific Reports, 7, 43293. doi:10.1038/srep43293

Mark, J., Thomas, N., Kraft, A., Casebeer, W. D., Ziegler, M., & Ayaz, H. (2018).

Neurofeedback for Personalized Adaptive Training. In C. Baldwin (Ed.),

Advances in Neuroergonomics and Cognitive Engineering: Proceedings of the

AHFE 2017 International Conference on Neuroergonomics and Cognitive

Engineering, July 17–21, 2017, The Westin Bonaventure Hotel, Los Angeles,

California, USA (pp. 83-94). Cham: Springer International Publishing.

McKendrick, R., Parasuraman, R., & Ayaz, H. (2015). Wearable functional near infrared

spectroscopy (fNIRS) and transcranial direct current stimulation (tDCS):

expanding vistas for neurocognitive augmentation. Front Syst Neurosci, 9, 27.

doi:10.3389/fnsys.2015.00027

McKendrick, R., Parasuraman, R., Murtza, R., Formwalt, A., Baccus, W., Paczynski, M.,

& Ayaz, H. (2016). Into the Wild: Neuroergonomic Differentiation of Hand-Held

and Augmented Reality Wearable Displays during Outdoor Navigation with

Functional Near Infrared Spectroscopy. Front Hum Neurosci, 10, 216.

doi:10.3389/fnhum.2016.00216

Mihara, M., Hattori, N., Hatakenaka, M., Yagura, H., Kawano, T., Hino, T., & Miyai, I.

(2013). Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of

motor imagery-based training in poststroke victims: a pilot study. Stroke; a

journal of cerebral circulation, 44(4), 1091.

Musselman, M., & Djurdjanovic, D. (2012). Time-frequency distributions in the

classification of epilepsy from EEG signals. Expert Systems With Applications,

39(13), 11413. doi:10.1016/j.eswa.2012.04.023

Naseer, N., & Hong, K.-S. (2015). fNIRS-based brain-computer interfaces: a review.

Frontiers in human neuroscience, 9, 3. doi:10.3389/fnhum.2015.00003

Okamoto, M., Dan, H., Dan, I., Sakamoto, K., Takeo, K., Shimizu, K., . . . Kohyama, K.

(2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via

the international 10–20 system oriented for transcranial functional brain mapping.

Neuroimage, 21(1), 99-111. doi:10.1016/j.neuroimage.2003.08.026

53

Pan, Y., Cheng, X., Zhang, Z., Li, X., & Hu, Y. (2017). Cooperation in lovers: An

fNIRS-based hyperscanning study. Human Brain Mapping, 38(2), 831-841.

doi:10.1002/hbm.23421

Pouliot, P., Tran, T. P. Y., Birca, V., Vannasing, P., Tremblay, J., Lassonde, M., &

Nguyen, D. K. (2014). Hemodynamic changes during posterior epilepsies: an

EEG-fNIRS study. Epilepsy research, 108(5), 883-890.

doi:10.1016/j.eplepsyres.2014.03.007

Putze, F., Hesslinger, S., Tse, C.-Y., Huang, Y., Herff, C., Guan, C., & Schultz, T.

(2014). Hybrid fNIRS-EEG based classification of auditory and visual perception

processes. Frontiers in Neuroscience, 8, 373. doi:10.3389/fnins.2014.00373

Quaresima, V., & Ferrari, M. (2016). Functional Near-Infrared Spectroscopy (fNIRS) for

Assessing Cerebral Cortex Function During Human Behavior in Natural/Social

Situations. Organizational Research Methods, 0(0), 1094428116658959.

doi:doi:10.1177/1094428116658959

Schomer, D. L., & Lopes da Silva, F. (2010). Niedermeyer's Electroencephalography:

Basic Principles, Clinical Applications, and Related Fields (Sixth;6;6th; ed.).

Philadelphia: Wolters Kluwer Health.

Sweeney, K. T., Ayaz, H., Ward, T. E., Izzetoglu, M., McLoone, S. F., & Onaral, B.

(2012). A Methodology for Validating Artifact Removal Techniques for

Physiological Signals. IEEE Transactions on Information Technology in

Biomedicine, 16(5), 918-926. doi:10.1109/TITB.2012.2207400

Teo, W.-P., Muthalib, M., Yamin, S., Hendy, A. M., Bramstedt, K., Kotsopoulos, E., . . .

Ayaz, H. (2016). Does a Combination of Virtual Reality, Neuromodulation and

Neuroimaging Provide a Comprehensive Platform for Neurorehabilitation? – A

Narrative Review of the Literature. Frontiers in human neuroscience, 10, 284.

doi:10.3389/fnhum.2016.00284

Vanutelli, M. E., Pezard, L., Nandrino, J., & Balconi, M. (2016). Intra and inter-brain

connectivity during cooperation: a fNIRS-based connectivity analysis.

Neuropsychological Trends(20), 154-155.

Villringer, A., & Chance, B. (1997). Non-invasive optical spectroscopy and imaging of

human brain function. Trends in Neurosciences, 20(10), 435-442.

doi:https://doi.org/10.1016/S0166-2236(97)01132-6

Villringer, A., Planck, J., Hock, C., Schleinkofer, L., & Dirnagl, U. (1993). Near infrared

spectroscopy (NIRS): A new tool to study hemodynamic changes during

activation of brain function in human adults. Neuroscience Letters, 154(1–2),

101-104. doi:https://doi.org/10.1016/0304-3940(93)90181-J

54

von Luhmann, A., Wabnitz, H., Sander, T., & Muller, K. R. (2016). M3BA: A Mobile,

Modular, Multimodal Biosignal Acquisition architecture for miniaturized EEG-

NIRS based hybrid BCI and monitoring. IEEE Trans Biomed Eng.

doi:10.1109/tbme.2016.2594127

Yin, X., Xu, B., Jiang, C., Fu, Y., Wang, Z., Li, H., & Shi, G. (2015). A hybrid BCI

based on EEG and fNIRS signals improves the performance of decoding motor

imagery of both force and speed of hand clenching. Journal of neural

engineering, 12(3), 036004.

Zich, C., Debener, S., Thoene, A.-K., Chen, L.-C., & Kranczioch, C. Simultaneous EEG-

fNIRS reveals how age and feedback affect motor imagery signatures.

Neurobiology of Aging, 49, 183-197. doi:10.1016/j.neurobiolaging.2016.10.011

55

Appendix A: NeuroHub Network Module Development and Setup

Materials List

1. Raspberry Pi Model 1 B

2. Raspberry Pi Model 3 B

3. SD card adapter x2

4. 8 – 32 GB Micro SDHC x3

5. Raspberry PIIO – MiniPiio RS232 add-on board

https://www.tindie.com/products/DTronixs/raspberry-piio-minipiio-rs232-add-on-

board/?pt=full_prod_search

6. Raspberry Pi GPIO to DB9M RS232 Serial Board

7. ModMyPi Modular (variable height) case for Raspberry Pi 2/3 complete set

https://www.amazon.com/Modular-variable-height-case-

Raspberry/dp/B01LYARY5D/ref=sr_1_1?ie=UTF8&qid=1494270226&sr=8-

1&keywords=modmypi+case

8. Ableconn PI232DB9K GPIO to DB9M RS232 Serial Stackable Board for

Raspberry Pi https://www.amazon.com/Ableconn-PI232DB9K-Serial-Stackable-

Raspberry/dp/B01LZO0K2Y/ref=sr_1_2?ie=UTF8&qid=1496342691&sr=8-

2&keywords=raspberry+pi+gpio+to+db9m+rs232+serial+board

Setup OS, programs, and files

The initial version uses the Raspberry Pi Model 1 B. This model uses a regular size SD

card. Install the Raspbian Jesse OS image onto the SD card, which can be obtained for

free from the Raspberry Pi website. The distribution used here was released on March 18,

https://www.tindie.com/products/DTronixs/raspberry-piio-minipiio-rs232-add-on-board/?pt=full_prod_search
https://www.tindie.com/products/DTronixs/raspberry-piio-minipiio-rs232-add-on-board/?pt=full_prod_search
https://www.amazon.com/Modular-variable-height-case-Raspberry/dp/B01LYARY5D/ref=sr_1_1?ie=UTF8&qid=1494270226&sr=8-1&keywords=modmypi+case
https://www.amazon.com/Modular-variable-height-case-Raspberry/dp/B01LYARY5D/ref=sr_1_1?ie=UTF8&qid=1494270226&sr=8-1&keywords=modmypi+case
https://www.amazon.com/Modular-variable-height-case-Raspberry/dp/B01LYARY5D/ref=sr_1_1?ie=UTF8&qid=1494270226&sr=8-1&keywords=modmypi+case
https://www.amazon.com/Ableconn-PI232DB9K-Serial-Stackable-Raspberry/dp/B01LZO0K2Y/ref=sr_1_2?ie=UTF8&qid=1496342691&sr=8-2&keywords=raspberry+pi+gpio+to+db9m+rs232+serial+board
https://www.amazon.com/Ableconn-PI232DB9K-Serial-Stackable-Raspberry/dp/B01LZO0K2Y/ref=sr_1_2?ie=UTF8&qid=1496342691&sr=8-2&keywords=raspberry+pi+gpio+to+db9m+rs232+serial+board
https://www.amazon.com/Ableconn-PI232DB9K-Serial-Stackable-Raspberry/dp/B01LZO0K2Y/ref=sr_1_2?ie=UTF8&qid=1496342691&sr=8-2&keywords=raspberry+pi+gpio+to+db9m+rs232+serial+board

56

2016. Other distributions are found here:

http://downloads.raspberrypi.org/raspbian/images/ . It is possible to write the image file

with Win32DiskImager if using Windows. 3 micro SD cards and 2 full-size SD adapters

should ideally be used for each of the configurations – Version 1 Ethernet mode, Version

2 Ethernet mode, and Version 2 wireless mode. Make sure to save the SD card image

after making any substantial changes. At the end of development, there will be three

different image versions for the SD card.

In the cmdline.txt file of the boot directory on the SD card, append the line

ip=192.168.137.99. Plug in the Ethernet cable from the Raspberry Pi to the computer.

Enable sharing Internet connection on the Local Area Network (LAN) in the Wi-Fi

adapter settings. Go to the properties of the LAN, right click on ipv4, select properties,

and select use the following address. Type in 192.168.137.1 with subnet mask

255.255.2525.0 and click ok. Download the free version of MobaXTerm to SSH into the

Pi. Create a new session with IP address as 192.168.137.99. To login, user name is pi and

password is raspberrypi.

Update pi with

sudo-apt get update

sudo-pat get upgrade

Then install Wiring Pi, with the following commands:

cd

git clone git://git.drogon.net/wiringPi

cd ~/wiringPi

git pull origin

./build

Check installation with:

gpio -v

gpio readall

 Next, install gtkmm 3.0 for the GUI using

http://downloads.raspberrypi.org/raspbian/images/

57

sudo apt-get install libgtkmm-3.0-dev

Stop the console from using the serial port by typing

sudo systemctl stop serial-getty@ttyAMA0.service

sudo systemctl disable serial-getty@ttyAMA0.service

If using Raspberry Pi 3 also do

sudo systemctl stop serial-getty@ttyS0.service

sudo systemctl disable serial-getty@ttyS0.service

Then edit cmdline with
sudo nano /boot/cmdline.txt

Delete the line console=serial0,115200

For Raspberry Pi 3
sudo nano /boot/config.txt

Add the following line to the end of the file
dtoverlay=pi3-disable-bt

Bluetooth uses the high performance GPIO pins that were previously used on the

Raspberry Pi 1 for the serial port.

To configure a static IP address:

sudo nano /etc/network/interfaces

After eth0 inet manual place dns-nameservers 8.8.8.8 8.8.4.4

In /etc/dhcpcd.conf insert following lines at the very end:

interface eth0

static ip address = 192.168.137.99

static routers=192.168.137.1

static domain_name_servers=192.168.137.1

Save the new updated image on the SD card to an external hard drive.

Wireless Mode Configuration (Raspberry Pi 3 only)

If trying to configure Version 2 (Raspberry Pi 3) wireless mode perform the following

steps:

cd /etc/network

sudo cp interfaces interfaces-wifi

sudo nano interfaces-adhoc

mailto:serial-getty@ttyAMA0.service

58

Copy the following information into the interfaces-adhoc file

auto lo

iface lo inet loopback

iface eth0 inet dhcp

auto wlan0

iface wlan0 inet static

address 192.168.137.99

netmask 255.255.255.0

wireless-channel 1

wireless-essid RPIWireless

wireless-mode ad-hoc

Ctrl+X, yes and enter to save the file.

Type in the following command to switch to adhoc mode:

sudo cp /etc/network/interfaces-adhoc interfaces

Switch back to Wi-Fi with

sudo cp /etc/network/interfaces-wifi interfaces.

Install a package to allow the Pi to assign any connected device an appropriate IP

address:

sudo apt-get install isc-dhcp-server.

Edit the dhcpd.conf file with

sudo nano /etc/dhcp/dhcpd.conf.

Comment out all other lines and ensure that only these are not commented:

ddns-update-style interim;

default-lease-time 600;

max-lease-time 7200;

authoritative;

log-facility local7;

subnet 192.168.137.0 netmask 255.255.255.0 {

range 192.168.137.5 192.168.137.150;

}

Save the config file and reboot. From another computer, you will be able to connect to

the new adhoc network called RPIWireless. Then it is possible to SSH into the Pi with

the address 192.168.137.99. Save this new image to a different file name on an external

hard drive.

59

Writing and saving the network module server code

Create a folder in the home directory with

mkdir foldername

Navigate inside the folder with

cd foldername

Drag and drop the NeuroHubNetworkModule.cpp.

Drag and drop the NeuroHubGui3.glade file from the host computer to the SFTP panel in

MobaXTerm inside the newly created folder. NeuroHubGui3.glade can be found at

https://github.com/nehatk17/NeuroHubNetworkModule/tree/master/Codes/Network%20

Module%20Programming. Alternatively, it is possible to create a new .glade file by

downloading the Glade GUI program from https://glade.gnome.org/. Check the default

preferences and begin making the GUI by dragging and dropping the desired elements.

For radio buttons, ensure only one of the ones you wish to group is checked. In the

General tab of the other buttons, write the name of the active button in the Group

attribute. To populate the combobox, Click on ComboBox model ellipses in the General

tab, and select New. Change column type to gchararray. Scroll down in the same panel

and click add new row. For sequential editing, select horizontal. Type in the desired row

names. Click on the combobox in the widget panel at the right of the screen and hit the

edit button that appears at the taskbar at the top. Click the hierarchy tab and select Add.

In the Properties and Attributes section next to Text, hit the drop-down menu that says

unset and select gchararray1-gchararray. Exit, and when you click on the drop down in

the window, the items you initially wrote show up. See

https://www.youtube.com/watch?v=Z5_F-rW2cL8 for a visual tutorial.

 Compile the code with

https://github.com/nehatk17/NeuroHubNetworkModule/tree/master/Codes/Network%20Module%20Programming
https://github.com/nehatk17/NeuroHubNetworkModule/tree/master/Codes/Network%20Module%20Programming
https://glade.gnome.org/
https://www.youtube.com/watch?v=Z5_F-rW2cL8

60

g++ NeuroHubNetworkModule.cpp -o NeuroHubNetworkModule -std=c++11 `pkg-

config gtkmm-3.0 --cflags --libs` -pthread -lwiringPi -lrt

To run the code, type

export XAUTHORITY = /home/pi/.Xauthority

Then

sudo ./NeuroHubNetworkModule

The program should be running. First select number of networking clients and press

connect. The code will listen for clients to connect and once the maximum number of

clients are reached, threads for each client are established to distribute the event markers.

To automate running the program once login is complete, do the following from the

home directory:

sudo nano start_script.sh

In the empty file that opens, type:

export XAUTHORITY=/home/pi/Xauthority

cd foldername

sudo ./NeuroHubNetworkModule

Then exit and save.

Enter the following command:

sudo chmod u+x start_script.sh

Then enter:

sudo nano .bashrc

At the very end of this file, add

sudo ./start_script.sh

Exit and save. Reboot (sudo reboot) to see changes take effect. Save the working image to

a new file on an external hard drive.

61

Attaching Add-On Boards and Case

The RS232 boards used are attached mechanically to the pins on either Raspberry Pi Model.

The DTronix board is suitable for the Raspberry Pi Model 1 B, while Ableconn is used for

the Raspberry Pi Model 3. The Ableconn board ships with mounting accessories for

stabilization. The wires should be attached to the pins as shown in the picture below. The red

wire goes to the leftmost bottom row of pins. The black wire goes to the 3rd pin from the left

in the top row. The green wire connects to the pin next to the black wire’s pin, and brown

connects to the neighboring pin to the right of the green. The following image shows the

pinout of the Raspberry Pi board. Pins 14 and 15 are the transmit (Tx) and receive (Rx) pins

for the UART, which will be connected to the corresponding pins on the expansion board.

Raspberry Pi Model 1B or 3B GPIO Pinout

62

The modular case will fit the Raspberry Pi 3 and there are screws to hold the spacers in place.

One of the spacers needs to be cut so that the serial port can be visible. Mark the places

where it needs to be cut. Cut through the marked parts with large scissors. Finally, place a

second spacer and the cover on. Insert medium sized screws on the bottom of the case

(provided in the modular kit) to secure the additional case components. Using a small

extender attached to the serial port on the Raspberry Pi will give easier access to the port.

The case for the Raspberry Pi 1 was 3D printed at the Innovation Studio at Drexel

University (located at Drexel One Plaza, 2nd floor). The .prt files used to design the case in

CREO can be accessed at

https://github.com/nehatk17/NeuroHubNetworkModule/tree/master/3D%20Printing%20Files

. To ensure the baseplate and cover fit properly, create an assembly and add the necessary

references. To generate the appropriate 3D print files, save the .prt file as .stl, select apply

and hit ok for the default settings. The width dimensions of the cover and base may need to

be adjusted slightly to fit the audio port better. The final 3D printed cover was adhered to the

base with Superglue.

Connecting multiple network clients in Ethernet or wireless mode

For Ethernet mode, it will be necessary to use a Windows 7 computer as it proved difficult

and unreliable to try and create the hosted network from a Windows 10.

https://github.com/nehatk17/NeuroHubNetworkModule/tree/master/3D%20Printing%20Files

63

1. In Windows 7, go to the network and sharing center, and click “set up a new

connection or network”.

2. Scroll down in the dialogue box and select “Set up a wireless ad hoc network”.

3. Enter a name and if desired, a password and hit next.

4. If using other Windows 7 computers, simply connect to the ad-hoc network that

shows up in Wi-Fi connections icon at the bottom right corner of the taskbar.

5. If using Windows 10 computers, perform the following steps:

a. Go to the network and sharing center and select “Set up a new connection or

network”.

b. Select “Manually connect to wireless network”

c. Enter the SSID of the adhoc network created on the Windows 7 computer as

well as the password, if any.

d. Uncheck start this connection automatically, click next and close.

e. In the command line, type the following: netsh wlan set

profileparameter <ssid> connectiontype=ibss

connectionmode=manual

f. Then type: netsh wlan connect <ssid>. Now the Windows 10 computer

should be connected to the adhoc network started on the Windows 7.

g. SSH into the Raspberry Pi from the Windows 7 computer as described at the

beginning of this appendix. Make sure to assign different IP addresses to the

Windows 10 computers in the range 192.168.137.X, where X is any number

from 2 – 254. Do this by changing the TCP/IP properties in the Ad-hoc Wi-Fi

in the Network Connections panel.

6. For wireless mode, repeat the same steps for the Windows 10 computer, but instead

using the SSID generated by the Raspberry Pi 3. Windows 7 computers will be able

64

to connect without any command line input. There is no need to assign the connected

computers new IP addresses in the range of 192.168.137.X as appropriate addresses

are automatically assigned by the Raspberry Pi 3 to the connected computers.

65

Appendix B: Source Code

Network Module Server
/*

compile with g++ NeuroHubNetworkModule.cpp -o NeuroHubNetworkModule -

std=c++11 `pkg-config gtkmm-3.0 --cflags --libs` -pthread -lwiringPi

if necessary use -g after g++ in compilation and link to use with gdb.

to run:

export XAUTHORITY=/home/pi/.Xauthority

sudo ./NeuroHubNetworkModule

or gdb ./NeuroHubNetworkModule

*/

#include <gtkmm.h>

#include <iostream>

#include <stdio.h>

#include <stdlib.h>

#include <cstdlib>

#include <iostream>

#include <chrono>

#include <cstring>

#include <string.h> // memset

#include <pthread.h>

#include <sys/socket.h>

#include <sys/types.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <unistd.h>

#include <netdb.h>

#include <vector>

#include <string>

#include <fstream>

#include <algorithm>

#include <sys/time.h>

#include <sched.h>

#include <time.h>

#include <sys/mman.h>

#include <errno.h>

#include <wiringPi.h>

#include <wiringSerial.h>

using namespace std;

// Gtk widgets

Gtk::SpinButton *spinbutton1 = 0;

Gtk::ComboBox *combobox1 = 0;

Gtk::RadioButton *radiotcp, *radioudp = 0;

66

Gtk::Button *button_stop, *button_start = 0;

//variables for network connection

#define PORT "8888"

#define IP_ADDR "192.168.137.99"

#define MAXLEN 1

int BACKLOG =0;

int serfd;

static unsigned int cli_count = 0;

size_t size = sizeof(struct sockaddr_in);

struct sockaddr_in their_addr;

vector<sockaddr_in> udparray;

vector<int> tcparray;

bool ard = false;

bool wiringpisetup = false;

bool exitard = false;

int sock;

int baudrate; //9600 or 115200;

int baudint = 0;

pthread_t servbegin;

pthread_mutex_t sendcli;

bool tcpbool;

bool looprun = true;

bool ardrun = true;

bool enterard=false;

//network functions functions

void send_message_all_udp(char *s, int mysock);

void send_message_all_tcp(char *s);

void send_message_udp(char *s, int uid, int port);

void send_message_tcp(char *s, int uid);

void send_client_udp(char *s, int mysock, int port);

void send_client_tcp(char *s, int sock);

void *from_ard_udp(void *);

void *from_ard_tcp(void *);

void *handle_conn_udp(void *);

void *handle_conn_tcp(void *);

void *begin_server(void *);

/*send message to original sender*/

void send_client_udp(char *s, int mysock, int myport){

 int i;

 for(i=0;i<BACKLOG;i++){

 if(htons(udparray[i].sin_port) == myport){

 sendto(mysock,s,1,0,(struct

sockaddr*)&udparray[i], sizeof udparray[i]);

 }

 }

}

67

//send message to all clients except original sender

void send_message_udp(char *s, int mysock, int myport){

 int i;

 for(i=0;i<BACKLOG;i++){

 if(htons(udparray[i].sin_port) != myport){

 sendto(mysock,s,1,0,(struct

sockaddr*)&udparray[i], sizeof udparray[i]);

 }

 }

}

/* Send message to all clients */

void send_message_all_udp(char *s, int mysock){

 int i;

 for(i=0;i<BACKLOG;i++){

 sendto(mysock,s,1,0,(struct sockaddr*)&udparray[i],

sizeof udparray[i]);

 }

}

/* ///// TCP send functions //// */

/*send message to original sender*/

void send_client_tcp(char *s, int mysock){

 int i;

 for(i=0;i<BACKLOG;i++){

 if(tcparray[i]){

 if(tcparray[i] == mysock){

 send(tcparray[i], s, 1,0);

 }

 }

 }

}

//send message to all clients except original sender

void send_message_tcp(char *s, int mysock){

 int i;

 for(i=0;i<BACKLOG;i++){

 if(tcparray[i]){

 if(tcparray[i] != mysock){

 send(tcparray[i], s, 1,0);

 }

 }

 }

}

/* Send message to all clients */

void send_message_all_tcp(char *s){

 int i;

 for(i=0;i<BACKLOG;i++){

 if(tcparray[i]){

 send(tcparray[i], s, 1,0);

 }

68

 }

}

/*receive messages from Arduino*/

void *from_ard_udp(void *thissock)

{

 int mysock = *(int*)thissock;

 int counter = 1;

 int ardint;

 char ardchar;

 char *mesg;

 while (ardrun)

 {

 if (serialDataAvail (serfd) == -1)

 {

 fprintf(stdout, "(Serial) No data able to be received: %s\n",

strerror (errno));

 exit(EXIT_FAILURE);

 }

 ardint = serialGetchar(serfd) ;

 //cout << ardint << endl;

 if (ardint > 0)

 {

 //cout << ardint << endl;

 // usleep(400);

 ardchar = char(ardint);

 mesg = &ardchar;

 pthread_mutex_lock(&sendcli);

 send_message_all_udp(mesg, mysock);

 pthread_mutex_unlock(&sendcli);

 }

 }

 cout << "exit from_ard" << endl;

 exitard= true;

}

/* handle the connections from client */

void *handle_conn_udp(void *pnewsock)

{

 int mysock = *(int*)pnewsock;

 char client_msg[MAXLEN];

 int read_size;

 struct timeval tv;

 int clientint;

 int myport;

69

while(looprun){

 read_size = recvfrom(mysock, client_msg, 1, 0, (struct

sockaddr*)&their_addr, &size);

 clientint = int(*client_msg);

 myport = htons(their_addr.sin_port);

 if (clientint >0)

 {

 //usleep(1000);

 pthread_mutex_lock(&sendcli);

 send_client_udp(client_msg,mysock,myport); //was send_message

 serialPuts (serfd, &(*client_msg)) ;

 pthread_mutex_unlock(&sendcli);

 }

 }

 cout << "exit handle -conn " << endl;

}

/* TCP data handling */

void *from_ard_tcp(void *)

//void *from_ard(int sock)

{

;

/* Declare ourself as a real time task */

 int counter = 1;

 int ardint;

 char ardchar;

 char *mesg;

 while (ardrun)

 {

 if (serialDataAvail (serfd) == -1)

 {

 fprintf(stdout, "(Serial) No data able to be received: %s\n",

strerror (errno));

 exit(EXIT_FAILURE);

 }

70

 ardint = serialGetchar (serfd) ;

 if (ardint > 0)

 {

 //usleep(1000);

 // cout << ardint << endl;

 ardchar = char(ardint);

 mesg = &ardchar;

pthread_mutex_lock(&sendcli);

send_message_all_tcp(mesg);

pthread_mutex_unlock(&sendcli);

 }

 }

 cout << "exit from_ard" << endl;

 exitard=true;

}

/* handle the connections from client */

void *handle_conn_tcp(void *pnewsock)

{

 int mysock = *(int*)pnewsock;

 char client_msg[MAXLEN];

 int read_size;

 int clientint;

 int mesgcount = 0;

 int myport;

 while(looprun){

 read_size = recv(mysock, client_msg, 1, 0);

 clientint = int(*client_msg);

 if (clientint > 0)

 {

 // usleep(1000);

 client_msg[read_size] = '\0';

 /* cout << "length of client message: " << strlen(client_msg) <<

endl;

 cout << "# bytes is : " << read_size << endl; */

71

 pthread_mutex_lock(&sendcli);

 send_client_tcp(client_msg,mysock); //was send_message

 serialPuts(serfd, &(*client_msg)) ;

 pthread_mutex_unlock(&sendcli);

 }

 }

 cout << "exit handle -conn " << endl;

}

void *begin_server(void *)

{

 //pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);

 looprun = true;

 ardrun = true;

 BACKLOG = spinbutton1->get_value_as_int();

 baudint = combobox1->get_active_row_number();

 if (baudint == 0)

 {

 baudrate = 9600;

 }

 else

 {

 baudrate = 115200;

 }

 tcpbool = radiotcp->get_active();

 struct addrinfo hints, *res;

 int reuseaddr = 1; // True

 // Get the address info

 memset(&hints, 0, sizeof hints);

 hints.ai_family = AF_INET;

 if (tcpbool==1)

 {

 hints.ai_socktype = SOCK_STREAM;

 }

 else{

 hints.ai_socktype = SOCK_DGRAM;} //TCP = SOCK_STREAM, SOCK_DGRAM =

UDP)

 if (getaddrinfo(IP_ADDR, PORT, &hints, &res) != 0) {

 perror("getaddrinfo");

 exit (EXIT_FAILURE);

 //return 1;

 }

72

 // Create the socket

 sock = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

 if (sock == -1) {

 perror("socket");

 exit (EXIT_FAILURE);

 // return 1;

 }

 // Enable the socket to reuse the address

 if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &reuseaddr,

sizeof(int)) == -1) {

 perror("setsockopt");

 ::close(sock);

 exit (EXIT_FAILURE);

 //shutdown(sock,2);

 // return 1;

 }

 // Bind to the address

 if (bind(sock, res->ai_addr, res->ai_addrlen) == -1) {

 perror("bind");

 ::close(sock);

 exit (EXIT_FAILURE);

 //shutdown(sock,2);

 //return 0;

 }

 freeaddrinfo(res);

 if (tcpbool ==1)

 {

 if (listen(sock, BACKLOG) == -1) {

 perror("listen");

 exit (EXIT_FAILURE);

 }

 }

 if((serfd= serialOpen("/dev/ttyAMA0", baudrate))<0) //opens on-

board serial port, baud rate 9600

 {

 fprintf(stderr, "unable to open serial device: %s\n",

strerror(errno));

 exit(EXIT_FAILURE);

 }

 if (!wiringpisetup)

 {

 if (wiringPiSetup() == -1)

 {

 fprintf (stdout, "Unable to start wiring Pi: %s\n", strerror

(errno));

 exit(EXIT_FAILURE);

 }

 else

 {

 wiringpisetup=true;

 }

73

 }

 cout << "listening for connections" << endl;

 // Main loop - accepting initial connections from the # clients

specified.

 // Main loop

 bool running = true;

 // Initialize clients

 while (running)

 {

 char client_msg[MAXLEN];

 if (tcpbool ==1)

 {

 size_t size = sizeof(struct sockaddr_in);

 struct sockaddr_in their_addr;

 int clilen = sizeof(their_addr);

 int newsock = accept(sock, (struct sockaddr*)&their_addr, &size);

 if (newsock == -1)

 {

 perror("accept");

 exit (EXIT_FAILURE);

 // return -1;

 }

 cli_count++;

 printf("Got a connection from %s on port %d\n",

inet_ntoa(their_addr.sin_addr), htons(their_addr.sin_port));

 tcparray.push_back(newsock);

 if (cli_count == BACKLOG)

 {

 cout << "Max clients reached" << endl;

 running = false;

 break;

 }

 }

 else{

 int byte_count = recvfrom(sock, client_msg, 1, 0, (struct

sockaddr*)&their_addr, &size);

 cli_count++;

 printf("Got a connection from %s on port %d\n",

inet_ntoa(their_addr.sin_addr), htons(their_addr.sin_port));

 udparray.push_back(their_addr);

 if (cli_count == BACKLOG)

 {

 cout << "Max clients reached" << endl;

 running = false;

 break;

 }

 }

 }

 /* Send message to all clients that server is ready to accept data */

74

 char r = (char)(cli_count);

 char *mesg = &r;

 if (tcpbool == 1)

 {

 send_message_all_tcp(mesg);

 }

 else{

 send_message_all_udp(mesg,sock);

 }

 pthread_t *ptr, from_ard_t;

 ptr =static_cast<pthread_t*>(malloc(sizeof(pthread_t)*(cli_count)));

 int i;

 if (tcpbool==1)

 {

 for (i=0;i<(BACKLOG);i++)

 {

 if (pthread_create(&ptr[i], NULL, handle_conn_tcp, (void

*)&tcparray[i]) != 0)//was newsock

 {

 fprintf(stderr, "Failed to create thread\n");

 exit (EXIT_FAILURE);

 }

 }

 if (pthread_create(&from_ard_t, NULL, from_ard_tcp, NULL)!=0)

 {

 fprintf(stderr, "Failed to create thread\n");

 }

 enterard=true;

 }

 else{

 for (i=0;i<(BACKLOG);i++)

 {

 if (pthread_create(&ptr[i], NULL, handle_conn_udp, (void *)&sock)

!= 0)//was newsock

 {

 fprintf(stderr, "Failed to create thread\n");

 exit (EXIT_FAILURE);

 }

 }

 if (pthread_create(&from_ard_t, NULL, from_ard_udp, (void

*)&sock)!=0)

 {

 fprintf(stderr, "Failed to create thread\n");

 }

75

 enterard=true;

 }

 cout << "Created threads with arduino" << endl;

 pthread_join(from_ard_t, NULL);

 cout << "joined arduino thread" << endl;

 for(i = 0; i < (BACKLOG); i++)

 {

 pthread_join(ptr[i], NULL);

 }

 cout << "joined send/recv threads" << endl;

 close(sock);

 serialClose(serfd);

 udparray.clear();

 tcparray.clear();

 cli_count = 0;

 pthread_exit(NULL);

 button_start->set_sensitive(true);

 button_stop->set_sensitive(false);

}

//GUI functions

void buttonstart_clicked()

{

 if (pthread_create(&servbegin, NULL, begin_server, NULL)!=0)

 {

 fprintf(stderr, "Failed to create thread\n");

 }

 button_start->set_sensitive(false);

 button_stop->set_sensitive(true);

}

void buttonstop_clicked()

{

 cout << "End" << endl;

 looprun= false;

 ardrun = false;

 pthread_cancel(servbegin);

 pthread_join(servbegin, NULL);

 serialClose(serfd);

 ::close(sock);

 udparray.clear();

 tcparray.clear();

76

 cli_count = 0;

 button_stop->set_sensitive(false);

 if (enterard)

 {

 while (!exitard)

 {

 }

 button_start->set_sensitive(true);

 }

 else

 {

 button_start->set_sensitive(true);

 }

enterard = false;

exitard = false;

}

int main(int argc, char **argv)

{

 Glib::RefPtr<Gtk::Application> app = Gtk::Application::create(argc,

argv, "org.gtkmm.example");

 //Load the GtkBuilder file and instantiate its widgets:

 Glib::RefPtr<Gtk::Builder> refBuilder = Gtk::Builder::create();

 try

 {

 refBuilder->add_from_file("NeuroHubGui3.glade");

 }

 catch(const Glib::FileError& ex)

 {

 std::cerr << "FileError: " << ex.what() << std::endl;

 return 1;

 }

 catch(const Glib::MarkupError& ex)

 {

 std::cerr << "MarkupError: " << ex.what() << std::endl;

 return 1;

 }

 catch(const Gtk::BuilderError& ex)

 {

 std::cerr << "BuilderError: " << ex.what() << std::endl;

 return 1;

 }

 Gtk::Window *window1 = 0;

 refBuilder->get_widget("window1", window1);

 refBuilder->get_widget("button_stop", button_stop);

 refBuilder->get_widget("button_start", button_start);

 refBuilder->get_widget("spinbutton1", spinbutton1);

 refBuilder->get_widget("combobox1", combobox1);

77

 refBuilder->get_widget("radiotcp",radiotcp);

 refBuilder->get_widget("radioudp",radioudp);

 Gtk::RadioButton::Group group = radiotcp->get_group();

 Glib::RefPtr<Gtk::Adjustment> m_adjustment =

Gtk::Adjustment::create(1.0, 1.0, 9.0, 1.0, 9.0, 0.0);

 spinbutton1->set_adjustment(m_adjustment);

 // connect more signals

 combobox1->set_active(0);

 button_start-

>signal_clicked().connect(sigc::ptr_fun(buttonstart_clicked));

 button_stop-

>signal_clicked().connect(sigc::ptr_fun(buttonstop_clicked));

 app->run(*window1);

 return 0;

}

(Starting Serial) C# Testing Program

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

using System.Diagnostics;

using System.IO;

using System.IO.Ports;

using System.Threading;

using System.Net.Sockets;

using System.Net;

using HighResTimer;

namespace OneClient_StartSerial

{

 public partial class Form1 : Form

 {

 Stopwatch stopwatch = new Stopwatch();

 Decimal datapoints;

 StringBuilder sb = new StringBuilder();

 SerialPort serialPortOut = new SerialPort();

 SerialPort serialPortIn = new SerialPort();

 TcpClient tcpclnt;

78

 UdpClient udpclnt;

 IPEndPoint ep;

 Timing mytimer = new Timing();

 int baudrate;

 Thread sendThread;

 Thread recvThread;

 ThreadStart sending;

 ThreadStart receiving;

 NetworkStream stream;

 public Form1()

 {

 InitializeComponent();

 }

 private void startbutton_Click(object sender, EventArgs e)

 {

 if (radiotcp.Checked)

 {

 radioudp.Enabled = false;

 radioserial.Enabled = false;

 }

 else if (radioudp.Checked)

 {

 radioserial.Enabled = false;

 radiotcp.Enabled = false;

 }

 else

 {

 radiotcp.Enabled = false;

 radioudp.Enabled = false;

 }

 comPortOut.Enabled = false;

 startbutton.Enabled = false;

 if (serialPortOut.IsOpen) { serialPortOut.Close(); }

 if (serialPortIn.IsOpen) { serialPortIn.Close(); }

 baudrate =

Int32.Parse(this.baudratebox.SelectedItem.ToString());

 serialPortOut.PortName =

comPortOut.SelectedItem.ToString();

 serialPortOut.BaudRate = baudrate;//

 serialPortOut.Open();

 serialPortOut.DiscardOutBuffer();

 if (radioserial.Checked)

 {

 serialPortIn.PortName =

comPortIn.SelectedItem.ToString();

 serialPortIn.BaudRate = baudrate;//

 serialPortIn.Open();

 serialPortIn.DiscardInBuffer();

 }

79

 //set priority to high

 // Process.GetCurrentProcess().PriorityClass =

ProcessPriorityClass.High;

 //Thread.CurrentThread.Priority = ThreadPriority.Highest;

 //clear stringbuilder

 sb.Clear();

 Byte[] bb = new byte[1]; //1 byte of data coming in

 //serialPortOut.DiscardOutBuffer();

 datapoints = numericUpDown1.Value;

 //non loop format - for cppserv

 if (radiotcp.Checked)

 {

 tcpclnt = new TcpClient();

 textBox1.AppendText("TCP Connecting... \n");

 tcpclnt.Connect("192.168.137.99", 8888); //address of

RPi on arbitrary non privileged port

 textBox1.AppendText("TCP Connected \n");

 stream = tcpclnt.GetStream();

 int bytes = stream.Read(bb, 0, 1);

 }

 else if (radioudp.Checked)

 {

 try

 {

 udpclnt = new UdpClient();

 ep = new

IPEndPoint(IPAddress.Parse("192.168.137.99"), 8888);

 textBox1.AppendText("UDP Connecting... \n");

 udpclnt.Connect(ep);

 textBox1.AppendText("UDP Connected \n");

 byte[] writebyte = BitConverter.GetBytes(1);

 udpclnt.Send(writebyte, writebyte.Length);

 bb = udpclnt.Receive(ref ep);

 }

 catch

80

 {

 return;

 }

 }

 else

 {

 }

 //intialize network connections

 /*Receive the welcome from server */

 mytimer.Start();

 int numback = bb[0];

 textBox1.AppendText("Received initial message from server: "

+ bb[0] + "\n");

 textBox1.AppendText("Warmup \n");

 if (baudrate == 9600)

 {

 while (mytimer.Duration * 1000 < 1500)

 {

 }

 }

 /* stopwatch.Restart();

 // while (stopwatch.ElapsedMilliseconds < 1500)

 {

 }

 stopwatch.Stop();*/

 textBox1.AppendText("Beginning Testing");

 textBox1.AppendText(Environment.NewLine);

 ThreadProgram clientObject = new ThreadProgram(udpclnt, ep,

stream, mytimer, datapoints, sb, serialPortOut, serialPortIn, radiotcp);

 if (radiotcp.Checked)

 {

 if (checkser1.Checked)

 {

 // receiving = new

ThreadStart(clientObject.ser1portrecvData);

 receiving = new

ThreadStart(clientObject.sersendrecvData);

 }

 else

 {

 sending = new ThreadStart(clientObject.sersendData);

 receiving = new

ThreadStart(clientObject.tcprecvData);

81

 sendThread = new Thread(sending);

 }

 }

 else if (radioudp.Checked)

 {

 if (checkser1.Checked)

 {

 sending = new ThreadStart(clientObject.sersendData);

 receiving = new

ThreadStart(clientObject.ser1portrecvData);

 //receiving = new

ThreadStart(clientObject.sersendrecvData);

 sendThread = new Thread(sending);

 }

 else

 {

 sending = new ThreadStart(clientObject.sersendData);

 receiving = new

ThreadStart(clientObject.udprecvData);

 sendThread = new Thread(sending);

 }

 }

 else if (radioserial.Checked)

 {

 sending = new ThreadStart(clientObject.sersendData);

 receiving = new

ThreadStart(clientObject.serrecvData);

 sendThread = new Thread(sending);

 }

 recvThread = new Thread(receiving);

 recvThread.Start();

 if (!checkser1.Checked || radioserial.Checked)

 { }

 sendThread.Start();

 if (!checkser1.Checked || radioserial.Checked)

 {

 }

 sendThread.Join();

 recvThread.Join();

 if (radiotcp.Checked)

 { tcpclnt.Close(); }

 else if (radioudp.Checked)

 {

 udpclnt.Close();

82

 }

 else

 {

 serialPortIn.Close();

 }

 comPortOut.Enabled = true;

 startbutton.Enabled = true;

 radiotcp.Enabled = true;

 radioudp.Enabled = true;

 radioserial.Enabled = true;

 textBox1.Clear();

 // Close Com ports

 if (serialPortOut.IsOpen) { serialPortOut.Close(); }

 this.Invoke(new EventHandler(SaveDialog));

 }

 private void radioserial_CheckedChanged(object sender, EventArgs

e)

 {

 if (radioserial.Checked)

 {

 comPortIn.Enabled = true;

 List<String> tList = new List<String>();

 comPortIn.Items.Clear();

 foreach (string s in SerialPort.GetPortNames())

 {

 tList.Add(s);

 }

 tList.Sort();

 comPortIn.Items.AddRange(tList.ToArray());

 comPortIn.SelectedIndex = 0;

 }

 else

 {

 comPortIn.Enabled = false;

 }

 }

 public void SaveDialog(object sender, EventArgs e)

 { /// When the timer runs out or STOP is pressed, a Save Dialog

appears

 SaveFileDialog saveFileDialog1 = new SaveFileDialog();

 saveFileDialog1.Filter = "txt files (*.txt)|*.txt|All files

(*.*)|*.*";

 saveFileDialog1.FilterIndex = 1;

 saveFileDialog1.RestoreDirectory = true;

 if (radiotcp.Checked)

 {

 saveFileDialog1.FileName = "DeviceTest_ser-ethTCP_10";

 }

 else

 {

 saveFileDialog1.FileName = "DeviceTest_ser-ethUDP_10";

83

 }

 if (saveFileDialog1.ShowDialog(this) == DialogResult.OK)

 { File.WriteAllText(saveFileDialog1.FileName,

sb.ToString()); }

 }

 private void Form1_Load(object sender, EventArgs e)

 {

 List<String> tList = new List<String>();

 comPortOut.Items.Clear();

 foreach (string s in SerialPort.GetPortNames())

 {

 tList.Add(s);

 }

 tList.Sort();

 comPortOut.Items.AddRange(tList.ToArray());

 comPortOut.SelectedIndex = 0;

 comPortIn.Enabled = false;

 comPortOut.Enabled = true;

 baudratebox.Items.Add("9600");

 baudratebox.Items.Add("115200");

 baudratebox.SelectedIndex = 0;

 }

 public class ThreadProgram

 {

 public System.Object lockThis = new System.Object();

 public NetworkStream stream;

 public UdpClient udpin;

 public IPEndPoint ep;

 private static Mutex mut = new Mutex();

 Decimal datapoints;

 bool received = true;

 bool sent = false;

 int num2send=1;

 int numback;

 StringBuilder sb;

 int correctbyte = 0;

 int counter = 0;

 SerialPort serialPortOut;

 SerialPort serialPortIn;

 byte[] sentbyte = new byte[1];

 byte[] recvbyte = new byte[64];

 byte[] ackbyte = new byte[64];

 RadioButton radiotcp;

 Timing mytimer = new Timing();

 double sent1;

 double sentelapsmil;

 double recv1;

 double recvelapsmil;

 double elapsmil;

84

 public ThreadProgram(UdpClient udp, IPEndPoint epin,

NetworkStream streamer, Timing timer, Decimal thedatapoints,

StringBuilder stringb, SerialPort serialPort, SerialPort serialPort2,

RadioButton radio_tcp)

 {

 stream = streamer;

 sb = stringb;

 datapoints = thedatapoints;

 serialPortOut = serialPort;

 radiotcp = radio_tcp;

 mytimer = timer;

 udpin = udp;

 ep = epin;

 serialPortIn = serialPort2;

 }

 public void sersendData()

 {

 /* if (serialPortOut.BaudRate == 115200)

 {

 while (mytimer.Duration * 1000 < 1500)

 {

 }

 }*/

 for (int repeat = 0; repeat < datapoints; repeat++)

 {

 while (!received)

 {

 }

 received = false;

 mut.WaitOne();

 sentbyte = BitConverter.GetBytes(num2send);

 mut.ReleaseMutex();

 if (radiotcp.Checked) { }

 //serialPortOut.DiscardOutBuffer();

 serialPortOut.Write(sentbyte, 0, 1);

 //Send the byte

//stopwatch.Reset();

 sentelapsmil = mytimer.Duration;

 sent = true;

85

 }

 }

 public void sersendrecvData()

 {

 if (serialPortOut.BaudRate == 115200)

 {

 while (mytimer.Duration * 1000 < 1500)

 {

 }

 }

 for (int repeat = 0; repeat < datapoints; repeat++)

 {

 sentbyte = BitConverter.GetBytes(num2send);

 if (radiotcp.Checked) {

serialPortOut.Write(sentbyte, 0, 1); }

 else

 {

 serialPortOut.Write(sentbyte, 0, 1);

 //serialPortOut.DiscardOutBuffer();

 }

 //Send the byte

 //stopwatch.Reset();

 sentelapsmil = mytimer.Duration;

 numback = serialPortOut.ReadByte();

 recvelapsmil = mytimer.Duration;

 serialPortOut.DiscardInBuffer();

 if (numback == num2send)

 {

 correctbyte = 1;

 }

 else

 {

 correctbyte = 0;

 }

 // sb.AppendLine(elapsedmilli + "\t" + correctbyte +

"\n");

86

 elapsmil = recvelapsmil - sentelapsmil;

 counter++;

 sb.AppendLine(counter + "\t" + elapsmil * 1000 + "\t"

+ correctbyte);

 //textbox1.AppendText("Received after:" +

elapsedmilli + "\t" + correctbyte+"\n");

 num2send += 1;

 if (num2send > 255) { num2send = 1; }

 }

 }

 public void tcprecvData()

 {

 ackbyte = BitConverter.GetBytes(0);

 //ackbyte = BitConverter.GetBytes(0);

 for (int repeat = 0; repeat < datapoints; repeat++)

 {

 //stream.ReadAsync(recvbyte, 0, 1);

 stream.Read(recvbyte, 0, 1);

 stream.Write(ackbyte, 0, 1);

 recvelapsmil = mytimer.Duration;

 numback = recvbyte[0];

 if (numback == num2send)

 {

 correctbyte = 1;

 }

 else

 {

 correctbyte = 0;

 }

 elapsmil = recvelapsmil - sentelapsmil;

 counter++;

 sb.AppendLine(counter + "\t" + elapsmil*1000+ "\t" +

correctbyte);

 mut.WaitOne();

 num2send += 1;

 if (num2send > 255) { num2send = 1; }

 mut.ReleaseMutex();

 received = true;

87

 }

 }

 public void serrecvData()

 {

 for (int repeat = 0; repeat < datapoints; repeat++)

 {

 while (sent==false)

 { }

 recv1 = mytimer.Duration;

 numback = serialPortIn.ReadByte();

 recvelapsmil = mytimer.Duration;

 sent = false;

 if (numback == num2send)

 {

 correctbyte = 1;

 }

 else

 {

 correctbyte = 0;

 }

 // sb.AppendLine(elapsedmilli + "\t" + correctbyte +

"\n");

 elapsmil = recvelapsmil - sentelapsmil;

 counter++;

 sb.AppendLine(counter + "\t" + elapsmil*1000 + "\t"+

correctbyte);

 //textbox1.AppendText("Received after:" +

elapsedmilli + "\t" + correctbyte+"\n");

 mut.WaitOne();

 num2send += 1;

 if (num2send > 255) { num2send = 1; }

 mut.ReleaseMutex();

 received = true;

 }

 //Thread.Sleep(100);

 // recvloop = false;

 }

 public void serrecv2Data()

 {

 for (int repeat = 0; repeat < datapoints; repeat++)

 {

 for (int i = 0; i < 2; i++)

 {

 numback = serialPortIn.ReadByte();

88

 }

 recvelapsmil = mytimer.Duration;

 numback = recvbyte[0];

 if (numback == num2send)

 {

 correctbyte = 1;

 }

 else

 {

 correctbyte = 0;

 }

 // sb.AppendLine(elapsedmilli + "\t" + correctbyte +

"\n");

 elapsmil = recvelapsmil - sentelapsmil;

 counter++;

 sb.AppendLine(counter + "\t" + elapsmil * 1000 + "\t"

+ correctbyte);

 //textbox1.AppendText("Received after:" +

elapsedmilli + "\t" + correctbyte+"\n");

 mut.WaitOne();

 num2send += 1;

 if (num2send > 255) { num2send = 1; }

 mut.ReleaseMutex();

 received = true;

 }

 //Thread.Sleep(100);

 // recvloop = false;

 }

 public void ser1portrecvData()

 {

 for (int repeat = 0; repeat < datapoints; repeat++)

 {

 serialPortOut.DiscardInBuffer();

 numback = serialPortOut.ReadByte();

 recvelapsmil = mytimer.Duration;

 // serialPortOut.DiscardInBuffer();

 // serialPortOut.DiscardOutBuffer();

 if (numback == num2send)

 {

 correctbyte = 1;

 }

 else

89

 {

 correctbyte = 0;

 }

 // sb.AppendLine(elapsedmilli + "\t" + correctbyte +

"\n");

 elapsmil = recvelapsmil - sentelapsmil;

 counter++;

 sb.AppendLine(counter + "\t" + elapsmil * 1000 + "\t"

+ correctbyte);

 //textbox1.AppendText("Received after:" +

elapsedmilli + "\t" + correctbyte+"\n");

 mut.WaitOne();

 num2send += 1;

 if (num2send > 255) { num2send = 1; }

 mut.ReleaseMutex();

 Thread.Sleep(10);

 received = true;

 }

 //Thread.Sleep(100);

 // recvloop = false;

 }

 public void udprecvData()

 {

 for (int repeat = 0; repeat < datapoints; repeat++)

 {

 recvbyte = udpin.Receive(ref ep);

 recvelapsmil = mytimer.Duration;

 numback = recvbyte[0];

 if (numback == num2send)

 {

 correctbyte = 1;

 }

 else

 {

 correctbyte = 0;

 }

 // sb.AppendLine(elapsedmilli + "\t" + correctbyte +

"\n");

 elapsmil = recvelapsmil - sentelapsmil;

 counter++;

 sb.AppendLine(counter + "\t" + elapsmil * 1000 + "\t"

+ correctbyte);

 //textbox1.AppendText("Received after:" +

elapsedmilli + "\t" + correctbyte+"\n");

 received = true;

 }

 }

 }

90

 }

}

(Starting Ethernet) C# Testing Program

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

using System.Diagnostics;

using System.IO;

using System.IO.Ports;

using System.Threading;

using System.Net.Sockets;

using System.Net;

91

using HighResTimer;

namespace OneClient_NetworkTiming_TCP

{

 public partial class Form1 : Form

 {

 Decimal datapoints;

 StringBuilder sb = new StringBuilder();

 SerialPort serialPortIn = new SerialPort();

 TcpClient tcpclnt;

 UdpClient udpclnt;

 IPEndPoint ep;

 Timing mytimer = new Timing();

 int baudrate; //9600;

 Thread sendThread;

 Thread recvThread;

 ThreadStart sending;

 ThreadStart receiving;

 NetworkStream stream;

 public Form1()

 {

 InitializeComponent();

 }

 private void startbutton_Click(object sender, EventArgs e)

 {

 comPortIn.Enabled = false;

 startbutton.Enabled = false;

 if (serialPortIn.IsOpen) { serialPortIn.Close(); }

 if (checkserial.Checked)

 {

 serialPortIn.PortName =

comPortIn.SelectedItem.ToString();

 baudrate =

Int32.Parse(this.baudratebox.SelectedItem.ToString());

 serialPortIn.BaudRate = baudrate; //was 9600

 serialPortIn.Open();

 serialPortIn.DiscardInBuffer();

 }

 //set priority to high

 // Process.GetCurrentProcess().PriorityClass =

ProcessPriorityClass.High;

 //Thread.CurrentThread.Priority = ThreadPriority.Highest;

92

 //clear stringbuilder

 sb.Clear();

 Random seed = new Random((int)DateTime.Now.Ticks &

0x0000FFFF);

 Byte[] bb = new byte[1]; //1 byte of data coming in

 //serialPortIn.DiscardOutBuffer();

 datapoints = numericUpDown1.Value;

 if (radiotcp.Checked)

 {

 tcpclnt = new TcpClient();

 textBox1.AppendText("TCP Connecting... \n");

 tcpclnt.Connect("192.168.137.99", 8888); //address of

RPi on arbitrary non privileged port

 textBox1.AppendText("TCP Connected \n");

 stream = tcpclnt.GetStream();

 int bytes = stream.Read(bb, 0, bb.Length);

 }

 else

 {

 try

 {

 udpclnt = new UdpClient();

 ep = new

IPEndPoint(IPAddress.Parse("192.168.137.99"), 8888);

 textBox1.AppendText("UDP Connecting... \n");

 udpclnt.Connect(ep);

 textBox1.AppendText("UDP Connected \n");

 byte[] writebyte = BitConverter.GetBytes(99);

 udpclnt.Send(writebyte, writebyte.Length);

 bb = udpclnt.Receive(ref ep);

 }

 catch

 {

 return;

 }

 }

 //intialize network connections

 /*Receive the welcome from server */

93

 mytimer.Start();

 int numback = bb[0];

 textBox1.AppendText("Received initial message from server: "

+ bb[0] + "\n");

 textBox1.AppendText("Warmup \n");

 while (mytimer.Duration *1000 < 1500)

 {

 }

 textBox1.AppendText("Beginning Testing");

 textBox1.AppendText(Environment.NewLine);

 ThreadProgram clientObject = new ThreadProgram(udpclnt, ep,

stream, mytimer, datapoints, sb, serialPortIn);

 if (radiotcp.Checked)

 {

 sending = new ThreadStart(clientObject.tcpsendData);

 if (checkserial.Checked)

 {

 receiving = new

ThreadStart(clientObject.tcprecvserData);

 }

 else

 {

 receiving = new

ThreadStart(clientObject.tcprecvData);

 }

 }

 else

 {

 sending = new ThreadStart(clientObject.udpsendData);

 if (checkserial.Checked)

 {

 receiving = new

ThreadStart(clientObject.udprecvserData);

 }

 else

 {

 receiving = new

ThreadStart(clientObject.udprecvData);

 }

 }

 sendThread = new Thread(sending);

 recvThread = new Thread(receiving);

 recvThread.Start();

 sendThread.Start();

94

 sendThread.Join();

 recvThread.Join();

 if (radiotcp.Checked)

 { tcpclnt.Close(); }

 else

 {

 udpclnt.Close();

 }

 comPortIn.Enabled = true;

 startbutton.Enabled = true; // Diable the stop button

 textBox1.Clear();

 // Close Com ports

 if (serialPortIn.IsOpen) { serialPortIn.Close(); }

 this.Invoke(new EventHandler(SaveDialog));

 }

 private void Form1_Load(object sender, EventArgs e)

 {

 baudratebox.Items.Add("9600");

 baudratebox.Items.Add("115200");

 baudratebox.SelectedIndex = 0;

 comPortIn.Enabled = false;

 }

 public void SaveDialog(object sender, EventArgs e)

 { /// When the timer runs out or STOP is pressed, a Save Dialog

appears

 SaveFileDialog saveFileDialog1 = new SaveFileDialog();

 saveFileDialog1.Filter = "txt files (*.txt)|*.txt|All files

(*.*)|*.*";

 saveFileDialog1.FilterIndex = 1;

 saveFileDialog1.RestoreDirectory = true;

 if (radiotcp.Checked)

 {

 if (checkserial.Checked)

 {

 saveFileDialog1.FileName = "DeviceTest_eth-

serTCP_10";

 }

 else

 {

 saveFileDialog1.FileName = "DeviceTest_eth-

ethTCP_10";

 }

 }

 else

 {

 if (checkserial.Checked)

 {

 saveFileDialog1.FileName = "DeviceTest_eth-

serUDP_10";

95

 }

 else

 {

 saveFileDialog1.FileName = "DeviceTest_eth-

ethUDP_10";

 }

 }

 if (saveFileDialog1.ShowDialog(this) == DialogResult.OK)

 { File.WriteAllText(saveFileDialog1.FileName,

sb.ToString()); }

 }

 private void checkserial_CheckedChanged(object sender, EventArgs

e)

 {

 if (checkserial.Checked)

 {

 List<String> tList = new List<String>();

 comPortIn.Items.Clear();

 foreach (string s in SerialPort.GetPortNames())

 {

 tList.Add(s);

 }

 tList.Sort();

 comPortIn.Items.AddRange(tList.ToArray());

 comPortIn.SelectedIndex = 0;

 comPortIn.Enabled = false;

 comPortIn.Enabled = true;

 }

 else

 {

 comPortIn.Enabled = false;

 }

 }

 public class ThreadProgram

 {

 public System.Object lockThis = new System.Object();

 public NetworkStream stream;

 public UdpClient udpin;

 public IPEndPoint ep;

 private static Mutex mut = new Mutex();

 int num2send = 1;

 Decimal datapoints;

 int numback;

 bool received = true;

 byte[] recvbyte = new byte[1];

 byte[] sentbyte = new byte[1];

 int counter = 0;

 StringBuilder sb;

 int correctbyte=0;

 SerialPort serialPortIn;

96

 Timing mytimer = new Timing();

 double sentelapsmil;

 double recvelapsmil;

 double elapsmil;

 public ThreadProgram(UdpClient udp, IPEndPoint epin,

NetworkStream streamer, Timing timer, Decimal thedatapoints,

StringBuilder stringb, SerialPort serialPort)

 {

 stream = streamer;

 sb = stringb;

 datapoints = thedatapoints;

 serialPortIn = serialPort;

 mytimer = timer;

 udpin = udp;

 ep = epin;

 }

 public void tcpsendData()

 {

 for (int repeat = 0; repeat < datapoints; repeat++)

 {

 while (!received)

 {

 }

 received = false;

 mut.WaitOne();

 sentbyte = BitConverter.GetBytes(num2send);

 mut.ReleaseMutex();

 stream.Write(sentbyte, 0, 1);

 sentelapsmil = mytimer.Duration;

 }

 }

 public void tcprecvserData()

97

 {

 for (int repeat = 0; repeat < datapoints; repeat++)

 {

 //1 byte of data coming in

 numback = serialPortIn.ReadByte();

 recvelapsmil = mytimer.Duration;

 if (numback == num2send)

 {

 correctbyte = 1;

 }

 else

 {

 correctbyte = 0;

 }

 elapsmil = recvelapsmil - sentelapsmil;

 counter++;

 sb.AppendLine(counter+"\t"+elapsmil*1000 + "\t" +

correctbyte);

 mut.WaitOne();

 num2send += 1;

 if (num2send > 255) { num2send = 1; }

 mut.ReleaseMutex();

 received = true;

 }

 }

 public void tcprecvData()

 {

 for (int repeat = 0; repeat < datapoints; repeat++)

 {

 stream.Read(recvbyte, 0, 1);

 recvelapsmil = mytimer.Duration;

 numback = recvbyte[0];

 if (numback == num2send)

 {

 correctbyte = 1;

 }

 else

98

 {

 correctbyte = 0;

 }

 elapsmil = recvelapsmil - sentelapsmil;

 counter++;

 sb.AppendLine(counter + "\t" + elapsmil * 1000 + "\t"

+ correctbyte);

 mut.WaitOne();

 num2send += 1;

 if (num2send > 255) { num2send = 1; }

 mut.ReleaseMutex();

 received = true;

 }

 }

 public void udpsendData()

 {

 for (int repeat = 0; repeat < datapoints; repeat++)

 {

 while (!received)

 {

 }

 received = false;

 mut.WaitOne();

 sentbyte = BitConverter.GetBytes(num2send);

 mut.ReleaseMutex();

 udpin.Send(sentbyte, 1);

 sentelapsmil = mytimer.Duration;

 }

 }

 public void udprecvserData()

 {

 for (int repeat = 0; repeat < datapoints; repeat++)

 {

 numback = serialPortIn.ReadByte();

 recvelapsmil = mytimer.Duration;

99

 if (numback == num2send)

 {

 correctbyte = 1;

 }

 else

 {

 correctbyte = 0;

 }

 elapsmil = recvelapsmil - sentelapsmil;

 counter++;

 sb.AppendLine(counter + "\t" + elapsmil * 1000 + "\t"

+ correctbyte);

 mut.WaitOne();

 num2send += 1;

 if (num2send > 255) { num2send = 1; }

 mut.ReleaseMutex();

 received = true;

 }

 }

 public void udprecvData()

 {

 for (int repeat = 0; repeat < datapoints; repeat++)

 {

 recvbyte= udpin.Receive(ref ep);

 recvelapsmil = mytimer.Duration;

 numback = recvbyte[0];

 if (numback == num2send)

 {

 correctbyte = 1;

 }

 else

 {

 correctbyte = 0;

 }

 elapsmil = recvelapsmil - sentelapsmil;

 counter++;

 sb.AppendLine(counter + "\t" + elapsmil * 1000 + "\t"

+ correctbyte);

 mut.WaitOne();

 num2send += 1;

 if (num2send > 255) { num2send = 1; }

 mut.ReleaseMutex();

 received = true;

 }

100

 }

 }

 }

}

 (One computer networking round trip) C# Testing Program

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

using System.Net;

using System.Net.Sockets;

using System.Threading;

using HighResTimer;

101

using System.IO;

namespace Server

{

 public partial class Form1 : Form

 {

 Decimal datapoints;

 NetworkStream stream;

 Thread sendThread;

 Thread recvThread;

 ThreadStart sending;

 ThreadStart receiving;

 TcpClient tcpclnt;

 ThreadProgram clientObject;

 StringBuilder sb = new StringBuilder();

 TcpListener myList;

 UdpClient listener;

 IPEndPoint groupep;

 IPEndPoint ep;

 Timing mytimer = new Timing();

 public Form1()

 {

 InitializeComponent();

 }

 private void startbutton_Click(object sender, EventArgs e)

 {

 datapoints = datapts.Value;

 sb.Clear();

 mytimer.Start();

 if (tcpradio.Checked)

 {

 IPAddress ipAd = IPAddress.Parse("192.168.137.1");

 // use local m/c IP address, and

 // use the same in the client

 /* Initializes the Listener */

 TcpListener myList = new TcpListener(ipAd, 8001);

 /* Start Listeneting at the specified port */

 myList.Start();

 tcpclnt = new TcpClient();

 Console.WriteLine("Connecting.....");

 tcpclnt.Connect("192.168.137.1", 8001);

 Socket s = myList.AcceptSocket();

 stream = tcpclnt.GetStream();

 clientObject = new ThreadProgram(listener, s, myList,

tcpclnt, groupep, ep, stream, mytimer, datapoints, sb);

 }

 else

 {

 IPEndPoint groupep = new IPEndPoint(IPAddress.Any,

11000);

102

 UdpClient listener = new UdpClient();

 // udpclient.ExclusiveAddressUse = false;

 //

udpclient.Client.SetSocketOption(SocketOptionLevel.Socket,

SocketOptionName.ReuseAddress, true);

 //listener.Client.Bind(listener);

 listener.Client.Bind(groupep);

 Socket s = new Socket(AddressFamily.InterNetwork,

SocketType.Dgram,

 ProtocolType.Udp);

 IPAddress broadcast = IPAddress.Parse("127.0.0.1");

 IPEndPoint ep = new IPEndPoint(broadcast, 11000);

 // udpserver.ExclusiveAddressUse = false;

 //

udpserver.Client.SetSocketOption(SocketOptionLevel.Socket,

SocketOptionName.ReuseAddress, true);

 //IPEndPoint epin2 = new

IPEndPoint(IPAddress.Parse("192.168.0.101"), 5678);

 //udpserver.Client.Bind(epin2);// was epin and ipaddress

parse 192.168.137.1, 1234 (after change in network adapter settings)

 clientObject = new ThreadProgram(listener, s, myList,

tcpclnt, groupep, ep, stream, mytimer, datapoints, sb);

 }

 if (tcpradio.Checked)

 {

 sending = new ThreadStart(clientObject.tcpsendData);

 receiving = new ThreadStart(clientObject.tcprecvData);

 }

 else

 {

 //while (mytimer.Duration * 1000 < 1500)

 // { }

 sending = new ThreadStart(clientObject.udpsendData);

 receiving = new ThreadStart(clientObject.udprecvData);

 }

 sendThread = new Thread(sending);

 recvThread = new Thread(receiving);

 recvThread.Start();

 sendThread.Start();

 sendThread.Join();

 recvThread.Join();

 this.Invoke(new EventHandler(SaveDialog));

 }

 public void SaveDialog(object sender, EventArgs e)

 { /// When the timer runs out or STOP is pressed, a Save Dialog

appears

 SaveFileDialog saveFileDialog1 = new SaveFileDialog();

103

 saveFileDialog1.Filter = "txt files (*.txt)|*.txt|All files

(*.*)|*.*";

 saveFileDialog1.FilterIndex = 1;

 saveFileDialog1.RestoreDirectory = true;

 if (tcpradio.Checked)

 {

 saveFileDialog1.FileName = "Comp_hosteth-ethTCP_10_";

 }

 else

 {

 saveFileDialog1.FileName = "Comp_eth-ethUDP_10_";

 }

 if (saveFileDialog1.ShowDialog(this) == DialogResult.OK)

 { File.WriteAllText(saveFileDialog1.FileName,

sb.ToString()); }

 }

 public class ThreadProgram

 {

 public System.Object lockThis = new System.Object();

 public NetworkStream stream;

 Socket s;

 private static Mutex mut = new Mutex();

 int num2send = 1;

 Decimal datapoints;

 int numback;

 bool received = true;

 byte[] recvbyte = new byte[1];

 byte[] sentbyte = new byte[1];

 int counter = 0;

 IPEndPoint listenep;

 IPEndPoint epbroad;

 UdpClient listener;

 TcpClient tcpclnt;

 TcpListener myList;

 StringBuilder sb;

 int correctbyte = 0;

 Timing mytimer = new Timing();

 double sentelapsmil;

 double recvelapsmil;

 double elapsmil;

 public ThreadProgram(UdpClient client, Socket sender,

TcpListener tcplist, TcpClient tcpclient, IPEndPoint ep1, IPEndPoint ep2,

NetworkStream streamer, Timing timer, Decimal thedatapoints,

StringBuilder sbin)

 {

 stream = streamer;

104

 datapoints = thedatapoints;

 listenep = ep1;

 epbroad = ep2;

 listener = client;

 s = sender;

 myList = tcplist;

 tcpclnt = tcpclient;

 sb = sbin;

 mytimer = timer;

 }

 public void tcpsendData()

 {

 for (int repeat = 0; repeat < datapoints; repeat++)

 {

 while (!received)

 {

 }

 received = false;

 mut.WaitOne();

 sentbyte = BitConverter.GetBytes(num2send);

 mut.ReleaseMutex();

 stream.Write(sentbyte, 0, 1);

 sentelapsmil = mytimer.Duration;

 }

 tcpclnt.Close();

 }

 public void tcprecvData()

 {

 for (int repeat = 0; repeat < datapoints; repeat++)

 {

 s.Receive(recvbyte);

 recvelapsmil = mytimer.Duration;

105

 numback = recvbyte[0];

 if (numback == num2send)

 {

 correctbyte = 1;

 }

 else

 {

 correctbyte = 0;

 }

 elapsmil = recvelapsmil - sentelapsmil;

 counter++;

 sb.AppendLine(counter + "\t" + elapsmil * 1000 + "\t"

+ correctbyte);

 mut.WaitOne();

 num2send += 1;

 if (num2send > 255) { num2send = 1; }

 mut.ReleaseMutex();

 received = true;

 }

 s.Close();

 myList.Stop();

 }

 public void udpsendData()

 {

 for (int repeat = 0; repeat < datapoints; repeat++)

 {

 =

 while (!received)

 {

 }

 received = false;

 mut.WaitOne();

 sentbyte = BitConverter.GetBytes(num2send);

 mut.ReleaseMutex();

 // stopwatch.Reset();

 s.SendTo(sentbyte, epbroad);

 sentelapsmil = mytimer.Duration;

 /

 }

 s.Close();

106

 }

 public void udprecvData()

 {

 for (int repeat = 0; repeat < datapoints; repeat++)

 {

 recvbyte = listener.Receive(ref listenep);

 recvelapsmil = mytimer.Duration;

 numback = recvbyte[0];

 if (numback == num2send)

 {

 correctbyte = 1;

 }

 else

 {

 correctbyte = 0;

 }

 // sb.AppendLine(elapsedmilli + "\t" + correctbyte +

"\n");

 elapsmil = recvelapsmil - sentelapsmil;

 counter++;

 //sb.Append("\t" + recvmil);

 sb.AppendLine(counter + "\t" + elapsmil * 1000 + "\t"

+ correctbyte);

 mut.WaitOne();

 num2send += 1;

 if (num2send > 255) { num2send = 1; }

 mut.ReleaseMutex();

 received = true;

 }

 listener.Close();

 }

 }

 }

}

107

MATLAB Data Analysis Code

close all

[FileName,PathName] = uigetfile('*.txt','Select a multiple of 10 trials

.txt files','MultiSelect','on');

nFile = size(FileName,2);

nrows = 1000;

ncols = 20;

datadim = nFile/10;

datamat = zeros(nrows,ncols,datadim);

dim = 1;

count = 1;

maintitle = {};

maintitle{1}=FileName{1}(1:end-11);

if iscell(FileName)

 for i=1:nFile

 data=dlmread(strcat(PathName,FileName{i}),'\t');

 datamat(:,count*2-1:count*2,dim)=data(:,2:3);

 if i == nFile

 break;

 elseif count == 10

 maintitle{end+1} = FileName{i+1}(1:end-11);

 count = 1;

 dim = dim +1;

 else

 count=count+1;

108

 end

 end

end

timevalues = datamat(:,1:2:end,:);

boolvalues = datamat(:,2:2:end,:);

mintime = min(min(min(timevalues)));

maxtime = max(max(max(timevalues)));

maxavg = max(max(max(mean(timevalues))))+max(max(max(std(timevalues))));

minavg = min(min(min(mean(timevalues))))-max(max(max(std(timevalues))));

colors = {[0 1 1],[1 0 0],[1 1 0],[.4 1 1],[.5 .5 0],[.9 .6 .3],[.2 .3

.6],[.8 .4 .1],[1 0 .6],[0 .3 .3]};

for k = 1:datadim

time_test = timevalues(:,:,k);

bool_test = boolvalues(:,:,k);

avgvalues = mean(time_test);

stdev = std(time_test);

successrate = (sum(bool_test)/nrows)*100;

if successrate < 100

 display('Failed bool test')

 break;

end

nbins = round(nrows*nFile/datadim/4);

maxval = max(max(time_test));

minval = min(min(time_test));

avgval = mean(avgvalues);

medval = median(median(time_test));

range = maxval - minval;

h1=figure;

[N, edges] = histcounts(time_test);

maxy = max(N);

bar(edges(1:end-1),N,'EdgeColor','None')

%histogram(time_test,'EdgeColor','None')

LW=2;

axis([mintime maxtime 0 maxy])

ax=gca;

hold on;

line([maxval maxval],[ylim],'Color','r','LineStyle','--','LineWidth',LW)

line([minval minval],[ylim],'Color','m','LineStyle','--','LineWidth',LW)

line([avgval avgval],[ylim],'Color','g','LineStyle','--','LineWidth',LW)

%line([medval medval],[ylim],'Color','g','LineStyle','--')

%y=ylim;

strstats = sprintf('Min = %.2f ms, Mean = %.2f ms, Max = %.2f

ms',minval,avgval,maxval);

legend(ax,'histogram','max value','min value','avg

value','Location','Best')

xlabel('Time delay (ms)')

ylabel('Number of instances')

str = {sprintf('Time delays for %s', maintitle{k}),strstats};

title(str,'Interpreter','None')

109

file_hist = strcat(PathName,maintitle{k},'_hist.jpg');

file_hist2 = strcat(PathName,maintitle{k},'_histoverlay.jpg');

saveas(h1,file_hist)

h2 = figure;

bar(avgvalues);

axis([0 inf 0 maxavg])

hold on

errorbar(avgvalues,stdev,'.')

str2 = sprintf('Average time delays per trial for %s', maintitle{k});

title(str2, 'Interpreter','None');

xlabel('Trial number')

ylabel('Average time delay (ms)')

file_avg = strcat(PathName,maintitle{k},'_avgvals.jpg');

saveas(h2,file_avg)

h3 = figure;

bar(successrate);

xlabel('Trial number')

ylabel('Success rate (%)')

str3 = sprintf('Success rate per trial for %s', maintitle{k});

title(str3,'Interpreter','None');

axis([0 inf 0 120])

file_success = strcat(PathName,maintitle{k},'_successrate.jpg');

saveas(h3,file_success)

totarray = reshape(time_test,nrows*nFile/datadim,1);

h4 = figure;

plot(totarray,'o')

axis([0 10000 mintime maxtime])

xlabel('Data point')

ylabel('Time delay (ms)')

str4 = sprintf('Total data points for %s', maintitle{k});

title(str4,'Interpreter','None');

file_alldata = strcat(PathName,maintitle{k},'_alldata.jpg');

saveas(h4,file_alldata)

trialstats = zeros(ncols/2,5);

for j=1:ncols/2

 trial = time_test(:,j);

 mintrial = min(trial);

 maxtrial = max(trial);

 avgtrial = avgvalues(j);

 medtrial = median(trial);

 stdtrial = stdev(j);

 ranget = maxtrial - mintrial;

 trialstats(j,:)=[mintrial maxtrial avgtrial medtrial stdtrial];

 h5 = figure;

 [N, edges] = histcounts(trial);

 maxy = max(N);

110

 bar(ax,edges(1:end-1),N,'EdgeColor','None','FaceColor',colors{j})

histogram(trial,'EdgeColor','None')

axis([mintime maxtime 0 maxy])

hold on

line([maxtrial maxtrial],[ylim],'Color','r','LineStyle','--

','LineWidth',LW)

line([mintrial mintrial],[ylim],'Color','m','LineStyle','--

','LineWidth',LW)

line([avgtrial avgtrial],[ylim],'Color','g','LineStyle','--

','LineWidth',LW)

% line([medtrial medtrial],[ylim],'Color','g','LineStyle','--')

strstats = sprintf('Min = %.2f ms, Mean = %.2f ms, Max = %.2f

ms',mintrial,avgtrial,maxtrial);

legend('histogram','max value','min value','avg

value','Location','Best');

 xlabel('Time delay (ms)')

ylabel('Number of instances')

str5 = {sprintf('Time delays for %s, trial %d', maintitle{k},

j),strstats};

title(str5,'Interpreter','None')

file_hist_trial =

strcat(PathName,maintitle{k},'trial_',num2str(j),'_hist.jpg');

saveas(h5,file_hist_trial)

end

legend(ax,'histogram','max value','min value','avg value','Trial

1','Trial 2','Trial 3','Trial 4','Trial 5','Trial 6','Trial 7','Trial

8','Trial 9','Trial 10','Location','Best')

saveas(h1,file_hist2)

h6 = figure;

boxplot(time_test)

axis([0 inf mintime maxtime])

xlabel('Trial number')

ylabel('Time delay (ms)')

str6 = sprintf('Boxplot for %s',maintitle{k});

title(str6,'Interpreter','None')

file_boxplot = strcat(PathName,maintitle{k},'_boxplot.jpg');

saveas(h6,file_boxplot)

fid = fopen(strcat(PathName,maintitle{k},'_stats.csv','w'));

for i = 1:1000:9001

 newtime(i:i+999)=time_test(:,(i-1)/1000+1);

end

stdall = std(newtime);

Stats = {'Minimum','Maximum','Average','Median','Standard

Deviation';minval,maxval,avgval,medval,stdall};

fid = fopen(fullfile(PathName,strcat(maintitle{k},'_stats.csv')),'w');

fprintf(fid,'%s,%s,%s,%s,%s\n',Stats{1,:});

fprintf(fid,'%f,%f,%f,%f,%f\n',Stats{2,:});

111

fprintf(fid,'%s\n','Trials');

dlmwrite(fullfile(PathName,strcat(maintitle{k},'_stats.csv')),trialstat

s,'-append');

for j=1:ncols/2

 fprintf(fid,'%f,%f,%f,%f,%f\n',trialstats(j,:));

end

fclose(fid);

end

112

Appendix C: Creating Custom Box in OpenViBE

Follow the instructions located here: http://openvibe.inria.fr/build-instructions/ to acquire

the OpenViBE source code. This is necessary to add custom boxes. Once the program has

been successfully built, add both ovpCBoxAlgorithm codes from the OpenVibe folder on

https://github.com/nehatk17/NeuroHubNetworkModule/tree/master/Codes/OpenViBE%2

0custom%20box to the following director: openvibe/plugins/processing/network-

io/src/box-algorithms. Copy the ovp_main file to the following directory:

openvibe/plugins/processing/network-io/src. Finally, rebuild the program. Windows IDE

build can be launched from openvibe/scripts using win32-launch-vc. Launch the program

using the openvibe-designer application located in openvibe/dist. Make sure that the

“show unstable” is checked in the boxes panel on the right in the OpenViBE Designer

GUI. The Event Marker to TCP should show up under the Network IO category.

https://github.com/nehatk17/NeuroHubNetworkModule/tree/master/Codes/OpenViBE%20custom%20box
https://github.com/nehatk17/NeuroHubNetworkModule/tree/master/Codes/OpenViBE%20custom%20box

