
 

 

Investigating a combination therapy of robot-driven rehabilitation techniques with viral 

delivery of brain-derived neurotrophic factor in treating adult spinal cord injury 

 

A Thesis 

Submitted to the Faculty 

of 

Drexel University 

by 

John Kim Lee 

in partial fulfillment of the 

requirements for the degree 

of 

Doctor of Philosophy 

June 2016 

 



 

 

ii 

 

© Copyright 2016 

John K. Lee All Rights Reserved. 

 



 

 

iii 

Dedications 

 

To Catrick Swayze.  



 

 

iv 

Acknowledgements 

  

First and foremost, I would like to express my sincerest thanks to Dr. Simon F. Giszter 

for his mentorship and friendship the past four years. His support and patience throughout 

my time in his lab has been invaluable to my growth as a scientist. I would also like to 

thank Dr. Veronica J. Tom, who has taught me many important lessons about being an 

effective researcher. This work is only possible because of her guidance and 

collaboration.  

In addition, I am grateful to the other members of my committee. Dr. Uri 

Hershberg has always made himself available to me for questions. Dr. Ilya Rybak always 

made sure to ask the hard questions, prodding me to be a better investigator. Finally, I 

thank Dr. Mijail Serruya for being a role model for me in my pursuit of becoming a 

physician-scientist. His clinical perspective has been a driving force in my research 

endeavors.  

I would like to take the opportunity to thank current and former colleagues in the 

Giszter lab: Dr. Chintan Oza, Dr. Arun Ramakrishnan, Dr. Taegyo Kim, Dr. David 

Logan, Dr. Qi Yang, Kendall Schmankudovich, Josephine Vanloozen’s bicycle, David 

Wallace, Kavon Noorbehesht, and Kristina Carter. I value our friendships, as well as the 

time we spent together in the laboratory.  

I would like to thank other members of the Department of Neurobiology & 

Anatomy. In particular, Michelle Klaw, Dr. Di Wu, Theresa Connors, Megan Detloff, Joy 

Hudson, and Robert Parker have been great friends the past four years. I would like to 

thank Natalia Broz in the School of Biomedical Engineering, who has put up with enough 



 

 

v 

of my nonsense and late scheduling to last a lifetime. I would also like to express my 

gratitude to Dr. Jane Clifford, the head of the MD/PhD program, without whom I would 

not even have had the opportunity to pursue this goal.  

To my friends – Luke Mitchell, Bartholomew Bacak, Simon Danner, and 

Guillaume Caron – thanks for your support (especially with bench press) and I hope we 

have many more steak nights and sausage fests in our future. To my fellow MD/PhD 

students: there is a light at the end of the tunnel (I think)!  

I would like to thank my family for all of their support throughout the years. 

Without my parents, sisters, brother-in-law, and nephews, I could not have accomplished 

any of this work.  

Finally, to Lauren Finn, thank you for everything. But especially for chocolate 

chip cookies.  



 

 

vi 

Table of Contents 

 

List of Illustrations ........................................................................................................... xi	
  

Abstract ........................................................................................................................... xiii	
  

CHAPTER 1: Introduction .............................................................................................. 1	
  

A. THE RIDDLE OF THE SPHINX ........................................................................................ 1	
  

B. SPINAL CORD INJURY RESULTS IN A DIVIDED, BUT FUNCTIONAL CENTRAL NERVOUS 
SYSTEM(S) ....................................................................................................................... 3	
  

B-1. Pantomime Horse Analogy of SCI ...................................................................... 4	
  

C. THE TRUNK AS A KEY MEDIATOR OF LOCOMOTION .................................................... 5	
  

D. FUNDAMENTALS OF ROBOT-ASSISTED REHABILITATION ............................................ 7	
  

E. THE NEONATAL MODEL OF SCI AS A SIGNPOST OF RECOVERY ................................. 12	
  

F. CENTRAL PATTERN GENERATORS ............................................................................. 14	
  

G. BRAIN-DERIVED NEUROTROPHIC FACTOR ................................................................ 16	
  

H. EPIDURAL STIMULATION ........................................................................................... 19	
  

H-1. Conventional Epidural Stimulation .................................................................. 20	
  

H-2. Robot-driven epidural stimulation .................................................................... 22	
  

I. IMPORTANCE OF TRUNK MOTOR CORTEX IN SCI REHABILITATION ........................... 23	
  

I-1. Muscle Synergies and Motor Primitives ............................................................ 23	
  

I-2. The Role of Cortex in Muscle Synergy Activation .............................................. 25	
  

I-3. Organization of the Sensorimotor Cortex .......................................................... 28	
  

I-4. The Role of the Trunk Motor Cortex in Locomotion .......................................... 29	
  

I-5. The Effect of SCI on Motor Cortex Representation ........................................... 31	
  

J. SPECIFIC AIMS ............................................................................................................ 34	
  

J-1. Specific Aim 1 .................................................................................................... 34	
  



 

 

vii 

J-2. Specific Aim IIA ................................................................................................. 35	
  

J-3. Specific Aim IIB ................................................................................................. 36	
  

J-4. Specific Aim III .................................................................................................. 36	
  

CHAPTER 2: The effect of robot-assisted treadmill training on adult-spinalized rats 
induced to step with viral delivery of brain-derived neurotrophic factor ................. 38	
  

A. INTRODUCTION .......................................................................................................... 38	
  

B. MATERIALS AND METHODS ....................................................................................... 42	
  

B-1. Overview ........................................................................................................... 42	
  

B-2. Complete Spinal Cord Transection at T9/T10 in the Adult Rat (ATX) ............. 42	
  

B-3. Microinjection of Virus Caudal to Injury .......................................................... 43	
  

B-4. Pelvic Orthosis Implantation ............................................................................ 43	
  

B-5. Post-operative care ........................................................................................... 44	
  

B-6. Robot-Assisted Treadmill Training ................................................................... 44	
  

B-7. Locomotor Assessment ...................................................................................... 45	
  

B-8. Histology ........................................................................................................... 46	
  

B-9. Data Analysis .................................................................................................... 47	
  

C. RESULTS .................................................................................................................... 48	
  

C-1. Overview ........................................................................................................... 48	
  

C-2. AOB Bipedal Stepping Scale ............................................................................. 48	
  

C-3. Robot Interactive Force (zForce) ..................................................................... 50	
  

C-4. Percent Weight-Supported Stepping (%WSS) ................................................... 51	
  

C-5. AAV5-BDNF Treatment Results in Collapse in Function ................................. 53	
  

C-6. Effect on rehabilitation despite collapse ........................................................... 54	
  

C-7. Effect of Rehabilitation in Collapsed Animals .................................................. 56	
  



 

 

viii 

D. DISCUSSION .............................................................................................................. 65	
  

E. CONCLUSION ............................................................................................................. 74	
  

CHAPTER 3: Robot-driven epidural stimulation prevents collapse in function 
found after brain-derived neurotrophic factor treatment of adult spinal cord injury.
 .......................................................................................................................................... 75	
  

A. INTRODUCTION .......................................................................................................... 75	
  

B. MATERIALS AND METHODS ....................................................................................... 79	
  

B-1. Overview ........................................................................................................... 79	
  

B-2. Complete Transection of the Spinal at T9/T10 in the Adult Rat (ATX) ............ 80	
  

B-3. Microinjection of AAV5 Virus Caudal to Transection Site ............................... 81	
  

B-4. Implantation of Epidural Stimulation Wires ..................................................... 81	
  

B-5. Pelvic Orthosis Implantation ............................................................................ 82	
  

B-6. Connecting the Epidural Stimulation Wires ..................................................... 83	
  

B-7. Post-operative care ........................................................................................... 83	
  

B-8. Robot-Assisted Treadmill Training ................................................................... 83	
  

B-9. Robot-driven Epidural Stimulation ................................................................... 84	
  

B-10. Locomotor Assessment .................................................................................... 84	
  

B-11. Histology ......................................................................................................... 85	
  

B-12. Data Analysis .................................................................................................. 86	
  

C. RESULTS .................................................................................................................... 87	
  

C-1. Overview ........................................................................................................... 87	
  

C-2. AOB Bipedal Stepping Scale ............................................................................. 87	
  

C-3. Robot Interactive Forces (zForce) .................................................................... 89	
  

C-4. Percent Weight-Supported Stepping (%WSS) ................................................... 91	
  

C-5. Stimulus Intensity to Elicit Hindlimb Locomotor Activity ................................ 93	
  



 

 

ix 

D. DISCUSSION .............................................................................................................. 98	
  

E. CONCLUSION ........................................................................................................... 108	
  

CHAPTER 4: Active stepping rehabilitation induces significant reorganization of 
the trunk motor cortex in the adult spinalized rat .................................................... 109	
  

A. INTRODUCTION ........................................................................................................ 109	
  

B. MATERIALS AND METHODS ..................................................................................... 114	
  

B-1. Overview ......................................................................................................... 114	
  

B-2. Intracortical Microstimulation Techniques .................................................... 115	
  

B-3. Data Analysis .................................................................................................. 118	
  

C. RESULTS .................................................................................................................. 119	
  

C-1. Overview ......................................................................................................... 119	
  

C-2. Locomotor Recovery in wsBDNF Rats Trained with Robot Intervention at the 

Pelvis ....................................................................................................................... 119	
  

C-3. Effect of Rehabilitation on Total Trunk Motor Area ...................................... 121	
  

C-4. Changes in Total Trunk Motor Area by Segmental Level ............................... 122	
  

C-5. Changes in Total Trunk Area by Dorsal and Ventral Representation ............ 123	
  

C-6. Changes in Coactivation Density .................................................................... 125	
  

C-7. Changes in Coactivation Density by Segmental Level ................................... 125	
  

C-8. Change in Coactivation Density by Dorsal and Ventral Representation ....... 126	
  

C-9. Effect of Spinalization and Rehabilitation on Trunk Motor Cortex Migration

 ................................................................................................................................. 127	
  

C-10. Overlap of Trunk and Forelimb Representation in Motor Cortex ................ 128	
  

D. DISCUSSION ............................................................................................................ 139	
  

D-1. Total Trunk Motor Cortex Area ...................................................................... 142	
  



 

 

x 

D-2. Changes to Coactivation Densities ................................................................. 145	
  

D-3. Muscle Synergy ............................................................................................... 146	
  

D-4. Displacement of Trunk Motor Cortex ............................................................. 147	
  

E. Conclusion .......................................................................................................... 149	
  

CHAPTER 5: SUMMARY .......................................................................................... 151	
  

BIBLIOGRAPHY ......................................................................................................... 155	
  

Vita ................................................................................................................................. 176	
  



 

 

xi 

List of Figures 
 

Figure 1-1 Examples of metachronally traveling waves of motor 
activity 
 

7 

Figure 1-2 Schematic of the PHANTOM® Premium 1.0 model robot 
arm 
 

11 

Figure 1-3 Current paradigm of complete spinal cord injury model in 
the rat model used in the Giszter lab 
 

14 

Figure 2-1 Custom-made pelvic orthosis placed on the pelvis of a rat 
skeleton 
 

44 

Figure 2-2 Overview of the experimental design describing the 
various differences between groups 
 

58 

Figure 2-3 A locomotor behavior scoring scale, modified from the 
Basso, Beattie, Bresnahan (BBB) scale 
 

59 

Figure 2-4 Comparison of the mean AOB scores at the beginning and 
end of training among the groups 
 

60 

Figure 2-5 Comparison of the mean normalized zForce at the 
beginning and end of training 
 

61 

Figure 2-6 Percent weight-supported stepping all of the groups at the 
end of training 
 

61 

Figure 2-7 Overview of collapse observed in animals treated with 
AAV5-BDNF 
 

62 

Figure 2-8 Comparison of BDNF animals that have collapsed and 
have not collapsed 
 

63 

Figure 2-9 Histological confirmation 
 

64 

Figure 3-1 Schematic of implantation of epidural stimulation wires 
through the vertebrae and onto the dorsal surface of the 
spinal cord 
 

82 

Figure 3-2 Overview of the experimental design of Specific Aim II 
 

95 

Figure 3-3 Comparison of the AOB hindlimb locomotor behavioral 
score among groups at the beginning and end of training 

95 



 

 

xii 

Figure 3-4 Changes in normalized zForce (N/g) and WSS at the start 
and end of training across all groups. 
 

96 

Figure 3-5 Stimulus intensity (V) to elicit hindlimb motor activity as 
a function of weeks of training 
 

97 

Figure 4-1 Representative trunk motor cortical maps in the ATX rat 
model created from ICMS techniques 
 

111 

Figure 4-2 Representative maps of the motor cortex in various NTX 
rats obtained by ICMS techniques 
 

112 

Figure 4-3 Overview of the rehabilitation scheme of the the six 
animals chosen for ICMS cortical mapping procedure 
 

130 

Figure 4-4 Locomotor recovery of the animals selected for Specific 
Aim III 
 

130 

Figure 4-5 Representative cortical maps of select wsBDNF rats in 
this study 
 

131 

Figure 4-6 Total trunk motor area in the different groups of animals 
 

132 

Figure 4-7 Segmental view of the changes to total trunk area as a 
percentage of nonfacial motor cortex 
 

133 

Figure 4-8 Changes in dorsal and ventral representation of the total 
trunk area as a percentage of nonfacial motor cortex 
 

134 

Figure 4-9 Relative location from bregma of trunk motor 
representation in the cortex following injury and 
rehabilitation 
 

135 

Figure 4-10 Changes to the density of coactivation of trunk 
musculature as a result of injury and rehabilitation 
 

136 

Figure 4-11 Segmental changes in coactivation density per site of 
trunk activation 
 

137 

Figure 4-12 Changes to the coactivations of trunk musculature with 
the limbs 

138 

 



 

 

xiii 

Abstract 
 
 
Investigating a combination therapy of robot-driven rehabilitation techniques with 

viral delivery of brain-derived neurotrophic factor in treating adult spinal cord 
injury 

 
John Kim Lee 

Simon F. Giszter, Ph.D 
 
 
 
 

A complete spinal cord injury (SCI) disrupts the normal architecture of the central 

nervous system, resulting in severe and irreversible impairment of the healthy functions 

of the body. SCI physically interrupts the neural networks used to relay descending motor 

information from and ascending sensory information to supraspinal structures in the brain 

separating circuits in spinal cord from brain supervision and recruitment. Depending on 

the location of the injury, complete SCI can lead to paraplegia or quadriplegia. In the 

injured individual, the loss of autonomy and mobility can severely decrease quality of 

life, as well as negatively impact health outcomes. As a result, locomotor rehabilitation is 

an area of interest for research for its potential translational benefits in the clinic. 

In previous work in our lab studying the rat model for SCI, we have demonstrated 

the efficacy of robotic technology in the rehabilitation of adult rats transected as neonates 

(NTX), which are unique in their ability to produce autonomous stepping after complete 

SCI without intervention. Using robotic assistance at the pelvis in our trunk-based 

rehabilitation paradigm, we have significantly improved locomotor function in such 

animals. Viewing the NTX model, thus, as a signpost for what is possible in recovery 

when using our robot in animals that can step after SCI, we have also shown that our 

robot can be used to drive epidural stimulation (ES) in the rat transected as an adult 
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(ATX) to promote stepping patterns and increase body weight support. 

Recently, the use of neurotrophins, such as brain-derived neurotrophic factor 

(BDNF) has been investigated as a means to induce stepping and locomotor behaviors in 

the ATX model to varying levels of success. We believe that there are potentially 

synergistic benefits to combining our robot rehabilitation techniques with the use of 

BDNF to rehabilitate ATX animals.  This thesis addresses this idea in depth. 

We first investigated how BDNF and our robot-assisted treadmill training might 

interact in the ATX model. Next, we added robot-driven epidural stimulation to the 

treatment regimen to further understand how the therapies might interact in rehabilitation. 

Finally, to elucidate the mechanisms underlying locomotor recovery following injury, we 

used intracortical microstimulation (ICMS) to map the motor cortex of successfully 

rehabilitated animals. 

Our results suggest that BDNF and robot technologies can be combined 

successfully to provide robust stepping patterns, characterized by body weight support 

and plantar stepping in the ATX model for rats. Furthermore, we show that epidural 

stimulation can be used to mitigate pathological sequelae that come from BDNF use. 

Finally, our work shows how active stepping using BDNF and robot rehabilitation in the 

ATX model may induce significant reorganization of the trunk motor cortex, providing 

more clues to the relationship between the cortex and the spinal cord in motor control and 

muscle synergy development.  
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CHAPTER 1: Introduction 
 
 

“A thing there is whose voice is one; 
Whose feet are four and two and three. 
So mutable a thing is none 
That moves in earth or sky or sea. 
When on most feet this thing doth go, 
Its strength is weakest and its pace most slow.” 

The Riddle of the Sphinx, Atheneaus 

 

A. The Riddle of the Sphinx  

For a long time in the course of human history, the concept of rehabilitation in spinal 

cord injury was considered a futile effort. As early as 2500 BCE, there is record in the 

ancient Egyptian document, the Edwin Smith Papyrus, of SCI as a disease that is “not to 

be treated.” In Western history, Greek physicians such as Hippocrates and Paul of Aegina 

– twelve centuries apart – tried to improve surgical methods to improve recovery after 

injury. It was not until the mid-twentieth century that research in rehabilitation in SCI has 

seen advances, as our understanding of physical therapy techniques, robotics, imaging, 

and human physiology and anatomy have spurred new innovations in modern medicine. 

Behind all of these endeavors, from ancient history to now, the central conceit of this 

work has always been to bring function back where it had been lost. This concept of loss 

extends far beyond locomotion, too. It also relates to our distinct identity as human, 

where the importance of bipedal locomotion and its unique association to humankind has 

long been prevalent in our species’ collective consciousness. 

In the Ancient Greek tradition, the mythical Sphinx – with the head of a woman, 

the body of a lion, wings of an eagle, and a snake for a tail – was sent by the Greek gods 

to guard the city of Thebes, devouring any traveler who meant harm to the city. She 
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posed one riddle to anyone desiring to pass the city gates, asking, “Which creature has 

one voice and yet becomes four-footed and two-footed and three-footed?" Those who 

could not answer were swiftly strangled and eaten by the monstrous Sphinx. In true 

heroic Greek form, Oedipus – Greek for “swollen foot” – solved the riddle, answering, 

“Man, who crawls as a baby, then walks on two feet as an adult, and then uses a walking 

stick in his old age.” As the myth goes, the Sphinx subsequently threw herself off of a 

cliff, allowing Oedipus to enter the city of Thebes, and fulfill his destiny to kill his father 

and marry his mother. Even to the Greek gods, human locomotion was a unique 

experience and separated man from all other beasts and creatures. Thus, it is no wonder 

that injury to the systems that produce movement has been an area of interest in human 

history for a long time. 

SCI is a debilitating disease that affects approximately 2.8 million people 

worldwide, with approximately 250,000 to 500,000 new cases every year. In the United 

States, approximately 276,000 Americans live with SCI, with 12,500 new cases a year.  

Depending on the site of injury, SCI may leave patients with severe impairment leading 

to immobility and/or loss of sensation below the site of injury. From a clinical 

perspective, SCI has a significant negative impact on the health outcomes of those 

injured, greatly reducing life expectancy and increasing the risk of developing secondary 

conditions that may also be life-threatening, such as deep vein thrombosis and pressure 

ulcers [1], [2]. 

 Factors that reduce quality of life in patients include the loss of bladder and bowel 

function, depression, and immobility. Specifically, the inability to walk is of particular 

concern to physicians, as immobility can lead to life-threatening infections and 
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cardiovascular disease [3]. Furthermore, those who suffer from SCI are also at higher risk 

for bacterial infections as a result of immobility [4]. As a result, locomotor recovery is a 

high priority for translational medicine research in SCI.  

Although Oedipus was correct in his response the Sphinx’s deadly question at the 

time, there was no way in which he or ancient Greek storytellers might have predicted 

advances in robotic technology or in neuroprostheses, that comprise the modern “walking 

stick.” Oedipus was referring to the natural progression of human locomotion as the body 

ages, yet his answer is more nuanced than he could have possibly imagined. In an 

interesting twist to this age-old puzzle, current advances in modern medicine and 

treatment of locomotor rehabilitation paradigms in spinal cord injury may have provided 

an alternative interpretation to the answer to this riddle. The following sections will 

provide an overview of the current state of these modern “walking sticks” that are 

relevant to the work in the proceeding chapters.  

 

B. Spinal Cord Injury Results in a Divided, but Functional Central Nervous 

System(s) 

A complete SCI disrupts the normal, healthy architecture of the central nervous system 

(CNS), physically separating the neural networks used to relay descending motor 

information from and ascending sensory information to supraspinal structures in the 

brain. As a result of complete SCI, instead of one anatomically and functionally 

contiguous nervous system, there are two autonomous networks that work independently 

of each other in controlling the body. Above the injury, there exists the brain and cervical 

and upper thoracic spinal cord, and below the injury, the lumbosacral spinal cord. 
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Although the nervous system below the site of injury is unable to communicate directly 

with the brain in the case of SCI, it still possesses the neuronal circuitry to establish and 

produce complex movements [5].  

The lumbosacral spinal cord, separate from supraspinal influence, is an 

independently functioning system that is capable not only of producing movements, but 

also of learning. Experiments in transected cats trained to walk on treadmill showed that 

obstacle-stumbling response testing on the dorsum of the hind paw resulted in new 

locomotor patterns of the whole limb to avoid perturbations in the path of the hindlimbs 

[6] – [8]. This suggests that not only is the lumbosacral cord capable of producing 

movements, but also of receiving and integrating afferent data to produce coordinated, 

complex behavior.  

 

B-1. Pantomime Horse Analogy of SCI 

As a result of SCI, both systems – above and below the injury – function and develop 

separately. However, they are still anatomically and mechanically coupled by the 

musculature and structure of the body. In our lab and previous work, we liken this system 

to a pantomime horse, where two independent actors play the front and back halves of a 

horse, and must work in concert to effectively move forward. In this analogy, the actor 

playing the rear end of the horse is blind to the actions of the front actor, but the costume 

couples the two together, allowing them to integrate both halves together for coordinated 

movement. In the context of complete SCI, the two functional units of the separated 

central nervous system are coupled by trunk musculature that extends from above the site 

of injury to below. Both parts also partially control and share this trunk musculature. 
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Indeed, in spinal cord preparations studying fictive locomotion in the decerebrate cat, 

Takashasi et al. showed distinct rhythmic patterns of trunk muscle nerve activity inherent 

to the cord [9], revealing a connection between spinal locomotor networks and trunk 

musculature activity. Based on its anatomical importance, our understanding of its neural 

control mechanisms, and our examination of the active biomechanics of animals that do 

walk, we believe the data strongly supports that the trunk plays a key role in the 

locomotor rehabilitation in complete SCI.  

 

C. The Trunk as a Key Mediator of Locomotion 

Anatomically, the trunk is comprised of the muscles of the neck, abdomen, thorax, and 

pelvis, on both the dorsal and ventral aspects of the body. It is a complex amalgam of 

overlapping musculature that works synergistically and antagonistically to provide 

stability in posture, as well as to initialize movement in locomotion [10]. Although the 

hips and legs are the primary effectors for movement in locomotion, the trunk is essential 

for stability [11],  [12]. Furthermore, the role of the trunk may be intertwined with the 

function of the hindlimbs. Studies in the development of locomotion in the neonatal rat 

model have shown that trunk muscle activity is coupled to the rhythmic activity of the 

hindlimb extensors in locomotion [13]. 

 In humans, back musculature serves primarily to extend the dorsal column, 

providing stability against gravity. Additionally, dorsal muscles connect individual 

vertebrae, allowing for many smaller muscles to act on a larger portions of the spine. In 

locomotion, these muscles provide stability and stiffness to the back. The trunk muscles 

on the ventral aspect of the body are responsible for flexion and bending of the trunk. In 
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addition, they serve to allow for axial rotation of the body, which are essential for 

dynamic stability needed in locomotion [14]. Furthermore, ventral trunk muscles also 

play a role in many different systems and behaviors, including respiration, defecation, 

and urination.  

 From an evolutionary standpoint, the case can be made that the role of the trunk is 

not diminished or significantly changed from the bipedal human model to the 

quadrupedal model. Indeed, although bipedal locomotion is unique to humans across 

mammals, there is much evidence to suggest that axial trunk movements and control have 

been “conserved” from phylogenetically older locomotor systems. Indeed, Falgairolle et 

al. compared recordings of metachronally traveling waves of motor activity in lamprey 

spinal cord, amphibian ventral roots, neonatal rat spinal cord, and human axial trunk 

electromyography (EMG) to elegantly illustrate this concept [15], showing parallels and 

similarities of patterns across these various vertebrate groups (Fig. 1-1).  

 Furthermore, studies in neurodevelopment and physical rehabilitation of 

incomplete SCI in children suggest that as humans develop locomotor patterns from 

quadrupedal crawling to sitting, patterns of activation of trunk musculature is conserved 

[16],  [17]. In a case study of a three-year old child with incomplete SCI, Behrman et al. 

demonstrated that locomotor training and rehabilitation led to similar patterns of trunk 

activation during crawling, stair climbing, and pedaling [16]. In physical therapy of 

humans, in particular, interventions that appear to activate the various trunk muscles and 

neural networks in locomotion seem to stimulate the control of other tasks.  
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Figure 1-1. Examples of metachronally traveling waves of motor activity in (A) isolated 
lamprey spinal cord preparations, (B) urodele amphibian ventral motor roots, (C) newborn 
rat spinal cord, and (D) EMG recordings of human during locomotion. From Falgairolle 
et al., 2006. 

 
 

 As a result, based on the literature and our previous studies, we focus on the 

interactions of trunk in voluntary movement as the primary substrate for our robotic 

interventions in our own locomotor rehabilitation paradigm for SCI. 

 

D. Fundamentals of Robot-Assisted Rehabilitation  

Training is a necessary and critical component of rehabilitation in the treatment of SCI. 

As the damaged spinal cord is still capable of producing movements and learning, as 

discussed previously, training plays an important role in re-developing, creating, or 

reinforcing ways in which to use those movements for effective locomotion. In their 

study on spinalized cats, Hogson et al. recorded trunk EMGs, and related changes in 

locomotor function, weight-supported standing ability, and EMG to learning in the spinal 

cord [18]. In the rat model, Ichiyama et al. investigated how stepping training changed 
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both EMG and molecular expression of c-fos in the spinal cord. Their results suggest that 

effective training can significantly increase the efficiency of specific motor pathways 

[19]. Additionally, the intact neural networks in the damaged cord may be particularly 

primed for learning from new experiences [20]. Edgerton et al. provides a strong case for 

the plastic nature of the spinal cord in their review [21], suggesting that repetition of 

experiences can help to form new connections between and in groups of neural networks. 

Furthermore, other studies with step training in rats has shown that the spinal cord can 

adapt, as well as learn or create new pathways, as a result of rehabilitation [22], [23]. 

Thus, there is strong evidence to suggest that training can increase the efficiency of 

specific neural pathways, through repetition.  

 With regards to the nature of training, the literature advocates the use of task-

specific activities to elicit specific reorganization in the neural pathways for maximally 

efficient recovery. That is to say, in the case of locomotor rehabilitation, specific 

locomotor exercises are crucial for proper reorganization, leading to effective recovery. 

For example, previous studies have shown that spinalized cats trained to weight-support 

while standing are not necessarily able to utilize those mechanisms to provide weight-

supported stepping [24]. As a result, many new paradigms of rehabilitation have 

emerged, focusing on training animals to step and weight-support while stepping when 

possible.  

 One such paradigm has been the use of robotic interventions to interface with the 

anatomy of animals to help develop and reinforce patterns of locomotion. Robotics allow 

for more precise control of rehabilitation parameters, such as timing and distance, by 

virtue of the digital nature of the technology. Another additional benefit of robotics is the 
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ability to interface with the animal’s need for rehabilitation, in real-time. This has been 

referred to as the “assist-as-needed” paradigm [25], to counteract the phenomenon 

wherein animals who are rehabilitated within specific frameworks can developed habits 

of “learned disuse.” This is common to rehabilitation paradigms, where patients or 

animals become less responsive to repetitive and identical stimuli and activation [26], 

learning to rely on the frameworks of rehabilitation to walk, as opposed to integrating the 

rehabilitation itself to develop robust walking.  

 “Assist-as-needed” as an effective rehabilitative paradigm has been well 

documented in both the human and the mouse model for SCI. Cai et al. showed that SCI 

mice trained with “assist-as-needed” robot rehabilitation had significantly more 

consistent stepping than mice with fixed robotic intervention [27]. In the human model, 

there is an additional benefit of real-time feedback to the patient, where progress within 

training sessions and throughout the entire length of rehabilitation provides a motivating 

factor for patients [28]. This paradigm of recovery has also found success in many 

different neurological rehabilitation schemes for other motor dysfunctions, such as stroke 

(for a review, see Krebs and Hogan [29]). As a result, in the case of SCI, robotic 

technology can be used to train the animal, as-needed, and eventually wean the animal off 

of robot assistance as it recovers more robustly. 

 In our lab, we employ such a robotic intervention, focused on the rat’s pelvis [30],  

[31]. One of the fundamental differences between a transected animal and a normal 

animal during treadmill training is the trunk posture during locomotion. An injured 

animal lacks the ability to weight-support, and its hindlimbs are dragged behind the 

animal as it is trained on the treadmill. Our robot is able to apply forces to the injured rat 
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at the pelvis to allow for a trunk posture that is nearly identical to that of a normal rat. 

Using an assigned equilibrium for the rat’s pelvic center – defined by a three-dimension 

coordinate frame (x-, y-, and z-axes) – the robot can provide a uniform isotropic elastic 

force field to bring an injured rat’s pelvis to a normal position. With training, if a rat is 

able to step with its hindlimbs and generate weight-support locomotion, robot forces in 

the z-axis are reduced as the pelvis moves closer to the height of the assigned 

equilibrium.  

 Our robot system is a PHANTOM® Premium 1.0 model (developed by SensAble 

Technologies, Inc.) with custom software developed in our laboratory (Fig. 1-2). It 

interfaces with an orthosis at the rat’s pelvis through a gimbal. Our robot can apply 

elastic force fields to the rat’s pelvis to assist with weight support during treadmill 

training. These forces are governed by the equation: 

𝐹 = 𝑘(𝑥 −	
  𝑥() 

where F is the force applied by the robot, k is the stiffness of the elastic field, xo is the 

desired height of the elastic field, and x is the current height of the pelvis. The stiffness of 

the elastic field is predetermined to be 45 N/m. The desired height of the rat’s pelvis (xo) 

is set individually for each rat so as to support the rat just below a natural pelvic location 

for an uninjured rat at the outset. 

As the animal undergoes training, our custom software calculates and adjusts the 

forces required to bring the animal to equilibrium at a rate of 1 kHz. Our robot system is 

also able to integrate with other laboratory equipment, providing synchronizing control 

and timing for external devices. 

 
 



 

 

11 

 
 
 
 
In the context of the pantomime horse model for our spinalized animals, the robot 

plays an important role in teaching the front half of the animal to integrate the actions and 

movements of the trunk, hip, and hindlimbs into normal stepping and gait patterns. This 

allows for more improved coordination between these motor pools, which is critical for 

coordinated stepping [25]. In addition, Fong et al. showed that robot-assisted 

rehabilitation can be effectively combined with pharmacological agents to increase the 

excitability of the spinal cord to provide even more robust recovery in spinalized mice 

[32]. Their work suggests that the benefits of robotic technology in rehabilitation can be 

best integrated and efficiently used when the spinal cord is in a “primed” state – 

excitable, and particularly ready to learn and reinforce motor pathways through training. 

One such model of an excitable spinal cord that can be effectively rehabilitated on our 

custom robotic intervention is the adult rat transected as a neonate (NTX), around post-

natal day 5.  

 

 

Figure 1-2. Schematic of the 
PHANTOM® Premium 1.0 
model robot arm, as it interacts 
with a rat on the treadmill.  
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E. The Neonatal Model of SCI as a Signpost of Recovery 

A common model for investigating SCI is the complete thoracic transection at T9/T10 in 

the rat. Within this model, there exists two paradigms of injury – the NTX model, and the 

rats injured as adults (ATX) – that we can compare and contrast to reveal important 

aspects of locomotion that we can use for effective rehabilitation (Fig. 1-3). 

 Without any intervention or additional stimuli, in the NTX model, rats are capable 

of spontaneous, autonomous recovery of basic, alternating hindlimb stepping in 

adulthood. While there is a wide variety in the stepping patterns of these animals, in 

approximately 20% of these animals, this stepping can be characterized by over 50% of 

their steps capable of weight-support [33], [34]. When we apply our unique robotic 

intervention at the pelvis to these animals, we can significantly increase the number of 

weight-supported steps these animals produce during locomotion [30] and improve their 

ability to body weight support, as they adapt and learn to walk with robot assistance. This 

is of particular interest to us as it demonstrates what is possible with robot-assisted 

treadmill training in animals that are able to produce their own hindlimb movement, 

whether it is rudimentary flexion and extension, or robust alternations. Thus, we view the 

NTX model as a signpost of locomotor recovery in SCI.  

 This lies in stark contrast with the ATX model, where animals are unable to 

produce their own stepping patterns without additional intervention or stimuli. As a 

result, they are not capable of taking advantage of the robotic interventions at the pelvis, 

and do not significantly recover with exercise and training. However, there are ways in 

which to induce stepping in the ATX model, such as pharmacological interventions and 

epidural stimulation. Previously in our lab, we have investigated ways in in which to 
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induce stepping within the framework of our robot that allow us to view the NTX model 

as an indication to create effective rehabilitation strategies in the ATX animal [35]. All of 

these stepping modalities require manipulating the remaining intact neuronal circuitry 

within the spinal cord network to generate rhythmic locomotor patterns that may allow 

for stepping. Methods that have used this approach include various therapies that focus 

on identifying and studying populations of neurons in the spinal cord that may be 

responsible for pattern generation in limb movement.  
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Fig. 1-3. Current paradigm of complete spinal cord injury model in the rat 
model used in the Giszter lab. 
 
 

F. Central Pattern Generators 

An important aspect of the spinal cord networks is the central pattern generator (CPG), a 

neural network that is capable of producing rhythmic outputs without any rhythmic inputs 

or stimuli. CPGs responsible for locomotion have been studied in many lower vertebrates 

and non-primate humans, but has been theorized to exist within the human model, as well 

[36]. They are theorized to be essential components of micturition, ejaculation, and 

respiration. Sherrington’s work in 1910 on spinally transected dogs and cats provided the 

first suggestions that basic motor patterns for locomotion are the result of reflex actions 

mediated by a central pattern generator. This work has been expanded upon, with several 

different paradigms of how the CPG network might be organized [37], [38]. Recent 

studies suggest that CPGs may also exist within the lumbosacral region of the human 

spinal cord [39], [40], as well as in the mouse and rat models [41], [42]. In clinical 
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studies of prenatal and postnatal movements of human neonates, corroborating primitive 

stepping patterns and repertoires has also been identified [43], [44]. 

Though the exact organization of the CPG is yet unclear, it has been shown that in 

the case of complete SCI, the spinal CPG is still able to generate patterns for locomotion 

in response to sensory afferents. Work as early as 1980 by Delcomyn et al. showed that 

locomotor-like activity could be produced in fictive locomotion preparations [45], while 

work by Bretzner and Drew in 2005 on cats suggest that other areas in the spinal cord and 

brain may also affect modulation of locomotor activity [46]. Indeed, in our own lab, we 

discovered that stimulating trunk afferents in fictive locomotion preps in a rat can 

regulate the duty cycle during the extension step phase of gait, suggesting a connection 

between the trunk and the locomotor CPG (Udoekwere – unpublished). 

In animal models, studies to understand the pharmacological control of the CPG 

have led to the discovery of agents that effectively activate the CPG to produce locomotor-

like activity. Previous work in stimulating the noradrenergic system have revealed how L-

DOPA can induce locomotion in cats [37], [47], [48]. In the rat model, many different 

neurotransmitters have been been studies, but serotonin or serotonin agonists have been 

found to be particularly effective [49] – [51]. In these models, locomotor activity in 

response to CPG-activating agents is characterized by plantar foot placement, weight 

support by the hindlimbs, and large-amplitude movements of the hindlimbs. This behavior 

in response to CPG activation strongly suggests a role for pharmacological intervention of 

the CPG in locomotor recovery. It should be noted, however, that these pharmacological 

interventions may be specific within the context of SCI, where injury itself changes the 

milieu of the spinal cord networks. SCI has shown to affect the sensitivity of the persistent 
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sodium current [52] and to upregulate calcium channels to sensitize neurons to be more 

excitable in response to serotonin. Regardless, the use of pharmacological agents to 

activate the CPG is a long-studied intervention in SCI rehabilitation. 

 

G. Brain-Derived Neurotrophic Factor 

In addition to the use of neurotransmitters to induce locomotion, the delivery of 

neurotrophins to the spinal cord has been investigated extensively for its ability to induce 

rudimentary stepping patterns in rats (for an extensive review, see Harvey et al. [53]). 

Though neurotrophins produce phenotypically similar motor behaviors to the use of 

neurotransmitters, studies on cats by Howland et al. [54] showed they do so by different 

means. Specifically, they produce very broad structural changes in the spinal cord, 

repairing damage from SCI by promoting an environment within the spinal cord for 

axonal growth with cellular transplantation. Unlike serotonin or dopamine administration, 

the effects of neurotrophins are long-lasting and are not fast-acting. Using transplants of 

fibroblasts that have been genetically modified to secrete various growth factors, 

including brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), Mitsui 

demonstrated improvements in locomotor behaviors after contusion [55]. This approach 

to recovery of locomotor function based on gene therapy has proven to be successful in 

combination with treadmill training in spinalized cats [56], though there have been some 

concerns with the invasive nature of the transplant surgery needed to deliver the 

fibroblasts. 

BDNF is an excellent candidate for use in locomotor recovery as a means to 

bolster or initiate the regenerative ability of the spinal cord. BDNF is a neurotrophic 
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factor that promotes regeneration [57], [58] and induces synaptic plasticity in the adult 

CNS [59], [60]. It is widely expressed in the brain and spinal cord endogenously [61]. 

Furthermore, it has been shown to be upregulated in the spinal cord of transected animals 

in response to exercise and training [62], [63], perhaps to play a crucial role in learning. 

Recent studies have also shown that BDNF is upregulated in the spinal cord as a response 

to SCI alone, which suggests that it is already an essential component of recovery after 

injury [64] – [66].  

BDNF, like many neurotrophins, is a ligand for tyrosine kinase B (TrkB) 

receptors [67], which are widely distributed in in the nervous system, and play a role in 

the formation and maintenance of neuronal circuits. In the context of injury, 

neurotrophins, via Tyrosine kinase receptors, promote growth and survival of cells (for a 

review, see Snider et al. [68]). Similar to its effect on BDNF concentration, damage to 

the spinal cord may also induce changes to trkB expression in the spinal cord. Work by 

Liebl et al. suggests that this may be to sequester BDNF availability to maximize 

neuronal recovery and regeneration [69]. This may suggest a role for the use of 

exogenous BDNF to provide more recovery in the context of SCI. Furthermore, work by 

Ziemlínska et al. has shown the downstream effects of BDNF on neurotransmission, 

altering the balance between excitation and inhibition in the spinal cord [70]. By 

increasing levels of glutaminergic and GABAergic neurotransmission and decreasing the 

expression of the potassium-chloride co-transporter, BDNF increases the overall 

excitability of the spinal cord. This was corroborated by Boyce et al., who showed that 

BDNF therapy decreases the rheobase of affected neurons [71].  
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Recently, work by Blits et al. [72] has demonstrated a novel means of delivering 

BDNF in the spinal cord, by the use of an adeno-associated viral (AAV5) vector 

encoding for the neurotrophin. Blits showed evidence that this approach to BDNF 

delivery was able to improve hindlimb function and locomotor activity in the ATX rat 

model similar to other models of BDNF delivery. This work was built upon previous 

studies that have investigated the most efficacious site of delivery post-injury for 

maximum locomotor gains [73], as well as the importance of the timing of delivery after 

injury [74]. 

More recently, in a study by Boyce and Mendell [71], adult transected rats treated 

with AAV5-BDNF were able to demonstrate autonomous plantar stepping after injury. 

When the animals were supported for balance, the viral treated rats were able to produce 

weight-supported plantar stepping. With histology, Boyce also proved that intraspinal 

injections of AAV5 specifically target and transfect interneurons within the intermediate 

grey and motoneurons within the ventral horn. The recovery observed in this study is 

consistent with studies done in cats [56], [75] and in other studies with rats both on 

treadmill [70], [72] and in open-field environments [76].  

Unfortunately, the use of exogenous BDNF to rehabilitate animals with SCI has 

also shown evidence of maladaptive effects, characterized as increasing frequency of 

clonic movements in the hindlimbs [70]. This has been found to cause a loss of function 

in hindlimb locomotor ability, which has been commented on in reviews of the use of 

BDNF [77], [78]. This may hinder the usefulness and translational potential for this 

therapy in the treatment of SCI. Investigations into how the pathological effects of BDNF 
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can be mitigated while the locomotor benefits can be maximized is an avenue of interest, 

especially in the context of combination therapies.  

The use of BDNF to create a milieu that promotes plasticity and regeneration after 

injury is an encouraging development in the treatment of SCI in the animal model, 

especially with the potential to create combination therapies with potentially 

complementary rehabilitation regimens. There is already a precedent for this in the 

epidural stimulation model of rehabilitation, where pharmacological interventions, such 

as clonidine [79] or quipazine [32], have been successfully combined with robot 

rehabilitation in cats and mice, respectively. Indeed, work with quipazine and robot 

rehabilitation in the rat model [80] has led to our own investigations into how epidural 

stimulation may play role in our robot-assisted rehabilitation paradigm of recovery with 

BDNF. 

 

H. Epidural Stimulation 

In the ATX rat model, recovery of locomotor-like activity has also been shown through 

non-pharmacological recruitment of the CPG. In 1983, Meisel demonstrated that ATX 

rats can hindlimb step and alternate in response to perineal stimulation or tail pinch [81] 

by manual, physical activation of the CPG. These animals were able to step, albeit with 

low range of motion and fluidity, and alternate their otherwise quiescent hindlimbs in 

response to tail pinch. Alternatively, it has been discovered that electrical stimulation 

(ES) of the dorsal surface of the spinal cord can also activate stepping in cats [82], [83] 

and in rats [84], [85]. Work by Courtine, et al. in rats [86] and Gerasimenko, et al. in cats 

[87], in particular, have shown that the lumbosacral spinal circuitry in adult transected 
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animals is capable of generating partial weight-supported stepping in response to epidural 

stimulation. They hypothesize that epidural stimulation activates spinal neural networks 

that recruit local motoneurons to allow for coordinated stepping. In humans, though 

initially used in pain management [88], epidural stimulation has also been demonstrated 

to elicit locomotor patterns in the lower limbs, as well [40], [89], [90].  

 

H-1. Conventional Epidural Stimulation 

In conventional epidural stimulation techniques, there are several parameters for which to 

account to produce locomotor activity in the spinal cord (for a review, see Gerasimenko 

et al., 2008 [90]). The site of stimulation has been a critical area of investigation, with 

small differences discovered between humans [40], [91] and rats [85] to elicit bilateral 

flexion and extension movements. Studies analyzing EMG patterns have converged upon 

the various lumbar segments as the optimal location for epidural stimulation [92], further 

supporting the role of the CPG in locomotion. Work by Ichiyama et al. in the 

demonstrated how epidural stimulation at different spinal segment levels from T13 to L6 

in the rat model resulted in different, specific locomotor behaviors, such as bilateral 

stepping, unilateral stepping, flexion, and synchronous stepping [85]. In addition to the 

specific locomotor behavior, they also assessed the duration of rhythmic hindlimb 

activity elicited by stimulating spinal segment levels, observing that the greatest mean 

duration of bilateral stepping occurred at L2. Their work also investigated the joint 

kinematics and coordination of the knee and ankle in the stance and swing phase of 

locomotion produced by ES at the T12, L2, and L6 spinal segments. By these three 

measures, Ichiyama et al. concluded that bilateral stepping was best achieved by 
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stimulation at the L2 spinal level, which corroborates the many different aforementioned 

studies in the rat and cat models for ES.  

Another critical parameter of ES has been the frequency of stimulation, with 

different optimal ranges discovered for cats (3-5 Hz) [93], rats (20-110 Hz) [85], and 

humans (30-40 Hz) [40]. Of particular note is the effect to which different frequencies 

affected the quality of locomotion. Jilge et al. demonstrated that it was possible to change 

movements from extension to rhythmic alternations of flexors and extensors by 

increasing the frequency within 5 to 15 Hz [94]. As a result, there is a wide variety of 

applications for epidural stimulation in locomotor rehabilitation, especially to elicit 

specific movements with training. This is further corroborated in the human model by 

Minassian et al. [95], who showed that epidural stimulation can elicit a wide variety of 

specific movements in the lower limb.   

 Finally, the strength of stimulation is an important parameter in the use of ES. 

Studies have shown that like frequency, strength of stimulus depends on the animal 

model [90]. In the rat model, Ichiyama et al. demonstrated that there was a relationship 

between the threshold to evoke hindlimb activity and the threshold to to induce 

locomotor activity [85]. The average threshold, at 40 Hz, to generate a hindlimb muscle 

response was significantly lower than that to stimulate bilateral hindlimb locomotor 

activity. Using EMG to study the activity of hindlimb muscles in rats, Ichiyama et al. 

found that optimal stimulation parameters of 40 Hz at 4V can elicit bursting activity of 

the hindlimb muscles.  

Unfortunately, there are limitations to the intensity of stimulation to promote 

stepping. Higher voltages that have been used in previous studies to activate stepping 
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patterns caused discomfort in the animals, and resulted in the use of lower, less effective 

voltages to increase compliance while training. This significantly limited the quality of 

stepping in the early phases of rehabilitation, though animals did eventually recover 

significant locomotor function in the hindlimbs. Furthermore, Ichiyama et al. showed that 

the stimulus threshold required to induce locomotor activity significantly increases as a 

function of time after transection. After four weeks of training, they discovered that the 

threshold to generate bilateral hindlimb locomotor activity nearly doubled, increasing 

from 3.39 ± 0.2 V to 7.55 ± 1.2 V. Though this was not addressed explicitly, their work 

suggests a temporal limitation to the effectiveness of conventional ES techniques, as 

stimulus intensity cannot indefinitely be increased to match the increasing threshold.  

 

H-2. Robot-driven epidural stimulation 

In our lab, we demonstrated that the parameters used for epidural stimulation can be 

employed more efficiently by synchronizing the frequency of stimulation to our 

previously discussed robot. Unlike conventional stimulation techniques that provide a 

constant frequency of stimulation, we use our robot to measure pelvic height as a prompt 

for intermittent electrical stimulation, as needed by the rat. When an animal’s pelvis is 

lower than a criterion height, our robot can trigger stimulation of the cord to increase 

locomotor activity. While the concept of intermittent stimulation is not unique to our 

rehabilitation paradigms [96], [97], it has shown to be effective. In our previous work 

with the ATX model, we showed that robot-driven epidural stimulation significantly 

decreases assistive body weight support by the robot, as well as increases behavioral 

scoring of locomotor activity that showed alternation of limbs and plantar stepping [35].  
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 In addition to more efficiently providing stimulation, our robot-driven ES 

technique of intermittent stimulation further reinforces the “assist-as-needed” effect of 

robotic interventions. In this way, both robotic-assisted treadmill training and robot-

driven epidural stimulation can function to minimize “learned disuse” [25] that may 

lower the efficacy of rehabilitation. Together, they also provide a weaning effect for the 

animal, to allow animals to discover the mechanical, anatomical, and neural controls 

needed for quadrupedal movement without the machine.  

 Another benefit of our robot-driven intermittent epidural stimulation is that it 

allows us to use lower voltages to elicit activity [35] to minimize noncompliance in the 

training animals. Previous studies by Ichiyama et al. [85] and Gerasimenko et al. [80] 

circumvented this obstacle to effective ES by using quipazine to initiate stepping and 

increasing stimulus intensity to produce more rapid stepping. They demonstrated that it is 

possible to combine complementary interventions to produce synergistic benefits to the 

rehabilitating animal and significantly increase recovery. We believe, therefore, that our 

robot-driven epidural stimulation technique can be combined effectively with AAV5 

delivery of BDNF to produce similar, if not better, recovery.  

 

I. Importance of Trunk Motor Cortex in SCI Rehabilitation 

I-1. Muscle Synergies and Motor Primitives 

Earlier, in our pantomime horse analogy for SCI, we discussed the importance of 

activating spinal networks below the site of injury for effective rehabilitation. As we 

discussed in previous sections, the spinal cord is capable of processing and producing 

complex movements. However, its relationship with the primary motor cortex (M1) is 
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essential to its function for natural movement and stability [98]. In an intact animal, the 

relationship between the spinal cord and the motor cortex is a complex relay of 

descending supraspinal control and ascending sensory information. Information from the 

brain and from peripheral sensory afferents converge onto the spinal cord where it is 

integrated, processed, and acted upon for movement, stability, and posture. There are 

many theories as to how the spinal cord and brain interact specifically to create 

movement, but all agree that motor control requires translation from abstract task-specific 

goals into a variety of combinations of tangible complex muscle activation patterns.  

For example, a task such as opening a door is accomplished by activating a 

combination of muscles including supinators of the arm, latissimus dorsi, and flexors of 

the fingers. Studies in motor behavior suggest that each of these muscle activations is a 

basic unit that can be combined to form synergies, which in turn can be combined into 

any number of permutations to accomplish a task [99] – [102]. Furthermore, just as there 

is more than one way to open a door, for a given motor task, there can be many different 

combinations of synergies to produce motor behavior to accomplish that goal [103]. In 

this way, redundancies in the motor system can allow for flexibility in movement, based 

on specific context like environmental factors and other sensory stimuli [104]. As a 

result, this interpretation of muscle synergies is that they provide a way to translate tasks 

into combinations of simple controls, as part of a system of hierarchical control relaying 

commands from the cortex and task-relevant sensory information from the periphery 

[105].  

Muscle synergies may also reflect the evolution of complex nervous systems, 

where more “primitive” patterns of motor coordination have been conserved from 
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phylogenetically older neural networks [106]. Work by Hart et al. in frog motor behavior 

supports the idea that complex movements can be decomposed into small modules that 

are comprised of units of premotor drives in the spinal cord and specific, associated 

muscular activity [107], [108]. These are low-level synergies that may present at birth, or 

during development, that represent optimal ways of moving limbs based on anatomical 

mechanics. In essence, they provide a basic foundation for movements. Through 

development, these synergies, or modules, can be accessed or suppressed by the CNS 

when needed, for specific motor behavior [109]. Indeed, based on experience and 

training, these synergies may be built upon or changed for different motor behaviors.  

Though there lies a debate on if synergies are learned or inherent to our 

neurobiology, studies of infants between the ages of 4 and 5 found that set patterns of 

muscle activation emerge as a response to disruptions to posture [110], suggesting that 

there may be an innate component to muscle synergy. However, studies investigating the 

differences between individuals and their motor behaviors show that factors such as 

experience and anatomy can change and modify muscle synergies over time [111], [112], 

though the rate at which this occurs is yet unknown. 

 

I-2. The Role of Cortex in Muscle Synergy Activation 

In our understanding of muscle synergies, the primary motor cortex plays an essential 

role in the control and use of muscle synergies to produce motor behaviors. Kargo et al. 

demonstrated in the rat model that M1 is essential to early skill learning, but are 

particularly important to action selection and motor adaptation in response to 

environmental factors [113]. As a result, we believe the cortex plays a role in organizing 
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motor modules that exist in the spinal cord. This is of importance given the effects of 

SCI, where descending control from the cortex is not relayed to these spinal motor 

modules. Giszter et al. suggests that in the absence of cortical control – in an isolated 

system – the basic muscle synergies or modules in the spinal cord can be expressed 

without modification [114]. In previous work in our lab, Yang et al. showed that in both 

the stepping NTX and non-stepping ATX models, there is a similar reduced repertoire of 

synergies that exist, regardless of the level of rehabilitation in the animals. This suggests 

that there are a core collection of circuits or synergies that underlie motor behavior (Yang 

– unpublished) upon which modifications and adjustments can be made.  

 However, to complicate further the effects of injury such as stroke or SCI, these 

pathologies can also induce changes and reorganization of muscle synergies and 

modularity. Using robotic therapy devices to measure and assess the changes in 

smoothness of movement in stroke patients, Rohrer et al. showed that gradual merging of 

sub-movements, or synergies, may be the cause of recovery of function, though the motor 

behavior may look similar to before rehabilitation [115]. This has been further 

corroborated by Dipietro et al. and Hayes Cruz et al. [116], [117], who showed that 

therapy can modulate, or “fine-tune”, existing synergies rather than creating new ones. 

This notion of injury affecting the organization of synergy has been corroborated by 

Cheung et al. in the human stroke model, where they observed three distinct ways in 

which synergies can be affected – preservation, merging, or fractionation [118]. They 

believe that studying these changes in patterns of muscle synergies can even be used as 

physiological markers to assess the severity of impairment in the stroke model and 

potentially in other diseases, such as SCI. 
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 In addition to changing the organization of the synergies in the spinal cord, injury 

to the nervous system can have profound effects on the organization and structure of the 

sensorimotor cortex. This has been extensively observed and studied in the case of limb 

amputation. Specifically, peripheral nerve injuries can cause de-afferentation of specific 

areas in the motor cortex corresponding to injury, which, in turn, allows for expansion of 

adjacent areas into the dennervated areas [119], [120]. This pattern of reorganization has 

been observed in the rat model as early as seven days following injury [121], [122]. 

Unfortunately, changes to the organization of the sensorimotor cortex can also result in 

pathological sequelae as a result of maladaptive plasticity. In the case of peripheral nerve 

injuries, this can manifest most commonly into phantom limb pain. Using focal 

transcranial magnetic stimulation (TMS), Karl et al. explored the relationship between 

the reorganization found in the somatosensory and motor cortex in amputees with and 

without phantom limb, and found significant differences in cortical plasticity [123]. 

Using magnetic resonance imaging (MRI) and functional MRI techniques to examine the 

structure and behavior of the brain in intact patients and amputees, Raffin et al. further 

emphasized the effects of reorganization on the primary motor cortex in phantom limb 

pain sensation [124]. Fortunately, the negative effects of reorganization can mitigated or 

remodeled with interventions, such as replanting lost limbs [125]. In patients who had 

successful replantation of lost hands, Röricht et al. used TMS to show that replacing the 

limb had broad and long-term effects on motor cortex reorganization years after treatment 

[126]. 
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I-3. Organization of the Sensorimotor Cortex 

Sensorimotor representation in the cortex is organized topographically, in such a way that 

it is possible to create an approximate two-dimensional map of the body that can be 

overlaid onto the cortex [127], [128]. However, this does not imply a one-to-one 

correspondence between a site in the cortex and a muscle or muscle activation. Rather, 

the literature suggests that the motor cortex is structured somatotopically in such a way to 

take advantage of the muscle synergies that exist to create many varied combinations of 

motor behaviors.  

One consistent observation in the motor cortex organization is the activation of 

the same musculature by stimulating different and noncontiguous motor cortex areas. In 

his review, Schieber describes this method of motor control as “convergence”, where 

separate territories in the cortex can converge onto motor neuron pools in the spinal cord 

for muscle activation. The precise nature of the stimulation of noncontiguous areas has 

been shown in the cat model [129] and in primates [130]. In the cat model, Schneider et 

al. used ICMS to assess electromyographic (EMG) responses of up to twelve forelimbs, 

concluding that there are widespread and physically disparate areas of the motor cortex 

with common target territories in the spinal cord. Furthermore, work by Phillips et al. in 

the cat motor cortex reveals that cortical areas for different musculature can overlap 

[131], again allowing for synergistic and efficient control for motor behaviors. Using 

TMS to study the human motor cortex, Devanne et al. confirmed the existence of these 

principles of convergence and overlap in the representation of the proximal and distal 

musculature of the upper limb [132].  
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 In addition to the convergence of different cortical sites to produce the same 

muscle activation, the literature also suggests that a single cortical site can have divergent 

activations of different muscle groups. This is a relatively novel perspective on the cortex 

– previous beliefs held that any given corticospinal neuron had a single monosynaptic 

connection to a motor neuron of a muscle. Using EMG of forelimb muscles in response 

to stimulation, work by Fetz and Cheney [133], [134] in macaque monkeys identified 

connections between neurons of the primary motor cortex and several different motor 

neuron pools. This was further demonstrated with individual hand muscles in the monkey 

by Buys et al. [135] and Lemon et al. [136] Furthermore, in reaching tasks performed by 

monkeys, McKiernan et al. analyzed spike-triggered averaging of rectified EMG activity 

to show that divergence of activation of M1 neurons were not confined to finger and 

wrist muscles, but also to the elbow and shoulder [137], suggesting a goal-oriented 

organization of musculature activation. In this way, divergence may also limit the 

potential repertoires available to a single motor output within the constraints of anatomy 

or function.  

 

I-4. The Role of the Trunk Motor Cortex in Locomotion 

Given the importance of the role of the trunk muscles in gait stability and locomotion, as 

previously discussed, we believe that trunk motor control at the cortical level is also an 

essential component to rehabilitation. Despite the interruption in the direct networks to 

and from the cortex, there is ample evidence to suggest that cortical representation of the 

trunk muscles – above and below the site of transection – plays a critical role in control 

and movement. In anatomical studies using intramuscular injections of horseradish 
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peroxidase to label motor neurons of ventral trunk musculature in cats, Miller et al. 

showed that any given level of trunk muscle is innervated by a wide variety of axial 

spinal segments [138]. This suggests that there may be partial, but significant cortical 

control of musculature below injury. This is certainly true in the case of incomplete SCI, 

where transection is not anatomically complete.  

 There are many clinical studies using techniques such as EMG analysis of trunk 

muscles during walking [12] and axial trunk rotation [14] to understand the role of trunk 

motor control. However, the critical role of the trunk motor cortex in rehabilitation is 

evident when studying the previously discussed NTX model of recovery, where 

approximately 20% of animals are capable of producing weight-supported stepping 

(>50% of steps). In this model of rehabilitation, the subset of animals that can weight 

support have significant different reorganization patterns in the motor cortex, as 

compared to animals that do not step. Specifically, Giszter et al. showed that weight-

supporting rats retain representation of caudal trunk (below the site of injury) in the 

cortex as adults [139]. In addition, lesioning this area of the trunk motor cortex in this 

animals results in the loss of weight-supported stepping [140].   

 The importance of the trunk motor cortex in effective rehabilitation was further 

bolstered by previous studies in our lab. Oza et al. studied NTX rats who were 

successfully rehabilitated with robot-assisted treadmill training, and lesioned the trunk 

motor cortex below bregma. These previously weight-supporting NTX rats significantly 

lost overall locomotor ability as a result of damage to the cortex (Oza – unpublished). We 

believe that these lesions significantly hinder the rats’ ability to integrate robot support 

into their motor controls for locomotion. This was accompanied by a lack of change and 
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reorganization in the motor cortex that are typical of rehabilitation on robot in the NTX 

model, further emphasizing the role of the trunk motor cortex in successful locomotor 

rehabilitation.  

 

I-5. The Effect of SCI on Motor Cortex Representation 

In the case of SCI, the effects of injury on the sensorimotor cortex have been well 

documented in the literature. Much like in peripheral nerve injuries, there is not only a 

somatotopic reorganization of the motor cortex [141], [142], but there are also significant 

changes to sensory representation [143], [144]. Additionally, it is well known that the 

loss of motor output as a result of nervous system damage results in de-afferentation of 

areas in the motor cortex corresponding to the loss. Previous studies have shown that 

adjacent motor areas can expand and migrate into these silenced areas [145], [146].  

In our lab, we have attempted to investigate how specific paradigms of SCI and 

modalities of treatment – treadmill training, robot rehabilitation, and active stepping and 

passive non-stepping training – affect the reorganization of trunk motor cortex. When 

comparing between treadmill-trained and robot rehabilitated animals in the NTX model, 

Oza et al. discovered that successful rehabilitation with robot forces led to an increased 

expansion of caudal trunk areas in the motor cortex and an increase in overall 

coactivation per site. They concluded that robot rehabilitation was able to partially 

reverse some plastic changes that resulted from non-stepping paraplegia in SCI [147], 

resulting in more normal topography than seen in non-rehabilitated rats.  

In contrast, when exploring how rehabilitation might affect the ATX model, Oza 

et al. observed that without any active stepping – regardless of robot assistance – animals 
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had significant expansion of the trunk motor cortex into rostral areas coding for forelimb. 

This led to an increase in trunk and forelimb coupling. Interestingly, they also discovered 

that any type of passive rehabilitation without stepping exacerbates this migration rostral 

shift beyond what was observed in transection alone [148]. There is a clear effect of 

injury on the cortex, and further changes may be directly correlate with the level or 

success of rehabilitation.  

 The differences observed in the cortices between animals that underwent active 

and passive rehabilitation in these studies may be a result of cortical plasticity inducing 

functional and structural changes. Changes in motor representation in the cortex are 

hypothesized to be associated with novel skill acquisition [149], [150]. Kleim et al. 

showed in reaching studies in rats that learning new behaviors resulted in precise 

functional and structural changes to specific areas of the motor cortex associated with the 

newly acquired skill [151]. Similar work has been show in humans using TMS, with 

suggestions that the degree of change may even be related to the relative difficulty of the 

new behavior [152].  

In the NTX model, transected animals successfully rehabilitated with robot 

assistance have essentially acquired a new skill – locomotion integrating active robot 

assistance with trunk musculature and hindlimb activity. This was corroborated by the 

changes in trunk motor cortex representation. In the ATX model, a motor skill – 

quadrupedal walking – was lost and a new way of moving was never successfully 

learned, as shown by the motor cortex maps by Oza et al. [148] The cortex, thus, is an 

important factor of locomotor rehabilitation. In the context of muscle synergies, in the 

NTX animals, it was perhaps needed to build representations that were not part of the 
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standard repertoire found in the spinal cord. By doing this, new skills were and acquired, 

ultimately leading to successful rehabilitation on robot, with weight-supported stepping. 

In the case of the ATX model without active stepping, the trunk motor cortex looked 

similar to that of the non-rehabilitated, injured animal.  

With SCI and rehabilitation, the fundamental relationship between cortex and 

spinal cord networks to control locomotion has been altered, with an increased emphasis 

on intact spinal circuitry to drive stepping behaviors. We have discussed previously the 

many ways in which to activate the spinal cord without supraspinal control for 

locomotion. In the NTX animal, the development through adulthood and changes in 

afferent feedback from the periphery to the spinal cord plays a role in stepping behavior. 

Neurotrophins can play a similar role in the ATX animal by creating an excitable milieu 

for stepping. Epidural stimulation and serotonin agonists are other methods that the adult 

spinal cord could be engaged in rehabilitation. However, our work in both SCI models 

has revealed the importance of the cortex as well. It does not only provide a 

complementary component to the spinal cord in producing locomotion, but it is essential 

for successful recovery.   
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J. Specific Aims 

From a clinical perspective, one of the most important aspects in treating spinal cord 

injury lies in dealing with patient immobility. This loss of locomotor ability not only 

severely impacts patients’ physical health, but can also lead to depression and 

innumerable health costs to both the injured and caregivers. In recent years, new 

therapies have been discovered that we believe can be combined to create a more robust 

rehabilitation regimen for locomotor recovery.  

Our long-term goal is to investigate the combination of robot-assisted 

rehabilitation at the pelvis with the biological therapy of viral delivery of Adeno-

associated virus engineered to produce brain-derived neurotrophic factor (BDNF) 

in treating spinal cord injury. In this work, we study how our unique robot 

rehabilitation may be used in the ATX rat model when induced to step using robot-driven 

epidural stimulation and AAV5-BDNF. In doing so, we hope to understand the cortical 

changes that occur with reorganization and plasticity after SCI with active, stepping 

rehabilitation. We hypothesize that our robot-assisted treadmill training will work 

synergistically with ATX rats induced to step with AAV5-BDNF, and that adding 

robot-driven epidural stimulation will serve to improve locomotor recovery. We also 

hypothesize that we will see significant reorganization of the trunk motor cortex 

with active weight-supported stepping rehabilitation.  

 

J-1. Specific Aim 1 

Investigate the efficacy of robot-assisted treadmill training on rats transected as 

adults (ATX) treated with AAV5-BDNF to induce stepping. Our unique robot- 
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assisted rehabilitation at the pelvis provided during treadmill training has shown to be 

effective when animals are able to perform crude stepping patterns before starting 

training [30], [31], [153]. While adult rats transected as neonates (NTX) that can step 

with weight-support are able to benefit from training, ATX animals without additional 

intervention are unable to do so. We hypothesize that ATX rats treated with AAV5-

BDNF will be able to show significant recovery in locomotor ability with treadmill 

training, as compared to ATX rats without AAV5-BDNF. To test this hypothesis, we 

will compare our AAV5-BDNF animals with rats treated with a sham AAV5 virus 

engineered to produce green fluorescent protein (GFP), a functionally quiescent protein 

in the CNS.  

 

J-2. Specific Aim IIA 

Study the locomotor recovery outcomes of a combination therapy of robot-assisted 

treadmill training, robot-driven epidural stimulation, and AAV5 viral delivery of 

BDNF in the ATX rat model. We believe that we have chosen potentially 

complementary therapies in our rehabilitation regimen. The use of AAV5-BDNF, though 

it does promote plasticity in the adult spinal cord, may cause hyperreflexia or spasticity in 

the hindlimbs and lower body the animals. We believe that mass robot-assisted treadmill 

training may ameliorate this. This may potentially allow for increased viral loads, with 

less pathological reflex responses. As a result, this improved excitability of the spinal 

cord will allow for the use of low voltage in epidural stimulation, a limiting factor in 

previous work in our lab. Low voltage will allow stimulation to become more 

intermittent, which will provide a phasic excitation that may allow for more robust 
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muscle synergies to form, better integrating lumbar stepping patterns into whole body 

motions during locomotion. Finally, activation of stepping provided by AAV5- BDNF 

and epidural stimulation will also provide consistent stepping frequencies that may 

bolster the effects of our pelvic-based robot-assisted rehabilitation. We hypothesize that 

combination therapy will provide the best recovery outcomes, with the individual 

therapies working in synergy to activate hindlimb alternation and plantar stepping, 

and to increase weight supported stepping by the rat.  

 

J-3. Specific Aim IIB 

Investigate how AAV5-BDNF treatment may affect the use of robot- driven epidural 

stimulation when inducing stepping in ATX rats. Previous work in epidural 

stimulation in the ATX model by Ichiyama et al. has demonstrated that rhythmic, 

alternating hindlimb locomotor activity can be induced in ATX rats by direct epidural 

electrical stimulation [85]. In addition, examiners studied threshold of stimulus intensity 

for generating hindlimb locomotor activity, and also showed that this threshold increased 

as a function of time after injury. We hypothesize that AAV5-BDNF treatment will 

decrease threshold of stimulus intensity required to induce hindlimb motor activity, 

as compared to animals without viral treatment. In addition, we also hypothesize 

that AAV5-BDNF treatment will increase the overall timeline in which threshold 

stimulus intensity acts as a function of time post-injury.  

 

J-4. Specific Aim III 

Examine cortical reorganization in the trunk motor cortex in ATX animals after 
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active rehabilitation. Work in our lab by Oza et al. revealed the cortical changes that 

occur after injury in the ATX model, demonstrating the rostral shift of the overall trunk 

motor representation along the cortex [148]. This work also showed how passive 

rehabilitation (non-weight-supported stepping training) may exacerbate this shift, as well 

as how new synergies can be developed between trunk and forelimb, as a response of 

cortical reorganization. The effects of active rehabilitation on the organization of the 

trunk motor cortex in the ATX model are still unknown. We hypothesize that chronic 

adult SCI with active rehabilitation will induce significant reorganization of the 

trunk motor cortex different from ATX animals with passive rehabilitation and no 

rehabilitation. Work by Dancause and Nudo has shown that novel skill acquisition is an 

important factor in cortical reorganization [154]. Our previous aims investigate methods 

for active rehabilitation in the ATX model, where new behaviors and skills are learned as 

recovery progresses for weight-supported stepping. We believe that the development of 

these new locomotor skills to compensate for weight-supported stepping after SCI will 

induce these significant changes in the trunk motor cortex.  
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CHAPTER 2: The effect of robot-assisted treadmill training on adult-spinalized rats 
induced to step with viral delivery of brain-derived neurotrophic factor 

 
 

A. Introduction 

In the study of locomotor recovery in the treatment for spinal cord injury (SCI), a 

complete thoracic spinal cord transection at vertebral level T9/T10 in the rat provides a 

unique perspective in rehabilitation paradigms. In the SCI model for rats transected as 

neonates (NTX), some animals are capable of autonomous stepping without any 

intervention when they are adults [140], [155]. Stepping in these animals may be as crude 

as rudimentary alternations of the hindlimbs, but can be as robust as up to 50% of their 

steps supporting their body weight (WS), as seen in approximately 20% of NTX animals 

that step [33]. In these WS NTX animals, it is possible to improve their stepping ability 

through the use of robotic intervention at the pelvis by providing  isotropic elastic fields 

to facilitate trunk support and natural posture during locomotion [30]. Robot 

rehabilitation at the pelvis can exploit the stepping patterns to help injured animals 

rediscover the natural controls needed for quadrupedal stepping without direct neural 

communication.  

In contrast to this paradigm of recovery, in the complete SCI model for rats 

injured as adults (ATX), injured animals do not develop any autonomous stepping 

without intervention that can be exploited for rehabilitation. However, treatments such as 

perineal stimulation, [81] epidural stimulation, [85], [156] or serotonin-agonist drug 

delivery [36], [51] can induce stepping in the ATX animal. The stepping can allow a 

rehabilitation to proceed. We have previously shown using epidural stimulation in the 

ATX model that robot rehabilitation at the pelvis can be an effective treatment tool when 
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combined with induced stepping patterns [35]. As a result, we view the NTX model for 

recovery as a signpost for what is possible in recovery with our robotic intervention when 

an injured animal can produce some basic flexion-extension hindlimb movements and the 

mechanical coupling of trunk muscles allows for communication above and below the 

site of injury. NTX rehabilitation demonstrates the potential for possible recovery in the 

ATX model, when basic stepping patterns can be induced. We believe that understanding 

the differences between the NTX and ATX model rats is crucial to adapting treatment 

modalities identified in the NTX for successful ATX rehabilitation.  

In a complete spinal cord injury, though supraspinal control is lost, there exists 

intact neuronal circuitry below the site injury that is capable of organizing complex 

movements, such as hindlimb reflexes [5]. In the NTX model, this system is injured at a 

time when the nervous system is very plastic, which may play a large role in motor 

learning and adaptation to injury, possibly allowing the NTX animals to develop function 

after injury. In contrast, in the ATX model, after injury and loss of supraspinal control, it 

appears that the spinal circuitry is incapable of autonomously developing ways to 

compensate and restore significant function on its own. As a result, we are interested in 

investigating means in which to provide an environment for growth and adaptive 

plasticity of circuits in the injured spinal cord, below the site of transection. 

Brain-derived neurotrophic factor (BDNF) is an excellent candidate to promote 

plasticity, as it has been used in the complete spinal cord transection model to induce 

stepping in injured animals, [56], [59], [60] as it is a neurotrophic factor widely expressed 

in the central nervous system [61]. It can promote regeneration [57], [58] and induces 

synaptic plasticity in the adult nervous system [59], [60]. It has also been shown to be 
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upregulated in the spinal cord of transected animals in response to exercise and training 

[63]. In addition, there are many means by which to deliver BDNF to the spinal cord 

[54], [55], including a method demonstrated by Boyce et al. via an Adeno-associated 

virus-5 (AAV5) viral vector in the ATX rat model [71]. Boyce et al. suggested a possible 

mechanism by which AAV5-BDNF functions to induce stepping in the ATX rat model, 

by lowering the rheobase of transfected motoneurons, effectively increasing their 

excitability, and allowing for plantar, weight-weight supported hindlimb stepping.  

Unfortunately, in addition to locomotor recovery, the use of BDNF to induce 

stepping in open field and non-treadmill assisted rehabilitation has broader, less specific 

effects in the spinal cord, including increased spasticity, and sensitization to noxious heat, 

which has detracted from its clinical uses [56]. Recently, however, Tashiro et al. 

suggested that the production of endogenous BDNF as a result of treadmill training may 

lead to reduced spasticity and allodynia [157]. In addition, work by Ziemlínska et al. [70] 

suggests there is a role for exogenous BDNF and treadmill training to increase locomotor 

function, though this may also lead to general, non-specific pathological and detrimental 

sequelae from the administration of BDNF. Thus, we believe that BDNF provides a 

broad, basic foundation for rehabilitation, coupled with some risks, that we can use or 

exploit with our unique robot-assisted treadmill training for specific entrainment of 

locomotor function.  

As a result, our goal in this study was to study the efficacy of our custom robot-

assisted rehabilitation training on ATX rats induced to step using AAV5-BDNF, to 

examine how our robot treadmill training may interact with AAV5-BDNF effects in 

animals with stepping patterns induced in this way. Using the NTX model as an example 
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of this type of recovery, we hypothesized that ATX animals induced to step with AAV5-

BDNF would recover robust stepping and locomotor function with the aid of robot 

interactive forces at the pelvis.  

To test this, we prepared four groups of ATX animals: three experimental group 

receiving AAV5-BDNF, and a control group receiving a sham AAV5 virus engineered to 

produce green fluorescent protein (GFP), a functionally quiescent protein in the nervous 

system. One BDNF group received a rehabilitation regimen of robot assistance at the 

pelvis with treadmill training. The second BDNF group received only treadmill training, 

while the last was rested in cage. The GFP-treated group was rehabilitated with robot-

assisted treadmill training. Using a battery of functional measures to assess quality of 

stepping as well as weight support, our results show that ATX animals induced to step 

using AAV5-BDNF significantly improve in their abilities to walk with robot-assisted 

treadmill training, as compared to other groups. To our knowledge, this is the first 

exploration into combining BDNF with robotic interventions in the rehabilitation of SCI.  

We also discovered that regardless of combined locomotor therapy with BDNF, there is a 

partial, but highly significant collapse in function that accompanies AAV5-BDNF 

treatment in the ATX rat. This collapse is characterized by loss of motor behavior and 

decreased body weight support. However, animals treated with AAV5-BDNF and trained 

with robot-assisted treadmill training had higher overall peak motor performances and 

had increased body weight support, despite eventual collapse. We believe investigating 

this collapse in the context of robot rehabilitation techniques might provide the basis for 

further avenues of study to be explored further.  
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B. Materials and Methods 

B-1. Overview 

34 intact adult female Sprague Dawley rats were used in this study, divided into four 

groups. At the time of surgery, each animal weighed between 250 and 280 grams. All 

animals received a complete spinal cord transection at spinal level T9/T10 as adults 

(ATX), with three groups receiving microinjections of AAV5-BDNF caudal to injury and 

the fourth group receiving a sham virus (AAV5-GFP). One BDNF-treated group received 

robot-assisted treadmill training during rehabilitation. Another BDNF-treated group was 

rehabilitated on the treadmill, without robot assistance. The final BDNF-treated group 

was rested in cage for the duration of the rehabilitation. The GFP-treated group was 

rehabilitated with robot-assisted treadmill training. Following post-operative recovery, all 

groups were trained with for approximately six weeks, according to the rehabilitation 

regimen used in our lab [30], [153]. During rehabilitation, we assessed locomotor 

recovery and compared the recovery outcome measures. All procedures were carried out 

with the approval and guidance of the Institutional Animal Care and Use Committee 

(IACUC). 

 

B-2. Complete Spinal Cord Transection at T9/T10 in the Adult Rat (ATX) 

Prior to surgery, all animals were anesthetized intraperitoneally (IP) with a 1.0-ml/kg 

cocktail of ketamine hydrochloride (50 mg/kg), xylazine (5 mg/kg), and acepromazine 

(0.75 mg/kg). Anesthesia was supplemented when necessary at a concentration of 0.38 

ml/kg KXA. Animals received a complete spinal cord transection at spinal level T9/T10, 

according to similar surgical procedures described in our previous studies [35], [148], 
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using a mid-thoracic dorsal incision to expose the vertebrae. A full laminectomy was 

performed at the arches of T9 to T11 to expose the spinal cord. Following an incision to 

open the dura using a 30-gauge needle, iridectomy scissors and aspiration were used to 

remove a full segment of spinal cord at T10. The resulting cavity was filled with gelfoam.  

 

B-3. Microinjection of Virus Caudal to Injury 

We adapted surgical techniques for microinjection of virus described in Tom et al. [158] 

and Boyce et al. [159] Immediately following transection, virus was injected 

approximately 1 mm caudal to the injury site using pulled glass pipettes and a 1 ml 

Hamilton syringe. Approximately 2.5×100( viral particles were slowly injected into the 

cord, using stereotactic guidance and a micromanipulator to guide the needle into the 

intermediate grey of the spinal cord. The virus was injected at a depth between 400-500 

µm below the pia at four different locations transversely across cord 250 µm apart, with 

each site receiving approximately 2 µl of prepared viral suspension. A total of 8 µl was 

injected per animal. Upon viral injection, the incision was closed in layers. 

 

B-4. Pelvic Orthosis Implantation 

All animals were implanted with custom-fabricated pelvic orthoses following viral 

injection, using methods described in previous studies (Fig. 2-1). [31], [35] Two incisions 

were made over the pelvis, approximately 2 mm caudal to the palpable iliac crest, on the 

left and right side. Blunt dissection was used to separate the superficial and deep gluteus 

muscles, allowing for implant cuffs to be inserted against the pelvic bones at 

approximately 45° to the horizontal axis. After the cuffs were placed, two ends of the 
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implant were fastened together about a crossbar with a screw, securing the orthosis in 

place. Quick-drying epoxy cement (J-B weld) was applied to reinforce the connection. 

 
 

 
Figure 2-1. Custom-made pelvic orthosis placed on the pelvis of a rat 
skeleton, demonstrating how it interacts with the animal. Used with 
permission from Udoekwere et al., 2014 

 
 
 
B-5. Post-operative care 

Following surgery, all animals were allowed approximately seven to ten days of 

recovery, during which time prophylactic antibiotics were given daily for a week. Prior to 

surgery, after anesthesia was administered, animals were given slow-release 

buprenorphine subcutaneously (0.5 mg/kg) for analgesia. Rat bladders were expressed 

twice daily, during which time the animals were observed for possible health issues, 

including autophagia or skin lesions.  

 

B-6. Robot-Assisted Treadmill Training  

All animals in this study began robot-assisted treadmill training 7-10 days after surgery, 

after no significant health concerns were observed. Twenty-minute training sessions 
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occurred five times a week for approximately six weeks, during which time video and 

robot data were recorded for analysis, similar to our previously established rehabilitation 

regimens [30], [148], [160]. We used a PHANTOM® Premium 1.0 model (developed by 

SensAble Technologies, Inc.) with custom software developed in our laboratory to apply 

forces to the injured rat at the pelvis to allow for a trunk posture that is nearly identical to 

that of a normal rat. Using an assigned equilibrium for the rat’s pelvic center – defined by 

a three-dimension coordinate frame (x-, y-, and z-axes) – the robot provides a uniform 

isotropic elastic force field (kx = ky = kz = 45 N/m) to bring an injured rat’s pelvis to that 

equilibrium. Through the training session, our custom software calculated and adjusted 

the forces required to bring the animal to equilibrium at a rate of 1 kHz. 

 

B-7. Locomotor Assessment 

We used three outcome measures to assess locomotor recovery of the animals within and 

across groups [148]. First, we used videos recorded during training were assessed using 

the Antri, Orsal, and Barthe bipedal stepping scale [161]. This system evaluates the 

hindlimb stepping of ATX rats based on right-left alternation, amplitude, body weight 

support, and plantar foot placement, and scores the rat on a scale of 0 to 21, divided into 

four levels, with increasing scores for increased ability to step. Level 1 (scores 0-1) are 

unable to move their hindlimbs at all, except for very weak limb jerks. Level 2 (scores 2-

9) animals are able to produce some rhythmic movements without any body weight 

support. Level 3 (score 10) animals correspond to consistent alternation of hindlimbs 

with occasional body weight support. Finally, level 4 (scores 11-21) animals are able to 

produce rhythmic movements with body weight support and plantar foot placement. 
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Videos were also assessed for our second outcome measure: percent body-weighted 

stepping (%WSS). Using a frame-by-frame analysis of the videos recorded, we calculated 

the total number of steps that supported the body weight of the animal – defined where no 

other part of the animal’s body touched the ground except for the feet – and divided this 

by the total number of steps an animal took. We observed each trial session for each 

animal and kept a record of %WSS over time. Finally, we analyzed robot data collected 

during training sessions to investigate the interactive force between the rat and the robot 

in the z-axis to investigate the changes in body weight support provided by the robot over 

the duration of training. The force required to maintain the pelvic height was converted to 

newtons (N) and normalized to the weight of the animal (g) to compare the animals and 

the groups. Our software recorded the robot interactive forces at a rate of 1 kHz.  

 

B-8. Histology 

 At the end of the rehabilitation schedule, animals were sacrificing using an IP 

overdose injection of Euthasol of 3 ml. Animals were then perfused intracardially with 

0.9% physiological saline, and perfused with 4% buffer paraformaldehyde (PFA) to fix 

the nervous tissue. The next day, the spinal cords of the animals were extracted and 

preserved in 4% buffered PFA for approximately a week. Before sectioning the tissue, 

the specimens were placed in 30% sucrose solution for up to a week and embedded in M1 

embedding matrix (Thermo Scientific Shandon). Once frozen, serial, parasagittal sections 

of 25 µm were cut by cryostat microtome. To confirm the completeness of spinal 

transection, we stained the tissue for Nissl Myelin. In a previous pilot study, we prepared 

three animals – two with AAV5-GFP and one with saline – to replicate and demonstrate 
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the efficacy of microinjections into the cord. Their cords were stained with anti-GFP 

antibodies to confirm the presence of GFP expression (see results).   

 

B-9. Data Analysis 

We compared locomotor recovery outcome measures between the two groups of animals, 

at the beginning of their training and at the end of their training regimen. To examine the 

changes within a single group over rehabilitation, we used paired t-test to assess the 

significant changes. To examine the recovery patterns across groups at specific time 

points, we used a one-way ANOVA with post hoc Tukey Kramer corrections. For all of 

the statistical tests, we considered a p-value of less than 0.05 to be significant. All data 

analysis was done using custom-written scripts in MATLAB R2014B, Mathworks. In 

addition, graphs and figures were produced in Microsoft Excel 2016.  
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C. Results 

C-1. Overview 

To examine the functional recovery of the animals, we recorded video and robot forces 

during training sessions for each rats. Using these data to compare training rehabilitation 

regimens, we assessed each animal against a battery of outcome measures: the Antri, 

Orsal, Bartes (AOB) bipedal stepping scale, robot interactive forces, and an analysis of 

weight-supported stepping. Overall, in all three categories of recovery, AAV5-BDNF 

treatment alone had a significant effect on locomotor recovery, and this was further 

significantly enhanced by treadmill training and robotic intervention at the pelvis.  

 

C-2. AOB Bipedal Stepping Scale  

Using the AOB scale to assess complete SCI rats on a treadmill, we assessed the 

locomotor recovery of the ATX animals based on their ability to (1) alternate their 

hindlimbs, (2) support their body weight, and (3) plantar place their hind feet during 

locomotion. The AOB scale is a modified BBB assessment which evaluates completely 

transected rats, within the framework of hindlimb locomotion on a treadmill. None of the 

rats were scored prior to injury. The first day of training for all of the animals were the 

first days of scoring in this assessment. 

 For all of the groups, the start of training corresponded with a low AOB score, 

indicating very little to no hindlimb function. There was no significant difference 

between the groups at this point (p = 0.3373, F(3,30) = 1.17, one-way ANOVA with 

Tukey Kramer post hoc corrections). The average AOB score for the AAV5-GFP-treated 

group was 0.25 ± 0.16 (mean ± SEM), with six of the eight animals exhibiting a score of 



 

 

49 

0, indicating no movement at all. Of the AAV5-BDNF-treated groups, all exhibited 

similar AOB scores indicating little to no hindlimb function.  The cage rest group had a 

starting score of 1 ± 0.5, with one animal with a starting score of 4, indicating occasional 

(<50%) right-left hindlimb alternation at a weak amplitude. The treadmill-trained group 

had a starting score of 0.88 ± 0.23, with the highest score of a 2, and two animals with a 

score of 0. Finally, the robot-trained group had a starting average AOB score of 0.6 ± 

0.22.  

 We then compared the individual performance of the therapies from the start of 

training to the end. The AAV5-GPF-treated group did not exhibit statistically significant 

improvement in AOB score, ending with a final assessment of 0.5 ± 0.19 (p = 0.18, 

paired t-test). All of the AAV5-BDNF-treated groups showed significant improvement 

from the start of training to the end. The group under cage rest had a final AOB score of 

5.38 ± 1.25 (p = 0.01, paired t-test). Treadmill-trained animals had an average final AOB 

score of 7.13 ± 2.47 (p = 0.05, paired t-test). The robot-trained group demonstrated the 

most improvement, with a final average AOB score 13.1 ± 1.29 (p << 0.01, paired t-test).  

 At the end of training, we discovered that the AAV5-BDNF-treated animals that 

underwent robot training exhibited significantly more recovery than the other groups (p 

<< 0.01, F(3,30) = 12.57, one-way ANOVA with Tukey Kramer post hoc corrections). 

By the same test, GFP-treated animals had significantly less final AOB scores than the 

robot-trained BDNF group and the treadmill-trained BDNF group, though not the cage 

rest BDNF group.  

 Consistent with previous AOB assessments in our laboratory in both the ATX 

model and the NTX model, animals that showed significant recovery to be able to 
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provide body weight support and plantar stepping exhibited a stereotypical recovery 

pattern in AOB over days of training [31], [35].  

 

C-3. Robot Interactive Force (zForce) 

Using our software to record the interactive force between rats and the robot, we were 

able to assess the percent of the body weight support provided by the robot to maintain 

pelvic height (zForce) as a proxy for body weight support in the rat’s recovery over time. 

zForce was calculated as an average of the interactive forces in the vertical (z-) axis, 

between the rat and the robot during a training trial, normalized for the rats’ weights in 

grams. The AAV5-GFP-treated group and the AAV5-BDNF-treated group assigned to 

robot rehabilitation were recorded daily, for twenty minute intervals throughout the 

whole training session. The robot interactive forces of the other two groups were 

recorded once a week, for five minutes. This was to minimize any training effects of 

robot recording on the rehabilitation on these animals.  

 At the beginning of training, there was no significant difference between the 

starting normalized zForce between the groups of rats (p = 0.71, F(3,30) = 0.46, one-way 

ANOVA with Tukey Kramer post hoc corrections). The average starting normalized 

zForce for the AAV5-GPF-treated group was 0.43 ± 0.01N/g. The cage rest BDNF group 

had a starting average normalized zForce of 0.41 ± 0.03 N/g. The treadmill-trained 

BDNF group and the robot-trained BDNF group had starting average normalized zForces 

of 0.44 ± 0.01 and 0.43 ± 0.01, respectively.  

 We then compared the start and end normalized zForces to assess the impact of 

the individual therapies on the animals’ ability to body weight support. The AAV5-GFP-
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treated group had a final normalized zForce of 0.42 ± 0.02, indicating no significant 

change in interactive robot force as a result of rehabilitation (p = 0.52, paired t-test). 

Similarly, the cage rest BDNF group (final: 0.39 ± 0.03) also did not show a significant 

decrease in normalized interactive zForce (p = 0.34, paired t-test). However, the 

treadmill-trained BDNF group exhibited significant decreased in normalized zForce 

(final: 0.39 ± 0.02; p = 0.01, paired t-test). Robot-training also significantly improved the 

ability of the AAV5-BDNF-treated animals to support their body weight (p << 0.01, 

paired t-test). They had an average final normalized zForce of 0.27 ± 0.03.  

 Finally, we compared the end normalized zForces among all of the groups to 

determine if there was a significant difference between therapies to elicit hindlimb 

locomotor recovery. The AAV5-BDNF-treated group that was rehabilitated with robotic 

interactive forces at the pelvis during training relied significantly less on the robot to 

maintain body weight support at the end of training than each of the other groups (p = 

0.001, F(3,30) = 6.97, one-way ANOVA with Tukey Kramer post hoc corrections). No 

other group was significantly different than the other groups at the end of training. 

 

C-4. Percent Weight-Supported Stepping (%WSS) 

Our final assessment of recovery in this study was to analyze the stepping patterns of 

each animal. Specifically, we used frame-by-frame analysis of video taken during every 

training session to determine the percentage of steps taken that supported an animal’s 

body. A weight-supported step was determined as one where only the limbs and tail and 

no other part of the rat’s body were on the treadmill.  
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 At the beginning of training, for all animals across all groups there were no 

weight-supported steps. This is consistent with our finding for AOB, indicating that in 

almost all of the animals, the first day of training consisted of random, jerky limb 

movements, if anything at all. The one animal in the cage rest group that had an AOB 

score of 4 on its first day did not have any weight-support, as a score of 4 indicates only 

right-and-left hindlimb alternation, but no weight support during locomotion. 

 The AAV5-GPF-treated group of animals had a final %WSS of 0%, as well, 

consistent with their lack of significant AOB and normalized zForce improvement. The 

BDNF group that underwent cage rest had an average final %WSS of 4.29 ± 2.90%, with 

six of the eight animals having no weight-supported steps at all. This was not a 

significant improvement (p = 0.18, paired t-test). Similarly, the treadmill-trained BDNF 

group did not have a significant improvement in %WSS, as a result of training (p = 0.23, 

paired t-test). Its average final %WSS was 15.1 ± 11.37%. Conversely, the AAV5-

BDNF-treated group that received robotic rehabilitation ended with a final %WSS of 

49.89 ± 10.82%, a significant improvement from the start of training (p = 0.0013, paired 

t-test). 

 When evaluating the final %WSS of all of the groups, we discovered that, similar 

to the previous two assessment criteria, the AAV5-BDNF-treated group that was 

rehabilitated with robot showed significant improvement compared to the other groups (p 

= 0.0005, F(3,30) = 7.82, one-way ANOVA with Tukey Kramer post hoc corrections). 

No other group was significantly different from the others.  
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C-5. AAV5-BDNF Treatment Results in Collapse in Function 

In our three groups of rats treated with AAV5-BDNF, we noticed that animals developed 

a partial, but highly significantly collapse in function after performing well in all three 

locomotor outcomes measures. Overall, in these AAV5-BDNF-treated animals (n = 26), 

we observed that 12 animals developed this functional loss (four animals per group), 

which manifested in clonic movements, or twitching, or a complete flexion of the 

hindlimbs. These collapsed animals also often had tensing of the ventral trunk muscles, 

which resulted in a very rigid torso. This collapse in locomotor ability is consistent with 

findings in other studies where viral delivery of BDNF is employed in the ATX rat model 

to induce stepping [70]. We investigated the twelve collapsed animals as a single group, 

and attempted to quantify and define this collapse in function, using our battery of 

locomotor recovery outcome measures.  

 First, we compared the AOB score of these animals at the beginning of training, at 

their peak, and at the end of training. We defined peak performance after training was 

done and selected the highest score for AOB among all of the training days. At the start 

of training, the mean AOB score for the collapsed animals was 1.25 ± 0.30. We 

determined that this was significantly lower than at the peak performance of these 

animals (11.75 ± 0.98) and the end of training (5.92 ± 1.03) using a one-way ANOVA 

with Tukey Kramer post hoc corrections (p << 0.01, F(2,33) = 39.22). At peak 

performance, the AOB of this group indicated that animals were highly functional, able 

to alternate their hindlimbs and provide plantar stepping as a group. As an indicator of 

collapse, the final AOB was significantly lower than the peak AOB in this group of 

collapsed animals.  
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 We next compared the normalized zForce at the same time points in this group. 

These animals relied the most on robot for meeting the pelvic height equilibrium at the 

beginning of training (0.44 ± 0.01 N/g), and this was significantly higher than the peak 

normalized zForce (0.33 ± 0.02 N/g). The starting normalized zForce was not 

significantly different than at the end of training. In addition, there was no significance 

difference between the end normalized zForce (0.38 ± 0.02 N/g) and the peak normalized 

zForce. We used a one-way ANOVA with Tukey Kramer post hoc corrections to 

determine significance (p = 0.0034, F(2,33) = 6.77). However, when comparing the peak 

and end normalized zForce values without the start time point, we do find a significant 

increase in robot interactive forces at the end time point (p = 0.0138, paired t-test).  

 Finally, we compared the %WSS between the start, peak, and end time points in 

the collapsed animals. At the beginning of training, none of the rats in the group of 

collapsed animals had any weight-supported stepping, resulting in a mean initial %WSS 

of 0%. At the peak of training, the mean %WSS was 34.64 ± 9.11%, which then dropped 

to 7.74 ± 3.48% at the end of training. There was no significant difference between the 

start and end %WSS values, but the peak %WSS was significantly higher than those time 

points (p = 0.0003, F(2,33) = 10.41, one-way ANOVA with Tukey Kramer post hoc 

corrections).  

 

C-6. Effect on rehabilitation despite collapse 

We then compared how collapse affected the performance of all of the AAV5-BDNF-

treated groups at the peak and end time points for these groups to assess how different 
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rehabilitation modalities may have affected the partial, but highly significant collapse in 

locomotor function. 

 First, we evaluated the peak AOB performance among the BDNF groups. The 

highest AOB score was found in the group trained with robotic intervention at the pelvis, 

with a mean AOB of 16.1 ± 0.80, indicating a high degree of function, with alternation of 

the hindlimbs, body weight support, and plantar foot placement during stepping. The 

treadmill-trained group that did not receive robotic intervention had the second highest 

peak AOB at 11.5 ± 1.90, and the lowest peak AOB was found in the cage rest group, 

which had a mean peak AOB of 8.0 ± 0.89. We found a significant difference between 

the mean peak AOB between the robot-trained group and the cage rest group (p = 0.0007, 

F(2,23) = 10.16, one-way ANOVA with Tukey Kramer post hoc corrections).  

 In addition, we compared the mean peak AOB scores and the mean end AOB 

scores within the groups themselves. In all groups, we used paired t-tests to determine 

that there was a significant decrease in AOB score from the peak to end of training 

(robot-trained: p = 0.0355; treadmill-trained: p = 0.009; cage rest: p = 0.049). 

 Next, we assessed the mean normalized zForce at the peak of locomotor 

performance between groups. The highest average normalized zForce was used by the 

cage rest group, approximately 0.34 ± 0.03 N/g, to maintain pelvic height. The second 

highest average was in the treadmill-trained group (0.32 ± 0.03 N/g), with the least mean 

found in the robot-trained group (0.24 ± 0.03 N/g). There was no significant difference in 

normalized zForce at the peak of performance (p = 0.058, one-way ANOVA with Tukey 

Kramer post hoc corrections).  



 

 

56 

 We then compared the peak and end mean normalized zForce within groups, to 

evaluate how rehabilitation techniques may have affected collapse in locomotor function. 

As a result of robotic intervention at the pelvis, the BDNF group that received robot 

training had no significant change in mean normalized zForce between the peak and end 

of training (p = 0.13, paired t-test). This contrasts with the treadmill-trained and cage rest 

groups, which both had significant increases in mean normalized zForce from peak to end 

of training (treadmill-trained: p = 0.04; cage rest: p = 0.03).  

 Finally, we compared the mean %WSS at the peak of performance between the 

AAV5-BDNF-treated groups of animals. At their peak, the robot-trained group had the 

highest %WSS value, approximately 72.42 ± 5.96%. We determined this was 

significantly higher than the peak values for the treadmill-trained (31.06 ± 14.24%) and 

the cage rest (10.12 ± 3.99%) groups (p = 0.0007, F(2,23) = 10.21, one-way ANOVA 

with Tukey Kramer post hoc corrections). From the same evaluation, we discovered no 

significant difference between the treadmill-trained and cage rest groups.  

 We also compared the mean %WSS values at the peak of performance and the 

end of training, similar to the other two outcome measures presented above. For all three 

groups, using paired t-tests, we did not find any significant changes in %WSS between 

the peak and end time points.  

 

C-7. Effect of Rehabilitation in Collapsed Animals 

 We then examined the outcome measures in the collapsed animals to examine 

how the three specific rehabilitation techniques might interact with collapse. There were 

only twelve animals total – four in each group (robot-assisted treadmill training, treadmill 
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only, and cage rest). As such, we only make comments on the trends we observe, without 

making any claims to statistical significance. 

 In general, BDNF-treated animals that received robot assistance at the pelvis had 

the best peak and end performances among all BDNF-treated animals, based on the three 

outcome measures we used. Their mean peak AOB score (16.25) represented frequent 

alternations of the hindlimbs, with frequent body weight support and plantar placement of 

the hindlimbs. In addition, after collapse, their mean end locomotor behavior score (9.5) 

was higher than animals without robot, represented by consistent right-and-left hindlimb 

alternation with a wide range of motion, though they did lose body weight support and 

plantar stepping.  

 In all groups, the mean normalized zForce at peak performance was lower than at 

the end of training. However, the group trained with robot assistance had the lowest peak 

mean normalized robot interactive force. This same trend was observed when evaluating 

%WSS in the animals, with the highest mean peak performance found in the robot-

trained animals. All of these trends are consistent with the assessment of the different 

groups of animals with the collapsed animals included.  
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Figure 2-2. Overview of the experimental design describing the various differences 
between groups.
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Figure 2-3. A locomotor behavior scoring scale, modified from the Basso, Beattie, 
Bresnahan (BBB) scale. Adapted by Antri et al. [161] for complete spinal cord 
injury and hindlimb walking on a treadmill. 
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Figure 2-4. (A) Comparison of the mean AOB scores at the beginning and end of 
training among the groups. All groups treated with AAV5-BDNF showed significant 
improvement from the start to end, even though only the robot-trained group has 
significance bars (mean ± SEM). Animals rehabilitated with both BDNF and robot 
showed the most significant recovery at the end of training (* p << 0.01, F(3,30) = 
12.57, one-way ANOVA with Tukey Kramer post hoc corrections; ** p << 0.01, 
paired t-test). CR – cage rest, TM – treadmill-trained, Robot – robot-trained. (B) 
AOB recovery as a function of day of training in two animals showing stereotypical 
sigmoidal recovery patterns.  
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Figure 2-5. Comparison of the mean normalized zForce at the beginning and end of 
training. Normalized zForce is measured in Newtons/gram. There were no significant 
dfferences among groups at the start of training. Animals treated with both robot assistance 
at the pelvis and AAV5-BDNF showed the most significant improvement at the end of 
training (p = 0.001, F(3,30) = 6.97, one-way ANOVA with Tukey Kramer post hoc 
corrections). Both the treadmill-trained and robot-trained groups had significant 
improvement from the beginning of training (treadmill: p = 0.01, paired t-test; robot: p << 
0.01, paired t-test). 

 

 
Figure 2-6. Percent weight-supported stepping all of the groups at the end of training. The 
GFP-treated group had 0 %WSS. (* p = 0.0005, F(3,30) = 7.82, one-way ANOVA with 
Tukey Kramer post hoc corrections).  
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Figure 2-7. (A) Overview of collapse 
observed in animals treated with 
AAV5-BDNF. 12 of 26 had this decline 
in function, spread evenly throughout 
all treatment paradigms. (B) 
Comparison of AOB scores of 
collapsed animals at start, peak, and end 
of training (* p << 0.01, F(2,33) = 
39.22, one-way ANOVA with Tukey 
Kramer post hoc comparisons). (C) 
Normalized zForce (N/g) of collapsed 
animals at start, peak, and end of 
training (p = 0.0034, F(2,33) = 6.77, 
one-way ANOVA with Tukey Kramer 
post hoc comparisons). (D) Peak and 
end comparisons of %WSS. Start data 
was not plotted as it was 0 %WSS. (* 
pp = 0.0003, F(2,33) = 10.41, one-way 
ANOVA with Tukey Kramer post hoc 
corrections). All data shown in is mean 
± SEM.  
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Figure 2-8. Comparison of BDNF animals that have collapsed (orange) and have not 
collapsed (blue). No statistical significances were determined.   
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Figure 2-9. (A) and (B): Nissl myelin stains of parasagittal cuts of the spinal cord of two 
rats chosen at random in this study, confirming transection. (C) and (D): Fluorescent 
immunohistochemistry (IHC) staining of spinal cord of animals treated with AAV5-GFP 
to confirm the efficacy of microinjections of viral delivery of AAV5. (E) Fluorescent IHC 
of spinal cord of control animal injected with saline instead of AAV5-GFP. 
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D. Discussion 

In this study, we have demonstrated the efficacy of our unique robot rehabilitation 

treatment modality for complete SCI in the adult transection (ATX) model induced to 

step with an Adeno-associated virus to deliver BDNF caudal to the site of injury. The use 

of neurotrophins, such as BDNF, is a relatively new approach to SCI rehabilitation, but 

has been studied extensively for its potential in locomotor recovery [53], [60]. BDNF, in 

particular, has been assessed for its ability to promote weight-supported stepping in 

completely transected rats [71] and cats [56], [75]. Our method of delivering 

microinjections of AAV5-BDNF caudal to the transection site at the time of injury has 

been shown to not only have localized effects directly caudal to the injury [162], but also 

downstream to the lumbar spinal cord [163]. Previous studies have addressed this 

question of where to deliver BDNF for maximal therapeutic value [73]. As a result of 

AAV5-BDNF treatment at the lumbar spinal cord, the balance between excitability and 

inhibition is altered [70], creating a milieu of affected motor neurons that are more 

excitable with lower thresholds for depolarization [71], as well as more plastic [164]. 

From a behavioral perspective, this increased excitability results in completely transected 

animals that are able to produce alternation of the limbs below injury, in some cases even 

leading to plantar stepping and weight-support during locomotion on treadmill [70], [71] 

or during open-field assessment [76]. 

Our interest in this study stemmed from this observation of these AAV5-BDNF-

treated ATX animals, whose ability to produce autonomous weight-supported stepping 

closely resembled the locomotor ability of the SCI model of adult rats injured as neonates 

(NTX). In the NTX model, even in the absence of therapeutic treatment, animals can 
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produce stepping patterns in the open field or on treadmill [33]. Approximately 20% of 

these animals are able to develop weight-supported stepping (>50% of their steps are 

weight-supporting) without direct supraspinal control [153]. In previous studies in our 

lab, we have discovered that we can significantly improve the locomotor ability of these 

stepping NTX rats using our unique robotic rehabilitation focused at the rat’s pelvis [31]. 

As a result, we view the NTX model as a signpost of potential recovery when transected 

animals are able to produce autonomous stepping patterns, whether they are rudimentary 

flexion-extension movements, or alternating steps.  We believe combining our unique 

robotic rehabilitation paradigm with the use of AAV5-BDNF can promote weight-

supported stepping and improved locomotor recovery.  

Our robotic intervention at the pelvis is a key component of our rehabilitation 

paradigm, underscoring the importance of the trunk in locomotor recovery in SCI. The 

role of the trunk in stability and propulsion in movement has been observed both in our 

previous work [140], [147], [148], [153] and in the literature [165]. Indeed, there are 

currently several rehabilitation strategies targeted at the trunk in rats [31], [166] and in 

humans [167], [168]. In addition, our previous work has studied the role of the trunk 

motor cortex in locomotion, and we have shown it to be crucial for rehabilitation in NTX 

rats, both to develop weight-supported stepping [140] and to maintain it [147]. Our 

present work further supports this treatment paradigm, emphasizing trunk-based 

rehabilitation in animals that are able to produce autonomous stepping patterns to further 

improve locomotor recovery. 

We confirmed the completeness of transection by direct visual confirmation at the 

time of surgery, and after each animal was sacrificed and the spinal cords were extracted. 
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The histology also verified that the injury was complete. In addition, we placed Gelfoam 

in the cavity between the rostral and caudal ends of the transected spinal cord, further 

providing a barrier of potential communication within the cord. This is an area of concern 

as BDNF has been shown to produce axonal sprouting through various delivery methods 

[169], [170]. We are confident based on our histology that this was not a contributing 

factor to the locomotor improvement in our animals.  

In addition, by using a sham virus (AAV5-GFP) for a control group of animals, 

we have eliminated any possible changes in locomotor ability or excitability of the cord 

as a result of microinjections into the spinal cord caudal to injury. Furthermore, the 

AAV5-GFP demonstrated the efficacy of an Adeno-associated virus as a means to deliver 

BDNF to the transected spinal cord. Finally, we used the same viral titer for all of the 

groups of animals, eliminating the chance that improved locomotor ability was a result of 

increased or decreased AAV5-BDNF delivery.  

We used three outcomes measures (AOB bipedal stepping scale, robot interactive 

forces, and %WSS) to provide a holistic evaluation of an animal’s performance, each 

taking into account aspects of locomotion that may not be fully understood by one 

measure alone. For example, the AOB stepping scale takes into account body weight 

support and plantar foot placement, but divides functionality or improvement into large-

scale divisions (occasional: between 0 and 50%, frequent: between 50% and 95%, and 

consistent: >95%). Our measure of robot interactive forces takes into account exactly 

how much of a rat’s weight is supported by the rat to maintain pelvis height, providing an 

objective analysis of how much weight is supported, not just how often it is supported 

during training. In addition, our analysis of weight-supported stepping allows us to 
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evaluate smaller changes in improvement or loss of function on a daily basis that would 

not be understood within the large-scale divisions of the AOB.  

In this study, we have further advanced our understanding of how robotic 

intervention at the pelvis combined with treadmill training can significantly improve 

function in chronic SCI locomotor rehabilitation. When evaluating the changes in AOB 

bipedal stepping [161] within and between groups, we observe that the viral delivery of 

BDNF alone results in significant locomotor recovery, as demonstrated by the cage rest 

group of animals, which had the least improvement of all of the AAV5-BDNF-treated 

animals. This is consistent with previous studies investigating the efficacy of BDNF 

treatment to improve function in ATX rats [62], [70] – [72], [163], [171], [172]. Though 

there was no significant difference between the GFP control group and the BDNF cage 

rest group at the end time point in a quantitative evaluation of the stepping scale, there 

was a distinct difference in the quality of improvement. Control animals, on average, 

were unable to move their hindlimbs, whereas the cage rest animals were able to provide 

right and left hindlimb alternations with varying degrees of range of motion. In addition, 

we observed that though they had no significant difference in mean %WSS at the end of 

training and compared to the other groups, the fact that they had any steps at all further 

emphasizes the potential role AAV5-BDNF can play and has been suggested to play [71] 

in broadly activating spinal networks to induce some form of functionality, no matter 

how little or inconsistent.  

In addition, we observed that BDNF treatment could be combined with other 

therapies to improve function. While the idea of training and task-based rehabilitation to 

improve locomotion in SCI is not new [18], [31], [35], our current work further 
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emphasizes the importance of a specific training context (robotic intervention at the 

pelvis to improve treadmill training) to a broadly acting recovery strategy, such as viral 

delivery of BDNF to lumbar spinal cord. Animals trained with robot performed 

significantly better than animals trained on treadmill and in cage, while animals trained 

on treadmill performed better, on average, than their cage rest counterparts. These 

animals were able to frequently (between 50 and 95%) alternate their hindlimbs with a 

large amplitude, occasionally body weight support (between 0 and 50%), and 

occasionally plantar place their feet. In contrast, on average, AAV5-BDNF-treated 

animals that were only trained on treadmill were unable to weight support or plantar 

place their feet. On average, their hindlimb movements were limited to right and left 

alternations that varied in amplitude and in consistency.  

The benefits of exercise and training were particularly emphasized when 

assessing the robot interactive forces, as both the treadmill-trained and robot-trained 

groups showed significant improvement in the normalized zForce from the beginning of 

training to the end of training. This is consistent with the literature that suggests a strong 

role for exercise training post-SCI to promote rehabilitaition [173]. We also confirmed 

that our robot strategy was able to increase %WSS, which we showed to be a significant 

result in the NTX model of animals [30], [31], [153]. As a result, we are confident that 

our robot rehabilitation strategy is an effective tool to improve locomotor recovery in the 

AAV5-BDNF-treated animals, and significantly better than treadmill training alone. 

In addition to the extent of recovery of locomotion observed in animals treated 

with AAV5-BDNF and on various rehabilitation regimens, we also noted the specific 

recovery patterns of these animals. In previous studies in our lab, we have observed a 
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stereotypical sigmoidal recovery pattern in AOB score, as a function of time of training 

on robot-assisted treadmill training. Both in the NTX model [30], [31] and an ATX 

model where rats were induced to step with robot-driven epidural stimulation [160], 

individual animals showed that AOB scores typically began low, then increased at a high 

rate until reaching a plateau of peak function. We believe that this may be a result of the 

scaling of the AOB scoring system [161], but when we compare this with animals that 

were rehabilitated on treadmill only or on cage rest, we see that this trend does not hold. 

This further advances our understanding of how robot interactive forces may play a role 

in rehabilitation on treadmill. Specifically, this may address how long it may take a 

spinalized animal that can step or is induced to step to integrate pelvic assistance and 

trunk control in hindlimb motion with forelimb coordination and movement. 

Next, we observed that the delivery method of BDNF required time for 

therapeutic and observable effects on the treadmill. It has been posited that the effects of 

exogenous BDNF expression in the spinal cord after injury has downstream effects, 

which are responsible for the changes in the balance between excitability and inhibition 

in the spinal cord [70], [72], [76]. In these studies, too, exogenous BDNF delivery 

required time before improvement in locomotion was observed. The relationship between 

BDNF and time to recovery is of particular interest to us as it provides some insight into 

the relationship between BDNF and rehabilitation training – specifically, as exogenous 

BDNF is believed to drive locomotion in this case, and endogenous BDNF is upregulated 

as a result of voluntary exercise [63]. In the context of robot-assisted treadmill training, 

we may be using the exogenous BDNF as a tool to induce stepping, but it may require 

further study to efficiently maximize the locomotor recovery.   
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This becomes an issue in the context of the partial, but highly significant collapse 

of function that we observed in all of the AAV5-BDNF-treated groups of SCI rats. This is 

an observed phenomenon in previous studies where the use of exogenous BDNF led to 

early improvements in motor functions [70], [71], which was later mitigated by an 

increased frequency of clonic movements in the hindlimbs in some of the animals. We 

observed the same phenomenon in a subset of our animals (approximately 46.15%), with 

some animals developing hyperreflexia that hindered any locomotor movement. In 

addition, some of our collapsed animals also developed strong activation of their trunk 

muscles, leading to taught abdomens and difficulty with bladder expression. In general, 

these animals had far worse health outcomes than their non-collapsed counterparts, with 

increased scalding of their skin and high recurrence of bladder infections. 

Blits et al. observed this phenomenon as far as out as sixteen weeks post-injection 

in their animals, and suggested that this collapse in function may be a result of chronic 

BDNF overexpression [72]. This hypothesis is further bolstered by studies that have 

suggested that deterioration in gait ability might be a result of TrkB desensitization [174], 

[175], as BDNF is a ligand for TrkB tyrosine kinase receptors [67], [176]. The 

distribution and function of BDNF TrkB receptors in the spinal neural networks have 

been shown to play important roles in the development of motor neuron functionality 

[59]. In addition, Ziemlínska et al. suggested that the effects BDNF has on expression of 

excitatory and inhibitory neurotransmission (such as glutamate, glycine, and GABA), as 

well as on KCC2 co-transporters, further emphasizes the detrimental effects of BDNF 

overexpresson on gait quality.  
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While we were unable to prevent or mitigate the occurrence of this phenomenon 

with our different training regimens, our present study offers insight into how collapse 

specifically affects locomotor recovery, or gait. Specifically, we are the first study to 

quanitatively analyze the changes in function from peak of function after treatment to 

after collapse due to the effects of BDNF.  In particular, we observe that this collapse in 

function as a result of exogenous BDNF production results in a significant loss of AOB, 

where animals lose the ability to weight support and plantar place their hind feet on the 

treadmill during walking. In addition, we can quantify the extent to which weight-

supporting animals that collapse lose this ability. Animals that collapse return to their 

pre-training reliance on the robot to maintain their pelvic height, even after reaching a 

significant decrease in normalized zForce at the peak of training. Though we did not find 

this to be significant in our one-way ANOVA with Tukey Kramer post hoc corrections 

when accounting for the beginning of training, when did find a significant difference 

between peak and end time points for normalized zForce. Though these animals behave 

differently than at start – they are able to produce alternations and have an increased 

frequency of clonic hindlimb movements – they are unable to incorporate those 

movements to weight support. This provides an interesting window into how our robot 

interacts with animals that can step previous to training. In the NTX model, the ATX 

epidural stimulation model, and in non-collapsed ATX animals (all animals that can step 

to some degree on their own), our robot can effectively decrease reliance on the robot and 

increase body weight support by the animal, as well as increase %WSS. In the context of 

the collapsed ATX animals, however, it appears that the robot is unable to take advantage 

of these animals as well as in the other models, perhaps as a result of the general 
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activation of the trunk and tensing of the abdominal musculature we observed previously. 

We believe this further emphasizes the role of the trunk and the effects of trunk activation 

in an animal’s ability to develop weight-supported stepping, and sustain it.  

 In general, as discussed above, robot rehabilitation does provide significantly 

better locomotor recovery than treadmill and BDNF, and AAV5-BDNF alone. In line 

with our work in previous studies, it significantly increases AOB, body weight support, 

and %WSS, especially at peak of function, before any potential collapse. As a result, we 

are interested in pursuing the temporal effect of training – when it might be best suited to 

apply robot forces, how long robot forces should be applied – as it applies to reducing or 

preventing collapse. In addition, we are interested in investigating how we might prevent 

collapse at the peak of function with robot, perhaps with other combined therapies.   

From a clinical assessment, our present work provides a unique perspective into 

combining biological and bionic therapies to in the rehabilitation of SCI. Much like in the 

NTX model, we have taken a broadly acting therapy (AAV5-BDNF in this study, 

autonomous stepping in the NTX) and used a specific therapy (robot rehabilitation) to 

guide and focus the training for significant benefits. We see much potential in this for 

translational work in humans, where motor incomplete SCI and certain models of 

neurological diseases, such as multiple sclerosis, may be analogous or similar enough to 

provide this basic stepping with which we can apply similar robot therapy focused at the 

trunk for gains in locomotion.  
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E. Conclusion 

This present work has demonstrated the efficacy of robotic intervention at the pelvis in 

the ATX rat model induced to step with viral delivery of BDNF caudal to the lumbar 

cord. To our knowledge, this is the first study investigating how exogenous BDNF 

delivery can be combined with robotic therapies to improve locomotor rehabilitation 

following SCI. We have shown that our robot can provide significant recovery benefits to 

ATX animals induced to step with AAV5-BDNF, even in the scenario of collapse of 

function.  

Furthermore, our study has characterized the phenomenon of collapse, as it relates 

to loss of body weight support and behavioral scoring. We have demonstrated that 

functional collapse as a result of exogenous BDNF occurs regardless of combined 

therapy, and must be considered in the use of BDNF as a long-term rehabilitation 

therapy. 

From a larger perspective, we have further advanced our understanding of the 

importance of the trunk in developing and maintaining weight-supported stepping in SCI.  

This could have potentially impactful translational implications, as well as ramifications 

on our future directions in trunk-based robot rehabilitation. We plan to investigate further 

means to reduce or prevent collapse in BDNF animals, to maintain their peak 

performance on robot-assisted treadmill training.  
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CHAPTER 3: Robot-driven epidural stimulation prevents collapse in function 
found after brain-derived neurotrophic factor treatment of adult spinal cord injury. 

 
 
 

A. Introduction 

Although a complete spinal cord injury (SCI) interrupts descending supraspinal control of 

locomotion, there exists intact neuronal circuitry below the site of injury that can function 

to produce rhythmic motor activity without voluntary input from the brain. This network 

of neurons, referred to as central pattern generators (CPGs), can be manipulated and 

activated by external means in the SCI model to produce locomotor activity in humans 

[40] and in rats [85].  

Previously, we demonstrated this in the complete SCI model for rats transected as 

neonates (NTX), where autonomous recovery is possible without intervention [153]. In 

these animals, approximately 20% of rats are able to produce body weight-supporting 

(WS) steps, without supraspinal control. In some cases, more than 50% of their steps are 

WS steps. Using our unique robot-assisted treadmill training focused at the pelvis [30], 

we have shown that it is possible to take advantage of the intact spinal circuitry below the 

site of injury, along with mechanical coupling of the trunk muscles above and below 

injury, to rehabilitate NTX animals and significantly improve their locomotor function 

and increasing the percentage of WS steps they are able to take. We believe it allows 

rehabilitating rats to learn how to efficiently integrate trunk and hindlimb muscles in new 

motor patterns while walking on the treadmill. 

In the treatment of SCI in animal models, another external method to activate the 

neuronal system below the site of injury has been the use of pharmacological agents to 

activate the CPG. Studies to understand this pharmacological control of the CPG have led 
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to the discovery of drugs that effectively produce locomotor-like activity, such as L-

DOPA in cats [36], and serotonin or serotonin agonists in rats [81], [161], [177], [178]. In 

these models, locomotor activity in response to CPG-activating agents is characterized by 

plantar foot placement, weight support by the hindlimbs, and large-amplitude movements 

of the hindlimbs [36]. This behavior in response to CPG activation strongly suggests a 

role for pharmacological intervention in promoting function of the CPG in locomotor 

recovery.  

In Chapter 2, we used an AAV5-viral delivery of brain-derived neurotrophic 

factor (BDNF), following prior work of Boyce et al. Ziemlinska et al. , to induce 

locomotor activity in rats transected as adults (ATX). BDNF not only promotes 

regeneration [57], [58] and induces plasticity [59], [60] in the damaged nervous system, 

but it is believed to lower the rheobase of transfected motoneurons, effectively increasing 

their excitability [56]. We showed in our study that AAV5 delivery of BDNF resulted in 

significant locomotor recovery on the treadmill, with even more recovery in response to 

robot-assistance during training. Unfortunately, we also showed that in a subset of those 

animals (approximately 37%), the rats developed a partial, but highly significant 

“collapse” in function, resulting in hyperreflexia in the lower limbs, and a decrease in 

locomotor ability.  

Outside of pharmacological intervention, electrical epidural stimulation (EES) has 

been shown to be an effective means by which to produce robust, locomotor recovery in 

the the motor complete transected human models [89], [179] and even weight-supporting 

stepping in the completely spinally transected rat model [40], [85], [86]. In our lab, we 

have designed and employed a unique robot-driven EES strategy [160], in contrast to 



 

 

77 

conventional EES, for rehabilitation. Our robot-driven EES is characterized by 

stimulation timing determined by the interaction with our robot and the consequent height 

of a rat’s pelvis, unlike conventional EES, which provides constant stimulation 

throughout training. The benefit of our technique is two-fold: we have discovered it 

allows us to use lower voltages to elicit locomotion in ATX rats, and by the robot 

determining stimulation, it allows for more intermittent stimulation patterns. Using lower 

voltages is beneficial as it causes less discomfort in animals, and more compliance during 

training as a result. Intermittent stimulation is beneficial as it may provide a weaning 

effect for the animal, allowing the specific and “as-needed” stimulation. This as-needed 

stimulation may provide a more autonomous route to recovery for injured animals 

discovering their neural controls for quadrupedal stepping. Indeed, various different 

methods of intermittent stimulation are currently being investigated for their benefits to 

locomotor recovery in SCI [96], [97].  

The use of these individual therapies in the animal model has produced 

encouraging results for locomotor recovery after SCI in the ATX rat. Robot-driven 

epidural stimulation, and AAV5-viral delivery of BDNF have been shown to individually 

promote stepping behavior, with varying degrees of weight support, when coupled with 

robot-assisted treadmill training. Having studied separately the effects of AAV5-BDNF 

treatment and robot-driven EES in the ATX rat model, we believed that there might be a 

possibly synergistic interaction between the therapies that may result in significantly 

improved recovery. Alternatively, the epidural stimulation could exacerbate the collapses 

observed with BDNF alone.  To test these alternatives, we designed a combination 

experiment. As a result, we next examined a rehabilitation regimen for the ATX rat 
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model of SCI that combines robot-assisted rehabilitation and robot-driven epidural 

stimulation with AAV5 viral delivery of BDNF to the spinal cord post- injury. 

We hypothesized that robot-assisted treadmill training, robot-driven EES, and 

AAV5-delivery of BDNF will provide potentially complementary effects on each other, 

allowing for more robust locomotor recovery. By virtue of its effect on rheobase, BDNF 

creates a more excitable spinal cord that requires less stimulation to elicit locomotor 

activity than one that is not treated with BDNF. We speculated that this will complement 

our robot-driven EES, which already relies on less stimulation than constant EES to 

produce locomotion. In addition, our pelvis-oriented robot-assisted treadmill training has 

been shown to increase weight-supported stepping in NTX rats. Finally, our robot-driven 

EES treatment, coupled with lower voltages from the interaction with BDNF, may further 

allow for better integration of those muscles through intermittent excitation of lumbar 

spinal cord. However, as noted above, it was also conceivable that epidural stimulation 

might exacerbate the negative effects of BDNF in some rats, causing more extensive and 

prevalent functional collapses than seen with AAV5-BDNF and robot training.  

To test our hypothesis, we prepared 35 rats in four groups to study the interactions 

between BDNF, robot-assisted treadmill training, and epidural stimulation to investigate 

our hypothesis. One group (n = 9) of rats received the full combination of therapies. A 

control group (n = 8) received a sham AAV5 virus to produce green fluorescent protein 

(GFP), which is functionally quiescent in the nervous system. A third group (n = 10) 

received AAV5-BDNF and robot-assisted treadmill training, but not epidural stimulation. 

Finally, a fourth group (n = 8) received AAV5-BDNF, constant epidural stimulation, and 

treadmill training, without robot. Based on a functional measures used to assess the 
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quality of stepping and the level of weight support, we discovered that animals that 

received the full combination of therapies recovered significantly as a result of 

rehabilitation, although as a cohort, they did not recover significantly better than the 

group that only received robot rehabilitation. Both groups, however, recovered 

significantly better than the other groups.  

We also discovered that BDNF had a quantifiable and tangible effect on robot-

driven epidural stimulation. All groups that received BDNF and epidural stimulation 

resulted in significantly lower stimulation intensity required to elicit locomotor activity, 

and maintaining this throughout rehabilitation.  

Finally, we believe that epidural stimulation may play a role in relieving or 

disrupting collapse in function that we have shown to be associated with AAV5-BDNF 

treatment. Our data show that Providing electrical stimulation to the spinal cord at sites 

corresponding to hindlimb flexors and extensors in animals that have spastic limbs may 

help to disrupt unwanted activation of limbs that lead them stuck in flexion or extension, 

which is characteristic of collapse following AAV5-BDNF treatment. In our group of 

animals that received the full combination of therapies, we did not have a single animal 

that collapsed in function, which we believe to be a significant side effect of the 

combination therapy.  

 

B. Materials and Methods 

B-1. Overview 

We prepared 35 intact adult female Sprague Dawley in this study separated over four 

different groups, with twenty-seven receiving AAV5-BDNF and eight receiving a sham 
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virus of AAV5-GFP. All of the animals in the study received a complete transection of 

the spinal cord at spinal level T9/T10. In the same surgery, animals received four 

microinjections of virus caudal to the transection site into the spinal cord. Epidural 

stimulation wires were also implanted into the rats, above spinal level L2/L3 and S1/S3 at 

the time of surgery. Finally, all animals were implanted with pelvic orthoses following 

transection injury, virus injection, and implantation of wires. Upon recovery, all of the 

animals were trained on our treadmill for approximately six weeks, each receiving a 

combination of therapies outlined below, based on grouping. Video and robot data 

collected during training sessions were used to assess locomotor recovery.  All surgical 

procedures and training regimens were carried out with the approval and guidance of 

Drexel University College of Medicine’s Institutional Animal Care and Use Committee 

(IACUC).  

 

B-2. Complete Transection of the Spinal at T9/T10 in the Adult Rat (ATX) 

Animals were anesthetized intraperitoneally (IP) with a 1.0 ml/kg combination of 

ketamine hydrochloride (50 mg/kg), xylazine (5 mg/kg), and acepromazine (0.75 mg/kg) 

before surgery. Prior to surgery, after anesthesia was administered, animals were given 

slow-release buprenorphine subcutaneously (0.5 mg/kg) for post-operative analgesia. 

Through the surgery, animals were given supplemental anesthesia, as needed, at a 

concentration of 0.38 ml/kg. We used a mid-thoracic dorsal incision to expose the 

vertebrae above vertebral level T9 and T10, and performed a full laminectomy of the T9 

to T10 arches, and a partial caudal laminectomy of the T11 arch to expose the spinal 

cord, providing a large window for transection and for viral injection. To gain access to 
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the cord through the dura, we used a 30-gauge needle to make sagittal incisions in the 

dura above the spinal cord, parallel to the length of the cord. We then used iridectomy 

scissors and aspiration to remove a full segment of spinal cord at T10, filling the resulting 

cavity with gelfoam.  

 

B-3. Microinjection of AAV5 Virus Caudal to Transection Site 

Immediately following the transection, we injected prepared virus approximately 1 mm 

caudal to the transection, using pulled glass pipettes and a 1 ml Hamilton syringe. We 

adapted procedures and methods for microinjection of virus described in Tom et al., and 

Boyce et al. to use stereotactic guidance to inject four different sites transversely across 

the cord, at a depth between 400-500 µm. Each site received 2 µl of virus, with a total of 

approximately 2.5×100( viral particles delivered into the intermediate gray of the spinal 

cord.  

 

B-4. Implantation of Epidural Stimulation Wires 

For animals in the cohort receiving epidural stimulation, using techniques similar to 

Hsieh et al., [35] during the same surgery, an additional incision was made transversely 

along the muscles above spinal level T13. Bone rangeurs were used to expose the spinous 

processes, and iridectomy scissors were used to cut the ligamentum flavum between T13 

and L1, allowing access to the spinal column. Using this window, epidural stimulation 

wires (0.003” Teflon insulated stainless steel with 0.5 mm exposed at the implanted end) 

were placed at segmental levels L2/L3 and S1/S2. The emerging leads were sutured to 

the vertebral spine and reflected back subcutaneously toward the pelvis for fixing onto 
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the pelvic orthosis. Following implantation of the wires, the transection injury site was 

closed in layers. 

 

 
Figure 3-1. Schematic of implantation of epidural stimulation wires through the vertebrae 
and onto the dorsal surface of the spinal cord.  
 

 
B-5. Pelvic Orthosis Implantation 

Using our methods described in previous studies, following viral injection, all animals 

were implanted with custom-made pelvic orthoses. On the dorsal surface of the trunk, we 

made two incisions in the skin, approximately 2 mm caudal to the iliac crest on either 

side, allowing access to the gluteus muscles. We used blunt dissection to separate the 

superficial and deep gluteus muscles, allowing for the cuffs of the pelvic implants to be 

inserted against the pelvic bones on both sides. After cuff placement, the two ends of the 

implant were fastened together around a crossbar with screws on both ends, to secure the 
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orthosis in place. We used quick-drying epoxy cement (J-B Kwik) to weld the orthosis 

pieces together.  

 

B-6. Connecting the Epidural Stimulation Wires 

 After implantation of the orthosis, the stimulation wire leads were tunneled 

subcutaneously through the back skin to an incision for the pelvic orthosis. They were 

subsequently glued around an implant arm to prevent chaffing of the skin at the wire exit 

points. Leads were then soldered to miniature pin connectors (Omnetics Corp.). The 

connectors were attached to front of the pelvic implant crossbar with JB fast epoxy.  

 

B-7. Post-operative care 

After surgery, animals were allowed to recuperate for seven to ten days, during which 

time they received prophylactic antibiotics. In addition, we expressed the bladders of the 

animals twice daily. This also allowed us to examine the animals for health issues, 

including autophagia, skin lesions, or opening of wounds.  

 

B-8. Robot-Assisted Treadmill Training  

Using our previously establish rehabilitation regimens, we trained our animals for 

twenty-minute sessions, five times a week, for approximately five to six weeks. During 

training, we recorded video and robot data for analysis.  

 Our robot is a PHANTOM® Premium 1.0 model (developed by SensAble 

Technologies, Inc.), which we use with custom software to apply uniform isotropic 

elastic forces to the pelvis of a transected rat to allow for a trunk position that is nearly 
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identical to that of a normal rat. We assign an equilibrium center for the rat’s pelvis – 

defined by a three-dimensional coordinate frame (x-, y-, and z-aces) – that the robot uses 

to center a rat’s pelvis. Throughout a training session, our robot calculates and adjusts the 

forces required to bring the animal’s pelvis to the equilibrium center at a rate of 1 kHz, in 

real time. The forces delivered by the robot are governed by the equation: 

𝐹 = 𝑘(𝑧 − 𝑧2) 

where F is the force applied by the robot, k is the stiffness of the elastic field, zo is the 

desired height of the pelvis, and z is the current height of the pelvis. The stiffness is 

predetermined to be 80 N/m. 

 

B-9. Robot-driven Epidural Stimulation 

Conventional epidural stimulation provides constant stimulation to the spinal cord at a 

fixed frequency, with specific parameters (inter-pulse period: 0.25×1030 s, pulse 

duration: 0.2×1034 s). Our robot-driven epidural stimulation is unique in that the 

position of the robot determines the administration of stimulation. Stimulation is only 

applied when the animal’s pelvis is below the given equilibrium height for the rat.  

Our custom robot software is able to monitor the rat’s pelvis height at a rate of 1 

kHz. We use an algorithm that monitors this pelvic height to deliver stimulus to the spinal 

cord. Stimulation intensity (V) was measured and recorded with each training session.  

 

B-10. Locomotor Assessment 

Animal recovery was measured against a battery of outcome measures previously used in 

our laboratory to assess locomotor recovery in completely transected rats. First, using 
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video recorded from training sessions, we assessed an animal’s hindlimb motor activity 

using the Antri, Orsal, and Barthe (AOB) bipedal stepping scale. His scale assesses motor 

performance in animals with complete SCI in the context of treadmill training, and 

evaluates locomotor function based on right-left hindlimb alternation, range of motion, 

body weight support, and plantar foot placement during stepping. Based on these 

parameters, rats are assigned a score on a scale of 0 to 22, with increasing scores 

indicating increased recovery.  

 Videos from the training sessions were also assessed for the percentage of steps 

that were taken that were weight-supporting (%WSS). We analyzed the videos frame-by-

frame, and defined a weight-supported step as one where no other part of the animal’s 

body touched the treadmill except for the limbs and tail.  

 Finally, using robot data that recorded robot interactive forces throughout training 

sessions, at a rate of 1 kHz, we assessed the force in the vertical axis (zForce) required to 

maintain the pelvic height. This force was normalized to the weight of the animal, to 

compare the animals within and across groups.  

 

B-11. Histology 

Upon completion of the rehabilitation regimen, animals were sacrificed with an 

intraperitoneal injection of Euthasol. Some animals were chosen at random to be perfused 

intracardially with 0.9% physiological saline, followed by 4% buffer paraformaldehyde 

(PFA). The following day, the spinal cord was extracted and preserved in 4% buffered 

PFA, and kept until sectioning, when they were placed in a 30% sucrose solution. Sagittal 
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sections were prepared from the tissue and stained for Nissl myelin, to confirm the 

completeness of transection.  

   

B-12. Data Analysis 

To compare locomotor recovery outcome measures between the groups of animals and 

within the groups of animals, we used a one-way ANOVA with Tukey Kramer post hoc 

corrections to compare within groups at specific time points. When assessing individual 

groups of animals across rehabilitation time points, we used paired t-tests to assess 

statistical significance. Finally, when analyzing the change in stimulus intensity in 

individual groups of animals treated with epidural stimulation, we used linear regression 

to measure differences in voltage as a function of time. For all statistical tests, a p-value 

of less than 0.05 was considered significant. All statistical analysis was done using 

custom-coded scripts in MATLAB R2014b. All graphs and charts were produced in 

Microsoft Excel 2016.  
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C. Results 

C-1. Overview 

Video and robot data were recorded for all animals during training sessions. From the 

video and robot data, we analyzed each animal against a series of outcome measures, 

including AOB bipedal stepping scores, robot interactive forces, and percentage of steps 

that supported body weight. We also kept a daily record of the stimulus intensity (V) 

required to elicit hindlimb locomotor activity in the groups of rats that received either 

robot-driven or conventional epidural stimulation (ES), and compared each group at 

weekly intervals.  

 

C-2. AOB Bipedal Stepping Scale 

The foundation of the 22-point AOB bipedal stepping scale is based on three criteria of 

the hindlimbs: (1) right-and-left alternation, (2) body weight support, and (3) plantar foot 

placement during locomotion. We did not score the animals before injury, starting each 

animal at the first day of training, approximately 7-10 days after surgery.  

 At the start of training, the AAV5-BDNF-treated group that received only robotic 

intervention (n = 10) at the pelvis had the lowest average AOB score of the groups, at 

approximately 0.6 ± 0.22 (mean ± SEM). Of the ten animals, the highest score was a two 

at the start of training, and the median score was 0. All other groups demonstrated some 

activity on the first day of training, indicative of the immediate effects of epidural 

stimulation. The second lowest AOB (2.88 ± 0.13) was found in the AAV5-GFP-treated 

group (n = 8) that received both robotic intervention and robot-driven epidural 

stimulation. This average score indicated that most animals had no alternations of the 
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hindlimbs, but had large amplitude movement. Both AAV5-BDNF-treated groups that 

received robotic intervention and epidural stimulation (both conventional and robot-

driven) had higher average starting AOB scores at 3.12 ± 0.99 and 3.44 ± 0.84, 

respectively. In the latter group, one animal had a starting AOB score of 10, indicating 

occasional body weight support (<50%), but no plantar foot placement during stepping. 

Comparing across groups at the start of training, both of the BDNF groups with epidural 

stimulation had significantly higher starting scores than the BDNF-treated group on robot 

without any epidural stimulation (p = 0.0097, F(3,31) = 4.51, one-way ANOVA with 

Tukey Kramer post hoc corrections), though they were not significantly different from 

one another. 

 To assess the efficacy of the various treatment regimens, we examined the change 

in AOB from start of training to the end. Among all groups, there was significant increase 

in AOB from the beginning to the final day. The GFP group that received robotic 

intervention and robot-driven epidural stimulation had a final AOB score of 8.25 ± 0.80, 

consistent with our findings that in ATX model, robot-driven epidural stimulation alone 

can significantly improve function (p << 0.01, paired t-test)1. On average, this score 

indicates consistent (>95%) alternation of the hindlimbs, with weak amplitude or small 

range of motion. The AAV5-BDNF-treated group that received conventional epidural 

stimulation (n = 8), but no robotic intervention, had a final average AOB score of 9.75 ± 

0.16, showing significant improvement (p << 0.01, paired t-test) with consistent (>95%) 

large-amplitude alternations of the hindlimbs. The AAV5-BDNF-treated group that only 

received robotic intervention (n = 9) had a significantly higher final average AOB score 

of 13.1 ± 1.30 (p << 0.01, paired t-test). On average, this score indicated that the animals 
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had frequent alternations of the hindlimbs (between 51 and 95%), with occasional body 

weight support and occasional plantar foot placement. Finally, the group of animals that 

received the full complement of therapies (AAV5-BDNF, robotic intervention, robot-

drive epidural stimulation) had an average final score of 13.33 ± 0.60, a significant 

improvement from the start of training (p << 0.01, paired t-test). 

 Finally, we compared the AOB scores on the final day of training of the four 

groups to examine the efficacy of each training regimen against the others. The group 

that received the full combination of therapies was significantly different from both the 

BDNF group that received constant epidural stimulation and no robotic intervention, and 

the GFP group (p = 0.0005, F(3,31) = 7.89, one-way ANOVA with Tukey Kramer post 

hoc corrections). In addition, the BDNF group that received only robotic intervention was 

significantly different from the GFP-treated group as well (p = 0.0006, F(3,31) = 7.89, 

one-way ANOVA with Tukey Kramer post hoc corrections).  

 

C-3. Robot Interactive Forces (zForce) 

Our custom robot software records the interactive elastic forces between an individual 

animal and the robot to maintain the rat’s pelvis at an equilibrium point in the x-, y-, and 

z-axes. We use the force in the z-axis (zForce) in Newtons as a proxy for body-weight 

support, normalized to the weight of the animal in grams. Animals that received robotic 

rehabilitation at the pelvis had robot interactive forces recorded every day of training. 

The animals that did not receive robotic rehabilitation at the pelvis as part of their 

training regimen were placed on the robot for short five-minute intervals at weekly 
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intervals, to assess their body weight support, and allow us to compare robot data across 

groups. 

 On the first day of training, there was no significant difference between groups for 

the normalized zForce to maintain the pelvic height at equilibrium (p = 0.11, F(3,31) = 

2.19, one-way ANOVA with Tukey Kramer post hoc corrections). The AAV5-BDNF-

treated group with only robot intervention had the lowest initial average normalized 

zForce of 0.43 ± 0.01 N/g. The next lowest average initial normalized zForce was found 

in the group of rats that received the full combination of therapies (0.46 ± 0.01 N/g). 

Finally, the GFP group and the BDNF group with constant epidural stimulation had 

approximately identical average initial starting normalized zForces, at 0.47 ± 0.01 N/g.  

 Next, we assessed the normalized zForces of the groups across the full training 

period, comparing the initial averages with the final averages, on the last days of training. 

In all treatment modalities, we observed significant decreases in normalized zForce from 

the beginning of training to the final day. The GFP-treated group had a final average 

normalized zForce of 0.41 ± 0.02, indicating a significant decrease in zForce (p = 0.02, 

paired t-test). This corresponded to approximately a 12.01% decrease in robot elastic 

force. The BDNF group that received constant epidural without robotic intervention had 

the next lowest net decrease in normalized zForce (16.95%), with an average final 

normalized zForce of 0.39 ± 0.03 N/g. We found this decrease to be significant (p = 0.03, 

paired t-test). The BDNF group that only received robotic intervention had a final 

average normalized zForce of 0.27 ± 0.03 N/g, a significant decrease of approximately 

38.24% (p << 0.01, paired t-test). Finally, the BDNF group that received the full 
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combination of therapies had the largest percentage decrease in normalized zForce 

(41.2%) at 0.27 ± 0.01 N/g.  

 Finally, we compared the final average normalized zForces among the groups to 

find significant differences between the treatment modalities. Of the four therapies, we 

found that the BDNF group that received robot-driven epidural stimulation and robotic 

intervention at the pelvis had a significantly lower average final normalized zForce than 

the GFP-treated group and the BDNF group that received conventional epidural 

stimulation (p = 0.0002, F(3,31) = 9.14, one-way ANOVA with Tukey Kramer post hoc 

corrections). Similarly, the BDNF group that received only robotic intervention also had 

a significantly lower average final normalized zForce than the GFP-treated group and the 

BDNF group that received conventional epidural stimulation (p = 0.0002, F(3,31) = 9.14, 

one-way ANOVA with Tukey Kramer post hoc corrections). These two groups were not 

significantly different from each other.  

 

C-4. Percent Weight-Supported Stepping (%WSS) 

In addition to the previous two outcome measures, we assessed the percentage of steps 

that an individual animal took that were able to support the animal’s body weight, using a 

frame-by-frame analysis of the video taken during every training session. We determined 

a weight-supporting step as one where only the rat’s limbs and tail were on the treadmill 

during a step.  

 At the beginning of training, three of the four groups (GFP, BDNF with robot, 

BDNF with constant epidural stimulation) had an average start %WSS of 0, consistent 

with their starting AOB scores. The group that had received the full combination of 
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therapies had an individual rat whose initial %WSS (24.13%) was consistent with its 

starting AOB score of 10. As a result, the average starting %WSS for that group was 2.45 

± 2.45%. However, across groups at the start of training, there was no significant 

difference in average %WSS (p = 0.42, F(3,31) = 0.96, one-way ANOVA) with Tukey 

Kramer post hoc corrections.  

 We then assessed the change in %WSS across the completion of training in each 

group, to analyze the efficacy of treatment in increasing %WSS. The AAV5-GFP-treated 

did not show significant improvement in %WSS, ending with a final %WSS of 11.82 ± 

5.78% (p = 0.08, paired t-test). The BDNF group that received conventional epidural 

stimulation without robotic intervention had a final average %WSS of 28.09 ± 8.29%, a 

significant improvement from the first day of training (p = 0.01, paired t-test). The BDNF 

group that received only robotic intervention had a similar significant improvement in 

%WSS, having a final average of 49.89 ± 10.82% (p = 0.01, paired t-test). Finally, the 

BDNF group that received the full combination of therapies had a final average %WSS of 

51.19 ± 6.31%, which was also found to be a significant improvement from the beginning 

of training (p << 0.01, paired t-test). 

 We then compared the average %WSS on the final days of all the groups. We 

found that the BDNF group that received the full combination of therapies had a 

significantly higher %WSS than the AAV5-GFP-treated group that received robot-driven 

epidural stimulation (p = 0.006, F(3,31) = 4.96, one-way ANOVA with Tukey Kramer 

post hoc corrections). In addition, the BDNF group that received only robotic 

intervention at the pelvis had a significantly higher %WSS than the GFP group (p = 
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0.006, F(3,31) = 4.96, one-way ANOVA with Tukey Kramer post hoc corrections). No 

other groups were significantly different from another. 

 

C-5. Stimulus Intensity to Elicit Hindlimb Locomotor Activity   

To assess the effect of AAV5 viral delivery of BDNF on epidural stimulation in the ATX 

model for SCI, we recorded the stimulus intensity, in volts, required to elicit hindlimb 

locomotor activity in the three groups of animals that received epidural stimulation, both 

robot-driven and conventional epidural stimulation. We compared these values at the start 

of training, and at weekly intervals thereafter until the final day of training, after 

approximately five-six weeks of training. 

 On the first day of training, the mean stimulus intensity in the BDNF group that 

received the full treatment of therapies was 0.66 ± 0.10 V. The BDNF group that received 

constant epidural stimulation and no robotic intervention had an average stimulus 

intensity of 0.69 ± 0.06 V on the first day. Finally, the AAV5-GFP-treated group that 

received robot-driven epidural stimulation had a mean initial stimulus intensity of 1.53 ± 

0.12 V. Comparing across groups on the initial day, the GFP group had a significantly 

higher mean initial stimulus intensity than the two BDNF groups (p << 0.01, F(2,22) = 

25.2, one-way ANOVA with Tukey Kramer post hoc corrections).  

 Over the course of training, GFP group required significantly higher voltages to 

elicit hindlimb locomotor activity (p << 0.01, paired t-test), consistent with findings in 

our previous work in robot-driven epidural stimulation1 and in the literature for constant 

epidural stimulation2. On the final day of training, the average required stimulus intensity 
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in this group was 4.23 ± 0.33 V. Using linear regression, we modeled a linear relationship 

between weeks of training and stimulus intensity (R2 = 0.98).   

 In the BDNF group that received constant epidural stimulation without robotic 

intervention at the pelvis, the final mean required stimulus intensity was 1.51 ± 0.05 V, a 

significant increase (p << 0.01, paired t-test). As compared to the GFP group, the slope of 

linear increase in stimulus intensity was not as high, but was an accurate model of the 

relationship between weeks of training and stimulus intensity (R2 = 0.96).  

 Finally, the BDNF group that received the full combination of therapies had a 

final mean stimulus intensity at 0.74 ± 0.1 V. This was not a significant change from the 

first day of training (p = 0.18, paired t-test). The slope of the linear fit to this line 

indicates a relatively miniscule change in stimulus intensity (R2 = 0.84) as a result of 

weeks of training.  

 On the final day of training, we compared the mean stimulus intensities of each 

group to evaluate the differences between treatment modalities in the effect that BDNF 

treatment had on epidural stimulation in the ATX model. We found that all of the groups 

were significantly different from one another (p << 0.01, F(2,22) = 87.01, one-way 

ANOVA with Tukey Kramer post hoc corrections).  
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Figure 3-2. Overview of the experimental design in this chapter.  

 

 
Figure 3-3. Comparison of the AOB hindlimb locomotor behavioral score among groups 
at the beginning and end of training. All groups showed statistically significant 
improvement in AOB as a result of training (using paired t-tests). Only the animals treated 
with the full combination of therapies have their improvement highlighted. There was no 
significant different at the beginning of training between the groups of animals treated with 
any form of epidural stimulation. There was no significant difference between animals that 
received the full combination of therapies and the BDNF-treated animals rehabilitated with 
robot assistance at the pelvis (* p = 0.0097, F(3,31) = 4.51, one-way ANOVA with Tukey 
Kramer post hoc corrections; ** p = 0.0005, F(3,31) = 7.89, one-way ANOVA with Tukey 
Kramer post hoc corrections; # p << 0.01, paired t-test).   
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Figure 3-4. (A) Changes in normalized zForce (N/g) at the start and end of training across 
all groups. At the start of training, there was no significant difference in normalized zForce 
between all groups. (* p = 0.0002, F(3,31) = 9.14, one-way ANOVA with Tukey Kramer 
post hoc corrections; ** p << 0.01, paired t-test). (B) %WSS at the start of training was not 
shown as all groups of animals had mean start %WSS of 0. (* p = 0.006, F(3,31) = 4.96, 
one-way ANOVA with Tukey Kramer post hoc corrections).   

A
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Figure 3-5. (A) Stimulus intensity (V) to elicit hindlimb motor activity as a function of 
weeks of training. (B) Statistical comparison between the stimulus intensity at the start of 
training and the end of training. (* p << 0.01, F(2,22) = 25.2, one-way ANOVA with Tukey 
Kramer post hoc corrections; ** p << 0.01, F(2,22) = 87.01, one-way ANOVA with 
TukeyKramer post hoc corrections; # p < 0.05, paired t-test).   
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D. Discussion 

In SCI, despite the loss of descending supraspinal control, there exists intact neuronal 

circuitry in the spinal cord below the site of injury that is capable of producing 

locomotion [180]. In our present study, we have demonstrated the efficacy and 

synergistic benefits of combining the different treatment modalities of robot-driven and 

biological interventions at this intact circuitry in the locomotor rehabilitation of SCI. Our 

work further advances many previous studies that show this to be an effective target for 

locomotor recovery in the human and animal model for SCI [36], [181]. In particular, this 

work with our unique paradigm of robotic intervention at the pelvis during treadmill 

training builds upon previous work from our lab in robot-driven epidural stimulation 

(ES), combining Adeno-associated viral delivery of BDNF to the lumbar spinal cord in 

rats transected as adults (ATX) and robot assistance to significantly improve locomotor 

function.  

 The use of BDNF to induce locomotor activity in spinalized animals is not a novel 

technique, but its potential in combined therapy to promote rehabilitation has not been 

fully realized. As a singular treatment, BDNF has been shown to promote weight-

supported stepping and functional improvement in the cat [56], [75] and the rat models 

for SCI [70] – [72], [76]. Many studies have investigated the process through which 

BDNF improves functionality of the hindlimbs, but of particular interest to our current 

work is how BDNF affects the balance between excitatory and inhibitory 

neurotransmission in the spinal cord [70], effectively creating a more excitable spinal 

cord. In our previous study, we demonstrated that viral delivery of BDNF could work in 

concert with robot-assisted treadmill training to improve function, when measured 
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against a battery of outcome measures, including the AOB bipedal stepping scale [161], 

percentage of weight-supported stepping, and interactive robot forces as a proxy for 

weight support. This was, to our knowledge, the first case of combining BDNF and 

robotic elements to increase function in SCI.  

 Our previous work had also demonstrated that robot interactive forces at the 

pelvis results in significant improvement of locomotor function in the ATX model of 

induced stepping. This is the foundation of our rehabilitation paradigm – that therapies 

aimed at the integrating and bolstering trunk during treadmill training is an essential 

component of therapy [30], [31], [153], [155]. In addition, we have discovered that the 

trunk motor cortex [140], [147], [148] is essential to produce weight-supported stepping 

after SCI, further supporting the utility of robot-assisted treadmill training in the 

rehabilitation of SCI. We also believe that our robot promotes a more natural context of 

locomotion, providing a framework for quadrupedal movement. We have shown that 

robot assistance at the pelvis also is able to increase weight-supported stepping in the 

model of adult rats transected as neonates (NTX), where animals had some ability to step 

before rehabilitation [31], and in the ATX model induced to step with viral delivery of 

BDNF.  

 In addition to providing interactive forces to engage the trunk in the injured 

animal, our robot is the foundation of our unique technique of robot-driven epidural 

stimulation (ES), which we have shown to be an effective means of locomotor 

rehabilitation in SCI [35]. The principles of our robot-driven ES are based on 

conventional methods of ES – providing electrical activation of the intact neuronal 

circuitry in the spinal cord to elicit motion. This is concept has been well documented and 
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studied rigorously in humans [40], [90], [182], cats [82], [83], and in rats [84] – [86], 

[183], although its therapeutic use in humans has also extended to areas such as pain 

management [88]. Unlike conventional methods of ES, our robot-driven technique does 

not use a constant frequency of stimulation, but rather, is determined by the height of the 

rat’s pelvis, which is monitored by our robot. In this way, the animals only receive 

intermittent  stimulation as their locomotor patterns require it, allowing for better 

integration of trunk and hindlimbs in a more natural pattern with weight-supported 

stepping. The concept of intermittent stimulation is not a completely new perspective for 

epidural stimulation [96], [97]. We believe this provides a weaning effect for injured 

animals, as well, allowing them to develop the quadrupedal controls needed to increase 

their own body weight support without the use of robotic interventions. With all other 

epidural stimulation parameters, such as inter-pulse period, pulse duration, and burst 

width, we used settings given in the literature from other groups working with 

conventional ES [85], [92], [184]. 

Another potential synergy that we hypothesized might exist between the use of ES 

and BDNF is the ability to manipulate the intact neuronal circuitry to provide specific 

hindlimb movements. The use of BDNF in the lumbar spinal cord in the rat model has 

been shown to have very specific effects at the ankle extensor [71], and we have seen in 

our previous study that there are other possible stereotypical hindlimb movements.  The 

idea that individual and precise movements can be induced with therapies has also been 

show in epidural stimulation, in both the human [40], [91] and rat models [85]. Various 

studies have shown that it is possible to stimulate specific sites in the spinal cord to elicit 

flexion movements and extension movements at the various joints in the hindlimb [95]. 
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Ichiyama et al. specifically showed how various spinal levels can be stimulated to 

produce bilateral stepping, unilateral stepping, flexion movements, and synchronous 

movements in the hindlimbs. In addition, they also examined the kinematics of 

movements, suggest that stimulation of the L2 segment would produce the most robust 

stepping. The placement of our electrodes in our study is a direct result of these studies in 

the rat models for ES. We hoped to elicit bilateral and alternating stepping patterns with a 

broad therapy such as viral delivery of BDNF, that we could fine-tune with both robot-

assistance at the pelvis and specific flexion and extension electrical epidural stimulation 

of the spinal cord.  

 As such, in our present study, we have shown that combining robot-driven 

epidural stimulation along with AAV5-BDNF can significantly improve locomotor 

function in the ATX model. In agreement with our hypothesis, the animals the received 

the full combination of therapies performed better with regards to AOB, body weight 

support (normalized zForce), and percent weight-supported stepping, as compared to 

animals the received robot-driven ES alone and those that received BDNF and 

conventional ES. Unlike these two groups, the animals that received the full combination 

of therapies were able to support their body weight at times, and could even plantar place 

their hind feet while stepping. When comparing the conventional and robot-driven ES 

groups, we can appreciate the role of the robot in providing both intermittent stimulation 

and a specific framework for incorporating trunk and hindlimb in locomotion after injury. 

Consistent with our previous studies in robot-assisted treadmill training in the NTX 

model without ES, the robot is able to significantly increase body weight support, body 
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weight support (i.e., decrease reliance on robot interactive forces to maintain pelvic 

height), and %WSS [31], [153].   

When we compare the outcome measures between the rats that received the full 

combination therapy and those that received the sham virus along with robot-associated 

therapies, we find that the viral delivery of BDNF does play a crucial role in significant 

recovery. Our interest in combining robot-driven ES and AAV5-BDNF was due to the 

potentially synergistic effects we hypothesized the two would provide each other when 

working in concert. There is a precedent in combining epidural stimulation techniques 

with biological therapies: Gerasimenko et al. used quipazine in conjunction with ES to 

promote weight-supported stepping in the ATX rat model [80]. Indeed, this technique is 

now adopted in many studies of SCI rehabilitation involving epidural stimulation [86]. 

We were interested in studying the effects of BDNF with epidural stimulation because 

exogenous BDNF decreases the rheobase of affected motor neurons [71], and increases 

the overall excitability of the spinal cord [70]. We believe that this works in concert with 

epidural stimulation, lowering the threshold needed for stimulation of hindlimb motor 

activity. Indeed, we showed that combining BDNF and robot-driven ES was an effective 

means to promote locomotor recovery in the ATX model, considering that GFP-treated 

animals were unable to produce any significant body weight support or %WSS as a result 

of therapy. 

Next, when we compared all of the epidural stimulation groups, we discovered 

that exogenous BDNF had a significant effect on the stimulus intensity required to elicit 

hindlimb locomotor activity, consistent with the possible mechanism of action posited by 

the aforementioned work by Ziemlínska et al. and Boyce et al. First, we discovered that 
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on the first day of training for each animal (between seven and ten days, post-injection 

and post-injury), the two BDNF-treated groups had lower stimulus intensities required to 

produce alternating hindlimb movements as compared to the GFP group. In addition, the 

animals in those groups also had significantly higher mean starting AOB scores, 

indicating a functional benefit from combining BDNF and epidural stimulation. Our 

findings are consistent with previous studies using BDNF to induce stepping, where the 

time between injection and evidence of BDNF activity is approximately a week [70], 

[71], [185]. This significance was maintained throughout training, measured and recorded 

at weekly intervals, which is supported by studies that show that BDNF expression as a 

result of viral delivery can extend to up to sixteen weeks, post-injection [72]. We also 

observed that on the final day, there was a significant difference between the two BDNF 

groups that received either conventional or robot-driven ES. We believe this may be a 

result of the benefits of the specific framework of robot assistance that aided these 

animals to learn new methods of walking. This is contrast to the BDNF rats that received 

conventional ES, who did not have the robotic assistance that may have served to better 

integrate their trunk muscles into stepping.  

Our interest in studying stimulation threshold has potential translational 

applications in the clinic. One of our major concerns for epidural stimulation is the 

application of high stimulus intensity, which we have observed affects performance in the 

rat model. Higher stimulus amplitudes may produce somewhat more robust activity up to 

a point, but it can cause discomfort in the animal, which may result in noncompliance 

during training. In addition, longitudinal studies of epidural stimulation in the rat model 

has shown that animals require larger and larger stimulus amplitudes over time, as they 
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acclimate to therapy [85]. Our combination of BDNF and epidural stimulation, regardless 

of technique, demonstrates that it is possible to produce the same or improved hindlimb 

activity, while using significantly lower or the same level of stimulus. This has many 

possible ramifications in the therapeutic use of epidural stimulation in the humans, where 

ES is used not just for locomotion therapy, but also in bladder, bowel, and sexual 

function.  

There are many other paradigms of epidural stimulation, such as frequency-

dependent stimulation that does not purport to change stimulus intensity. Indeed, these 

studies suggest that it is also possible to stimulate specific types of movements – 

rhythmic flexion-extension alternations, extension only – by changing the frequency of 

stimulus provided [94]. Different methods such as these are of interest to us in the context 

of robot-driven epidural stimulation, and we are developing ways in which to incorporate 

BDNF into these rehabilitative strategies.  

We discovered one unexpected outcome when comparing BDNF animals that 

received robot-assisted treadmill training alone and those that received robot-driven 

epidural stimulation. We discovered no significant difference in function between the two 

groups when using all three outcome measures. There was a slight increase in overall 

mean AOB score in the group that received the full combination of therapies, but the 

functionality in both groups were characterized by frequent (between 50 and 95%) right-

and-left hindlimb alternations, occasional (<50% of the time) body weight support, and 

occasional (<50% of the time) plantar stepping. We believe that though, on average, the 

two groups had similar recovery, there is a significant and stark contrast between the two 

groups.  
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In our previous study examining the effects of viral delivery of BDNF with robot-

assisted treadmill training alone, we discovered that a significant subset of treated 

animals developed a partial, but highly significant collapse in locomotor function. This is 

consistent with the literature, where an increase in frequency of clonic movements in the 

hindlimbs inhibited further recovery, and in some cases, severely hindered function [70], 

[71]. Animals that collapsed were characterized by a significant gain and then significant 

loss of locomotion – specifically the ability to alternate their hindlimbs and support their 

body weight, in addition to being unable to retain a high percentage of weight-supported 

stepping. In addition, we observed that collapse animals were at risk for more severe 

negative health outcomes, as a result of difficulty of care due to the pathology of 

collapse. There are many theories as to why this might occur as a result of exogenous 

BDNF, but the prevailing hypothesis suggests that it may be a result of BDNF 

overexpression [70], [72], which may lead to a desensitization of TrkB receptors [174], 

[175], for which BDNF is the ligand [67]. Regardless of the cause, collapse is a major 

concern for the use of exogenous BDNF in the rehabilitation of SCI, though our robotic 

intervention at the pelvis has suggested that before collapse, BDNF animals trained on 

robot may reach higher levels of improvement over those trained on treadmill or in cage 

rest.  

Here, we have discovered a means to mitigate, and possibly eliminate, collapse in 

the ATX animals treated with AAV5-BDNF to induce stepping, which has many possible 

ramifications in the future use of BDNF in the animal model for SCI. In our previous 

study, we observed that out of 26 adult ATX rats treated with AAV5-BDNF, 12 

(approximately 46.15%) of these animals had a collapse in function, which resulted in 
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significant loss of locomotor recovery after peak performance. We observed this 

phenomenon in three different treatment modalities: cage rest, treadmill training, and 

robot-assisted treadmill training. Here, in our present study, we discovered that out of 17 

ATX animals treated with AAV5-BDNF and rehabilitated with epidural stimulation (both 

conventional and robot-driven), there was no incident of collapse. Using binomial 

probability, we find this lack of collapse to be highly significant. Our work suggests that 

it is possible to prevent collapse in function due to BDNF overexpression, which has far 

reaching consequences in the use of BDNF for therapeutic benefit. We have 

demonstrated the efficacy and possible therapeutic benefits of combining the different 

modalities of treatment of biological and robotic interventions to provide synergistic 

effects in the rehabilitation of SCI.  

In some regards, our results are not entirely unexpected, considering how epidural 

stimulation alone in the context of training and rehabilitation has been show to modulate 

the physiological state of spinal circuitry [90]. Our current work further emphasizes the 

role for ES in SCI, harnessing this ability in specific ways to not only improve locomotor 

function, but to reduce and prevent pathology that results from a broadly-acting 

therapeutic agent such as exogenous BDNF. If this is the case, the locomotor patterns 

develop in the BDNF rats with robot-driven epidural stimulation may be developed from 

different mechanisms than those of BDNF rats trained with robot alone. There is 

precedent of this, as task-based rehabilitation not only significantly improves function 

[186], [187], but induces reorganization, as well [19], [188], [189]. This may explain the 

wide variability of function in the BDNF animals trained with robot alone, as compared 



 

 

107 

to the small variance in function in the BDNF animals trained with robot-driven epidural 

stimulation. 

From a clinical perspective, the prevention of collapse may have much more 

therapeutic benefits outside of locomotor rehabilitation. In our previous study, we 

observed that collapse in function led to negative health outcomes, such recurring bladder 

infections, skin lesions, and atrophy of hindlimb musculature. There were also difficulties 

with animal care as a result of collapse. By preventing collapse with the use of epidural 

stimulation (conventional or robot-driven), we may be able to prevent these pathological 

sequelae of collapse, as well. Clinicians interested in therapeutic benefits of exogenous 

BDNF to promote locomotion may find epidural stimulation of interest to reduce the risk 

of similar negative health outcomes in patients.  

Using the three outcome measures that we did to assess locomotor activity, we 

hoped to develop a complete and holistic picture of the recovery in our animals, where 

each measure corroborated or added to the recovery profile of each animal. AOB is not a 

precise tool to measure recovery, as its criteria for “occasional”, “frequent”, and 

“consistent” encompass large bins – between 0 and 50%, between 51% and 95%, and 

above 95%, respectively. However, by using measurements of robotic interactive force, 

and by analyzing high-definition video in a frame-by-frame manner, we attempted to 

provide a more exact account of recovery in our animals. In addition, we verified the 

completeness of transection in all animals by visual inspection when each animal was 

sacrificed and by histology. We also confirmed the placement of our epidural stimulation 

electrodes when we extracted spinal cord from our animals for histological analysis.  
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E. Conclusion 

In summary, our present work presents a novel approach to locomotor rehabilitation in 

the adult SCI model, combining bionic and biological interventions to significantly 

improve function. We showed that it is possible to combine robot-driven epidural 

stimulation along with Adeno-associated viral delivery of BDNF to produce robust, 

weight-supported stepping with plantar foot placement in SCI animals. The use of BDNF 

worked in concert with epidural stimulation, lowering stimulus thresholds to induce 

stepping and locomotor activity. This happened at the beginning of training, and persisted 

throughout all of rehabilitation. This is of particular interest to clinical use of epidural 

stimulation, where stimulating electrodes can lose efficacy over time. 

We did not see any significant differences or improved function when comparing 

against ATX animals treated with BDNF and robot-assisted treadmill training. However, 

we discovered that the use of epidural stimulation prevented the occurrence of collapse in 

function that has been widely observed in the use of exogenous BDNF to induce stepping 

patterns in SCI rats. This has very important implications to potential translational 

applications of exogenous BDNF use and epidural stimulation in rehabilitation. We 

believe we have built a foundation for future investigations into how robotic interventions 

and viral delivery of BDNF can be combined more effectively and efficiently to produce 

more robust and improved locomotion in the ATX model for SCI. 
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CHAPTER 4: Active stepping rehabilitation induces significant reorganization of 
the trunk motor cortex in the adult spinalized rat 

 

A. Introduction 

Injuries to and diseases of the nervous system can lead to somatotopic reorganization of 

the brain sensorimotor cortex, in response to changes in function that accompany injury. 

This has been observed and well established in stroke [149], [190], limb amputation 

[191], [192], and in spinal cord injury (SCI) [141], [148]. In response to loss of motor 

output and sensory input, the plasticity of the nervous system can lead to undesired 

pathological sequelae, such as phantom limb sensation [124], allodynia [193], 

orspasticity [194]. These plastic changes may occur on different timescales, with rapid 

[195] and slower alterations [196] both playing a role in recovery and pathology. As a 

result, it is important to understand the patterns and trends in somatotopic reorganization 

that may accompany specific injuries to the nervous system.  

In SCI, the normal, healthy architecture of the central nervous system is disrupted, 

interrupting descending supraspinal control from and ascending sensory information to 

the brain. Depending on the location and severity of the injury, SCI can lead to 

irreversible impairment of the body, such as paraplegia and quadriplegia. This loss of 

autonomy and mobility can severely decrease quality of life, as well as negatively impact 

health outcomes [197], [198]. As a result, locomotor rehabilitation is of utmost 

importance in the study of SCI.  

In both the human and the rat model for locomotion, trunk muscles, and therefore 

trunk motor control, play crucial roles in locomotion, providing postural stability [140], 

as well as providing biomechanics for forward momentum [165]. In addition, in the rat 
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model for SCI, the trunk motor cortex is essential for adult rats transected as neonates 

(NTX) to develop autonomous weight-supported stepping (WSS) [140]. NTX rats are a 

unique paradigm for locomotor rehabilitation in SCI, as 20% of these animals are able to 

produce autonomous WSS (up to 50%) without intervention by the time they reach 

adulthood [33], [34]. However, NTX rats with lesions to their trunk motor cortex are 

unable to develop WSS [140], while previously weight-supporting NTX rats lose their 

ability to weight-support when their trunk motor cortex is lesioned (C. S. Oza, and S. F. 

Giszter, unpublished observations). Thus, we believe there is a crucial relationship 

between the intact neuronal spinal circuitry below the site of injury and the cortical 

control at the brain above, coupled mechanically via trunk muscles that span the length 

above and below injury, working together to provide stability and control for locomotion 

in the SCI model for weight-supported stepping rats.  

In addition to revealing the importance of trunk motor control in locomotion after 

SCI, Oza et al. detailed specific changes to the trunk motor cortex and its relationship to 

other controls in the motor cortex. In the SCI model for rats completely transected as 

adults (ATX), unlike the NTX model, animals are unable to step without intervention. 

From a cortical perspective, SCI leads to a significant rostral shift of the trunk 

representation in the motor cortex, as compared to normal rats [147]. This shift is 

exacerbated by passive locomotor rehabilitation, where the hindlimbs are unable to step. 

Additionally, there are significant changes in the number of co-activated muscles per site 

in the cortex, as well as significant changes in the synergies between trunk muscles and 

forelimb control.  
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Figure 4-1. Representative trunk motor cortical maps in the rat model created from ICMS 
techniques. (A) Motor cortex map of the normal, intact rat. (B) (C) Motor cortex maps of 
ATX rats that do not step. (D) Motor map of the cortex in the ATX rat rehabilitated with 
robot assistance at the pelvis. All of these rats did not step during or after recovery. In all 
ATX rats, there is a loss of hindlimb activation sites (green) and a shift of the representation 
rostrally. Used with permission from Oza et al., 2014 

 
 
 

In the NTX model of rats that can step with weight support, there is also an 

increased co-activation of of trunk motor sites in the cortex [148]. However, unlike the 

ATX rats that do not step, the trunk motor representation in the stepping NTX model 

does not have a significantly more rostral shift, though it does lose normal topography as 
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compared to the motor cortex of intact animals. In both the NTX model and the ATX 

model, there is a significant loss of low-trunk and lumbar representation in the motor 

cortex that is accompanied by SCI – a direct result of the loss of supraspinal control 

[147], [148].  

 

 

 
Figure 4-2. Representative maps of the motor cortex in various rats obtained by ICMS 
techniques. (A) Normal, intact rat motor cortex. (B) Map of the motor cortex in an NTX 
rat rehabilitated with treadmill training only. (C) Map of the motor cortex in an NTX rat 
rehabilitated with robot-assisted treadmill training. In both NTX maps, there is a significant 
rostral shift of the overall representation. However, in the robot-trained animal (C), there 
is a more normal topography of the trunk motor cortex (yellow). Used with permission 
from Oza et al., 2015 
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With locomotor recovery, the NTX model provides a signpost for potential 

recovery and function with rehabilitation for ATX animals that are induced to step using 

various interventions, such as viral delivery of brain-derived neurotrophic factor (BDNF) 

[56]*, epidural stimulation [85], [92], [160], or a combination of these therapies*. With 

these various therapies, ATX animals can be induced to step and weight support, like the 

NTX rat. The process of novel skill acquisition leads to changes in cortical organization 

[151], [154]. There is a gap, therefore, in our knowledge of the changes to the trunk 

motor cortex with the ATX rat that can step and support its own weight.  

The NTX rats provide an excellent model for comparison in this regard, providing 

an impetus to understand how the trunk motor cortex of a weight-supported stepping 

ATX animal may reorganize in response to injury and then rehabilitation.  

 To examine this further, we prepared a cohort of six ATX animals and induced 

them to step and weight-support, using an Adeno-associated virus (AAV5) to deliver 

BDNF to the spinal cord caudal to the site of injury. BDNF promotes plasticity in the 

nervous system [185], [199], and it shown to increase the excitability of the spinal cord 

[70]. Phenotypically, as a response to BDNF treatment, ATX rats behave like NTX rats, 

with some spasticity, rudimentary flexion-extension movements in the hindlimbs, and 

occasional weight-supported stepping [30], [153]. 

In half of the rats, we also used epidural stimulation at the lumbar spinal cord to 

induce stepping, in tandem with AAV5-BDNF. This was done as a test to study the 

efficacy of combined therapies, and it resulted in both cohorts of animals recovering 

similarly against a battery of locomotor outcome measures. Both groups of animals were 

treated as one group of weight-supporting ATX animals, as the target of their therapies 
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were below the site of injury, and thus, not directly interacting with cortical mechanisms. 

In addition, the animals all performed similarly after rehabilitation, both in body weight 

support and in stepping patterns.  

We hypothesized that the effects of BDNF caudal to the site of injury lead to 

increased spinal control of the low thoracic and lumbar trunk muscles, as demonstrated 

by increased locomotor recovery. We believe that this would then reveal insight into the 

nature of the relationship between the cortex and spinal networks in locomotion in the 

SCI model, as they negotiate working control of the trunk for locomotion.  

We used intracortical microstimulation (ICMS) to create a binary response map of 

the motor cortex of all of the animals, using electromyography for trunk musculature and 

visual observation for limb movement. These maps were then compared with those of 

normal, intact animals, as well as with the ATX and NTX models.  

Our work show that active stepping rehabilitation in the ATX model as a result of 

BDNF expression increases spinal control of trunk muscles in locomotion. However, like 

the NTX model, the active stepping ATX model shows an increase in low trunk and 

lumbar control in the cortex. Finally, we show that active rehabilitation in the ATX 

model further attenuates the rostral shift seen in the passive rehabilitation ATX model 

that is mitigated in the NTX model for recovery.  

 

B. Materials and Methods 

B-1. Overview 

All surgical and experiment procedures were performed in accordance with the Drexel 

University College of Medicine’s Institutional Animal Care and Use Committee 
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(IACUC). We prepared six intact adult female Sprague Dawley rats, all from the studies 

in the previous chapters. All animals received a complete spinal cord transection at 

vertebral level T9/T10, with microinjections of AAV5-BDNF caudal to the transection 

site, immediately following injury. In the same procedure, epidural stimulation wires 

were implanted at spinal level L2/L3 and at S1/S2. In addition, all animals were 

implanted with custom-made pelvic orthoses at the end of surgery. After recovery, all 

animals were trained for six weeks with robot assistance at the pelvis. Three of the 

animals also received robot-driven epidural stimulation. Video and robot data were 

collected during training for assessment and analysis of locomotor recovery during 

training. At the end of rehabilitation, animals underwent an intra-cortical 

microstimulation procedure to map their motor cortex.  

 For a more thorough review of the transection surgery, viral microinjection, 

epidural stimulation wire implantation, pelvic orthosis implantation, and robot 

rehabilitation techniques, please refer to the methods sections in the previous chapters.  

  

B-2. Intracortical Microstimulation Techniques 

We adapted intracortical microstimulation procedures from Oza et al. [147], [148] and 

Giszter et al. [140] to map the motor cortex of all of the animals after a rehabilitation 

training regimen. Thirty minutes to an hour prior to surgery, we delivered 

Dexamethasone (5 mg/kg) via an intraperitoneal injection. Animals were anesthetized for 

ICMS mapping using the same cocktail and dosage of KXA used in their transection 

surgery. Supplemental ketamine hydrochloride (0.24 ml/kg) was administered via 

intraperitoneal injection, as necessary. Throughout surgery, each rat was placed on a 
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heating pad to retain core body heat. In addition, we placed a heat lamp close to the 

animal to maintain a core body temperature of 37° F. Warm physiological saline was also 

delivered subcutaneously as needed.  

 To place electrodes on the ventral musculature of the animal’s trunk, we made an 

incision in the skin covering the abdomen, and blunt dissected the skin away from the 

abdominal muscles. Using veterinary adhesive, we placed nine bipolar patch electrodes 

along the length of the abdomen, covering the right and left external oblique muscles and 

the rectus abdominus. The sites of the electrodes were placed to cover three levels of each 

muscle – mid-thoracic (corresponding to T5-T7), low thoracic (T12-T13), and lumbar 

(L2-L3) – to assess cortical control above, at, and below the site of injury, respectively. 

On the dorsal surface of the animal, we made a parasagittal incision along the midline of 

the skin and blunt dissected to create window to place six polar patch electrodes. The 

dorsal electrodes were placed in parallel along the parasagittal plane of the right and left 

longissimus muscles. They were placed again at mid-thoracic, low thoracic, and lumbar 

levels, similar to the placement used on the ventral surface of the animal. When the 

animal was not being actively mapped, we covered the exposed musculature with gauze 

wetted slightly with saline.  

 After the electrodes had been implanted, we placed the head of the rat in a 

stereotaxic frame and made an incision on the dorsal surface of the skin on the skull. 

Using blunt dissection, we exposed the skull and measured and recorded two suture 

landmarks: bregma and lambda. We then carefully removed a 1 cm by 1 cm window of 

the skull centered around bregma, and used a 30-gauge needle and iridectomy scissors to 

carefully remove the dura above the brain at the motor cortex. When the animal was not 
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actively mapped, we used saline and gauze to cover the exposed brain and clear away any 

blood that may have pooled. 

 We used stainless steel electrodes (~ 10 MΩ, initial impedance at 1 kHz, diameter 

125 µm, and tip < 1 µm diameter, exposed tip ~ 5 µm2 FHC) to deliver stimulus current 

to the motor cortex. Using the stereotaxic frame and manipulator, and lambda as a 

reference point, we created a grid of the motor cortex centered around bregma as the 

origin, with a resolution of 0.5 mm in the x- and y- axes. Using the electrode to vertically 

penetrate the brain at depths of 1.5 mm, we applied a constant current biphasic pulse of 

75 µA with cathodal current leading to each site, applied as 0.2 ms total duration at 333 

Hz in trains of 300 ms duration.  

 Responses in the forelimbs and hindlimbs were observed grossly and noted, with 

movements in the musculature or flexion of the limbs indicating a response to cortical 

stimulation. Trunk responses were measured using the EMG data from the previously 

placed path electrodes, using differential amplifiers and an A/D data acquisition system 

(Molecular devices: Digidata 1320). Signals from the patch electrodes were amplified 

with a gain of 1000, sampled at a rate of 2 kHz. We recorded any changes in EMG as a 

result of stimulus. We also recorded trunk EMG any time the animal responded to 

stimulus, to assess changes later.  

 We noted limb movement or trunk EMG changes as binary responses to stimulus, 

and created a map from the grid of the motor cortex. We distinguished sites that had no 

responses or a combination of forelimb, hindlimb, or trunk responses in our maps. Prior 

to stimulation, we fully extended forelimbs to be able to visualize small movements 

elicited by ICMS.  
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 During active mapping of cortical sites, we turned off the heating pad directly 

below the animal to reduce electrical noise. When the animal was rested, the heating pad 

was turned back on. The heating lamp was not turned off for the duration of the surgery. 

In addition to the heating lamp and the heating pad, when the animal was rested, we 

placed gauze wetted with warm saline on the animal to maintain body heat. We also 

injected warm saline into the animal through the surgery for hydration and for heat.  

 

B-3. Data Analysis 

EMG data was assessed both during and after the surgery for responses to stimuli. We 

used custom-written scripts in MATLAB R2014b, Mathworks, to decode the data into 

visual representations for analysis, which were then compiled in an array format in 

Microsoft Excel, 2106. Representative motor maps were produced in MATLAB using 

custom-written scripts produced from the Microsoft Excel spreadsheets.  

We used previous data in our lab acquired by Chintan Oza to compare our weight-

supporting BDNF-treated animals with both the ATX animals and NTX animals 

rehabilitated with robot-assistance and with normal, intact animals. To compare across 

groups, we used one-way ANOVA with Tukey Kramer post hoc comparisons to test for 

statistical significance. We considered a p-value of less than 0.05 to be statistically 

significant. All statistical tests were done in MATLAB R2014b, Mathworks. Graphs and 

figures were produced in Microsoft Excel 2016. 	
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C. Results 

C-1. Overview 

We used intracortical microstimulation (ICMS) mapping techniques to produce motor 

cortex representations of ATX rats induced step with AAV5 viral delivery of BDNF (n = 

6) and treadmill-trained with robotic intervention at the pelvis. Half of the animals 

received robot-driven epidural stimulation along with training. At the end of training, all 

animals were able to produce robust alternations of the right and left hindlimbs. In 

addition, all animals were able to plantar place their feet on the treadmill at least 

occasionally (33.33% of the time), as well as body weight support. One more criterion 

was to evaluate rats that did not have a collapse in function, as a result of AAV5-BDNF 

treatment. These animals were all weight-supporting BDNF animals (wsBDNF), trained 

on robot. We mapped each animal approximately 7-8 weeks after injury, after a full 

training regimen. We used ICMS parameters that we found to be ideal for motor cortex 

mapping in our previous work [140], [147], [148]. We compared the maps of these 

animals with maps from our previous work on intact animals, non-stepping ATX animals 

trained passively with robot rehabilitation, and stepping NTX animals trained on robot.  

 

C-2. Locomotor Recovery in wsBDNF Rats Trained with Robot Intervention at the 

Pelvis 

We assessed the locomotor recovery of all of the animals following their rehabilitation 

regimens, using three outcome measures: AOB bipedal stepping scale, robot interactive 

forces, and percentage weight-supported stepping (%WSS). Video and robot data were 

collected during every day of training to assess these outcome measures per individual 
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rat, and as a group. As a group, the AAV5-BDNF-treated animals that weight-supported 

(wsBDNF) had a significant improvement in their AOB scores, starting at an average 

score of 1.17 ± 0.40, and ending with a mean score of 15.33 ± 2.01 (p << 0.01, paired t-

test). Their final average AOB indicated that these animals were able to consistently 

alternate their hindlimbs (>95%), while occasionally (<50%) maintaining body weight 

and plantar placing their hind feet. We compared this group of animals with data from 

previous studies in our laboratory. The group of ATX rats that received passive 

rehabilitation while on robot during treadmill training (ATX-R) did not have significant 

improvement over weeks of training, with most scores of 0 and 1, and at most 3 [148]. In 

contrast, like the wsBDNF animals, the NTX animals trained with robotic intervention at 

the pelvis (NTX-R) had significant improvement in their AOB scores, as a result of 

training [147]. 

 When comparing the interactive force between an animal and the robot to 

maintain the pelvic height of the rat (normalized zForce), we found similar trends. The 

wsBDNF group began with a mean normalized zForce of 0.45 ± 0.02 N/g. Through five 

to six weeks of training, these rats relied significantly less on the robot, ending with a 

mean normalized zForce of 0.27 ± 0.04 N/g (p << 0.01, paired t-test). Similar to the 

pattern of recovery in AOB scores, the ATX-R animals did not show any significant 

improvement in body weight support, while the NTX-R animals did have a significant 

increase in their body weight support. 

 Finally, we saw the same trends in the %WSS for all of the groups, as in the 

previous two measures. We define %WSS as the number of steps that support the weight 

of the animal, divided by the total number of steps that an animal takes. Using frame-by-
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frame analysis of video taken during training, we observe when an animal takes a weight-

supported step, or a step where no other part of the animal except its limbs are on the 

treadmill. The wsBDNF group began with an average of 0 %WSS, consistent with its 

AOB score on the first day of training. By the end of training, we observed significant 

improvement (p << 0.01, paired t-test) with an average %WSS of 50.12 ± 15.37%. The 

ATX-R group did not show improvement in %WSS as a result of training. The NTX-R 

group, similar to the wsBDNF group, showed significant improvement from the start of 

training to the end. 

 We did not assess the normal, intact rats for their initial AOB scores, normalized 

zForce, or their %WSS.  

 

C-3. Effect of Rehabilitation on Total Trunk Motor Area 

 We observed significant changes as a response to rehabilitation in the trunk motor 

cortex of the various SCI groups. To compare the cortical maps of the normal animals 

against the spinalized animals, we normalized the map data to the nonfacial motor cortex 

area (forelimb, neck, and trunk responses). We did this to eliminate error due to hindlimb 

responses observed in the intact animals that would not exist in the spinalized animal 

groups and bias the perception of data.  

Consistent with previously published data, the ATX-R group had a significantly 

large total trunk area, as compared to the normal, intact group. Its total trunk area as a 

percentage of nonfacial motor area was 0.59 ± 0.06% (mean ± SEM). The normal group 

had a total trunk area of 0.35 ± 0.02% of the nonfacial motor cortex. The NTX-R group 

also had an increased total trunk area (0.48 ± 0.06%), though not significantly different 
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from normal or the ATX-R group. We observed that wsBDNF animals did not have a 

significant expansion of total trunk area as a result of robot rehabilitation with active 

stepping (p < 0.05, F(3,26) = 8.47, one-way ANOVA with Tukey Kramer post hoc 

corrections). Its total trunk area as a percentage of nonfacial motor area was 0.34 ± 

0.06%, significantly lower than normalized trunk area of the ATX-R group, but not from 

that of the NTX-R or the normal groups.  

 

C-4. Changes in Total Trunk Motor Area by Segmental Level 

To better understand the nuances of the change in total trunk area, we examined the 

distribution of total trunk motor area across trunk segments (external obliques, rectus 

abdominus, and longissimus) rostral and caudal to injury. Specifically, we observed mid-

thoracic sites above the injury, and then low-thoracic and lumbar sites below the 

transection, as noted in the previous section (B. Materials and Methods). Again, to 

compare with data from normal rats, we normalized the data as a percentage of the 

nonfacial motor cortex. Sites along the map that corresponded to activation of muscles at 

different segmental levels were recorded as having responses in all of the segments.  

 At the mid-thoracic level, above injury, using one-way ANOVA with Tukey 

Kramer post hoc corrections, we observed that there was a significant increase in mid-

thoracic trunk motor area in the ATX-R group, as compared to the normal group (p = 

0.0006, F(3,26) = 7.94). The total trunk area as a percentage of nonfacial motor cortex in 

the ATX-R rehabilitation group was 0.54 ± 0.05%. This was not significantly higher than 

any of the other SCI groups. In addition, there was no significant difference between the 
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intact group (0.26 ± 0.03%), the wsBDNF group (0.35 ± 0.06%), and the NTX-R group 

(0.39 ± 0.044%).  

 Below the site of injury, we observed similar total trunk area across all groups at 

the low-thoracic level. The normal group of intact animals had an average total trunk area 

of 0.28 ± 0.02% of nonfacial motor cortex. The ATX-R group had a slightly higher mean 

total trunk area of 0.34 ± 0.05%. The NTX-R group and the wsBDNF group had means 

of 0.35 ± 0.04% and 0.26 ± 0.12%, respectively. There was no significant differences 

between groups at this level (p = 0.6371, F(3,26) = 0.57, one-way ANOVA with Tukey 

Kramer post hoc corrections).  

 Further caudal to the transection site, we observed all transected animals had less 

trunk area corresponding to lumbar musculature than the normal animals (Normal: 0.27 ± 

0.03%; ATX-R: 0%; NTX-R: 0.06 ± 0.05%; wsBDNF: 0.04 ± 0.02%). We observed that 

the normal animals had a significantly higher trunk area corresponding to the lumbar 

segmental level than the ATX-R animals (p = 0.0034, F(3,26) = 5.87, one-way ANOVA 

with Tukey Kramer post hoc corrections), but was not significantly different from the 

NTX-R and wsBDNF animals. In addition, there was a significant difference between the 

mean total trunk area of lumbar musculature in the ATX-R group and in the wsBDNF 

group. We found no significant difference between the NTX-R and the wsBDNF groups. 

 

C-5. Changes in Total Trunk Area by Dorsal and Ventral Representation 

In addition to observing changes at above and below the site of injury, we examined 

changes in representation of the dorsal and ventral aspects of the trunk in animals. Using 

the same musculature from the preceding section, we reorganized the data into ventral 
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(external obliques and rectus abdominus) and dorsal (longissimus) musculature. When 

recording observations of trunk musculature responses to stimulation in the cortex, we 

divided sites into three categories: dorsal and ventral, dorsal only, and ventral only. 

Again, to reduce bias in response as a result of hindlimb responses in the normal animals, 

we normalized all data to a percentage of nonfacial motor cortex. 

 For trunk area that corresponded to sites both on the dorsal and ventral trunk 

musculature of an animal, we observed many differences between the groups. In 

particular, the ATX-R group had the largest trunk area (0.29 ± 0.04%), which was 

significantly larger than those of the normal group (0.14 ± 0.03%) and the wsBDNF 

group (0.06 ± 0.02%) (p = 0.0012, F(3,26) = 7.13, one-way ANOVA with Tukey Kramer 

post hoc corrections). In addition, the wsBDNF group had the smallest trunk area for 

dorsal and ventral musculature activation, significantly smaller than those of the ATX-R 

group and the NTX-R group (0.25 ± 0.04%). There was no significant difference between 

the normal and the wsBDNF group.  

 As for total trunk area corresponding to dorsal musculature activation, we 

observed that the ATX-R group had the largest area (0.17 ± 0.04%). This was 

significantly larger than the dorsal trunk areas for the normal group and the wsBDNF 

group (p = 0.003, F(3,26) = 6.02, one-way ANOVA with Tukey Kramer post hoc 

corrections). There was no significant difference between the NTX-R group and the other 

groups.  

 We did not observe any significant differences across groups in trunk area 

corresponding to ventral trunk musculature (p = 0.513, F(3,26) = 0.78, one-way ANOVA 

with Tukey Kramer post hoc corrections).  



 

 

125 

C-6. Changes in Coactivation Density 

Using nomenclature from our previous studies in ICMS cortical maps of the trunk motor 

cortex in rehabilitated SCI animals, we define “coactivation density” as the total number 

of muscles activated at a particular site in the trunk motor cortex. We used this to assess 

richness of muscle synergy representation per site in the cortex.  

We observed that all transected animals had lower mean coactivation densities 

(ATX-R: 2.48 ± 0.20; NTX-R: 2.99 ± 0.27; wsBDNF: 1.91 ± 0.08) than the normal, 

intact animals, which had a mean coactivation density of 3.87 ± 0.20 muscles. This was 

significantly higher than in all of the other groups (p << 0.01, F(3,26) = 21.75, one-way 

ANOVA with Tukey Kramer post hoc corrections). In addition, the wsBDNF group had a 

significantly lower mean coactivation density than the other groups, in the same 

comparison.  

 

C-7. Changes in Coactivation Density by Segmental Level 

As in the total trunk area, we divided up trunk musculature by segmental levels above 

and below the site of injury to compare the coactivation densities and understand where 

the difference in richness of trunk motor synergy may be found.  

 Above the site of injury, at the mid-thoracic level on both the dorsal and ventral 

aspect of each animal, we found no significant differences between the groups (p = 0.10, 

F(3,26) = 2.27, one-way ANOVA with Tukey Kramer post hoc corrections). The ATX-R 

and the NTX-R groups had the highest mean coactivation densities (1.68 ± 0.17 and 1.70 

± 0.45 muscles, respectively). The wsBDNF group had a mean coactivation density of 
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1.35 ± 0.13 muscles. The normal, intact group had a mean coactivation density of 1.3 ± 

0.10 muscles.  

 Below the site of injury at the low-thoracic level, we observed significant 

differences in synergy representation (p = 0.012, F(3,26) = 4.44, one-way ANOVA with 

Tukey Kramer post hoc corrections). The wsBDNF group had the lowest mean 

coactivation density of 1.00 ± 0.34 muscles, which was significantly lower than those of 

the normal group (1.88 ± 0.18 muscles) and the NTX-R group (2.05 ± 0.19 muscles). It 

was not significantly different from the ATX-R group (1.84 ± 0.13 muscles). In addition, 

there were no differences between the normal group, the ATX-R group, and the NTX-R 

group.  

 We also compared the coactivation densities at the lumbar levels of these groups 

of animals. All transected animals had lower mean coactivation densities compared to the 

normal, intact group (ATX-R: 0; NTX-R: 0.48 ±0.25; wsBDF: 0.50 ± 0.22 muscles). The 

normal group had the highest mean coactivation density, at 2.53 ± 0.28 muscles, which 

was significantly greater than all groups of transected animals (p << 0.01, F(3,26) = 

27.87, one-way ANOVA with Tukey Kramer post hoc corrections).  

 

C-8. Change in Coactivation Density by Dorsal and Ventral Representation 

 Finally, we compared the mean coactivation densities of the groups of animals 

based on the representation of the dorsal and ventral trunk musculature, similar to the 

evaluation of the total trunk area. We found no significant differences between the mean 

coactivation densities in both the dorsal trunk representation and in the ventral trunk 
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representation in the groups of animals (p = 0.19, F(3,26) = 1.69, one-way ANOVA with 

Tukey Kramer post hoc corrections).  

 

C-9. Effect of Spinalization and Rehabilitation on Trunk Motor Cortex Migration 

Next, we evaluated the location of the trunk motor cortex representation relative to the 

brain midline and the bregma landmark, across all of the groups of animals, as we had 

done in previous studies [147], [148]. In intact rats, the sites corresponding to trunk 

motor cortex are mostly caudal to the bregma line and within 2-3 mm of the midline of 

the brain. Using our maps, we calculated a “center of gravity” for the trunk motor 

representation in all of the animals, identifying the mean location of trunk sites relative to 

the midline (x-cog) and the bregma line (y-cog). We measured these locations in mm 

from midline and from bregma, with negative y-cog values indicating locations caudal to 

the bregma line. We compared the mean x-cog and y-cog between groups to identify any 

significant shifts in either direction.  

 In the x-direction, across all groups, there was no significant difference in the 

distance from the midline between groups (p = 0.18, F(3,26) = 1.74, one-way ANOVA 

with Tukey Kramer post hoc corrections). However, in the y-direction, we did find 

significant differences in y-cog between groups (p = 0.0006, F(3,26) = 8.08, one-way 

ANOVA with Tukey Kramer post hoc corrections). In particular, we observed that the 

normal group (-0.59 ± 0.32 mm) had a significantly lower y-cog than the ATX-R (1.11 ± 

0.17 mm) and NTX-R groups (0.64 ± 0.22 mm). The y-cog of the wsBDNF group (-0.29 

± 0.42 mm) was also significantly different from that of the ATX-R group, though it was 

not significantly different from those of the NTX-R group or the normal group.  
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C-10. Overlap of Trunk and Forelimb Representation in Motor Cortex 

In addition to the location of the trunk motor cortex representation relative to bregma, we 

observed accompanying changes to the coactivation between trunk and forelimb motor 

cortex. As this area rostral to the bregma line is the site of forelimb representation, we 

expected to observe changes in this overlap between these motor representation areas due 

to the migration of the trunk motor cortex further rostral, even though it was not a 

significant change. 

 To best describe this change, we reorganized our results into three categories of 

possible motor responses: trunk only, trunk and forelimb, and trunk and hindlimb. When 

comparing the number of sites that only corresponded to trunk motor responses across all 

three groups, we observed the normal group had significantly less sites than the NTX and 

the wsBDNF groups (p = 0.0106, F(3,26) = 4.57, one-way ANOVA with Tukey Kramer 

post hoc corrections). There were no significant differences between any of the other 

groups. In previous studies comparing various ATX rehabilitation paradigms with intact 

animals [148], there had been a significant increase in trunk only sites in the ATX model, 

but this significance disappeared in our ANOVA.  

 When comparing the changes in sites corresponding to coupling of trunk and 

forelimb motor responses, we observed that there was a significant difference between 

the intact group of animals and the ATX animals rehabilitated with robot (p = 0.0358, 

F(3,26) = 3.31, one-way ANOVA with Tukey Kramer post hoc corrections). There were 

no other significant differences among groups.  

Finally, we compared the coupling of trunk and hindlimb motor responses across 

all groups. Unsurprisingly, as hindlimb responses were not observed in any of the 
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spinalized groups, there was a significant difference between the intact group and all of 

the other groups (p << 0.01, F(3,26) = 174.66, one-way ANOVA with Tukey Kramer 

post hoc corrections).   
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Figure 4-3. Overview of the rehabilitation scheme of the the six animals chosen for ICMS 
cortical mapping procedure. (A) Rehabilitation regimen for animals selected from previous 
studies in our lab. (B) Research design of the animals chosen for this study.  

 
 

 
Figure 4-4. Locomotor recovery of the animals selected for this study. (A) Significant 
improvement in AOB behavior score, with a final mean AOB of 15.33 ± 2.01 (* p << 
0.001, paired t-test). (B) wsBDNF animals relied significantly less on robot to maintain 
pelvic height at end of training (* p = 0.0011, paired t-test). (C) wsBDNF animals had a 
mean start %WSS of 0, but significantly improved to 50.18 ± 15.37% (* p = 0.022, paired 
t-test).   

A
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Figure 4-5. Representative cortical maps of select wsBDNF rats in this study, obtained via 
ICMS. Maps show only sites that activated forelimb and trunk musculature at 75 µA 
currents. In all of the maps, the bregma landmark is at (0,0). The rostral direction is in the 
positive y-direction, and caudal is in the negative y-direction. Lateral is in the positive x-
direction, and medial is in the negative x-direction.   
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Figure 4-6. Total trunk motor area in the different groups of animals. Trunk motor area 
sites were determined by activation of trunk musculature as a response to ICMS. This was 
divided by the total number of sites corresponding to forelimb, neck, and trunk activation. 
To reduce error and bias in comparison with the motor cortex of normal, intact rats, trunk 
area was normalized to a percentage of the nonfacial motor cortex and hindlimb-exclusive 
responses were omitted. All data shown is mean ± SEM. There was a significant different 
between the total trunk area as a percentage of nonfacial motor cortex of normal rats and 
ATX rats rehabilitated with robot. This was also true between the ATX rats and the 
wsBDNF rats. (* p < 0.05, F(3,26) = 8.47, one-way ANOVA with Tukey Kramer post hoc 
corrections).   
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Figure 4-7. Segmental view of the changes to total trunk area as a percentage of nonfacial 
motor cortex, as a result of injury and rehabilitation. All data presented is in terms of mean 
± SEM, and was normalized without hindlimb activity. The mid-thoracic level was above 
the site of injury, whereas the low-thoracic and lumbar levels were below the site of injury. 
Sites with activation of musculature at different levels were counted as contributing to 
those different levels. There was no significant difference between different groups in the 
low-thoracic region of trunk musculature. (*p = 0.0006, F(3,26) = 7.94), one-way ANOVA 
with Tukey Kramer post hoc corrections;  ** p = 0.0034, F(3,26) = 5.87, one-way ANOVA 
with Tukey Kramer post hoc corrections).   



 

 

134 

 
 
 
 
 

 
 

 
 
Figure 4-8. Changes in dorsal and ventral representation of the total trunk area as a 
percentage of nonfacial motor cortex, as a result of injury and rehabilitation. All data 
presented is in terms of mean ± SEM, and was normalized without hindlimb activity. All 
trunk responses were divided into three categories: dorsal and ventral responses, dorsal 
only, and ventral only. There was no significant difference in the ventral trunk musculature 
responses as a result of ICMS between the different groups of animals. (* p = 0.0012, 
F(3,26) = 7.13, one-way ANOVA with Tukey Kramer post hoc corrections  
** p = 0.003, F(3,26) = 6.02, one-way ANOVA with Tukey Kramer post hoc corrections).   
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Figure 4-9. Relative location from bregma of trunk motor representation in the cortex 
following injury and rehabilitation. The bregma landmark was designated the point of 
origin (0, 0). Medial-lateral distance was calculated along the x-axis, with lateral movement 
in the positive x-direction. There was no significant difference in the x-center of gravity 
(cog) among the groups of animals. Rostral-caudal distance was calculated along the y-
axis. Rostral movement was determed in the positive y-direction from bregma. Normal, 
intact animals have a significantly more caudal y-cog than the ATX and NTX animals 
rehabilitated with robot (* p = 0.0006, F(3,26) = 8.08, one-way ANOVA with Tukey 
Kramer post hoc corrections). The mean y-cog of the trunk motor cortex in wsBDNF rats 
was not significantly different from that of the normal, intact rats.   
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Figure 4-10. (A) Changes to the density of coactivation of trunk musculature as a result of 
injury and rehabilitation. Coactivation density is defined as the total number of muscles 
activated per site of trunk activation, determined by EMG analysis. There was no 
significant different between the NTX and ATX groups rehabilitated with robot. The 
normal group of intact rats had significantly more coactivation of trunk musculature per 
site than any of the other groups. The wsBDNF animals had significalty less coactivation 
density per site than the other groups. (*p << 0.01, F(3,26) = 21.75, one-way ANOVA with 
Tukey Kramer post hoc corrections). (B) Changes to the coactivation density of trunk 
musculature viewed by dorsal and ventral aspects of the animal. There were no significant 
different across groups. All data is presented as mean ± SEM.  
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Figure 4-11. Changes in coactivation density per site of trunk activation, divided by levels 
above and below the site of transection. The mid-thoracic level is above the site of injury, 
and the other two levels are below. All data is presented as mean ± SEM. There was no 
significant different in coactivation density of sites in the mid-thoracic level. In the low-
thoracic region, the wsBDNF rats had significantly less coactivation per site than both the 
intact animals and the NTX rats rehabilitated with robot. At the lumbar region, intact 
animals had significalty more coactivation per site than all of the other groups of animals. 
(*p = 0.012, F(3,26) = 4.44, one-way ANOVA with Tukey Kramer post hoc corrections; 
** p << 0.01, F(3,26) = 27.87, one-way ANOVA with Tukey Kramer post hoc corrections). 
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Figure 4-12. Changes to the coactivations of trunk musculature with the limbs, as a result 
of injury and rehabilitation. Responses in the musculature as a result of ICMS in the cortex 
was divided into three categories: trunk only, trunk and forelimb (FL) responses, and trunk 
and hindlimb (HL) responses. Predictably, there were no trunk and HL responses in any of 
the transected animals. There was no statistical test done in that case. Intact rats had 
significantly less trunk only responses than the NTX animals trained with robot and the 
wsBDNF animals. (* p = 0.0106, F(3,26) = 4.57, one-way ANOVA with Tukey Kramer 
post hoc corrections). In addition, intact rats had significantly less trunk and forelimb 
responses than the ATX animals trained with robot assistance (** p = 0.0358, F(3,26) = 
3.31, one-way ANOVA with Tukey Kramer post hoc corrections). All data is presented as 
mean ± SEM).   
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D. Discussion 

In this chapter, we examined the changes in the trunk motor cortex in response to SCI 

and active, stepping rehabilitation in the ATX model to understand the extent of 

reorganization that occurs with active stepping and robot assistance. There have been 

many studies investigating how complete SCI itself leads to somatotopic reorganization 

of the motor cortex [141], [142], a phenomenon that has also been observed and studied 

in the somatosensory cortex, as well [143], [144]. Recently, there has been interest in 

understanding how the process of locomotor rehabilitation affects cortical reorganization. 

Previous work in our lab was the first to show and characterize changes in trunk motor 

cortex representation as a result of SCI in the adult rat model (ATX) who were 

rehabilitated without active stepping [148]. We have also shown the effects of active 

stepping rehabilitation on the trunk motor cortex of adult rats transected as neonates 

(NTX) [147]. Each of these paradigms of SCI have characteristic changes and effects on 

the trunk motor cortex, which will be discussed further later. However, there exists in a 

gap in our understanding of the role of active stepping rehabilitation in the ATX model, 

to which we believe our current study will provide insight. In this study, we describe the 

extent to which active stepping patterns in the ATX model affect the total trunk motor 

area in the cortex, as well as change the synergies and coactivation found within this area.  

Our interest in the trunk motor cortex lies in its central role in our rehabilitation 

modality of robot-assistance during treadmill training. Previous studies in humans and in 

the quadrupedal models for locomotion have emphasized the importance of the trunk in 

gait stability, as well as movement [12], [14], [200]. In a healthy human or intact model, 

the neural networks for locomotion are managed by supraspinal control, in the brain, 
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which coordinates with spinal networks to provide activation of necessary musculature 

for movement. However, in SCI, there is a disruption of the normal architecture of the 

central nervous system, and descending cortical control can be interrupted – completely, 

in some cases. There is still intact neuronal circuitry below the site of injury that can be 

manipulated by external interventions – pharmacological [56], [161], [201] and epidural 

stimulation [40], [89], [156], for example – to produce rhythmic locomotor activity, and 

in some cases, robust stepping.  

Nonetheless, this does not exclude the importance of the cortex in locomotion and 

rehabilitation in the context of movement with complete SCI. Previous studies have 

shown that the cortex is essential for postural stability and propulsion of movement after 

SCI [165], [202]. Indeed, in our lab’s previous investigations into the role of the trunk 

motor cortex in SCI rehabilitation, we discovered that, in the NTX model, animals whose 

trunk motor cortices are lesioned prior to recovery to adulthood do not develop weight-

supported stepping [140]. Moreover, when previously stepping NTX animals are lesioned 

in the trunk motor cortex they lose their ability to weight support step (Oza – unpublished 

work). In the ATX model where animals were passively rehabilitated without stepping, 

we discovered that the trunk motor cortex expanded into deafferented areas and 

developed new synergies with the forelimbs, significantly changing from normal 

topography. As a result, we believe that there is a crucial interplay between spinal 

networks and trunk motor cortex in motor control to allow for successful rehabilitation 

with weight-supported stepping in SCI. Therefore, understanding the role and changes in 

trunk motor cortex is an essential component to developing effective rehabilitation 

regimens in SCI. 
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As a result, we employ a unique trunk-based robotic rehabilitation treatment that 

we have shown to be effective in increasing overall locomotion patterns, as well as 

increased weight-supported stepping in the NTX model [31] and in the ATX model 

induced to step with robot-driven epidural stimulation [160]. In Chapter 3, we have also 

shown how our method of robotic intervention at the pelvis can significantly improve the 

ability of ATX animals induced to step with viral delivery of BDNF caudal to the injury. 

Training is crucial for locomotor recovery in the SCI model [18], [19], and our robot 

provides a framework for effective and significant rehabilitation in the rat model.  

Therefore, in our current study, we attempted to fill in the gaps between the 

known literature in trunk motor cortical reorganization – NTX with active stepping and 

ATX with passive rehabilitation – by studying ATX animals that were rehabilitated with 

active stepping induced by BDNF and/or robot-driven epidural stimulation (wsBDNF 

animals). We chose animals from our previous chapters based on their ability to provide 

weight-supported stepping. We treated these animals with Adeno-associated viral 

delivery of brain-derived neurotrophic factor (BDNF) to promote functional recovery, as 

had been observed previously in cats [56] and in rats [71]. Although BDNF changes the 

balance between excitatory and inhibitory neurotransmission in the affected neuronal 

networks [70], it can also result in a partial, but highly significant collapse in function, as 

observed by Ziemlínska et al., Blits et al., and in Chapter 2. However, we discovered that 

we could prevent this collapse, and mitigate loss of function, by combining AAV5-BDNF 

treatment with robot-driven rehabilitation techniques, such as robot-driven epidural 

stimulation.  
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We chose ATX animals based on their functional recovery after rehabilitation. 

The locomotor function of the animals was characterized by robust right and left 

hindlimb alternations of large amplitude, significantly improved weight support as a 

result of training, and regular plantar foot placement during stepping. We did not 

discriminate between animals that had been treated with robot-driven epidural stimulation 

or without. As our therapies (AAV5-BDNF, robot assistance at the pelvis, and robot-

driven epidural stimulation) act below the site of injury, we do not believe that there are 

significant separate effects on the cortex, as there is no ascending sensory information 

that is relayed to the brain. We also only selected animals that did not have collapses in 

function, or had decreases in ability, regardless of pathological collapse. It was important 

for us to have ATX animals that were rehabilitated fully, as they have developed new 

methods of walking, learning to integrate a neuronal isolated, but activated trunk and 

hindlimbs into their conscious forelimb locomotor patterns. As novel skill acquisition is 

associated with changes in representation in the cortex [150] – [152], [203], and in the 

spinal cord [204], we hypothesize that these rehabilitated animals will have the most 

significant changes in their trunk motor cortex.  

 

D-1. Total Trunk Motor Cortex Area 

To compare the trunk motor cortex amongst groups, we normalized the trunk data to a 

percentage of the nonfacial motor cortex. We selected sites that corresponded to forelimb, 

trunk, and neck movements in response to stimulus, excluding the hindlimb in our 

selection of nonfacial responses. This eliminated any bias as a result of hindlimb 

responses in the intact animals, which would artificially decrease the representation of the 
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trunk motor cortex as a percentage of the total motor cortex, as transected animals do not 

have hindlimb representation.  

In the context of loss of motor output as a result of limb amputation, spinal cord 

injury, or peripheral nerve injuries, the motor cortex begins to reorganize by a predictable 

loss of motor representation corresponding to specific injury. Furthermore, adjacent 

motor areas enlarge and begin to encroach into these deafferented areas [145], which can 

have pathological sequelae, such as phantom limb sensation [124] or allodynia [205]. In 

the ATX model with passive rehabilitation, we demonstrated this phenomenon in the 

trunk motor cortex, where the overall total area of the trunk motor cortex significantly 

increased, as a percentage of the nonfacial motor cortex [148]. Though some expansion 

did occur in the NTX model with active rehabilitation, the difference was not significant. 

We discovered that similar to the NTX model, the total trunk motor cortices in our ATX 

animals rehabilitated with active stepping did not have significant expansion. It is of 

particular interest to us, considering that both the NTX and the wsBDNF animals had 

high locomotor function while trained on robot, characterized by weight-supported 

stepping.  

To elucidate further the differences between the total trunk area in the groups of 

animals, we compared the total trunk motor cortex area based on the responses in the 

different segmental levels of the trunk musculature – above injury at the mid-thoracic 

level, and below injury at the low-thoracic and lumbar levels. Unlike the non-stepping 

ATX animals, wsBDNF animals had significantly more lumbar representation in the 

cortex, similar to the NTX model, which did not have a significant difference compared 

to the ATX and the intact animals, but still had lumbar responses. The presence of lumbar 
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representation in the ATX model allows us to speculate that the wsBDNF animals were 

able to integrate the induced activity of the trunk muscles and hindlimbs by BDNF into 

their natural locomotion, thereby enriching trunk representation in the cortex and 

recruiting trunk caudal to injury. Observing muscular responses below the site of injury 

in response to cortical stimulus is not uncommon – it has been observed in humans [206] 

and in rats [140], [147]. Both ventral and dorsal trunk musculature are mechanically 

coupled above and below the site of injury as a result of the anatomy of these muscles. In 

addition, there may be multi-segmental distribution of motor nerve pools, as they exit the 

spinal cord, allowing for control above the site of injury to muscles below (Udoekwere – 

unpublished). We also verified the completeness of transection at the time of sacrifice of 

the animal, as well as with histology, to exclude the possibility of an incomplete injury 

resulting in motor responses from stimulus. The presence of lumbar representation in 

both the NTX and wsBDNF groups further advances our belief that the cortex is an 

essential component to weight-supported stepping locomotion after SCI, although the 

extent to which this is the case is still unclear.  

In observations of the wsBDNF animals, we find that that these animals have 

strong muscle tone in their trunk musculature, presumably as a result of activation by 

BDNF in the spinal networks. We believe this spinal, autonomous activation of the 

musculature provides a sturdy base and stability for locomotion in the wsBDNF model. 

When we examine the differences in total trunk motor area in the cortex according to the 

dorsal, ventral, and both dorsal and ventral musculature, we observe that the trunk motor 

cortex of the wsBDNF animals looks like that of the intact animals, and is significantly 

lower from both the passive ATX and the NTX model. The mean total trunk motor area 
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is also lower than that of the intact animals, though it is not significantly lower. This 

suggests to us that the interplay between the spinal networks and cortex has changed in 

these wsBDNF rats, due to the effects of BDNF. While the presence of cortical responses 

still suggests a role for cortical control in rehabilitation after SCI, we suspect the 

increased activation of spinal networks by BDNF has significantly changed the dynamics 

in the interplay of control of trunk, allowing for a larger role for spinal networks.   

 

D-2. Changes to Coactivation Densities 

The change in the dynamics of control is further supported by analyzing the change in 

coactivation densities among the different groups. We defined coactivation density in our 

previous studies of the trunk motor cortex [147], [148] as the total number of trunk sites 

activated per site in the trunk motor cortex as a result of stimulus. In the context of a 

normal, intact rat, coactivation density gives us a glimpse into how the trunk motor cortex 

coordinates trunk activation for locomotion. In the case of the intact animal, the 

coactivation density is significantly higher than those of all spinalized groups, suggesting 

a high level of organization of muscle groups in the coordination of movement, gait, and 

postural stability. This is lost in the spinalized animals, but particularly so in the 

wsBDNF group, which has a significantly lower mean coactivation density than all other 

groups. Earlier, we suggested that BDNF activates trunk musculature in the spinal 

networks, emphasizing spinal control over cortical control in rehabilitation post-SCI. In 

the successfully rehabilitated wsBDNF animals, these animals have adapted to the 

BDNF-associated trunk activation, integrating trunk and hindlimb movements into their 

movement patterns. The corresponding changes in the cortex suggests that these animals 
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have adapted successfully, which is consistent with previous studies in cortical 

reorganization following novel skill acquisition [150] – [152], [203].  When we examine 

the coactivation density differences further, by segmental levels above and below the site 

of injury, we discover that the main differences lie at the low-thoracic and lumbar 

musculature. This further bolsters our belief that the activation of trunk musculature due 

to BDNF is a key component to changing the nature of the relationship between spinal 

cord and cortex in locomotion in these animals.  

 

D-3. Muscle Synergy 

An interpretation of our findings that we must consider is what the relationship between 

the spinal networks and cortical control suggests in the context of muscle synergy and 

modularity. There are many different theories of how the cortex controls and integrates 

different muscle activations to provide seamless movement or accomplish a task [104], 

[207]. Some studies hypothesize that muscles create synergies with other complementary 

muscles to for movement. This allows for a “hierarchical control strategy” [105], wherein 

multiple simple synergies can be combined to perform a task. Based on previous work in 

our lab in the frog model [107], [108], we believe that muscle synergies are a relatively 

primitive means to coordinate movement, which have become integrated from 

evolutionarily conserved neural systems into more complex movements for more 

complex vertebrates [106]. In intact animals, we believe the motor cortex is responsible 

for activating and coordinating these synergies downstream in the spinal cord [208]. In 

the case of injury, however, these “primitive” synergies become isolated from supraspinal 

control, and thus, movements can be elicited separately [114], which is what we may be 
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observing in the wsBDNF animals where BDNF is activating these rudimentary 

synergies.  

 In the case of complete SCI, we observe there is an overall decrease in cortical 

control of these trunk muscle synergies, or an increase in fractionation of cortical control. 

In the case of the wsBDNF animals, this fractionation is even more significant. This is 

consistent with studies that have demonstrated that there are changes to and 

reorganization of modularity as a result of pathology, such as stroke [115]. Indeed, neural 

injury can change the ways that synergies interact with one another – by adding, merging, 

or fractionating synergy – or even stay the same [118]. Yet, our wsBDNF animals are 

able to produce weight-supported steps and have high function, compared to the 

passively rehabilitation ATX animals and the NTX animals. Thus, our present study 

provides valuable insight into how muscle synergies coded in the spinal network can be 

exploited for rehabilitation in the absence of direct cortical control. The fact that we still 

observe trunk representation – especially low-thoracic and lumbar muscles – suggest that 

the cortex is still essential to locomotor rehabilitation, but it may play a smaller role than 

before to modulate or fine-tune trunk musculature as the rat adapts and integrates an 

activated trunk and hindlimb movement into its newly acquired gait.  

 

D-4. Displacement of Trunk Motor Cortex 

We also observed that the different rehabilitation paradigms had significantly different 

effects on the displacement of the trunk motor cortex relative to the bregma line. In our 

previous study exploring passive rehabilitation in the ATX model, we observed that there 

was a significant rostral migration of the trunk motor cortex away from the bregma 
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landmark [148]. This was accompanied by increased coupling of forelimb and trunk 

muscles, as a result of the loss of hindlimb activity. This is consistent with previous 

studies that have observed and documented this phenomenon in humans with SCI [209]. 

This rostral shift was observed, but not as significant in the NTX model. Indeed, Oza et 

al. demonstrated that the trunk motor cortex in the NTX model exhibited more “normal 

topography” [147], with trunk and forelimb coupling not significantly different from the 

intact animals.  

 In the case of the wsBDNF animals, we find that the mean center of gravity in the 

y-direction is not significantly different from the intact animals, as well, but is 

significantly closer to bregma than the passively rehabilitated ATX model. Furthermore, 

though it is not significantly different from that of the NTX model, its mean is negative, 

which is closer to normal than the positive y- cog value for the NTX model. Giszter et al. 

[140] and Oza et al. (Oza – unpublished) have both shown the significance of this area of 

the trunk motor cortex in weight-supported stepping in the NTX model by lesioning this 

area and observing failure to obtain or the loss of WSS, respectively. This result in our 

wsBDNF animals further emphasizes not only the cortical control necessary for WSS 

after SCI, but also bolsters the importance of this specific area of the trunk motor cortex.  

 In addition, we also observed there were not significant differences to trunk and 

forelimb coupling in the wsBDNF animals from the intact groups of animals and from the 

passively rehabilitated ATX animals. Given that these animals behave and move 

differently from both the intact and ATX animals, this suggests to us that these wsBDNF 

animals have developed new ways of moving, similar to our earlier assertions that this is 
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a newly acquired skill. We now provide evidence at the cortical level that this may be the 

case.  

  The mechanisms of cortical reorganization and plasticity have been investigated 

in many different studies. The concept of neuroplasticity in the adult nervous system has 

been widely accepted. Though not as malleable as the neonatal nervous system, adult 

brains retain some plasticity that can be shaped and molded by training [210]. However, 

there is a time-dependent component related to training that is necessary to take 

advantage of this plasticity [211]. In the short-term, unmasking of connecting 

intracortical connections can take affect almost immediately as a result of injury [212]. 

Other processes, such as long-term potentiation [213] and cortical synaptogenesis [211] 

may take longer to affect change in the adult brain. Unfortunately, our current study 

cannot address this time component to the reorganization of the trunk motor cortex, as it 

does not discriminate between the short-term and long-term processes involved in the 

changes we observed. Further study into the timeframes of reorganization is an avenue of 

investigation that would be invaluable to understanding the differences between the NTX 

model and the wsBDNF model. It would also allow us to compare timeframes of 

recovery and timeframes of reorganization, which could provide insight into optimal 

rehabilitation regimens in adult SCI.  

 

E. Conclusion 

Our present work has shown how active rehabilitation with BDNF in the ATX model 

may change the topography and organization of the trunk motor cortex. In doing so, it 

also reveals the intricacies of the relationship between spinal networks and cortex in 
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control of the trunk for locomotion and gait stability. Further studies involving active 

rehabilitation using methods other than BDNF may shed more light into whether this 

change in the dynamics of that relationship is due to the mechanism of action of BDNF or 

is a result of adaptations in the ATX model. Also, we believe this study further bolsters 

our belief that muscle synergies and modules of simple, primitive movements are 

hardwired into the spinal cord, and can be accessed and manipulated at the cortical level 

in intact animals. From a clinical perspective, the results of this study may help us to 

understand better how rehabilitation can be used as an effective tool at the cortical level, 

to mitigate any pathology from cortical reorganization resulting from nerve injuries.  
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CHAPTER 5: SUMMARY 
 

The work presented in this dissertation is the first investigation into how robotic 

technology may be used in combination with viral delivery of BDNF, in a rat transected 

completely as an adult. It uses novel techniques and rehabilitation paradigms unique to 

our laboratory to devise effective locomotor recovery in the complete SCI model. The 

overall goal of this work was to understand how biological therapies, such as exogenous 

neurotrophin delivery, and robotic therapies might interact – synergistically or 

antagonistically – in a rehabilitating animal, so as to employ or translate these methods 

into clinical applications. As a result of investigating these techniques, we also developed 

greater understanding and appreciation for the cortical and spinal cord neural 

mechanisms that underlie quadrupedal (and bipedal) locomotion.    

 In Specific Aim I, we successfully attempted to adapt our unique robot-assisted 

treadmill training technique to the ATX model of SCI to increase overall locomotor 

behavior, body weight support, and weight-supported stepping. Previous work in our lab 

has shown this to be an effective means of rehabilitation in the NTX model, where robot 

assistance can help an animal to discover the neural control to integrate already existing 

hindlimb activity – regardless of how robust – into natural quadrupedal locomotion. 

Outside of the neonatal model, this has been shown to work in only when ATX animals 

are induced to step with robot-driven epidural stimulation. The work in Aim I showed 

that exogenous BDNF delivery can be used to induce stepping in the ATX model, and 

those stepping patterns can be enhanced by the use of robot interaction at the pelvis. The 

work in this aim also corroborated the existence of a partial, but highly significant, 

collapse in function observed previously in studies using BDNF to induce stepping in 
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ATX rats. Collapse not only hinders locomotor recovery, but has serious co-morbid 

health effects, such as recurrent bladder infections, skin lesions, and muscle wasting. 

Although collapse did occur in our animals trained with robot assistance, our work 

showed that robotic interventions can significantly improve functionality before loss of 

function, and may indeed help to maintain a high level of function, after collapse. We 

were also able to characterize specifically how collapse in function affects locomotor 

behavior, body weight support, and weight-supported stepping patterns. 

 To further understand the nature of exogenous BDNF’s interactions with a 

rehabilitating spinal cord, we attempted to combine viral delivery of BDNF with robot-

driven epidural stimulation, in Specific Aim IIA. Statistical analysis of the experimental 

data showed that ATX animals treated with robot-driven epidural stimulation are able to 

significantly improve hindlimb function. Their recovery is characterized by robust 

alternations of the hindlimbs, body weight support, and plantar foot placement during 

stepping. Based on our battery of outcome measures, however, the improvement 

observed in these animals is not significantly different from that observed in the animals 

of Aim I, who received exogenous BDNF and robot-assistance only. However, of 

particular interest to us is the role epidural stimulation played in preventing the collapse 

of function observed with exogenous BDNF use in the locomotor rehabilitation. This is 

the first occurrence of this collapse being prevented, in the literature, and we believe this 

to be a highly significant discovery. This has meaningful clinical applications, as we 

apply epidural stimulation to reduce the co-morbid effects of exogenous BDNF use to 

provide better general health in our treated animals.  
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 Furthermore, in Specific Aim IIB, we discovered that exogenous BDNF has a 

significant effect on the parameters of epidural stimulation, particularly stimulus 

intensity. ATX animals treated with AAV5-BDNF had significantly lower thresholds to 

elicit hindlimb motor activity, as compared to control animals that received a sham virus, 

regardless of whether the BDNF-treated animals received robot-driven or conventional 

epidural stimulation. This was observed on the first day of training (ten days after injury 

and injection) and persisted throughout training. Indeed, the significance in the 

differences between groups increased as a function of time. This finding is not entirely 

surprising, as BDNF induces significant structural changes to the excitability of the spinal 

cord and motor neural networks.   

 Finally, in Aim III, we used intracortical microstimulation to further understand 

the effects of active rehabilitation on the trunk motor cortex in the ATX rat. Based on the 

literature and previous studies in our lab, our weight-supporting, stepping ATX animals 

filled a gap in our knowledge of how rehabilitation can affect cortical representation. We 

discovered that active stepping can significantly reduce trunk expansion observed in 

passively rehabilitated ATX animals. This occurs mostly at the level of the mid-thoracic 

trunk region, where there is less expansion of this musculature into adjacent areas. This 

was coupled with a reduced rostral migration of the trunk motor cortex overall. 

 Furthermore, our results from Aim III also give us further insight into the 

relationship between the motor cortex and spinal cord networks in control of trunk 

musculature in the context of locomotion. By delivering exogenous BDNF to the spinal 

cord after injury to induce stepping, we observed increased fractionation of trunk control 

in the cortex, as seen by significantly reduced coactivation density of sites of trunk 
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muscle activation in the weight-supporting ATX animals. However, the existence of 

trunk activation sites in the cortices of these animals strongly support the role of cortex in 

locomotion, though BDNF administration has changed the fundamental relationship 

between the spinal neural networks and supraspinal control. 

 In this way, our study also further elucidates our understanding of muscle 

synergies and motor primitives in locomotion. Loss of direct supraspinal control in this 

case creates an isolated system wherein low-level, “primitive” synergies may be 

expressed, and indeed, required to elicit trunk and hindlimb locomotor behavior. 

Exogenous BDNF may serve to “amplify” these synergies, and observe the basic units of 

trunk and hindlimb activation required for locomotion. Further investigations using EMG 

and spinal neural recordings may deepen our understanding of the results in this aim.  

 By developing a new and innovative rehabilitation scheme in the treatment of 

complete SCI in the adult animal, we have expanded our knowledge of the relationship 

between the cortical and spinal systems involved in locomotion, though we are very far 

from a complete understanding. From a clinical perspective, we have also investigated 

novel means to make current therapies more efficient and effective. In addition, we have 

shown that combining therapies can not only improve recovery, but serve to mitigate 

pathological sequelae derived from individual treatments. We believe this work provides 

a foundation for much further investigation into combination therapies for locomotor 

rehabilitation of SCI. 
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