
DESIGN AND AUTOMATION OF VOLTAGE-SCALED CLOCK NETWORKS

A Thesis

Submitted to the Faculty

of

Drexel University

by

Ahmet Can Sitik

in partial fulfillment of the

requirements for the degree

of

Doctor of Philosophy

December 2015

c© Copyright 2015
Ahmet Can Sitik. All Rights Reserved.

ii

Acknowledgments

This PhD study has been with its ups and downs, and I would like to take this opportunity thank individ-

uals who have helped me during my PhD journey. Without the support, guidance, and friendship of these

individuals, this study would not be possible.

I would like to first thank my advisor, Prof. Baris Taskin, for giving me this opportunity. He has trusted

in my abilities and let me choose my own research direction. This trust has helped me grow as a researcher

and an engineer. I appreciate his time for long discussions, and his initiatives in industry to help grow my

research through collaborations and internships.

I wish to thank my committee members Prof. Nagarajan Kandasamy, Prof. Caglan Kumbur, Prof. Prawat

Nagvajara and Prof. Ioannis Savidis for their encouragement, feedback and direction. All the current and

former members of the Drexel VLSI Lab have provided productive collaborations, advice and kept a positive

working environment. They include Leo Filippini, Swetha George, Dr. Vinayak Honkote, Scott Lerner, Dr.

Jianchao Lu, Michael Lui, Dr. Ankit More, Vasil Pano, Karthik “Paco” Sangaiah, Sharat Shekar, and Dr.

Ying Teng. I would like to specifically thank Ankit for being a friend and a mentor in my first years of PhD

journey, and mentoring me through my Intel journey in my final year. I would also like to acknowledge my

collaborators at Stony Brook University NanoCAS Lab, Weicheng Liu, and Prof. Emre Salman, for their

cooperation, discussion and feedback.

I would like to thank my collaborators in industry for their cooperation, guidance and feedback. They

include Benjamin Huang, Dr. Savithri Sundareswaran and Anis Jarrar from Freescale Semiconductor, Noor

Elahi from Texas Instruments, and Ravinder Rachala from AMD. Their feedback helped me improve my

research ideas and gave me a chance to tackle real world problems of the microelectronics industry.

I would like to thank my supervisors and mentors at my two internship experiences. I would like to thank

Dr. Kayhan Kucukcakar for giving me the opportunity to intern at PrimeTime, and his continued guidance

and discussion to broaden my perspective in physical design research. I would also like to thank my mentors

Dr. Li Ding and Dr. Ruijing Shen for their guidance, and patience with me. I would like to thank Dr. Dinesh

iii

Somasekhar, my supervisor at Intel, for the opportunity, and his guidance throughout my journey to prepare

me for my future career at Intel. I would like to thank my mentors Dr. Ankit More, Emily J. Shriver, and Dr.

Ahmed Abousamra for the weekly discussions, and helping me solidify my ideas throughout the project.

All my friends in Philadelphia who were with me through the ups and downs of my PhD journey. I would

like to extend special thanks to Prof. Ertan Agar, Basak Doyran, Cem Guvener, Prof. Utku Kursat Ercan,

Emre Olceroglu, and Dr. Reyhan Taspinar for being great friends.

I would like to thank my parents, Mehmet and Zeynep Sitik, to whom this thesis is also dedicated, for

their love and support.

iv

Table of Contents

LIST OF TABLES . ix

LIST OF FIGURES . xiii

ABSTRACT . xv

1. INTRODUCTION . 1

1.1 Problem Statement . 2

1.2 Contributions of the Dissertation . 3

1.2.1 Contributions on Low Swing Clocking . 3

1.2.2 Contributions on Multi-Voltage Single-Clock Domain Clock Mesh Design 4

1.3 Organization of the Dissertation . 5

2. VOLTAGE-SCALED CLOCK DISTRIBUTION NETWORKS 6

2.1 Low Swing Clock Trees . 8

2.1.1 Single-Vdd vs. Dual-Vdd Low Swing Clocking . 8

2.1.2 Low Swing Clocking with Conventional Flip-Flops . 8

2.1.3 Low Swing Clocking with Low Swing-Aware Flip-Flops 12

2.1.4 Low Swing Clocking in FinFET Technology . 18

2.1.5 Low Swing Clocking in Gated Clock Trees . 21

2.2 Multi-Voltage Single-Clock Domain Clock Distribution Networks 23

2.2.1 Multi-Voltage Clocking with Clock Tree Topology . 24

2.2.2 Multi-Voltage Clocking with Clock Mesh Topology . 25

2.2.3 Effect of PVT Variations in Multi-Voltage Clocking . 25

3. FEASIBILITY STUDY OF LOW SWING CLOCKING . 28

3.1 Introduction . 28

3.2 Observations on Local Timing . 30

3.3 Methodology . 33

v

3.3.1 Buffer Characterization . 34

3.3.2 Iterative Skew Minimization . 35

3.4 Experimental Analysis . 39

3.4.1 Simulation Setup . 39

3.4.2 Results . 40

3.5 Conclusion . 42

4. DESIGN AUTOMATION FOR LOW SWING CLOCKING 44

4.1 Introduction . 44

4.2 Methodology . 46

4.2.1 Low Swing DFF Design . 46

4.2.2 Clock Timing Modeling . 50

4.2.3 Slew-Aware Low Swing CTS . 51

4.3 Experimental Analysis . 53

4.3.1 Simulation Setup . 53

4.3.2 Results at 45nm Technology . 54

4.3.3 Results at 32nm Technology . 55

4.3.4 Discussion on the Effect of Interconnect Resistance . 56

4.4 Conclusion . 56

5. FINFET-BASED LOW SWING CLOCKING . 65

5.1 Introduction . 65

5.2 Methodology . 67

5.2.1 FinFET-Based Clock Buffer Design . 68

5.2.2 Timing Characterization of the FinFET-Based Clock Buffer Design 69

5.2.3 Low Swing DFF Design . 69

5.2.4 Low Swing Clock Tree Design . 71

5.3 Experimental Analysis . 73

5.3.1 Simulation Setup . 73

vi

5.3.2 Low Swing vs. Full Swing Clocking in FinFET Technology 75

5.3.3 FinFET-based Low Swing Clocking for High Performance 77

5.3.4 FinFET-based Low Swing Clocking for Ultra Low Power 78

5.3.5 Leakage Power Comparison . 79

5.4 Conclusion . 80

6. AN IMPROVED ALGORITHM FOR
SLEW-DRIVEN CLOCK TREE SYNTHESIS . 81

6.1 Introduction . 81

6.2 Deferred Merge Embedding (DME) . 84

6.2.1 Step 1: Merging Pair Selection . 84

6.2.2 Step 2: Merging Point Computation . 85

6.2.3 Step 3: Net Splitting . 86

6.3 Proposed Improvements over DME . 86

6.3.1 Step 1: Improvements in Merging Pair Selection . 86

6.3.2 Step 2: Improvements in Merging Point Computation . 87

6.3.3 Step 3: Improvements in Net Splitting . 90

6.4 Experimental Analysis . 92

6.4.1 Simulation Setup . 92

6.4.2 Results at 45nm Planar CMOS Technology . 93

6.4.3 Results at 20nm FinFET Technology . 95

6.4.4 Run Time Analysis . 97

6.5 Conclusion . 98

7. AN IMPROVED ALGORITHM FOR
LOW SWING GATED CLOCK TREE SYNTHESIS . 99

7.1 Introduction . 99

7.2 Background . 100

7.3 Methodology . 102

7.3.1 DME Method with Proposed Improvements . 102

vii

7.3.2 Local Clock Tree Synthesis . 104

7.3.3 Top-Level Clock Tree Synthesis . 105

7.3.4 Complexity Analysis . 107

7.4 Experimental Analysis . 108

7.4.1 Simulation Setup . 108

7.4.2 Experimental Results . 109

7.4.3 Run Time Analysis . 111

7.5 Conclusion . 111

8. MULTI-VOLTAGE SINGLE-CLOCK DOMAIN
CLOCK MESH DESIGN . 113

8.1 Introduction . 113

8.2 Methodology . 114

8.2.1 Mesh Size Selection . 115

8.2.2 Pre-mesh Driver Selection . 116

8.2.3 Pre-mesh Tree Synthesis . 117

8.3 An Improved Methodology for Variation-Awareness . 118

8.3.1 Pre-mesh Driver Selection . 119

8.3.2 Multi-Corner-Aware Pre-mesh Tree Synthesis . 120

8.4 Experimental Analysis . 122

8.4.1 Simulation Setup . 122

8.4.2 Results for Single-Corner Analysis . 123

8.4.3 Results for Multi-Corner Analysis . 126

8.5 Conclusion . 128

9. CONCLUSIONS AND FUTURE DIRECTIVES . 130

9.1 Conclusions . 130

9.1.1 Conclusions on Low Swing Clock Trees . 130

9.1.2 Conclusions on Multi-Voltage Single-Clock Domain Mesh 131

9.2 Future Directives . 131

viii

9.2.1 Future Directives on Low Swing Clock Trees . 132

9.2.2 Future Directives on Multi-Voltage Single-Clock Domain Clock Mesh 132

BIBLIOGRAPHY . 133

VITA . 138

ix

List of Tables

2.1 The comparison of full swing and low swing insertion delay characteristics at 20nm FinFET and
32nm planar CMOS technologies for s38584. 20

2.2 The leakage power consumption comparison of low swing and full swing implementations of
clock trees built on s38584, in 20nm FinFET and 32nm planar CMOS technologies. 22

2.3 Insertion delay profile of the motivational clock tree example at two voltage domains shown in
Figure 2.15. The maximum and the minimum insertion delays that define the global skew are
marked with bold. 26

2.4 Improved skew values with a delay insertion to the 1.2V Domain. 27

3.1 Measured TTS values, and the effect of a low swing clock supply on the local timing (average and
maximum slack decrease) under the same clock slew. The decreased slack, induced by increased
clock-to-q delay, is traded off for the power savings of low swing clocks. 32

3.2 A typical lookup table for NBUFFX8 of Synopsys SAED Library at 80% of Vdd . The typical
capacitance is found to be 45fF at a 100ps slew constraint, using the OPTIMIZE function of
HSPICE. The parent buffer (Level-1) is fixed at NBUFFX8, and the child buffer (Level-2) is
varied to observe the effect of sizing on delay. 36

3.3 Normalized power and skew comparison against a full swing (FS) clock tree (CT), and an un-
optimized low swing (LS) clock tree (CT) synthesized by IC Compiler, at 0.90×Vdd . Time-to-
switch (TTS) constraint is at 88.5ps for this case and is satisfied at all benchmarks. 41

3.4 Normalized power and skew comparison against a full swing (FS) clock tree (CT), and an un-
optimized low swing (LS) clock tree (CT) synthesized by IC Compiler, at 0.85×Vdd . Time-to-
switch (TTS) constraint is at 93.7ps for this case and is satisfied at all benchmarks. 41

3.5 Normalized power and skew comparison against a full swing (FS) clock tree (CT), and an un-
optimized low swing (LS) clock tree (CT) synthesized by IC Compiler, at 0.80×Vdd . Time-to-
switch (TTS) constraint is at 99.5ps for this case and is satisfied at all benchmarks. 42

3.6 Number of iterations and number of buffers modified for each benchmark circuit at fractions of
Vdd levels. 42

4.1 Power-delay product comparison of the proposed LSDFF and conventional FSDFF as a function
of clock swing. 49

4.2 Floorplan area, number of DFFs, and number of gates information of the benchmark circuits. . . 53

4.3 The comparison of clock tree power (CP in mW), DFF power (DFFP in mW), clock skew (Sk. in
ps), clock slew (Sl. in ps) and the clock-to-q delay (C2Q in ps) for the baseline full swing (FS),
the low swing (LS) implementation with the methodology introduced in Chapter 3, and proposed
low swing (LS) methodology for 45nm technology along with wire 1 running at 1 GHz and worst
case corner. Low swing clock voltage is at 0.65×Vdd . 58

x

4.4 The comparison of clock tree power (CP in mW), DFF power (DFFP in mW), clock skew (Sk. in
ps), clock slew (Sl. in ps) and the clock-to-q delay (C2Q in ps) for the baseline full swing (FS),
the low swing (LS) implementation with the methodology introduced in Chapter 3, and proposed
low swing (LS) methodology for 45nm technology with wire 2 running at 1 GHz and worst case
corner. Low swing clock voltage is at 0.75×Vdd . 59

4.5 The comparison of clock tree power (CP in mW), DFF power (DFFP in mW), clock skew (Sk. in
ps), clock slew (Sl. in ps) and the clock-to-q delay (C2Q in ps) for the baseline full swing (FS),
the low swing (LS) implementation with the methodology introduced in Chapter 3, and proposed
low swing (LS) methodology for 45nm technology with wire 1 running at 1.5 GHz and worst
case corner. Low swing clock voltage is at 0.75×Vdd . 60

4.6 The comparison of clock tree power (CP in mW), DFF power (DFFP in mW), clock skew (Sk. in
ps), clock slew (Sl. in ps) and the clock-to-q delay (C2Q in ps) for the baseline full swing (FS),
the low swing (LS) implementation with the methodology introduced in Chapter 3, and proposed
low swing (LS) methodology for 32nm technology with wire 1 running at 1 GHz and worst case
corner. Low swing clock voltage is at 0.75×Vdd . 61

4.7 The comparison of clock tree power (CP in mW), DFF power (DFFP in mW), clock skew (Sk. in
ps), clock slew (Sl. in ps) and the clock-to-q delay (C2Q in ps) for the baseline full swing (FS),
the low swing (LS) implementation with the methodology introduced in Chapter 3, and proposed
low swing (LS) methodology for 32nm technology with wire 2 running at 1 GHz and worst case
corner. Low swing clock voltage is at 0.80×Vdd . 62

4.8 The comparison of clock tree power (CP in mW), DFF power (DFFP in mW), clock skew (Sk. in
ps), clock slew (Sl. in ps) and the clock-to-q delay (C2Q in ps) for the baseline full swing (FS),
the low swing (LS) implementation with the methodology introduced in Chapter 3, and proposed
low swing (LS) methodology for 32nm technology with wire 1 running at 1.5 GHz and worst
case corner. Low swing clock voltage is at 0.90×Vdd . 63

4.9 The comparison of clock tree power (CP in mW), DFF power (DFFP in mW), clock skew (Sk. in
ps), clock slew (Sl. in ps) and the clock-to-q delay (C2Q in ps) for the baseline full swing (FS),
the low swing (LS) implementation with the methodology introduced in Chapter 3, and proposed
low swing (LS) methodology for 32nm technology with wire 2 running at 1.5 GHz and worst
case corner. Low swing clock voltage is at 0.95×Vdd . 64

5.1 The comparison of the custom-designed FinFET-based buffer and the planar CMOS-based NBUFFX32
of SAED 32nm library. 69

5.2 The clock-to-q delay (C2Q) and the power consumption comparison of the conventional DFF
topology and the proposed low swing DFF topology in 20nm FinFET technology. 71

5.3 The comparison of clock buffer metrics (number of clock buffers/total buffer capacitance) and
the clock interconnect metrics (total interconnect length/total interconnect capacitance) between
the FinFET-based low swing (LS) and FinFET-based full swing (FS) clock trees, reported with
the information on benchmark circuits. 75

5.4 The performance and power comparison of FinFET-based low swing (LS) and FinFET-based full
swing (FS) clock trees at 3 GHz, reported separately for the clock network and the DFF cells. . . 76

5.5 The performance and power comparison of planar CMOS-based low swing and planar CMOS-
based full swing clock trees at 1.5 GHz, reported separately for the clock network and the DFF
cells. 77

xi

5.6 The clock tree power (excluding DFF) comparison of the proposed FinFET-based low swing (LS)
clocking against the FinFET-based full swing (FS) clocking (both at 3 GHz), and planar CMOS-
based low swing (LS) and full swing (FS) clocking (both at 1.5 GHz), normalized to FinFET-
based low swing. 78

5.7 The total (clock network+DFF) power comparison of the proposed FinFET-based low swing (LS)
clocking against the FinFET-based full swing (FS) clocking (both at 3 GHz), and planar CMOS-
based low swing (LS) and full swing (FS) clocking (both at 1.5 GHz), normalized to FinFET-
based low swing. 78

5.8 The clock tree power (excluding DFF) comparison of the proposed FinFET-based low swing (LS)
clocking against the FinFET-based full swing (FS) clocking (both at 1.5 GHz), and planar CMOS-
based low swing (LS) and full swing (FS) clocking (both at 1.5 GHz), normalized to FinFET-
based low swing. 79

5.9 The total (clock network+DFF) power comparison of the proposed FinFET-based low swing (LS)
clocking against the FinFET-based full swing (FS) clocking (both at 1.5 GHz), and planar CMOS-
based low swing (LS) and full swing (FS) clocking (both at 1.5 GHz), normalized to FinFET-
based low swing. 79

5.10 The leakage power comparison at low swing (LS) and full swing (FS) of both 20nm FinFET and
32nm planar CMOS technologies in µW. 80

6.1 Experimental setup for each step: Pair Selection (Step 1 in Figure 6.1), Merging Point Computa-
tion (Step 2 in Figure 6.1) and Net Splitting (Step 3 in Figure 6.1). 93

6.2 Experiments 1 and 2 to demonstrate the impact of the proposed pair selection and merging point
computation schemes with reported clock slew (Sl.), clock skew (Sk.), and clock power (CP) at
the worst PVT corner of 1 GHz and 0.90×Vdd in 45nm planar CMOS technology. 94

6.3 Experiments 1 and 2 to demonstrate the impact of the proposed pair selection and merging point
computation schemes with reported clock slew (Sl.), clock skew (Sk.), and clock power (CP) at
the worst PVT corner of 1 GHz and 0.63×Vdd in 45nm planar CMOS technology. 94

6.4 Experiments 1 and 2 to demonstrate the impact of the proposed pair selection and merging point
computation schemes with reported clock slew (Sl.), clock skew (Sk.), and clock power (CP) at
the worst PVT corner of 2 GHz and 0.90×Vdd in 20nm FinFET technology. 95

6.5 Experiments 1 and 2 to demonstrate the impact of the proposed pair selection and merging point
computation schemes with reported clock slew (Sl.), clock skew (Sk.), and clock power (CP) at
the worst PVT corner of 2 GHz and 0.63×Vdd in 20nm FinFET technology. 95

6.6 Experiments 1 and 2 to demonstrate the impact of the proposed pair selection and merging point
computation schemes with reported clock slew (Sl.), clock skew (Sk.), and clock power (CP) at
the worst PVT corner of 3 GHz and 0.90×Vdd in 20nm FinFET technology. 96

6.7 Experiments 1 and 2 to demonstrate the impact of the proposed pair selection and merging point
computation schemes with reported clock slew (Sl.), clock skew (Sk.), and clock power (CP) at
the worst PVT corner of 3 GHz and 0.72×Vdd in 20nm FinFET technology. 96

6.8 Run time comparison of all cases in 45nm planar CMOS technology at 1 GHz and 0.63×Vdd , in
seconds. 98

7.1 The floorplan size and the total number of clock sinks of benchmark circuits. 108

xii

7.2 The number of clock sinks at each clock gate cluster and the percentage of gated clock sinks
using the configuration shown in Figure 7.5. 110

7.3 The comparison of clock tree power (CP), clock skew (Sk.) and clock slew (Sl.) of gated clock
tree synthesis methodology in [45], the combination of the gated clock tree methodology in [45]
and the prescribed skew methodology in [8], and the proposed gated clock tree synthesis method-
ology, operating at 0.675V and 1.5 GHz in 45nm technology. 110

7.4 Run time comparison of three methodologies in seconds. 111

8.1 The power and the skew trade-off of the proposed methodology against clock networks synthe-
sized by IC Compiler (ICC). 125

8.2 Created benchmark circuits. 126

8.3 Power comparison of improved multi-corner-aware multi-voltage clock mesh methodology (IM-
CAMV Mesh) over single-voltage domain mesh (SV Mesh) synthesized by IC Compiler (ICC)
and single-corner-aware multi-voltage clock mesh methodology (SCAMV Mesh) at best cor-
ner (BC), nominal corner (NC), and worst corner (WC) in mW. 127

8.4 Skew comparison of improved multi-corner-aware multi-voltage clock mesh methodology (IM-
CAMV Mesh) over single-voltage domain mesh (SV Mesh) synthesized by IC Compiler (ICC)
and single-corner-aware multi-voltage clock mesh methodology (SCA Mesh) at best corner (BC),
nominal corner (NC), and worst corner (WC) in ps, overall skew is bold. 128

xiii

List of Figures

1.1 Clock network topologies. 2

1.2 A typical low swing clock tree. The clock signal is distributed with a lower swing (green) while
the data is still at full swing (red). 2

2.1 The increase in clock skew in ps and in the percentage of the clock period (at 500 MHz), inter-
polated using 5 different low swing values at Vddr ={0.95,0.90,0.85,0.80,0.75}×Vdd 9

2.2 Clock slew at the flip-flop sinks, interpolated with 5 different low swing values. After 90% of Vdd
case, the signal cannot reach 90% level, thus the traditional clock slew definition (10% to 90%
interval) is not useful. 11

2.3 While the slew is the same, time-to-switch (TTS) is defined to consider the effect of clock swing
scaling in addition to the slew itself. TTS1 and TTS2 are the TTS values for the full swing and
the low swing signal, respectively. 12

2.4 Normalized power for flip-flop sinks, clock tree and the total power consumption, interpolated
with 5 different low swing values at Vddr ={0.95,0.90,0.85,0.80,0.75}×Vdd 13

2.5 A typical transmission gate based D flip-flop topology driven by a low swing clock signal. . . . 14

2.6 Increase in power consumption when a conventional DFF is driven with a low swing clock signal
while the clock sub-circuit is connected to a nominal Vdd . 14

2.7 Clock skew profile of s35932. 16

2.8 Clock slew profile of s35932. 17

2.9 Clock tree (clock buffers and interconnects) power consumption profile of s35932. 18

2.10 Insertion delay characteristic of 20nm FinFET and 32nm planar CMOS technologies at different
voltage levels interpolated from 100% to 70% of Vdd with 5% decrements. 20

2.11 Clock skew and clock slew profile of s35932 at various voltage levels. Although the clock skew
and slew constraints (50ps and 100ps, respectively) are satisfied at nominal Vdd , violations occur
at low voltage operation. 22

2.12 Power consumption comparison of cases 1 and 2, when normalized to the power consumption at
nominal Vdd . 23

2.13 Typical multi-voltage clock tree topology presented in [62]. 24

2.14 Clock mesh topologies. 25

2.15 Simple two-level clock tree with 16 sinks. 26

3.1 The two alternatives to verify the local timing (slack). In this methodology, the simple and fast
approach (green flow) is used to bound the degradation in timing slack with a pessimistic bound. 32

xiv

3.2 Two-level model for buffer characterization. 35

4.1 Summary of the proposed methodology to achieve low swing clocking while maintaining the
performance requirements. 45

4.2 Proposed DFF topology for low swing clocking. 47

4.3 Correct functionality of the proposed low swing DFF cell in 32nm technology: (a) latching logic-
low, (b) latching logic-high. 48

4.4 Power consumption comparison of the proposed low swing DFF cell (LSDFF) with the conven-
tional full swing DFF cell (FSDFF): (a) 45nm technology, (b) 32nm technology. 48

4.5 Clock-to-q delay comparison of the proposed low swing DFF cell (LSDFF) with the conventional
full swing DFF cell (FSDFF): (a) 45nm technology, (b) 32nm technology. 49

5.1 Latch schematics with FinFETs. 70

6.1 The flowchart of the DME framework. 84

6.2 Permissible merging window and min slew point definitions to identify the merging point. . . . 89

6.3 Slew-aware net splitting demonstration. 90

6.4 The run time of SLECTS vs. number of clock sinks, compared to its quadratic fit. 97

7.1 Motivational example: 4 sinks on the left are gated and 4 sinks on the right are non-gated. Thus,
this results in 5 sinks with different initial delays at the top-level clock tree. 101

7.2 The candidate window is defined as the insertion delay window between the minimum insertion
delay of all nodes and its skewconst neighborhood. 104

7.3 The flowchart for the local clock tree synthesis. 104

7.4 The flowchart for the top-level clock tree synthesis. 105

7.5 The clock gate layout assumed for each benchmark circuit. The gray areas contain the non-gated
clock sinks. 109

8.1 Proposed multi-voltage domain clock mesh topology for multi-corner improvement. 119

8.2 Dual-voltage domain clock mesh; left partition operates at 1.2V and the right partition operates
at 0.8V. 10×10 meshes are visible, and the placed level-shifter is highlighted at the top-middle. . 124

8.3 Single-voltage domain clock mesh; both partitions operate at 1.2V. A 10×20 mesh is synthesized
to cover both the regions. 124

8.4 Dual-voltage domain clock tree; left partition operates at 1.2V and the right partition operates at
0.8V. The placed level-shifter is highlighted at the top-middle. 125

8.5 Skew comparison of single-voltage mesh (SV Mesh) synthesized by IC Compiler (ICC), single-
corner-aware multi-voltage clock mesh methodology (SCAMV Mesh), and improved multi-
corner-aware multi-voltage mesh methodology (IMCAMV Mesh) vs. typical skew budgets (2%,
5% and 10% of clock period). 127

xv

Abstract
DESIGN AND AUTOMATION OF VOLTAGE-SCALED CLOCK NETWORKS

Ahmet Can Sitik
Advisor: Baris Taskin, Ph.D.

In this dissertation, a vital step of VLSI physical design flow, synthesis of clock distribution networks, is

investigated. Clock network synthesis (CNS) involves large and complex optimization problems to achieve

high performance and low power demands of current integrated circuits (ICs). Ineffectiveness of existing

methodologies to provide high performance at lower voltage nodes is the main driver for this dissertation

research. A design and automation flow for voltage-scaled clock networks is proposed to satisfy tight timing

constraints at high frequency (for high performance) and low voltage (for low power) operation.

One implementation of voltage-scaled clock networks is low (voltage) swing clocking, which is a known

technique, yet its applicability remains limited to designs with low performance demands. In this dissertation,

novel methodologies are introduced to i) apply low swing clocking to legacy designs as a power saving

methodology, ii) develop a complete CNS flow for low swing clocking of high performance ICs. These

methodologies include slew-driven approaches that are better suited to future transistor and interconnect

technologies. Second implementation of voltage-scaled clock networks is multi-voltage clocking, which is

another known technique, yet its applicability remains limited to clock tree topology. In this dissertation,

multi-voltage clocking with a clock mesh topology is investigated in order to address a missing aspect in the

current IC design flows.

Practical considerations of the current IC design flows are also investigated in this dissertation to expand

the applicability of the proposed CNS flow. A novel methodology is introduced to facilitate clock gating

within low swing clocking. The applicability of low swing clocking to FinFET technology, which is currently

the industry norm, is shown to be effective.

1

Chapter 1: INTRODUCTION

Clock distribution networks synchronize all sequential elements in an integrated circuit (IC), therefore, they

are vital for timing closure to ensure correct functionality of the IC. Comprising generous resources to deliver

this timing closure, power consumption of the clock network is 30% of the total IC power dissipation [44]. To

this end, design methodologies for CNS are well-studied in the literature and industrial applications to address

the trade-off between timing performance and power consumption [43, 22, 41, 14, 1, 32, 23, 8, 46, 33]. There

are two topologies that have been used for clock distribution networks: 1) Clock tree topology, shown in

Figure 1.1(a), is preferred in low power ICs due to its lower power consumption [23, 8, 46, 33], and 2) clock

mesh topology, shown in Figure 1.1(b), is preferred in high end microprocessor design due to its high timing

performance, despite higher power consumption [43, 22, 41, 14, 1, 32].

One of the well-known techniques to reduce power consumption is to scale down supply voltage swing.

To this end, voltage-scaled clock distribution networks are promising candidates for low power ICs, consid-

ering the significance of clock power consumption. In this dissertation, two aspects of voltage-scaled clock

networks is studied: Low swing clocking and multi-voltage clocking. Low swing clocking is one of the

considered techniques for low power design [39, 2, 64, 36] where the voltage swing of the clock distribu-

tion network is scaled down, while the voltage swing of the rest of the IC (sequential and combinational

logic) is kept at the higher swing in order not to degrade timing in local paths, as shown in Figure 1.2. In

low swing clocking, the power savings on the clock buffers and interconnects obtained through the voltage

scaling trades off clock timing performance, due to higher delay and slower switching (slew) at the clock

sinks (i.e. clock pins of sequential cells). Another technique is to consider multi-voltage designs where the

IC is split into different voltage domains with different performance targets and power budgets. In the par-

ticular case of multi-voltage single-clock domain ICs, synchronization of the clock sinks in the low voltage

domain to the ones in high voltage domain presents a challenge. Although clock tree topology is investigated

for multi-voltage single-clock domain ICs [62, 63], clock mesh topology, which is known to have high tim-

ing performance and immunity to process-voltage-temperature (PVT) variations, is not previously studied.

2

(a) Typical clock tree topology. (b) Typical clock mesh topology.

Figure 1.1: Clock network topologies.

Figure 1.2: A typical low swing clock tree. The clock signal is distributed with a lower swing while the
data is still at full swing.

In this dissertation, the challenges of low swing clocking are addressed, and the use of clock meshes for

multi-voltage single-clock domain ICs is investigated methodically.

1.1 Problem Statement

Voltage-scaled clock networks at reduced voltage swings achieve significant power savings while trading

off timing performance, thereby limiting the applicability of voltage-scaled clock networks to ICs with low

performance demands. To this end, achieving higher timing performance while preserving power savings

of voltage-scaled clock networks is the main problem investigated in this dissertation, in order to extend the

applicability of voltage-scaled clock networks. In particular, two themes of voltage-scaled clock networks

3

are studied in this dissertation. In the first theme, low swing clocking is studied to address the challenges that

degrades the timing performance (clock skew and slew) while preserving the power savings through voltage

scaling. In the second theme, multi-voltage single-clock domain clock meshes are introduced to minimize

power consumption through voltage scaling while preserving the high timing performance of clock mesh

topology.

1.2 Contributions of the Dissertation

The major contribution of this dissertation is to enable high timing performance while achieving significant

power savings through voltage scaling. In Chapter 1.2.1, proposed methodologies that address the challenges

of low swing clocking in high performance ICs are introduced. In Chapter 1.2.2, proposed methodologies

that address the challenges of implementing clock mesh topology in multi-voltage ICs are introduced.

1.2.1 Contributions on Low Swing Clocking

The current art of low swing clocking is effective for low power applications that do not demand high perfor-

mance [39, 2, 64, 36]. The applicability of low swing clocking remains limited for high performance designs

due to the following issues: i) Larger number of buffers and greater interconnect delay increase the insertion

delay on the clock path, leading to excessive clock skew, ii) increased switching time at the clock buffer out-

put (clock slew), leading to excessive buffering to satisfy timing constraints, iii) the effect of the low swing

clock on the local timing and flip-flop power consumption when synchronizing flip-flop cells running at full

data swing, iv) the decrease in the expected power savings of the low swing clocking operation, induced by

the efforts to minimize performance degradation, and v) the lack of practical considerations that current CNS

tools have, such as clock-gating, limiting the applicability of low swing clocking.

In this dissertation, the following novel methodologies are introduced in order to:

1. perform a feasibility study of low swing clocking by optimizing legacy full swing clock trees, address-

ing challenges (i) and (iv) [55, 56],

2. develop a novel slew-aware low swing clock tree and flip-flop design flow in order not to degrade clock

slew and local timing, addressing challenges (i), (ii), (iii), and (iv) [48, 49, 50],

4

3. extend the applicability of low swing clocking flow to FinFET technology [51],

4. develop a novel slew-driven clock tree synthesis flow in order to better address the timing challenges

of low swing clocking for the current and future interconnect technologies, and further improve power

savings [29],

5. facilitate clock gating in low swing clocking flow, addressing challenge (v).

1.2.2 Contributions on Multi-Voltage Single-Clock Domain Clock Mesh Design

Multi-voltage single-clock domain clock distribution networks with a tree topology is a popular technique

used for low-power design methodology with sophisticated automation techniques existent in industrial tool

flows. Multi-voltage single-clock domain clock trees are designed to deliver clock signal with local trees

in each voltage domain and these trees are connected at the upper level through level shifters [62]. What

is missing in the literature and in automation flows is the combination of the clock mesh topology and the

multi-voltage clocking techniques. To this end, the contribution in this dissertation is presented exclusively

targeting clock mesh topology. Multi-voltage single-clock domain clock mesh design is not a straight-forward

process, due to following challenges: i) a single clock mesh is not feasible as its electrically-shorted mesh

wires cannot drive the voltage sinks operating at different voltage levels, therefore, separate meshes are

needed for each domain, ii) the skew among these domains must be balanced, which is a challenge that

arises due to the isolation among the domains, iii) the skew introduced by the variation must be analyzed

and bounded considering multiple PVT corners, as isolated pre-mesh trees in different voltage domains have

different characteristics under PVT variations.

In this dissertation, a multi-voltage single-clock domain clock mesh design is introduced for the first time,

while addressing the listed challenges methodically. In particular, the following methodologies are proposed

in order to:

1. perform a feasibility study of multi-voltage domain clock mesh design, addressing challenges (i) and

(ii) [52],

2. develop an improved algorithm to consider PVT variations in multi-voltage clock mesh synthesis,

addressing challenges (i), (ii), and (iii) [53, 54].

5

1.3 Organization of the Dissertation

The dissertation is organized as follows. In Chapter 2, the preliminaries and the background information

of low swing clocking and multi-voltage domain clock distribution networks are presented. In Chapter 3,

the feasibility of low swing clocking is shown with a novel low swing clock tree optimization methodology

applied to legacy clock trees. In Chapter 4, the novel slew-aware low swing clock tree and flip-flop design

methodology is proposed. In Chapter 5, the applicability of low swing clocking is extended to FinFET

technology with a novel methodology that addresses unique challenges in FinFET technology. In Chapter 6,

a novel slew-driven clock tree synthesis methodology is proposed to address the timing challenges of the

current and future interconnect technologies more efficiently, and further improve power savings of low

swing clocking. In Chapter 7, a novel methodology is introduced in order to facilitate clock gating in low

swing clocking flow. In Chapter 8, the multi-voltage single-clock domain clock mesh design methodology is

proposed. In Chapter 9, the dissertation is finalized with concluding remarks and discussion of future work.

6

Chapter 2: VOLTAGE-SCALED CLOCK DISTRIBUTION NETWORKS

With increasing complexity in digital IC design along with rapid increase in the clock frequency and reducing

feature size, timing closure and power consumption have become major concerns in the VLSI industry [26].

The clock distribution network is vital for the synchronism of sequential cells, and it consumes 30% of total

on-chip power [44].

The synchronism of clock distribution network is defined by clock skew, which is the time difference

between the maximum and the minimum arrival times (t i) of all clock sinks (S):

skew = max
∀i ∈ S

{t i}− min
∀i ∈ S

{t i}. (2.1)

Furthermore, PVT variations affect the clock arrival time, contributing to clock skew. The common approach

in CNS is to define a skew budget, which can be zero, resulting in zero-skew clock networks, or a non-zero

bound that is a percentage of the clock period, resulting in bounded-skew clock networks. Clock tree topology

can be designed for zero, or bounded skew, yet it is susceptible to PVT variations. On the other hand, clock

mesh topology has low clock skew and tolerant to PVT variations, thanks to the short circuit connection of

clock mesh balancing out all arrival times. The integrity of the clock signal is another important metric to

guarantee that the clock signal reaches to all clock sinks. The integrity of the clock signal is defined by the

clock slew, which is the rise (fall) time of the clock signal at a sink i, measured from 10% (90%) to 90% (10%)

of its voltage swing:

slewi = t i
V @90%− t i

V @10%. (2.2)

The common approach in CNS is to define a slew budget that is a percentage of the clock period to bound

clock slew of all sinks. Clock buffer insertion is performed to decrease clock slew within a bound, which

requires less clock buffers in clock tree topology due to less interconnect capacitance, whereas it requires

significantly more clock buffers in clock mesh topology due to the high interconnect capacitance of clock

mesh wiring. Clock skew and clock slew define the timing performance of clock distribution networks.

7

Power consumption is another concern for clock distribution networks. Due to the large capacitance of

clock buffers and interconnects switching at every cycle, dynamic power consumption of clock networks are

significantly high. Dynamic power consumption is given by the equation:

Pdyn = αCtotal fV 2
dd (2.3)

where α is the activity factor, Ctotal is total capacitance, f is operation frequency and Vdd is the supply

voltage swing. Based on Eq. (2.3), the power minimization can be performed through clock activity or total

capacitance minimization, or lowering frequency or clock voltage swing. As lowering clock voltage swing

has the most significant effect (quadratic vs. linear), voltage-scaled clock distribution networks are promising

candidates for low power ICs.

A direct solution to minimize the overall on-chip power dissipation is to reduce the supply voltage. But

this reduction in supply voltage is at the cost of degradation in the performance of the design [13]. Another

solution is low swing clocking where voltage swing of the clock network is reduced while preserving the

voltage swing at the local paths in order not to degrade local timing performance. With the clock distribu-

tion network and flip-flops being the major contributors to the overall on-chip power dissipation, low swing

clocking is one of the highly considered techniques for low power design [39, 2, 64, 36]. In low swing clock

trees, presented in Chapter 2.1, the power savings on the clock buffers and interconnects obtained through

the voltage scaling trades off timing performance (clock skew and slew).

Another solution to reduce IC power consumption is to consider multi-voltage designs where the IC is

split into different voltage domains with different performance targets and power budgets. Thus, the overall IC

performance is not degraded by keeping the high performance demand blocks in the higher voltage domains,

and significant power savings are achieved in the lower voltage domains. However, in the particular case of

multi-voltage single-clock domain ICs, presented in Chapter 2.2, synchronization of clock sinks in different

voltage domain presents a unique challenge [62, 63], thereby degrading clock skew.

8

2.1 Low Swing Clock Trees

The comparison between single- and dual-Vdd low swing clocking implementations is discussed in Chap-

ter 2.1.1. The implications of low swing clocking on timing performance and power consumption with and

without low swing-aware flip-flop designs are analyzed in Chapter 2.1.2 and Chapter 2.1.3, respectively. In

order to study the implications of technology scaling on low swing clocking, timing and power consumption

trends are analyzed at 20nm FinFET technology in Chapter 2.1.4. The implications on timing performance

and power consumption in low swing gated clock trees are discussed in Chapter 2.1.5.

2.1.1 Single-Vdd vs. Dual-Vdd Low Swing Clocking

The implementation of low swing clocking can be realized in two ways depending on the number of unique

voltage sources on the chip: Single- or dual-Vdd configurations. In the single-Vdd implementation, it is

assumed that the only power grid available in the design is the full swing Vdd . Thus, the implementation of

low swing clocking includes level converting and low swing buffers in order to create and manipulate the low

swing voltage level [2]. This implementation is the only option when another power grid is not pre-planned,

because the overhead of creating another power grid can be cost prohibitive. It is observed that the single-Vdd

design implementation is not the ideal case for low swing clocking as the low swing voltage level obtained

with this implementation may not be robust, and this implementation consumes greater leakage power [2].

Alternatively, in most contemporary designs, especially for the low power implementations, additional

power grids are already pre-planned (and placed before the clock tree synthesis step). Thus, it is compliant

with common practice to assume the presence of a low swing power grid. This is the preferred implementation

method in this dissertation, in order to fully benefit from low swing clocking. Assuming the presence of a low

swing power grid (or multiple grids) floorplanned to be used for low power applications of the logic circuit,

the clock tree also benefits from a low swing grid in order to further decrease the power consumption, making

this approach a perfect candidate for low power applications.

2.1.2 Low Swing Clocking with Conventional Flip-Flops

A practical approach of low swing clocking is to convert a full swing clock tree built by an high quality CNS

tool to a low swing clock tree, in order for short-term applicability and integration with the existing industrial

9

0.750.80.850.90.951
0

10

20

30

x V
dd

In
cr

. i
n

C
lo

ck
 S

ke
w

 (
ps

)

0.750.80.850.90.951
0

0.5

1

1.5

In
cr

. i
n

C
lo

ck
 S

ke
w

 (
%

 o
f T

)

Figure 2.1: The increase in clock skew in ps and in the percentage of the clock period (at 500 MHz),
interpolated using 5 different low swing values at Vddr ={0.95,0.90,0.85,0.80,0.75}×Vdd .

flows. The disadvantage of this practical approach is the potential degradation in clock skew and clock slew,

and the negative effects of a low swing clock on the full (data) swing flip-flop sinks, which has a direct effect

on local timing (slack), and power consumption of flip-flop cells. To this end, observations on clock skew,

clock slew and power consumption are presented in this subsection.

Timing performance (clock skew and slew) and power consumption of a clock tree highly depend on

the supply voltage of its clock buffers and load capacitance that consists of the buffer, sink and interconnect

capacitances. There are known simple first order or more complex higher order models that can estimate

timing and power consumption of clock buffers using capacitance information for a known fixed supply

voltage Vdd [25, 40, 57]. However, a dedicated model is needed for this low swing implementation: A low

swing clock tree driving register sinks operating with full swing data input/output but with low swing clock

input. For this purpose, accurate SPICE simulations are performed for analysis. The changes in timing and

power consumption of the largest circuit of ISCAS’89 benchmarks, s35932, are monitored in 90nm planar

CMOS technology at 500 MHz.

Decrease in clock voltage increases clock buffer delay, increasing insertion delay of a clock tree. The

increase in insertion delay potentially increases clock skew in low swing operation. To this end, the change

10

in clock skew with respect to the change in the supply voltage of the clock buffers (i.e. low swing voltage

Vddr) from 100% to 75% of the Vdd with 5% decrements is observed, and presented in Figure 2.1. It is shown

that the skew increases with decreasing low swing voltage level.

It is well-known that clock slew directly impacts timing slack on local data paths [60]. In the standard

VLSI design flow, clock slew is constrained to a practical maximum limit, helping define local timing (slack)

budgets. However, the traditional slew definition, i.e. the transition time between 10% and 90% of Vdd , is

meaningless for low swing clocks as the signal cannot reach 90% level when the low swing voltage is smaller

than 90% of the full swing, shown in Figure 2.2. Furthermore, when a low swing clock signal drives full

swing flip-flops, the impact on timing slack is more than the value of clock slew alone. This is because clock

voltage swing directly impacts the clock-to-q delay of flip-flop cells, thereby impacting timing slack in the

timing budget. Even if clock slew is kept the same as the clock slew constraint at full swing, a low swing

clock signal may cause a negative effect on the local timing (slack). In order to account for this effect, a new

term called time-to-switch (TTS) is defined as the time elapsed from 10% of the low swing clock to 50% of

the original full swing. TTS is a measure to reflect the time elapsed before the clock pin of a flip-flop cell

switches its state, as the flip-flop, unlike clock buffers, still runs at full swing. With this new definition, the

effect of the low swing clock is more accurately included into the timing constraint. In effect, TTS enables

the reflection of the timing properties of a low swing clock signal with the exact same slew as the original

full swing clock, which is very important for this implementation of low swing clocking.

For a full swing signal, TTS is expected to be approximately half of its slew value (TTS1 in Figure 2.3),

whereas a larger value is expected for a lower swing signal (TTS2 in Figure 2.3), as it takes longer to switch

with the low swing clock signal. The TTS definition considers the effect of low swing clock on the local tim-

ing, and this negative effect can be bounded by introducing a TTS constraint, along with the slew constraint.

It is argued at this point that if the negative impacts of the low swing clock are analyzed and measured with

this TTS definition, then the negative impacts on the timing slack of the actual circuit are bounded with these

measured values, when the TTS constraint is satisfied.

As for the power consumption, the reduction of the supply voltage of the clock buffers for low swing

operation is expected to decrease the power consumption of the clock tree. However, applying a low swing

11

0.750.80.850.90.951
0

100

200

300

400

x V
dd

C
lo

ck
 S

le
w

 (
ps

)

0.750.80.850.90.951
0

5

10

15

20

C
lo

ck
 S

le
w

 (
%

 o
f T

)

Figure 2.2: Clock slew at the flip-flop sinks, interpolated with 5 different low swing values. After 90%
of Vdd case, the signal cannot reach 90% level, thus the traditional clock slew definition (10% to 90%
interval) is not useful.

clock signal to the flip-flops operating at the full swing data may increase the power consumption of flip-flop

cells due to the increase in short circuit power. In order to analyze these phenomena, the power dissipation of

individual parts of a low swing clock network is profiled while decreasing low swing voltage level on the clock

buffers. In Figure 2.4, power consumption of the clock tree (excluding flip-flop cells), power consumption

of the flip-flop cells (excluding clock tree), and the total power consumption (clock tree+flip-flop cells) are

shown individually. As expected, the power consumption of the clock tree decreases (almost) quadratically

with linearly decreasing low swing voltage level. On the other hand, the power consumption of the flip-flop

cells are observed to increase significantly. Due to this contrast, the total power consumption needs to be

analyzed carefully to understand the overall effect of a low swing clock driving full swing flip-flops. It is

shown in Figure 2.4 that the total power consumption decreases until 80% of Vdd , and starts increasing with

further decreased clock voltage swing. This “soft spot” occurs when the increase in the power consumption

of the flip-flop cells starts outweighing the power savings in the clock tree at lower swing levels. This

observation demonstrates that scaling the clock tree voltage level indefinitely, e.g. beyond less than 80% of

the nominal Vdd , is not advantageous for this sample experimental setup.

12

Vdd

Vdd_r

50% of Vdd

Slew

TTS1

50% of Vdd

10% of Vdd

90% of Vdd

TTS2

10% of Vdd_r

90% of Vdd_r

Figure 2.3: While the slew is the same, time-to-switch (TTS) is defined to consider the effect of clock
swing scaling in addition to the slew itself. TTS1 and TTS2 are the TTS values for the full swing and
the low swing signal, respectively.

2.1.3 Low Swing Clocking with Low Swing-Aware Flip-Flops

In low swing clocking, it is critical to have low swing operation at the flip-flop clock pins to maximize power

savings. A conventional flip-flop cell designed for full swing operation, however, cannot maximize power

savings when the clock voltage swing is reduced, due to the significant increase in power consumption, as

shown in Chapter 2.1.2. In order to better illustrate this behavior, a conventional D flip-flop (DFF), shown

in Figure 2.5, is simulated when a low swing clock signal is applied to the clock pin. Note that the clock

signal and inverted clock signal are internally generated by using two inverters, referred to as the clock sub-

circuit, and the clock sub-circuit is connected to a nominal Vdd (as in a conventional DFF topology). The

overall power consumption is shown in Figure 2.6 as a function of clock swing for both 45nm and 32nm

technologies. As shown in this figure, DFF power increases by approximately 48% and 23% when the clock

swing is reduced to 0.6×Vdd in, respectively, 45nm and 32nm technologies. This unavoidable increase in

power consumption is due to significant short circuit current drawn by the inverters within the clock sub-

circuit.

13

0.750.80.850.90.951
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

N
or

m
al

iz
ed

 P
ow

er

% of V
dd

DFF Sinks
Clock Network
Total

Figure 2.4: Normalized power for flip-flop sinks, clock tree and the total power consumption, interpo-
lated with 5 different low swing values at Vddr ={0.95,0.90,0.85,0.80,0.75}×Vdd .

In the typical DFF cell shown in Figure 2.5, clock signals drive both NMOS and PMOS transistors. If

the same DFF topology is used with a low swing clock signal by supplying a low Vdd to the clock sub-

circuit (whereas the data signal is still at full swing to maintain performance), the PMOS transistors driven

by the clock signal fail to completely turn off when the clock signal is high. For example, consider a 45nm

technology with a nominal Vdd of 1V. If the clock swing is reduced to 0.7V, the gate-to-source voltage of

the PMOS transistors becomes -0.3V since the data signal is at full swing and the inverters within the flip-

flop are connected to nominal (full swing) Vdd (unlike the inverters in the clock sub-circuit). Since -0.3V is

sufficiently close to the threshold voltage of PMOS transistors in this technology, this behavior significantly

affects the operation reliability of a traditional DFF cell driven by a low swing clock signal. As an example,

consider a rising-edge triggered master-slave flip-flop. When the clock signal is high, the master latch should

be turned off. However, due to low swing clock signal, the transmission gate (or tri-state inverter) within the

master latch cannot completely turn off. If the data signal is in a different state than the stored data within the

master latch, a race condition occurs which can possibly produce a metastable state.

In order to better illustrate the unreliability of conventional DFF cells operating with a low swing clock

signal, a traditional transmission gate based D flip-flop, as shown in Figure 2.5, is simulated with a 45nm

14

1

D
Q

CLK_in CLK_b
CLK

CLK

CLK_b

CLK_b

CLK

CLK

CLK_b
CLK_b

CLK

Low VDD Low VDD

High VDD

High VDD

High VDD

High VDD

High VDD
High VDD

Clock sub-circuit

Figure 2.5: A typical transmission gate based D flip-flop topology driven by a low swing clock signal.

0.5 0.6 0.7 0.8 0.9 1
9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

Clock voltage swing (V
DD

)

D
F

F
 p

ow
er

 d
is

si
pa

tio
n

(
W

)

0.5 0.6 0.7 0.8 0.9 1
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Clock voltage swing (V
DD

)

D
F

F
 p

ow
er

 d
is

si
pa

tio
n

(
W

)

45 nm technology 32 nm technology

Figure 2.6: Increase in power consumption when a conventional DFF is driven with a low swing clock
signal while the clock sub-circuit is connected to a nominal Vdd .

technology node when the clock swing is 0.7V. Note that the inverters within the clock sub-circuit are con-

nected to a low supply voltage to provide low swing clock signals, as shown in Figure 2.5. Since the PMOS

transistors driven by the clock signals are not completely turned off, internal nodes experience a glitch as

high as 400mV. Furthermore, in the slow corner, the DFF cell fails to correctly latch the data signal. Thus, a

new topology is required that can reliably operate with a low swing clock signal and a full swing data signal.

Note that an alternative solution is to integrate a level shifter within the DFF cell to restore a full swing

clock signal [28]. Thus, the clock signal is restored to full swing operation before reaching PMOS transistors.

This approach is similar to existing level shifting DFF cells for dual-voltage systems [35, 34], but the level

of the clock signal is shifted rather than the data signal. This approach, however, significantly increases the

15

overall power consumption of the DFF cell due to the integrated level shifter. Thus, the power saved at the

last stage of the clock network is lost within the DFFs, making this approach impractical for the primary

objective of this work.

A conventional flip-flop designed for a full swing clock signal suffers from a prohibiting trade-off between

reliability and power consumption. The reliability issue may cause the flip-flop to latch a wrong data due to

large spikes, which is exacerbated in corner cases. Alternatively, the increase in power consumption is not

tolerable since it conflicts with the primary purpose of this study. It is concluded here that low swing-aware

flip-flop cells are necessary to implement high performance low swing clocking.

Given a low swing-aware flip-flop, the implications of low swing clocking on the clock tree needs to be

re-visited. To this end, implications on timing performance (clock skew and slew) and power consumption of

clock trees with the presence of a low swing-aware flip-flop are presented. Note that the TTS definition is not

necessary in this implementation as the clock pin of the flip-flops are low swing-aware, and the clock slew is

measured from 10% to 90% of low swing level.

In order to investigate the implications of voltage scaling on timing and power characteristics, a sample

clock tree is synthesized for the largest circuit (s35932) of ISCAS’89 benchmarks. Four different cases are

generated by combining two interconnect technologies (wire 1 [59]: R=2Ω/µm, C=0.1fF/µm and wire 2 [37]:

R=8Ω/µm, C=0.2fF/µm) with two frequency/slew constraints:

• Case 1: Wire 1, 1 GHz, 150ps slew constraint,

• Case 2: Wire 2, 1 GHz, 150ps slew constraint,

• Case 3: Wire 1, 1.5 GHz, 100ps slew constraint,

• Case 4: Wire 2, 1.5 GHz, 100ps slew constraint.

The experiments are performed at the slowest PVT corner of two transistor technologies (SS, 0.95V, 125◦C

for 32nm SAED [59] and SS, 0.9 V, 125◦C for 45nm FreePDK [38]). The power supply voltage is scaled to

65% of the nominal value with 5% decrements to observe the effect of voltage scaling.

The effect of voltage scaling on clock skew is shown in Figure 2.7(a) and Figure 2.7(b). According

to Figure 2.7(a), in 45nm technology, clock skew slightly increases when the clock voltage is scaled. The

16

(a) Clock skew profile of s35932 with low swing clocking at
various voltage levels in 45nm technology.

(b) Clock skew profile of s35932 with low swing clocking at
various voltage levels in 32nm technology.

Figure 2.7: Clock skew profile of s35932.

increase in clock skew does not introduce a violation, assuming a 50ps skew constraint. In 32nm technology,

however, clock skew increases as clock voltage is reduced, reaching and even exceeding the skew constraint,

as shown in Figure 2.7(b). This violation can be fixed with a post-CTS optimization, however, a more

challenging issue in low swing clocking is the significant increase in clock slew, as described below.

Lower voltage degrades the drive ability of clock buffers, which significantly increases clock slew, partic-

ularly in nanoscale technologies where interconnect resistance is dominant. This deleterious effect is depicted

in Figure 2.8(a) and Figure 2.8(b) for, respectively, 45nm and 32nm technologies. According to these figures,

in low swing operation, clock slew increases by approximately 50% in 45nm technology, and approximately

100% in 32nm technology. Note that the same slew constraint as in full swing clocking can be satisfied at low

swing operation through buffering the existing topology. This approach, however, causes significant power

dissipation due to the necessity of high number of clock buffers to satisfy the slew constraint at each clock

sink. Furthermore, the increase in the number of clock buffers increases the insertion delay of clock tree,

potentially increasing the clock skew more than what is shown in Figure 2.7(a) and Figure 2.7(b). Due these

reasons and the failure to efficiently fix these violations through buffering, it is concluded here that a low

swing-aware re-synthesis is required.

17

(a) Clock slew profile of s35932 with low swing clocking at
various voltage levels in 45nm technology.

(b) Clock slew profile of s35932 with low swing clocking at
various voltage levels in 32nm technology.

Figure 2.8: Clock slew profile of s35932.

The effect of clock voltage on power consumption is investigated when the clock tree is re-synthesized

to satisfy both skew and slew constraints. The power consumption of the clock tree (clock buffers and

interconnects) at each voltage level is shown in Figure 2.9(a) and Figure 2.9(b) for, respectively, 45nm and

32nm technologies. Note that the lowest voltage in the graphs represent the minimum achievable voltage

without introducing any slew violations. According to Figure 2.9(a), for 45nm technology, at 100ps slew

constraint using wire 1, the power savings reach a maximum of approximately 33% when the clock swing

is at 75% of Vdd . Note that no feasible clock tree can be synthesized for 100ps slew constraint case using

wire 2. Thus, this case is omitted in the figure. At 150ps slew constraint using wire 1, the power savings

reach approximately 46% when the clock swing is at 65% of Vdd . Alternatively, at 150ps slew constraint

using wire 2, power savings reach approximately 44% when clock swing is at 75% of Vdd . According to

Figure 2.9(b), for 32nm technology at 100ps slew constraint, the power savings are approximately 6% when

the clock swing is at 90% and 95% of Vdd for, respectively, wire 1 and wire 2. For the 150ps slew constraint,

the power savings reach approximately 18% (when the clock swing is at 75% of Vdd) and 24% (when the

clock swing is at 80% of Vdd) for, respectively, wire 1 and wire 2.

As shown in Figure 2.9(a) and Figure 2.9(b), the minimum achievable clock swing varies depending

upon the interconnect technology (wire 1 versus wire 2) and the slew constraint. Furthermore, according to

18

(a) Clock tree (clock buffers and interconnects) power con-
sumption profile of s35932 at various clock swings in 45nm
technology.

(b) Clock tree (clock buffers and interconnects) power con-
sumption profile of s35932 at various clock swings in 32nm
technology.

Figure 2.9: Clock tree (clock buffers and interconnects) power consumption profile of s35932.

this experimental setup, depending upon the specific case (as described above), power savings vary between

approximately 6% up to approximately 46%. Thus, a slew-aware clock tree synthesis methodology is required

to efficiently use the resources at different interconnect and transistor technologies, and clock frequencies.

If this condition is satisfied, significant reduction in power can be achieved while also satisfying the same

timing constraints. Thus, significant reduction in power consumption is possible without degrading circuit

performance.

2.1.4 Low Swing Clocking in FinFET Technology

In sub-32nm technologies, FinFETs have emerged as a promising alternative to planar CMOS technology, as

it has smaller device delay and significantly low leakage current, thanks to its enhanced electrostatic control

of the transistor channel [10]. Although clock slew is still an important challenge for FinFET-based ICs,

its enhanced delay and leakage power properties provide additional benefits for low swing clocking. In

this subsection, the implications of low swing clocking on clock skew and power consumption are analyzed

thoroughly with comparisons between typical 32nm planar CMOS and 20nm FinFET technologies.

Although the insertion delay itself is not a design specification, higher insertion delay causes high clock

skew. Thus, minimizing the clock insertion delay is one of the design objectives. The insertion delay in-

19

creases when the clock swing (magnitude) is decreased, as presented in Chapter 2.1.3. On the other hand,

the gate delays in the FinFET technology are negligibly low, particularly when compared to the delays of the

interconnects. As such, the effect of low supply voltage on the gate/buffer delay must be re-considered and

compared against the planar CMOS technology.

In order to highlight this phenomenon, the insertion delays of a full swing and a low swing clock tree for

the 20nm FinFET and 32nm planar CMOS technologies are compared on s38584 of ISCAS’89 benchmarks.

20nm FinFET models are obtained from PTM models [47], and 32nm planar CMOS models are obtained

from SAED 32nm library of Synopsys [59], both of which are simulated using HSPICE of Synopsys. One

clock tree is synthesized at each technology so as to have similar insertion delays at full swing. These clock

trees are simulated at the full swing (Vdd) and the low swing (0.7×Vdd) in order to observe the respective

changes in the insertion delay. The insertion delay of each clock sink in s38584 is presented by normalizing

them to their full swing delays in Figure 2.10 from 100% of Vdd to 70% of Vdd with 5% decrements. It is

shown that the insertion delay of a clock sink in 32nm planar CMOS technology increases by approximately

120% whereas this increase is approximately 26% for the 20nm FinFET technology when clock voltage swing

is scaled down to 0.7×Vdd . In order to analyze the effect of the increase in insertion delay on clock skew, the

minimum and the maximum insertion delays, and the clock skew of FinFET-based and planar CMOS-based

clock trees at full swing and low swing operations are presented in Table 2.1. It is shown that the clock skew

increases severely in the low swing operation of 32nm planar CMOS (to 55.5ps, from 29.4ps at full swing),

compared to the increase in 20nm FinFET (to 29.3ps, from 22.2ps at full swing), even when the FinFET and

planar CMOS technologies have similar insertion delays at the full swing operation. This example shows the

superiority of FinFET technology over its counterpart in planar CMOS technology, by having small timing

sensitivity against a change in the supply voltage. With this observation, it is concluded here that FinFET

technology inherently improves one significant aspect of low swing trees (i.e. clock skew) by providing a low

insertion delay.

20

Figure 2.10: Insertion delay characteristic of 20nm FinFET and 32nm planar CMOS technologies at
different voltage levels interpolated from 100% to 70% of Vdd with 5% decrements.

Table 2.1: The comparison of full swing and low swing insertion delay characteristics at 20nm FinFET
and 32nm planar CMOS technologies for s38584.

20nm FinFET 32nm planar CMOS
Minimum Insertion Delay when CLK @Vdd (ps) 198.0 194.5
Maximum Insertion Delay when CLK @Vdd (ps) 220.2 223.8
Clock Skew when CLK @Vdd (ps) 22.2 29.3
Minimum Insertion Delay when CLK @0.7×Vdd (ps) 250.0 419.3
Maximum Insertion Delay when CLK @0.7×Vdd (ps) 279.4 474.8
Clock Skew when CLK @0.7×Vdd (ps) 29.4 55.5

As for power consumption, the power consumption of a clock tree can be divided into 2 parts: Dynamic

and static (leakage) power consumption. The dynamic power consumption is formulated as:

Pdyn = αCtotal fV 2
swing (2.4)

where α is the switching factor, f is the operating frequency and Vswing is the supply voltage of the clock

buffers. The total capacitance Ctotal is:

Ctotal = ∑
∀i

Cbu f f er
i +∑

∀ j
Csink

j +∑ l× cunit (2.5)

with a design which has i clock buffers with an input capacitance of Cbu f f er
i , j sinks with an input capacitance

21

of Csink
j , and a per-unit interconnect capacitance of cunit . Note that short-circuit power is neglected since

transition times are sufficiently small due to tight slew constraints. The low swing clock trees target to save

substantial (quadratic) dynamic power by scaling clock swing [Vswing in Eq. (2.4)]. For instance, a 30% drop

off from the full swing clock swing can lead to 51% savings in the dynamic power dissipation. However,

it is also important here to note that the number of clock buffers needs to be increased to satisfy the same

timing constraints in low swing operation as the full swing operation. This increase in the number of clock

buffers sacrifices some of the power savings obtained through Vswing scaling by increasing Ctotal . Thus, it is

concluded here that a high performance low swing clock tree design methodology should efficiently place

clock buffers in order to satisfy the same performance (timing) constraints as the full swing clock tree, while

minimally trading off the dynamic power savings by minimizing the increase in Ctotal .

Given a FinFET-based clock buffer library, the static (leakage) power consumption depends on the number

of clock buffers:

Pstatic ≈∑
∀i

Pbu f f eri
leakage (2.6)

Thus, minimizing the number of clock buffers i for capacitance-induced dynamic power minimization op-

portunistically minimizes the static power consumption of the FinFET-based buffers. Furthermore, lowering

the Vdd level on the clock tree also decreases the leakage due to the lower electrical field on the transistor

channels. In order to highlight the low leakage property of FinFET technology compared to its counterpart in

planar CMOS technology, two clock trees are synthesized for s38584 of ISCAS’89 benchmarks, using 20nm

FinFET [47] and 32nm planar CMOS [59] libraries. The leakage power comparison of the two technologies

is presented in Table 2.2. It is shown that the leakage power consumption in FinFET decreases significantly

compared to planar CMOS technology. In the full swing implementation, the leakage power decreases to

15.3µW from 319.5µW. In low swing operation, the leakage power in planar CMOS technology decreases to

92.5µW, however it is still ≈7× as large as its FinFET counterpart.

2.1.5 Low Swing Clocking in Gated Clock Trees

The effects of low voltage operation on timing and power trends of gated clock trees are presented in this

subsection. When the clock voltage is scaled for low voltage operation, , the power consumption of the clock

22

Table 2.2: The leakage power consumption comparison of low swing and full swing implementations
of clock trees built on s38584, in 20nm FinFET and 32nm planar CMOS technologies.

CLK Level 20nm FinFET (µW) 32nm planar CMOS (µW)
Full Swing (Vdd) 15.3 319.5
Low Swing (0.7×Vdd) 13.1 92.5

Figure 2.11: Clock skew and clock slew profile of s35932 at various voltage levels. Although the clock
skew and slew constraints (50ps and 100ps, respectively) are satisfied at nominal Vdd , violations occur
at low voltage operation.

buffers decreases while the delay and the output slew of the clock buffers increase, as shown in Chapter 2.1.3.

The same is true for the integrated clock gating (ICG) cells. Similar to Chapter 2.1.3, the respective increases

in the output slew of buffers and clock gates accumulate through (e.g. clock branch) interconnects potentially

causing slew violations. Inserting additional buffers in order to avoid slew violations results in higher power

consumption, degrading the power savings obtained through low voltage clocking.

In order to investigate this trade-off, two clock tree cases for s35932 of ISCAS’89 benchmarks are con-

sidered as follows:

1. a gated clock tree is synthesized once at nominal Vdd , and its timing characteristics are observed at

lower voltage levels, allowing slew violations at low voltage operation,

2. a gated clock tree is re-synthesized at various voltage levels to satisfy the slew constraint.

23

Figure 2.12: Power consumption comparison of cases 1 and 2, when normalized to the power consump-
tion at nominal Vdd .

These two cases are generated using 45nm technology [38] at 1.5 GHz while clock voltage is scaled from

100% to 70% of its nominal value (0.9V for this technology) with 5% decrements. In order to demonstrate

the timing degradation in case 1, its clock skew and clock slew are plotted at different voltage levels, and

shown in Figure 2.11. It is shown that voltage scaling on the clock tree results in clock skew and clock slew

violations even when these timing constraints (50ps for skew, and 100ps for slew) are satisfied at the nominal

voltage level. Thus, re-synthesis of gated clock trees are necessary, as in case 2. In order to demonstrate the

degradation in power savings while addressing the clock skew and clock slew challenges (to avoid violations),

the power consumption of case 1 and case 2 are compared in Figure 2.12. It is shown that power consumption

decreases significantly when the clock voltage is scaled down without a re-synthesis (with slew violations,

case 1) whereas the power savings start leveling after some point due to additional buffers inserted to satisfy

the slew constraint when clock trees are re-synthesized (case 2), similar to the outcome of Chapter 2.1.3.

2.2 Multi-Voltage Single-Clock Domain Clock Distribution Networks

Multi-voltage single-clock domain designs necessitate the use of different clocking techniques due to the

following challenges: 1) the insertion delay increases in lower voltage domains, requiring a delay insertion

in higher voltage domains to bound clock skew, and 2) level shifting (high-to-low or low-to-high) of clock

24

Figure 2.13: Typical multi-voltage clock tree topology presented in [62].

voltage swing is necessary for cross domain clock delivery. In addition to these challenges, additional buffer

insertion is necessary to satisfy slew constraints, as explained in Chapter 2.1. The power overheads of buffer

and level shifter cell insertion need to be analyzed against the power savings obtained through multi-voltage

design.

The implications of multi-voltage clocking on the clock tree and clock mesh topologies are presented

in Chapter 2.2.1 and Chapter 2.2.2, respectively. The effect of PVT variations on multi-voltage clocking is

presented in Chapter 2.2.3.

2.2.1 Multi-Voltage Clocking with Clock Tree Topology

Due to its easy integration into multi-voltage domain designs, multi-voltage clocking with a tree topology is a

popular technique with sophisticated automation techniques existent in industrial tool flows [62, 63]. Multi-

voltage clock trees are designed to deliver clock signal with local trees in each voltage domain and these trees

are connected at the upper level through level shifters, as shown in Figure 2.13 [62].

Multi-voltage clock tree topology is a power-efficient method of implementing multi-voltage clocking,

yet it has challenges to satisfy timing constraints. Clock tree topology is intolerant to PVT variations, which

exacerbates in the multi-voltage designs due to different timing characteristics of different voltage domains

at multiple PVT corners.

25

c

Premesh Tree

Premesh Drivers

Clock Source

(a) Typical single-voltage domain clock mesh topology.

c c

Clock Source

Premesh Trees

Premesh Drivers

LS

(b) Multi-voltage domain clock mesh topology.

Figure 2.14: Clock mesh topologies.

2.2.2 Multi-Voltage Clocking with Clock Mesh Topology

In the presence of PVT variations, clock mesh topology, shown in Figure 2.14, is a promising alternative.

Compared to clock tree topology, typical single-voltage clock mesh topology [shown in Figure 2.14(a)]

achieves low clock skew, and provides tolerance against PVT variations, thanks to the short circuit con-

nection of clock mesh wires balancing delay mismatches (i.e. clock skew) at the last level. However, de-

creasing the skew across multiple pre-mesh trees is a challenge for multi-voltage meshes as the pre-mesh

trees depicted in Figure 2.14(b) are isolated, and isolated clock meshes across voltage domains do not have

a short circuit connection. Clock skew within each domain can be reduced by using dense meshes for both

single-voltage [Figure 2.14(a)] and multi-voltage cases [Figure 2.14(b)]. However, this improvement in tim-

ing performance is enabled by trading off power consumption, as additional capacitance introduced by clock

mesh wires introduce additional power consumption, compared to the tree topology.

2.2.3 Effect of PVT Variations in Multi-Voltage Clocking

Multi-voltage clocking algorithms have the following challenges: First, gate delay changes with the change

of its supply voltage. Second, the variation in the gate delay is not the same for the identical gates when

they operate at different voltage levels. Clock skew is defined as the difference between the maximum and

the minimum insertion delays, which may fall on different branches within separate voltage domains. To

this end, the insertion delay profile of clock trees need to be carefully investigated to optimize clock skew.

This investigation also reveals how to design pre-mesh tree branches of clock meshes within separate voltage

domains in the presence of PVT variations of multiple corners. In order to analyze how the insertion delay

26

BUF

DFF

DFF

DFF

DFF

DFF

DFF

DFF

DFF

DFF

DFF DFF

DFF

DFF DFF

DFF DFF DFF

DFF DFF

DFF

DFF

DFF DFF

DFF

DFF

DFF

DFF

DFF

DFF DFF

DFF DFF

1.2V domain 0.8V domain

BUF

BUF

BUF

BUF

BUF

BUF

BUF

BUF

BUF

Figure 2.15: Simple two-level clock tree with 16 sinks.

Table 2.3: Insertion delay profile of the motivational clock tree example at two voltage domains shown
in Figure 2.15. The maximum and the minimum insertion delays that define the global skew are marked
with bold.

Best (ps) Nom (ps) Worst (ps)
Min ins delay in 0.8V D. 104.7 157.8 301.7
Max ins delay in 0.8V D. 106.6 161.5 309.6

Inc. compared to Best - ≈ 55 ≈ 203
Min ins delay in 1.2V D. 101.4 130.7 223.5
Max ins delay in 1.2V D. 101.7 131.3 224.7

Inc. compared to Best - ≈ 30 ≈ 122
Global Skew 5.3 30.8 86.1

varies depending on the supply voltage, a motivational example is presented with two voltage domains, each

with a simple two-level clock tree with 16 sinks, as depicted in Figure 2.15.

In this motivational example, one domain is supplied with 1.2V and the other is with 0.8V, and SPICE

models of SAED 90nm EDK library of Synopsys are used [58]. This simple example is synthesized by

IC Compiler of Synopsys using the same size of clock buffers. This circuit is simulated in CustomSim XA

simulator of Synopsys at 500 MHz, and the insertion delay is measured in three different PVT corners: The

best, nominal and the worst cases of the PVT corners. The insertion delay profile is shown in Table 2.3.

It is observed in Table 2.3 that the insertion delay variation is higher in the 0.8V domain which also

increases the skew switching from the best case to the worst case: Maximum insertion delay increases by

approximately 203ps to 309.6ps, whereas the minimum insertion delay only increases by approximately

122ps to 223.5ps. In this undesirable case, the maximum insertion delay increases the largest, as it is affected

by PVT variations the most going from the best to the worst case. The minimum insertion delay, on the other

27

Table 2.4: Improved skew values with a delay insertion to the 1.2V Domain.

Only first level upsized by one Both levels upsized by one
Best (ps) Nom (ps) Worst (ps) Best (ps) Nom (ps) Worst (ps)

Min ins. delay in 0.8V D. 104.6 157.5 301.1 104.6 157.5 301.2
Max ins. delay in 0.8V D. 106.5 161.3 308.9 106.6 161.3 309.0
Min ins. delay in 1.2V D. 115.2 145.1 239.6 129.9 164.8 269.5
Max ins. delay in 1.2V D. 115.5 145.6 240.8 130.0 165.1 270.2
Global Skew 10.9 16.2 69.3 25.4 7.6 39.5

hand, increases the least, which is also undesirable. It is desirable, instead, that the maximum insertion delay

path be delayed the least and the minimum insertion delay be delayed the most going from the best to worst

corner, to bound clock skew. The observation here is the fact that the maximum insertion delay path should

be placed in the higher voltage domain at the best case on purpose, as paths in the higher voltage domain has

a higher tolerance to PVT variations, in order to lower the skew budget across all PVT corners.

In order to demonstrate this postulate, the insertion delay of the higher voltage domain is increased grad-

ually by i) upsizing the first level of the two-level motivational clock tree, and ii) upsizing both levels of the

two-level clock tree. It is expected that the insertion delay in higher voltage (1.2V) domain increases by a de-

lay offset in all PVT corners, which may increase the skew in the best case corner, but decrease the skew in the

worst case, therefore, decrease the global skew. The insertion delay profiles of these two cases are presented

in Table 2.4. It is observed that the global skew is decreased when the insertion delay is gradually increased

in the higher voltage (1.2V) domain by upsizing the clock buffers. It is clear that a novel clock network syn-

thesis methodology should control the insertion delay of different voltage domains by either adding/removing

buffers or upsizing/downsizing over a naive, single-corner optimized tree. Notice how the minimum and the

maximum insertion delays (marked in bold) are consistently in the same voltage domain in all three corners

in the undesired case shown in Table 2.3. In the desired case, shown in Table 2.4, the delays vary between

paths in either voltage domains for PVT corners, the skew being affected less from PVT variations. Although

the skew is increased in the best corner (from 5.3ps to 25.4ps), global skew is defined as the worst case of

all corners: Thus, global skew is improved from 86.1ps to 39.5ps, when the insertion delay is shifted by an

upsizing. This example concludes that optimizing clock skew at all three corners simultaneously is possible,

yet it requires a methodical approach to address this challenge.

28

Chapter 3: FEASIBILITY STUDY OF LOW SWING CLOCKING

A novel methodology that implements a low swing clock tree on a legacy clock tree is proposed to show

the feasibility of low swing clocking. For low power IC design, low swing clock trees are one of the known

techniques to lower the overall power dissipation through decreasing the power consumption of the clock

network, while trading off the clock skew, clock slew and local timing (slack). In this chapter, an iterative

skew minimization scheme for low swing clock trees is proposed via in-place buffer sizing on a legacy

full swing clock tree. The proposed approach preserves the power savings of the low swing clock tree

implementation. The effect of the decreased clock swing on the local timing is analyzed: The degradation in

the timing slack is shown to be insignificant due to bounded TTS, eliminating most of the timing degradation

on the clock network or the logic paths induced by decreased clock swing. The experimental results show that

the proposed methodology can achieve an average of up to 11% power savings, with a skew degradation of

less than 5% compared to the original full swing clock tree, satisfying a practical skew budget. The proposed

methodology is highly practical as it only performs in-place buffer sizing on the original clock tree.

3.1 Introduction

Low swing clock trees can be implemented with varying implications at different levels. One previous ap-

proach proposes to use a low swing clock signal over the entire clock tree and convert the signal to full swing

at the sink level using level shifter cells [39]. Another approach introduces a custom flip-flop design, that can

directly be interfaced to a low swing clock signal by minimizing its negative effects on the local timing [20].

Another approach considers to design special buffer cells that can convert the swing of the voltage both full

swing-to-reduced swing (FSRS) and reduced swing-to-full swing (RSFS) in order to isolate full swing clock

source and clock sinks from the low swing clock tree [2]. These approaches of previous studies achieve

promising results, however, the applicability of low swing operation remains limited due to use of specialized

design elements (e.g. low swing level shifters, low swing flip-flops, etc.). If low swing clocking is performed

without the use of such specialized circuit elements, a number of key issues need to be methodically ad-

29

dressed for practical use, including: i) increase in clock skew, ii) degradation in the desired power reduction

due to the need to optimize clock skew, and iii) degradation in the timing slack due to the increase in the

clock slew. In the proposed methodology, a pragmatic approach is adopted to show the feasibility of low

swing clocking. The proposed approach converts a full swing clock tree built by an high quality clock tree

synthesis (CTS) tool to a low swing clock tree. The methodology does not depend on the existence of explic-

itly sized level shifters, or utilize special low swing flip-flop or level-shifting buffer cells, in order to remain

compatible with standard cell libraries in the industry. The proposed flow also keeps the clock skew below

the same practical limit that was used in the design of the original (full swing) clock tree design (issue 1),

preserves the power savings of the low swing implementation (issue 2), and has insignificant degradation in

the local timing (slack) by keeping the clock slew below the same practical limit as the original full swing

clock tree and considering the effect of clock swing scaling (issue 3). The proposed methodology is inte-

grated in its entirety into an industrial tool flow to demonstrate the practicality and short-term applicability

of the proposed novelties in low swing clocking. An automated methodology that synthesizes a low swing

clock network satisfying practical skew and slew constraints is proposed for the first time in this dissertation.

The proposed methodology is not a straight-forward procedure due to the following challenges:

1. the effect of sizing a clock buffer on the insertion delay of clock branches must be characterized as the

timing models of buffer library may not be available at the target low swing voltage level,

2. the effect of a low swing clock on the full (data) swing register sinks must be analyzed, as it has a direct

effect on the local timing (slack),

3. the skew and the slew must be bounded considering multiple PVT corners.

The proposed methodology receives a synthesized full swing clock tree as an input, performs a buffer library

characterization step so as to analyze the effect of upsizing/downsizing of each buffer cell in the library, and

minimizes the clock skew to bound it below a practical limit by sizing clock buffers considering the selected

low swing Vddr . Given these two steps, the proposed flow can target any point on the power vs. skew curve

by assigning the low swing Vddr . The low swing supply voltage Vddr can be provided by one of the following

means, depending on the availability of the voltage levels and the design resources:

30

1. a power grid at the low swing Vddr might already be present, pre-planned for a low-power implementa-

tion of logic,

2. power converters can be placed on an existing power grid to generate the desired low swing Vddr ,

3. an additional power grid can be generated at the desired low swing Vddr .

Given most contemporary designs have high number of clock and voltage domains, it is reasonable to assume

the availability of the voltage level desired for low swing clocking through options 1 or 2 above. The overhead

of the additional grid, if necessary as in option 3, might be prohibitive to the use of low swing clocking.

Assuming options 1 or 2 for the availability of the desired voltage level burdens little to no resources, and the

proposed methodology obtains substantial power savings, while preserving (almost) the same skew of a full

swing clock tree with a reasonable run time.

The rest of the chapter is organized as follows. The key observations that drive the proposed methodology

are introduced and discussed in Chapter 3.2. The proposed methodology of this work is explained in detail in

Chapter 3.3. The results of the performed experiments on benchmark circuits are presented in Chapter 3.4.

The chapter is finalized with concluding remarks in Chapter 3.5.

3.2 Observations on Local Timing

In order to observe the effect of low swing clocking on the local path delay, its relationship to TTS (defined in

Chapter 2.1.2) needs to be studied. However, the timing information for standard cells may not be available

at the selected low swing voltage level Vddr . The necessitated support is the timing data for standard cells at

varying voltage levels of low swing (e.g. 0.85×Vdd , 0.9×Vdd) which may not exist in libraries. Instead, gates

may be characterized only at supported voltage nodes, e.g. 0.8V for low voltage Vdd,low and 1.2V for high

voltage Vdd,high. The static timing analysis tools are not applicable to measure the timing slack (i.e. impact

of TTS) in the absence of these circuit models at different low swing voltage levels in the standard cell

libraries. In order to fill this gap in empirical verification, 20 random paths, which are created using the

available types of flip-flops and logic cells in the target library, are analyzed at 4 different voltage levels

of nominal Vdd (0.95×Vdd , 0.9×Vdd , 0.85×Vdd , 0.8×Vdd). This analysis is performed in order to observe

the relationship between TTS and the degradation in local timing. Naturally, these 20 random paths do not

31

theoretically validate the local timing but are empirically demonstrative of the effectiveness of low swing

clocking in causing only minimal degradation in the timing slack. It is also important to note that, this change

in the voltage level of the clock signal only significantly changes the clock-to-q delay of the flip-flop, and

the delay on the rest of the local timing path (that contributes to slack) is almost unaffected. It is noted here

that despite operating with low swing clocking, the slew of the flip-flop output is not degrading significantly,

as the combinational delay in the local timing path is not degrading in a measurable rate (< 1ps). Thus, it

is sufficient to analyze the relationship between TTS and the clock-to-q delay of different types of flip-flops

in the library independent of the logic paths in the design. There are four different flip-flops in the selected

90nm SAED Library [58] of Synopsys, therefore it is sufficient to consider 20 random paths.

In this demonstrative example of 20 random paths, 200ps is set as the slew constraint, which is a typical

value (10% of the clock period at 500 MHz operation). The circuit elements on the local data paths (combi-

nation logic and the flip-flops) are supplied by full swing voltage at 1.2V. The clock signal is applied with 4

different voltage levels of low swing, keeping the uniformity of operation with the same 200ps slew in each

low swing operation case.

In this experiment with 20 random paths, the effect of low swing clocking on the local timing are inves-

tigated in order to have a clear understanding of the parameters traded off against each other. The slew, the

measured TTS values, the average increase and the worst case increase in the clock-to-q delay of 20 random

paths at 4 voltage levels with a 200ps slew constraint are shown in Table 3.1. It is empirically confirmed that

the effect of low swing clock signal with a fixed slew has a minimal effect on the local timing. The degrada-

tion in the timing slack is 1.8ps, 3.4ps, 5.6ps and 8.8ps when the voltage swing is set to 95%, 90%, 85% and

80% of the nominal Vdd , respectively. It is also important to note here that the average clock-to-q delay of the

flip-flops at these 20 random cases is measured to be 361.0ps. Thus, degradation in the clock-to-q delay is

less than 2.4% of the nominal clock-to-q delay for all cases. Having gradually decreasing timing slack with a

downscaling low swing voltage level shows that the savings in the power consumption are successfully traded

off with degradation in timing slack (i.e. performance). The worst decrease across 20 random paths is 8.8ps

at 80%, which is insignificant as it is only 0.4% of the clock period.

32

Table 3.1: Measured TTS values, and the effect of a low swing clock supply on the local timing (average
and maximum slack decrease) under the same clock slew. The decreased slack, induced by increased
clock-to-q delay, is traded off for the power savings of low swing clocks.

Slew (ps) TTS (ps) Average Slack Max Slack
Decrease (ps) Decrease (ps)

Vdd 200.0 79.7 - -
0.95×Vdd 200.0 83.8 1.3 1.8
0.90×Vdd 200.0 88.5 2.9 3.4
0.85×Vdd 200.0 93.7 5.1 5.6
0.80×Vdd 200.0 99.5 7.8 8.8

Obtain TTS values

Construct TTS-based
library models

Run Static Timing Analysis
for verification

Perform SPICE accurate
worst-case analysis on flip-flops

Set slack degradation on all local
paths pessimistically for verification

Verified design

Complex & Time Consuming: More accurate

Simple & Fast: Pessimistic, less accurate

Figure 3.1: The two alternatives to verify the local timing (slack). In this methodology, the simple and
fast approach (bottom flow) is used to bound the degradation in timing slack with a pessimistic bound.

It is concluded that, the measured TTS values here can be set as a new timing constraint to be used in

the optimization phase of the methodology in lieu of the slew constraint. There are two ways to perform

the verification of local timing (slack), shown in Figure 3.1. The first approach (top flow in Figure 3.1)

is to perform an additional cell characterization study of standard cells, in order to develop timing models

at varying voltage levels Vddr of low swing. This approach is not presented here nor used in experiments,

aiming not to divert the discussion from low swing clock tree design. The second approach (bottom flow in

Figure 3.1) is used in this work. The second approach is to perform a worst-case bound approach, where

SPICE simulations are performed to identify worst case timing values, and these values is imposed on the

timing conservatively.

33

3.3 Methodology

In Chapter 2.1.2, it is shown that substantial power savings can be obtained through low swing clocking with

a degradation in clock skew, and it is verified in Chapter 3.2 that the degradation in local timing (slack) is

insignificant with a bounded TTS. Based on these observations, the proposed design methodology optimizes

the low swing clock trees by:

1. minimizing the skew overhead of low swing clock trees without degrading the power savings and,

2. bounding TTS, so as to obtain clock trees that perform minimal to no different than full swing clock

trees with significant power savings.

The proposed methodology optimizes low swing clock trees generated from a full swing clock tree without

any placement or clock topology changes. The methodology only involves in-place buffer sizing, aiming not

to alter the logic placement or full swing clock tree topology, thus aiming for minimal disturbance of legacy

designs. The proposed methodology has three steps:

1. synthesizing an initial clock tree at full swing (unless there is already a legacy design),

2. performing timing characterization of clock buffers in the target library (unless there are already timing

models at the selected low swing voltage level),

3. applying iterative skew minimization considering time-to-switch (TTS) bounds.

The first step is conditional and not necessary if there is already a legacy design. If the proposed method-

ology is used to perform a low swing CTS, an initial optimal clock tree at full swing is necessary. This initial

CTS can be performed with any industrial tool at the traditional full voltage swing. This CTS creates a clock

tree that is optimized for a number of metrics such as routing congestion, tree depth, etc., therefore, it is a

good starting point for the proposed optimization methodology. The second step is also conditional and not

necessary if timing data exists for the cells at the target low swing voltage level Vddr . Note that, it is sufficient

to perform this characterization once for each voltage level of each buffer library. In order to observe the

effect of in-place buffer sizing, the existing timing data or the output of the buffer characterization step is

used to generate look-up tables, as explained in Chapter 3.3.1. In the third and the only mandatory step of the

34

proposed methodology, the skew minimization for low swing clock tree is performed at the given low swing

voltage Vddr . This iterative skew minimization scheme, which is presented in Chapter 3.3.2, is performed on

the clock tree that is initially synthesized for full swing, in order to decrease the skew under a skew bound

without violating the TTS constraint.

3.3.1 Buffer Characterization

Convex optimization methods for buffer sizing are not always feasible due to highly discrete nature of the

problem. Thus, discrete methods, such as iterative optimization as in the adapted approach of this study, are

necessary. In this step, a look-up table based approach is considered to store the delay characteristics of each

clock buffer in the library. The created look-up tables are used in the following discrete, iterative optimization

step (Chapter 3.3.2). Note that these look-up tables need to be created once for each buffer library, and the

utilization of these look-up tables in optimization step improves run-time profile.

In this step, a discrete set of buffer sizes in the library at a discrete set of candidate low swing voltage levels

are considered. The purpose of the characterization is to investigate the effect of upsizing and downsizing

of each buffer on the gate delay. Upsizing a buffer either increases its delay due to the increased loading

effect (input capacitance) on the previous stage, or decreases its delay due to the improved capability of

driving the next stage. Thus, the upsizing/downsizing characteristic of each buffer should be considered

individually and accurately. In order to create an accurate look-up table, a simple two-level circuit is created

by connecting two buffers and an output capacitance in series, as shown in Figure 3.2. The purpose of

this two-level circuit is to account for both the loading effect of each buffer to its previous stage, and the

effect of driving the load in the fanout cone of each buffer on the delay. When a buffer, e.g. NBUFFX8,

is being characterized, two NBUFFX8 buffers are placed in the two-level circuit with a typical capacitance

value. The typical capacitance value is found using the OPTIMIZE function of HSPICE, considering the

slew constraint. With this configuration, look-up tables that are accurate enough are obtained in order to

guide the following step of the proposed scheme (Chapter 3.3.2). However, sizing one buffer changes the

insertion delay on the neighboring paths as well, which is undesired. In order to limit this effect, the number

of times that a buffer can be upsized or downsized is limited by a factor N, which is specified depending

on the size and the granularity of the buffer library. In order to visualize a typical lookup table, the lookup

35

Level-1 Buffer Level-2 Buffer

Figure 3.2: Two-level model for buffer characterization.

table created for NBUFFX8 of Synopsys SAED 90nm Library [58] with N = 2 at 80% of Vdd is shown in

Table 3.2. The buffer at the first level is fixed at NBUFFX8 (a typical parent), and the buffer at the second

level is upsized/downsized to observe the sizing effect. The typical capacitance for the configuration is found

to be 45fF, using the OPTIMIZE function of HSPICE at a 100ps slew constraint. As shown in the Table 3.2,

downsizing NBUFFX8 to NBUFFX4 increases the path delay, whereas upsizing to NBUFFX16 decreases.

On the other hand, if the buffer is upsized twice to NBUFFX32, the path delay increases drastically. This

example shows the non-regular characteristic of buffer delays and the importance of an accurate look-up

table. A possible inaccuracy of these upsizing/downsizing may result in more number of iterations (i.e. more

number of SPICE simulations) in the following step (Chapter 3.3.2). However, this is not observed in the

experiments, therefore, the proposed buffer characterization step is considered practically sufficient. With N

upsizing and N downsizing, a total of 2N simulations are performed for each buffer, and this characterization

needs to be performed for each buffer in the library. Thus, the complexity of this step is O(Nk), for a library

that contains k different sizes of buffers. The parameter N is directly related to the buffer library size k,

thus, the run time of this step has a quadratic dependence to library size. However, as these simulations are

performed on the simple two-level circuit with a finite number of buffers, the run time of this step is on the

order of seconds.

3.3.2 Iterative Skew Minimization

Iterative skew minimization is the major novel step of the methodology. The objective is to preserve the power

savings of an adapted low swing clock tree with (almost) the same timing performance as the counterpart full

swing tree. To this end, this step of the proposed flow targets to minimize the skew of a low swing clock tree,

36

Table 3.2: A typical lookup table for NBUFFX8 of Synopsys SAED Library at 80% of Vdd . The typical
capacitance is found to be 45fF at a 100ps slew constraint, using the OPTIMIZE function of HSPICE.
The parent buffer (Level-1) is fixed at NBUFFX8, and the child buffer (Level-2) is varied to observe the
effect of sizing on delay.

Level-1 Buffer Level-2 Buffer Delay (ps)(Fixed) (Varied)
NBUFFX8 NBUFFX8 249.9
NBUFFX8 NBUFFX2 265.8
NBUFFX8 NBUFFX4 271.1
NBUFFX8 NBUFFX16 239.3
NBUFFX8 NBUFFX32 342.2

degrade the power savings as minimally as possible and satisfy TTS constraint (defined in Chapter 2.1.2) by

performing an in-place buffer sizing scheme with the guidance of the look-up tables created in Chapter 3.3.1.

The algorithm is presented in Algorithm 1.

In this algorithm, the flip-flop clusters driven by the same clock buffer at the nth level are identified,

and they are considered to have identical insertion delay as they are connected to the same net, where delay

difference is less than 1ps. In order to identify the clusters on which sizing is necessary, an initial SPICE

simulation is performed (Line 2) to obtain the complete insertion delay range of all clusters (whose maximum

and minimum values define the skew). In order to obtain a bounded skew, the range should lie in a permissible

window (where the difference between the maximum and the minimum satisfies the skew constraint). The

clusters which are at either the minimum or the maximum side of the range are marked depending on how

much improvement would be achieved if their insertion delay is moved into the permissible window of

insertion delays (Line 8). By identifying clusters from both ends of the range, it is expected that the number

of buffers to be sized is minimized and the process of obtaining the permissible window is more flexible.

The clusters identified at these ends of the range are marked one at a time and pushed into an either max

or min queue, and dropped from insertion delay range (Lines 9-10). This operation continues until the

unmarked portion of the insertion delay range satisfies the skew constraint skewconst (i.e. the difference

between the maximum and the minimum insertion delay paths on the unmarked portion skewcurr should

be less than skewconst). At this point, it is assumed that sizing the buffers of the marked clusters (e.g. in

the min and max queues waiting for their insertion delays to be resized into the permissible window) place

37

Algorithm 1 Iterative Skew Minimization
Input: Initial full swing clock tree, low swing voltage level Vddr , timing characterization information of

buffer library, skew constraint skewconst and skew margin skewmargin.
Output: New buffer sizes.

1: Selected Buffers Queues, Qmax = Qmin = /0

2: Measure the initial skew, skewmeas
3: while skewmeas > skewconst + skewmargin do
4: skewcurr = skewmeas
5: while skewcurr > skewconst do
6: Find buffer Bmin, driving min ins. delay cluster
7: Find buffer Bmax, driving max ins. delay cluster
8: Select the buffer, which when removed, improves the skew the most, set empty set for the other
9: Qmax = Qmax∪Bmax

10: Qmin = Qmin∪Bmin
11: Update skewcurr with the remaining set
12: end while
13: while Qmax! = /0 do
14: Pop one buffer, analyze its neighboring buffers
15: if neighboring buffers have the same delay profile then
16: Size their parent buffer
17: else
18: Size only the corresponding buffer
19: end if
20: end while
21: while Qmin! = /0 do
22: Pop one buffer, analyze its neighboring buffers
23: if neighboring buffers have the same delay profile then
24: Size their parent buffer
25: else
26: Size only the corresponding buffer
27: end if
28: end while
29: Run SPICE to measure skewmeas and T T Smeas
30: if T T Smeas > T T Sconst then
31: Resize the violating branch
32: end if
33: end while

their insertion delays in the permissible window, and the skew constraint is satisfied at the end of the sizing

phase. After identifying the clusters whose buffers need to be sized, the sizing stage starts. In this stage, the

buffers are popped from the queue one at a time, and its neighboring clusters, the register clusters which are

driven by the same parent buffer at the (n− 1)st level, are investigated (lines 13-20 and 21-28). From the

experiments, it is observed that most clusters that share the same parent at the (n− 1)st level have similar

insertion delay characteristics. If such a case is identified, only this single buffer at the (n− 1)st level is

sized instead of the multiple children at the nth level. This sizing is performed with the guidance of the

38

look-up table from Chapter 3.3.1 for timing purposes (line 16 and 24). The observation to size the parent

buffer instead of multiple children is key with the proposed buffer sizing scheme, because by sizing only one

buffer, the insertion delays of multiple clusters can be moved into the permissible window. If this is not the

case (which is rarely seen in the experiments as industrial CTS tools scrupulously maximize common paths

in neighboring clock branches) only the driving buffer of the corresponding cluster at nth level is sized (lines

18 and 26). This operation is repeated until both max and min queues are empty. At this stage, a final SPICE

simulation is performed to verify that the skew is within the acceptable margin (skewconst + skewmargin), and

the TTS constraint is satisfied (Line 29). If the TTS constraint is violated at a branch, that branch is resized

back to its original. However, it is not encountered in the experiments, as the number of times a buffer

can be sized is limited (by N defined in Chapter 3.3.1). Furthermore, as the buffer sizing is performed

assuming the rest of the network would not be significantly affected, the simulation in this step is vital

to verify that assumption. If the assumption is incorrect, implying that the measured skew is not within

the acceptable margin (skewconst + skewmargin), another iteration is performed. Design-specific parameter

skewmargin is a user-specified acceptable degradation margin for the clock skew, which is set depending on

the performance and run time requirements. For instance, in the experiments, skewmargin is set to 10% of the

skew constraint (0.1×skewconst). A higher skewmargin would lower the performance with a higher skew but

converge faster, whereas a lower skewmargin would generate a tighter design at the expense of more number

of iterations (i.e. higher run time).

This algorithm is performed at the worst case corner by default, because the highest skew would likely

occur at that corner, and should be bounded. However, the state-of-the-art circuits may have more complex

corners rather than nominal, best and worst, and the largest skew may not occur at the worst case corner.

In order to address that, a multi-corner compatibility verification step is added to preserve the multi-corner-

aware approach of the proposed work. In this second algorithm (Algorithm 2), the worst case corner selected

initially (Line 1) and Algorithm 1 is run (Line 3). In the next step, SPICE accurate simulations are performed

at all corners but the worst case corner to verify the skew bound (Line 4). If the verification fails, the corner

that has the highest skew is set to be the active corner (Line 8), and another iteration of Algorithm 2 is run.

39

Algorithm 2 Multi-Corner Verification
1: Set active corner as worst corner
2: while TRUE do
3: Run Algorithm 1
4: Verify the skew bound at all PVT corners
5: if verified then
6: break
7: else
8: Set active corner as the corner with the largest skew
9: end if

10: end while

3.4 Experimental Analysis

3.4.1 Simulation Setup

The proposed methodology is implemented with Tcl in order to inter-operate with the existing industrial

tools (e.g. Synopsys in this case) and tested on 3 largest circuits of ISCAS’89 benchmarks (s35932, s38417,

s38584) and one more benchmark circuit that is created (and called b1) by combining s35932 and s38584.

The combination is performed by combining the netlists of those two circuits, and place them in the same

floorplan. The purpose here is to investigate the quality of results on relatively larger circuits (i.e. with more

number of sinks), and show the scalability of the proposed methodology. Note that ISPD’10 clock contest

benchmarks cannot be used in this analysis, as they do not have (the logic) data to complete the analysis

in the Synopsys flow. Nonetheless, the largest ISCAS’89 benchmark circuit (s35932) has a similar number

of register sinks as that in the largest ISPD’10 clock contest benchmarks (and even higher with the created

b1). The RTL netlists are synthesized using Design Compiler of Synopsys, the physical placement and the

synthesis of the initial full swing clock tree is performed with IC Compiler of Synopsys. The power and the

skew analyses are performed using CustomSim XA simulator of Synopsys at the SPICE accuracy in 90nm

technology [58] operating at 500 MHz. The allowed number of buffer sizings N is set to 2, considering the

number of available buffer sizes is five in the selected SAED 90nm EDK Library of Synopsys. The allowed

degradation margin skewmargin is set to 10% of the skew at the original full swing clock tree, totaling a skew

budget of 1.1× skewconst . At each voltage level, the time-to-switch (TTS) constraint is set to the values found

in Table 3.1, not to degrade the timing slack more than the measured values (8.8ps at the worst case). In order

40

to account for the PVT variations, the optimization is performed at the worst case corner, and the final circuit

is verified at three different PVT corners, which are:

1. Best Corner (BC): V=1.1×Vdd , T=-40◦C, fast transistors (FF).

2. Nominal Corner (NC): V=Vdd , T=25◦C, typical transistors (TT).

3. Worst Corner (WC): V=0.9×Vdd , T=125◦C, slow transistors (SS).

3.4.2 Results

In order to show the effectiveness of the proposed methodology, the skew, the TTS and the power consumption

of the full swing clock tree synthesized by IC Compiler, the low swing clock tree before optimization and the

low swing clock tree after proposed optimization scheme are compared. The experimental results at voltage

levels of 0.90×Vdd , 0.85×Vdd and 0.80×Vdd are shown in Table 3.3, Table 3.4 and Table 3.5, respectively.

At 0.95×Vdd case, the power savings is at 4% with less than 10% degradation in skew, which is already within

the acceptable skew margin before the optimization. Thus, no optimization is performed for that case, and the

comparisons are not reported. The experimental results show that the proposed methodology is applicable

at all available voltage levels in order to obtain skew values as low as the corresponding full swing clock

tree while preserving the substantial decrease in the power consumption: The circuits running at 0.9×Vdd

operate with 8% power savings with no skew degradation, the circuits running at 0.85×Vdd operate with 11%

power savings with 5% skew degradation, the circuits running at 0.8×Vdd operate with 11% power savings

with 2% skew degradation. The decrease in power consumption is achieved through the degradation in the

slew, however the TTS constraint defined in Chapter 3.2 is satisfied at all voltage levels, which guarantees

an insignificant decrease in the timing slack (at 80% of supply voltage, 11% power savings obtained with a

slack decrease of ≈ 8ps, as shown in Table 3.1). Furthermore, it is also important to note that, the proposed

methodology can obtain different power savings (8% to 11%) and different slack degradation (3.4ps to 8.8ps,

as shown in Table 3.1) at different low swing voltage levels varying from 90% to 80% of Vdd , with (almost)

the same skew (at most 5% increase on average) within the budget (1.1× skewconst). Thus, the proposed

methodology can target a wide range of applications by changing the applied low swing voltage level in order

to budget the available timing slack for power savings.

41

Table 3.3: Normalized power and skew comparison against a full swing (FS) clock tree (CT), and
an unoptimized low swing (LS) clock tree (CT) synthesized by IC Compiler, at 0.90×Vdd . Time-to-
switch (TTS) constraint is at 88.5ps for this case and is satisfied at all benchmarks.

Circuits FS CT Synthesized by ICC LS CT before Optimization Proposed LS CT
Power Skew Power Skew TTS (ps) Power Skew TTS (ps)

s38584 1.00 1.00 0.93 1.20 75.7 0.94 1.02 75.5
s38417 1.00 1.00 0.92 1.17 70.7 0.92 0.98 70.9
s35932 1.00 1.00 0.91 1.22 74.8 0.91 0.98 74.7

b1 1.00 1.00 0.91 1.15 75.4 0.92 1.00 75.5
Average 0.92 1.18 <88.5 0.92 1.00 <88.5

Table 3.4: Normalized power and skew comparison against a full swing (FS) clock tree (CT), and
an unoptimized low swing (LS) clock tree (CT) synthesized by IC Compiler, at 0.85×Vdd . Time-to-
switch (TTS) constraint is at 93.7ps for this case and is satisfied at all benchmarks.

Circuits FS CT Synthesized by ICC LS CT before Optimization Proposed LS CT
Power Skew Power Skew TTS (ps) Power Skew TTS (ps)

s38584 1.00 1.00 0.91 1.34 84.2 0.92 1.02 82.8
s38417 1.00 1.00 0.90 1.29 78.9 0.90 1.07 78.8
s35932 1.00 1.00 0.88 1.36 83.2 0.88 1.06 80.8

b1 1.00 1.00 0.89 1.25 84.2 0.89 1.06 84.0
Average 0.89 1.31 <93.7 0.89 1.05 <93.7

In order to highlight the small run time of the proposed methodology, the number of iterations in Algo-

rithm 1 (which takes ≈10 minutes per iteration) for each benchmark circuit at each voltage level is presented

in Table 3.6. Even with the largest benchmark circuit, which has 2976 sinks, the proposed algorithm con-

verges in two iterations in the worst case. The number of iterations is one in most of the cases, and the

maximum number of iterations encountered is three, which occurs only once for s38417. It is important

to note here that, the allowed skew degradation margin skewmargin can be increased for smaller run time

with lower performance, and vice versa, to control the trade off between run time and performance. This

phenomenon actually can be seen in the experimental results of 0.85×Vdd and 0.80×Vdd cases, shown in Ta-

ble 3.4 and Table 3.5, respectively. The skew at 0.8×Vdd case is smaller than the skew at 0.85×Vdd case, while

the number of iterations (i.e. run time) is higher at 0.8×Vdd case. The number of iterations in Algorithm 2 is

observed to be one for all cases in this experimental setup with the selected operating corners, which means

considering only the worst case corner is sufficient, and multi-corner verification step does not increase the

run time of the methodology. It is also shown in Table 3.6 that the proposed methodology performs skew

42

Table 3.5: Normalized power and skew comparison against a full swing (FS) clock tree (CT), and
an unoptimized low swing (LS) clock tree (CT) synthesized by IC Compiler, at 0.80×Vdd . Time-to-
switch (TTS) constraint is at 99.5ps for this case and is satisfied at all benchmarks.

Circuits FS CT Synthesized by ICC LS CT before Optimization Proposed Work
Power Skew Power Skew TTS (ps) Power Skew TTS (ps)

s38584 1.00 1.00 0.91 1.53 94.9 0.91 1.10 93.6
s38417 1.00 1.00 0.89 1.42 89.5 0.89 0.89 89.3
s35932 1.00 1.00 0.87 1.52 94.0 0.88 1.09 93.7

b1 1.00 1.00 0.88 1.39 95.2 0.88 0.99 94.9
Average 0.89 1.46 <99.5 0.89 1.02 <99.5

Table 3.6: Number of iterations and number of buffers modified for each benchmark circuit at fractions
of Vdd levels.

Circuits Num of Num of Number of Iterations Number of Buffers Modified
Sinks Buffers 0.90× 0.85× 0.80× 0.90× 0.85× 0.80×

s38584 1238 134 1 1 1 1 3 4
s38417 1463 150 1 1 3 1 3 2
s35932 1728 170 1 2 2 2 3 6

b1 2976 315 1 2 2 3 4 6

minimization efficiently as the number of buffers that are sized (modified) are no more than six (6) among

the 100+ buffers in the clock trees. This is due to the fact that the insertion delay profile of the neighboring

clusters are considered at the buffer sizing stage, and multiple clusters in the region of interest are optimized

with a single sizing at the (n−1)st level.

3.5 Conclusion

In this chapter, a novel optimization scheme is proposed to minimize the clock skew of low swing clock

trees. Low swing clock trees are known to be power efficient, however they have drawbacks in requiring

additional circuitry or suffering from poor performance. This study introduces a fast iterative heuristic to

minimize the skew so as to perform minimal or no different than the full swing clock trees while preserving

power savings of the low swing clock trees. Moreover, it is shown that the low swing clock tree is enabled

with an insignificant degradation in the local timing (slack). The proposed scheme is highly practical, as it

is an added feature in the existing CTS tools with minimal effect on the physical design by only performing

in-place buffer sizing, and without requiring additional circuitry. The trade off between performance and

power consumption can be controlled by varying the applied low swing voltage Vddr on the clock buffers.

43

Furthermore, the trade off between run time and performance can be controlled by varying the allowed skew

degradation margin skewmargin. These features of the proposed scheme makes it highly applicable, as it can

be used for both high performance and low power applications.

44

Chapter 4: DESIGN AUTOMATION FOR LOW SWING CLOCKING

In this chapter, an automated low swing clocking methodology is developed through both circuit and algorith-

mic innovations. The primary objective is to significantly reduce the power consumed by the clock network

while maintaining the circuit performance the same. The methodology consists of two primary components:

1) a novel DFF cell that maximizes power savings by enabling low swing operation throughout the entire

clock network and 2) a novel CTS algorithm to ensure that the same timing constraints (i.e. clock frequency,

skew, and slew) are satisfied. The proposed methodology is integrated within an industrial design flow. Exper-

imental results on ISCAS’89 benchmark circuits demonstrate that the overall power consumed by the clock

tree can be reduced by up to 27% and 44% in, respectively, 32nm and 45nm technologies, while satisfying

the same timing constraints. Furthermore, the proposed low swing DFF cell maintains the clock-to-q delay

the same while achieving up to 32% and 15% power savings in the overall flip-flop power at, respectively,

1 GHz and 1.5 GHz clock frequencies.

4.1 Introduction

Achieving a reliable low swing clock network without sacrificing performance is challenging due to the

following issues: 1) clock buffers operating at a lower voltage increase the insertion delay along the clock

path, causing higher clock skew, 2) the drive ability of the clock buffers is degraded, producing higher clock

slew, and 3) the interface between a low swing clock signal and flip-flop may increase clock-to-q delay,

thereby reducing the timing slack within the data paths while also increasing power consumption. To alleviate

the first two issues, a larger number of clock buffers is required, which sacrifices the power savings. To

alleviate the third issue, a common approach is to restore full swing operation before the clock signal reaches

flip-flops [39, 2]. This approach significantly reduces power savings since the last stage of a clock network

has high switching capacitance.

In this study, these three primary issues are simultaneously addressed through both circuit and algorithmic

innovations, making low swing clocking a practical power reduction strategy for both low power and high

45

Novel Low Swing
Clock Tree Synthesis

Clock Buffer
Library

Target Skew &
Slew

Novel Low Swing
DFF Cell

Clock Pin Slew
Constraint

Target C2Q
delay

Placed Design at
Nominal Voltage

Clock Network at
Scaled Voltage

Proposed methodology

Figure 4.1: Summary of the proposed methodology to achieve low swing clocking while maintaining
the performance requirements.

performance applications. Furthermore, the proposed methodology is implemented within a standard design

flow for feasible integration into existing automation tools. As depicted in Figure 4.1, the methodology

consists of a novel DFF cell and a novel CTS methodology. The proposed DFF cell enables reliable low

swing operation at the clock sinks while maintaining the timing constraints the same. The proposed CTS

algorithm ensures that the same skew and slew constraints as in full swing operation are satisfied. More

specifically, the proposed methodology has the following characteristics:

1. The proposed low swing DFF cell achieves similar clock-to-q delay as traditional full swing DFF

topology while consuming less power. Reliable operation is ensured despite a low swing clock signal

and a full swing data signal.

2. The proposed slew-aware low swing CTS methodology considers not only capacitance, but also resis-

tance to efficiently utilize clock tree resources at different performance constraints, and target transistor

and interconnect technologies.

3. The increase in the insertion delay due to low swing operation on the clock tree is methodically com-

pensated by embedding a buffer insertion/wire snaking scheme within the CTS for skew minimization.

46

The output of the proposed methodology is a low swing clock tree, running at the same frequency, satisfy-

ing the same clock skew, clock slew constraints as conventional full swing operation, while saving significant

power at both clock tree and DFFs. The proposed methodology is implemented within a conventional IC

design flow, making the methodology highly applicable to automation.

The rest of the chapter is organized as follows. The proposed methodology is described in Chapter 4.2.

Experimental results are presented in Chapter 4.3. Finally, the chapter is concluded in Chapter 4.4.

4.2 Methodology

As shown in Figure 4.1, the proposed methodology consists of a low swing DFF cell and a low swing-aware

CTS algorithm. The proposed low swing DFF cell, presented in Chapter 4.2.1, enables low swing operation

in the clock tree without a power or a delay overhead, even though the logic data signal is at full swing. The

timing modeling of clock buffers and interconnects, presented in Chapter 4.2.2, provides necessary timing

models to the low swing-aware CTS tool. The proposed CTS algorithm, described in Chapter 4.2.3, generates

a low swing clock tree that maximizes the power savings while satisfying the original timing constraints.

4.2.1 Low Swing DFF Design

The proposed DFF topology, depicted in Figure 4.2, is based on the most commonly used, static D flip-flop

shown in Figure 2.5. Rather than using transmission gates, however, pass gates with NMOS transistors (N1,

N2, N5, and N6) are utilized as the switches in both master and slave latches. Thus, when the low swing

clock signal is at logic high, N1 and N6 can completely turn off. Pass gates, however, cannot transfer a full

voltage to the output. This issue is critical since the incoming data signal operates at full swing. Thus, node

A cannot reach a full Vdd , thereby increasing the short-circuit and leakage current in the following stages

in addition to increasing the clock-to-q delay. Furthermore, pass transistors are known to be less robust to

process variations. In order to alleviate these issues, a pull-up network consisting of two PMOS transistors is

added to both master and slave latches (P1 to P4). When the master node M transitions to logic low, P1 turns

on. If the data signal is also at logic low, then node A is pulled to full Vdd through P1 and P2. Note that P2 (in

the master latch) and P4 (in the slave latch) are added to prevent contention current (and therefore reduce

power consumption) when the data signal is at logic high and clock signal is at logic low. In this situation,

47

Figure 4.2: Proposed DFF topology for low swing clocking.

N1 is on and node A is discharged through N1 and the inverter. If P2 does not exist, a race condition occurs

at node A since N1 should be stronger than P1, which pulls node Y to full Vdd . Finally, a pull-down logic is

added to both master and slave latches to enhance clock-to-q delay (N3, N4, N7, and N8). Specifically, when

data and clock signals are at logic low, the pull-down logic is active and pulls the master node M to ground,

triggering P1. Thus, node A quickly reaches full Vdd . Note that the master node does not need to wait for

node A to rise through a weak pass transistor and activate the inverter. Instead, the pull-down logic completes

this transition relatively faster. Also note that the clock sub-circuit is identical to the sub-circuit shown in

Figure 2.5.

The proposed low swing DFF topology is designed in both 45nm and 32nm technologies. In order to

illustrate proper functionality, full swing data, low swing clock, and full swing output (Q) signals are plotted

in Figure 4.3 for the 32nm technology while driving a 5fF load capacitance. As shown in this figure, the

DFF cell can successfully latch both logic-low and logic-high full swing data signals after the rising edge of

the low swing clock signal. Note that the output reaches nominal (full swing) Vdd and the DFF cell does not

exhibit glitches in any of the internal nodes.

In order to compare the proposed low swing DFF cell (LSDFF) with the conventional full swing DFF

cell (FSDFF), power and clock-to-q delay are analyzed as a function of clock swing for both 45nm and

32nm technologies. The overall power consumption is compared in Figure 4.4. According to this figure, for

both technologies, FSDFF consumes less power than LSDFF at relatively large clock swings. As the clock

48

0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

Time (ns)
(a)

V
ol

ta
ge

 (
v)

data
clock
Q

0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

Time (ns)
(b)

V
ol

ta
ge

 (
v)

data
clock
Q

Figure 4.3: Correct functionality of the proposed low swing DFF cell in 32nm technology: (a) latching
logic-low, (b) latching logic-high.

0.5 0.6 0.7 0.8 0.9 1
6

7

8

9

10

11

12

13

14

Clock voltage swing (V
DD

)

(a)

D
F

F
 p

ow
er

 d
is

si
pa

tio
n

(
W

)

FSDFF

LSDFF

0.5 0.6 0.7 0.8 0.9 1
2.5

3

3.5

4

4.5

5

Clock voltage swing (V
DD

)

(b)

D
F

F
 p

ow
er

 d
is

si
pa

tio
n

(
W

)

FSDFF

LSDFF

Figure 4.4: Power consumption comparison of the proposed low swing DFF cell (LSDFF) with the
conventional full swing DFF cell (FSDFF): (a) 45nm technology, (b) 32nm technology.

swing is reduced, however, LSDFF significantly outperforms FSDFF. The crossover voltage is approximately

0.85V for 45nm technology and 0.81V for 32nm technology. At a clock swing of 0.6V, LSDFF consumes

approximately 53% and 30% less power than FSDFF in, respectively, 45nm and 32nm technologies.

The clock-to-q delay of the LSDFF and FSDFF is compared as a function of clock swing in Figure 4.5.

According to this figure, for both technologies, LSDFF outperforms FSDFF in all clock swings except 0.6V

in 32nm technology. The clock-to-q delay of the LSDFF at this point is only 5ps more than FSDFF. It is

important to note that the LSDFF running at 0.65V can achieve less or equal clock-to-q delay than FSDFF

running at full swing. This characteristic is highly important to maintain data path timing the same (or more)

49

0.5 0.6 0.7 0.8 0.9 1
60

65

70

75

80

85

90

Clock voltage swing (V
DD

)

(a)

D
F

F
 c

lo
ck
−

to
−

Q
 d

el
ay

 (
ps

)

FSDFF

LSDFF

0.5 0.6 0.7 0.8 0.9 1
60

65

70

75

80

85

90

95

100

105

Clock voltage swing (V
DD

)

(b)

D
F

F
 c

lo
ck
−

to
−

Q
 d

el
ay

 (
ps

)

FSDFF

LSDFF

Figure 4.5: Clock-to-q delay comparison of the proposed low swing DFF cell (LSDFF) with the con-
ventional full swing DFF cell (FSDFF): (a) 45nm technology, (b) 32nm technology.

Table 4.1: Power-delay product comparison of the proposed LSDFF and conventional FSDFF as a
function of clock swing.

Clock Swing (×Vdd)
Power-Delay Product (ps×µW)

45nm 32nm
FSDFF LSDFF FSDFF LSDFF

1 769 793 288 271
0.9 802 623 298 208
0.8 834 526 298 197
0.7 940 493 317 213
0.6 1241 558 353 270

slack when the conventional flip-flops are replaced with LSDFFs. Finally, power-delay product of the two

flip-flops is listed in Table 4.1, demonstrating the superiority of the proposed LSDFF at each clock swing for

both technologies.

The proposed LSDFF has also been compared in [42] with several existing DFF topologies designed

for low voltage operation such as clocked CMOS and sense amplifier based topology [17], reduced clock

swing flip-flop topology [19], a NAND-type keeper flip-flop topology [61], and contention reduced flip-flop

topology [24]. All of these topologies have been designed to produce a similar clock-to-q delay to achieve

a fair comparison. At a clock swing of 0.7V, the proposed topology achieves, on average, 38.1% and 44.4%

reduction in, respectively, dynamic power and power-delay product while exhibiting similar clock-to-q delay.

50

4.2.2 Clock Timing Modeling

The timing characterization of clock buffers and interconnects is required only if the related timing libraries

are not readily available. In case these libraries are not available, two methods to perform delay and slew

characterizations of i) clock buffers and ii) clock interconnects are presented in this subsection. The delay

D(B) and the output slew Slewout(B) of a clock buffer B depend upon input slew slewin(B) and output capac-

itance Capout(B) of the buffer. In SPICE-accurate simulations, it is observed that a linear fit is possible for

both delay D(B) and the output slew Slewout(B) estimations that results in an accuracy within approximately

1ps for each buffer. In particular, the delay of a clock buffer D(B) can be written as:

D(B) = Kdelay
slew ×Slewin(B)+Kdelay

cap ×Capout(B)+Kdelay, (4.1)

where Kdelay
slew and Kdelay

cap are the coefficients for the input slew Slewin(B) and output capacitance Capout(B),

respectively. Kdelay is the intrinsic delay of the buffer. As for the output slew Slewout(B), it is observed that

the input slew Slewin(B) does not have a significant effect; therefore the output slew of a buffer B can be

estimated as:

Slewout(B) = Kslew
cap ×Capout(B)+Kslew, (4.2)

where Kslew
cap is the coefficient of the output capacitance for slew computation and Kslew is the intrinsic output

slew. Given the clock slew constraint (for instance 150ps), these coefficients are obtained by sweeping the

input slew and the output capacitance around the slew constraint.

The wire delay can be estimated with the well-known Elmore delay [12] with sufficient accuracy. The

slew degradation on a wire segment T can be estimated using the Bakoglu [4] metric simplified for an ideal

wire input with zero input slew:

Slewideal(Ti,Tf) = ln9×D(Ti,Tf) (4.3)

where D(Ti,Tf) is Elmore delay of the wire segment T from its initial point Ti to final point Tf . This result can

be extended for wires with non-zero input slews, by using the PERI model estimation [18]. In this estimation,

51

the output slew of the wire segment T is estimated at its final position Tf as:

Slewwire(Tf) =
√

Slewwire(Ti)2 +Slewideal(Ti,Tf)2 (4.4)

where Slewwire(Ti) is the input slew of the wire segment T estimated at its initial position Ti. In a buffered

RC network, the output of a buffer is the input of a wire segment and vice versa. Thus, Eq. (4.1) to Eq. (4.4)

are used to estimate the slew and the delay propagation along the clock tree.

4.2.3 Slew-Aware Low Swing CTS

The proposed slew-aware low swing CTS algorithm (Algorithm 3) adopts the well-known zero-skew-tree

deferred merge embedding (ZST-DME) method [5] to merge two nodes into one at each step. The merging

cost is inspired by [8], which considers both the capacitance and the delay as the cost metric. In this work,

this cost is modified to consider the slew and the delay, in order to accurately capture the impact of voltage

scaling (low swing operation) and higher wire resistance for sub-45nm technologies.

In Algorithm 3, lines 5-15 identify whether a merging pair is feasible. If a feasible pair is identified,

lines 16-30 describe the merge process including a novel embedded skew minimization scheme. If a feasible

pair is not identified, a buffering process is proposed in lines 31-36 to help satisfy the slew constraint (that

caused the infeasible merge process). The feasibility is monitored by checking if the slew constraint can be

satisfied with the presence of a buffer at the temporary merging point Ti, j of child nodes i and j by calculating

the maximum slew Ti, j produces, using Eq. (4.2), Eq. (4.3), and Eq. (4.4) (Lines 7-10). If no feasible point

is found, the buffers are inserted at the unmerged nodes, and their capacitance, delay and slew constraint

parameters are updated (Lines 32-35). If a feasible pair is available (i.e. satisfying the slew constraint) for

merging (Line 16), the one with the minimum cost (recorded at Line 11) is initialized as node k to merge

child nodes i and j at this new node (Lines 17-20). After the maximum and the minimum delay from k to the

child nodes are updated, it is checked if the difference between the maximum and the minimum is larger than

the skew constraint skewconst (Line 21). The case of a skew violation is fixed as follows: If the skew violation

is larger than the intrinsic buffer delay Kdelay, buffer insertion is preferred instead of large amounts of wire

snaking that would have been necessary (Lines 22-23). Otherwise, wire snaking is performed (Lines 24-25).

52

This procedure continues until the number of unmerged nodes is one (Lines 3-37), which is the source of the

clock tree.

Algorithm 3 Slew-Aware Low Swing Clock Tree Synthesis
Input: Buffer library, timing models at the voltage level, skew and slew constraints (skewconst ,slewconst).
Output: Locations and connectivity information of clock buffer and interconnects.

1: Initialize nodes, Num o f unmerged = Num o f sinks
2: Dmax(i)=Dmin(i)=0, slewconst(i)=slewconst for each node i
3: while Num o f unmerged > 1 do
4: Costcurr=∞

5: for i in Nodes do
6: for j in Nodes do
7: Slewout(Ti, j) = Kslew

cap ×Capout(Ti, j)+Kslew
8: X = max[Slewideal(Ti, j, i), Slewideal(Ti, j, j)]
9: Slewwire(Ti, j) =

√
X2 +Slewout(Ti, j)2

10: if Cost(i, j) < Costcurr &&
Slewwire(Ti, j) < Min[slewcons(i),slewcons(j)] then

11: Costcurr=Cost(i, j)
12: Tempslew=Slewwire(Ti, j)
13: end if
14: end for
15: end for
16: if Costcurr != ∞ then
17: Num of unmerged−−
18: Initialize new node k=Ti, j
19: Dmax(k)=max[Dmax(i)+D(i,k),Dmax(j)+D(j,k)]
20: Dmin(k)=min[Dmin(i)+D(i,k),Dmin(j)+D(j,k)]
21: while Dmax(k)-Dmin(k) > skewconst do
22: if Dmax(k)-Dmin(k) > Kdelay then
23: Insert a buffer at the lower delay node
24: else
25: Apply wire snaking at the lower delay node
26: end if
27: Update Dmax(k) and Dmin(k) using Eq. (4.1)
28: Update Slewconst(i) and Slewconst(j)
29: end while
30: Slewconst(k)=√

min[Slewconst(i),Slewconst(j)]2−Tempslew
2

31: else
32: for i in Unmerged Nodes do
33: Insert buffer, update Dmax(i), Dmin(i) using Eq. (4.1)
34: slewconst(i)=slewconst
35: end for
36: end if
37: end while

An important characteristic of this embedded skew minimization scheme is the ability to build a skew

balanced clock tree at each level. Thus, this approach has the potential to minimize the buffering/wiring cost

at the upper levels of the clock tree.

53

Table 4.2: Floorplan area, number of DFFs, and number of gates information of the benchmark circuits.

Benchmark Floorplan Size Number Number
circuits (µm×µm) of DFFs of Gates
s1423 83×82 74 657
s9234 101×101 145 5597
s5378 112×113 176 2779

s15850 173×169 513 9772
s13207 169×166 593 7951
s38584 280×272 1274 19353
s38417 285×281 1575 22179
s35932 289×281 1728 16065

4.3 Experimental Analysis

4.3.1 Simulation Setup

The proposed algorithm is implemented in Perl and the output circuits are tested using HSPICE of Synopsys

with FreePDK 45nm technology [38] and SAED 32nm technology [59]. The proposed low swing DFF cell

is also designed by using these technologies.

Eight largest circuits from ISCAS’89 benchmarks (floorplan sizes and number of DFF information are

listed in Table 4.2) are selected for experimental analyses. It is important to note that 1) ISPD’10 benchmarks

cannot be used for this work, as they do not contain any DFF information, and instead, ISPD’10 benchmarks

have capacitance information to model the clock pin of DFFs and 2) ISCAS’89 benchmarks have comparable

circuit size with ISPD’10 benchmarks (1728 vs. 2249 for the largest number of DFFs). The logic synthesis

and the physical placement of the DFF sinks are performed using SoC Encounter of Cadence. The largest

buffer from SAED library (NBUFFX32) [59] of Synopsys is used as the clock buffer. The experiments are

performed at the slowest corner (for delay, skew, and slew) of each technology in order to verify functionality

in reduced noise margins. These process, voltage, and temperature corners correspond, respectively, to slow-

slow (SS) device models, 0.9V and 125◦C for 45nm technology node; and slow-slow (SS) device models,

0.95V, and 125◦C for the 32nm technology node.

In order to highlight the efficacy of the proposed swing- and slew-aware CTS algorithm with the presence

of the proposed low swing DFF topology, the power consumption of the low swing clock tree (CP), the overall

power consumption of DFF cells (DFFP), clock skew (Sk.), maximum clock slew (Sl.) and the maximum

54

clock-to-q delay (C2Q) of the DFFs are compared with a full swing clock tree that has traditional full swing

DFFs. The low swing clocking methodology introduced in Chapter 3 is also included in the comparison.

For each technology node (45nm and 32nm), combinations of wire models (wire 1 and wire 2 described in

Chapter 2.1.3) and frequency constraints (1 GHz and 1.5 GHz with scaled slew constraints of 150ps and

100ps, respectively) are considered. Low swing voltage level is selected as the level that has minimum power

consumption for each case. The clock skew constraint is set to 50ps at all cases.

4.3.2 Results at 45nm Technology

The experimental results in 45nm technology are presented in the following three tables:

• Table 4.3: 45nm, wire 1, 150ps slew constraint at 1 GHz

• Table 4.4: 45nm, wire 2, 150ps slew constraint at 1 GHz

• Table 4.5: 45nm, wire 1, 100ps slew constraint at 1.5 GHz

As mentioned in Chapter 2.1.3, the case with wire 2 and 150ps slew constraint is omitted for this technology

since no feasible clock trees can be synthesized, even at full Vdd .

In Table 4.3, it is shown that the methodology introduced in Chapter 3 achieves a significant 58% power

savings in the clock tree. These savings, however, are possible with significantly high clock slew that violates

the slew constraint (150ps). The proposed slew-aware methodology simultaneously satisfies both skew and

slew constraints, while achieving a significant 37% power savings. Furthermore, the conventional full swing

DFF used in the methodology introduced in Chapter 3 has poor performance, increasing power consumption

by 27% and clock-to-q delay by 46.5ps, on average. Alternatively, the proposed low swing DFF achieves

22% overall power savings compared to the traditional DFF running at full swing, while providing smaller

clock-to-q delay (172.5ps vs. 176.2ps). A similar trend is observed in Table 4.4. The methodology introduced

in Chapter 3 achieves 47% power savings with slew violations throughout the clock tree, while increasing

DFF power consumption by 10% and clock-to-q delay by 22.5ps. Alternatively, proposed slew-aware clock

tree methodology satisfies both skew and slew constraints, and achieves 44% power savings within the clock

tree. The low swing DFF achieves 26% overall power savings compared to the traditional DFF operating at

full swing, and achieves similar clock-to-q delay (184.3ps vs. 179.5ps, on average). The experimental results

55

listed in Table 4.5 demonstrate that the proposed slew-aware CTS algorithm achieves 30% savings while

satisfying the skew and the slew constraints, whereas the methodology introduced in Chapter 3 achieves 37%

savings with slew violations. Compared to a more relaxed slew constraint (150ps), the power savings at a

tighter slew constraint (100ps) is slightly reduced (30% vs. 37%). This result is intuitive as there is smaller

margin for scaling the clock swing at a tighter slew constraint at the DFF sinks (the difference between

the slew at the clock buffer output and the target slew at the end point DFF). The proposed low swing DFF

achieves 23% power saving along with a comparable clock-to-q delay against the traditional DFF (176.3ps vs.

172.2ps, on average). In the methodology introduced in Chapter 3, however, the overall power consumption

of the DFF sinks and clock-to-q delay increases by, respectively, 7% and 19.2ps.

4.3.3 Results at 32nm Technology

The experimental results in 32nm technology are presented in the following four tables:

• Table 4.6: 32nm, wire 1, 150ps slew constraint at 1 GHz

• Table 4.7: 32nm, wire 2, 150ps slew constraint at 1 GHz

• Table 4.8: 32nm, wire 1, 100ps slew constraint at 1.5 GHz

• Table 4.9: 32nm, wire 2, 100ps slew constraint at 1.5 GHz

As demonstrated by Table 4.6, the methodology introduced in Chapter 3 achieves 45% power savings at

the expense of a significantly high clock slew (as much as twice the constraint). The proposed methodology,

however, achieves 17% power savings while satisfying both skew and slew constraints. Although the clock-

to-q delay in the methodology introduced in Chapter 3 is comparable to the clock-to-q delay of a traditional

DFF operating at full swing, the power consumption increases by 51%. Alternatively, the proposed low

swing DFF decreases power consumption by 9%. A similar trend is observed in Table 4.7. The proposed

slew-aware CTS methodology achieves 27% savings while satisfying both skew and slew constraints. In

the methodology introduced in Chapter 3, the power consumption of DFF increases by 30% whereas the

proposed low swing DFF decreases the overall DFF power by 15%. According to Table 4.8, the methodology

introduced in Chapter 3 provides 20% power savings in the clock tree with violations in clock slew, whereas

56

the proposed low swing CTS methodology achieves 5% savings within the clock tree without any violations.

Similar to 45nm technology, the power savings achieved by low swing clocking decreases at tighter slew

constraints (17% at 150ps vs. 5% at 100ps). The proposed low swing DFF achieves an additional 9% power

savings within the DFF, outperforming the conventional DFF of the methodology introduced in Chapter 3

that increases the overall power consumption by 6%.

4.3.4 Discussion on the Effect of Interconnect Resistance

An interesting observation is that low swing clocking achieves more reduction in power with wire 2 technol-

ogy (more resistive interconnect) than wire 1. For example, in 45nm technology, 44% reduction is achieved

with wire 2 (Table 4.4) as compared to 37% reduction with wire 1 (Table 4.3), despite operating at a higher

voltage swing (0.75×Vdd vs. 0.65×Vdd). This outcome demonstrates that although high wire resistance (of

wire 2) limits the feasibility of clock voltage scaling, the swing- and slew-aware CTS algorithm maximizes

the power savings when the interconnect resistance dominates (and therefore makes slew-awareness more

critical). A similar behavior is observed for the 32nm technology node, as demonstrated by Table 4.6 (17%

power savings with wire 1) and Table 4.7 (27% power savings with wire 2).

When the interconnect resistance dominates, the increase in the device resistance (due to voltage scaling)

has a smaller negative impact, thereby favoring low swing clocking as an efficient power reduction strategy.

This behavior is highly critical since interconnect resistance further dominates device resistance in sub-32nm

FinFET technologies. Thus, the proposed slew-aware CTS algorithm is highly applicable in scaling the clock

voltage of future technology nodes and maximizing power savings, while satisfying the required skew and

slew constraints.

4.4 Conclusion

A design methodology is proposed for low swing clocking with a low swing-aware DFF design. The primary

objective is to achieve significant reduction in power consumption without degrading circuit performance.

The proposed methodology consists of a novel low swing DFF cell and a novel swing- and slew-aware CTS

algorithm. The proposed DFF cell can reliably operate with a low swing clock signal, thereby enabling low

swing operation throughout the entire clock network. Thus, power savings are maximized. The proposed

57

CTS algorithm ensures that the same clock frequency, skew and slew as in full swing operation are satisfied.

Furthermore, the slew-aware CTS algorithm is sufficiently flexible to target various performance constraints

while adapting to the differences in the transistor and interconnect technologies. The entire methodology is

integrated into an industrial design flow for automation. Experimental results on largest ISCAS’89 bench-

mark circuits demonstrate significant reductions in clock power for both 45nm and 32nm technology nodes,

while satisfying all of the timing constraints.

58

Ta
bl

e
4.

3:
T

he
co

m
pa

ri
so

n
of

cl
oc

k
tr

ee
po

w
er

(C
P

in
m

W
),

D
FF

po
w

er
(D

FF
P

in
m

W
),

cl
oc

k
sk

ew
(S

k.
in

ps
),

cl
oc

k
sl

ew
(S

l.
in

ps
)

an
d

th
e

cl
oc

k-
to

-q
de

la
y

(C
2Q

in
ps

)
fo

r
th

e
ba

se
lin

e
fu

ll
sw

in
g

(F
S)

,t
he

lo
w

sw
in

g
(L

S)
im

pl
em

en
ta

tio
n

w
ith

th
e

m
et

ho
do

lo
gy

in
tr

od
uc

ed
in

C
ha

pt
er

3,
an

d
pr

op
os

ed
lo

w
sw

in
g

(L
S)

m
et

ho
do

lo
gy

fo
r4

5n
m

te
ch

no
lo

gy
al

on
g

w
ith

w
ir

e
1

ru
nn

in
g

at
1

G
H

z
an

d
w

or
st

ca
se

co
rn

er
.L

ow
sw

in
g

cl
oc

k
vo

lta
ge

is
at

0.
65
×

V d
d
.

C
ir

cu
its

Fu
ll

Sw
in

g
(F

S)
L

ow
Sw

in
g

(L
S)

M
et

ho
d

in
C

ha
pt

er
3

Pr
op

os
ed

L
ow

Sw
in

g
(L

S)
C

P
D

FF
P

Sk
.

Sl
.

C
2Q

C
P

D
FF

P
Sk

.
Sl

.
C

2Q
C

P
D

FF
P

Sk
.

Sl
.

C
2Q

s1
42

3
0.

28
0.

27
0.

2
48

.2
16

6.
7

0.
12

0.
32

0.
1

94
.8

19
9.

9
0.

12
0.

21
0.

3
10

1.
2

16
8.

8
s9

23
4

0.
37

0.
53

0.
3

63
.8

16
9.

3
0.

16
0.

64
0.

3
12

0.
8

20
8.

1
0.

17
0.

41
0.

3
13

3.
7

17
3.

0
s5

37
8

0.
42

0.
68

0.
1

80
.4

17
2.

9
0.

18
0.

79
0.

1
14

4.
6

21
2.

8
0.

33
0.

50
14

.3
12

3.
6

17
2.

0
s1

58
50

1.
26

1.
89

8.
3

12
7.

7
18

0.
4

0.
53

2.
40

16
.1

22
2.

7
23

3.
1

0.
79

1.
46

12
.3

13
8.

3
17

2.
8

s1
32

07
1.

34
2.

18
28

.4
13

8.
0

18
2.

4
0.

57
2.

80
37

.9
24

2.
6

23
7.

9
0.

83
1.

69
20

.1
14

0.
8

17
3.

8
s3

85
84

3.
19

4.
66

37
.9

11
8.

6
17

8.
5

1.
34

5.
87

48
.2

21
0.

5
22

9.
1

2.
01

3.
65

22
.5

14
1.

3
17

2.
9

s3
84

17
3.

69
5.

75
46

.9
12

5.
3

17
9.

8
1.

50
7.

32
38

.7
23

7.
2

23
1.

1
2.

32
4.

52
39

.9
14

0.
3

17
3.

0
s3

59
32

3.
91

6.
32

9.
2

12
1.

3
17

9.
9

1.
66

7.
99

8.
8

21
0.

9
22

9.
3

2.
58

4.
96

44
.9

14
2.

6
17

3.
3

N
or

m
.

1.
00

1.
00

<
50

ps
<

15
0p

s
17

6.
2

0.
42

1.
27

<
50

ps
V

IO
22

2.
7

0.
63

0.
78

<
50

ps
<

15
0p

s
17

2.
5

59

Ta
bl

e
4.

4:
T

he
co

m
pa

ri
so

n
of

cl
oc

k
tr

ee
po

w
er

(C
P

in
m

W
),

D
FF

po
w

er
(D

FF
P

in
m

W
),

cl
oc

k
sk

ew
(S

k.
in

ps
),

cl
oc

k
sl

ew
(S

l.
in

ps
)

an
d

th
e

cl
oc

k-
to

-q
de

la
y

(C
2Q

in
ps

)
fo

r
th

e
ba

se
lin

e
fu

ll
sw

in
g

(F
S)

,t
he

lo
w

sw
in

g
(L

S)
im

pl
em

en
ta

tio
n

w
ith

th
e

m
et

ho
do

lo
gy

in
tr

od
uc

ed
in

C
ha

pt
er

3,
an

d
pr

op
os

ed
lo

w
sw

in
g

(L
S)

m
et

ho
do

lo
gy

fo
r4

5n
m

te
ch

no
lo

gy
w

ith
w

ir
e

2
ru

nn
in

g
at

1
G

H
z

an
d

w
or

st
ca

se
co

rn
er

.L
ow

sw
in

g
cl

oc
k

vo
lta

ge
is

at
0.

75
×

V d
d
.

C
ir

cu
its

Fu
ll

Sw
in

g
(F

S)
L

ow
Sw

in
g

(L
S)

M
et

ho
d

in
C

ha
pt

er
3

Pr
op

os
ed

L
ow

Sw
in

g
(L

S)
C

P
D

FF
P

Sk
.

Sl
.

C
2Q

C
P

D
FF

P
Sk

.
Sl

.
C

2Q
C

P
D

FF
P

Sk
.

Sl
.

C
2Q

s1
42

3
0.

36
0.

27
0.

9
88

.2
17

3.
9

0.
20

0.
29

1.
2

11
0.

3
19

1.
6

0.
19

0.
19

1.
1

10
8.

5
18

2.
5

s9
23

4
0.

87
0.

53
17

.6
12

6.
3

17
9.

7
0.

47
0.

57
23

.3
15

8.
3

20
0.

8
0.

56
0.

38
4.

0
79

.6
17

6.
0

s5
37

8
0.

97
0.

65
6.

4
12

4.
3

18
0.

3
0.

52
0.

70
7.

1
15

3.
4

20
0.

1
0.

61
0.

47
25

.6
13

2.
6

18
6.

0
s1

58
50

2.
51

1.
87

27
.7

11
7.

5
17

8.
7

1.
36

2.
02

36
.2

14
7.

6
19

8.
7

1.
63

1.
39

49
.9

14
1.

6
18

7.
6

s1
32

07
3.

20
2.

16
31

.5
12

7.
6

17
9.

9
1.

73
2.

35
38

.5
16

3.
4

20
1.

6
1.

80
1.

59
17

.1
10

9.
7

18
2.

0
s3

85
84

8.
83

4.
71

47
.6

13
7.

9
18

1.
3

4.
62

5.
21

43
.5

16
8.

1
20

2.
9

4.
56

3.
47

33
.5

12
4.

2
18

4.
5

s3
84

17
9.

34
5.

82
49

.8
13

3.
6

18
0.

5
4.

85
6.

46
47

.0
26

1.
5

21
6.

7
5.

20
4.

29
38

.2
13

4.
2

18
7.

0
s3

59
32

9.
56

6.
38

37
.4

13
6.

9
18

1.
6

5.
14

7.
02

36
.8

17
3.

8
20

3.
4

5.
47

4.
70

39
.2

14
1.

1
18

8.
4

N
or

m
.

1.
00

1.
00

<
50

ps
<

15
0p

s
17

9.
5

0.
53

1.
10

<
50

ps
V

IO
20

2.
0

0.
56

0.
74

<
50

ps
<

15
0p

s
18

4.
3

60

Ta
bl

e
4.

5:
T

he
co

m
pa

ri
so

n
of

cl
oc

k
tr

ee
po

w
er

(C
P

in
m

W
),

D
FF

po
w

er
(D

FF
P

in
m

W
),

cl
oc

k
sk

ew
(S

k.
in

ps
),

cl
oc

k
sl

ew
(S

l.
in

ps
)

an
d

th
e

cl
oc

k-
to

-q
de

la
y

(C
2Q

in
ps

)
fo

r
th

e
ba

se
lin

e
fu

ll
sw

in
g

(F
S)

,t
he

lo
w

sw
in

g
(L

S)
im

pl
em

en
ta

tio
n

w
ith

th
e

m
et

ho
do

lo
gy

in
tr

od
uc

ed
in

C
ha

pt
er

3,
an

d
pr

op
os

ed
lo

w
sw

in
g

(L
S)

m
et

ho
do

lo
gy

fo
r4

5n
m

te
ch

no
lo

gy
w

ith
w

ir
e

1
ru

nn
in

g
at

1.
5

G
H

z
an

d
w

or
st

ca
se

co
rn

er
.L

ow
sw

in
g

cl
oc

k
vo

lta
ge

is
at

0.
75
×

V d
d
.

C
ir

cu
its

Fu
ll

Sw
in

g
(F

S)
L

ow
Sw

in
g

(L
S)

M
et

ho
d

in
C

ha
pt

er
3

Pr
op

os
ed

L
ow

Sw
in

g
(L

S)
C

P
D

FF
P

Sk
.

Sl
.

C
2Q

C
P

D
FF

P
Sk

.
Sl

.
C

2Q
C

P
D

FF
P

Sk
.

Sl
.

C
2Q

s1
42

3
0.

42
0.

41
0.

2
44

.4
16

6.
3

0.
23

0.
43

0.
2

67
.7

18
0.

7
0.

23
0.

30
0.

1
65

.9
17

2.
1

s9
23

4
0.

55
0.

80
0.

3
61

.3
16

9.
1

0.
31

0.
85

0.
3

88
.6

18
6.

3
0.

59
0.

59
12

.9
76

.0
17

5.
0

s5
37

8
0.

63
0.

98
0.

1
79

.0
17

2.
3

0.
35

1.
04

0.
2

11
2.

4
19

1.
5

0.
63

0.
74

5
0.

6
74

.0
17

4.
3

s1
58

50
2.

17
2.

87
6.

2
92

.5
17

4.
2

1.
20

3.
05

5.
2

12
9.

9
19

4.
1

1.
47

2.
20

15
.7

84
.6

17
7.

1
s1

32
07

2.
29

3.
32

14
.4

90
.1

17
3.

3
1.

27
3.

53
17

.7
12

8.
5

19
4.

4
1.

54
2.

52
9.

6
88

.2
17

8.
0

s3
85

84
5.

06
7.

16
25

.4
93

.6
17

4.
3

2.
81

7.
64

29
.4

13
1.

1
19

4.
4

3.
90

5.
60

10
.9

86
.8

17
7.

8
s3

84
17

6.
66

8.
90

25
.6

95
.4

17
4.

9
3.

68
9.

53
34

.3
13

2.
8

19
5.

4
4.

42
6.

94
28

.1
87

.8
17

8.
2

s3
59

32
7.

56
9.

75
23

.3
90

.5
17

3.
5

4.
17

10
.3

9
30

.9
12

8.
2

19
4.

4
5.

08
7.

60
18

.8
86

.5
17

8.
0

N
or

m
.

1.
00

1.
00

<
50

ps
<

10
0p

s
17

2.
2

0.
55

1.
07

<
50

ps
V

IO
19

1.
4

0.
70

0.
77

<
50

ps
<

10
0p

s
17

6.
3

61

Ta
bl

e
4.

6:
T

he
co

m
pa

ri
so

n
of

cl
oc

k
tr

ee
po

w
er

(C
P

in
m

W
),

D
FF

po
w

er
(D

FF
P

in
m

W
),

cl
oc

k
sk

ew
(S

k.
in

ps
),

cl
oc

k
sl

ew
(S

l.
in

ps
)

an
d

th
e

cl
oc

k-
to

-q
de

la
y

(C
2Q

in
ps

)
fo

r
th

e
ba

se
lin

e
fu

ll
sw

in
g

(F
S)

,t
he

lo
w

sw
in

g
(L

S)
im

pl
em

en
ta

tio
n

w
ith

th
e

m
et

ho
do

lo
gy

in
tr

od
uc

ed
in

C
ha

pt
er

3,
an

d
pr

op
os

ed
lo

w
sw

in
g

(L
S)

m
et

ho
do

lo
gy

fo
r3

2n
m

te
ch

no
lo

gy
w

ith
w

ir
e

1
ru

nn
in

g
at

1
G

H
z

an
d

w
or

st
ca

se
co

rn
er

.L
ow

sw
in

g
cl

oc
k

vo
lta

ge
is

at
0.

75
×

V d
d
.

C
ir

cu
its

Fu
ll

Sw
in

g
(F

S)
L

ow
Sw

in
g

(L
S)

M
et

ho
d

in
C

ha
pt

er
3

Pr
op

os
ed

L
ow

Sw
in

g
(L

S)
C

P
D

FF
P

Sk
.

Sl
.

C
2Q

C
P

D
FF

P
Sk

.
Sl

.
C

2Q
C

P
D

FF
P

Sk
.

Sl
.

C
2Q

s1
42

3
0.

15
0.

11
0.

3
82

.3
10

9.
9

0.
08

0.
15

0.
2

16
1.

1
11

8.
0

0.
13

0.
10

30
.8

13
7.

7
11

8.
7

s9
23

4
0.

22
0.

22
0.

5
11

5.
0

11
2.

2
0.

12
0.

32
0.

4
23

4.
5

12
0.

1
0.

20
0.

20
28

.8
12

7.
3

12
0.

7
s5

37
8

0.
27

0.
27

0.
3

13
5.

3
11

3.
5

0.
15

0.
41

0.
4

28
3.

0
12

0.
6

0.
25

0.
24

3.
3

12
1.

6
12

0.
7

s1
58

50
0.

82
0.

78
2.

6
13

1.
3

11
3.

5
0.

45
1.

18
4.

9
27

9.
7

11
9.

7
0.

69
0.

70
27

.2
14

1.
6

11
8.

8
s1

32
07

0.
94

0.
88

20
.4

13
0.

2
11

2.
6

0.
53

1.
32

39
.9

28
2.

2
12

0.
5

0.
73

0.
81

24
.8

14
4.

6
11

8.
5

s3
85

84
2.

16
1.

92
28

.6
14

6.
7

11
3.

0
1.

18
2.

91
37

.6
30

4.
3

12
0.

7
1.

73
1.

75
25

.6
14

6.
0

11
9.

2
s3

84
17

2.
47

2.
40

12
.9

14
8.

7
11

3.
8

1.
36

3.
62

13
.4

30
6.

7
12

0.
7

2.
11

2.
17

41
.5

14
4.

3
11

8.
7

s3
59

32
2.

82
2.

62
22

.1
14

4.
7

11
3.

0
1.

55
3.

95
47

.2
30

8.
7

12
0.

7
2.

30
2.

38
49

.0
14

8.
5

11
9.

4
N

or
m

.
1.

00
1.

00
<

50
ps

<
15

0p
s

11
2.

7
0.

55
1.

51
<

50
ps

V
IO

12
0.

1
0.

83
0.

91
<

50
ps

<
15

0p
s

11
9.

3

62

Ta
bl

e
4.

7:
T

he
co

m
pa

ri
so

n
of

cl
oc

k
tr

ee
po

w
er

(C
P

in
m

W
),

D
FF

po
w

er
(D

FF
P

in
m

W
),

cl
oc

k
sk

ew
(S

k.
in

ps
),

cl
oc

k
sl

ew
(S

l.
in

ps
)

an
d

th
e

cl
oc

k-
to

-q
de

la
y

(C
2Q

in
ps

)
fo

r
th

e
ba

se
lin

e
fu

ll
sw

in
g

(F
S)

,t
he

lo
w

sw
in

g
(L

S)
im

pl
em

en
ta

tio
n

w
ith

th
e

m
et

ho
do

lo
gy

in
tr

od
uc

ed
in

C
ha

pt
er

3,
an

d
pr

op
os

ed
lo

w
sw

in
g

(L
S)

m
et

ho
do

lo
gy

fo
r3

2n
m

te
ch

no
lo

gy
w

ith
w

ir
e

2
ru

nn
in

g
at

1
G

H
z

an
d

w
or

st
ca

se
co

rn
er

.L
ow

sw
in

g
cl

oc
k

vo
lta

ge
is

at
0.

80
×

V d
d
.

C
ir

cu
its

Fu
ll

Sw
in

g
(F

S)
L

ow
Sw

in
g

(L
S)

M
et

ho
d

in
C

ha
pt

er
3

Pr
op

os
ed

L
ow

Sw
in

g
(L

S)
C

P
D

FF
P

Sk
.

Sl
.

C
2Q

C
P

D
FF

P
Sk

.
Sl

.
C

2Q
C

P
D

FF
P

Sk
.

Sl
.

C
2Q

s1
42

3
0.

33
0.

11
29

.7
11

2.
9

11
1.

4
0.

21
0.

14
46

.9
17

9.
7

11
7.

7
0.

20
0.

09
1.

4
12

8.
1

11
3.

7
s9

23
4

0.
52

0.
21

1.
3

90
.5

11
1.

0
0.

32
0.

26
3.

7
14

9.
4

11
6.

2
0.

35
0.

18
20

.3
13

9.
5

11
3.

0
s5

37
8

0.
65

0.
25

4.
8

87
.6

11
0.

1
0.

41
0.

31
8.

1
14

4.
4

11
5.

7
0.

41
0.

22
5.

6
14

3.
2

11
3.

1
s1

58
50

1.
60

0.
76

47
.1

13
6.

2
11

2.
2

0.
99

1.
01

40
.9

21
7.

0
11

8.
0

1.
21

0.
65

41
.3

14
8.

7
11

2.
9

s1
32

07
1.

79
0.

88
43

.2
14

1.
9

11
2.

4
1.

12
1.

15
46

.7
22

5.
3

11
8.

2
1.

31
0.

75
12

.5
14

1.
7

11
2.

9
s3

85
84

4.
52

1.
90

41
.8

14
5.

7
11

2.
4

2.
79

2.
49

21
.1

22
9.

5
11

8.
4

3.
35

1.
62

45
.7

14
7.

3
11

3.
5

s3
84

17
5.

12
2.

38
44

.5
14

5.
9

11
2.

5
3.

18
3.

10
24

.2
20

9.
0

11
7.

7
3.

71
2.

00
36

.4
14

5.
1

11
3.

6
s3

59
32

5.
66

2.
59

32
.1

14
1.

5
11

2.
3

3.
52

3.
37

46
.9

22
5.

1
11

8.
4

4.
28

2.
20

26
.8

14
8.

0
11

3.
2

N
or

m
.

1.
00

1.
00

<
50

ps
<

15
0p

s
11

1.
8

0.
62

1.
30

<
50

ps
V

IO
11

7.
5

0.
73

0.
85

<
50

ps
<

15
0p

s
11

3.
2

63

Ta
bl

e
4.

8:
T

he
co

m
pa

ri
so

n
of

cl
oc

k
tr

ee
po

w
er

(C
P

in
m

W
),

D
FF

po
w

er
(D

FF
P

in
m

W
),

cl
oc

k
sk

ew
(S

k.
in

ps
),

cl
oc

k
sl

ew
(S

l.
in

ps
)

an
d

th
e

cl
oc

k-
to

-q
de

la
y

(C
2Q

in
ps

)
fo

r
th

e
ba

se
lin

e
fu

ll
sw

in
g

(F
S)

,t
he

lo
w

sw
in

g
(L

S)
im

pl
em

en
ta

tio
n

w
ith

th
e

m
et

ho
do

lo
gy

in
tr

od
uc

ed
in

C
ha

pt
er

3,
an

d
pr

op
os

ed
lo

w
sw

in
g

(L
S)

m
et

ho
do

lo
gy

fo
r3

2n
m

te
ch

no
lo

gy
w

ith
w

ir
e

1
ru

nn
in

g
at

1.
5

G
H

z
an

d
w

or
st

ca
se

co
rn

er
.L

ow
sw

in
g

cl
oc

k
vo

lta
ge

is
at

0.
90
×

V d
d
.

C
ir

cu
its

Fu
ll

Sw
in

g
(F

S)
L

ow
Sw

in
g

(L
S)

M
et

ho
d

in
C

ha
pt

er
3

Pr
op

os
ed

L
ow

Sw
in

g
(L

S)
C

P
D

FF
P

Sk
.

Sl
.

C
2Q

C
P

D
FF

P
Sk

.
Sl

.
C

2Q
C

P
D

FF
P

Sk
.

Sl
.

C
2Q

s1
42

3
0.

21
0.

15
0.

2
76

.6
11

0.
3

0.
17

0.
16

0.
2

97
.8

11
2.

7
0.

29
0.

14
19

.6
82

.1
10

6.
1

s9
23

4
0.

47
0.

30
10

.8
79

.7
10

9.
7

0.
38

0.
32

13
.1

10
0.

1
11

2.
0

0.
43

0.
27

5.
2

75
.7

10
6.

0
s5

37
8

0.
54

0.
37

1.
0

82
.1

11
0.

7
0.

44
0.

39
1.

4
10

3.
2

11
2.

9
0.

55
0.

33
1.

6
73

.4
10

6.
5

s1
58

50
1.

44
1.

04
8.

6
87

.3
11

0.
1

1.
16

1.
10

9.
8

10
9.

1
11

2.
5

1.
46

0.
97

33
.7

86
.6

10
6.

2
s1

32
07

1.
71

1.
22

4.
5

85
.9

11
0.

1
1.

37
1.

29
6.

2
10

8.
3

11
2.

3
1.

59
1.

12
12

.4
85

.5
10

6.
0

s3
85

84
4.

17
2.

61
28

.0
85

.5
10

9.
7

3.
35

2.
76

35
.9

10
7.

2
11

2.
2

3.
76

2.
40

14
.1

87
.7

10
6.

1
s3

84
17

4.
66

3.
26

13
.5

87
.4

10
9.

9
3.

74
3.

45
17

.2
11

0.
0

11
2.

3
4.

49
2.

97
36

.4
86

.8
10

6.
1

s3
59

32
5.

04
3.

58
11

.1
84

.8
10

9.
9

4.
05

3.
80

15
.7

10
7.

3
11

2.
6

4.
74

3.
25

28
.9

89
.2

10
6.

0
N

or
m

.
1.

00
1.

00
<

50
ps

<
10

0p
s

11
0.

1
0.

80
1.

06
<

50
ps

V
IO

11
2.

4
0.

95
0.

91
<

50
ps

<
10

0p
s

10
6.

1

64

Ta
bl

e
4.

9:
T

he
co

m
pa

ri
so

n
of

cl
oc

k
tr

ee
po

w
er

(C
P

in
m

W
),

D
FF

po
w

er
(D

FF
P

in
m

W
),

cl
oc

k
sk

ew
(S

k.
in

ps
),

cl
oc

k
sl

ew
(S

l.
in

ps
)

an
d

th
e

cl
oc

k-
to

-q
de

la
y

(C
2Q

in
ps

)
fo

r
th

e
ba

se
lin

e
fu

ll
sw

in
g

(F
S)

,t
he

lo
w

sw
in

g
(L

S)
im

pl
em

en
ta

tio
n

w
ith

th
e

m
et

ho
do

lo
gy

in
tr

od
uc

ed
in

C
ha

pt
er

3,
an

d
pr

op
os

ed
lo

w
sw

in
g

(L
S)

m
et

ho
do

lo
gy

fo
r3

2n
m

te
ch

no
lo

gy
w

ith
w

ir
e

2
ru

nn
in

g
at

1.
5

G
H

z
an

d
w

or
st

ca
se

co
rn

er
.L

ow
sw

in
g

cl
oc

k
vo

lta
ge

is
at

0.
95
×

V d
d
.

C
ir

cu
its

Fu
ll

Sw
in

g
(F

S)
L

ow
Sw

in
g

(L
S)

M
et

ho
d

in
C

ha
pt

er
3

Pr
op

os
ed

L
ow

Sw
in

g
(L

S)
C

P
D

FF
P

Sk
.

Sl
.

C
2Q

C
P

D
FF

P
Sk

.
Sl

.
C

2Q
C

P
D

FF
P

Sk
.

Sl
.

C
2Q

s1
42

3
0.

48
0.

15
1.

6
79

.3
11

0.
0

0.
43

0.
16

1.
7

86
.6

11
0.

7
0.

43
0.

15
1.

7
86

.7
10

8.
8

s9
23

4
0.

77
0.

31
1.

3
90

.9
11

1.
1

0.
69

0.
31

1.
0

99
.2

11
1.

8
0.

75
0.

29
9.

7
90

.3
10

8.
6

s5
37

8
0.

97
0.

37
4.

9
87

.6
11

0.
0

0.
87

0.
38

5.
2

95
.7

11
1.

1
0.

94
0.

35
5.

6
88

.4
10

8.
9

s1
58

50
2.

89
1.

07
9.

3
90

.5
10

9.
9

2.
59

1.
09

11
.2

99
.2

11
0.

5
2.

72
1.

02
8.

6
94

.3
10

8.
8

s1
32

07
3.

12
1.

23
13

.6
87

.6
10

9.
7

2.
80

1.
26

13
.9

96
.2

11
0.

9
2.

86
1.

18
13

.3
92

.6
10

8.
4

s3
85

84
7.

93
2.

62
18

.8
94

.0
11

0.
0

7.
11

2.
69

21
.4

10
3.

0
11

1.
0

7.
66

2.
52

33
.9

92
.0

10
8.

7
s3

84
17

8.
74

3.
26

10
.1

92
.8

11
0.

4
7.

85
3.

34
11

.8
10

2.
4

11
0.

9
8.

56
3.

11
32

.8
87

.7
10

8.
7

s3
59

32
10

.1
3

3.
56

17
.5

90
.7

10
9.

8
9.

08
3.

64
18

.1
99

.7
11

0.
9

9.
60

3.
41

29
.2

93
.1

10
9.

0
N

or
m

.
1.

00
1.

00
<

50
ps

<
10

0p
s

11
0.

1
0.

90
1.

02
<

50
ps

V
IO

11
1.

0
0.

96
0.

96
<

50
ps

<
10

0p
s

10
8.

7

65

Chapter 5: FINFET-BASED LOW SWING CLOCKING

A low swing clocking methodology is introduced to achieve low power operation at 20nm FinFET technol-

ogy. Low swing clock trees are used in existing methodologies, in order to decrease the dynamic power

consumption, in a trade-off for 3 issues: 1) The effect of leakage power consumption, which is becoming

more dominant when the process scales sub-32nm, 2) the increase in insertion delay, resulting in a high clock

skew, and 3) the difficulty in driving the existing DFF sinks with a low swing clock signal without a tim-

ing violation. In this chapter, a FinFET-based low swing clocking methodology is introduced to preserve

the dynamic power savings of low swing clocking while minimizing these three negative effects facilitated

through an efficient use of FinFET technology. At scaled performance constraints, the proposed methodol-

ogy at a 20nm FinFET technology leads to 42% total power savings (clock network+DFF) compared to a

FinFET-based full swing counterpart at the same frequency (3 GHz) thanks to the dynamic power savings of

low swing clocking. Furthermore, the proposed methodology achieves 3% power savings while doubling the

frequency, compared to a planar CMOS-based low swing implementation running at 1.5 GHz, thanks to the

leakage power savings of FinFET technology.

5.1 Introduction

FinFET-based circuits can be used to replace the incumbent planar CMOS-based circuits with existing meth-

ods, leading to improvements in static (i.e. leakage) power consumption. Alternatively, in a more methodical

manner, FinFET-based low power design methodologies can be developed. Unlike a straight-forward re-

placement, FinFET-aware methodologies would combine the leakage power superiority of the FinFETs with

1) dynamic power minimization techniques and 2) FinFET-specific design features, such as an increased fre-

quency operation, and the use of improved driving capability and low gate delay of FinFET devices. This

chapter describes one such advancement in the science of clock tree synthesis, facilitating the use of FinFET

technology.

66

The proposed design methodology achieves advancements in: i) low swing clock tree synthesis, and ii) a

novel DFF topology to accommodate low swing clocking. The outcome is a design methodology for low

swing clock tree synthesis in 20nm FinFET technology that demonstrates i) substantial dynamic power sav-

ings, leading to 36% in the clock tree power (excluding DFF) and 42% in total power (clock network+DFF)

compared to its full swing counterpart in FinFET technology operating at 3 GHz, compounded with ii) sub-

stantial leakage power savings, leading to a total power savings of 3% while doubling (from 1.5 GHz to

3 GHz) the frequency, compared to its planar CMOS counterpart running with a low swing clock. If the

improvements through the combination of low swing clocking and use of FinFETs are compared against a

traditional, full swing implementation with the planar CMOS technology, 24% power savings is obtained

in total power compared to a planar CMOS-based full swing implementation, while doubling the clock

frequency.

The proposed low swing clock tree design methodology is not a straight-forward procedure due to the

following issues:

1. Currently, there are no standard buffer or flip-flop libraries in FinFET technology that are available for

academic use, therefore, custom clock buffer and flip-flop designs are necessary.

2. The timing characterization of these custom FinFET-based buffer and flip-flop designs needs to be

performed at full swing and the target low swing voltage nodes so as to be used by the clock network

design methodology.

3. The differences in the input capacitance and the timing characteristics of the FinFET buffers compared

to planar CMOS buffers, and their relationship to interconnect scaling at sub-32nm technology, prohibit

a straight-forward planar CMOS-replacement approach, therefore, a methodical approach is necessary.

4. A novel, low swing flip-flop aware clock tree design methodology is necessary to provide clock trees

with the slew specifications of the original full swing clock tree.

The proposed methodology is implemented with i) a custom FinFET-based clock buffer with a selected driv-

ing capability considering the original design constraints of the full swing system, ii) a custom low swing

flip-flop design (low swing DFF) that has almost identical clock-to-q delay compared to traditional full swing

67

flip-flops. Timing characterization of the clock buffer and low swing DFF are performed so as to be used by

the clock tree design methodology. The clock tree design methodology consists of a clustering stage and a

novel buffering scheme to achieve low skew values while minimizing the power consumption of the clock

buffers and interconnects.

The rest of the chapter is structured as follows. In Chapter 5.2, the proposed methodology is introduced

and explained in detail. The experimental results are presented in Chapter 5.3 and the chapter is finalized

with concluding remarks in Chapter 5.4.

5.2 Methodology

The proposed design methodology that enables the implementation of low swing clock trees at a FinFET

technology node consists of 4 major steps:

1. design of a FinFET-based clock buffer library design, which is an optional step, required only if a

FinFET-based buffer library is not readily available.

2. timing characterization of the buffer library, which is another optional step, required only if the timing

models of the buffer library are not readily available.

3. design of a low swing DFF, which is a required step as the low swing DFF directly affects the overall

performance and the power consumption.

4. synthesis of a low swing DFF-aware clock tree, considering the timing constraints (clock skew and

slew) and the power consumption.

At the time of this dissertation, a FinFET-based standard cell library is not available for academic use.

Thus, a clock buffer is custom-designed, as explained in Chapter 5.2.1, so as to have similar driving capabil-

ities as the reference NBUFFX32 cell in the baseline planar CMOS-based buffer library (SAED32nm [59]

of Synopsys). This is important for a fair comparison between the implementations in the incumbent pla-

nar CMOS technology and the one proposed in the FinFET technology. The timing characterization of this

custom-designed buffer is presented in Chapter 5.2.2 so as to generate a timing model to be used at the clock

tree design step. After these optional steps, which are only performed due to the absence of a FinFET-based

68

cell library, the required steps of the proposed flow is similar to the automated flow for planar CMOS technol-

ogy shown in Figure 4.1. In the proposed flow, the low swing flip-flop, which is introduced in Chapter 5.2.3,

is designed considering the functionality, robustness, and power consumption. Then, the clock tree synthesis

is performed, which is presented in Chapter 5.2.4, considering the skew and the slew to target (almost) the

same performance on the local paths while saving significant power in the clock tree via low swing clocking.

5.2.1 FinFET-Based Clock Buffer Design

This step is optional, and is not necessary in the presence of a FinFET-based clock buffer library. The clock

buffer design presented here does not define the novelty of the presented work of this methodology, but

is needed to have a complete design flow. The design is limited to a single buffer, in order not to divert

the focus of the methodology to the (potentially sub-optimal) quality of the created buffer library. Instead,

having only one type of buffer highlights the elegance of the proposed FinFET-based low swing clocking

methodology. The custom clock buffer is designed to have a similar driving capability as the maximum size

buffer of the SAED 32nm library of Synopsys, namely NBUFFX32. As the transistor width and length are

process parameters in a FinFET technology, the sizing of the buffer is performed by changing the number of

fins. The number of fins is a discrete parameter whose optimal value cannot be computed through continuous

optimization methods. Instead, the desired number of fins is found with an iterative search. First, the second

inverter in the buffer is sized to achieve similar (close but not exact due to the discrete number of fins) driving

characteristics as NBUFFX32 when the input slew is at 50ps. Representative of a typical clock branch length

at the technology node, a 200µm wire is connected as the output load. In this scenario, the number of fins

is computed to be 29 for PFET and 25 for NFET. After this optimization, the number of fins of the first

inverter is changed so as to drive the second inverter with a similar slew value. The number of fins for the

NFET and the PFET of the first inverter of the buffer is determined to be 2. With this optimization, the

designed FinFET-based buffer and NBUFFX32 of SAED 32nm library drive the 200µm wire load with a

similar output slew (approximately 39ps and 37ps, respectively). The complete comparison of these two

buffers is summarized in Table 5.1. Having similar driving characteristics for both the FinFET and planar

CMOS buffers enables a fair comparison of technologies when two clock trees synthesized using these two

buffers are compared.

69

Table 5.1: The comparison of the custom-designed FinFET-based buffer and the planar CMOS-based
NBUFFX32 of SAED 32nm library.

Technology 1st Inverter (P/N) 2nd Inverter (P/N) Output Load Output Slew (ps)
20nm FinFET 2fin/2fin 29fin/25fin 200µm wire 38.7
32nm Planar CMOS 800nm/420nm 800nm/420nm 200µm wire 37.2

5.2.2 Timing Characterization of the FinFET-Based Clock Buffer Design

The timing characterization of clock buffers can be performed in various ways. One option is to use higher

order models [40, 25] that can accurately estimate the timing characteristic of buffers at the expense of run

time. Another option is to store empirical data in lookup tables in order to decrease run time with similar

accuracy. For the proposed clock tree design methodology, a simple first order model is used as a third

option, as first order models are sufficient for the clock tree synthesis. The first order model helps achieve

substantial accuracy with simple metrics, which are also easily integrated into the clock tree design and

optimization process. A commonly used model for the clock buffers is the RC model, where each buffer

is modeled as a resistance (Rout) and a capacitance (Cout). With this model, it is easier to combine buffer

delay with the wire delay, which is also modeled as an equivalent RC network. Despite its simplicity, these

models produce substantially accurate timing metrics (such as Elmore delay [12]). With this observation,

the FinFET-based custom clock buffer introduced in Chapter 5.2.1 is characterized by sweeping the output

capacitance to estimate Rout and Cout . As the wire capacitance is dominant for sub-32nm technologies, the

wire length at the output is swept with desired data points, and the Rout and Cout can be obtained with a

linear fit on empirical data. For instance, the output load is swept from a 20µm wire to 200µm with 10 data

points for the experimental setup of this work. The accuracy of the adopted timing characterization metrics

is empirically demonstrated in the experimental results.

5.2.3 Low Swing DFF Design

The proposed DFF design is based on the low swing DFF topology introduced in Chapter 4.2.1. This topology

is implemented in FinFET technology, and the sizing of the transistors are performed to achieve similar clock-

to-q delay as its full swing counterpart. The conventional full swing latch in FinFET technology is shown in

Figure 5.1(a), and the proposed low swing latch used to build the low swing DFF is shown in Figure 5.1(b).

70

D

Q

CLK

CLK

CLK

T GN1

T GP1

T GP2

T GN2

(a) Classical full swing latch.

CLK

CLK

CLK
D

Q

N1

N2

P2

X

P1

(b) Proposed low swing latch.

Figure 5.1: Latch schematics with FinFETs.

In order to compare the performance (i.e. clock-to-q delay) and the power consumption of two topologies,

both traditional full swing flip-flop (using two of the latches shown in Figure 5.1(a) in a master-slave latch

configuration) and the proposed low swing flip-flop (using two of the latches shown in Figure 5.1(b) in a

master-slave latch configuration) are implemented in 20nm FinFET technology, assuming a low swing voltage

at 0.7×Vdd . As clock-to-q delay depends on the slew at the clock pin, the clock slew is set to 50ps at full

Vdd and adjusted to 25ps for the 0.7×Vdd operation to achieve similar clock-to-q delay. The clock-to-q (C2Q)

delay and the power consumption of the conventional DFF topology when the clock input is at full Vdd , the

conventional DFF topology when the clock input is at 0.7×Vdd , and the proposed DFF topology when the

clock input is at 0.7×Vdd are compared in Table 5.2. It is important to note here that the supply voltages of data

paths are set as full Vdd at all three cases. It is shown in Table 5.2 that the clock-to-q delay of the conventional

DFF increases by ≈10ps when a low swing clock at 0.7×Vdd is applied. On the other hand, this increase

is 7.4ps and 7.8ps for the D = 1 and D = 0 cases, respectively, for the proposed DFF topology, limiting the

increase in clock-to-q delay by 2.2% and 2.3% of the clock period at 3 GHz, compared to the traditional full

swing flip-flop. Furthermore, it is important to note that there is contention current through the PFETs not

71

Table 5.2: The clock-to-q delay (C2Q) and the power consumption comparison of the conventional DFF
topology and the proposed low swing DFF topology in 20nm FinFET technology.

Power (µW) C2Q (D=1)(ps) C2Q (D=0)(ps)
Conventional DFF: Data @Vdd , CLK @Vdd 5.4 21.4 20.4
Conventional DFF: Data @Vdd , CLK @0.7×Vdd 7.6 31.9 31.3
Proposed DFF: Data @Vdd , CLK @0.7×Vdd 2.7 28.8 28.2

completely turned off in the conventional DFF with clock at 0.7×Vdd case, similar to the contention current

through PMOS transistors in planar CMOS technology shown in Chapter 4.2.1. Thus, there is unstable

behavior resulting in possible failures due to the large current spikes generated by the contention current. It

is also shown that the power consumption of the conventional DFF increases significantly (from 5.4uW to

7.6uW) when a low swing clock is applied, as in the case of 32nm planar CMOS (shown in Figure 2.4). On

the other hand, the power consumption of the proposed DFF topology decreases significantly (from 5.4uW to

2.7uW). Thus, the proposed low swing DFF in FinFET technology has a superior behavior over a conventional

DFF, similar to the behavior for its planar CMOS counterpart (presented in Chapter 4).

5.2.4 Low Swing Clock Tree Design

In this subsection, the proposed low swing clock tree design methodology is introduced. The inputs of the

proposed algorithm are i) a placed design, with input capacitance information of flip-flop sinks, ii) the timing

models of the clock buffers and the clock wires, and iii) the skew and the slew constraints. With these inputs,

the algorithm returns the buffer and the wire locations, and their connectivity as the output. The algorithm is

presented in Algorithm 4.

The algorithm starts by initializing each sink as a node, and setting a bottom up delay (bottomup delay)

of 0 to each node (Lines 1-4), as these nodes are the leaves of the clock tree. Then, the algorithm searches

for the minimum cost (min cost) pair by iterating through all pairs (Lines 7-15). In the algorithm, the cost

is defined as the total capacitance: The sum of the capacitance of two nodes (i and j) to be merged, and

the capacitance of the interconnect that connects them (wirei, j). Once the minimum cost pair is found, these

nodes are recorded for merging (Lines 11-12). If a feasible pair is found (Line 16), the merging point of this

pair is calculated so as to have the same delay using the well-known deferred merge embedding for zero skew

72

Algorithm 4 FinFET-Based Low Swing Clock Tree Design Methodology
Input: DFF placement, timing models for the buffers and the interconnects, the skew and the maximum

capacitance constraint max cap.
Output: Locations and connectivity information of clock buffers and interconnects.

1: Initialize each sink as a node
2: for i in Nodes do
3: bottomup delay(i)=0
4: end for
5: while num of nodes > 1 do
6: min cost=max cap
7: for i in Nodes do
8: for j in Nodes do
9: if merging costi, j < min cost then

10: min cost=merging costi, j
11: f oundi=i
12: f ound j= j
13: end if
14: end for
15: end for
16: if min cost <= max cap then
17: Find merging point(f oundi, f ound j,bottomup delay(f oundi),bottomup delay(f ound j))
18: Create new node k, delete f oundi and f ound j
19: bottomup delay(k) = (wire delay f oundi,k + bottomup delay(f oundi) + wire delay f ound j ,k +

bottomup delay(f ound j))/2
20:
21: else
22: Buffer all nodes
23: Update their input capacitance
24: end if
25: end while

trees (ZST-DME) [5] routing algorithm (Line 17), these nodes are merged into a new node (k) (Line 18). If

wire snaking is necessary, it is avoided assuming a low power application, and the merging point is placed

on the child node where wire snaking is (e.g. would have been) necessary. The bottom up delay metric of

new node k is updated as the delay from the merging point to the its child (wire delayi,k) plus the bottom

up delay of that child (bottomup delay(i)). Note that the delay from this node to its two children is not

identical when the wire snaking is necessary (as the wire snaking is avoided). Thus, the bottom up delay

at this node is defined to be the average of the two bottom up delays calculated using bottom up delays of

two children (Line 19). If no feasible pair is found (Line 21), all nodes are buffered, although they do not

have the same capacitance (Lines 22-23). The purpose here is to create a balanced clock tree, i.e. reaching

each clock sink through the same number of levels. Having this uniform structure is very important for

73

low swing clock tree synthesis as the lack of uniformity can vary insertion delays significantly, resulting in

excessive clock skew. After buffering is performed, the capacitance values of these nodes are updated to be

the input capacitance of the buffer, and the same algorithm is followed recursively until only one node, i.e.

the clock source, is left (Lines 5-25). The algorithm successfully synthesizes a buffered bounded skew tree by

combining a well-known routing approach with a novel buffering scheme, addressing the lack of automation

tools in FinFET technology.

5.3 Experimental Analysis

The proposed methodology is implemented using a 20nm FinFET technology in comparison to a 32nm planar

CMOS technology. The experimental setup is introduced in Chapter 5.3.1 and the experimental results for

various cases are presented in Chapter 5.3.2 through Chapter 5.3.5. In particular, three primary goals of the

experiments are:

1. to evaluate the applicability of low swing clocking in a FinFET-based design as a dynamic power

saving (36% at the same frequency) methodology (Chapter 5.3.2).

2. to demonstrate that low swing clocking permits a higher frequency (2×) at the same power budget (3%

power savings) with a methodical implementation in FinFET technology, compared to its planar CMOS

counterpart (Chapter 5.3.3).

3. to demonstrate that low swing clocking provides significant power savings (46% power savings) at

the same frequency budget with a methodical implementation in FinFET technology, compared to its

planar CMOS counterpart (Chapter 5.3.4).

5.3.1 Simulation Setup

The proposed clock tree design methodology is coded in Perl, and tested on 3 largest circuits (s38584, s38417

and s35932) of ISCAS’89 benchmarks. It is noted here that ISPD’10 clock network contest benchmarks are

not usable for the proposed methodology in this study, as they lack the logic information for the local paths.

Instead, they have capacitance values, modeling clusters of flip-flop cells as a single capacitance. Thus, the

proposed low swing DFF cells, and the low swing DFF-aware clock tree design methodology cannot be tested

74

on those benchmarks. However, the maximum number of sinks in ISPD’10 benchmarks (2249) is comparable

to the maximum number of sinks in ISCAS’89 benchmarks (1728 for s35932), therefore, ISCAS’89 bench-

marks are sufficient to show the quality of results. The logic synthesis of the RTL netlists of the benchmark

circuits is performed using Design Compiler of Synopsys, and the placement of the flip-flop cells is per-

formed using IC Compiler of Synopsys in SAED 32nm planar CMOS technology [59] operating at 1.5 GHz.

As a complete cell library for 20nm FinFET technology is not available, the same DFF placement is used for

the experimental analysis performed in the FinFET technology node. This placement is not accurate, as the

FinFET-based cell library does not exist, but it serves to provide an attainable, re-producable approximation

to the expected placement in the absence of FinFET libraries. The FinFET-based clock buffer, introduced in

Chapter 5.2.3, and FinFET-based low swing DFF cell, introduced in Chapter 5.2.3, are implemented in the

PTM 20nm FinFET library [47]. The power and the skew analyses are performed using HSPICE simulator of

Synopsys. The full swing voltage levels are set as the default values in each technology, 1.05V and 0.9V for

the 32nm planar CMOS [59] and 20nm FinFET [47] technologies, respectively. The low swing voltage level

is assumed to be 70% of the nominal Vdd level at each case. The wire models for the 32nm technology are ob-

tained from [37], which has unit resistance and unit capacitance of R=8Ω/µm and C=0.2fF/µm, respectively,

with the default 50nm wire width. The wire models for 20nm technology are adopted from the 22nm technol-

ogy implementation in [3], which projects a 13% less capacitance from the 32nm technology implementation,

resulting in a C=0.174fF/µm. The per unit resistance remains the same as reported in [3], which is R=8Ω/µm.

The clock slew and the clock skew requirements of the FinFET-based and planar CMOS-based circuits are

selected to enable rational comparisons: As discussed in Chapter 5.2.3, the slew constraint is used as a proxy

for clock-to-q delay, where the clock-to-q delay is methodically mandated to remain the same regardless of

the presence of a low swing operation. To this end, for the FinFET-based circuits, the clock slew constraint

is set to 50ps for the full swing case, and 25ps for the low swing case. It is shown in Chapter 5.2.3 that the

clock-to-q delay at 70% of Vdd is≈28ps, almost the same as its full swing counterpart at a clock-to-q delay of

≈21ps with these slew constraints. For planar CMOS-based circuits at 1.5 GHz (half the frequency), the slew

constraint is set to 100ps, scaled proportionally from 50ps in the FinFET-based circuits. This constraint is

the same (100ps) for both low and full swing implementations because their clock-to-q delays are measured

75

Table 5.3: The comparison of clock buffer metrics (number of clock buffers/total buffer capacitance)
and the clock interconnect metrics (total interconnect length/total interconnect capacitance) between
the FinFET-based low swing (LS) and FinFET-based full swing (FS) clock trees, reported with the
information on benchmark circuits.

Circuit Floorplan Size Number of Clock Buffer Info (# / fF) Clock Interconnect Info (µm/fF)
(µm×µm) Sinks FS LS FS LS

s38584 250×251 1239 86/12.9 220/33.0 14783/2572.2 14551/2531.9
s38417 262×264 1461 94/14.1 247/37.1 16826/2927.7 16374/2849.1
s35932 211×212 1728 88/13.2 259/38.9 16683/2902.8 16343/2843.7

to be identical with the same input slew, as shown in Chapter 4.3.3. The clock skew constraint is set to 50ps

for both technologies. This is considered reasonable, as the placements are identical for planar CMOS- and

FinFET-based circuits (due to the lack of a FinFET cell library).

5.3.2 Low Swing vs. Full Swing Clocking in FinFET Technology

The experimental results of the proposed FinFET-based low swing clocking methodology compared to its

full swing counterpart are presented in this subsection. The total clock buffer capacitance and the total clock

interconnect capacitance values are reported in Table 5.3, including the number of sinks and floorplan size

information of each benchmark circuit. The columns FS and LS demonstrate these clock network metrics for

the full swing and the low swing operation with FinFETs, respectively.

The increase in the number of clock buffers is expected for the low swing operation as the clock slew

constraint is set to 25ps (as opposed to 50ps in the full swing case) at that case to accommodate the low swing

DFF design. Partially compensating for the increase in the number of clock buffers, the total interconnect

length is smaller at the low swing case, thanks to the clustering algorithm working more efficiently with the

increased number of buffers in low swing clocking. It is observed in Table 5.3 that the increase in the total

capacitance is countered by the decrease in the interconnect capacitance, serving to minimize the overhead of

low swing clocking on the total switching capacitance. This observation is supported by the dynamic power

consumption comparison of the full swing and low swing implementations of the FinFET-based clock trees.

The comparison of the FinFET-based full swing clock tree against the FinFET-based low swing clock tree is

presented in Table 5.4. It is shown that there are significant power savings, which are recorded on average to

be 36% for the clock tree (excluding DFF power) and 52% for the DFF cells. Strikingly, these savings are

76

Table 5.4: The performance and power comparison of FinFET-based low swing (LS) and FinFET-based
full swing (FS) clock trees at 3 GHz, reported separately for the clock network and the DFF cells.

Circuit CT Power (mW) DFF Power (mW) Skew (ps) Max Slew (ps) C2Q Delay (ps)
FS LS FS LS FS LS FS LS FS LS

s38584 11.64 7.31 5.84 2.86 18.9 28.2 47.6 24.6 20.9 28.1
s38417 13.02 8.25 6.97 3.33 21.1 41.7 47.9 24.9 21.0 28.7
s35932 12.76 8.44 8.27 3.89 19.6 33.7 49.3 24.7 21.1 28.1
Avrg. Imp. over FS 36% 52% -14.7 SATISFIED -7.3

recorded despite the number of clock buffers almost tripling to provide a sharper clock slew to the low swing

DFFs. It is iterated for a theoretical interpretation of the empirical result here that, the savings are at 36%,

less than the expected 51% savings from the ideal V 2
dd savings (0.7×0.7=0.49). This degradation in power

savings is due to the fact that the input capacitance of low swing DFF cell is higher than the traditional full

swing DFF (0.23fF vs. 0.06fF). However, this degradation in the expected power savings is compensated by

the savings in the DFF power, thanks to the novel low swing DFF cell. It is shown in Table 5.4 that the power

savings at the DFF-only cells are 52%. The savings in the power consumption of the FinFET-based clock

networks through low swing clocking are realized via degrading the timing performance with a negligible

amount. It is shown in Table 5.4 that the degradation in the clock skew and the degradation in the clock-to-q

delay are 14.7ps and 7.3ps, respectively, totaling to a margin of 22.0ps within a clock cycle, which is still as

low as 6.6% of the clock period at a high speed 3 GHz operation.

For comparison purposes, the same algorithm (Algorithm 4) is used to design low swing and full swing

planar CMOS-based clock trees in SAED 32nm planar CMOS library [59]. The low swing DFF topology

is also implemented in this technology. The results are presented in Table 5.5. It is observed that power

savings can also be obtained in planar CMOS technologies via low swing clocking as was widely reported in

literature [2, 64] and in Chapter 4 of this dissertation. However, due to the superiority of the FinFET technol-

ogy (low leakage power, decreased performance overhead due to low buffer delay), the power savings of low

swing clock tree in FinFET technology are 6% more than its planar CMOS counterpart (36% vs. 30%). Fur-

thermore, the power savings at the DFF-only cells are as low as 3% in planar CMOS technology (compared

to 52% in FinFET technology). Note that the transistor delay (of the clock sub-circuit in DFF topology shown

in Figure 2.5) increases more significantly at a reduced voltage in planar CMOS technology than its FinFET

77

Table 5.5: The performance and power comparison of planar CMOS-based low swing and planar
CMOS-based full swing clock trees at 1.5 GHz, reported separately for the clock network and the DFF
cells.

Circuit CT Power (mW) DFF Power (mW) Skew (ps) Max Slew (ps) C2Q Delay (ps)
FS LS FS LS FS LS FS LS FS LS

s38584 9.18 6.17 4.12 3.99 42.1 45.1 94.1 86.3 62.5 63.3
s38417 10.45 7.16 4.84 4.72 32.2 47.7 93.4 91.0 62.2 63.6
s35932 10.24 7.54 5.72 5.52 27.9 37.6 95.0 82.2 62.5 63.2
Avrg. Imp. over FS 30% 3% -9.4 SATISFIED -1.0

counterpart, as shown in Chapter 2.1.4, requiring more upsizing to obtain comparable clock-to-q delay to its

full swing counterpart. Thus, low transistor delay in FinFET technology reduces the need of upsizing, and

helps achieve significant power savings (52% vs. 3%).

5.3.3 FinFET-based Low Swing Clocking for High Performance

In this subsection, the superiority of the methodical implementation of a FinFET-based low swing operation

compared to its planar CMOS counterpart is highlighted as a method of providing higher frequency at the

same power budget. The power consumption of the clock tree only (excluding DFF) and total power con-

sumption (clock network+DFF), both normalized to FinFET low swing implementation (FinFET LS), are re-

ported, respectively, in Table 5.6 and Table 5.7, for full swing and low swing implementations of FinFET and

planar CMOS technologies. Comparing to the planar CMOS low swing implementation (CMOS LS), the pro-

posed FinFET low swing implementation (FinFET LS) achieves 2× frequency with a 15% [(0.87-1.00)/0.87]

degradation in the power consumption in the clock tree only (excluding DFF), as shown in Table 5.6. When

the total (clock network+DFF) power consumption is considered, as shown in Table 5.7, the proposed FinFET

low swing implementation (FinFET LS) provides even better power consumption at 3% [(1.03-1.00)/1.03]

while running at 2× frequency compared to planar CMOS low swing implementation (CMOS LS). The

improvements through the combination of low swing clocking and use of FinFETs are reported in compar-

isons against a traditional, full swing implementation with the planar CMOS technology (CMOS FS). The

proposed FinFET low swing implementation (FinFET LS) provides 20% [(1.25-1.00)/1.25] smaller power

consumption in clock tree only (excluding DFF) compared to a typical full swing planar CMOS implementa-

tion (CMOS FS) running at half speed (1.5 GHz), as shown in Table 5.6. The total power consumption (clock

78

Table 5.6: The clock tree power (excluding DFF) comparison of the proposed FinFET-based low
swing (LS) clocking against the FinFET-based full swing (FS) clocking (both at 3 GHz), and planar
CMOS-based low swing (LS) and full swing (FS) clocking (both at 1.5 GHz), normalized to FinFET-
based low swing.

Circuit FinFET (@3 GHz) Planar CMOS (@1.5 GHz)
FinFET LS FinFET FS CMOS LS CMOS FS

s38584 7.31 11.64 6.17 9.18
s38417 8.25 13.02 7.16 10.45
s35932 8.44 12.76 7.54 10.24
Normalized Average Power 1.00 1.56 0.87 1.25

Table 5.7: The total (clock network+DFF) power comparison of the proposed FinFET-based low
swing (LS) clocking against the FinFET-based full swing (FS) clocking (both at 3 GHz), and planar
CMOS-based low swing (LS) and full swing (FS) clocking (both at 1.5 GHz), normalized to FinFET-
based low swing.

Circuit FinFET (@3 GHz) Planar CMOS (@1.5 GHz)
FinFET LS FinFET FS CMOS LS CMOS FS

s38584 10.17 17.48 10.16 13.30
s38417 11.58 19.99 11.98 15.29
s35932 12.33 21.03 13.06 15.96
Normalized Average Power 1.00 1.72 1.03 1.31

network+DFF) provides even better power savings at 24% [(1.31-1.00)/1.31] while doubling the frequency,

as shown in Table 5.7.

5.3.4 FinFET-based Low Swing Clocking for Ultra Low Power

With the use of FinFET technology, it is desired not only to reduce the leakage power but also to improve

performance through frequency scaling. However, FinFET technology can also be used in ultra low power

applications, taking advantage of low power structure of FinFETs at the same frequency constraints as planar

CMOS technology. In order to investigate this scenario for low power operation only, the power consump-

tion is also compared while both technologies are running at 1.5 GHz. The comparison of clock tree power

consumption only (excluding DFF) is presented in Table 5.8, and the comparison of the combined (clock

tree+DFF) power consumption is presented in Table 5.9. In this scenario for low power operation without

frequency scaling, the proposed FinFET low swing implementation (FinFET LS) can achieve 44% [(1.80-

1.00)/1.80] power savings at the clock tree only (excluding DFF) compared to planar CMOS low swing

implementation (CMOS LS), as shown in Table 5.8 at the same frequency constraint (1.5 GHz). When the

79

Table 5.8: The clock tree power (excluding DFF) comparison of the proposed FinFET-based low
swing (LS) clocking against the FinFET-based full swing (FS) clocking (both at 1.5 GHz), and planar
CMOS-based low swing (LS) and full swing (FS) clocking (both at 1.5 GHz), normalized to FinFET-
based low swing.

Circuit FinFET (@1.5 GHz) Planar CMOS (@1.5 GHz)
FinFET LS FinFET FS CMOS LS CMOS FS

s38584 3.55 5.45 6.17 9.18
s38417 4.01 6.09 7.16 10.45
s35932 4.06 5.94 7.54 10.24
Normalized Average Power 1.00 1.51 1.80 2.57

Table 5.9: The total (clock network+DFF) power comparison of the proposed FinFET-based low
swing (LS) clocking against the FinFET-based full swing (FS) clocking (both at 1.5 GHz), and planar
CMOS-based low swing (LS) and full swing (FS) clocking (both at 1.5 GHz), normalized to FinFET-
based low swing.

Circuit FinFET (@1.5 GHz) Planar CMOS (@1.5 GHz)
FinFET LS FinFET FS CMOS LS CMOS FS

s38584 5.67 9.17 10.16 13.30
s38417 6.50 10.53 11.98 15.29
s35932 6.95 11.21 13.06 15.96
Normalized Average Power 1.00 1.62 1.84 2.33

total (clock network+DFF) power consumption is considered, as shown in Table 5.9, the proposed FinFET

low swing implementation (FinFET LS) provides 46% [(1.84-1.00)/1.84] power savings compared to planar

CMOS low swing implementation (CMOS LS) running at the same frequency (1.5 GHz). Similar to Chap-

ter 5.3.3, the improvements through the combination of low swing clocking and use of FinFETs are reported

in comparisons against a traditional, full swing implementation with the planar CMOS technology (CMOS

FS). The proposed FinFET low swing implementation (FinFET LS) provides 61% [(2.57-1.00)/2.57] power

savings in clock tree only (excluding DFF) compared to a typical full swing planar CMOS implementa-

tion (CMOS FS) operating at the same frequency (1.5 GHz), as shown in Table 5.8. The total power con-

sumption (clock network+DFF) is at 57% [(2.33-1.00)/2.33], as shown in Table 5.9.

5.3.5 Leakage Power Comparison

It is highlighted in Chapter 2.1.4 that the FinFET technology is superior due to its reduced sub-threshold

leakage. In order to highlight this effect, the leakage power consumption is compared in both technologies

to provide a deeper analysis of power dissipation in FinFET-based low swing clocking. The leakage power

80

Table 5.10: The leakage power comparison at low swing (LS) and full swing (FS) of both 20nm FinFET
and 32nm planar CMOS technologies in µW.

Circuit 20nm FinFET 32nm Planar CMOS
LS FS LS FS

s38584 119.5 94.6 694.0 764.2
s38417 140.2 110.2 700.7 762.7
s35932 163.9 126.2 825.8 876.7
Average normalized to FinFET LS 1.00 0.78 5.24 5.67

comparison of low swing and full swing implementations in both FinFET and planar CMOS technologies are

presented in Table 5.10. It is shown that experimental results verify the superiority of FinFET technology in

terms of decreasing leakage power consumption. The leakage power increases going from full swing to low

swing implementation within the FinFET technology due to a larger number of clock buffers. However, it

is still more than 5× better compared to both full swing and low swing implementations of planar CMOS

technology.

5.4 Conclusion

In this chapter, a novel FinFET-based low swing clocking methodology is introduced. The introduced clock

tree design methodology combines the leakage power immune structure and low delay characteristics of

FinFET technology methodically to achieve significant power savings and/or frequency improvement. It is

shown that the proposed methodology can achieve significant power savings within the FinFET technology

via low swing clocking. The combined low swing DFF and clock tree design methodology accommodates low

swing clock signals, while achieving (almost) the same timing performance and save further power compared

to its full swing counterpart. The proposed methodology is applicable to both ultra low power applications

via achieving significant power savings at the same frequency and low power/high performance applications

via achieving substantial power savings at twice the frequency.

81

Chapter 6: AN IMPROVED ALGORITHM FOR
SLEW-DRIVEN CLOCK TREE SYNTHESIS

A slew-driven clock tree synthesis (SLECTS) methodology is proposed to improve the quality of low voltage

clock trees. High interconnect resistance in the targeted state-of-the-art technologies dominates the device

resistance, especially in FinFET technologies, increasing the challenge of satisfying the slew constraint in

clock tree synthesis. This increase necessitates a paradigm shift from the traditional delay (and skew)-driven

methodology, such as the one in Chapter 4, to the proposed slew-driven methodology. SLECTS is developed

to i) satisfy tight slew constraints, which might be costly or infeasible with delay (skew)-driven methodolo-

gies and ii) reduce the power dissipation of the clock tree, thanks to targeting slew and skew constraints

simultaneously and methodically. The experimental results performed on ISPD’10 benchmarks on a 45nm

planar CMOS technology running at 1 GHz show that SLECTS achieves 7% and 17% savings compared to a

traditional skew-driven methodology at, respectively, the nominal Vdd voltage (0.9×Vdd at worst corner) and

a low voltage 0.7×Vdd operation (0.63×Vdd at worst corner). The improved savings in the power dissipation

at lower voltages are significant to demonstrate the value of SLECTS: The challenge in satisfying the slew

at low voltages is circumvented (through methodically controlling slew) with SLECTS, thereby providing

improved power savings (17% at 0.63×Vdd vs. 7% at 0.9×Vdd). Furthermore, the experimental analysis at

a 20nm FinFET technology has shown that up to 17% power savings are possible with SLECTS at 3 GHz

operation.

6.1 Introduction

The clock distribution network design is directly affected by the technology (i.e. interconnect and transistor)

scaling. In particular for clock slew, interconnect resistance significantly increases at every new technology

node [16]. The increase in the interconnect resistance makes it more challenging to satisfy slew constraints

on long wires. Furthermore, low voltage/swing IC design is becoming a norm to limit power density while

keeping up with Moore’s Law, which exacerbates clock slew. Despite the well-understood detrimental effects

of interconnect resistance and the low voltage on clock slew, using clock slew as a driving factor for clock tree

82

synthesis has not been investigated methodically. Instead, slew-constrained design techniques are proposed

in recent work [6, 31] and in the study performed in Chapter 4, to fix (or avoid) timing violations due to

slew. Exploiting slew-awareness as part of the clock tree synthesis (i.e. slew-driven) has not been previously

addressed.

The major contribution of this study is the introduction of a slew-driven CTS methodology called SLECTS.

SLECTS methodology is adept at delivering timing and power targets that are significantly more aggressive

compared to traditional delay/skew-driven CTS methodologies. Instead of targeting skew minimization as

the primary objective and resolving slew violations with buffer insertion with a capacitance or a slew bound,

as in traditional skew-driven CTS, SLECTS targets slew optimization at every stage of the synthesis, such

as clustering (i.e. merging) clock tree nodes, defining routing points and handling long interconnects. An-

other approach of traditional skew-driven CTS is to perform skew minimization in the first stage and resolve

slew violations in post-CTS optimization. SLECTS, on the other hand, uses buffering and clustering more

efficiently to constrain skew and slew simultaneously, so the tree is correct by design. Due to this efficient

slew handling and efficient use of buffering, SLECTS leads to reduced power dissipation while satisfying

the slew and skew constraints. In the algorithmic infrastructure developed on the popular deferred-merge-

embedding (DME) procedure, the proposed slew-driven CTS methodology features innovations of 1) a new

cost metric for the merging process, 2) a new merging point computation method, and 3) a new net splitting

method.

SLECTS is developed to replace the core DME routines that drive contemporary CTS tools. As a result,

contemporary skew-driven CTS tools will convert to a slew-driven flow, which is more appropriate for state-

of-the-art technologies. The experimental results demonstrate that the net splitting method is essential for

the slew-feasibility of a clock tree that has long interconnects. Cost metric and merging point computation

novelties complement the novelty of this methodology to improve the power consumption compared to ex-

isting methods. The final power savings compared to the (traditional, skew-driven) DME implementation of

Chapter 4 satisfying the same skew and slew constraints are 7% while operating at the nominal voltage (10%

off from Vdd at 0.9×Vdd at the worst corner) of a 1 GHz 45nm technology node. The power savings against

the conventional improve to 17% while operating at a lower voltage node (at 0.63×Vdd). The increased

83

savings of 17% (up from 7%) for 0.63×Vdd operation highlights the slew-driven approach of the proposed

methodology of this chapter in performing better in tighter slew constraints (i.e. at a lower voltage). As an

added analysis, experimentation with the FinFET-based technologies demonstrate that the proposed slew-

driven CTS methodology facilitates voltage and frequency scaling that is highly challenging in traditional

CTS methodologies. In this setup, the power savings are up to 10% at 2 GHz, and up to 17% in 3 GHz

compared to skew-driven CTS methodologies, validating the slew-driven approach of SLECTS at a 20nm

FinFET technology node [47]: Power savings of SLECTS improve at higher frequencies as the challenge of

handling slew increases.

The potential to i) perform voltage scaling and ii) achieve lower propagation delays with FinFET gates (that

permit frequency scaling) is well-known. In FinFET technology, the slew constraints are tighter due to these

multi-GHz frequencies of operation (i.e. through frequency scaling). One grand impact of SLECTS is to

satisfy these tighter slew constraints that are exacerbated by the increasing dominance of slew at lower volt-

ages (i.e. through voltage scaling). In brief, frequency scaling of CTS is enabled with SLECTS beyond those

that are economically possible with skew-driven CTS algorithms. This novelty not only enables clock signals

with higher operating frequencies to be distributed over a clock tree network, but also accomplishes this dis-

tribution with substantial power savings compared to skew-driven CTS methods. For reference, experimental

results in 20nm technology [47] show 55% and 51% power savings at 2 GHz and 3 GHz, respectively, when

the SLECTS power savings steps (merging pair selection and merging point computation) are combined with

the power savings through voltage scaling (that is enabled thanks to the net splitting method of SLECTS).

Furthermore, the efficient voltage scaling through SLECTS results in achieving 1.5× frequency (from 2 GHz

to 3 GHz) with an insignificant 3% increase in power consumption.

The rest of the chapter is organized as follows. The deferred merge embedding (DME) method is intro-

duced in Chapter 6.2. The proposed improvements to obtain the slew-driven clock tree synthesis (SLECTS)

methodology is presented in Chapter 6.3. The experimental results of the proposed methodology are pre-

sented in Chapter 6.4. The chapter is concluded in Chapter 6.5.

84

Step 1

Step 2

Step 3

Figure 6.1: The flowchart of the DME framework.

6.2 Deferred Merge Embedding (DME)

Deferred merge embedding (DME) method illustrated with a flowchart in Figure 6.1, is a popular technique

used for clock tree synthesis in the literature. Thus, three important steps of DME methodology (highlighted

in Figure 6.1 with labels Step 1, Step 2 and Step 3) are presented in Chapter 6.2.1, Chapter 6.2.2, and

Chapter 6.2.3, respectively.

6.2.1 Step 1: Merging Pair Selection

As the DME algorithm searches for the minimum cost pair among all pairs, the selection procedure and

the cost definition dictate the quality of results. Thus, several pair selection techniques and cost definitions

are introduced in the literature, which are classified into 2 groups: 1) distance-based [11], and 2) delay-

based [8] (also used in Chapter 4). Historically earlier of the two, distance-based approach considers the

physical distance between two nodes as a cost metric, and merges minimum distance pairs. In terms of

accuracy, distance-based merging pair selection suffers from the well-known deficiencies of ignoring delay

differences, detrimental to clock skew. In terms of algorithmic complexity, the complexity of distance-based

approach [11] is O(nlogn), as merging is performed by selecting all minimum pairs in one iteration. However,

as the pairs are not selected one at a time, the merging of a new node (created by a previous merging) with an

existing node is not considered. Thus, this selection results in a sub-optimal clustering.

85

The more contemporary and common of the two approaches, delay-based approach, is expectedly higher

in accuracy in terms of satisfying skew, the primary objective of traditional skew-driven CTS algorithms.

Delay is typically estimated with Elmore delay [12], and common merging pair cost computations consider

potential wire-snaking between candidate nodes, as well. The delay-based approach in [8], for instance, first

identifies the candidate merging node with the maximum delay target (i.e. candidate node with the minimum

insertion delay from the node to the clock sinks in its downstream). The approach then finds a minimum

cost pair for this node where cost is defined as the (e.g. Elmore) delay to a candidate pair node, including

the distance added to perform potential wire snaking. This approach provides better skew results (compared

to [11]), however, restricting the selection of the minimum insertion delay node as one of the pair does not

guarantee the minimum distance selection, thereby degrading clock slew. In terms of algorithmic complexity,

the maximum delay target node and its minimum cost pair are identified with a linear search [both O(n)

complexity], resulting in a complexity of O(n2).

6.2.2 Step 2: Merging Point Computation

After selecting the minimum cost pair, as described in Chapter 6.2.1, the merging point is determined to

perform routing of this pair. A common practice [8] is to select a specific point for merging considering skew,

using the zero-skew-tree DME (ZST-DME) algorithm [5], as performed in Chapter 4. The zero skew merging

point is computed as follows [8]:

Li =
0.5cunitL(i, j)2 +L(i, j)C j

Ci +C j +L(i, j)cunit
+

t j− ti
runit(Ci +C j +L(i, j)cunit)

(6.1)

where L(i, j) is the distance between two nodes (µm), runit and cunit are the per unit resistance (Ω/µm) and

capacitance (f F/µm) of the interconnect, respectively, ti and t j are the insertion delay from i and j to their

sinks, respectively, Ci and C j are the capacitance at nodes i and j, respectively. Another approach in [9]

proposes a bounded-skew-tree DME (BST-DME) to define merging regions considering the skew constraint

in the bottom-up phase, and picks the minimum wirelength point at each region in the top-down phase. This

early approach is applicable only in “unbuffered” clock routing. In practice (and literature), buffered clock

tree routing has long been the norm [8], particularly when satisfying the slew constraint is paramount. An-

86

other practice is to use ZST-DME or BST-DME approaches as a first step, while allowing slew violations,

and consider buffering as an added optimization step to remove violations. In slew-driven buffering, com-

puting merging regions at each iteration of the bottom-up phase is computationally expensive due to the

highly complex slew estimation equation (introduced in Chapter 6.3.2), and allowing slew violations results

in algorithmic decisions based on inaccurate(ly high) slew on the nodes with violations.

6.2.3 Step 3: Net Splitting

The high interconnect resistance of the scaled semiconductor technologies require even shorter wires to be

split which would not be necessary in older technologies. To this end, traditional DME-based CTS algorithms,

such as the one in Chapter 4, consider buffer insertion at the merging points only, and do not consider splitting

the net (i.e. with buffering) after selecting merging pairs. This would result in slew violations on long distance

nets and would not permit the desired voltage and frequency scaling. Thus, the contemporary approach is

to synthesize clock tree with slew violations and fix these violations later in the physical design flow, as a

post-CTS optimization.

6.3 Proposed Improvements over DME

In order to be compatible with the existing CTS methodologies, the proposed methodology of SLECTS is

developed within the DME framework through novel improvements. The slew driven novelties in SLECTS

are highlighted on the traditional DME framework in Figure 6.1 with labels Step 1, Step 2 and Step 3. In

particular, SLECTS consists of 3 novel contributions, which are:

1. a pair selection and cost metric definition considering physical distance for efficient sink cluster-

ing (Step 1),

2. a slew- and skew-aware merging point computation for routing (Step 2),

3. a slew- and insertion delay-aware net splitting (Step 3) to avoid slew violations.

6.3.1 Step 1: Improvements in Merging Pair Selection

The contemporary and common delay-based cost definitions in the merging pair selection has two drawbacks

making them formidable for SLECTS: 1) Delay-based cost results in pairing nodes that are physically farther

87

to minimize skew, which is detrimental to slew, 2) Considering wire snaking as part of cost metric is inaccu-

rate. Wire snaking is detrimental to slew, therefore, buffer insertion is a more viable option for the merging

pairs that requires significantly high wire snaking.

Consequently, in this study, the distance-based approach (similar to [11]) is selected as the cost metric

favoring reduced slew degradation on the path. It is important to note here that using a distance-based cost

results in several subtree clusters that have different capacitance and delay values. This would make merging

harder at the top-level of a clock tree due to the insertion delay mismatches. However, the potential effects of

these mismatches are fixed by buffer insertion and/or wire snaking, and the power overhead of these processes

are shown, experimentally, to be less than those necessary to fix slew following a traditional skew-driven

CTS application through DME. Overall, SLECTS uses the distance (i.e. wire length) between two nodes as

a cost metric for clustering nodes (i.e. merging), and utilizes slew with more accurate estimations (than net

length, such as the one introduced in Chapter 6.3.2). This is a striking conclusion and a drastic change from

traditional DME-based CTS routines.

Algorithmically, the merging pair selection in SLECTS is performed by considering all possible pairs (up

to n2 possibilities) at each iteration. This theoretical O(n3) complexity of this selection scheme is avoided

with data re-use. In the first iteration, the costs of all n2 pairs of initial n nodes are computed [complexity

of O(n2)]. Starting from the second iteration, only the costs of merging the recently added node with the

remaining (n− 1) nodes [O(n)] are computed [complexity of O(n2)] as the other pairing combinations are

already computed in the first iteration. Thus, although the asymptotic complexity is still O(n3), the algorithm

performs O(n2) computations and O(n3) look-ups. It is shown in the experimental results (Chapter 6.4) that

the run time of the proposed methodology has a quadratic dependence [O(n2)] on the circuit size.

6.3.2 Step 2: Improvements in Merging Point Computation

In this study, the skew constraint-based merging regions are constructed in the bottom-up phase, similar

to the BST-DME methodology [9]. Unlike BST-DME methodology where merging regions are propagated

in the bottom-up phase and the merging points are determined in the top-down phase, the merging point

is determined within this merging region considering the slew constraint in the same phase. This is an

algorithmic change from traditional BST-DME in order to satisfy skew and slew constraints simultaneously.

88

This process requires the novel definition of a permissible merging window to satisfy the skew constraints,

and the cross-referencing of this window with an (also novelly defined) minimum slew point to minimize

clock slew.

The proposed merging point computation algorithm is presented in Algorithm 5. For each pair i- j that

is to be merged, the permissible merging window is defined based on the skew constraint, using Eq. (6.1) at

the end points (Lines 5-6). Each end point (CS1 and CS2) represents a corner case when the skew within i- j

pair is equal to skew constraint skewconst , and any point in the permissible merging window (i.e. within CS1

and CS2) satisfies this skew constraint (i.e. ≤ skewconst). After the permissible merging window is generated,

the location of the minimum slew point is computed (Line 7). Moving merging point closer to one node

decreases the slew at that node (as the clock signal traverses a shorter interconnect), and increases the clock

slew at the other node. Thus, the minimum slew point is defined as the point that makes the slew at nodes i

and j equal in order to minimize the clock slew at both nodes. In order to compute the location of this point,

the estimated slew values are propagated from nodes i and j using the PERI model. In PERI model [18], the

slew degradation S(W) on a wire segment W is estimated as:

S(W) = ln(9)×ED(W) (6.2)

where ED(W) is the Elmore delay [12] of the wire segment W , and estimates the output slew Sout(W) of a

wire segment W as:

Sout(W) =
√

Sin(W)2 +S(W)2 (6.3)

where Sin(W) is the input slew of the wire segment. Using Eq. (6.2) and Eq. (6.3), the minimum slew point

m should satisfy the following equation:

S2
i − [ln(9)×ED(m, i)]2 = S2

j − [ln(9)×ED(m, j)]2 (6.4)

where Si and S j are the target slew values at nodes i and j, respectively. The target slew values are set

to slew constraint slewconst at the sink level, and they are propagated bottom-up to the internal nodes after

89

Algorithm 5 Merging Point Computation
Input: Insertion delays and locations of nodes i and j, skew constraint skewconst .
Output: Location of new node k.

1: Maxi = max[Dins(i)]
2: Max j = max[Dins(j)]
3: Mini = min[Dins(i)]+ skewconst
4: Min j = min[Dins(i)]+ skewconst
5: Compute CS1 by computing LCS1 with Eq. (6.1) for ti = Maxi, t j = Min j
6: Compute CS2 by computing LCS2 with Eq. (6.1) for ti = Mini, t j = Max j
7: Compute min slew point m by solving Eq. (6.4)
8: if min(CS1,CS2)< m < max(CS1,CS2) then
9: Merging point k = m

10: else if min(CS1,CS2)> m then
11: Merging point k = max(CS1,CS2)
12: else
13: Merging point k = min(CS1,CS2)
14: end if

(a) Minimum slew point is within the permissible merging
window, it is set as the merging point.

(b) Minimum slew point is outside the permissible merging
window, the closest end point is set as the merging point.

Figure 6.2: Permissible merging window and min slew point definitions to identify the merging point.

each merging. After Eq. (6.4) is re-organized in a closed-form, it becomes a third-order equation (as Elmore

delay scales quadratically with wirelength). Thus, a single real positive root can be found when the equation

satisfies ∆<0. Note that, ∆>0 case only occurs when m is computed to be farther than j [i.e. L(m, i)> L(j, i)],

in which case m can directly be set to j. In other cases (i.e. when ∆ <0), the position of point m is checked

to identify whether it is within the permissible merging window (Line 8). If this is the case, m is set as the

merging point k, as shown in Figure 6.2(a) (Line 9). Otherwise, k is set as one of the corner points, as shown

in Figure 6.2(b), so as to satisfy skew constraints (Lines 10-13). For the cases where permissible merging

window does not exist (i.e. no possible point to satisfy skew constraint), buffer insertion (when the delay

mismatch is larger than one clock buffer delay) or wire snaking (when the delay mismatch is smaller than one

clock buffer delay) is considered.

90

(a) A naive location-based net splitting. (b) The proposed insertion delay-aware net splitting.

Figure 6.3: Slew-aware net splitting demonstration.

6.3.3 Step 3: Improvements in Net Splitting

SLECTS satisfies slew constraints while considering the insertion delays of the nodes to be merged. The

purpose of considering insertion delays is to avoid a high buffering and wire snaking cost that is induced by a

large mismatch between the insertion delays, and keep number of buffer levels balanced for PVT variations.

In order to highlight this phenomenon, a motivational example is presented in Figure 6.3. It is assumed that

three nodes i, j and k are to be merged and a single buffer insertion cannot satisfy the slew constraint at either

pair of nodes. Thus, the net of the selected pair of nodes needs to be split with buffer insertion to satisfy the

slew constraint. Assume that i- j pair has the lowest cost (i.e. minimum distance as defined in Chapter 6.3.1),

and is selected to be merged. A naive approach, depicted in Figure 6.3(a), could start splitting from node i

in order to bring the merging point closer to j and k for a lower merging cost in the next iteration. However,

this would significantly increase the insertion delay at node i, resulting in excessive buffering and/or wire

snaking when merging i with the other nodes. The insertion delay-aware net splitting technique, presented in

Algorithm 6, is proposed to address this issue. The proposed approach first finds the minimum cost pair (si

and s j in Line 4) and determines which node of the selected (i.e. minimum cost) pair has a smaller insertion

delay. Then, the distance is computed from this lower insertion delay node (either si in Line 8 or s j in Line 10)

to generate a new node m (Line 12). Starting net splitting from the node that has a smaller insertion delay

provides a more balanced buffering, such as the one depicted in Figure 6.3(b).

91

Algorithm 6 Net splitting for to avoid slew violations
Input: Insertion delays and locations of nodes i and j, slew constraint slewconst , timing information of clock

buffers and interconnects.
Output: Location and insertion delay of new node m.

1: Costcurr = ∞

2: for (i, j) in Unmerged nodes do
3: if Cost(i, j)<Costcurr then
4: Costcurr =Cost(i, j),si = i,s j = j
5: end if
6: end for
7: if Dins(si)< Dins(s j) then
8: Compute L using Eq. (6.7) with si
9: else

10: Compute L using Eq. (6.7) with s j
11: end if
12: Generate new node m at the computed location

In the proposed approach, the splitting point is determined as the longest feasible distance from the

selected (smaller insertion delay) node. The longest feasible distance is computed using the slew constraint,

the timing models of buffer and the interconnect metrics (per-unit resistance and capacitance). The output

slew S(B) of a buffer B is estimated as:

S(B) = Kslew
cap ×Cout +Kslew (6.5)

in Chapter 4.2.2, where Kslew
cap is the capacitance coefficient of output slew, Cout is the output capacitance

of the buffer B and Kslew is the no-load slew of the buffer. The slew propagation on the wire segment is

estimated using Eq. (6.2) and Eq. (6.3). Note that the input slew of the wire segment in Eq. (6.3) is equal to

the output slew of the buffer driving this wire [S(B) = Sin(W)]. Combining Eq. (6.5), Eq. (6.2) and Eq. (6.3),

the maximum distance L that a net can be split from a node i must satisfy the following equation:

Slewconst =
√
(Kslew

cap × (L× cunit +Capi))2 +(ln(9)×ED(W))2 (6.6)

where cunit is the per-unit capacitance of the wire. As Elmore delay has quadratic dependence to distance L,

Eq. (6.6) is a fourth-order equation. However, the equation can be simplified by setting fixed values to discrete

92

variables, and assuming that they are constants. The discrete variables are the capacitance coefficient (Kslew
cap)

of each buffer in the library, per-unit resistance (runit) and capacitance (cunit) of the clock routing layer. The

equation can be re-solved for each fixed case of these variables, making the capacitance at node i (Capi) the

only variable of the equation. After this simplification, the solution of L has a form of:

L =
1

K1×Cap2
i +K2×Capi +K3

(6.7)

where K1, K2 and K3 are the quadratic, linear and constant coefficients for the capacitive load at node i,

respectively. After the simplification, Eq. (6.7) can be solved for each clock buffer and clock routing layer

combination to generate coefficients (K1, K2 and K3) for each case. In this study, Matlab is used to obtain

these coefficients (K1, K2 and K3) by performing a quadratic fit for 1
L . Once these coefficients are obtained

for each clock buffer and clock routing layer combination, they are placed into look-up tables. In this study,

the largest size buffer in the library is used in order to split as large distance as possible in one iteration.

6.4 Experimental Analysis

The simulation setup is described in Chapter 6.4.1. The experimental results for 45nm planar CMOS technol-

ogy [38] and 20nm FinFET technology [47] are presented in Chapter 6.4.2 and Chapter 6.4.3, respectively.

Run time analysis of the proposed methodology is performed in Chapter 6.4.4.

6.4.1 Simulation Setup

The proposed methodology is implemented with Perl and the quality of results is presented with select

ISPD’10 benchmarks. The power and the skew analyses are performed using HSPICE of Synopsys at 45nm

planar CMOS technology [38] and 20nm FinFET technology [47]. The benchmark circuits are operated at

1 GHz for 45nm planar CMOS technology, and at 2 GHz and 3 GHz for 20nm FinFET technology to study

frequency scaling. The wire models are obtained from ISPD’10 clock contest, which provides a per unit

resistance of R=0.3 Ω/µm and a per unit capacitance of C=0.16 fF/µm for 45nm technology. For the exper-

imental analysis of 20nm FinFET technology, the floorplan area, per unit resistance and capacitance of the

wire models and the sink capacitance values of ISPD’10 benchmarks are scaled by 0.25×, considering the

93

technology scaling (45nm to 20nm, square of technology scaling≈0.25). The slew constraint is set to 10% of

clock period for each frequency, and the skew constraint is set to 100ps and 50ps for 45nm planar CMOS and

20nm FinFET technologies, respectively. All experiments are performed at the worst PVT corner (0.9×Vdd ,

SS, 125◦C for 45nm planar CMOS, and 0.9×Vdd , SS, -40◦C for 20nm FinFET) to identify the lower bounds

of improvement of SLECTS.

In order to demonstrate the contribution of each step of the proposed methodology, four cases are gener-

ated as shown in Table 6.1. Two comparisons are performed with these four cases:

1. Case 1 vs. Case 2 to demonstrate the impact of the proposed pair selection scheme (Step 1).

2. Case 2 vs. Case 3 to demonstrate the impact of merging pair computation technique (Step 2).

Improvements due to Step 3 are a necessity in the proposed experimental flow (Case 0 vs. Case 1), as Case

0 implementation of the pair selection step 1 in [8] and merging point computation step 2 in [5] do not lead

to feasible clock trees (without net splitting technique introduced as step 3) for the ISPD’10 benchmarks (i.e.

slew/skew violations).

6.4.2 Results at 45nm Planar CMOS Technology

The results in Table 6.2 and Table 6.3 are presented for the nominal Vdd and low voltage (0.7×Vdd), respec-

tively. Note that the worst case Vdd is set as 0.90× each target Vdd , i.e. it is set to 63% of nominal Vdd when a

low voltage node that runs at 0.70×Vdd (0.70×0.90 = 0.63) is considered. These results highlight the power

savings provided by the proposed merging pair selection (Step 1) and merging point computation (Step 2)

methods with the presence of high interconnect resistance, enabled by the net splitting technique (Step 3) for

all cases. It is shown in Table 6.2 that the SLECTS methodology provides 7% power savings compared to

Table 6.1: Experimental setup for each step: Pair Selection (Step 1 in Figure 6.1), Merging Point
Computation (Step 2 in Figure 6.1) and Net Splitting (Step 3 in Figure 6.1).

Step 1 Step 2 Step 3
Case 0 Method in [8] Method in [5] N/A
Case 1 Method in [8] Method in [5] Prop. method
Case 2 Prop. method Method in [5] Prop. method
Case 3 Prop. method Prop. method Prop. method

94

Table 6.2: Experiments 1 and 2 to demonstrate the impact of the proposed pair selection and merging
point computation schemes with reported clock slew (Sl.), clock skew (Sk.), and clock power (CP) at
the worst PVT corner of 1 GHz and 0.90×Vdd in 45nm planar CMOS technology.

Circuits Case 1 (DME) Case 2 Case 3 (SLECTS)
Sl.(ps) Sk.(ps) CP(mW) Sl.(ps) Sk.(ps) CP(mW) Sl.(ps) Sk.(ps) CP(mW)

cns03 83.4 35.0 31.7 84.7 51.7 30 87.0 52.8 30.7
cns04 86.4 79.5 41.5 86.5 55.4 37.4 89.8 41.8 37.2
cns05 84.8 27.0 19.0 81.5 54.1 18.1 87.4 51.1 17.5
cns06 84.5 42.4 24.9 82.3 32.8 25.1 88.2 63.5 24.1
cns07 88.2 50.6 42.1 87.7 37.9 38.7 90.1 47.8 38.9
cns08 85.0 44.0 29.7 83.2 32.4 26.8 92.9 48.2 26.6
Norm. <100 <100 1.00 <100 <100 0.93 <100 <100 0.93

Table 6.3: Experiments 1 and 2 to demonstrate the impact of the proposed pair selection and merging
point computation schemes with reported clock slew (Sl.), clock skew (Sk.), and clock power (CP) at
the worst PVT corner of 1 GHz and 0.63×Vdd in 45nm planar CMOS technology.

Circuits Case 1 (DME) Case 2 Case 3 (SLECTS)
Sl.(ps) Sk.(ps) CP(mW) Sl.(ps) Sk.(ps) CP(mW) Sl.(ps) Sk.(ps) CP(mW)

cns03 83.8 93.0 27.0 84.9 43.0 22.6 86.2 71.0 22.8
cns04 85.6 83.0 31.4 85.4 51.0 26.8 85.5 92.0 27.4
cns05 84.4 91.0 14.1 85.2 51.0 13.0 86.9 74.0 11.7
cns06 85.6 81.0 18.8 87.3 96.2 18.4 90.8 84.6 18.4
cns07 84.0 88.0 38.5 85.3 71.0 27.8 85.0 62.0 27.8
cns08 84.3 69.0 24.3 85.3 47.5 20.3 85.2 77.9 19.8
Norm. <100 <100 1.00 <100 <100 0.84 <100 <100 0.83

the traditional skew-driven DME-based CTS of Case 1 at 0.90×Vdd . Although the power savings are a mere

7% at 0.90×Vdd , the power savings of SLECTS methodology has an increasing trend with decreasing clock

voltage (tested at 10% decrements from Vdd , with 10% off for worst case operation): 7% at 0.90×Vdd (shown

in Table 6.2), 11% at 0.81×Vdd , 16% at 0.72×Vdd and 17% at 0.63×Vdd (shown in Table 6.3), compared to

Case 1 operating at the same Vdd fractions. This outcome verifies the slew-driven CTS claim of this study,

providing higher power savings when it is harder to satisfy slew constraints with reduced driving strength of

clock buffers (i.e. at lower voltage levels). It is concluded here that the proposed methodology can provide

significant power savings by enabling voltage scaling and exploiting slew. For reference, the power savings

of SLECTS at 0.63×Vdd is a substantial 33% compared to Case 1 (DME) running at 0.90×Vdd , when the

power savings of SLECTS and the power savings through voltage scaling enabled by SLECTS are combined.

95

Table 6.4: Experiments 1 and 2 to demonstrate the impact of the proposed pair selection and merging
point computation schemes with reported clock slew (Sl.), clock skew (Sk.), and clock power (CP) at
the worst PVT corner of 2 GHz and 0.90×Vdd in 20nm FinFET technology.

Circuits Case 1 (DME) Case 2 Case 3 (SLECTS)
Sl.(ps) Sk.(ps) CP(mW) Sl.(ps) Sk.(ps) CP(mW) Sl.(ps) Sk.(ps) CP(mW)

cns03 45.7 45.7 8.8 45.1 17.2 8.2 46.0 18.5 8.1
cns04 44.7 47.3 7.8 46.2 11.1 6.9 46.3 25.9 6.9
cns05 43.8 40.7 3.4 45.6 14.7 3.0 46.2 28.1 3.0
cns06 45.5 25.8 6.1 45.5 27.9 5.9 46.8 25.9 5.9
cns07 44.9 44.4 9.7 45.8 21.2 8.8 46.4 23.7 8.7
cns08 44.9 34.5 6.9 45.8 18.6 6.2 46.9 19.6 6.2
Norm. <50 <50 1.00 <50 <50 0.91 <50 <50 0.91

Table 6.5: Experiments 1 and 2 to demonstrate the impact of the proposed pair selection and merging
point computation schemes with reported clock slew (Sl.), clock skew (Sk.), and clock power (CP) at
the worst PVT corner of 2 GHz and 0.63×Vdd in 20nm FinFET technology.

Circuits Case 1 (DME) Case 2 Case 3 (SLECTS)
Sl.(ps) Sk.(ps) CP(mW) Sl.(ps) Sk.(ps) CP(mW) Sl.(ps) Sk.(ps) CP(mW)

cns03 48.5 48.4 4.5 48.7 21.8 4.0 48.7 33.0 4.0
cns04 47.2 33.7 3.8 48.5 24.8 3.4 48.2 42.3 3.3
cns05 47.6 37.8 1.6 48.3 32.6 1.5 48.7 26.4 1.5
cns06 48.5 32.4 3.0 49.3 44.6 2.9 49.0 36.0 2.9
cns07 48.9 47.3 4.7 49.7 39.4 4.3 49.2 32.4 4.3
cns08 46.8 48.8 3.5 48.6 19.9 3.1 49.0 37.3 3.1
Norm. <50 <50 1.00 <50 <50 0.90 <50 <50 0.90

6.4.3 Results at 20nm FinFET Technology

For experimental analysis, two voltage levels are assumed at each frequency: 1) 0.90×Vdd of this technol-

ogy (0.9V in the nominal case), 2) Low Vdd that is achievable by all benchmarks, which is 0.63×Vdd at 2 GHz

and 0.72×Vdd at 3 GHz. The comparative results are presented in Table 6.4 and Table 6.5 at 2 GHz operation

for 0.9×Vdd and 0.63×Vdd , respectively. The power savings of SLECTS compared to Case 1 are 9% and 10%

at 0.9×Vdd and 0.63×Vdd , respectively. This slight decrease in power savings (compared to 1 GHz planar

CMOS results shown in Table 6.2 and Table 6.3) shows that FinFET technology is more suitable (in terms of

slew handling) for 2 GHz operation, and the power savings through slew-awareness (of SLECTS) are not as

critical (10% compared to 17% of planar CMOS at 1 GHz). However, when the slew constraints are tighter

at 3 GHz operation, the power savings of SLECTS are 17% for both 0.9×Vdd and 0.72×Vdd , as shown in

Table 6.6 and Table 6.7, respectively. This increase in power savings shows the applicability of SLECTS

96

Table 6.6: Experiments 1 and 2 to demonstrate the impact of the proposed pair selection and merging
point computation schemes with reported clock slew (Sl.), clock skew (Sk.), and clock power (CP) at
the worst PVT corner of 3 GHz and 0.90×Vdd in 20nm FinFET technology.

Circuits Case 1 (DME) Case 2 Case 3 (SLECTS)
Sl.(ps) Sk.(ps) CP(mW) Sl.(ps) Sk.(ps) CP(mW) Sl.(ps) Sk.(ps) CP(mW)

cns03 25.9 42.8 20.0 26.8 14.9 15.5 27.1 49.4 15.5
cns04 26.7 40.4 15.4 26.6 43.5 13.3 26.8 49.2 13.2
cns05 25.8 46.0 7.5 25.5 20.3 5.9 25.6 49.7 5.9
cns06 28.1 45.9 11.9 28.0 42.4 11.5 27.6 43.8 11.1
cns07 27.1 43.9 21.3 27.6 40.6 16.9 27.1 18.4 16.6
cns08 27.5 42.2 13.3 27.1 43.3 11.8 28.7 42.6 11.8

Normal. <33 <50 1.00 <33 <50 0.84 <33 <50 0.83

Table 6.7: Experiments 1 and 2 to demonstrate the impact of the proposed pair selection and merging
point computation schemes with reported clock slew (Sl.), clock skew (Sk.), and clock power (CP) at
the worst PVT corner of 3 GHz and 0.72×Vdd in 20nm FinFET technology.

Circuits Case 1 (DME) Case 2 Case 3 (SLECTS)
Sl.(ps) Sk.(ps) CP(mW) Sl.(ps) Sk.(ps) CP(mW) Sl.(ps) Sk.(ps) CP(mW)

cns03 29.8 43.1 11.0 30.1 13.8 9.3 30.7 23.8 9.2
cns04 29.4 46.3 9.1 30.2 24.7 7.8 30.9 28.7 7.7
cns05 29.6 44.4 4.1 29.5 31.5 3.5 29.4 30.6 3.5
cns06 31.3 47.5 7.1 31.2 20.0 6.7 31.1 32.9 6.6
cns07 29.6 44.3 12.4 30.4 17.6 10.1 30.7 28.7 10.0
cns08 29.9 48.1 9.5 29.9 49.7 7.0 30.5 33.6 7.0

Normal. <33 <50 1.00 <33 <50 0.84 <33 <50 0.83

to future nodes, as interconnect resistance is predicted to be higher, and the supply voltage (Vdd) levels are

predicted to be lower, both of which increase the challenge of handling slew. Another interesting outcome is

the power savings of SLECTS do not improve more than 1%, when the Vdd is scaled down within the same

frequency operation (9% vs. 10% at 2 GHz, 17% vs. 17% at 3 GHz), unlike planar CMOS technology (7% vs.

17% at 1 GHz). This is due to the tolerance of FinFET transistors to voltage scaling, therefore, the challenge

of slew handling does not increase critically when voltage is scaled with the same frequency (i.e. slew) target.

Thanks to this tolerance to voltage scaling, the power savings of SLECTS (step 1 and step 2) combined with

the power savings through voltage scaling (that is enabled by net splitting novelty of Step 3) are as significant

as 55% and 51% at 2 GHz and 3 GHz operations, respectively, compared to 33% of planar CMOS at 1 GHz.

Alternatively, frequency scaling of 1.5× is possible to operate at 3 GHz, with sn insignificant 3% increase in

power dissipation on the clock tree.

97

Figure 6.4: The run time of SLECTS vs. number of clock sinks, compared to its quadratic fit.

6.4.4 Run Time Analysis

As explained in Chapter 6.3.1, the asymptotic O(n3) complexity of merging pair selection algorithm has

reduced to O(n2) with data re-use. In order to empirically verify this, the run time of SLECTS as a function of

number of clock sinks is plotted, and presented in Figure 6.4. It is shown that the run time has a O(n2) profile,

matching well to the quadratic fit, with R2=0.99. For comparison purposes, the run times of all cases (Case 1

through Case 3) are presented in Table 6.8. As the run time depends solely on the number of sinks, the run

time for only one representative case (45nm planar CMOS at 1 GHz and 0.63×Vdd) is reported. Although all

cases have the same complexity [O(n2)], the run time of Case 2 is significantly better than Case 1 (≈3.3×).

This speedup is due to the proposed data re-use introduced in Chapter 6.3.1 performing better than targeting

the node with minimum delay at each iteration, as proposed in [8]. The run time of Case 3 is slightly higher

than Case 2 due to the additional cost of computing minimum slew point in Step 2 (Chapter 6.3.2). For

SLECTS, the benchmark with the highest run time is cns07 (which has the highest number of clock sinks of

1915) with a run time of 976 seconds (≈16 minutes). Note that this run time is significantly smaller than the

run time limit (12 hours) of ISPD’10 clock contest (from where the benchmark circuits and the experimental

setup are adopted).

98

Table 6.8: Run time comparison of all cases in 45nm planar CMOS technology at 1 GHz and 0.63×Vdd ,
in seconds.

Circuits Case 1 (DME) Case 2 Case 3 (SLECTS)
cns03 791 239 274
cns04 2756 806 851
cns05 485 142 156
cns06 427 139 149
cns07 3148 909 976
cns08 661 212 230

Normalized 1.00 0.30 0.32

6.5 Conclusion

In this chapter, a slew-driven clock tree synthesis (SLECTS) methodology is introduced. In SLECTS, the

high interconnect resistance is managed with a net splitting technique on long wires, and new merging point

selection and computation techniques are introduced for power savings. The proposed methodology is shown

to be effective for power savings, increasingly at lower voltage nodes. Thus, it is highly applicable for low

power designs. Furthermore, the SLECTS methodology has been verified on FinFET-based clock trees to

achieve voltage scaling for low power or frequency scaling for performance, while providing additional power

savings compared to existing methodologies. SLECTS can be integrated into contemporary academic and

industrial CTS tool flows for a slew-driven approach, similar to DME having been popular for the traditional

skew-driven CTS approaches.

99

Chapter 7: AN IMPROVED ALGORITHM FOR
LOW SWING GATED CLOCK TREE SYNTHESIS

In this chapter, a novel algorithm is proposed for low swing gated clock tree synthesis. In gated clock

tree synthesis, it is a challenging problem to satisfy the skew constraint across the gated and non-gated

sinks. This challenge is exacerbated when clock swing is reduced for a low power operation. The proposed

methodology of this chapter synthesizes a low swing gated clock tree to combine power savings of low swing

clocking and clock gating, while addressing these challenges to satisfy both clock skew and slew constraints.

The experimental results performed on the large circuits of ISCAS’89 benchmarks operating at 1.5 GHz

in the 45nm technology show that the proposed methodology satisfies tight skew (50ps) and slew (100ps)

constraints that a previous gated clock tree synthesis methodology is not able to satisfy. Even though the

previous gated clock tree synthesis methodology can be combined with a prescribed skew approach to satisfy

these constraints, the proposed methodology still outperforms in power savings by 20%.

7.1 Introduction

Clock gating is a popular technique for low power ICs [21, 30, 31, 45, 7, 15]. In this study, a novel low swing

gated clock tree synthesis methodology is introduced to combine the power savings of low swing clocking

and clock gating. The proposed methodology is adept at satisfying tight clock timing constraints. True to

typical physical design flow, the connectivity and placement of clock gates, determined at the synthesis and

placement stages, respectively, are preserved. The proposed methodology has a two-stage approach. In the

first stage, local clock trees are synthesized for each local clock gate cluster (i.e. clock sinks under the same

clock gate) and buffer insertion, if necessary, is performed to satisfy the slew constraint. In the second stage,

top-level clock tree is generated by utilizing a prescribed skew approach along with a novel delay insertion

scheme to deliver the clock signal to the clock gate inputs and non-gated clock sinks. The prescribed skew ap-

proach is instrumental in providing the flexibility to handle different local clock tree insertion delays (induced

by the varying fanout sizes of clock gates) and insertion delays of non-gated clock paths, and the delay inser-

tion scheme is instrumental to satisfy the skew constraint. Both of these proposed local and top-level clock

100

tree synthesis procedures utilize a slew-aware buffer insertion methodology in order to avoid slew violations

in low swing operation. The outcome of this two-stage clock tree synthesis proposal is a low swing gated

clock tree that satisfies tight skew and slew constraints thanks to the novelties of slew-awareness and integra-

tion of prescribed skew. The experimental results performed on seven circuits from ISCAS’89 benchmarks

operating at 1.5 GHz in 45nm technology [38] show that the proposed methodology:

1. satisfies tight clock skew (50ps) and slew (100ps) constraints, where the previous gated clock tree syn-

thesis methodology [45] cannot synthesize feasible clock trees due to the excessive wire snaking (per-

formed to satisfy the skew constraint) resulting in slew violations,

2. achieves 20% power savings compared to the combination of the gated clock tree synthesis methodol-

ogy [45] and a prescribed skew approach [8] that satisfies the same clock skew (50ps) and slew (100ps)

constraints.

The rest of the chapter is organized as follows. The background information on clock gating is presented

in Chapter 7.2. The proposed methodology is introduced and explained in detail in Chapter 7.3. The experi-

mental results are presented in Chapter 7.4. The chapter is finalized with concluding remarks in Chapter 7.5.

7.2 Background

Clock gating is a popular low-power methodology that has been well-studied in the literature [21, 30, 31, 45,

7, 15]. In [21], a methodology is proposed to optimize the location of clock gates in the clock tree, and in [30],

a clock gate cloning and register merging methodology is introduced for power minimization. A clock skew

scheduling approach is considered in our collaborative study [27] to improve available timing slack. These

methodologies consider post-CTS optimization on already existing clock trees (in essence, orthogonal to the

work in this study). In [31], a gated clock tree synthesis is considered while considering the activity patterns

for power optimization and assuming a symmetrical tree structure that achieves bounded clock skew. In [45],

a zero skew gated clock tree synthesis methodology is proposed where the clock skew is minimized with wire

snaking at necessary clock branches. In [7], a type-matching algorithm is proposed where the clock buffers

at the same clock tree level as clock gates are replaced with clock gates to obtain a uniform structure and

minimize clock skew. In [15], a delay-matching approach is proposed where clock gates and clock buffers

101

Figure 7.1: Motivational example: 4 sinks on the left are gated and 4 sinks on the right are non-gated.
Thus, this results in 5 sinks with different initial delays at the top-level clock tree.

with identical driving strengths are re-sized to balance insertion delays of gated and non-gated paths in the

clock tree and minimize clock skew.

A common scenario in today’s designs is to clock gate some (typically high) portion of clock sinks,

and keep high activity clock sinks non-gated. In such a scenario, gated clock tree synthesis encounters an

additional challenge due to the insertion delay mismatch between the gated and the non-gated clock paths. In

order to highlight this mismatch, a motivational example is presented in Figure 7.1. In Figure 7.1, four sinks

on the left are gated with one common ICG cell and the other four on the right are non-gated. A two-level

local clock tree is built for the gated portion sourced at the top-level ICG cell. After local clock tree synthesis,

there are five sinks for the top-level clock tree with non-equal target delays: Four non-gated sinks on the right

that have no children, and one sink (clock pin of ICG cell) on the left that has the delay of the ICG cell plus

insertion delay of the local clock tree. The assumption of a symmetrical clock tree in [31] is not valid in this

scenario, and the non-uniformity of gated and non-gated sinks results in excessive clock skew. In [45], clock

skew is minimized through wire snaking, which is prohibitive when the delay mismatch between gated and

non-gated paths requires excessive wire snaking, resulting in slew violations. The type-matching approach

in [7] is prohibitive as clock gates can be at any level of the tree, requiring many (or all) clock buffers to be

swapped with clock gates. Finally, the delay-matching approach in [15] requires re-sizing of clock buffers

and ICG cells for each target technology and voltage level, which is impractical. It is important to note here

that the mismatch between gated and non-gated paths (shown in Figure 7.1) is more significant in low swing

operation, resulting in high insertion delay mismatches.

102

It is concluded here that a low swing gated clock tree synthesis methodology needs to address clock

skew challenges between gated and non-gated paths of the clock tree and clock slew challenges of low swing

operation concurrently. To this end, the proposed methodology presented in Chapter 7.3 exploits a prescribed

skew approach along with a novel delay insertion scheme to satisfy the skew constraint, and considers a

slew-aware buffer insertion scheme to satisfy the slew constraint.

7.3 Methodology

The low swing gated clock tree synthesis methodology has a two-stage bottom-up flow based on well-known

deferred-merge-embedding (DME) method with proposed improvements described in Chapter 7.3.1. The

first stage, described in Chapter 7.3.2, is local clock tree synthesis when connectivity and placement of ICG

cells determined at the logic and physical synthesis stages are preserved. The second stage, described in

Chapter 7.3.3, details the top-level clock tree synthesis that uses a prescribed skew approach along with a

novel delay insertion scheme to address clock skew challenge introduced by clock gating. Both stages utilize

a slew-aware buffer insertion methodology to address clock slew challenge at low swing operation. The time

complexities of the algorithms are presented in Chapter 7.3.4, demonstrating the scalability of the proposed

low swing gated CTS methodology.

7.3.1 DME Method with Proposed Improvements

DME is a well-known methodology for zero skew [5] and bounded skew [9] routing whose buffered ver-

sions are adapted for clock tree synthesis in literature [45, 11, 8], and the methodology in Chapter 4. The

DME method, outlined in Algorithm 7, provides a flexible framework adopted for zero skew [11], prescribed

skew [8], and gated [45] CTS by considering different set of candidate nodes for merging (line 1), and us-

ing different cost (line 6) and feasibility metrics (line 5). For instance, all pairs of nodes are considered as

candidates for merging in the methodologies of [45, 11] whereas in the methodology of [8], the node with

the minimum insertion delay is enforced to be in the pair to minimize insertion delay. Cost metric is defined

as the distance between two nodes in the methodologies of [45, 11], and in the methodology of [8] and the

methodology introduced in Chapter 4, it is defined as the distance added with the potential wire snaking

between two nodes to consider the delay differences. As for the feasibility metric, the methodologies in

103

Algorithm 7 Traditional DME Algorithm used for CTS
Input: Location and capacitance information of clock sinks, cost and feasibility metrics.
Output: Locations and connectivity information of clock buffers and interconnects.

1: Select a subset of candidate nodes
2: Costcurr=∞

3: for i in Canditate Nodes do
4: for j in Candidate Nodes do
5: if Cost(i, j) < Costcurr && Feasible(i, j) == 1 then
6: Costcurr=Cost(i, j)
7: end if
8: end for
9: end for

10: if Costcurr != ∞ then
11: Perform merging to initialize new node k=Ti, j
12: else
13: for i in Unmerged Nodes do
14: Insert buffer to fix violations.
15: end for
16: end if

[45, 8, 11] use a maximum capacitance constraint, and the methodology introduced in Chapter 4 considers a

maximum slew constraint.

In this study, the traditional DME method is adopted with feasibility metric defined as the maximum slew

constraint (as in the methodology introduced in Chapter 4) and distance as the cost metric (as in [45, 11]).

The novelty of the proposed methodology is introduced in the selection of candidate nodes for merging,

and it is complemented by a novel delay insertion methodology to satisfy clock skew constraint. For gated

clock trees, selecting pairs that have similar delay characteristics is critical to avoid skew violations between

the nodes of the pair. However, selecting pairs that are physically apart requires long interconnect between

the nodes of the pair, potentially causing slew violations. In order to consider skew and slew concurrently,

a novelly defined candidate window is introduced in the proposed methodology. The candidate window

is the insertion delay window that spans the minimum insertion delay node and the nodes whose insertion

delays are within the minimum insertion delay plus skew constraint skewconst , as shown in Figure 7.2. As

the difference between any pair of insertion delays is smaller than the skew constraint, all combination of

pairs selected within the candidate window satisfies the skew constraint. After the candidate window is

constructed (line 1), the pair with the minimum cost (i.e. distance) is selected to minimize interconnection,

104

Figure 7.2: The candidate window is defined as the insertion delay window between the minimum
insertion delay of all nodes and its skewconst neighborhood.

Initialize sink
delays as 0

Use DME
for merging
of all pairs

Connect local
source to ICG

Slew
violation at

ICG?

Buffer insertion
to local source

Done

YesNo

Figure 7.3: The flowchart for the local clock tree synthesis.

thereby minimizing degradation in slew. If the minimum cost pair is feasible (i.e. no slew violation), merging

of this pair is performed (line 11), and the candidate window is updated to reflect the change in the timing

information (insertion delay and slew) of this node. If all pairs are infeasible, buffer insertion is performed at

all nodes to avoid a slew violation (line 14), and the same procedure is followed until all nodes are merged.

The specific use of Algorithm 7 for each stage is explained in Chapter 7.3.2 and Chapter 7.3.3.

7.3.2 Local Clock Tree Synthesis

The local clock trees for each clock gate cluster are synthesized using the flow in Figure 7.3, based on

Algorithm 7. Furthermore, an additional step is introduced in the form of buffer insertion to satisfy the slew

constraint. At the first step, the algorithm initializes each clock sink within the clock gate cluster with zero

105

Figure 7.4: The flowchart for the top-level clock tree synthesis.

insertion delay, and the merging is performed among the pairs within the candidate window. Note that the

mismatch of insertion delays are not large in local clusters and all nodes are within the window in most

cases. After the local clock tree source is determined, it is connected to the corresponding clock gate in the

third step. In the final step, it is checked whether the clock gate can drive the capacitive load without a slew

violation. If this is the case, no buffer insertion is necessary and the algorithm terminates. Otherwise, the

minimum size buffer that can drive the capacitive load without a slew violation is inserted at the local source

node. Here, it is important to note that selecting the correct buffer size is critical when the size of clock gate

clusters (i.e. number of fanout) varies, as the previous studies either assume a balanced capacitive load [7] or

use only one type of buffer [45, 8]. This procedure is applied to each local clock gate cluster.

7.3.3 Top-Level Clock Tree Synthesis

After local clock trees are synthesized and the ICG cells are connected, the top-level clock tree is synthesized

with the flowchart shown in Figure 7.4. The three step flow utilizes Algorithm 7 with the proposed improve-

ments. An additional novelty is introduced in the third step in the form of delay insertion to satisfy the skew

constraint. In the first step, the insertion delay of the clock gate inputs is initialized as the insertion delay of

106

Algorithm 8 Novel Buffer insertion/Wire snaking to fix skew violations.
Input: Buffer library B, skew constraint skewconst , skew factor skew f actor, slew constraint at target node

slewconst(k).
Output: List of inserted buffers, and length of required wire snaking.

1: for b in B do
2: if Slew(b)< slewconst(k) then
3: Insert b
4: end if
5: end for
6: while Dmax(k) - Dmin(k)> skewconst do
7: for b in B do
8: if Dmax(k) - Dmin(k) - D(b)< skewconst × skew f actor then
9: Insert b, found=1

10: end if
11: end for
12: if found==0 then
13: if Inserting max size buffer improves skew then
14: Insert max size buffer from B
15: else
16: Insert wire snaking, break;
17: end if
18: end if
19: end while

their corresponding local trees, and the insertion delay of the non-gated sinks is set to 0. In the second step,

Algorithm 7 is used to construct the top-level clock tree. As different initial delays are defined for each node

in the first step, a prescribed skew approach is considered at the top-level in order to bound overall skew.

Thanks to the candidate window, shown in Figure 7.2, the minimum cost pair is selected within pairs with

small insertion delay differences (< skewconst). However, there may be cases, especially at higher levels

in the clock tree, where the insertion delay difference between two nodes is larger than the skew constraint

skewconst , i.e. the candidate merging window contains only one node. In such a case, the minimum cost

pair among all pairs is selected, and a delay insertion methodology, presented in Algorithm 8, is proposed

to bound the overall clock skew in the third step. Algorithm 8 starts with insertion of the minimum size

buffer that can drive the capacitive load without a slew violation (Lines 1-5). The purpose of inserting min-

imum size buffer (that can drive the capacitive load) is the fact that i) higher device resistance of a smaller

size buffer provides a higher delay when driving the same capacitive load, ii) smaller size buffer potentially

consumes less power. After the insertion of the first buffer, the buffer insertion is continued (at the fan-in

107

of the first buffer) with the maximum size buffer that improves the skew (Lines 6-19). Theoretically, this

approach selects the maximum size buffer from the buffer library. However, the solution can be stuck at a

local minimum (that causes an impractically large wire snaking) due to the large delay change caused by the

maximum size buffer, especially at the low swing operation. Thus, a more relaxed approach is proposed here.

The buffer insertion is performed with the following condition: If a buffer can decrease the skew to a margin

closer to the skew constraint (i.e skew f actor× skewconst , skew f actor >1.0), that buffer is inserted (Lines 7-11),

otherwise the maximum size buffer in the library is inserted if it decreases the skew (Line 14). With this flex-

ibility, buffers with different sizes are exploited in order to avoid large wire snaking at the final step, which

possibly results in a slew violation. The buffer insertion is finalized when it is not capable of decreasing the

skew below skewconst , and wire snaking is used as the final step (Line 16). It is important to note here that the

wire snaking is not necessary if the target buffer library has enough granularity of buffer sizes (i.e. small delay

difference in adjacent buffer sizes). In such a case, the skew f actor can also be set to 1.0 as the granularity of

the buffer sizes provides the necessary delay change. If such a library is not present, as in the experimental

setup of this paper, the skew f actor can be set to generate enough margin for the insertion of the minimum

size buffer: The insertion of the minimum size buffer in target library provides ≈70ps delay change, thus the

factor is set to (70-skewconst)/skewconst=1.4 when skewconst is 50ps.

7.3.4 Complexity Analysis

Given N sinks with n clock gate clusters, the algorithm in Figure 7.3 selects one sink in the cluster and

iterates through other (N
n−1) sinks and merges the minimum cost pair. This operation continues until only 1

node is left, which is the input of the clock gate. Thus, the complexity of this algorithm is O(N2

n2) per clock

gate cluster, resulting in an overall complexity of O(N2

n). After clock gates are connected, the algorithm in

Figure 7.4 iterates through each pair within the candidate window, which has n clock gate inputs at the worst

case, therefore, the complexity of this algorithm is O(n2). The total complexity of the proposed methodology

is O(N2

n)+O(n2) when the design has N clock sinks and n clock gate clusters. The worst case complexity of

this algorithm occurs for a non-gated implementation (n=1), which results in an O(N2) complexity, as in the

methodology proposed in Chapter 4. However, considering large portion of clock sinks are gated in today’s

ICs (n >>1), the proposed methodology has a sub-quadratic complexity.

108

Table 7.1: The floorplan size and the total number of clock sinks of benchmark circuits.

Circuits Floorplan Size (µm× µm) Total Number of Sinks
s13207 169×166 593
s15950 173×169 513
s38584 280×272 1274
s38417 285×281 1575
s35932 289×281 1728

b1 394×381 2838
b2 393×387 3002

7.4 Experimental Analysis

7.4.1 Simulation Setup

The proposed algorithm is implemented as a Perl script and the generated netlists are simulated in HSPICE of

Synopsys using 45nm planar CMOS technology from FreePDK library [38] at 1.5 GHz. Five largest circuits

from ISCAS’89 benchmarks are selected with two additional custom blocks (b1 and b2) that are generated

by combining two benchmarks (b1 : s38417+ s38584, b2 : s35932+ s38584) for scalability. The detailed

information about the benchmark circuits used for experimental analysis is presented in Table 7.1. The logic

synthesis of RTL netlists is performed using RTL Compiler of Cadence and the physical placement of DFFs

is performed using SoC Encounter of Cadence. The buffer library has five buffers with various driving

strengths (from X2 to X32), and wire model has per unit values of R=2Ω/µm and C=0.1 f F/µm at the clock

routing layer. The clock skew constraint is set to 50ps (7.5% of clock period) and the slew constraint is set

to 100ps (15% of clock period) at the worst PVT corner (0.9V, 125◦C, SS transistors). The purpose of using

worst case corner is to maintain the reliability of low swing operation even at the most extreme conditions (i.e.

in lieu of a variation analysis). The low swing voltage level is set to 0.75×Vdd , as it is shown to be the break

point where power savings start leveling in Chapter 2.1.5, which results in 0.675V (0.75×0.9V). In order to

generate a clock gating structure with various fanout sizes, each design is partitioned into a hypothetical 16

grids, and each grid is assigned (or not assigned) to a clock gate as shown in Figure 7.5. The clock gate is

assumed to be placed at the geometrical center of the sinks of each cluster with a 20% activity. Relevant

information is presented for each benchmark circuit in Table 7.2. It is shown that ≈67% of clock sinks are

gated, where each clock gate cluster has a varying number of clock sinks, representing a realistic scenario.

109

Figure 7.5: The clock gate layout assumed for each benchmark circuit. Unlabeled areas contain the
non-gated clock sinks.

The methodology in [45] uses wire snaking to satisfy skew constraints, however, wire snaking is pro-

hibitive when the mismatch between gated and non-gated clock paths are significantly large, as in the ex-

perimental setup of this paper. In order to have a fair comparison against the proposed methodology, the

gated clock tree synthesis methodology [45] is combined with the prescribed skew methodology in [8], as an

additional case for comparison. The quality of results is compared between three cases, which are:

1. a low swing gated clock tree synthesized using the methodology in [45],

2. a low swing gated clock tree synthesized using the methodology in [45], combined with the prescribed

skew methodology in [8], demonstrative of the presumed state-of-the-art as basis for comparison,

3. a low swing gated clock tree synthesized using proposed two-stage approach, with the proposed pre-

scribed skew methodology and the novel delay insertion scheme.

7.4.2 Experimental Results

In Table 7.3, clock power consumption (CP), clock skew (Sk.), and clock slew (Sl.) are compared for the three

cases introduced in Chapter 7.4.1. As shown in Table 7.3, all clock trees implemented with the gated clock

tree synthesis methodology in [45] results in simulation failures, which are caused by large clock slew (due

to excessive wire snaking) that prevents certain nets from switching. On the other hand, when the gated clock

110

Table 7.2: The number of clock sinks at each clock gate cluster and the percentage of gated clock sinks
using the configuration shown in Figure 7.5.

Circuits Number of Sinks in Each Cluster Gating
Clus. 1 Clus. 2 Clus. 3 Clus. 4 Ptg.

s13207 141 43 165 44 66%
s15950 117 25 145 44 65%
s38584 291 84 405 87 68%
s38417 366 84 527 98 68%
s35932 430 109 530 116 69%

b1 588 165 945 199 67%
b2 912 164 776 228 69%

Table 7.3: The comparison of clock tree power (CP), clock skew (Sk.) and clock slew (Sl.) of gated
clock tree synthesis methodology in [45], the combination of the gated clock tree methodology in [45]
and the prescribed skew methodology in [8], and the proposed gated clock tree synthesis methodology,
operating at 0.675V and 1.5 GHz in 45nm technology.

Circuits [45] [45] + [8] Proposed Methodology
CP(mW) Sk.(ps) Sl.(ps) CP(mW) Sk.(ps) Sl.(ps) CP(mW) Sk.(ps) Sl.(ps)

s13207 Simulation Failure 1.72 49.0 95.4 1.06 36.3 91.1
s15850 Simulation Failure 1.62 43.6 88.2 0.93 48.4 87.3
s38584 Simulation Failure 3.56 46.1 96.3 2.24 43.0 93.7
s38417 Simulation Failure 2.77 42.4 87.2 2.41 49.2 89.3
s35932 Simulation Failure 2.84 36.5 96.5 2.51 42.5 95.2

b1 Simulation Failure 5.18 48.5 94.2 4.32 48.5 92.9
b2 Simulation Failure 4.76 24.1 94.3 4.45 49.7 94.5

Norm. N/A 1.00 <50 <100 0.80 <50 <100

tree synthesis methodology [45] is combined with a prescribed skew approach [8], this combined method-

ology synthesizes feasible clock trees that satisfy the clock skew and slew constraints (50ps and 100ps,

respectively). The proposed methodology satisfies the clock skew and slew constraints, while achieving a

significant 20% power savings against the combined methodology of [45] and [8], thanks to the prescribed

skew approach with the novel delay insertion scheme and the slew-aware buffer insertion. Thus, the pro-

posed methodology not only satisfies tight skew and slew constraints that previous gated clock tree synthesis

methodology [45] is not able to satisfy, it also synthesizes more power-efficient clock trees, compared to the

combination of methodologies in [45] and [8] that obtains a feasible clock tree.

111

Table 7.4: Run time comparison of three methodologies in seconds.

Circuits [45] [45] + [8] Prop. Method.
s13207 15 10 13
s15950 22 15 19
s38584 242 157 197
s38417 466 305 389
s35932 584 367 458

b1 2356 1588 2095
b2 2943 1802 2177

Normalized 1.00 0.64 0.81

7.4.3 Run Time Analysis

Three cases considered in this experimental setup use different methods to select candidate pairs for merg-

ing (line 1 in Algorithm 7), as explained in Chapter 7.3.1. Thus, run times of these three cases are compared

in Table 7.4 to analyze the effect of different selection methods. The methodology in [45] considers all pos-

sible combinations to select pairs, therefore its run time is the highest. The methodology in [8] finds the node

with the minimum insertion delay, and finds its minimum cost pair, therefore the run time is significantly

smaller with 36% improvement when two methodologies are combined. The methodology of this paper se-

lects pairs from the combinations of pairs from the nodes within the candidate window, therefore it considers

a reduced number of combinations compared to [45], which results in 19% run time improvement. The run

time improvement of this paper (19%) is less than the run time improvement through the combination of [45]

and [8] (36%), however, it is shown that the run time of the largest benchmark circuit (that has 3002 DFF

sinks) is a reasonable ≈36 minutes with the proposed methodology.

7.5 Conclusion

In this chapter, a novel low swing gated clock tree synthesis methodology is introduced. The proposed

methodology synthesizes local clock trees for each clock gate cluster while preserving the clock gate loca-

tions, and the top-level clock tree by considering the insertion delay mismatch between the gated and the

non-gated clock sinks. The proposed prescribed skew methodology along with the novel delay insertion and

the slew-aware buffer insertion schemes is shown to be effective to satisfy tight clock skew and slew con-

straints, while achieving significant power savings against the previous work. The proposed methodology is

112

implemented within the IC physical design flow and integrated into an industrial tool, therefore, it is highly

practical for automation purposes.

113

Chapter 8: MULTI-VOLTAGE SINGLE-CLOCK DOMAIN
CLOCK MESH DESIGN

In multi-voltage designs, a single clock mesh that spans multiple voltage domains is infeasible due to the

incompatibility of voltage levels of the clock drivers on the electrically-shorted mesh, therefore, each voltage

domain requires a separate mesh. The skew among these isolated clock meshes needs to be bounded and

a novel pre-mesh tree synthesis is required to tolerate the impact of PVT variations exacerbated due to the

separation of clock meshes at multiple voltage domains. The case study performed with large ISCAS’89

benchmark circuits operating at 500 MHz in 90nm technology highlights two important results that highlight

the benefits of multi-voltage domain clock mesh design when optimized for a single corner: 1) The multi-

voltage domain clock mesh can achieve 37% lower power with a 10.0ps increase in clock skew over the

single-voltage domain clock mesh, and 2) the multi-voltage domain clock mesh achieves 64.5ps less skew

with a 21% increase in power dissipation over a multi-voltage domain clock tree. When the multi-corner op-

eration is considered for variation-awareness, the multi-voltage domain clock mesh achieves up to 42% lower

power on average with an average skew of 39.0ps, lower than 2% of the clock period, over a typical single-

voltage domain clock mesh. Furthermore, multi-corner-aware multi-voltage domain clock mesh decreases

the global skew across all corners by 190.4ps on average over a multi-voltage domain clock mesh optimized

for a single corner, with a 15% degradation in power consumption necessary for variation-tolerance.

8.1 Introduction

In this chapter, a novel multi-voltage domain clock mesh design methodology is presented. Multi-voltage do-

main clock mesh design has following challenges: First, a single clock mesh is not feasible as its electrically-

shorted mesh wires cannot drive the voltage sinks operating at different voltage levels. Thus, separate meshes

are needed for each domain. Second, clock skew across these voltage domains must be balanced, which is

a challenge that arises due to the isolation of the pre-mesh trees of different voltage domains. Third, the

skew introduced by the PVT variations must be analyzed and bounded considering multiple PVT corners, as

isolated pre-mesh trees in different voltage domains have different tolerances against the PVT variations.

114

The experiments performed on the large circuits of ISCAS’89 benchmarks in 90nm technology at 500 MHz

highlight that the proposed multi-voltage domain clock mesh achieves:

1. 37% power savings with a 10.0ps increase in the skew over the single-voltage domain clock mesh,

2. 21% increase in power consumption with a 64.5ps decrease in the skew over the multi-voltage domain

clock tree,

when optimized for a single PVT corner.

Literature on clock meshes focuses on design methodologies for mesh reduction and optimization, and

ignores multi-corner analysis, as the ubiquitous shorting of branches provides remarkable robustness under

PVT variations. However, this assumption only holds true for a traditional, single-voltage domain clock mesh.

When a multi-voltage single-clock domain design is considered, a clock network built with the mesh topology

becomes uncharacteristically susceptible to PVT variations. This susceptibility emerges as a multi-voltage

domain clock mesh is constructed with disjoint pre-mesh trees and meshes, each synchronizing an individual

voltage domain. Hence, a novel methodology is necessary to synthesize a variation-tolerant, power-efficient

multi-voltage domain clock network. When the multi-corner improvements are considered, there are two

additional benefits:

1. Proposed multi-corner-aware multi-voltage domain clock mesh achieves up to 42% lower power across

three PVT corners with a worst case skew of 39.0ps on average, which resides in the 2% budget of the

clock period.

2. Proposed improvements achieve 190.4ps lower skew in average and a much tighter slew compared to

optimizing multi-voltage domain clock mesh design at only one PVT corner, with a 15% degradation

in the power consumption at that corner.

8.2 Methodology

A novel methodology to synthesize a mesh-based clock distribution network in a multi-voltage design flow

is proposed. The steps of the proposed methodology are:

1. the physical placement in each voltage domain is performed using standard EDA tools,

115

2. a uniform mesh size is selected for each voltage domain considering the skew constraints in the domain,

3. pre-mesh drivers are placed at each intersection, and sized considering the slew constraints,

4. pre-mesh tree is synthesized iteratively to bound the global skew.

In clock mesh design, uniform clock mesh grids are preferred to place the mesh wires between power

rails to prevent crosstalk. Thus, uniform clock mesh grids are considered in this study. In the typical single-

voltage domain clock mesh design, shown in Figure 2.14(a), the mesh wires are directly connected to the

sinks and the mesh is driven by a pre-mesh tree. For the multi-voltage domain clock mesh, on the other

hand, each domain needs its own clock mesh. To that end, local meshes are placed at each voltage domain

with their own pre-mesh trees. Then, the local roots of each voltage domain are connected to a master root

through level shifters, as shown in Figure 2.14(b). The mesh size selection, buffer driver selection and sizing,

and the pre-mesh tree synthesis procedures are presented in Chapter 8.2.1, Chapter 8.2.2 and Chapter 8.2.3,

respectively. The methodologies presented in Chapter 8.2.1 and Chapter 8.2.2 are simple algorithms that do

not define the novelty of this work but complement the design flow. Note that any alternative method for

mesh size selection and mesh driver sizing can be seamlessly integrated, which demonstrates the practicality

of the proposed method for automation purposes.

8.2.1 Mesh Size Selection

The clock skew within a voltage domain is directly related to the density of the clock mesh. With a sparser

mesh, the distance from the intersection (i.e. buffer locations) to the mesh connection point of a stub wire,

and the distance from the sink flip-flop to the mesh connection point increases, both of which are contribut-

ing to clock skew. On the other hand, a denser mesh increases the mesh capacitance, which increases the

power consumption. To that end, the smallest N×N mesh size is targeted in each voltage domain by a simple

exhaustive search by increasing N until the skew becomes less then a user-defined threshold. If prior informa-

tion is available on a suitable clock mesh size or depending on the floorplan size, a larger initial mesh size N

can be selected to start the iterations. This procedure is presented in Algorithm 9.

116

Algorithm 9 Mesh Size Selection
Input: Sink locations, skew constraint skewi

const for each voltage domain i.
Output: The mesh size Ni for each voltage domain i.

1: for Each voltage domain i do
2: Initialize Ni, e.g. Ni=1
3: Calculate skewi

max
4: while skewi

max > skewi
const do

5: Ni = Ni + 1
6: Update skewi

max
7: end while
8: end for
9: Return Ni for each domain i

Algorithm 10 Pre-mesh Driver Selection
Input: Mesh size for each voltage domain i, buffer library, slew constraint slewconst .
Output: The size of buffers at each intersection.

1: for Each voltage domain i do
2: Place minimum buffer at each intersection
3: Calculate slewmax
4: while slewi

max > slewconst do
5: Replace all buffers with the next larger buffer cell in the library
6: Update slewi

max
7: end while
8: end for
9: Return the selected driver for each domain i

8.2.2 Pre-mesh Driver Selection

After the mesh size is selected, the pre-mesh drivers are placed at each intersection. A simple heuristic is

used to select these buffers. First, minimum size buffers are placed at each intersection, and the buffer sizes

are iteratively increased to satisfy the slew constraint. The slew constraint is typically set to 5% of the clock

period in high performance ICs. To that end, the user-defined slew constraint, slewconst , is selected as 5% of

the clock period, although it can be set to another value depending on the performance requirements. Note

that this constraint may be degraded by the synthesized pre-mesh tree in the following step, yet the slew target

needs to be selected in this stage as it is used as a guide that drives the pre-mesh tree synthesis stage. In the

pre-mesh driver selection procedure, all the buffers are sized up at the same time with an identical scale for

the sake of simplicity. This procedure is shown in Algorithm 10.

117

Algorithm 11 Cross Domain Delay Matching
Input: Mesh size of each domain, assigned voltage for each domain, buffer library for each domain, slew

constraint slewconst , cross domain skew constraint skewcross
const .

Output: Pre-mesh tree for each domain i.
1: Place the (n-1)st level of the pre-mesh tree using slewconst
2: Calculate the maximum delay delayi

max for each voltage island i
3: while max∀i(delayi

max)−min∀i(delayi
max)> skewcross

const do
4: K = min∀i(delayi

max) and k as the corresponding domain
5: Set M = max∀i(delayi

max)
6: while K < M− skewcross

const/2 do
7: Add a minimum buffer to k
8: Update K = delayk

max
9: end while

10: if K > M+ skewcross
const/2 then

11: Remove the last-added buffer from k
12: Update K = delayk

max
13: end if
14: while K < M do
15: Increase the size of the minimum buffer in domain k to the one larger buffer in the library
16: Update K = delayk

max
17: end while
18: end while
19: Return the pre-mesh tree for each domain i

8.2.3 Pre-mesh Tree Synthesis

Pre-mesh tree synthesis is the most critical step of the multi-voltage domain clock mesh design flow, as the

insertion delay at all voltage domains must be matched to bound clock skew. Moreover, as the slew of the

clock mesh (Chapter 8.2.2) is not completely independent from the pre-mesh tree, it should not be degraded

when building the pre-mesh tree.

In the multi-voltage design flow, standard EDA tools cannot match the insertion delays of the pre-mesh

trees driving clock meshes that belong to different voltage domains. In this study, an iterative algorithm is

proposed to accomplish this task. In the algorithm, the pre-mesh tree is built up iteratively without degrading

the slew at the clock sinks until the skew across all voltage domains becomes less than a user-specified

threshold. This procedure is shown in Algorithm 11.

In Algorithm 11, first, the (n-1)st level of the pre-mesh tree is synthesized considering the slew con-

straints (line 1). The purpose is not to degrade the slew set in Algorithm 10 more than 20% (note that overall

slew limit is determined as a combination of the slew constraint slewconst in Chapter 8.2.2 and this degra-

118

dation margin in Algorithm 11). Next, the insertion delay of each clock sink is calculated to observe the

delay differences among the voltage domains (line 2). The skew among the clock sinks within the same

voltage domain is very small. Thus, the maximum insertion delay in each voltage domain is selected as

the common insertion delay of that domain without loss of generality. In line 3, the iterations start in a

while loop until the difference between the maximum and the minimum insertion delays across all voltage

domains is less than the user-defined cross-domain skew threshold skewcross
const . The voltage domain with the

minimum insertion delay is determined and labeled as k, and the minimum and the maximum insertion delays

across all voltage domains are labeled as K and M, respectively (lines 4-5). An iterative minimum size buffer

insertion is performed to voltage domain k until the delay K of this domain exceeds a minimum threshold (M-

skewcross
const /2) (lines 6-9). If K also exceeds the maximum threshold (M+skewcross

const /2), the last-added buffer is

removed from K (lines 10-13). In line 14, the delay of the voltage domain, K is compared to M. If it is smaller

than M, K is increased gradually by increasing the buffer sizes in voltage domain k starting from the buffer

with the minimum size, until it exceeds M (lines 14-17). After this step, the same procedure is followed on

the voltage domain with the second smallest insertion delay. The iterations terminate when the global skew

is less than the user-specified threshold. In this procedure, the solution quality depends on the user-defined

cross-domain skew threshold skewcross
const , as it is the key parameter that controls the trade-off between the skew

and the power consumption (tight skew constraints increases the number of buffers inserted). The global skew

constraint is typically 2% of the clock period. To that end, the user defined global skew constraint skewcross
const

is selected as the 2% of the clock period in this study, although it can be set to a different value depending on

the performance requirements.

8.3 An Improved Methodology for Variation-Awareness

An improved methodology is presented to consider multiple PVT corners for multi-voltage domain clock

mesh design. By considering multiple PVT corners simultaneously, variation-tolerance is targeted. Given

an initial placement and the mesh size (determined in Chapter 8.2.1), the steps of the modified multi-corner-

aware methodology are:

1. placement of pre-mesh drivers at each intersection, and their sizing considering the slew constraints at

119

c c

Clock Source

Premesh Trees

Premesh Drivers

Higher V-dd domain Lower V-dd domain

Figure 8.1: Proposed multi-voltage domain clock mesh topology for multi-corner improvement.

the worst corner (Algorithm 12),

2. iterative pre-mesh tree synthesis considering all PVT corners to minimize the global skew (Algorithm

13).

For the multi-voltage domain clock mesh, local meshes are placed at each voltage domain with their own

pre-mesh trees. The local roots of the pre-mesh trees of each voltage domain can be connected to a master

root through level shifters, however, these level shifters are not strictly necessary. The local root of each

voltage domain can function as a level shifter, instead, if the source voltage swing is higher than that of the

supply voltage at the root. In order to eliminate the additional power overhead, the level shifters are not used

in this study, as shown in Figure 8.1. The highest voltage in the design is assumed to be the voltage swing of

the clock source connection of the multi-voltage domain clock mesh design without loss of generality of the

presented methodology. Buffer driver selection and sizing, and the pre-mesh tree synthesis procedures are

presented in Chapter 8.3.1 and Chapter 8.3.2, respectively.

8.3.1 Pre-mesh Driver Selection

In this step, a simple heuristic is used to select the pre-mesh driver buffers. This algorithm is similar the

algorithm presented in Chapter 8.2.2, with a slight change: Instead of starting with minimum size buffers and

performing upsizing considering the slew in the single PVT corner, this algorithm starts with maximum size

buffers and performs downsizing considering the slew at the worst PVT corner. This approach decreases the

120

Algorithm 12 Multi-Corner-Aware Pre-mesh Driver Selection
Input: Mesh size for each voltage domain i, buffer library, slew constraint slewconst .
Output: The sizes of each pre-mesh driver buffers.

for Each voltage domain i do
Place maximum size buffer at each intersection
Calculate slewi

max
while slewi

max < slewconst do
Replace all buffers with the next smaller buffer cell in the library
Update slewi

max
end while

end for
Return the selected driver for each domain i

number of iterations because satisfying the slew constraint at the worst corner requires larger sizes of buffers,

compared to the corner that single corner-optimized methodology considers. This algorithm is shown in

Algorithm 12.

8.3.2 Multi-Corner-Aware Pre-mesh Tree Synthesis

A novel methodology that synthesizes a pre-mesh tree to optimize the global skew considering all PVT

corners simultaneously is presented. This stage also considers the slew at the sinks, not to degrade the slew

more than an allowed margin within the slew budget, as the maximum slew (Chapter 8.3.1) of the design is

not completely independent from the pre-mesh tree.

It is important to note the significance of the proposed skew-and-slew budgeted multi-corner-aware, multi-

voltage domain clock mesh design methodology within the current state of the art clock mesh design automa-

tion: In the multi-voltage design flow, standard EDA tools cannot match the insertion delays of the pre-mesh

trees driving clock meshes that belong to different voltage domains even in a single corner, as stated in Chap-

ter 8.2. In this study, an iterative algorithm is proposed to accomplish this task at all PVT corners, expanding

the applicability of the methodology presented in Chapter 8.2.3. In the algorithm, the pre-mesh tree is syn-

thesized iteratively, until the lowest global skew across all corners is achieved. This procedure is shown in

Algorithm 13.

In this algorithm, first, the (n-1)st level of the pre-mesh tree is synthesized with the maximum size buffers

in an N×N topology. The iterations starts (generically) with N=1 (line 1), and it is increased by 1 (also

121

Algorithm 13 Multi-Corner-Aware Multi-Voltage Domain Pre-mesh Tree Synthesis
Input: Pre-mesh drivers for each domain, assigned voltage for each domain, buffer library for each domain

i and each corner c, slew constraint slewconst .
Output: Pre-mesh tree for each domain i.

1: Set N = 1
2: while slewmax > slewconst + slewmargin do
3: Place N × N max size buffers at the (n-1)st level of each domain i
4: N = N + 1
5: end while
6: if max insertion delay is in the same domain for all cases then
7: while max insertion delay is still at the same domain j do
8: Add a max size buffer of that voltage domains other than j
9: end while

10: end if
11: currskew = max∀c(max∀i(delayi

max) - (min∀i(delayi
min))

12: prevskew = T
13: while k j < num o f levels j do
14: Downsize the k-th level of the max insertion delay domain j
15: prevskew = currskew
16: currskew = max∀c(max∀i(delayi

max) - (min∀i(delayi
min))

17: if currskew > prevskew then
18: Undo that step, mark k-th level as done
19: k j = k j + 1
20: end if
21: end while
22: while currskew > prevskew do
23: Add parallel buffers at the max insertion delay domain at the first level
24: prevskew = currskew
25: currskew = max∀c(max∀i(delayi

max) - (min∀i(delayi
min))

26: end while

generically) at each iteration until the slew constraint with the degradation margin is met at all corners (lines 2-

5). Then, the insertion delays are measured to see if the maximum insertion delay path is in the same voltage

domain for all cases. As shown in Chapter 2.2.3, optimizing the skew across all corners simultaneously

requires an early arrival of the clock signal in the lower voltage domain at the best case so as to have a

balanced skew at the worst case, and for the skew budget to be lower. Hence, having the maximum insertion

delay in the same voltage domain is an undesired case. This undesired case is avoided with a maximum size

buffer insertion in the next level of each voltage domain other than the voltage domain with the maximum

insertion delay (lines 6-10). The purpose of selecting maximum size buffers in this stage is the fact that having

less number of levels in the pre-mesh tree with larger size buffers is more variation-tolerant than having more

number of levels with smaller buffers. Buffer insertion stage ends when the maximum insertion delay paths

122

are no longer encountered in the same voltage domain for different corners. The buffer insertion stage is

succeeded by the buffer sizing stage. In the buffer sizing stage, the buffers are downsized starting from the

first level of the voltage domain whose maximum insertion delay path sets the global skew (line 14). If

downsizing improves the skew, that step is performed. Otherwise, that step is undone and that level is marked

as “done” (lines 17-20). Downsizing continues with the voltage domain with the second highest insertion

delay and finalizes when all levels of all voltage domains are marked as “done”. After this stage, pruning

stage starts. In this last stage, the number of levels or the sizes of the buffers are unchanged, but parallel

buffers of the same sizes are added at the first level of the voltage domain with the maximum insertion delay

iteratively as long as the global skew is improved (lines 22-25). The algorithm is an heuristic and does not

guarantee an optimal solution, yet it is empirically shown to be effective. The algorithm visits each voltage

domain constant number of times, and simulates only for the best and the worst corners. Thus, the complexity

is O(n) with n voltage domains and m PVT corners.

8.4 Experimental Analysis

The simulation setup of the presented experimental analysis is presented in Chapter 8.4.1. In Chapter 8.4.2,

the effectiveness of the multi-voltage domain clock mesh topology against existing topologies implemented

by industrial design tools optimized for a single PVT corner is shown. The effectiveness of the improved

multi-corner-aware methodology of Chapter 8.3.2, which expands the applicability of multi-voltage domain

clock mesh topology with variation-awareness, is presented in Chapter 8.4.3.

8.4.1 Simulation Setup

The proposed methodologies in Chapter 8.2 and Chapter 8.3 are implemented in Tcl in order to inter-operate

with standard EDA tools. Similar to most standard cell libraries, the selected SAED 90nm EDK Library [58]

has two voltage levels, a high voltage at 1.2V and a low voltage at 0.8V. Consequently, the number of voltage

domains in this study is two. The RTL netlists are synthesized using Design Compiler of Synopsys and the

placement of the circuits are performed using IC Compiler of Synopsys. The skew and the power analyses

are performed using CustomSim XA simulator of Synopsys at the SPICE accuracy level. Due to the tight

slack constraints at the domain that operates at 0.8V, 500 MHz is selected as the operating frequency. The

123

user-defined constraints are selected as follows: The skew inside a voltage domain skewi
const is selected as

2ps for both voltage domains to keep the intra-domain skew small. The maximum slew slewconst is selected

as 100ps, with a degradation margin allowance in pre-mesh tree synthesis of 20% totaling to a slew budget of

120ps. The cross domain (global) skew skewcross
const is selected as 40ps, as explained Chapter 8.2.3. In order to

verify the variation-tolerance, the multi-corner analysis is performed at 3 different PVT corners:

1. Best Corner (BC): V=1.1×Vdd , T=-40◦C, fast transistors (FF)

2. Nominal Corner (NC): V=Vdd , T=25◦C, typical transistors (TT)

3. Worst Corner (WC): V=0.9×Vdd , T=125◦C, slow transistors (SS)

that are available in the target technology library.

8.4.2 Results for Single-Corner Analysis

Within the two voltage domains, two of the largest circuits of ISCAS’89 benchmarks, s35932 and s38417,

are placed. The larger design s35932, with 1728 sinks, is supplied with 0.8V and the smaller s38417, with

1564 sinks, is supplied with 1.2V without loss of generality. In order to compare the quality of results to the

standard single-voltage domain clock mesh and multi-voltage domain clock tree, the following procedure is

performed: A single-voltage domain clock mesh is synthesized by selecting the mesh size and the pre-mesh

drivers using the proposed methods given in Chapter 8.2.1 and Chapter 8.2.2 for consistency. Then, the

pre-mesh tree is synthesized using IC Compiler. Also, a dual-voltage domain clock tree is synthesized and

optimized by IC Compiler of Synopsys.

The synthesized dual-voltage domain clock mesh, single-voltage domain clock mesh and the dual-voltage

domain clock tree are shown in Figure 8.2, Figure 8.3 and Figure 8.4, respectively. The proposed methodol-

ogy outputs a 10×10 mesh for both of the partitions and selects NBUFFX4 from the SAED 90nm library as

the pre-mesh driver. The maximum slew at the clock sinks in the proposed dual-voltage domain clock mesh

design (shown in Figure 8.2) is 108.7ps, which is within the allowed margin of 120ps. The experimental

results show that the proposed multi-voltage domain clock mesh can reduce the power dissipation by 37%

compared to the single-voltage domain clock mesh (shown in Figure 8.3), with a slight increase in clock

skew from 0.9ps to 10.9ps. Compared to the dual-voltage domain clock tree synthesized and optimized by IC

124

Figure 8.2: Dual-voltage domain clock mesh; left partition operates at 1.2V and the right partition
operates at 0.8V. 10×10 meshes are visible, and the placed level-shifter is highlighted at the top-middle.

Figure 8.3: Single-voltage domain clock mesh; both partitions operate at 1.2V. A 10×20 mesh is syn-
thesized to cover both the regions.

Compiler (shown in Figure 8.4), the clock skew of the proposed dual-voltage domain clock mesh is down to

10.9ps from 75.4ps at the expense of a 21% increase in the power dissipation. This is an expected increase,

as the power consumption of a clock mesh topology is observed to be approximately 35% higher than a clock

tree topology for a single-voltage domain implementation, when synthesized on the benchmark circuits with

the same standard EDA tools. Also note that, this is a comparison between a design highly optimized with

advanced EDA tools and a design created using simple mesh size selection and buffer sizing algorithms.

More sophisticated methods for mesh size selection and buffer sizing can be used to improve this overhead

in an industrial implementation.

At the time of this dissertation, standard EDA tools are not capable of automatically synthesizing a multi-

voltage domain clock mesh. Instead, IC Compiler can only optimize the pre-mesh tree with a power mini-

mization objective. In order to emphasize the need for the automation presented in this work, the proposed

125

Figure 8.4: Dual-voltage domain clock tree; left partition operates at 1.2V and the right partition oper-
ates at 0.8V. The placed level-shifter is highlighted at the top-middle.

Table 8.1: The power and the skew trade-off of the proposed methodology against clock networks
synthesized by IC Compiler (ICC).

Clock Networks Skew (ps) Power (mW) Improvement
Skew (ps) Power

Proposed dual-voltage mesh 10.9 67.23 - -
Dual-voltage tree synthesized by ICC 75.4 55.60 64.5 -21%
Single-voltage mesh optimized by ICC 0.9 106.96 -10.0 37%
Dual-voltage mesh optimized by ICC 229.6 61.96 218.7 -9%
Single-voltage tree synthesized by ICC 73.8 79.51 62.9 15%

multi-voltage domain clock mesh design is compared to the multi-voltage domain clock mesh design whose

pre-mesh tree is optimized in IC Compiler. As automated tools cannot match the insertion delay at different

voltage domains as necessitated by the proposed multi-voltage domain clock mesh implementation, the EDA

tool optimizes the power with a larger delay mismatch. Proposed methodology achieves substantially better

skew at 10.9ps (less than 1% of the clock period) compared to 229.4ps with a 9% increase in the power

dissipation. In order to highlight the power savings of the proposed methodology, it is also compared with

a single-voltage domain clock tree, synthesized and optimized by IC Compiler. The proposed method dissi-

pates 18% less power compared to the single-voltage domain clock tree with a skew of 73.8ps. The power and

the skew trade-off of the proposed dual-voltage domain clock mesh compared to the other implementations

synthesized by IC Compiler (ICC) is summarized in Table 8.1.

126

Table 8.2: Created benchmark circuits.

0.8V Domain 1.2V Domain
Benchmark 1 s35932 s38417
Benchmark 2 s38417 s35932
Benchmark 3 s35932 s38584
Benchmark 4 s38584 s35932

8.4.3 Results for Multi-Corner Analysis

For testing purposes, four benchmark circuits are created by placing different combinations of the three largest

circuits of ISCAS’89 benchmarks, s35932, s38417 and s38584 within two voltage domains. These combina-

tions are shown in Table 8.2. In order to compare the quality of results to the standard single-voltage domain

clock mesh and the single-corner-aware methodology introduced in Chapter 8.2, the following procedure is

performed: A single-voltage domain clock mesh is synthesized using IC Compiler in the multi-corner mode,

and its pre-mesh drivers are sized using the proposed method given in Chapter 8.3.1 for consistency. The

single-corner-aware methodology introduced in Chapter 8.2 is also presented on the same circuits to compare

to the improved multi-corner-aware algorithm. The mesh size is selected as 10×10, similar to Chapter 8.4.2,

to have a fair comparison.

The pre-mesh buffer sizing (Chapter 8.3.1) and the pre-mesh tree synthesis stage (Chapter 8.3.2) of the

improved multi-corner-aware methodology takes, respectively, two and nine iterations at most to converge.

The experimental results are shown in Table 8.3 and Table 8.4. Recall that the contemporary practical ob-

jective in clock distribution network design is to optimize power within a given skew/slew bound. It is

visible from Table 8.4, that a single-voltage domain clock mesh is the best in terms of clock skew, as the

single-voltage domain clock mesh (famously) has a very high variation-tolerance. The important contribu-

tion of this methodology is that, when multi-voltage designs are implemented, the clock mesh can preserve its

variation-tolerance while reducing the power dissipation through multi-voltage design. The improved multi-

corner-aware methodology can achieve up to 42% power savings compared to a single-voltage domain clock

mesh. The skew increases from 1.7ps to 39.0ps on average, as shown in Table 8.4, yet it is still less than

2% of the clock period. In comparison, the single-corner-aware algorithm introduced in Chapter 8.2 does not

127

2% 5% 10%

Figure 8.5: Skew comparison of single-voltage mesh (SV Mesh) synthesized by IC Compiler (ICC),
single-corner-aware multi-voltage clock mesh methodology (SCAMV Mesh), and improved multi-
corner-aware multi-voltage mesh methodology (IMCAMV Mesh) vs. typical skew budgets (2%, 5%
and 10% of clock period).

Table 8.3: Power comparison of improved multi-corner-aware multi-voltage clock mesh methodol-
ogy (IMCAMV Mesh) over single-voltage domain mesh (SV Mesh) synthesized by IC Compiler (ICC)
and single-corner-aware multi-voltage clock mesh methodology (SCAMV Mesh) at best corner (BC),
nominal corner (NC), and worst corner (WC) in mW.

Circuits SV Mesh synth. by ICC SCAMV Mesh IMCAMV Mesh
BC NC WC BC NC WC BC NC WC

Benchmark 1 467.64 112.69 201.89 272.56 66.52 137.90 304.19 82.97 132.72
Benchmark 2 502.04 128.33 220.41 219.09 80.28 148.54 254.88 95.96 140.25
Benchmark 3 385.19 93.17 178.90 197.55 48.34 104.18 231.41 64.51 102.70
Benchmark 4 434.58 106.73 184.59 212.60 72.29 145.62 239.84 88.26 132.65

Avg. % Improvement 49% 40% 32% 42% 25% 35%

satisfy the 5% (or 10%) skew budget at 229.5ps on average, which is approximately 11% of the clock period,

as highlighted in Figure 8.5. It is concluded that the single-corner-aware algorithm introduced in Chapter 8.2

is useful in demonstrating the feasibility of a multi-voltage domain clock mesh topology, yet it is intolerant to

PVT variations. The improved multi-corner-aware methodology synthesizes effective multi-voltage domain

clock mesh designs across multiple PVT corners, therefore, it complements the study.

It is reported in Table 8.3 that the power dissipation in the multi-voltage domain clock mesh is much lower

compared to a single-voltage domain clock mesh. The total power savings on the multi-voltage circuit will

be even higher considering the additional savings on the logic, which are not reported here (as total power

savings depend on the particular voltage domain partitioning technique and may sway the results). The

power savings of the improved multi-corner-aware methodology has 15% degradation in power consumption

128

Table 8.4: Skew comparison of improved multi-corner-aware multi-voltage clock mesh methodol-
ogy (IMCAMV Mesh) over single-voltage domain mesh (SV Mesh) synthesized by IC Compiler (ICC)
and single-corner-aware multi-voltage clock mesh methodology (SCA Mesh) at best corner (BC), nom-
inal corner (NC), and worst corner (WC) in ps, overall skew is bold.

Circuits SV Mesh synth. by ICC SCAMV Mesh IMCAMV Mesh
BC NC WC BC NC WC BC NC WC

Benchmark 1 1.3 1.0 0.6 228.0 21.1 177.3 40.2 20.2 28.8
Benchmark 2 1.5 2.7 4.0 227.4 21.6 178.7 38.9 18.5 30.9
Benchmark 3 2.5 1.9 1.2 229.6 20.6 179.2 30.3 10.0 39.1
Benchmark 4 1.6 1.3 0.8 232.8 16.4 170.1 30.3 10.1 38.0
Avg. Skew 1.7 229.5 39.0

Degradation -227.7 -37.3

in the nominal case over the single-corner-aware methodology, as optimization at multiple PVT corners is

considered. The 15% power degradation, therefore, is not a penalty but a necessity to achieve a slew and a

skew constrained design. The slew constraint in single-corner-aware methodology is 120ps in the nominal

case, but it is observed to be 240.4ps in the worst case, which requires an extravagant 12% slew budget. In

comparison, the worst case slew budget in the improved multi-corner-aware methodology is 120ps, which is

satisfied at 108.4ps, 5% of the clock period, in the worst case. The degradation in power savings is 7% in the

best case corner, and there is a 3% improvement in power savings in the worst case corner. These improved

power consumption profile at the best and the worst corner highlights the multi-corner optimization objective

of the improved multi-corner-aware methodology.

8.5 Conclusion

Two novel methodologies are proposed to synthesize variation-tolerant, multi-voltage, single-clock domain

clock meshes for high performance ICs. The single-corner-aware methodology highlights the feasibility of

multi-voltage domain clock mesh design by demonstrating the limitations of industrial tool flows in clock

mesh synthesis for multi-voltage designs. Improved multi-corner-aware methodology enables a variation-

tolerant multi-voltage domain clock mesh synthesis for improved applicability. Slew-and-skew budgeted

pre-mesh tree synthesis considers all PVT corners for high practicality. It is shown in the experimental results

that multi-voltage domain clock mesh topology is a good alternative to clock tree topology to satisfy tight

clock skew and slew constraints with limited penalty in power consumption. In this work, simple algorithms

129

are used for mesh size and pre-mesh driver size selection within voltage domains to emphasize the elegance of

multi-voltage domain clock mesh topology and the multi-corner-aware pre-mesh tree synthesis. Thus, these

methodologies can easily be combined with existing clock mesh optimization and buffer sizing algorithms

for improved results and a wider practical applicability.

130

Chapter 9: CONCLUSIONS AND FUTURE DIRECTIVES

Design automation of voltage-scaled clock distribution networks is an active research topic as the increased

density of current ICs requires low power methods to limit power density and meet tight power budgets. In

this dissertation, novel algorithms are proposed to synthesize low swing clock trees to achieve higher timing

performance while preserving power savings of low swing clocking. Furthermore, a novel topology, multi-

voltage single-clock domain clock mesh, is introduced in order to achieve significant power savings while

preserving the high timing performance of clock mesh topology. The conclusions of this dissertation are

presented in Chapter 9.1, and the future directives on voltage-scaled clock distribution networks are presented

in Chapter 9.2.

9.1 Conclusions

The conclusions for low swing clock trees and multi-voltage single-clock domain clock mesh are presented

in Chapter 9.1.1 and Chapter 9.1.2, respectively.

9.1.1 Conclusions on Low Swing Clock Trees

In this dissertation, several algorithms are introduced in order to i) show the feasibility of low swing clock

trees, ii) develop automated flows for low swing clocking to achieve significant power savings at the same

performance constraints, iii) extend the applicability of low swing clocking to FinFET technology, iv) present

slew-driven algorithms that achieves additional power savings in the future technology nodes, v) facilitate

clock gating within the low swing clocking flow to extend the applicability of low swing clocking.

The feasibility study presented in Chapter 3 has shown that low swing clock trees can be enabled through

in-place buffer sizing on legacy full swing clock trees with limited degradation on timing and flip-flop power

consumption.

The automated flow presented in Chapter 4 has shown that a slew-aware low swing clock tree synthesis

combined with a low swing flip-flop design can satisfy the same timing constraints as its full swing coun-

terpart, while achieving significant power savings. It is also shown that the different targets on the power-

131

performance trade-off curve can be achieved at different frequency targets, across different transistor and

interconnect technologies.

The FinFET-based low swing clocking flow in Chapter 5 has shown that the unique properties of FinFET

technology (in reducing leakage power and having smaller gate delay) make low swing clocking a perfect

candidate for significant power savings. It is also shown that the combined improvements of FinFET tech-

nology and the proposed design flow enables frequency scaling with the same power target, and significant

power savings with the same frequency target.

The slew-driven clock tree synthesis algorithm presented in Chapter 6 has shown that focusing on clock

slew rather than clock skew is more beneficial for the future technology nodes where the interconnect

resistance is more significant than device resistance. Slew-driven approach has outperformed traditional

skew/delay-driven approaches in the low voltage and high frequency implementations, providing additional

power savings for low swing clocking at high performance ICs.

The low swing gated clock tree synthesis algorithm presented in Chapter 7 has introduced an improved

algorithm to facilitate clock gating within low swing clocking flow. It is shown that this algorithm can

successfully combine the power savings of clock gating and low swing clocking, while satisfying the same

timing constraints.

9.1.2 Conclusions on Multi-Voltage Single-Clock Domain Mesh

The multi-voltage single-clock domain clock mesh topology is introduced in Chapter 8. This dissertation

is the first work that shows that multi-voltage clock mesh topology is effective to preserve the high tim-

ing performance of clock mesh topology while achieving significant power savings. It is also shown that

the multi-corner-aware algorithm synthesizes multi-voltage domain clock meshes that are effective across

different PVT corners.

9.2 Future Directives

In this dissertation, various algorithms has been proposed to synthesize voltage-scaled clock distribution

networks that satisfies tight timing constraints while achieving significant power savings. In this section,

future studies are proposed in order to improve the effectiveness of voltage-scaled clock distribution networks.

132

9.2.1 Future Directives on Low Swing Clock Trees

The applicability of low swing clock trees can be extended through additional improvements. One possible

improvement is to perform a low swing clock tree and low swing voltage grid co-synthesis. With this co-

synthesis, not only the low swing clock tree is optimal, but also the power grid for the target voltage swing

is optimized for the low swing clock tree. This co-synthesis approach helps reduce the negative effects of

voltage supply variation, and helps compute an optimal voltage swing that considers both clock tree and the

low swing power grid.

9.2.2 Future Directives on Multi-Voltage Single-Clock Domain Clock Mesh

One possible future directive to improve multi-voltage single-clock domain clock distribution networks is to

study dynamically scaled voltage domains, rather than pre-assigned static voltage levels. This implementation

requires a multi-corner multi-mode (MCMM) algorithm that considers not only multiple PVT corners but also

multiple modes of voltage assignment. This algorithm will extend the applicability of multi-voltage single-

clock domain clock mesh to current microprocessors where dynamic voltage and frequency scaling (DVFS)

is a norm.

133

Bibliography

[1] A. Abdelhadi, R. Ginosar, A. Kolodny, and E. G. Friedman. Timing-driven variation-aware nonuni-
form clock mesh synthesis. In Proceedings of the ACM International Great Lakes Symposium on

VLSI (GLSVLSI), pages 15–20, May 2010.

[2] F. H. A. Asgari and M. Sachdev. A low-power reduced swing global clocking methodology. IEEE

Transactions on Very Large Scale Integration (TVLSI) Systems, 12(5):538–545, May 2004.

[3] C. Auth and et al. A 22nm high performance and low-power CMOS technology featuring fully-depleted
tri-gate transistors, self-aligned contacts and high density MIM capacitors. In Proceedings of the IEEE

Symposium on VLSI Technology (VLSIT), pages 131–132, Jun. 2012.

[4] H. B. Bakoglu. Circuits, Interconnects, and Packaging for VLSI. Addison-Wesley, 1990.

[5] K. D. Boese and A. B. Kahng. Zero-skew clock routing trees with minimum wirelength. In Proceedings

of the IEEE International ASIC Conference and Exhibit, pages 17–21, 1992.

[6] Y. Cai, C. Deng, Q. Zhou, H. Yao, F. Niu, and C. N. Sze. Obstacle-avoiding and slew-constrained clock
tree synthesis with efficient buffer insertion. IEEE Transactions on Very Large Scale Integration (TVLSI)

Systems, 23(1):142–155, Jan. 2014.

[7] C.-M. Chang, S.-H. Huang, Y.-K. Ho, J.-Z. Lin, H.-P. Wang, and Y.-S. Lu. Type-matching clock tree
for zero skew clock gating. In Proceedings of the ACM/IEEE Design Automation Conference (DAC),
pages 714–719, June 2008.

[8] R. Chaturvedi and J. Hu. Buffered clock tree for high quality IC design. In Proceedings of IEEE

International Symposium on Quality Electronic Design (ISQED), pages 381–386, March 2004.

[9] J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao. Bounded-skew clock and steiner routing. ACM

Transactions on Design Automation of Electronic Systems (TODAES), 3(3):341–388, Jul. 1998.

[10] B. S. Doyle and et al. High performance fully-depleted tri-gate CMOS transistors. IEEE Electron

Device Letters, 24(4):263–265, April 2003.

[11] M. Edahiro. A clustering-based optimization algorithm in zero-skew routings. In Proceedings of the

ACM/IEEE Design Automation Conference (DAC), pages 612–616, June 1993.

[12] W. C. Elmore. The transient response of damped linear networks with particular regard to wideband
amplifiers. Journal of Applied Physics, 19(1):55–63, 1948.

[13] R. Gonzalez, B. M. Gordon, and M. A. Horowitz. Supply and threshold voltage scaling for low power
CMOS. IEEE Journal of Solid-State Circuits (JSSC), 32(8):1210–1216, Aug. 1997.

[14] M. R. Guthaus, X. Hu, G. Wilke, G. Flach, and R. Reis. High-performance clock mesh optimization.
ACM Transactions on Design Automation of Electronic Systems (TODAES), 17(3):33:1–33:17, Jul 2012.

134

[15] S.-J. Hsu and R.-B. Lin. Clock gating optimization with delay-matching. In Proceedings of the IEEE

Design, Automation Test in Europe (DATE) Conference, pages 1–6, March 2011.

[16] The ITRS Technology Working Groups. International Technology Roadmap for Semiconductors (ITRS)

2010 Update, 2010.

[17] Z. Jianjun and S. Yihe. A low clock swing, power saving and generic technology based D flip-flop with
single power supply. In Proceedings of the IEEE International Conference on ASIC (ASICON), pages
142–144, Oct. 2007.

[18] C. V. Kashyap, C. J. Alpert, F. Liu, and A. Devgan. Closed-form expressions for extending step delay
and slew metrics to ramp inputs for RC trees. IEEE Transactions on Computer-Aided Design (TCAD)

of Integrated Circuits and Systems, 23(4):509–516, April 2004.

[19] H. Kawaguchi and T. Sakurai. A reduced clock-swing flip-flop (RCSFF) for 63% power reduction.
IEEE Journal of Solid-State Circuits (JSSC), 33(5):807–811, May 1998.

[20] C. Kim and S. M. Kang. A low-swing clock double-edge triggered flip-flop. IEEE Journal of Solid-State

Circuits (JSSC), 37(5):648–652, May 2002.

[21] T. S. Kiong and N. Soin. Low power clock gates optimization for clock tree distribution. In Proceedings

of the IEEE International Symposium on Quality Electronic Design (ISQED), pages 488–492, Mar.
2010.

[22] N.A. Kurd and et al. A multigigahertz clocking scheme for the Pentium 4 microprocessor. IEEE Journal

of Solid-State Circuits (JSSC), 36(11):1647–1653, Nov. 2001.

[23] D. J. Lee, M. C. Kim, and I. L. Markov. Low-power clock trees for CPUs. In Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 444–451, Nov. 2010.

[24] D. Levacq, M. Yazid, H. Kawaguchi, M. Takamiya, and T. Sakurai. Half Vdd clock-swing flip-flop
with reduced contention for up to 60% power saving in clock distribution. In Proceedings of the IEEE

European Solid State Circuits Conference (ESSCIRC), pages 190–193, Sep. 2007.

[25] P. Li and E. Acar. A waveform independent gate model for accurate timing analysis. In Proceedings of

the IEEE International Conference on Computer Design (ICCD), pages 363–365, Oct. 2005.

[26] D. Liu and C. Svensson. Power consumption estimation in CMOS VLSI chips. IEEE Journal of Solid-

State Circuits (JSSC), 29(6):663–670, Jun. 1994.

[27] W. Liu, E. Salman, C. Sitik, and B. Taskin. Clock skew scheduling in the presence of heavily gated
clock networks. In Proceedings of the ACM International Great Lakes Symposium on VLSI (GLSVLSI),
pages 283–288, May 2015.

[28] W. Liu, E. Salman, C. Sitik, and B. Taskin. Enhanced level shifter for multi-voltage operation. In
Proceedings of the IEEE Internation Symposium on Circuits and Systems (ISCAS), pages 1442–1445,
May 2015.

[29] W. Liu, E. Salman, C. Sitik, B. Taskin, S. Sundareswaran, and B. Huang. Circuits and algorithms to
facilitate low swing clocking in nanoscale technologies. In Proceedings of the Semiconductor Research

Corporation (SRC) TECHCON, Sept 2015.

135

[30] S.-C. Lo, C.-C. Hsu, and M. P.-H. Lin. Power optimization for clock network with clock gate cloning
and flip-flop merging. In Proceedings of the ACM International Symposium on Physical Design (ISPD),
pages 77–84, Mar. 2014.

[31] J. Lu, W.-K. Chow, and C.-W. Sham. Fast power- and slew-aware gated clock tree synthesis. IEEE

Transactions on Very Large Scale Integration (TVLSI) Systems, 20(11):2094–2103, Nov. 2012.

[32] J. Lu, X. Mao, and B. Taskin. Clock mesh synthesis with gated local trees and activity driven register
clustering. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (IC-

CAD), pages 691–697, Nov 2012.

[33] J. Lu, Y. Teng, and B. Taskin. A reconfigurable clock polarity assignment flow for clock gated designs.
IEEE Transactions on Very Large Scale Integration (TVLSI) Systems, 20(6):1002–1011, 2012.

[34] H. Mahmoodi-Meimand and K. Roy. Self-precharging flip-flop (SPFF): A new level converting flip-
flop. In Proceedings of the IEEE European Solid-State Circuits Conference (ESSCIRC), pages 407–410,
September 2002.

[35] H. Mahmoodi-Meimand and K. Roy. Dual-edge triggered level converting flip-flops. In Proceedings of

the IEEE International Symposium on Circuits and Systems (ISCAS), pages 661–664, May 2004.

[36] D. Markovic, J. Tschanz, and V. De. Feasibility study of low-swing clocking. In Proceedings of the

International Conference on Microelectronics, volume 2, pages 547–550, May 2004.

[37] S. Natarajan and et al. A 32nm logic technology featuring 2nd-generation high-k + metal-gate transis-
tors, enhanced channel strain and 0.171µm2 SRAM cell size in a 291Mb array. In Proceedings of the

IEEE International Electron Devices Meeting (IEDM), pages 1–3, Dec. 2008.

[38] NCSU. FreePDK 45nm Library v1.4, 2011.

[39] J. Pangjun and S. S. Sapatnekar. Low-power clock distribution using multiple voltages and reduced
swings. IEEE Transactions on Very Large Scale Integration (TVLSI) Systems, 10(3):309–318, June
2002.

[40] S. Raja, F. Varadi, M. Becer, and J. Geada. Transistor level gate modeling for accurate and fast timing,
noise, and power analysis. In Proceedings of the ACM/IEEE Design Automation Conference (DAC),
pages 456–461, June 2008.

[41] A. Rajaram and D. Z. Pan. Meshworks: A comprehensive framework for optimized clock mesh network
synthesis. IEEE Transactions on Computer-Aided Design (TCAD) of Integrated Circuits and Systems,
29(12):1945–1958, Dec 2010.

[42] M. Rathore, W. Liu, E. Salman, C. Sitik, and B. Taskin. A novel static D-flip-flop topology for low
swing clocking. In Proceedings of the ACM International Great Lakes Symposium on VLSI (GLSVLSI),
pages 301–306, May 2015.

[43] G. Shamanna, N. Kurd, J. Douglas, and M. Morrise. Scalable, sub-1W, sub-10ps clock skew, global
clock distribution architecture for Intel Core i7/i5/i3 microprocessors. In Proceedings of the IEEE

Symposium on VLSI Circuits (VLSIC), pages 83–84, June 2010.

136

[44] R. S. Shelar and M. Patyra. Impact of local interconnects on timing and power in a high performance
microprocessor. IEEE Transactions on Computer-Aided Design (TCAD) of Integrated Circuits and

Systems, 32(10):1623–1627, 2013.

[45] W. Shen, Y. Cai, X. Hong, and J. Hu. An effective gated clock tree design based on activity and register
aware placement. IEEE Transactions on Very Large Scale Integration (TVLSI) Systems, 18(12):1639–
1648, Dec. 2010.

[46] X.-W. Shih and Y.-W. Chang. Fast timing-model independent buffered clock-tree synthesis. IEEE

Transactions on Computer-Aided Design (TCAD) of Integrated Circuits and Systems, 31(9):1393–1404,
2012.

[47] S. Sinha, G. Yeric, V. Chandra, B. Cline, and Y. Caoi. Exploring sub-20nm finFET design with pre-
dictive technology models. In Proceedings of the ACM/IEEE Design Automation Conference (DAC),
pages 283–288, 2012.

[48] C. Sitik, L. Filippini, E. Salman, and B. Taskin. High performance low swing clock tree synthesis
with custom D flip-flop design. In Proceedings of the IEEE Computer Society Annual Symposium on

VLSI (ISVLSI), pages 498–503, Jul. 2014.

[49] C. Sitik, S. Lerner, and B. Taskin. Timing characterization of clock buffers for clock tree synthesis.
In Proceedings of the IEEE International Conference Computer Design (ICCD), pages 230–236, Oct
2014.

[50] C. Sitik, W. Liu, E. Salman, and B. Taskin. Design methodology for voltage-scaled clock distribu-
tion networks. submitted to IEEE Transactions on Very Large Scale Integration (TVLSI) Systems (first

review), Sept. 2015.

[51] C. Sitik, E. Salman, L. Filippini, S. J. Yoon, and B. Taskin. FinFET-based low-swing clocking. ACM

Journal of Emerging Technologies in Computing Systems (JETC), 12(2):13:1–13:20, Sep. 2015.

[52] C. Sitik and B. Taskin. Multi-voltage domain clock mesh design. In Proceedings of IEEE International

Conference on Computer Design (ICCD), pages 201–206, Sept. 2012.

[53] C. Sitik and B. Taskin. Implementation of domain-specific clock meshes for multi-voltage socs with ic
compiler. In Proceedings of the Synopsys User Group Conference (SNUG) Silicon Valley, March 2013.

[54] C. Sitik and B. Taskin. Multi-corner multi-voltage domain clock mesh design. In Proceedings of the

ACM International on Great Lakes Symposium on VLSI (GLSVLSI), pages 209–214, May 2013.

[55] C. Sitik and B. Taskin. Skew-bounded low swing clock tree optimization. In Proceedings of the ACM

International Great Lakes Symposium on VLSI (GLSVLSI), pages 49–54, May 2013.

[56] C. Sitik and B. Taskin. Iterative skew minimization for low swing clocks. Elsevier Integration, the VLSI

Journal, 47(3):356–364, Jun. 2014. Special issue: VLSI for the new era.

[57] D. Sylvester and C. Wu. Analytical modeling and characterization of deep-submicrometer interconnect.
Proceedings of the IEEE, 89(5):634–664, 2001.

[58] Synopsys Inc. Synopsys 90nm Generic Library, 2009.

137

[59] Synopsys Inc. Synopsys 32nm Generic Library, 2012.

[60] Synopsys Inc. PrimeTime and PrimeTime SI User Guide Version H-2013.06, 2013.

[61] M. Tokumasu, H. Fujii, M. Ohta, T. Fuse, and A. Kameyama. A new reduced clock-swing flip-flop:
NAND-type keeper flip-flop (NDKFF). In Proceedings of the IEEE Custom Integrated Circuits Confer-

ence, pages 129–132, Sep. 2002.

[62] C.-C. Tsai, C.-C. Kuo, and T.-Y. Lee. Voltage-island aware X-clock tree construction for power min-
imization. In Proceedings of the IEEE International Conference on Computer Science and Service

System (CSSS), pages 4132–4135, June 2011.

[63] C.-C. Tsai, T.-H. Lin, S.-H. Tsai, and H.-M. Chen. Clock planning for multi-voltage and multi-mode
designs. In Proceedings of the IEEE International Symposium on Quality Electronic Design (ISQED),
pages 1–5, March 2011.

[64] Q. K. Zhu and M. Zhang. Low-voltage swing clock distribution schemes. In Proceedings of IEEE

International Symposium on Circuits and Systems (ISCAS), pages 418–421, May 2001.

138

Vita

A. Can Sitik was born in Istanbul, Turkey. He received a Bachelor of Science degree in Electrical and

Electronics Engineering from Middle East Technical University (METU), Ankara, Turkey, in 2011, and a

Master of Science degree in Computer Engineering from Drexel University in 2013. During his PhD study, he

focused on low-voltage clock tree synthesis methodologies for high performance ICs. His research interests

include clock network synthesis, EDA for VLSI physical design, and IC timing.

Can served as a Teaching and Research Assistant in Drexel University. As a teaching assistant, he taught

several undergraduate and graduate level computer engineering classes. He participated in development of an

undergraduate embedded system design course, which is presented in IEEE MSE Conference. As a research

assistant, he has published several articles at ACM/IEEE journals and conferences, including JETC, ICCD,

GLSVLSI, ISCAS, and industrial conferences Synopsys SNUG and SRC TECHCON. In 2014, he spent

6 months at Synopsys Inc., Sunnycale, CA, as a graduate software engineering intern working on clock

network timing estimation in PrimeTime R&D team. In 2015, he spent 6 months at Intel Co., Hillsboro,

OR, as a graduate software engineering intern working on high-level power estimation in Datacenter Group.

Upon graduation, he is going to join Intel, Co. as a Software R&D Engineer to work on IC timing and power

estimation.

	Front Matter
	Title Page
	Copyright Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	INTRODUCTION
	Problem Statement
	Contributions of the Dissertation
	Contributions on Low Swing Clocking
	Contributions on Multi-Voltage Single-Clock Domain Clock Mesh Design

	Organization of the Dissertation

	VOLTAGE-SCALED CLOCK DISTRIBUTION NETWORKS
	Low Swing Clock Trees
	Single-Vdd vs. Dual-Vdd Low Swing Clocking
	Low Swing Clocking with Conventional Flip-Flops
	Low Swing Clocking with Low Swing-Aware Flip-Flops
	Low Swing Clocking in FinFET Technology
	Low Swing Clocking in Gated Clock Trees

	Multi-Voltage Single-Clock Domain Clock Distribution Networks
	Multi-Voltage Clocking with Clock Tree Topology
	Multi-Voltage Clocking with Clock Mesh Topology
	Effect of PVT Variations in Multi-Voltage Clocking

	FEASIBILITY STUDY OF LOW SWING CLOCKING
	Introduction
	Observations on Local Timing
	Methodology
	Buffer Characterization
	Iterative Skew Minimization

	Experimental Analysis
	Simulation Setup
	Results

	Conclusion

	DESIGN AUTOMATION FOR LOW SWING CLOCKING
	Introduction
	Methodology
	Low Swing DFF Design
	Clock Timing Modeling
	Slew-Aware Low Swing CTS

	Experimental Analysis
	Simulation Setup
	Results at 45nm Technology
	Results at 32nm Technology
	Discussion on the Effect of Interconnect Resistance

	Conclusion

	FINFET-BASED LOW SWING CLOCKING
	Introduction
	Methodology
	FinFET-Based Clock Buffer Design
	Timing Characterization of the FinFET-Based Clock Buffer Design
	Low Swing DFF Design
	Low Swing Clock Tree Design

	Experimental Analysis
	Simulation Setup
	Low Swing vs. Full Swing Clocking in FinFET Technology
	FinFET-based Low Swing Clocking for High Performance
	FinFET-based Low Swing Clocking for Ultra Low Power
	Leakage Power Comparison

	Conclusion

	AN IMPROVED ALGORITHM FOR SLEW-DRIVEN CLOCK TREE SYNTHESIS
	Introduction
	Deferred Merge Embedding (DME)
	Step 1: Merging Pair Selection
	Step 2: Merging Point Computation
	Step 3: Net Splitting

	Proposed Improvements over DME
	Step 1: Improvements in Merging Pair Selection
	Step 2: Improvements in Merging Point Computation
	Step 3: Improvements in Net Splitting

	Experimental Analysis
	Simulation Setup
	Results at 45nm Planar CMOS Technology
	Results at 20nm FinFET Technology
	Run Time Analysis

	Conclusion

	AN IMPROVED ALGORITHM FOR LOW SWING GATED CLOCK TREE SYNTHESIS
	Introduction
	Background
	Methodology
	DME Method with Proposed Improvements
	Local Clock Tree Synthesis
	Top-Level Clock Tree Synthesis
	Complexity Analysis

	Experimental Analysis
	Simulation Setup
	Experimental Results
	Run Time Analysis

	Conclusion

	MULTI-VOLTAGE SINGLE-CLOCK DOMAIN CLOCK MESH DESIGN
	Introduction
	Methodology
	Mesh Size Selection
	Pre-mesh Driver Selection
	Pre-mesh Tree Synthesis

	An Improved Methodology for Variation-Awareness
	Pre-mesh Driver Selection
	Multi-Corner-Aware Pre-mesh Tree Synthesis

	Experimental Analysis
	Simulation Setup
	Results for Single-Corner Analysis
	Results for Multi-Corner Analysis

	Conclusion

	CONCLUSIONS AND FUTURE DIRECTIVES
	Conclusions
	Conclusions on Low Swing Clock Trees
	Conclusions on Multi-Voltage Single-Clock Domain Mesh

	Future Directives
	Future Directives on Low Swing Clock Trees
	Future Directives on Multi-Voltage Single-Clock Domain Clock Mesh

	Back Matter
	Bibliography
	Vita

