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Abstract 

NeuroHub Network Integration: Time Synchronization Device  

for Multimodal Brain Imaging and Hyperscanning Research 

Neha Thomas 

Dr. Hasan Ayaz, PhD 

 

 

 

 

Significant progress has been made over the last decades in understanding the 

physiological and neural bases of cognitive processes and behavior. The advent of new 

and improved sensors enables monitoring the human body and brain activity in natural 

environments, with cost-effective, mobile and wearable form factor systems. As 

neuroimaging and brain sensing technologies are further developed, there’s an expanding 

interest for using multiple systems concurrently on i) the same brain: multimodal/hybrid 

measurements for better identification of neurophysiological markers, and ii) multiple 

brains: hyperscanning for novel investigations of brain functions during social 

interactions. Particularly for functional neuroimaging, such as Functional Near Infrared 

Spectroscopy (fNIRS) and Electroencephalography (EEG), precise time synchronization 

of experimental events with acquired datasets is necessary for proper analysis and 

interpretation of results. However, there are currently no standards for interoperability 

and neuroimaging systems have many different designs and interfaces. Furthermore, it is 

often cumbersome to come up with a custom solution to each new research setup based 

on the devices involved. The original NeuroHub, a plug-and-play time synchronization 

device developed at Drexel University, attempted to alleviate some of the complications 

associated with custom setups and time synchronization. The original NeuroHub relayed 

any incoming signal to one of its four serial ports, TTL port, and parallel port, to all other 
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ports on the device and can be connected to multiple sending/listening devices or 

computers. Although one or more of these legacy ports are present in various 

neuroimaging systems, modern computing systems require more sophisticated 

alternatives.  

This thesis proposes a solution and improvement to the original NeuroHub, by 

incorporating time synchronization over a network as an information transfer layer.  The 

network solution enables more flexible experimental configurations and expands the 

compatible plug-and-play system range. Moreover, this new approach eliminates the need 

for multiple wires, while still being able to service large number of clients. The new 

NeuroHub is also able to directly interface with typical RS-232 serial ports and offers the 

best of both worlds – ability to interface with network and legacy hardware ports for 

complete customizability, flexibility and backward compatibility.  

The new NeuroHub network module consists of a Raspberry Pi Model 1B fitted 

with a serial port add-on board. The device transmits any event markers received from 

either networked or serial ports and relays them to the other opened ports. Verification 

testing confirmed that the device transmits with 100% accuracy and the latency to send a 

byte from one computer to the other via the network module was minimal, ranging from 

sub-millisecond speeds to 7 ms depending on the use of serial ports, baud-rate, and 

configuration order.  

The new NeuroHub network module was tested in Brain Compute Interface (BCI) 

setups using OpenViBE as a stimulus presenter and EEG data recording, with COBI 

Studio as the fNIRS data recording software to receive markers all through NeuroHub. 

This simple use case demonstrates the utility of the new NeuroHub for simplification of 



x 

 

complex functional neuroimaging, neuroergonomics and BCI research experimental 

setups. 
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1. Introduction 

1.1 Motivation 

In the field of neuroscience and brain imaging research, there are a growing number of 

studies that require recording from multiple modalities. For example, researchers may want 

to use both EEG and fNIRS to extract important features about cognition that may not be 

otherwise possible with just one modality. Using multiple systems requires that all datasets 

collected are properly synchronized in time. This is done through event markers, which 

represent information about important events throughout the course of the study such as 

the task start/end or onset of stimuli. The difficulty arises when trying to send event markers 

from multiple devices to other devices. Such setups usually require careful planning and 

can be burdensome to implement, especially when trying to coordinate devices 

manufactured by different companies. Each device may use a different data transmission 

protocol that makes event markers synchronization between different systems complicated 

and tedious. Additionally, certain devices require very fast and accurate transmission rates, 

such as EEG, which has a high sampling rate. 

1.2 Objective 

This thesis aims to develop a portable device that can act as an interface between multiple 

systems that may have different communication protocols. Such a device would accelerate 

experimental research setups that utilize multiple recording devices and need fast, reliable 

timestamping and marker transmission. Such device would implement protocols for 

transmission of data over a network as well as a physical connection for serially transmitted 

data. This ensures versatility and practicality for a variety of experimental setups. 

Essentially, the device would serve as a bridge between older methods of communicating 
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event markers like the RS-232 and newer methods, such as networking protocols. Finally, 

the device would be tested for fast and accurate data transmission in a variety of test 

configurations. 

1.3 Outline 

In the background section, brain imaging methods will be described to provide context 

for the device need. Next, common data transmission protocols will be covered that are 

used for time synchronization. Time synchronization platforms will then be discussed, 

and some of the shortcomings of these platforms will be addressed in the proposed 

solution. In the device design section, the design requirements and specifications are 

reviewed and implemented into a device. The device is then finally tested for its lag time 

and reliability. 
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2. Background 

2.1 Brain Imaging Methods 

2.1.1 Functional Near Infrared Spectroscopy 

Functional Near Infrared Spectroscopy (fNIRS) is an optical brain activitymonitoring 

method that uses near-infrared light to measure concentration changes of deoxygenated 

and oxygenated hemoglobin (HbR and HbO, respectively) (Quaresima & Ferrari, 2016; 

Villringer & Chance, 1997; Villringer et al., 1993; Chance et al., 1993; Chance, 1991). It 

is portable, wearable, cost-effective, and its data is not as susceptible to electrical noise as 

compared to EEG (Naseer & Hong, 2015). Modern fNIRS systems are miniaturized and 

can be even built battery operated and wireless to allow untethered monitoring of 

particpants (Quaresima & Ferrari, 2016; Ayaz et al., 2013). The changes of HbR and HbO 

are related to the brain activation in the area of measurement through neurovascular 

coupling theory (Ayaz et al., 2013; Izzetoglu et al., 2005). Light that is transmitted by the 

fNIRS light source over the scalp penetrates through tissue layers in the brain and a fraction 

of the scattered photons can reach back to photodetectors strategically placed over the 

scalp. There are different absorption coefficients for different wavelengths of light for HbR 

and HbO, which allows calculation of their concentration changes using the modified Beer-

Lambert Law (Ayaz et al., 2011; Izzetoglu et al., 2005). The fNIRS signal is sampled at a 

lower rate compared to EEG (lower temporal resolution) since the underlying 

hemodynamic response measured by fNIRS is a relatively slow signal (Batula et al., 

2017a). On the other hand, fNIRS’ spatial resolution is higher than that of EEG and is 

generally free from artifacts such as eye-blinking and muscle movements (Hirshfield et al., 

2009; Sweeney et al 2012; Ayaz et al 2010). 
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 fNIRS has growing range of applications in brain-computer interface that run the 

gamut from neurofeedback to mental workload and training assessment (Ayaz et al., 2013; 

Gramman et al., 2017; Izzetoglu et al., 2011; Mckendrick et al., 2016; Mark et al., 2018). 

For example, Ayaz et al. (2012) used fNIRS to demonstrate the development of expertise 

in cognitively demanding and complex tasks such as piloting and air traffic control and that 

hemodynamic changes detected by fNIRS from prefrontal cortex are indicative of task 

related mental workload. fNIRS has also been shown to be helpful in rehabilitation 

purposes as a neurofeedback tool for motor imagery. For example, Mihara et al. (2013) 

showed that it was possible to use fNIRS to enhance the efficacy of imagery-based 

rehabilitation in hemiplegic stroke patients. Recent reviews of clinical applications are 

available in Izzetoglu et al (2011) and Teo et al (2016). It is also possible to develop active 

brain-computer-interfaces (BCI) using fNIRS signals that are captured, processed and 

classified in real-time during the experiment. For example, Batula et al (2017, 2016) 

developed an fNIRS based BCI to control a humanoid robot using upper and lower limb 

motor imagery tasks. And Ayaz et al used prefrontal cortex based fNIRS for control of 

objects and avatars in virtual environments (Ayaz et al., 2011; Ayaz et al., 2009). For a 

review of fNIRS based BCI applications, see Naseer & Hong (2015).  

2.1.2 Electroencephalography 

Electroencephalography (EEG) uses electrodes to measure fluctuations in voltage at the 

level of the scalp to determine brain activity. These electrodes may sit on the surface of the 

scalp and can either be dry or stuck with electrode paste. The electrodes are commonly 

placed using the 10-20 International System of electrode positions (Kennett, 2012). The 

sub-millivolt voltages recorded from the electrodes are amplified by gains greater than or 
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equal to 2000, and often digitally sampled from 256 Hz to over 1000 Hz (Schomer & Silva, 

2010). EEGs tend to have low signal-to-noise ratios due to the electrodes picking up the 

activity of millions of cortical neurons. It has low spatial resolution as well, on the order 

of centimeters, and is generally lower than that of fNIRS (Berka et al., 2004). Therefore, 

one of the biggest challenges in using EEG is extracting and classifying features that will 

elicit useful information about the state of the brain. Such features can include event-related 

desynchronization, event-related potentials like the P300 or steady-state visually evoked 

potentials (SSVEP) (Amiri et al., 2013). 

 EEG is a primary brain-imaging mode for BCI (Lebedev & Nicolelis, 2017; Choi 

et al., 2017; Fazel-Rezai et al., 2012). One study used motor imagery and P300 potential 

in certain frequencies of brain waves to control the horizontal and vertical movements of a 

cursor (Li et al., 2010). Similarly, EEG could be used to elicit event-related 

desynchronization to differentiate right and left imagined movement and use this to control 

wheelchair direction and movement (Huang et al., 2012).  EEG has also been used 

extensively in epilepsy research. It can be used to diagnose, localize, and detect epilepsy. 

Diagnosis indicates whether a patient has epilepsy or not, localization refers to the 

epileptogenic foci, and detection is determining whether a patient is in a seizure state or 

between seizures (Pouliot et al., 2014). For a review of clinical applications, see Lebedev 

and Nicolelis (2017). 

2.1.3 Multimodal Research 

Multimodal research involves the use of more than one sensing mechanism or technique 

in order to obtain more information than could be possible by using only one modality. 

One such example is the combination of simultaneous EEG and fNIRS to improve BCI 
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performance or more accurately discern mental workload states (Liu, Ayaz & Shewokis, 

2017; Zich et al., 2016; Aghajani & Omurtag, 2016; Liu et al., 2015; Putze et al., 2014; 

Liu et al., 2013; Leomy, Collins & Ward, 2011). Combining these two modalities has 

also been shown to improve the overall BCI performance such as in decoding of motor 

imagery for BCI use (Yin et al., 2015) and working memory related mental workload 

classification (Liu, Ayaz & Shewokis, 2017). These hybrid setups provide a more robust 

way to classify brain activity and reduce false negatives or positives. Since EEG and 

fNIRS are complimentary and recording seonsors are becoming more and more 

miniaturized, hybrid systems are realistic and effective ways to improve performance 

over single modality systems (von Luhmann et al., 2016). 

 In addition, multimodal research may also include monitoring of other body 

peripherals such as eye movements and muscle artifacts through electrocoulugram (EOG) 

and electromyogram (EMG) as well as neurostimulation such as transcranial direct 

current stimulation (tDCS) and transcranial magnetic stimulation (TMS). Recently 

wearable fNIRS and tDCS has also been used simultenously over prefrontal cortex 

(McKendrick, Parasuraman & Ayaz, 2015).  Supplementary use of signals is also 

possible, for example, EOG and EMG can be used to filter these artifacts form the EEG 

data (Kothe & Makeig, 2013; Cao, Guo & Su, 2015). Among other modalities, eye 

tracking, pulse oximetry, and galvanic skin response systems are some of the additional 

body sensors that can be used in a single research setup or together with neuroimaging 

systems.   
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2.1.4 Hyperscanning Research 

Hyperscanning is a when one modality is used to record the brain activity of multiple 

subjects that interact with each other as a unique system (Babiloni & Astolfi, 2014). It is 

predominantly used to investigate social situations, and how one subject’s brain activity 

is related to their behavior as well as that of the partner in the task. EEG and fNIRS are 

both tools that can be used for hyperscanning research. For example, Liu et. al (2017) 

investigated brain-to-brain coupling during verbal communication using fNIRS and 

fMRI. It was found that the brain activity of the listener mirrored that of the speaker but 

with a delay. Growing number of studies highlight the potential of hyperscanning 

research for providing new insights for social interaction settings and neuroscience (Liu 

et al., 2017; Hirsch et al., 2017; Pan et al., 2017; Vanutelli et al., 2016). 

2.2 Common Data Transmission Protocols 

This section outlines some of the common methods used for communicating data and 

event markers to other listening devices. Event markers represent information about 

important events that happen during the duration of the study. They are generated by the 

stimulus presenter, which is typically the computer that the subject interacts with. Some 

common events that often need to be marked are the start and end of the task or trial. 

These markers need to be present on all computers or devices in the research setup for 

accurate data analysis. 

 2.2.1 Parallel Port  

The standard parallel port (SPP) allows 8 bits to be transferred at the same time., 

typically meaning they transfer one byte at a time. Most parallel ports use a connector 
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with 25 pins, termed DB25 connector. With parallel port, speeds of 150 kbps and higher 

are achievable (IEEE 1284, 2002).  

 2.2.2 Transistor-Transistor Logic 

Transistor-Transistor logic (TTL) is based on an elemental logic block that outputs either 

a high or low voltage that indicates the logical bit 1 or 0. When the top transistor in the 

pair of transistor conducts, the output is high. When the bottom transistor conducts, the 

output is low. In the transition between high and low states, both transistors conduct 

heavily (Lancaster, 1991). TTL is overall low-cost and has high speeds of up to 20 MHz. 

Depending on the logic gates used in the TTL circuit, different functions are achieved 

from counters to data selectors (Lancaster, 1991).  

 2.2.3 Serial  

Serial port transmission or RS-232 communication is done by sending data one bit at a time 

in sequence (Axelson, 2007). Serial ports are usually bidirectional, meaning that it is 

possible to receive and send data on the same port. In asynchronous communication, 

sending and receiving can occur at the same time. The hardware for serial ports is 

inexpensive and relatively commonplace. Even though native serial ports are rare to find 

on new models of laptops and computers, it is possible to use USB-Serial converters. 

Devices with serial ports will generally contain a hardware component called the Universal 

Asynchronous Transmitter/Receiver (UART). The UART handles low-level details of 

serial communications such as sending and storing received bits on the serial port (Axelson, 

2007).  

 The UART transmits data in chunks called words. Each word typically contains a 

Start bit, data bits, an optional parity bit, and at least one Stop bit. A common format for 
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transmission is to send 1 Start bit, 8 data bits, and 1 Stop bit. Parity bits are used for error 

detecting. Depending whether the parity is even or odd, the receiving computer can tell 

whether there was an error if there is an odd or even number of 1s (Axelson, 2007). 

 Another important feature of the serial port is the baud rate. The baud rate is the 

number of bits per second (bps) transmitted or received. The highest baud rate seen on 

most serial ports is 115,200 bps (Axelson, 2007).  

 As mentioned before, it is possible for computers without native serial ports to 

communicate via RS-232 through USB-Serial converters. This requires specific drivers to 

indicate how applications can access the device as a serial port. In most computer’s devices 

and managers, the serial port shows up under a specific COM Port number. The USB-Serial 

device will also similarly be assigned to a COM Port, and then access to this port is just 

like accessing any other port (Axelson, 2007). 

 2.2.4 Transmission Control Protocol  

Transmission Control Protocol (TCP) is a network protocol that guarantees data delivery 

between two locations. It is considered a 4-layer system, consisting of the application, 

transport, network and link layer. The application is the most high-level and examples 

include email, Telnet, and File Transfer Protocol.  The transport layer provides a flow of 

data between two hosts; in this case it is TCP. The network layer handles movement of 

packets around the network. Internet Protocol (IP) provides the network layer in the 

TCP/IP protocol suite. Finally, the link layer includes the device driver and network 

interface card within the computer and handles the hardware details of interfacing with 

the Ethernet cable or other media for transferring packets. When the application sends 

data, it is sent down the protocol stack where each layer adds information to the data by 
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prepending headers.  Finally, it is sent as a stream of bits across the network. With all 

headers, the minimum size for a TCP packet is 46 bytes (Stevens and Wright, 1994). 

 For reliability, every segment that is transmitted has a sequence number assigned 

to it. For each segment that is sent, the receiver must return an acknowledgement (ACK) 

to confirm that the bytes are received within a period of time. If the ACK is not received, 

the data is retransmitted (TCP/IP, 2003).  

 Finally, the fields in the TCP header are the source port, destination port, 

sequence number, acknowledgement number, window, and checksum. The window is the 

TCP buffer on the host to store incoming segments. The checksum exists as a way to 

verify the bit-level integrity of the header and data (Stevens & Wright, 1994). 

 2.2.4 User Datagram Protocol 

Unlike TCP, User Datagram Protocol (UDP) does not provide reliability in data 

transmission, and there is no guarantee that data will be received in the correct order that 

it was sent in. Like TCP, UDP is also a 4-layer system and contains a header, which is 

only 8 bytes, substantially smaller than TCP (Stevens & Wright, 1994). UDP may 

provide faster data transmission, but there is a tradeoff between speed and reliability. In 

situations where accurate transmission is necessary, TCP is the better protocol. 

2.3 Current Time Synchronization Methods 

This section will cover some of the current flexible methods used to synchronize time 

markers in research setups. These solutions are generalizable to many custom setups, and 

focus on purely hardware or purely software solutions to achieve synchronization. 
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 2.3.1 Lab Streaming Layer 

Lab Streaming Layer (LSL) is a system to collect measurement time series in research 

setups using networking with TCP. LSL was developed at the Swartz Center for 

Computational Neuroscience at University of California, San Diego (Kothe, 2013). It 

requires programming knowledge to use, and thus is not ideal for researchers who do not 

have the necessary background. The built-in time synchronization is designed after 

Network Time Protocol (NTP). A timestamp is sent with each data using the high-

resolution clock of the host computer. Clock synchronization information consists of 

measurements of the momentary offset between the involved clocks that are made every 

few seconds. A brief sequence of packet exchanges provides information about the 

estimate of the round-trip time between the two computers and the estimate of the clock 

offset with round-trip time factored out. This offset is used to remap the local time 

domain so that data is comparable across all connected computers (Kothe, 2013). 

Previous research (Grzeczkowski & Ayaz, 2014) indicates that one caveat is that there 

may be random delays or interruptions which can result in unknown lag times and 

therefore inaccurate conclusions about the time synchronization using LSL. 

 2.3.2 Original NeuroHub core module 

The original NeuroHub core module is a plug-and-play device built at Drexel University 

that accepts event markers in the range of 1-255 via four serial ports, 1 parallel port, and 1 

BNC cable for TTL communication. Any marker that arrives on a port is replicated and 

sent to all other ports. This enables different systems that may have different protocols for 

hardware communication to synchronize event markers easily. The core module accepts 

and sends bytes at 9600 bps and is built on an Arduino Mega. It was fitted with a custom 
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shield, or add-on printed circuit board (PCB) to enable interfacing with serial, parallel and 

BNC ports. It has a consistent latency of 1.02 ms between receiving a byte and sending the 

byte out (Grzeczkowski & Ayaz, 2014). Fig. 1 displays the core module. The baud rate is 

not customizable and additionally, newer systems are less likely to have the legacy ports 

that are present on the core module. 

 

2.4 Problem Definition 

The complexity of multimodal and hyperscanning research studies calls for accurate and 

precise time synchronization across all platforms. The NeuroHub core module allows 

interfacing with serial port, TTL, and parallel port, but these types of ports are seen less 

and less on modern computers. To provide more flexibility and customizability, 

networking ability should be incorporated into the NeuroHub. This type of device would 

also reduce the number of wires in the setup while still servicing multiple clients and 

ensuring small lag times.  

Figure 1 NeuroHub core module with 4 RS232 ports, 1 TTL port, and 1 parallel port  
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3. Device Design and Development 

3.1 Device Design 

 3.1.1 Device Requirements 

The device should also be easily portable and simplify the event marker synchronization 

among common communication protocols in multimodal and hyperscanning research 

studies. The device should easily interface with the NeuroHub core module and have 

networking capabilities. Therefore, it should be able to send and receive via TCP, UDP, 

and serial port protocol. It should also be linked to a graphical user interface so that users 

can select which network protocol, serial port baud rate, and number of networked clients 

in the setup. The device should have submillisecond latencies since EEG has high temporal 

resolution (256-1000 Hz) and precision timing is critical in research setups with EEG.  

 3.1.2 Device Specifications 

The computing board that the device is built on should have at least a 16 Mhz processor, 

and should include a networking component such as Ethernet or Wi-Fi card. Ethernet card 

is preferred because it is more reliable and faster than Wi-Fi. The board should be 

programmable in a low-level language like C++ for efficient code and optimized error 

handling. The board should include at least 1 UART to be able to interface with a standard 

serial RS-232 port to easily connect to the NeuroHub core module. Finally, the board 

should be well documented and inexpensive. 

3.2 Device Development 

 3.2.1 Board Selection 

There were a few boards to choose from in the initial device planning stage. Since the 

original core model is constructed from Arduino, it would be possible to add an Arduino 
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shield with Ethernet networking capabilities. However, this would require a complete 

redesign of the original NeuroHub to incorporate the additional shield. There is also no 

way to create a GUI by programming in the Arduino environment. It requires linking to 

some external GUI developing platform and increases the complexity of setup with the 

NeuroHub core module. The other option was to build a separate networking module that 

would be a modular and optional expansion to the core module. Some of the boards that 

already included network capability were the Raspberry Pi, Minnowboard, and 

DragonBoard. It was decided that Ethernet should be used for the first generation of the 

networking module since Ethernet offers speed, minimal latency, and reliability over 

wireless protocols. This narrowed down the choices to the Raspberry Pi and Minnowboard. 

The Minnowboard costs more than four times the cheapest Raspberry Pi model; for this 

reason, the Raspberry Pi 1 Model B was selected. Upgrading to the Raspberry Pi Model 3 

B woud also allow more flexible options since it has both Ethernet and Wi-Fi capability. 

In total, Raspberry Pi was the best documented, and the least expensive and smallest board 

that met the selection criteria.  

 3.2.2 Hardware Add-ons and Programming of the NeuroHub Network Module 

A DTronix Mini Piio RS232 add on PCB or Raspberry Pi “hat” was chosen as a simple 

way to add an RS232 interface to the Raspberry Pi. This would enable a straightforward 

way to connect the NeuroHub network module with the NeuroHub core module. C++ was 

chosen as the coding language of choice since it is efficient and fast compared to other 

languages, and easier to perform error handling and maintain than with C. The complete 
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network module is shown in Fig. 2A. Fig. 2B shows the network module connected to the 

core module. 

In a subsequent revision, the Raspberry Pi 3 Model B was used, since the Pi 3 

included both Wi-Fi and Ethernet capability, which made it the most flexible option. A 

comparison table for the two models is shown in Table 1. The Raspberry Pi 3 boasts 

superior performance to the older generation in various categories, most importantly, the 

processor and number of cores. Fig. 3A and 3B show the revised network module using 

the Raspberry Pi 3. 

Figure 2 A) NeuroHub network module B) complete NeuroHub: network module connected with core module 

A B 
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                  Table 1 Comparison chart for Raspberry Pi Model 1 and 3 

 Raspberry Pi Model 1 B Raspberry Pi Model 3 B 

CPU 700 MHz single-core 1.2 GHz 64-bit quad-core 

Ethernet 10/100 Mbit/s 10/100 Mbit/s 

SD Card Full-size SD card MicroSDHC 

GPIO pins 26 40 

USB slots 2 4 

Wi-Fi NA 802.11n wireless 

Bluetooth NA 4.1 

 

  A GUI was programmed using gtkmm 3.0 libraries and Glade. The GUI allows the 

user to select the networking protocol, serial port baud rate, and number of networking 

clients. The underlying code uses standard C++ libraries to connect to, read from, and write 

to TCP and UDP sockets. WiringPi library was installed on the Raspberry Pi in order to 

easily write to and read from the serial ports. Once the connect button on the GUI is 

pressed, the server listens for the number of clients defined by the user. When the number 

of clients meets the maximum, threads are generated for each client and for the serial port. 

Each thread contains a blocking read operation. After the read operation returns, the 

A B 

Figure 3 A) NeuroHub Network Module Version 2 B) Network module version 2 connected to core module 
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character message is sent to all other clients and then written to the serial port. At any time, 

the user may choose to “quit” and close all connections. It is possible to restart connections, 

at which point the server will again begin listening for clients. A figure of the GUI is shown 

in Fig. 4. The block diagram of the event marker flow through the network module is shown 

in Fig. 5.  Fig. 6 shows the flow diagram for the network module code. 

 

 

A 

Serial port, TCP or UDP 

Serial port 
Serial client  

event markers 

TCP or UDP 
Network 

Client Event 

markers  

TCP or UDP 

Network clients 

receive event 

markers  

Network and/or 

serial clients 

receive event 

markers  

Network 
Module 

(Raspberry 
Pi) 

Figure 5 Network Module block diagram. A) and B) reflect different paths for incoming event markers, depending on the 

initial modality (serial vs networking) 

B 

Figure 4 NeuroHub Network Module GUI 
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Figure 6 Block diagram for network module programming code 
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4. Testing and Validation 

4.1 Test Configurations 

There were four configurations to test the NeuroHub network and core modules connected 

to a single computer: 1) Receiving via Ethernet and sending via serial, 2) Receiving via 

serial and sending via Ethernet, 3) Receiving via Ethernet and sending via Ethernet, and 4) 

Receiving via serial and sending via serial. With the core module, it is possible to add an 

additional path for byte transmission in tests 1 and 2, shown in Fig. 7A and 8A. The core 

module can also be used without the network module, as indicated in Fig. 10. In these 

scenarios, an external computer such as a laptop or desktop would send a byte via Ethernet 

or Serial to the network module. The network module would then send the same byte back 

to the sender. Additional tests are to constrain the path of byte transmission to the just host 

computer for Ethernet to Ethernet and Serial to Serial communication, as indicated in Fig. 

9B and 10B. For each of the tests involving Ethernet, both UDP and TCP were tested. For 

each of the tests involving serial ports, either 9600 or 115200 bps baud rate was used. All 

tests were done on three different computers – two laptops and one desktop computer. 

Their specifications are summarized in Table 2. Since the laptops do not have native serial 

ports, Prolific 2303 USB-to-Serial adapters were used. It was later determined that the type 

of USB-Serial adapter used can significantly alter the round-trip latency, so the adapter 

type was another variable that was changed in testing configurations. The adapters used 

were the Prolific 2303 USB-serial and Sabrent USB-Serial. To characterize the data 

transmission delay in the networking module, a program was designed in C# to measure 

the round-trip times for each of the test configurations. The test configurations shown in 

Figs. 7-10 were completed on version 1 only because of time constraints, as version 2 was 
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finalized much later. It is important to note that the latencies will be faster on version 2 

since the Raspberry Pi 3 Model B is faster than Raspberry Pi 1 Model B.  

 

  Table 2 Computer specifications  

Computer Type Lenovo P400 laptop Dell XPS laptop Desktop computer 

Operating System Windows 10 Home Windows 10 Pro Windows 7 

Professional 

Processor 
Intel core i7-3632QM 

CPU 2.2GHz 

Intel core i7-

3612QM CPU 

2.1 GHz 

Intel core i7 CPU 

920 2.67 GHz 

Register size 64-bit 64-bit 64-bit 

RAM size 8 GB 16 GB 6 GB 

Windows 

Experience Rating 
5.9 6.9 7.3 
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Figure 7 Ethernet to Serial test configurations involving NeuroHub. A) With core module. B) Without core module 
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Figure 9 Ethernet to Ethernet test configuration. A) with network module B) without network module 
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Another set of experiments was done to characterize the latencies for marker transmission 

for several networked clients at the same time for both version 1 and version 2. Version 1 

must be connected to the host computer via Ethernet (Ethernet mode). In this setup, it is 

necessary to connect the host computer to the other clients via an ad-hoc network for 

multi-client network communication. Version 2 can be connected with Ethernet the same 

way that Version 1 is, or it can be connected wirelessly via an ad-hoc network initiated 

by the Raspberry Pi to the clients. The multi-client test configurations are depicted in 

Figs. 11 and 12. 
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Figure 10 Serial to Serial test configuration. A) with core module B) without core module 

A B 
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4.2 Testing Program Design and Development 

Two testing programs were coded in C# as a Windows form application because it is a 

simple environment to read and write to the serial port. The form enables selection of which 

COM ports to use, protocol communication selection, and the number of data points. 10 

trials of 1000 data points were completed for each test configuration, for a total of 10,000 

points per test. The first testing program sends bytes out through either TCP or UDP and 

receives through the UDP, TCP or serial port. The second testing program sends through 

the serial port, and receives through either UDP, TCP, or serial port. It should be noted that 

for the special case of sending through serial port and receiving via Ethernet with TCP, it 

was necessary to send an “acknowledgement” byte back to the server. Without this 

acknowledgement byte, the round-trip latency was more than 50 ms for this particular 

configuration. After adding this byte, the latency dropped to less than 5 ms. The elapsed 

time between sending and receiving the byte is recorded in milliseconds. The sending and 

receive methods for these programs operate in separate threads. Once a byte is sent, the 

program waits to receive the same byte back before sending out a new byte. It is extremely 

important that the byte received matches the byte sent; 1 is recorded for a matching byte, 

while 0 is recorded for an incorrectly received byte. The data is saved in a tab delimited 

text file for further data analysis.  

4.3 Data Analysis 

A program in MATLAB was created to analyze the .txt files generated by the C# testing 

program. The program is designed to analyze all data from a specific set, such as all 

Ethernet – Ethernet tests or all Ethernet – Serial tests. This is because the program checks 

all data for the minimum and maximum latencies within that test set. It uses this 
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information to set the x axis limits on the figures so that tests that vary the baud rate or 

network protocol within the same test configuration are easily comparable. The MATLAB 

program outputs a .csv file with basic statistics for the overall test as well as each of the 

ten trials. It generates figures and saves them as .jpeg. The types of figures it generates are 

a histogram of all 10,000 data points, average values in each trial, histograms for each trial, 

plot point of all 10,000 data points, the success rate bar graph (percentage of correct bytes 

returned), and box plot of each trial. 

4.4 Results 

All tests done had a 100% success rate, meaning that the same bytes sent to NeuroHub 

were received successfully on the C# program. Fig. 13 is an example of the success bar 

graph for one test configuration. Other test configurations produced the same  

success graph. Figs. 14 - 17 show the average latencies for round trip times among all 

three computers and baud rates, with no core module involved. 

Figure 13 Success rates for 10 trials of test configuration 3 on Dell XPS laptop 
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Figure 16 Desktop average round trip times for all tests involving serial ports 
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The round-trip times for the two laptops using USB-serial ports are very similar 

across all tests and baud rates. The Serial-Ethernet TCP test at 115200 bps on the Dell 

XPS laptop was slower than its UDP counterpart and the Serial-Ethernet TCP and UDP 

tests on the Lenovo. This is probably because TCP receiving in the serial to Ethernet 

configuration is the less efficient on the Dell XPS due to the need for the 

acknowledgment byte. It seems to be a computer specific issue since this same 

phenomenon is not present on the other computers. Compared to the desktop computer, 

increasing the baud rate for the laptop tests that involve the serial port receiving bytes 

does not improve the latency by much. Since the biggest difference between the desktop 

computer and laptop computers test configurations is the use of either native or USB-

serial port, the lack of improvement in the increased baud rate for the laptops can be 

attributed to the use of USB-serial converter. Using a USB-Serial converter on the 

desktop instead of using the native serial ports yielded similar results to the laptops. 

These results are shown in Fig. 18.  
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Wherever the USB-Serial adapter is used to receive event markers, the latency is 

high and comparable to that of the Lenovo and Dell XPS laptops. When native serial 

ports are used to receive data, the latency drops below one millisecond at the higher baud 

rates. This data confirms that the USB-Serial adapter is the likely cause for only a small 

improvement in latency at the faster baud rate. This is most likely due to the use of 

software based interrupts in USB-Serial converters. Native serial ports use hardware 

interrupts, which are more reliable and efficient. This result indicates that the USB-Serial 

converter has a strong influence on the round-trip time.  

All latencies found were less than 7 ms which is more than acceptable for fNIRS 

since its sampling rate is not very high. EEG is high resolution, and requires at the very 

least under 2 ms latencies, which was only achieved in Ethernet receiving configurations 
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at 115,200 bps for the laptops using USB-Serial converters. However, at 115,200 bps on 

the desktop computer with native serial ports, all round-trip times were sub-millisecond, 

which is appropriate for EEG sampled at 1000 Hz or fNIRS.  

This histogram for all the tests shows a Gaussian distribution for the latencies. An 

example is shown in Fig. 19. The standard deviation for the tests were all sub 

millisecond, indicating that the latencies are steady around a certain point.  A summary of 

the results for each of the computers is presented in Tables 3–5 depicting the average 

latencies with standard deviation. 

 

 

Figure 19 Histogram of latencies for Dell XPS at 9600 bps for test configuration 1 
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Table 3 Summary of tests for Lenovo laptop 

Test type 
Lenovo P400 Ideapad (avg ms) 

Baud Rate (bps) UDP TCP 

Ethernet to Serial 
9600 4.97 ± 0.11 4.73 ± 0.09 

115200 3.75 ± 0.08 3.77 ± 0.08 

Serial to Ethernet 
9600 4.64 ± 0.10 4.81 ± 0.10 

115200 0.54 ± 0.08 0.65 ± 0.11 

Ethernet to Ethernet NA 0.58 ± 0.08 0.62 ± 0.09 

Serial to Serial 
9600 4.01 ± 0.10 

115200 2.85 ± 0.07 

 

 

 

Table 4 Summary of tests for Dell XPS laptop 

Test type 
Dell XPS laptop (avg ms) 

Baud Rate (bps) UDP TCP 

Ethernet to Serial 
9600 4.64 ± 0.07 4.66 ± 0.09 

115200 3.69 ± 0.16 3.71 ± 0.08 

Serial to Ethernet 
9600 4.89 ± 0.07 4.94 ± 0.10 

115200 0.69 ± 0.07 1.37 ± 0.17 

Ethernet to Ethernet NA 0.77 ± 0.09 0.78 ± 0.13 

Serial to Serial 
9600 4.08 ± 0.06 

115200 2.93 ± 0.05 
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Table 5 Summary of tests for desktop computer 

Test type 
Desktop computer 9600 bps (avg ms) 

Baud Rate (bps) UDP TCP 

Ethernet to Serial 
9600 6.74 ± 0.09 6.77 ± 0.19 

115200 1.22 ± 0.08 1.24 ± 0.07 

Ethernet to USB Serial 
9600 4.97 ± 0.07 4.98 ± 0.06 

115200 3.98 ± 0.05 3.98 ± 0.04 

Serial to Ethernet 
9600 4.68 ± 0.07 4.74 ± 0.09 

115200 0.67 ± 0.06 0.78 ± 0.11 

USB Serial to Ethernet 
9600 4.26 ± 0.29 4.29 ± 0.23 

115200 0.76 ± 0.09 0.81 ± 0.46 

Ethernet to Ethernet NA 0.52 ± 0.08 0.54 ± 0.08 

Serial to Serial 
9600 6.05 ± 0.06 

115200 0.52 ± 0.04 

USB Serial to USB 

Serial 

9600 3.99 ± 0.03 

115200 2.99 ± 0.05 

Serial to USB Serial 
9600 4.04 ± 0.29 

115200 3.94 ± 0.01 

USB serial to serial 
9600 5.72 ± 0.28 

115200 0.61 ± 0.03 

 

 

It was additionally found that the type of USB-Serial converter would affect the 

round-trip times. Changing to the Sabrent USB-Serial converter with the same driver 

installed as the Prolific 2303 USB-Serial converter reduced the latencies in the serial 

receiving cases, as shown in Figs. 20 and 21 for the laptops. However, there also appears 
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to be a higher standard deviation with the Sabrent, as indicated clearly by the error bars in 

Fig. 21. 
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As shown by figures 18, 20, and 21, the USB-Serial converter does affect the round-trip 

times, and this should be taken into consideration when using computers without native 

serial ports.   

 The next round of tests was to investigate the latency that arises when multiple 

clients are sending event markers at the same time. 2, 3, and 4 clients were tested on 

version 1 and version 2 network module in Ethernet and wireless mode (see Figs. 11 and 

12 for the configuration diagram). The results for each version and mode is shown in 

Figs. 22 – 24. Each graph has a trendline to show the effect for each additional client. 

0

1

2

3

4

5

6

7

9600 bps 115200 bps

Ti
m

e 
D

el
ay

 (
m

s)

Baud Rate

Dell XPS Laptop Baud Rate Comparison  

Figure 21 Sabrent USB-Serial Dell XPS round trip times without core module 

Serial to Ethernet (UDP) 

Serial to Ethernet (TCP) 
Ethernet (UDP) to Serial) 

Ethernet (TCP) to Serial 

 Serial to Serial 



35 

 

  

Figure 22 Network module Ethernet mode latencies for simulateanou byte transmission on multiple clients 
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Out of all the multi-client configurations, Version 2 Ethernet Mode provided the 

best results with the smallest and most consistent latencies across different numbers of 

clients, and the lowest standard deviations. Its trendline indicates a slower increase in 

latency for additional clients compared to Version 1 and Wireless mode. Version 1 

Ethernet mode had a worse performance than Version 2 Ethernet mode because of the 

older Raspberry Pi model. The Raspberry Pi Model 1 B used in Version 1 has a slower 

CPU and only one core, whereas the Model 3 B has a significantly faster CPU and four 

cores. The larger number of cores allows the latencies in version 2 Ethernet mode to be 

stabilized even with an increasing number of clients. 

The wireless mode provided similar latencies for 2 and 3 clients as Version 1 

Ethernet mode, but the additional fourth client doubles the latency compared to the other 

configurations, as shown in Fig. 23. Even though the Model 3 B is being used, Wi-Fi 

connection is inherently slower and less reliable than a wired connection. The wireless 

connection latency for 3 clients is nearly the same as the version 1 Ethernet mode for 3 

clients. This actually indicates that the Model 3 B is still outperforming the Model 1 B, 

because in Ethernet mode, 1 of the clients is communicating through the wired 

connection, while the other 2 are through a wireless peer-to-peer connection that relays 

through Ethernet. On the other hand, in wireless mode, all 3 clients are connected with an 

ad-hoc network. It should be noted that the Ethernet mode results presented are a worst-

case scenario. It is possible to connect the Network Module to a router instead of using 

ad-hoc networks, which will decrease the latencies. Table 6 discusses the pros and cons 

for each version and mode.  
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Table 6 Pros and cons for each network module version and mode 

Version and Mode Pros Cons 

Version 1 Ethernet Mode 

• Most tedious to 

implement in terms 

of plug-and-play 

• Smaller latency 

than Version 2 

wireless mode  

• Variability 

increases with more 

clients 

• Additional clients 

show exponential 

increase in latency 

• Wired connection 

required 

Version 2 Ethernet Mode 

• Most tedious to 

implement in terms 

of plug-and-play 

• Latency under 3 ms 

for 4 clients or less 

• Most reliable 

(smallest standard 

deviation) 

• Additional clients 

do not cause large 

increase in latency 

• Wired connection 

required 

Version 2 Wireless Mode 

• Easiest to 

implement in terms 

of plug-and-play 

• No wires needed 

• Latency under 3 ms 

for 3 clients or less  

• Most unreliable 

(highest standard 

deviation) 

• Large (exponential) 

increase in latency 

with additional 

clients 

 

 

4.4 Model 

The round-trip times for all test configruations was measured, but the individual 

subcomponents that make up that total round-trip time are not immediately known or 

easily measured. It is possible to create a system of equations for each test configuration 

and solve this system to characterize the latencies within just the network and core 

modules alone. For example, to determine the latency of the core module, round trip 

measurements were taken with and without the core module. All equations are as follows: 
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𝑁𝐸𝑟 + 𝑁𝐸𝑠 + 𝐶𝐸𝑟                                                       (1) 

𝑁𝐸𝑟+ 𝑁𝑆𝑠 + 𝑁𝐶 + 𝐶𝑆𝑟                                                  (2) 

𝑁𝐶 + 𝑁𝑆𝑟 + 𝑁𝐸𝑠 + 𝐶𝐸𝑟                                                  (3) 

𝑁𝐶 + 𝐶𝑆𝑟                                                              (4) 

𝐶𝐸𝑟 ≈ 0                                                                (5) 

𝑁𝐸𝑟+ 𝑁𝑆𝑠+𝐶𝑆𝑟                                                (6) 

𝑁𝑆𝑟 + 𝑁𝐸𝑠 + 𝐶𝐸𝑟                                                       (7) 

𝐶𝑆𝑟                                                                    (8) 

NEr signifies the time it takes to receive a byte through Ethernet on the network module. 

Similarly, NEs is the time it takes to send the byte through Ethernet on the network module. 

CEr is the time it takes for the C# program to receive the byte via Ethernet. Equation 1 is 

represented by Fig. 9A. NSS is the time it takes to send the byte through the serial port on 

the network module, and CSr is the time it takes for the C# program to receive the byte on 

the serial port. NC is the amount of time for the core module to receive and send a byte. 

Equation 2 is represented by Fig. 7A. NSr is the amount of time it takes to receive one byte 

on the serial port in the network module. Equation 3 is visually depicted in Fig. 8A. 

Equation 4 is depicted by Fig. 10A, and Equation 5 by Fig. 9B. The variables are 

summarized in Table 7. Equations 6 – 8 are the counterparts to Equations 2 – 4 since they 

forgo the use of the NeuroHub core module, and are depicted in Figs. 7B, 8B, and 10B. 
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Table 7 Variable summary 

Variable Name Description 

NEr Network module receive via Ethernet 

NEs Network module send via Ethernet 

CEr C# program receive via Ethernet 

NSs Network module send via serial 

NC NeuroHub Core module receive and send 

NSr Network module receive via serial 

CSr C# program receive via serial 

 

The goal was to determine the latencies of each of the variables to understand the 

characteristics of the entire system. Finding NC was straightforward, since it is simply a 

matter of subtracting Equations 6 – 8 from their counterparts in Equations 2 – 4.  

As seen in the example for the Lenovo laptop at 9600 bps in Fig. 24 for the 

Ethernet to serial test configuration, there is about a 1 ms difference between including 

the core module and forgoing it. Similar results are seen across the different computers 

and test configurations involving the serial port. The mean times are summarized in Table 

8. 

Figure 24 Comparison of latencies A) with and B) without the core module for Lenovo laptop, test 

configuration #1 at 9600 bps 
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Table 8 Average NeuroHub core module latencies 

Computer Type NC Mean and standard deviation 

Lenovo laptop 1.064 ± 0.11 

Dell XPS laptop 1.028 ± 0.02 

Desktop 1.044 ± 0.09 

Average: 1.05 ± 0.08 ms 

 

The average NeuroHub core module latency found was 1.05 ms. There is a 2.94% error 

from the expected value found in Grzeczkowski & Ayaz’s previous work of 1.02 ms. 

This error is most likely attributed to the fact that the measurement done in the previous 

work was with the oscilloscope, while the 1.05 ms measurement was found with software 

measurement.  

In order to characterize the latencies within just the network module, equations 5 

and 8 were subtracted from equations 1, 6, and 7. This isolates the network module terms 

for each of the test configurations. This was done for all test computers. Figs. 25 - 27 

shows the latencies for solely the network module across the three computers. 
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Figure 25 Network Module Latencies for Lenovo laptop 
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Figure 27 Network Module latencies for Desktop 
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Figure 26 Network Module latencies on Dell XPS laptop 
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The NeuroHub network module was consistent across the laptops and the desktop. This 

verifies that the network module works the same regardless of what computers it is 

connected to. See Fig. 17 for the network module latencies for Ethernet only tests on all 

three computers. Figs. 28-29 show the average latencies across all computers, and Table 

7 summarizes the variables and their associated average latencies. 

0

1

2

3

4

5

6

UDP TCP

La
te

n
cy

 (
m

s)

Protocol

Network Module Latencies Using Ethernet Only 
(NEr+ NEs)

Figure 28 Average Latencies within Network Module for Ethernet only tests 
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Table 9 NeuroHub Network Module Average Latencies 

Variable Network Protocol Baud Rate (bps) Latency (ms) 

𝑵𝑬𝒓 + 𝑵𝑬𝒔 
TCP ---------- 0.64 ± 0.10 

UDP ------------ 0.62 ± 0.08 

𝑵𝑺𝒓 + 𝑵𝑬𝒔 

TCP 
9600 4.83 ± 0.31 

115200 0.93 ± 0.36 

UDP 
9600 4.74 ± 0.28 

115200 0.63 ± 0.26 

𝑵𝑬𝒓+ 𝑵𝑺𝒔 

TCP 
9600 0.65 ± 0.31 

115200 0.80 ± 0.26 

UDP 
9600 0.62 ± 0.28 

115200 0.78 ± 0.29 

𝑵𝑪 ------- 9600 1.05 ± 0.08 

 

4.5 Discussion 

The NeuroHub network module provides a plug-and-play mechanism to send event 

markers with minimal latency through TCP, UDP, and serial port. It can be connected to 

the NeuroHub core module for additional serial ports, TTL, or parallel port. It was found 

that the latencies across the laptops were very similar due to the use of the USB-serial 

converters. Additionally, the type of USB-Serial converter will affect the latency. Using 

native serial ports, however, had much more improved latencies at the higher baud rate 

for the configurations with receiving on the serial port. It is advisable to use native serial 

ports over USB-serial converters since there may be unknown lag based on the type of 

converter. This is because native serial ports use hardware interrupts to receive data, 

while USB-serial converters are using software interrupts. Hardware-dedicated interrupts 

are more reliable than software interrupts. Overall, the network module achieved 

consistent latencies below 7 ms and for certain configurations, below 1 ms. 



44 

 

5. Representative Use Case 

5.1 Introduction 

To test how the device can be used in a real-world research application, a simple test 

experiment was done using OpenViBE and COBI Studio. OpenViBE is an open-source 

software platform designed to record, filter, process, classify and visualize brain signals 

in real time and is customizable through graphical programming. Users who do not have 

programming experience can still use OpenViBE. Users drag and drop desired boxes into 

their scenario window and connect the boxes to complete the signal flow. An OpenViBE 

scenario using a P300 speller was used for the demonstration. The event markers are 

automatically generated by OpenViBE. These markers were sent to the NeuroHub 

network module through TCP. To do this, a custom OpenViBE box was coded in C++ to 

interface with the network module. Markers received from the network module were then 

sent via serial port at 9,600 bps and 115,200 bps to COBI studio, the fNIRS recording 

software designed and developed at Drexel University. COBI studio received the markers 

through an FTDI based USB-Serial converter, because it worked the most reliably with 

COBI studio. This test setup highlights the ability of the NeuroHub network module to 

convert one type of data stream into another. In this setup, Version 1 Ethernet Mode is 

used. The configuration is shown in Fig. 30. The event markers were logged by 

OpenViBE and COBI studio in separate files. To ascertain the delay between sending the 

marker from OpenViBE to COBI studio via the network module, the time differential 

from the first marker in OpenViBE was computed for all the following markers and 

compared to that of the markers logged in COBI studio.  
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5.2 Results 

Fig. 31 shows the histogram of delays between OpenViBE and COBI.  The average 

latency for transmission for both baud rates combined was 0.54 ms ± 0.37 ms. This result 

confirms that the network module is able to provide submillisecond latencies. 

Figure 30 Flow diagram for use case with OpenViBE and COBI Studio 

NeuroHub 
Network 
Module 

Event  
markers via 

TCP 

Event 
markers via 

RS-232 

fNIRS recording 

EEG 
recording 

Figure 31 Average time differences between OpenViBE and COBI 

studio temporal markers at 9.6 and 115.2 kbps 
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6. Conclusion and Future Work 

6.1 Conclusion 

The NeuroHub network module supports TCP, UPD, and serial port transmission of 

event markers values between 1 and 255. The number of networked clients. baud rate, 

and networking protocol is customizable through a GUI. It has been established that the 

latency while using the network module version 1 will be less than 7 ms, and in most 

cases sub millisecond, which is appropriate for the temporal needs of both fNIRS and 

EEG.  Upgrading to Version 2 further improved the latencies due to the faster Raspberry 

Pi model used. Version 2 Ethernet mode has proven to be the most scalable version since 

the addition of multiple clients does not substantially change the average latency. In 

summation, the device met all the desired requirements.  

6.2 Future Work 

There are various features and approaches that could improve current NeuroHub. One 

coding improvement for the NeuroHub Networking Module would be to enable use of 

the USB ports on the Raspberry Pi to send or receive markers through a virtual serial 

port. This could be used in setups where a USB stick is used to wirelessly send markers 

to the software, such as with Cognionics EEG acquisition. A dynamic library link (DLL) 

should be created so that code for existing programs can easily be configured to be able 

to connect, send, and receive markers to the network module through TCP. The server 

code on the Raspberry Pi could further be improved by applying a real-time patch to the 

Linux kernel that the Pi runs on so that latencies can be reduced. Linux is not a real- time 

operating system, so the time it takes to finish a task is not important and is not strictly 

overseen as in a real-time operating system. The NeuroHub core module can also be 
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improved by changing two of the serial port connections from female to male; this will 

allow more flexible setups based on whatever serial cables the lab has available. The 

core module’s baud rate should also be increased from 9,600 bps to decrease the latency 

from its current 1 ms setpoint.   

The NeuroHub Network Module serves to bridge the divide between older and 

newer systems. With its serial port interface, it can easily attach to the core module 

which provides legacy port interface, and with its networking capability, it is able to 

communicate with newer protocols as well. The future of communication technology is 

the universal port, a single port that can be used for multiple purposes. An example of 

this kind of technology is USB-C ports. Many newer computers have USB-C charging 

and this port can also be used to receive and transmit data. Apple has already attempted 

to eliminate the use of different ports for different devices by allowing users to connect 

headphones and charge their Apple products through their patented lightning connector. 

Technologies like Wi-Fi direct, Bluetooth are also becoming more prevalent as methods 

to connect multiple devices together. Although neuroimaging systems and their 

synchronization methods will not change in the short-term, the long-term future goals for 

the NeuroHub network module is to consider these new technologies and how they can 

be implemented to serve the needs of both old and emerging brain and body research 

systems.      
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Appendix A: NeuroHub Network Module Development and Setup 

 

 

 

 

Materials List 

1. Raspberry Pi Model 1 B 

2. Raspberry Pi Model 3 B 

3. SD card adapter x2 

4. 8 – 32 GB Micro SDHC x3  

5. Raspberry PIIO – MiniPiio RS232 add-on board 

https://www.tindie.com/products/DTronixs/raspberry-piio-minipiio-rs232-add-on-

board/?pt=full_prod_search 

6. Raspberry Pi GPIO to DB9M RS232 Serial Board 

7. ModMyPi Modular (variable height) case for Raspberry Pi 2/3 complete set 

https://www.amazon.com/Modular-variable-height-case-

Raspberry/dp/B01LYARY5D/ref=sr_1_1?ie=UTF8&qid=1494270226&sr=8-

1&keywords=modmypi+case 

8. Ableconn PI232DB9K GPIO to DB9M RS232 Serial Stackable Board for 

Raspberry Pi https://www.amazon.com/Ableconn-PI232DB9K-Serial-Stackable-

Raspberry/dp/B01LZO0K2Y/ref=sr_1_2?ie=UTF8&qid=1496342691&sr=8-

2&keywords=raspberry+pi+gpio+to+db9m+rs232+serial+board 

Setup OS, programs, and files 

The initial version uses the Raspberry Pi Model 1 B. This model uses a regular size SD 

card. Install the Raspbian Jesse OS image onto the SD card, which can be obtained for 

free from the Raspberry Pi website. The distribution used here was released on March 18, 

https://www.tindie.com/products/DTronixs/raspberry-piio-minipiio-rs232-add-on-board/?pt=full_prod_search
https://www.tindie.com/products/DTronixs/raspberry-piio-minipiio-rs232-add-on-board/?pt=full_prod_search
https://www.amazon.com/Modular-variable-height-case-Raspberry/dp/B01LYARY5D/ref=sr_1_1?ie=UTF8&qid=1494270226&sr=8-1&keywords=modmypi+case
https://www.amazon.com/Modular-variable-height-case-Raspberry/dp/B01LYARY5D/ref=sr_1_1?ie=UTF8&qid=1494270226&sr=8-1&keywords=modmypi+case
https://www.amazon.com/Modular-variable-height-case-Raspberry/dp/B01LYARY5D/ref=sr_1_1?ie=UTF8&qid=1494270226&sr=8-1&keywords=modmypi+case
https://www.amazon.com/Ableconn-PI232DB9K-Serial-Stackable-Raspberry/dp/B01LZO0K2Y/ref=sr_1_2?ie=UTF8&qid=1496342691&sr=8-2&keywords=raspberry+pi+gpio+to+db9m+rs232+serial+board
https://www.amazon.com/Ableconn-PI232DB9K-Serial-Stackable-Raspberry/dp/B01LZO0K2Y/ref=sr_1_2?ie=UTF8&qid=1496342691&sr=8-2&keywords=raspberry+pi+gpio+to+db9m+rs232+serial+board
https://www.amazon.com/Ableconn-PI232DB9K-Serial-Stackable-Raspberry/dp/B01LZO0K2Y/ref=sr_1_2?ie=UTF8&qid=1496342691&sr=8-2&keywords=raspberry+pi+gpio+to+db9m+rs232+serial+board
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2016. Other distributions are found here: 

http://downloads.raspberrypi.org/raspbian/images/ . It is possible to write the image file 

with Win32DiskImager if using Windows. 3 micro SD cards and 2 full-size SD adapters 

should ideally be used for each of the configurations – Version 1 Ethernet mode, Version 

2 Ethernet mode, and Version 2 wireless mode.  Make sure to save the SD card image 

after making any substantial changes. At the end of development, there will be three 

different image versions for the SD card.  

In the cmdline.txt file of the boot directory on the SD card, append the line 

ip=192.168.137.99. Plug in the Ethernet cable from the Raspberry Pi to the computer. 

Enable sharing Internet connection on the Local Area Network (LAN) in the Wi-Fi 

adapter settings. Go to the properties of the LAN, right click on ipv4, select properties, 

and select use the following address. Type in 192.168.137.1 with subnet mask 

255.255.2525.0 and click ok. Download the free version of MobaXTerm to SSH into the 

Pi. Create a new session with IP address as 192.168.137.99. To login, user name is pi and 

password is raspberrypi.  

Update pi with 

sudo-apt get update 

sudo-pat get upgrade 

 

Then install Wiring Pi, with the following commands: 

cd 

git clone git://git.drogon.net/wiringPi 

cd ~/wiringPi 

git pull origin 

./build 

 

Check installation with: 

gpio -v 

gpio readall 

 

 Next, install gtkmm 3.0 for the GUI using 

http://downloads.raspberrypi.org/raspbian/images/
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sudo apt-get install libgtkmm-3.0-dev 

 

Stop the console from using the serial port by typing 

sudo systemctl stop serial-getty@ttyAMA0.service 

sudo systemctl disable serial-getty@ttyAMA0.service 

 

If using Raspberry Pi 3 also do 
 
sudo systemctl stop serial-getty@ttyS0.service 

sudo systemctl disable serial-getty@ttyS0.service 

 

Then edit cmdline with 
sudo nano /boot/cmdline.txt 

 

Delete the line console=serial0,115200 
 

For Raspberry Pi 3 
sudo nano /boot/config.txt 

Add the following line to the end of the file 
dtoverlay=pi3-disable-bt 

 

Bluetooth uses the high performance GPIO pins that were previously used on the 

Raspberry Pi 1 for the serial port. 

To configure a static IP address: 

sudo nano /etc/network/interfaces 

After eth0 inet manual place dns-nameservers 8.8.8.8 8.8.4.4 

In /etc/dhcpcd.conf insert following lines at the very end: 

interface eth0 

static ip address = 192.168.137.99 

static routers=192.168.137.1 

static domain_name_servers=192.168.137.1 

 

Save the new updated image on the SD card to an external hard drive. 

 

Wireless Mode Configuration (Raspberry Pi 3 only) 

If trying to configure Version 2 (Raspberry Pi 3) wireless mode perform the following 

steps: 

cd /etc/network 

sudo cp interfaces interfaces-wifi 

sudo nano interfaces-adhoc 

 

mailto:serial-getty@ttyAMA0.service
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Copy the following information into the interfaces-adhoc file 

auto lo 

iface lo inet loopback 

iface eth0 inet dhcp 

 

auto wlan0 

iface wlan0 inet static 

address 192.168.137.99 

netmask 255.255.255.0 

wireless-channel 1 

wireless-essid RPIWireless 

wireless-mode ad-hoc 

 

Ctrl+X, yes and enter to save the file. 

Type in the following command to switch to adhoc mode: 

sudo cp /etc/network/interfaces-adhoc interfaces 

Switch back to Wi-Fi with 

sudo cp /etc/network/interfaces-wifi interfaces.  

 

Install a package to allow the Pi to assign any connected device an appropriate IP 

address: 

sudo apt-get install isc-dhcp-server. 

 

Edit the dhcpd.conf file with 

sudo nano /etc/dhcp/dhcpd.conf. 

 

Comment out all other lines and ensure that only these are not commented: 

ddns-update-style interim; 

default-lease-time 600; 

max-lease-time 7200; 

authoritative; 

log-facility local7; 

subnet 192.168.137.0 netmask 255.255.255.0 { 

range 192.168.137.5 192.168.137.150; 

} 

 

Save the config file and reboot. From another computer, you will be able to connect to 

the new adhoc network called RPIWireless. Then it is possible to SSH into the Pi with 

the address 192.168.137.99. Save this new image to a different file name on an external 

hard drive. 
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Writing and saving the network module server code 

Create a folder in the home directory with 

mkdir foldername 

 

Navigate inside the folder with 

cd foldername 

 

Drag and drop the NeuroHubNetworkModule.cpp. 

Drag and drop the NeuroHubGui3.glade file from the host computer to the SFTP panel in 

MobaXTerm inside the newly created folder.  NeuroHubGui3.glade can be found at 

https://github.com/nehatk17/NeuroHubNetworkModule/tree/master/Codes/Network%20

Module%20Programming. Alternatively, it is possible to create a new .glade file by 

downloading the Glade GUI program from https://glade.gnome.org/. Check the default 

preferences and begin making the GUI by dragging and dropping the desired elements. 

For radio buttons, ensure only one of the ones you wish to group is checked. In the 

General tab of the other buttons, write the name of the active button in the Group 

attribute. To populate the combobox, Click on ComboBox model ellipses in the General 

tab, and select New. Change column type to gchararray. Scroll down in the same panel 

and click add new row. For sequential editing, select horizontal. Type in the desired row 

names. Click on the combobox in the widget panel at the right of the screen and hit the 

edit button that appears at the taskbar at the top. Click the hierarchy tab and select Add. 

In the Properties and Attributes section next to Text, hit the drop-down menu that says 

unset and select gchararray1-gchararray. Exit, and when you click on the drop down in 

the window, the items you initially wrote show up. See 

https://www.youtube.com/watch?v=Z5_F-rW2cL8 for a visual tutorial. 

 Compile the code with  

https://github.com/nehatk17/NeuroHubNetworkModule/tree/master/Codes/Network%20Module%20Programming
https://github.com/nehatk17/NeuroHubNetworkModule/tree/master/Codes/Network%20Module%20Programming
https://glade.gnome.org/
https://www.youtube.com/watch?v=Z5_F-rW2cL8
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g++ NeuroHubNetworkModule.cpp -o NeuroHubNetworkModule -std=c++11 `pkg-

config gtkmm-3.0 --cflags --libs` -pthread -lwiringPi -lrt 

 

To run the code, type  

export XAUTHORITY = /home/pi/.Xauthority 

Then  

sudo ./NeuroHubNetworkModule  

The program should be running. First select number of networking clients and press 

connect. The code will listen for clients to connect and once the maximum number of 

clients are reached, threads for each client are established to distribute the event markers.  

To automate running the program once login is complete, do the following from the 

home directory: 

sudo nano start_script.sh 

In the empty file that opens, type: 

export XAUTHORITY=/home/pi/Xauthority 

cd foldername 

sudo ./NeuroHubNetworkModule 

Then exit and save. 

Enter the following command: 

sudo chmod u+x start_script.sh 

Then enter: 

sudo nano .bashrc 

At the very end of this file, add 

sudo ./start_script.sh 

Exit and save. Reboot (sudo reboot) to see changes take effect. Save the working image to 

a new file on an external hard drive. 
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Attaching Add-On Boards and Case 

The RS232 boards used are attached mechanically to the pins on either Raspberry Pi Model. 

The DTronix board is suitable for the Raspberry Pi Model 1 B, while Ableconn is used for 

the Raspberry Pi Model 3. The Ableconn board ships with mounting accessories for 

stabilization. The wires should be attached to the pins as shown in the picture below. The red 

wire goes to the leftmost bottom row of pins. The black wire goes to the 3rd pin from the left 

in the top row. The green wire connects to the pin next to the black wire’s pin, and brown 

connects to the neighboring pin to the right of the green. The following image shows the 

pinout of the Raspberry Pi board. Pins 14 and 15 are the transmit (Tx) and receive (Rx) pins 

for the UART, which will be connected to the corresponding pins on the expansion board. 

 

 

Raspberry Pi Model  1B or 3B GPIO Pinout 
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The modular case will fit the Raspberry Pi 3 and there are screws to hold the spacers in place.  

One of the spacers needs to be cut so that the serial port can be visible. Mark the places 

where it needs to be cut. Cut through the marked parts with large scissors. Finally, place a 

second spacer and the cover on. Insert medium sized screws on the bottom of the case 

(provided in the modular kit) to secure the additional case components. Using a small 

extender attached to the serial port on the Raspberry Pi will give easier access to the port. 

The case for the Raspberry Pi 1 was 3D printed at the Innovation Studio at Drexel 

University (located at Drexel One Plaza, 2nd floor). The .prt files used to design the case in 

CREO can be accessed at 

https://github.com/nehatk17/NeuroHubNetworkModule/tree/master/3D%20Printing%20Files 

. To ensure the baseplate and cover fit properly, create an assembly and add the necessary 

references. To generate the appropriate 3D print files, save the .prt file as .stl, select apply 

and hit ok for the default settings. The width dimensions of the cover and base may need to 

be adjusted slightly to fit the audio port better. The final 3D printed cover was adhered to the 

base with Superglue. 

 

Connecting multiple network clients in Ethernet or wireless mode 

For Ethernet mode, it will be necessary to use a Windows 7 computer as it proved difficult 

and unreliable to try and create the hosted network from a Windows 10. 

https://github.com/nehatk17/NeuroHubNetworkModule/tree/master/3D%20Printing%20Files
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1. In Windows 7, go to the network and sharing center, and click “set up a new 

connection or network”. 

2. Scroll down in the dialogue box and select “Set up a wireless ad hoc network”. 

3. Enter a name and if desired, a password and hit next. 

4. If using other Windows 7 computers, simply connect to the ad-hoc network that 

shows up in Wi-Fi connections icon at the bottom right corner of the taskbar.  

5. If using Windows 10 computers, perform the following steps: 

a. Go to the network and sharing center and select “Set up a new connection or 

network”. 

b. Select “Manually connect to wireless network” 

c. Enter the SSID of the adhoc network created on the Windows 7 computer as 

well as the password, if any. 

d. Uncheck start this connection automatically, click next and close. 

e. In the command line, type the following: netsh wlan set 

profileparameter <ssid> connectiontype=ibss 

connectionmode=manual 

f. Then type: netsh wlan connect <ssid>. Now the Windows 10 computer 

should be connected to the adhoc network started on the Windows 7.  

g. SSH into the Raspberry Pi from the Windows 7 computer as described at the 

beginning of this appendix. Make sure to assign different IP addresses to the 

Windows 10 computers in the range 192.168.137.X, where X is any number 

from 2 – 254. Do this by changing the TCP/IP properties in the Ad-hoc Wi-Fi 

in the Network Connections panel. 

6. For wireless mode, repeat the same steps for the Windows 10 computer, but instead 

using the SSID generated by the Raspberry Pi 3. Windows 7 computers will be able 
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to connect without any command line input. There is no need to assign the connected 

computers new IP addresses in the range of 192.168.137.X as appropriate addresses 

are automatically assigned by the Raspberry Pi 3 to the connected computers. 
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Appendix B: Source Code 

 

 

 

 

Network Module Server 
/* 

 

compile with g++ NeuroHubNetworkModule.cpp -o NeuroHubNetworkModule -

std=c++11  `pkg-config gtkmm-3.0 --cflags --libs` -pthread -lwiringPi 

 

 

if necessary use -g after g++ in compilation and link to use with gdb. 

 

to run: 

export XAUTHORITY=/home/pi/.Xauthority 

sudo ./NeuroHubNetworkModule 

or gdb ./NeuroHubNetworkModule 

 

*/ 

 

#include <gtkmm.h> 

#include <iostream> 

#include <stdio.h> 

#include <stdlib.h> 

#include <cstdlib> 

#include <iostream> 

#include <chrono> 

#include <cstring> 

#include <string.h> // memset 

#include <pthread.h> 

#include <sys/socket.h> 

#include <sys/types.h> 

#include <arpa/inet.h> 

#include <netinet/in.h> 

#include <unistd.h> 

#include <netdb.h> 

#include <vector> 

#include <string> 

#include <fstream> 

#include <algorithm> 

#include <sys/time.h> 

#include <sched.h> 

#include <time.h> 

#include <sys/mman.h> 

#include <errno.h> 

#include <wiringPi.h> 

#include <wiringSerial.h> 

using namespace std; 

 

 

// Gtk widgets 

Gtk::SpinButton *spinbutton1 = 0; 

Gtk::ComboBox *combobox1 = 0; 

Gtk::RadioButton *radiotcp, *radioudp = 0; 



66 

 

Gtk::Button *button_stop, *button_start = 0; 

 

 

//variables for network connection 

#define PORT "8888" 

#define IP_ADDR "192.168.137.99" 

#define MAXLEN 1 

int BACKLOG =0; 

int serfd; 

static unsigned int cli_count = 0; 

size_t size = sizeof(struct sockaddr_in); 

struct sockaddr_in their_addr; 

vector<sockaddr_in> udparray; 

vector<int> tcparray; 

bool ard = false; 

bool wiringpisetup = false; 

bool exitard = false; 

int sock; 

int baudrate; //9600 or 115200; 

int baudint = 0; 

 

pthread_t servbegin; 

pthread_mutex_t sendcli; 

 

bool tcpbool; 

bool looprun = true; 

bool ardrun = true; 

bool enterard=false; 

 

 

//network functions functions 

void send_message_all_udp(char *s, int mysock); 

void send_message_all_tcp(char *s); 

void send_message_udp(char *s, int uid, int port); 

void send_message_tcp(char *s, int uid); 

void send_client_udp(char *s, int mysock, int port); 

void send_client_tcp(char *s, int sock); 

void *from_ard_udp(void *); 

void *from_ard_tcp(void *); 

void *handle_conn_udp(void *); 

void *handle_conn_tcp(void *); 

void *begin_server(void *);     

 

 

 

/*send message to original sender*/ 

void send_client_udp( char *s, int mysock, int myport){ 

 int i; 

 for(i=0;i<BACKLOG;i++){ 

      

   if(htons(udparray[i].sin_port) == myport){ 

    sendto(mysock,s,1,0,(struct 

sockaddr*)&udparray[i], sizeof udparray[i]); 

   } 

   

 } 

} 
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//send message to all clients except original sender 

void send_message_udp(char *s, int mysock, int myport){ 

 int i; 

 for(i=0;i<BACKLOG;i++){ 

  

   if(htons(udparray[i].sin_port) != myport){ 

    sendto(mysock,s,1,0,(struct 

sockaddr*)&udparray[i], sizeof udparray[i]); 

   } 

   

 } 

} 

  

/* Send message to all clients */ 

void send_message_all_udp(char *s, int mysock){ 

 int i; 

 for(i=0;i<BACKLOG;i++){ 

   

   sendto(mysock,s,1,0,(struct sockaddr*)&udparray[i], 

sizeof udparray[i]); 

   

 } 

} 

 

/* /////    TCP send functions //// */ 

/*send message to original sender*/ 

void send_client_tcp( char *s, int mysock){ 

 int i; 

 for(i=0;i<BACKLOG;i++){ 

  if(tcparray[i]){ 

   if(tcparray[i] == mysock){ 

    send(tcparray[i], s, 1,0); 

   } 

  } 

 } 

} 

 

//send message to all clients except original sender 

void send_message_tcp(char *s, int mysock){ 

 int i; 

 for(i=0;i<BACKLOG;i++){ 

  if(tcparray[i]){ 

   if(tcparray[i] != mysock){ 

    send(tcparray[i], s, 1,0); 

   } 

  } 

 } 

} 

  

/* Send message to all clients */ 

void send_message_all_tcp(char *s){ 

 int i; 

 for(i=0;i<BACKLOG;i++){ 

  if(tcparray[i]){ 

   send(tcparray[i], s, 1,0); 

  } 
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 } 

} 

/*receive messages from Arduino*/ 

void *from_ard_udp(void *thissock) 

{ 

  int mysock = *(int*)thissock; 

  int counter = 1; 

  int ardint; 

  char ardchar; 

  char *mesg; 

  while (ardrun) 

  

  { 

    if (serialDataAvail (serfd) == -1) 

    { 

     fprintf(stdout, "(Serial) No data able to be received: %s\n", 

strerror (errno)); 

     exit(EXIT_FAILURE); 

    }  

   

   ardint = serialGetchar(serfd) ; 

     

    //cout << ardint << endl; 

    if (ardint > 0) 

    { 

    //cout << ardint << endl; 

  // usleep(400); 

     ardchar = char(ardint); 

     mesg = &ardchar; 

  

 pthread_mutex_lock(&sendcli); 

    send_message_all_udp(mesg, mysock);  

    pthread_mutex_unlock(&sendcli); 

     

    

     

    } 

    

  } 

  cout << "exit from_ard" << endl; 

  exitard= true; 

} 

 

/* handle the connections from client */ 

void *handle_conn_udp(void *pnewsock) 

{ 

  int mysock = *(int*)pnewsock; 

  

 

   char client_msg[MAXLEN]; 

  

 

  int read_size; 

  struct timeval tv; 

   

  int clientint; 

  int myport; 
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while(looprun){ 

        

 read_size = recvfrom(mysock, client_msg, 1, 0, (struct 

sockaddr*)&their_addr, &size); 

 

 

     clientint = int(*client_msg); 

      

 

       

       

     myport = htons(their_addr.sin_port); 

    if (clientint >0) 

    { 

    //usleep(1000); 

     

 

    pthread_mutex_lock(&sendcli); 

    send_client_udp(client_msg,mysock,myport); //was send_message 

  

  

 

    serialPuts (serfd, &(*client_msg)) ; 

     

    pthread_mutex_unlock(&sendcli); 

    } 

  

      

  } 

  cout << "exit handle -conn " << endl; 

 

  

} 

 

/* TCP data handling */ 

void *from_ard_tcp(void *) 

//void *from_ard(int sock) 

{ 

; 

/* Declare ourself as a real time task */ 

 

 

 

  int counter = 1; 

  int ardint; 

  char ardchar; 

  char *mesg; 

  while (ardrun) 

  

  { 

    if (serialDataAvail (serfd) == -1) 

    { 

     fprintf(stdout, "(Serial) No data able to be received: %s\n", 

strerror (errno)); 

     exit(EXIT_FAILURE); 

    }  
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     ardint = serialGetchar (serfd) ; 

 

    if (ardint > 0) 

    { 

    //usleep(1000); 

  //  cout << ardint << endl; 

      ardchar = char(ardint); 

      mesg = &ardchar; 

       

 

pthread_mutex_lock(&sendcli); 

send_message_all_tcp(mesg); 

pthread_mutex_unlock(&sendcli); 

 

     

    } 

    

  } 

  cout << "exit from_ard" << endl; 

  exitard=true; 

} 

 

/* handle the connections from client */ 

void *handle_conn_tcp(void *pnewsock) 

{ 

  int mysock = *(int*)pnewsock; 

  

 

   char client_msg[MAXLEN]; 

  

  int read_size; 

 

  int clientint; 

  int mesgcount = 0; 

  int myport; 

   

  

  while(looprun){    

          

   

     read_size = recv(mysock, client_msg, 1, 0); 

   

  

   

     clientint = int(*client_msg); 

    

      

     if (clientint > 0) 

     { 

    // usleep(1000); 

    client_msg[read_size] = '\0'; 

    

     /*  cout << "length of client message: " << strlen(client_msg) << 

endl; 

       cout << "# bytes is : " << read_size << endl;     */  
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 pthread_mutex_lock(&sendcli); 

   send_client_tcp(client_msg,mysock); //was send_message 

   

    

 

     serialPuts(serfd, &(*client_msg)) ; 

 pthread_mutex_unlock(&sendcli); 

     

    

    } 

 

      

  } 

  cout << "exit handle -conn " << endl; 

   

  

  

} 

 

void *begin_server(void *) 

{ 

  //pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL); 

  looprun = true; 

  ardrun = true; 

  BACKLOG = spinbutton1->get_value_as_int(); 

  baudint = combobox1->get_active_row_number(); 

  if (baudint == 0) 

  { 

     baudrate = 9600; 

  } 

  else 

  { 

    baudrate = 115200; 

  } 

  tcpbool = radiotcp->get_active(); 

 

     

    struct addrinfo hints, *res; 

    int reuseaddr = 1; // True  

     

    // Get the address info  

    memset(&hints, 0, sizeof hints); 

    hints.ai_family = AF_INET; 

    if (tcpbool==1) 

    { 

    hints.ai_socktype = SOCK_STREAM; 

    } 

    else{ 

     

    hints.ai_socktype = SOCK_DGRAM;} //TCP = SOCK_STREAM, SOCK_DGRAM = 

UDP) 

    if (getaddrinfo(IP_ADDR, PORT, &hints, &res) != 0) { 

        perror("getaddrinfo"); 

        exit (EXIT_FAILURE); 

        //return 1;  

    } 
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    // Create the socket  

    sock = socket(res->ai_family, res->ai_socktype, res->ai_protocol); 

    if (sock == -1) { 

        perror("socket"); 

        exit (EXIT_FAILURE); 

       // return 1; 

    } 

 

    // Enable the socket to reuse the address  

    if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &reuseaddr, 

sizeof(int)) == -1) { 

        perror("setsockopt"); 

        ::close(sock); 

        exit (EXIT_FAILURE); 

        //shutdown(sock,2); 

       // return 1; 

    } 

 

    // Bind to the address  

    if (bind(sock, res->ai_addr, res->ai_addrlen) == -1) { 

        perror("bind"); 

        ::close(sock); 

        exit (EXIT_FAILURE); 

        //shutdown(sock,2); 

        //return 0; 

    } 

 

    freeaddrinfo(res); 

    if (tcpbool ==1) 

    { 

    if (listen(sock, BACKLOG) == -1) { 

        perror("listen"); 

        exit (EXIT_FAILURE); 

       

    } 

    } 

       

      if( (serfd= serialOpen("/dev/ttyAMA0", baudrate))<0) //opens on-

board serial port, baud rate 9600 

      { 

      fprintf(stderr, "unable to open serial device: %s\n", 

strerror(errno)); 

      exit(EXIT_FAILURE); 

      } 

   

    if (!wiringpisetup) 

    {  

      if (wiringPiSetup() == -1) 

      { 

        fprintf (stdout, "Unable to start wiring Pi: %s\n", strerror 

(errno)); 

        exit(EXIT_FAILURE); 

      } 

      else 

      { 

        wiringpisetup=true; 

      } 
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    } 

    cout << "listening for connections" << endl; 

    // Main loop - accepting initial connections from the # clients 

specified. 

     

    // Main loop  

    bool running = true; 

    // Initialize clients  

    while (running) 

    {   

     

      char client_msg[MAXLEN]; 

      if (tcpbool ==1) 

      { 

      size_t size = sizeof(struct sockaddr_in); 

      struct sockaddr_in their_addr; 

      int clilen = sizeof(their_addr); 

      int newsock = accept(sock, (struct sockaddr*)&their_addr, &size); 

      if (newsock == -1)  

      { 

        perror("accept"); 

        exit (EXIT_FAILURE); 

       // return -1; 

      } 

      

       

      cli_count++; 

      printf("Got a connection from %s on port %d\n", 

inet_ntoa(their_addr.sin_addr), htons(their_addr.sin_port)); 

      tcparray.push_back(newsock); 

      if (cli_count == BACKLOG) 

      { 

         cout << "Max clients reached" << endl; 

        running = false; 

        break; 

      } 

     

      } 

      else{ 

      int byte_count = recvfrom(sock, client_msg, 1, 0, (struct 

sockaddr*)&their_addr, &size); 

     

       

      cli_count++; 

      printf("Got a connection from %s on port %d\n", 

inet_ntoa(their_addr.sin_addr), htons(their_addr.sin_port)); 

      udparray.push_back(their_addr); 

      if (cli_count == BACKLOG) 

      { 

         cout << "Max clients reached" << endl; 

        running = false; 

        break; 

      } 

    } 

    

    } 

    /* Send message to all clients that server is ready to accept data */   
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    char r = (char)(cli_count); 

     

     char *mesg = &r; 

     

    if (tcpbool == 1) 

    { 

      send_message_all_tcp(mesg); 

    } 

    else{ 

     

    send_message_all_udp(mesg,sock); 

   } 

 

    pthread_t *ptr, from_ard_t; 

    ptr =static_cast<pthread_t*>(malloc(sizeof(pthread_t)*(cli_count))); 

    

     

    int i; 

    if (tcpbool==1) 

    { 

      for (i=0;i<(BACKLOG);i++) 

    { 

      if (pthread_create(&ptr[i], NULL, handle_conn_tcp, (void 

*)&tcparray[i]) != 0)//was newsock 

    { 

        fprintf(stderr, "Failed to create thread\n"); 

        exit (EXIT_FAILURE); 

    } 

       

    } 

     

  

      if (pthread_create(&from_ard_t, NULL, from_ard_tcp, NULL)!=0) 

      { 

      fprintf(stderr, "Failed to create thread\n"); 

      } 

      enterard=true; 

    } 

    else{ 

     for (i=0;i<(BACKLOG);i++) 

      { 

        if (pthread_create(&ptr[i], NULL, handle_conn_udp, (void *)&sock) 

!= 0)//was newsock 

      { 

          fprintf(stderr, "Failed to create thread\n"); 

        exit (EXIT_FAILURE); 

      } 

       

      } 

     

 

      if (pthread_create(&from_ard_t, NULL, from_ard_udp, (void 

*)&sock)!=0) 

      { 

      fprintf(stderr, "Failed to create thread\n"); 

      } 
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      enterard=true; 

    } 

      cout << "Created threads with arduino" << endl; 

      pthread_join(from_ard_t, NULL); 

       

      cout << "joined arduino thread" << endl;  

   

     

     

    for(i = 0; i < (BACKLOG); i++) 

    { 

       pthread_join(ptr[i], NULL); 

    } 

    cout << "joined send/recv threads" << endl;  

     

   

     

    close(sock); 

    serialClose(serfd); 

    udparray.clear(); 

    tcparray.clear(); 

    cli_count = 0; 

    pthread_exit(NULL); 

    button_start->set_sensitive(true); 

    button_stop->set_sensitive(false); 

     

    

} 

 

//GUI functions 

void buttonstart_clicked() 

{ 

 

   

  if (pthread_create(&servbegin, NULL, begin_server, NULL)!=0) 

      { 

      fprintf(stderr, "Failed to create thread\n"); 

      } 

   

   

  button_start->set_sensitive(false); 

  button_stop->set_sensitive(true); 

 

} 

 

void buttonstop_clicked() 

{ 

  cout << "End" << endl; 

 looprun= false; 

 ardrun = false; 

  pthread_cancel(servbegin); 

  pthread_join(servbegin, NULL); 

 

  serialClose(serfd); 

  ::close(sock); 

 udparray.clear(); 

 tcparray.clear(); 
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  cli_count = 0; 

   

   

  button_stop->set_sensitive(false); 

  if (enterard) 

  { 

      while (!exitard) 

    { 

    } 

      button_start->set_sensitive(true); 

  } 

  else 

  { 

    button_start->set_sensitive(true); 

  } 

enterard = false; 

   

exitard = false; 

} 

 

int main(int argc, char **argv) 

{ 

 

  Glib::RefPtr<Gtk::Application> app = Gtk::Application::create(argc, 

argv, "org.gtkmm.example"); 

   

  //Load the GtkBuilder file and instantiate its widgets: 

  Glib::RefPtr<Gtk::Builder> refBuilder = Gtk::Builder::create(); 

  try 

  { 

    refBuilder->add_from_file("NeuroHubGui3.glade"); 

  } 

  catch(const Glib::FileError& ex) 

  { 

    std::cerr << "FileError: " << ex.what() << std::endl; 

    return 1; 

  } 

  catch(const Glib::MarkupError& ex) 

  { 

    std::cerr << "MarkupError: " << ex.what() << std::endl; 

    return 1; 

  } 

  catch(const Gtk::BuilderError& ex) 

  { 

    std::cerr << "BuilderError: " << ex.what() << std::endl; 

    return 1; 

  } 

 

  

 

  Gtk::Window *window1 = 0; 

   

  refBuilder->get_widget("window1", window1);  

  refBuilder->get_widget("button_stop", button_stop); 

  refBuilder->get_widget("button_start", button_start); 

  refBuilder->get_widget("spinbutton1", spinbutton1); 

  refBuilder->get_widget("combobox1", combobox1); 
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  refBuilder->get_widget("radiotcp",radiotcp); 

  refBuilder->get_widget("radioudp",radioudp); 

 

   

   

  Gtk::RadioButton::Group group = radiotcp->get_group(); 

   

   

  Glib::RefPtr<Gtk::Adjustment> m_adjustment = 

Gtk::Adjustment::create(1.0, 1.0, 9.0, 1.0, 9.0, 0.0); 

  spinbutton1->set_adjustment(m_adjustment); 

 

  // connect more signals 

  combobox1->set_active(0); 

  button_start-

>signal_clicked().connect(sigc::ptr_fun(buttonstart_clicked)); 

  button_stop-

>signal_clicked().connect(sigc::ptr_fun(buttonstop_clicked)); 

  

 

  app->run(*window1); 

 

  return 0; 

} 

(Starting Serial) C# Testing Program 

 

using System; 

using System.Collections.Generic; 

using System.ComponentModel; 

using System.Data; 

using System.Drawing; 

using System.Linq; 

using System.Text; 

using System.Threading.Tasks; 

using System.Windows.Forms; 

using System.Diagnostics; 

using System.IO; 

using System.IO.Ports; 

using System.Threading; 

using System.Net.Sockets; 

using System.Net; 

using HighResTimer; 

 

 

namespace OneClient_StartSerial 

{ 

    public partial class Form1 : Form 

    { 

        Stopwatch stopwatch = new Stopwatch(); 

        Decimal datapoints; 

         

        StringBuilder sb = new StringBuilder(); 

        SerialPort serialPortOut = new SerialPort(); 

        SerialPort serialPortIn = new SerialPort(); 

        TcpClient tcpclnt; 
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        UdpClient udpclnt; 

        IPEndPoint ep; 

        Timing mytimer = new Timing(); 

 

        int baudrate; 

        Thread sendThread; 

        Thread recvThread; 

        ThreadStart sending; 

        ThreadStart receiving; 

        NetworkStream stream; 

        public Form1() 

        { 

            InitializeComponent(); 

             

        } 

 

        private void startbutton_Click(object sender, EventArgs e) 

        { 

            if (radiotcp.Checked) 

            { 

                radioudp.Enabled = false; 

                radioserial.Enabled = false; 

            } 

            else if (radioudp.Checked) 

            { 

                radioserial.Enabled = false; 

                radiotcp.Enabled = false; 

            } 

            else 

            { 

                radiotcp.Enabled = false; 

                radioudp.Enabled = false; 

            } 

            comPortOut.Enabled = false; 

            startbutton.Enabled = false; 

             

            if (serialPortOut.IsOpen) { serialPortOut.Close(); } 

            if (serialPortIn.IsOpen) { serialPortIn.Close(); } 

             

            baudrate = 

Int32.Parse(this.baudratebox.SelectedItem.ToString()); 

              serialPortOut.PortName = 

comPortOut.SelectedItem.ToString(); 

            serialPortOut.BaudRate =  baudrate;// 

            serialPortOut.Open(); 

                serialPortOut.DiscardOutBuffer(); 

            if (radioserial.Checked) 

            { 

                serialPortIn.PortName = 

comPortIn.SelectedItem.ToString(); 

                serialPortIn.BaudRate = baudrate;// 

                serialPortIn.Open(); 

                serialPortIn.DiscardInBuffer(); 

                

            } 
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            //set priority to high 

            // Process.GetCurrentProcess().PriorityClass = 

ProcessPriorityClass.High; 

            //Thread.CurrentThread.Priority = ThreadPriority.Highest; 

 

 

 

            //clear stringbuilder 

            sb.Clear(); 

            

            Byte[] bb = new byte[1]; //1 byte of data coming in 

 

 

            //serialPortOut.DiscardOutBuffer(); 

 

            datapoints = numericUpDown1.Value; 

 

            //non loop format - for cppserv 

 

 

            if (radiotcp.Checked) 

            { 

                tcpclnt = new TcpClient(); 

                textBox1.AppendText("TCP Connecting... \n"); 

                tcpclnt.Connect("192.168.137.99", 8888); //address of 

RPi on arbitrary non privileged port 

                textBox1.AppendText("TCP Connected \n"); 

                stream = tcpclnt.GetStream(); 

                int bytes = stream.Read(bb, 0, 1); 

                 

 

                 

 

            } 

            else if (radioudp.Checked) 

            { 

                try 

                { 

                    udpclnt = new UdpClient(); 

                    ep = new 

IPEndPoint(IPAddress.Parse("192.168.137.99"), 8888); 

                    textBox1.AppendText("UDP Connecting... \n"); 

 

                    udpclnt.Connect(ep); 

                    textBox1.AppendText("UDP Connected \n"); 

                    byte[] writebyte = BitConverter.GetBytes(1); 

 

                     

 

                    udpclnt.Send(writebyte, writebyte.Length); 

                    bb = udpclnt.Receive(ref ep); 

 

         

 

                } 

                catch 
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                { 

                    return; 

                } 

 

            } 

            else 

            { 

            } 

            //intialize network connections 

 

            /*Receive the welcome from server */ 

 

 

            mytimer.Start(); 

             

            int numback = bb[0]; 

            textBox1.AppendText("Received initial message from server: " 

+ bb[0] + "\n"); 

 

            textBox1.AppendText("Warmup \n"); 

            if (baudrate == 9600) 

            { 

                while (mytimer.Duration * 1000 < 1500) 

                { 

 

                } 

            } 

          /*  stopwatch.Restart(); 

           // while (stopwatch.ElapsedMilliseconds < 1500) 

            { 

            } 

            stopwatch.Stop();*/ 

 

            textBox1.AppendText("Beginning Testing"); 

            textBox1.AppendText(Environment.NewLine); 

 

 

            ThreadProgram clientObject = new ThreadProgram(udpclnt, ep, 

stream, mytimer, datapoints, sb, serialPortOut, serialPortIn, radiotcp); 

             

            if (radiotcp.Checked) 

            { 

 

                if (checkser1.Checked) 

                { 

                     

                    // receiving = new 

ThreadStart(clientObject.ser1portrecvData); 

                    receiving = new 

ThreadStart(clientObject.sersendrecvData); 

                } 

                else 

                { 

                    sending = new ThreadStart(clientObject.sersendData); 

                    receiving = new 

ThreadStart(clientObject.tcprecvData); 
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                    sendThread = new Thread(sending); 

                } 

 

                     

                

            } 

            else if (radioudp.Checked) 

            { 

 

                if (checkser1.Checked) 

                { 

                    sending = new ThreadStart(clientObject.sersendData); 

                    receiving = new 

ThreadStart(clientObject.ser1portrecvData); 

                    //receiving = new 

ThreadStart(clientObject.sersendrecvData); 

                    sendThread = new Thread(sending); 

                } 

                else 

                { 

                    sending = new ThreadStart(clientObject.sersendData); 

                    receiving = new 

ThreadStart(clientObject.udprecvData); 

                    sendThread = new Thread(sending); 

                } 

                 

            } 

            else if (radioserial.Checked) 

 

            { 

                

                    sending = new ThreadStart(clientObject.sersendData); 

                    receiving = new 

ThreadStart(clientObject.serrecvData); 

                    sendThread = new Thread(sending); 

                 

            } 

         

             

             

            recvThread = new Thread(receiving); 

            recvThread.Start(); 

            if (!checkser1.Checked || radioserial.Checked) 

            {  } 

            sendThread.Start(); 

 

            if (!checkser1.Checked || radioserial.Checked) 

            { 

                

            } 

            sendThread.Join(); 

            recvThread.Join(); 

            if (radiotcp.Checked) 

            { tcpclnt.Close(); } 

            else if (radioudp.Checked) 

            { 

                udpclnt.Close(); 
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            } 

            else 

            { 

                 

                serialPortIn.Close(); 

            } 

            comPortOut.Enabled = true; 

            startbutton.Enabled = true; 

            radiotcp.Enabled = true; 

            radioudp.Enabled = true; 

            radioserial.Enabled = true; 

            textBox1.Clear(); 

            // Close Com ports  

            if (serialPortOut.IsOpen) { serialPortOut.Close(); } 

            this.Invoke(new EventHandler(SaveDialog)); 

        } 

 

        private void radioserial_CheckedChanged(object sender, EventArgs 

e) 

        { 

            if (radioserial.Checked) 

            { 

                comPortIn.Enabled = true; 

                List<String> tList = new List<String>(); 

                comPortIn.Items.Clear(); 

                foreach (string s in SerialPort.GetPortNames()) 

                { 

                    tList.Add(s); 

                } 

                tList.Sort(); 

 

                comPortIn.Items.AddRange(tList.ToArray()); 

                comPortIn.SelectedIndex = 0; 

               

 

 

            } 

            else 

            { 

                comPortIn.Enabled = false; 

            } 

        } 

        public void SaveDialog(object sender, EventArgs e) 

        { /// When the timer runs out or STOP is pressed, a Save Dialog 

appears  

            SaveFileDialog saveFileDialog1 = new SaveFileDialog(); 

            saveFileDialog1.Filter = "txt files (*.txt)|*.txt|All files 

(*.*)|*.*"; 

            saveFileDialog1.FilterIndex = 1; 

            saveFileDialog1.RestoreDirectory = true; 

            if (radiotcp.Checked) 

            {              

                saveFileDialog1.FileName = "DeviceTest_ser-ethTCP_10";                                             

            } 

            else 

            { 

                saveFileDialog1.FileName = "DeviceTest_ser-ethUDP_10";               
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            } 

 

            if (saveFileDialog1.ShowDialog(this) == DialogResult.OK) 

            { File.WriteAllText(saveFileDialog1.FileName, 

sb.ToString()); } 

        } 

 

        private void Form1_Load(object sender, EventArgs e) 

        { 

            List<String> tList = new List<String>(); 

            comPortOut.Items.Clear(); 

            foreach (string s in SerialPort.GetPortNames()) 

            { 

                tList.Add(s); 

            } 

            tList.Sort(); 

 

            comPortOut.Items.AddRange(tList.ToArray()); 

            comPortOut.SelectedIndex = 0; 

            comPortIn.Enabled = false; 

            comPortOut.Enabled = true; 

 

            baudratebox.Items.Add("9600"); 

            baudratebox.Items.Add("115200"); 

            baudratebox.SelectedIndex = 0; 

             

        } 

 

        public class ThreadProgram 

        { 

            public System.Object lockThis = new System.Object(); 

            public NetworkStream stream; 

            public UdpClient udpin; 

            public IPEndPoint ep; 

            private static Mutex mut = new Mutex(); 

            Decimal datapoints; 

            bool received = true; 

            bool sent = false; 

            int num2send=1; 

            int numback; 

            StringBuilder sb; 

            int correctbyte = 0; 

            int counter = 0; 

            SerialPort serialPortOut; 

            SerialPort serialPortIn; 

            byte[] sentbyte = new byte[1]; 

            byte[] recvbyte = new byte[64]; 

            byte[] ackbyte = new byte[64]; 

            

            RadioButton radiotcp; 

            Timing mytimer = new Timing(); 

            double sent1; 

            double sentelapsmil; 

            double recv1; 

            double recvelapsmil; 

            double elapsmil; 
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            public ThreadProgram(UdpClient udp, IPEndPoint epin, 

NetworkStream streamer, Timing timer, Decimal thedatapoints, 

StringBuilder stringb, SerialPort serialPort, SerialPort serialPort2, 

RadioButton radio_tcp) 

            { 

                stream = streamer; 

                

                sb = stringb; 

                datapoints = thedatapoints; 

                 

                serialPortOut = serialPort; 

                radiotcp = radio_tcp; 

                mytimer = timer; 

                udpin = udp; 

                ep = epin; 

                serialPortIn = serialPort2; 

                 

            } 

 

            public void sersendData() 

            { 

               /* if (serialPortOut.BaudRate == 115200) 

                { 

                    while (mytimer.Duration * 1000 < 1500) 

                    { 

 

                    } 

                }*/ 

                for (int repeat = 0; repeat < datapoints; repeat++) 

                { 

                    

                    while (!received) 

                    { 

 

                    } 

                    received = false; 

 

                    mut.WaitOne(); 

                    sentbyte = BitConverter.GetBytes(num2send); 

                    mut.ReleaseMutex(); 

 

                     

                         

                        if (radiotcp.Checked) {  } 

                        //serialPortOut.DiscardOutBuffer(); 

 

                        serialPortOut.Write(sentbyte, 0, 1); 

                        

                     

                     //Send the byte 

                                                          

//stopwatch.Reset(); 

 

                   

                   

                    sentelapsmil = mytimer.Duration; 

                    sent = true; 



85 

 

 

 

                } 

                 

            } 

 

            public void sersendrecvData() 

            { 

                 

 

                if (serialPortOut.BaudRate == 115200) 

                { 

                    while (mytimer.Duration * 1000 < 1500) 

                    { 

 

                    } 

                } 

                for (int repeat = 0; repeat < datapoints; repeat++) 

                { 

 

                 

                    

                    sentbyte = BitConverter.GetBytes(num2send); 

                     

 

                    if (radiotcp.Checked) { 

serialPortOut.Write(sentbyte, 0, 1); } 

                    else 

                    { 

                        serialPortOut.Write(sentbyte, 0, 1); 

                        //serialPortOut.DiscardOutBuffer(); 

 

 

                    } 

                    //Send the byte 

                    //stopwatch.Reset(); 

 

 

 

                    sentelapsmil = mytimer.Duration; 

 

                    numback = serialPortOut.ReadByte(); 

                    recvelapsmil = mytimer.Duration; 

                    serialPortOut.DiscardInBuffer(); 

 

 

                     

                    if (numback == num2send) 

                    { 

                        correctbyte = 1; 

                    } 

                    else 

                    { 

                        correctbyte = 0; 

                    } 

                    // sb.AppendLine(elapsedmilli + "\t" + correctbyte + 

"\n"); 
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                    elapsmil = recvelapsmil - sentelapsmil; 

                    counter++; 

                    sb.AppendLine(counter + "\t" + elapsmil * 1000 + "\t" 

+ correctbyte); 

                    //textbox1.AppendText("Received after:" + 

elapsedmilli + "\t" + correctbyte+"\n"); 

 

                    num2send += 1; 

                    if (num2send > 255) { num2send = 1; } 

                     

                 

 

                   

                    

                     

 

                } 

 

            } 

            

            public void tcprecvData() 

            { 

                ackbyte = BitConverter.GetBytes(0); 

                

                //ackbyte = BitConverter.GetBytes(0); 

                for (int repeat = 0; repeat < datapoints; repeat++) 

                { 

                     

 

                     

                    //stream.ReadAsync(recvbyte, 0, 1); 

                     

                    stream.Read(recvbyte, 0, 1); 

                    stream.Write(ackbyte, 0, 1); 

                    recvelapsmil = mytimer.Duration; 

                     

                    numback = recvbyte[0]; 

                     

                    if (numback == num2send) 

                    { 

                        correctbyte = 1; 

                    } 

                    else 

                    { 

                        correctbyte = 0; 

                    } 

                    

                    elapsmil = recvelapsmil - sentelapsmil; 

                    counter++; 

                    sb.AppendLine(counter + "\t" + elapsmil*1000+ "\t" + 

correctbyte); 

 

                    mut.WaitOne(); 

                    num2send += 1; 

                    if (num2send > 255) { num2send = 1; } 

                    mut.ReleaseMutex(); 

                    received = true; 
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                } 

            } 

            public void serrecvData() 

            { 

                 

                for (int repeat = 0; repeat < datapoints; repeat++) 

                { 

 

                    while (sent==false) 

                    { } 

 

                    recv1 = mytimer.Duration; 

                       

                        numback = serialPortIn.ReadByte(); 

 

                         

           

                    recvelapsmil = mytimer.Duration; 

                    sent = false; 

                     

                     

                    if (numback == num2send) 

                    { 

                        correctbyte = 1; 

                    } 

                    else 

                    { 

                        correctbyte = 0; 

                    } 

                    // sb.AppendLine(elapsedmilli + "\t" + correctbyte + 

"\n"); 

                    elapsmil = recvelapsmil - sentelapsmil; 

                    counter++; 

                    sb.AppendLine(counter + "\t" + elapsmil*1000 + "\t"+ 

correctbyte); 

 

                    //textbox1.AppendText("Received after:" + 

elapsedmilli + "\t" + correctbyte+"\n"); 

                    mut.WaitOne(); 

                    num2send += 1; 

                    if (num2send > 255) { num2send = 1; } 

                    mut.ReleaseMutex(); 

                    received = true; 

                } 

                //Thread.Sleep(100); 

                // recvloop = false; 

            } 

            public void serrecv2Data() 

            { 

 

                for (int repeat = 0; repeat < datapoints; repeat++) 

                { 

 

                    for (int i = 0; i < 2; i++) 

                    { 

                    numback = serialPortIn.ReadByte(); 
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                    } 

                      

                         

                     

                    recvelapsmil = mytimer.Duration; 

                    numback = recvbyte[0]; 

 

 

                    if (numback == num2send) 

                    { 

                        correctbyte = 1; 

                    } 

                    else 

                    { 

                        correctbyte = 0; 

                    } 

                    // sb.AppendLine(elapsedmilli + "\t" + correctbyte + 

"\n"); 

                    elapsmil = recvelapsmil - sentelapsmil; 

                    counter++; 

                    sb.AppendLine(counter + "\t" + elapsmil * 1000 + "\t" 

+ correctbyte); 

                    //textbox1.AppendText("Received after:" + 

elapsedmilli + "\t" + correctbyte+"\n"); 

                    mut.WaitOne(); 

                    num2send += 1; 

                    if (num2send > 255) { num2send = 1; } 

                    mut.ReleaseMutex(); 

                    received = true; 

                } 

                //Thread.Sleep(100); 

                // recvloop = false; 

            } 

            public void ser1portrecvData() 

            { 

                 

                for (int repeat = 0; repeat < datapoints; repeat++) 

                { 

 

                    serialPortOut.DiscardInBuffer(); 

 

 

                    numback = serialPortOut.ReadByte(); 

                    recvelapsmil = mytimer.Duration; 

                 //   serialPortOut.DiscardInBuffer(); 

                 //  serialPortOut.DiscardOutBuffer(); 

                    

 

                    

 

 

 

                    if (numback == num2send) 

                    { 

                        correctbyte = 1; 

                    } 

                    else 
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                    { 

                        correctbyte = 0; 

                    } 

                    // sb.AppendLine(elapsedmilli + "\t" + correctbyte + 

"\n"); 

                    elapsmil = recvelapsmil - sentelapsmil; 

                    counter++; 

                    sb.AppendLine(counter + "\t" + elapsmil * 1000 + "\t" 

+ correctbyte); 

                    //textbox1.AppendText("Received after:" + 

elapsedmilli + "\t" + correctbyte+"\n"); 

                    mut.WaitOne(); 

                    num2send += 1; 

                    if (num2send > 255) { num2send = 1; } 

                    

                    mut.ReleaseMutex(); 

                    Thread.Sleep(10); 

                    received = true; 

                } 

                //Thread.Sleep(100); 

                // recvloop = false; 

            } 

            public void udprecvData() 

            { 

                    

                for (int repeat = 0; repeat < datapoints; repeat++) 

                { 

 

 

                    

                   recvbyte = udpin.Receive(ref ep); 

 

                    recvelapsmil = mytimer.Duration; 

 

                    numback = recvbyte[0]; 

                    

                    if (numback == num2send) 

                    { 

                        correctbyte = 1; 

                    } 

                    else 

                    { 

                        correctbyte = 0; 

                    } 

                    // sb.AppendLine(elapsedmilli + "\t" + correctbyte + 

"\n"); 

                    elapsmil = recvelapsmil - sentelapsmil; 

                    counter++; 

                    sb.AppendLine(counter + "\t" + elapsmil * 1000 + "\t" 

+ correctbyte); 

                    //textbox1.AppendText("Received after:" + 

elapsedmilli + "\t" + correctbyte+"\n"); 

                    received = true; 

                } 

            } 

        } 
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    } 

} 

 

(Starting Ethernet) C# Testing Program  

using System; 

using System.Collections.Generic; 

using System.ComponentModel; 

using System.Data; 

using System.Drawing; 

using System.Linq; 

using System.Text; 

using System.Threading.Tasks; 

using System.Windows.Forms; 

using System.Diagnostics; 

using System.IO; 

using System.IO.Ports; 

using System.Threading; 

using System.Net.Sockets; 

using System.Net; 



91 

 

using HighResTimer; 

 

 

namespace OneClient_NetworkTiming_TCP 

{ 

 

 

    public partial class Form1 : Form 

    { 

         

        Decimal datapoints; 

        StringBuilder sb = new StringBuilder(); 

        SerialPort serialPortIn = new SerialPort(); 

        TcpClient tcpclnt; 

        UdpClient udpclnt; 

        IPEndPoint ep; 

        Timing mytimer = new Timing(); 

         

        int baudrate; //9600; 

        

        Thread sendThread; 

        Thread recvThread; 

        ThreadStart sending; 

        ThreadStart receiving; 

        NetworkStream stream; 

 

        public Form1() 

        { 

            InitializeComponent(); 

        } 

 

 

 

        private void startbutton_Click(object sender, EventArgs e) 

        { 

            comPortIn.Enabled = false; 

            startbutton.Enabled = false; 

             

             

            if (serialPortIn.IsOpen) { serialPortIn.Close(); } 

            if (checkserial.Checked) 

            { 

                 

                serialPortIn.PortName = 

comPortIn.SelectedItem.ToString(); 

                baudrate = 

Int32.Parse(this.baudratebox.SelectedItem.ToString()); 

                serialPortIn.BaudRate = baudrate; //was 9600 

                serialPortIn.Open(); 

                serialPortIn.DiscardInBuffer(); 

            } 

             

 

            //set priority to high 

            // Process.GetCurrentProcess().PriorityClass = 

ProcessPriorityClass.High; 

            //Thread.CurrentThread.Priority = ThreadPriority.Highest; 
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            //clear stringbuilder 

            sb.Clear(); 

            Random seed = new Random((int)DateTime.Now.Ticks & 

0x0000FFFF); 

            Byte[] bb = new byte[1]; //1 byte of data coming in 

 

             

            //serialPortIn.DiscardOutBuffer(); 

 

            datapoints = numericUpDown1.Value; 

             

 

            if (radiotcp.Checked) 

            { 

                tcpclnt = new TcpClient(); 

                textBox1.AppendText("TCP Connecting... \n"); 

                tcpclnt.Connect("192.168.137.99", 8888); //address of 

RPi on arbitrary non privileged port 

                textBox1.AppendText("TCP Connected \n"); 

                stream = tcpclnt.GetStream(); 

                int bytes = stream.Read(bb, 0, bb.Length); 

 

            } 

            else 

            { 

                try 

                { 

                    udpclnt = new UdpClient(); 

                    ep = new 

IPEndPoint(IPAddress.Parse("192.168.137.99"), 8888); 

                    textBox1.AppendText("UDP Connecting... \n"); 

 

                    udpclnt.Connect(ep); 

                    textBox1.AppendText("UDP Connected \n"); 

                    byte[] writebyte = BitConverter.GetBytes(99); 

 

                     

 

                    udpclnt.Send(writebyte, writebyte.Length); 

                    bb = udpclnt.Receive(ref ep); 

                     

                } 

                catch 

 

                { 

                    return; 

                } 

                 

            } 

            //intialize network connections 

 

            /*Receive the welcome from server */ 
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            mytimer.Start(); 

 

 

            int numback = bb[0]; 

            textBox1.AppendText("Received initial message from server: " 

+ bb[0] + "\n"); 

 

            textBox1.AppendText("Warmup \n"); 

            while (mytimer.Duration *1000 < 1500) 

            { 

 

            } 

            

 

            textBox1.AppendText("Beginning Testing"); 

            textBox1.AppendText(Environment.NewLine); 

 

 

            ThreadProgram clientObject = new ThreadProgram(udpclnt, ep, 

stream, mytimer, datapoints, sb, serialPortIn); 

             

            if (radiotcp.Checked) 

            { 

                sending = new ThreadStart(clientObject.tcpsendData); 

                if (checkserial.Checked) 

                { 

                     

                    receiving = new 

ThreadStart(clientObject.tcprecvserData); 

                } 

                else 

                { 

                    receiving = new 

ThreadStart(clientObject.tcprecvData); 

                } 

            } 

            else 

            { 

                sending = new ThreadStart(clientObject.udpsendData); 

                if (checkserial.Checked) 

                { 

                    receiving = new 

ThreadStart(clientObject.udprecvserData); 

                } 

                else 

                { 

                    receiving = new 

ThreadStart(clientObject.udprecvData); 

                } 

            } 

 

            sendThread = new Thread(sending); 

            recvThread = new Thread(receiving); 

            recvThread.Start(); 

            sendThread.Start(); 
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            sendThread.Join(); 

            recvThread.Join(); 

            if (radiotcp.Checked) 

            { tcpclnt.Close(); } 

            else 

            { 

                udpclnt.Close(); 

            } 

                comPortIn.Enabled = true; 

            startbutton.Enabled = true; // Diable the stop button  

           

            textBox1.Clear(); 

            // Close Com ports  

            if (serialPortIn.IsOpen) { serialPortIn.Close(); } 

            this.Invoke(new EventHandler(SaveDialog)); 

 

 

        } 

 

        private void Form1_Load(object sender, EventArgs e) 

        { 

            baudratebox.Items.Add("9600"); 

            baudratebox.Items.Add("115200"); 

            baudratebox.SelectedIndex = 0; 

 

 

            comPortIn.Enabled = false; 

 

        } 

        public void SaveDialog(object sender, EventArgs e) 

        { /// When the timer runs out or STOP is pressed, a Save Dialog 

appears  

            SaveFileDialog saveFileDialog1 = new SaveFileDialog(); 

            saveFileDialog1.Filter = "txt files (*.txt)|*.txt|All files 

(*.*)|*.*"; 

            saveFileDialog1.FilterIndex = 1; 

            saveFileDialog1.RestoreDirectory = true; 

            if (radiotcp.Checked) 

            { 

                if (checkserial.Checked) 

                { 

                    saveFileDialog1.FileName = "DeviceTest_eth-

serTCP_10"; 

                } 

                else 

                { 

                    saveFileDialog1.FileName = "DeviceTest_eth-

ethTCP_10"; 

                } 

                 

            } 

            else 

            { 

                if (checkserial.Checked) 

                { 

                    saveFileDialog1.FileName = "DeviceTest_eth-

serUDP_10"; 
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                } 

                else 

                { 

                    saveFileDialog1.FileName = "DeviceTest_eth-

ethUDP_10"; 

                } 

                 

            } 

                

            if (saveFileDialog1.ShowDialog(this) == DialogResult.OK) 

            { File.WriteAllText(saveFileDialog1.FileName, 

sb.ToString()); } 

        } 

 

        private void checkserial_CheckedChanged(object sender, EventArgs 

e) 

        { 

            if (checkserial.Checked) 

            { 

                List<String> tList = new List<String>(); 

                comPortIn.Items.Clear(); 

                foreach (string s in SerialPort.GetPortNames()) 

                { 

                    tList.Add(s); 

                } 

                tList.Sort(); 

 

                comPortIn.Items.AddRange(tList.ToArray()); 

                comPortIn.SelectedIndex = 0; 

                comPortIn.Enabled = false; 

                comPortIn.Enabled = true; 

            } 

            else 

            { 

                comPortIn.Enabled = false; 

            } 

        } 

        public class ThreadProgram 

        { 

            public System.Object lockThis = new System.Object(); 

            public NetworkStream stream; 

            public UdpClient udpin; 

            public IPEndPoint ep; 

            private static Mutex mut = new Mutex(); 

            int num2send = 1; 

            Decimal datapoints; 

            int numback; 

            bool received = true; 

            byte[] recvbyte = new byte[1]; 

            byte[] sentbyte = new byte[1]; 

            int counter = 0; 

           

            StringBuilder sb; 

            int correctbyte=0; 

             

            SerialPort serialPortIn; 
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            Timing mytimer = new Timing(); 

            double sentelapsmil; 

            double recvelapsmil; 

            double elapsmil; 

            

            public ThreadProgram(UdpClient udp, IPEndPoint epin, 

NetworkStream streamer, Timing timer, Decimal thedatapoints, 

StringBuilder stringb, SerialPort serialPort) 

            { 

                stream = streamer; 

                

                sb = stringb; 

                datapoints = thedatapoints; 

              

                serialPortIn = serialPort; 

                 

                

                mytimer = timer; 

                udpin = udp; 

                ep = epin; 

                 

            } 

 

            public void tcpsendData() 

            { 

                 

                for (int repeat = 0; repeat < datapoints; repeat++) 

                { 

                   

                   

                        while (!received) 

                        { 

 

                        } 

                        received = false; 

 

             

 

                    mut.WaitOne(); 

 

                    sentbyte = BitConverter.GetBytes(num2send); 

                    mut.ReleaseMutex(); 

 

 

                     

                        stream.Write(sentbyte, 0, 1); 

                         

                         sentelapsmil = mytimer.Duration; 

                    

                   

 

                } 

                 

            } 

 

            public void tcprecvserData() 
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            { 

                 

                 

                for (int repeat = 0; repeat < datapoints; repeat++) 

                { 

 

 

                    //1 byte of data coming in 

 

                    numback = serialPortIn.ReadByte(); 

                    

                    recvelapsmil = mytimer.Duration; 

 

                     

                     

                    if (numback == num2send) 

                    { 

                        correctbyte = 1; 

                    } 

                    else 

                    { 

                        correctbyte = 0; 

                    } 

                    

                    elapsmil = recvelapsmil - sentelapsmil; 

                    counter++; 

                   

                     sb.AppendLine(counter+"\t"+elapsmil*1000 + "\t" + 

correctbyte); 

                     

                    mut.WaitOne(); 

                    num2send += 1; 

                    if (num2send > 255) { num2send = 1; } 

                    mut.ReleaseMutex(); 

                    received = true; 

 

                } 

            } 

            public void tcprecvData() 

            { 

                 

                 

                for (int repeat = 0; repeat < datapoints; repeat++) 

                { 

                    

 

                    stream.Read(recvbyte, 0, 1); 

                    

                    recvelapsmil = mytimer.Duration; 

 

                    numback = recvbyte[0]; 

                     

                    if (numback == num2send) 

                    { 

                        correctbyte = 1; 

                    } 

                    else 
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                    { 

                        correctbyte = 0; 

                    } 

                  

                    elapsmil = recvelapsmil - sentelapsmil; 

                    counter++; 

                    sb.AppendLine(counter + "\t" + elapsmil * 1000 + "\t" 

+ correctbyte); 

                     

                    mut.WaitOne(); 

                    num2send += 1; 

                    if (num2send > 255) { num2send = 1; } 

                    mut.ReleaseMutex(); 

                    received = true; 

                } 

            } 

            public void udpsendData() 

            { 

                 

                for (int repeat = 0; repeat < datapoints; repeat++) 

                { 

                    

 

                    while (!received) 

                    { 

 

                    } 

                    received = false; 

 

                    

                    mut.WaitOne(); 

 

                    sentbyte =  BitConverter.GetBytes(num2send); 

                    mut.ReleaseMutex(); 

                  

                     

                    udpin.Send(sentbyte, 1); 

 

                    

                    sentelapsmil = mytimer.Duration; 

                    

 

 

                } 

                 

            } 

 

            public void udprecvserData() 

            { 

               

                for (int repeat = 0; repeat < datapoints; repeat++) 

                { 

 

                    numback = serialPortIn.ReadByte(); 

          

                   recvelapsmil = mytimer.Duration; 
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                    if (numback == num2send) 

                    { 

                        correctbyte = 1; 

                    } 

                    else 

                    { 

                        correctbyte = 0; 

                    } 

                    

                    elapsmil = recvelapsmil - sentelapsmil; 

                    counter++; 

                   

                   sb.AppendLine(counter + "\t" + elapsmil * 1000 + "\t" 

+ correctbyte); 

                    

                    mut.WaitOne(); 

                    num2send += 1; 

                    if (num2send > 255) { num2send = 1; } 

                    mut.ReleaseMutex(); 

                    received = true; 

                } 

            } 

            public void udprecvData() 

            { 

                 

                for (int repeat = 0; repeat < datapoints; repeat++) 

                {                 

 

                    recvbyte= udpin.Receive(ref ep); 

                    

                    recvelapsmil = mytimer.Duration; 

 

                    numback = recvbyte[0]; 

                     

                    if (numback == num2send) 

                    { 

                        correctbyte = 1; 

                    } 

                    else 

                    { 

                        correctbyte = 0; 

                    } 

                     

 

                    elapsmil = recvelapsmil - sentelapsmil; 

                    counter++; 

                     

                    sb.AppendLine(counter + "\t" + elapsmil * 1000 + "\t" 

+ correctbyte); 

 

                     

                    mut.WaitOne(); 

                    num2send += 1; 

                    if (num2send > 255) { num2send = 1; } 

                    mut.ReleaseMutex(); 

                    received = true; 

                } 
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            } 

        } 

 

     

    } 

} 

 

 

 (One computer networking round trip) C# Testing Program  

 

using System; 

using System.Collections.Generic; 

using System.ComponentModel; 

using System.Data; 

using System.Drawing; 

using System.Linq; 

using System.Text; 

using System.Threading.Tasks; 

using System.Windows.Forms; 

using System.Net; 

using System.Net.Sockets; 

using System.Threading; 

using HighResTimer; 
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using System.IO; 

 

namespace Server 

{ 

    public partial class Form1 : Form 

    { 

        Decimal datapoints; 

        NetworkStream stream; 

        Thread sendThread; 

        Thread recvThread; 

        ThreadStart sending; 

        ThreadStart receiving; 

        TcpClient tcpclnt; 

        ThreadProgram clientObject; 

        StringBuilder sb = new StringBuilder(); 

        TcpListener myList; 

        UdpClient listener; 

        IPEndPoint groupep; 

 

        IPEndPoint ep; 

        Timing mytimer = new Timing(); 

 

        public Form1() 

        { 

            InitializeComponent(); 

        } 

 

        private void startbutton_Click(object sender, EventArgs e) 

        { 

            datapoints = datapts.Value; 

            sb.Clear(); 

            mytimer.Start(); 

            if (tcpradio.Checked) 

            { 

                IPAddress ipAd = IPAddress.Parse("192.168.137.1"); 

                // use local m/c IP address, and  

                // use the same in the client 

 

                /* Initializes the Listener */ 

                TcpListener myList = new TcpListener(ipAd, 8001); 

 

                /* Start Listeneting at the specified port */ 

                myList.Start(); 

                tcpclnt = new TcpClient(); 

                Console.WriteLine("Connecting....."); 

 

                tcpclnt.Connect("192.168.137.1", 8001); 

 

                Socket s = myList.AcceptSocket(); 

                stream = tcpclnt.GetStream(); 

                clientObject = new ThreadProgram(listener, s, myList, 

tcpclnt, groupep, ep, stream, mytimer, datapoints, sb); 

            } 

            else 

            { 

                IPEndPoint groupep = new IPEndPoint(IPAddress.Any, 

11000); 
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                UdpClient listener = new UdpClient(); 

                // udpclient.ExclusiveAddressUse = false; 

                // 

udpclient.Client.SetSocketOption(SocketOptionLevel.Socket, 

SocketOptionName.ReuseAddress, true); 

                //listener.Client.Bind(listener); 

 

                listener.Client.Bind(groupep); 

                Socket s = new Socket(AddressFamily.InterNetwork, 

SocketType.Dgram, 

            ProtocolType.Udp); 

 

                IPAddress broadcast = IPAddress.Parse("127.0.0.1"); 

                IPEndPoint ep = new IPEndPoint(broadcast, 11000); 

 

                //  udpserver.ExclusiveAddressUse = false; 

                //  

udpserver.Client.SetSocketOption(SocketOptionLevel.Socket, 

SocketOptionName.ReuseAddress, true); 

                //IPEndPoint epin2 = new 

IPEndPoint(IPAddress.Parse("192.168.0.101"), 5678); 

                //udpserver.Client.Bind(epin2);// was epin and ipaddress 

parse 192.168.137.1, 1234 (after change in network adapter settings) 

                clientObject = new ThreadProgram(listener, s, myList, 

tcpclnt, groupep, ep, stream, mytimer, datapoints, sb); 

            } 

 

 

            if (tcpradio.Checked) 

            { 

                sending = new ThreadStart(clientObject.tcpsendData); 

                receiving = new ThreadStart(clientObject.tcprecvData); 

 

            } 

            else 

            { 

                //while (mytimer.Duration * 1000 < 1500) 

               // { } 

                sending = new ThreadStart(clientObject.udpsendData); 

                receiving = new ThreadStart(clientObject.udprecvData); 

            } 

 

            sendThread = new Thread(sending); 

            recvThread = new Thread(receiving); 

            recvThread.Start(); 

            sendThread.Start(); 

 

 

            sendThread.Join(); 

            recvThread.Join(); 

            this.Invoke(new EventHandler(SaveDialog)); 

 

        } 

        public void SaveDialog(object sender, EventArgs e) 

        { /// When the timer runs out or STOP is pressed, a Save Dialog 

appears  

            SaveFileDialog saveFileDialog1 = new SaveFileDialog(); 
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            saveFileDialog1.Filter = "txt files (*.txt)|*.txt|All files 

(*.*)|*.*"; 

            saveFileDialog1.FilterIndex = 1; 

            saveFileDialog1.RestoreDirectory = true; 

            if (tcpradio.Checked) 

            { 

 

                saveFileDialog1.FileName = "Comp_hosteth-ethTCP_10_"; 

 

 

 

            } 

            else 

            { 

                saveFileDialog1.FileName = "Comp_eth-ethUDP_10_"; 

 

 

 

            } 

 

            if (saveFileDialog1.ShowDialog(this) == DialogResult.OK) 

            { File.WriteAllText(saveFileDialog1.FileName, 

sb.ToString()); } 

        } 

 

        public class ThreadProgram 

        { 

            public System.Object lockThis = new System.Object(); 

            public NetworkStream stream; 

            Socket s; 

            private static Mutex mut = new Mutex(); 

            int num2send = 1; 

            Decimal datapoints; 

            int numback; 

            bool received = true; 

            byte[] recvbyte = new byte[1]; 

            byte[] sentbyte = new byte[1]; 

            int counter = 0; 

            IPEndPoint listenep; 

            IPEndPoint epbroad; 

            UdpClient listener; 

            TcpClient tcpclnt; 

            TcpListener myList; 

            StringBuilder sb; 

            int correctbyte = 0; 

 

            Timing mytimer = new Timing(); 

            double sentelapsmil; 

            double recvelapsmil; 

            double elapsmil; 

 

            public ThreadProgram(UdpClient client, Socket sender, 

TcpListener tcplist, TcpClient tcpclient, IPEndPoint ep1, IPEndPoint ep2, 

NetworkStream streamer, Timing timer, Decimal thedatapoints, 

StringBuilder sbin) 

            { 

                stream = streamer; 
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                datapoints = thedatapoints; 

                listenep = ep1; 

                epbroad = ep2; 

                listener = client; 

                s = sender; 

                myList = tcplist; 

                tcpclnt = tcpclient; 

                sb = sbin; 

                mytimer = timer; 

 

 

            } 

 

            public void tcpsendData() 

            { 

 

 

                for (int repeat = 0; repeat < datapoints; repeat++) 

                { 

 

 

                    while (!received) 

                    { 

 

                    } 

                    received = false; 

 

                   

 

                    mut.WaitOne(); 

 

                    sentbyte = BitConverter.GetBytes(num2send); 

                    mut.ReleaseMutex(); 

 

 

 

                    stream.Write(sentbyte, 0, 1); 

 

                    sentelapsmil = mytimer.Duration; 

                   

 

                } 

                tcpclnt.Close(); 

            } 

            public void tcprecvData() 

            { 

 

 

                for (int repeat = 0; repeat < datapoints; repeat++) 

                { 

 

 

                    s.Receive(recvbyte); 

 

                    recvelapsmil = mytimer.Duration; 
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                    numback = recvbyte[0]; 

 

                    if (numback == num2send) 

                    { 

                        correctbyte = 1; 

                    } 

                    else 

                    { 

                        correctbyte = 0; 

                    } 

                    

                    elapsmil = recvelapsmil - sentelapsmil; 

                    counter++; 

                    sb.AppendLine(counter + "\t" + elapsmil * 1000 + "\t" 

+ correctbyte); 

                    

                    mut.WaitOne(); 

                    num2send += 1; 

                    if (num2send > 255) { num2send = 1; } 

                    mut.ReleaseMutex(); 

                    received = true; 

                } 

                s.Close(); 

                myList.Stop(); 

            } 

            public void udpsendData() 

            { 

 

 

                for (int repeat = 0; repeat < datapoints; repeat++) 

                { 

                   = 

 

                    while (!received) 

                    { 

 

                    } 

                    received = false; 

 

                   

                    mut.WaitOne(); 

 

                    sentbyte = BitConverter.GetBytes(num2send); 

                    mut.ReleaseMutex(); 

                    // stopwatch.Reset(); 

 

                    s.SendTo(sentbyte, epbroad); 

                    

 

                     

                    sentelapsmil = mytimer.Duration; 

                    / 

 

 

                } 

                s.Close(); 
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            } 

            public void udprecvData() 

            { 

 

 

                for (int repeat = 0; repeat < datapoints; repeat++) 

                { 

 

 

                    recvbyte = listener.Receive(ref listenep); 

 

                     

                    recvelapsmil = mytimer.Duration; 

 

                    numback = recvbyte[0]; 

 

                    if (numback == num2send) 

                    { 

                        correctbyte = 1; 

                    } 

                    else 

                    { 

                        correctbyte = 0; 

                    } 

                    // sb.AppendLine(elapsedmilli + "\t" + correctbyte + 

"\n"); 

 

                    elapsmil = recvelapsmil - sentelapsmil; 

                    counter++; 

                    //sb.Append("\t" + recvmil); 

                    sb.AppendLine(counter + "\t" + elapsmil * 1000 + "\t" 

+ correctbyte); 

 

                  

                    mut.WaitOne(); 

                    num2send += 1; 

                    if (num2send > 255) { num2send = 1; } 

                    mut.ReleaseMutex(); 

                    received = true; 

                } 

 

                listener.Close(); 

            } 

        } 

    } 

} 
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MATLAB Data Analysis Code 

close all 

[FileName,PathName] = uigetfile('*.txt','Select a multiple of 10 trials 

.txt files','MultiSelect','on'); 

  

nFile = size(FileName,2); 

nrows = 1000; 

ncols = 20; 

  

datadim = nFile/10; 

datamat = zeros(nrows,ncols,datadim); 

dim = 1; 

count = 1; 

maintitle = {};  

maintitle{1}=FileName{1}(1:end-11); 

if iscell(FileName) 

    for i=1:nFile 

     

    data=dlmread(strcat(PathName,FileName{i}),'\t'); 

    datamat(:,count*2-1:count*2,dim)=data(:,2:3); 

     

        if i == nFile 

            break; 

        elseif count == 10 

         

            maintitle{end+1} = FileName{i+1}(1:end-11); 

            count = 1; 

            dim = dim +1; 

        else 

            count=count+1; 
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        end 

    end 

end 

  

timevalues = datamat(:,1:2:end,:); 

boolvalues = datamat(:,2:2:end,:); 

mintime = min(min(min(timevalues))); 

maxtime = max(max(max(timevalues))); 

maxavg = max(max(max(mean(timevalues))))+max(max(max(std(timevalues)))); 

minavg = min(min(min(mean(timevalues))))-max(max(max(std(timevalues)))); 

colors = {[0 1 1],[1 0 0],[1 1 0],[.4 1 1],[.5 .5 0],[.9 .6 .3],[.2 .3 

.6],[.8 .4 .1],[1 0 .6],[0 .3 .3]}; 

for k = 1:datadim 

time_test = timevalues(:,:,k); 

bool_test = boolvalues(:,:,k); 

avgvalues = mean(time_test); 

stdev = std(time_test); 

  

successrate = (sum(bool_test)/nrows)*100; 

if successrate < 100 

    display('Failed bool test') 

    break; 

end 

nbins = round(nrows*nFile/datadim/4); 

  

maxval = max(max(time_test)); 

minval = min(min(time_test)); 

avgval = mean(avgvalues); 

medval = median(median(time_test)); 

range = maxval - minval; 

h1=figure; 

  

  

[N, edges] = histcounts(time_test); 

maxy = max(N); 

bar(edges(1:end-1),N,'EdgeColor','None') 

%histogram(time_test,'EdgeColor','None') 

LW=2; 

axis([mintime maxtime 0 maxy])  

ax=gca; 

hold on; 

line([maxval maxval],[ylim],'Color','r','LineStyle','--','LineWidth',LW) 

line([minval minval],[ylim],'Color','m','LineStyle','--','LineWidth',LW) 

line([avgval avgval],[ylim],'Color','g','LineStyle','--','LineWidth',LW) 

%line([medval medval],[ylim],'Color','g','LineStyle','--') 

  

%y=ylim; 

strstats = sprintf('Min = %.2f ms, Mean = %.2f ms, Max = %.2f 

ms',minval,avgval,maxval); 

legend(ax,'histogram','max value','min value','avg 

value','Location','Best') 

  

  

xlabel('Time delay (ms)') 

ylabel('Number of instances') 

str = {sprintf('Time delays for %s', maintitle{k}),strstats}; 

title(str,'Interpreter','None')  
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file_hist = strcat(PathName,maintitle{k},'_hist.jpg'); 

file_hist2 = strcat(PathName,maintitle{k},'_histoverlay.jpg'); 

saveas(h1,file_hist) 

  

  

  

h2 = figure; 

bar(avgvalues); 

axis([0 inf 0 maxavg]) 

hold on 

errorbar(avgvalues,stdev,'.') 

str2 = sprintf('Average time delays per trial for %s', maintitle{k}); 

title(str2, 'Interpreter','None'); 

xlabel('Trial number') 

ylabel('Average time delay (ms)') 

  

  

file_avg = strcat(PathName,maintitle{k},'_avgvals.jpg'); 

saveas(h2,file_avg) 

  

h3 = figure; 

bar(successrate); 

xlabel('Trial number') 

ylabel('Success rate (%)') 

str3 = sprintf('Success rate per trial for %s', maintitle{k}); 

title(str3,'Interpreter','None'); 

axis([0 inf 0 120]) 

  

file_success = strcat(PathName,maintitle{k},'_successrate.jpg'); 

saveas(h3,file_success) 

  

totarray = reshape(time_test,nrows*nFile/datadim,1); 

h4 = figure; 

plot(totarray,'o') 

axis([0 10000 mintime maxtime]) 

xlabel('Data point') 

ylabel('Time delay (ms)') 

str4 = sprintf('Total data points for %s', maintitle{k}); 

title(str4,'Interpreter','None'); 

  

file_alldata = strcat(PathName,maintitle{k},'_alldata.jpg'); 

saveas(h4,file_alldata) 

  

trialstats = zeros(ncols/2,5); 

for j=1:ncols/2 

    trial = time_test(:,j); 

    mintrial = min(trial); 

    maxtrial = max(trial); 

    avgtrial = avgvalues(j); 

    medtrial = median(trial); 

    stdtrial = stdev(j); 

    ranget = maxtrial - mintrial; 

    trialstats(j,:)=[mintrial maxtrial avgtrial medtrial stdtrial]; 

    h5 = figure; 

 [N, edges] = histcounts(trial); 

 maxy = max(N); 



110 

 

 bar(ax,edges(1:end-1),N,'EdgeColor','None','FaceColor',colors{j}) 

histogram(trial,'EdgeColor','None')  

axis([mintime maxtime 0 maxy])  

hold on 

line([maxtrial maxtrial],[ylim],'Color','r','LineStyle','--

','LineWidth',LW) 

line([mintrial mintrial],[ylim],'Color','m','LineStyle','--

','LineWidth',LW) 

line([avgtrial avgtrial],[ylim],'Color','g','LineStyle','--

','LineWidth',LW) 

% line([medtrial medtrial],[ylim],'Color','g','LineStyle','--') 

strstats = sprintf('Min = %.2f ms, Mean = %.2f ms, Max = %.2f 

ms',mintrial,avgtrial,maxtrial); 

  

 

legend('histogram','max value','min value','avg 

value','Location','Best'); 

 xlabel('Time delay (ms)') 

ylabel('Number of instances') 

str5 = {sprintf('Time delays for %s, trial %d', maintitle{k}, 

j),strstats}; 

title(str5,'Interpreter','None') 

    

file_hist_trial = 

strcat(PathName,maintitle{k},'trial_',num2str(j),'_hist.jpg'); 

saveas(h5,file_hist_trial) 

      

  

     

end 

legend(ax,'histogram','max value','min value','avg value','Trial 

1','Trial 2','Trial 3','Trial 4','Trial 5','Trial 6','Trial 7','Trial 

8','Trial 9','Trial 10','Location','Best') 

saveas(h1,file_hist2) 

  

h6 = figure; 

boxplot(time_test) 

axis([0 inf mintime maxtime]) 

xlabel('Trial number') 

ylabel('Time delay (ms)') 

str6 = sprintf('Boxplot for %s',maintitle{k}); 

title(str6,'Interpreter','None') 

file_boxplot = strcat(PathName,maintitle{k},'_boxplot.jpg'); 

saveas(h6,file_boxplot) 

  

fid = fopen(strcat(PathName,maintitle{k},'_stats.csv','w')); 

  

for i = 1:1000:9001 

    newtime(i:i+999)=time_test(:,(i-1)/1000+1); 

end 

stdall = std(newtime); 

Stats = {'Minimum','Maximum','Average','Median','Standard 

Deviation';minval,maxval,avgval,medval,stdall}; 

fid = fopen(fullfile(PathName,strcat(maintitle{k},'_stats.csv')),'w'); 

  

fprintf(fid,'%s,%s,%s,%s,%s\n',Stats{1,:}); 

fprintf(fid,'%f,%f,%f,%f,%f\n',Stats{2,:}); 
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fprintf(fid,'%s\n','Trials'); 

dlmwrite(fullfile(PathName,strcat(maintitle{k},'_stats.csv')),trialstat

s,'-append'); 

for j=1:ncols/2 

    fprintf(fid,'%f,%f,%f,%f,%f\n',trialstats(j,:)); 

end 

fclose(fid); 

  

end 
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Appendix C: Creating Custom Box in OpenViBE 

 

 

 

 

Follow the instructions located here: http://openvibe.inria.fr/build-instructions/ to acquire 

the OpenViBE source code. This is necessary to add custom boxes. Once the program has 

been successfully built, add both ovpCBoxAlgorithm codes from the OpenVibe folder on 

https://github.com/nehatk17/NeuroHubNetworkModule/tree/master/Codes/OpenViBE%2

0custom%20box to the following director: openvibe/plugins/processing/network-

io/src/box-algorithms. Copy the ovp_main file to the following directory: 

openvibe/plugins/processing/network-io/src. Finally, rebuild the program. Windows IDE 

build can be launched from openvibe/scripts using win32-launch-vc. Launch the program 

using the openvibe-designer application located in openvibe/dist. Make sure that the 

“show unstable” is checked in the boxes panel on the right in the OpenViBE Designer 

GUI. The Event Marker to TCP should show up under the Network IO category.  

https://github.com/nehatk17/NeuroHubNetworkModule/tree/master/Codes/OpenViBE%20custom%20box
https://github.com/nehatk17/NeuroHubNetworkModule/tree/master/Codes/OpenViBE%20custom%20box


 

 

 


