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ABSTRACT  
 

Opiate, dopamine and GABA addictions are complex diseases with strong genetic 

components. These three substance disorders represent significant costs to the global 

judicial and healthcare systems. The treatment of addiction is further confounded by the 

co-occurrence of other pathologies that complicate treatment regimes. For example, 

addiction and mental health are well-characterized co-morbidities.  Mental health 

conditions such as depression, bipolar disorder and schizophrenia have clear genetic 

synergies between the prevalence of one mental health condition and addiction.  This 

dissertation focuses on the characterization of addiction hotspots in the genome, their 

interplay with mental health genetics and then examines how infectious disease burden 

is correlated to the rise of immune and addiction variants. 

 

Molecular genetics, metabolism analyses, epigenetic and association studies have 

contributed to current understandings of the genetic components of addiction disorder 

phenotypes. The resulting literature curated gene sets can be used to identify the 

modules and pathways mediating shared addiction, mental health and immune 

disorders. Studying addiction, mental health and immune genes in a geographically 

diverse sample of human populations is critical to understanding the role that 

evolutionary factors play in the rise and maintenance of variation potentially underlying 

addiction phenotypes. These human population comparisons are possible due to the 

recent expansion of human polymorphism databases, such as the HapMap Project, the 

Human Genome Diversity Panel and the 1000 genomes datasets. Careful comparisons 

of allele frequencies in human populations can point to those polymorphisms for which 
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both functional and evolutionary histories converge to either promote or inhibit addiction, 

mental health, and immune susceptibility. 

 

We can project curated addiction genes onto gene ontology categories and cellular 

pathways to draw a bioinformatics portrayal of addiction and its interplay with mental 

health and immunity. These addiction genes lists as well as schizophrenia, depression, 

and bipolar disorder gene sets can be further projected onto the genome to portray the 

overlap between addiction and mental health disorders. This can also serve as a tool to 

discover additional genes that play a candidate role in mental illness and addiction. 

Functionally annotating these regions using existing databases such as the Kyoto 

Encyclopedia of Genes and Genomes allows for robust characterization of the roles that 

genes and genomic regions play in modulating addiction phenotypes. This approach 

enables the identification of candidate genes sitting adjacent to known addiction hotspot 

genes and the subsequent identification of the candidate polymorphisms in a diverse 

array of human populations.  Finally the addition of new databases of genome wide 

association studies can inform candidate polymorphisms for addiction, mental health 

and immune response to infectious disease. 

 

  



15 

 

  



16 

 

Introduction 
A central tenet of evolutionary analysis is the idea that natural selection influences allele 

frequencies in populations affected by an environmental selective agent.  The 

mechanism of natural selection is governed by four principles: the occurrence of trait or 

phenotypic variation in populations, the fact that trait variation is heritable through 

Mendelian genetic mechanisms, that this genetic variation  leads to differential fitness 

and survivability, there is competition among individuals in the population with those of 

highest fitness contributing the most to reproduction (2, 3). These principles were further 

supported by the evolutionary modern synthesis in the 1930s, which merged Darwinian 

natural selection with Mendelian mechanisms of genetic inheritance. With both the 

mechanisms and the mode of inheritance clarified, many turned their attention to the 

selective agents that could create differences in allele frequencies in human 

populations.  In 1949, Haldane predicted that infectious disease what a primary driver of 

human immune variation (4). No selective agents have been characterized as more 

important in human history in shaping allele frequency differences in and between 

human populations than infectious disease (2, 5-17). This view has been largely 

adopted to become prevalent in human evolutionary biology, human genetics and has 

served as the foundational underpinnings of the movement towards personalized 

genetics. 

 

This view has been borne out by numerous studies of human immunity related 

allozymes conducted on infectious diseases such as the host-pathogen-vector triangle 

that characterizes Malaria (P. falciparum in Africa and P. vivax in Asia) (18).  Malaria is 

a widely prevalent disease currently affecting as many as 2.7 billion people, and killing 
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approximately 1 million people a year, most of whom are young and living in Africa (19-

22). As such, malarial disease is one of the most significantly impactful infectious 

diseases studied in recorded human history. It is known to have shaped human history 

and survival in equatorial regions, and has been documented to have had extended 

geographical ranges. Recent literature has identified that Plasmodium falciparum has 

been thought to have spread approximately 13,000 years ago in concordance with 

Neolithic human expansion (23). This corresponds to estimates of dating for malarial 

disease in human populations (24, 25).  The severity of infectious diseases such as 

malaria infection in current human populations and the supposition that malaria has 

exerted similar types of selection pressures throughout its shared history with Homo 

sapiens makes it and other infectious disease strong candidates for disease- driven 

selection in humans (19, 20, 26, 27).  

 

Gene studies associated with infectious diseases have fallen in three classes: 

erythrocyte, cell receptor, and immune genes.  We previously lacked the necessary 

insights into the full scope of human loci impacted by interactions with infectious 

diseases in human hosts. This predicament stemmed largely from technological 

limitations to large scale molecular locus characterization. This has been largely 

rectified with pyrosequencing techniques and high throughput sequencing to discern 

both genomic and polymorphic regions of interest (28-31) . Recent advances in 

sequencing and functional genomic typing of genic regions has greatly broadened the 

extent and depth of our understanding of molecular targets of human evolution (29).  
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Infectious disease continues to be viewed as the major cause of the differential survival 

that is known to shape allele frequency differences.  We have noted that the study of 

selection in human populations rarely makes the leap to what fitness or evolutionary 

consequences that human migration (largely to the United States) via the trans-Atlantic 

slave trade and American immigration has caused. In my dissertation work, I will look 

for links between the immune driven selection on infectious disease traits and common 

chronic diseases for which American are co-susceptible- addiction disorders and mental 

health conditions (32, 33).  These two broad disorders are often co-morbidities with 

immune deterioration in chronically mental ill (34, 35) or with chronic substance abusers 

(36-39). We chose these two broad classes of disorders based on their co-morbidity in 

American populations (32, 36, 40, 41), and the shared clinical manifestations among 

chronic dopamine, opiate and GABA addiction sufferers (32, 39, 42). 

 

Given the confluence of these two chronic conditions in human populations and the 

observation that they both share strong immunity overlaps in the clinical literature, it 

would be particularly interesting to characterize how much genetic overlap exists in 

these seemingly etiologically different disorders. We choose to study the most common 

illicit addictive substances- cocaine, methamphetamine, heroin, morphine, alcohol, and 

GHB. These six addictive substances fall into three drug classes: dopamine, opiate and 

GABA receptor based addictions they were also chosen based on their clinical 

similarities in chronic abusers.  
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Currently we have identified the genetic inputs to our analyses (immune, addiction and 

mental health genes), and the evolutionary framework within which we are interested in 

contextualizing our work. When we considered how to best exploit the publicly available 

datasets, we considered those curated by the three datasets:  Online Mendelian 

Inheritance Map (OMIM), the National Center for Bioinformatics Information Gene 

(NCBI Gene), and The Kyoto Encyclopedia of Genes and Genomes (KEGG). Each of 

these datasets contains genes identified through experimental or clinical studies to be 

associated with a specified addiction, mental health or immunity disorder.   OMIM is a 

compendium of human genes and genetic phenotypes (43-45). OMIM is curated by 

Johns Hopkins University and housed at both omim.org and at NCBI’s portal. The NCBI 

GENE dataset is curated database of genes derived from fully sequenced genomes 

housed on the NCBI web portal. NCBI Gene integrates information from OMIM, and 

creates links to OMIM, at both the gene and the phenotype levels (Gene Help). KEGG 

is an interactive database that seeks to unify molecular processes, genetics and 

chemical interactions together to form a cohesive picture of how genes products interact 

with each other and their environment (46-50). KEGG can be queried to address both 

how genes of interest interact in genome and to identify which genes act in particular 

phenotypes or disorders(47, 48).  KEGG is curated by the Kanehisa Labs jointly at the 

Kyoto University and the University of Tokyo. Each of these datasets provides some 

benefits for our analyses input files.  

 

In order to assess which dataset is most appropriate the mine for the initial list of genes 

that will serve as the input upon which we will perform computational analyses, we 
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surveyed the  opiate, dopamine, and GABA addiction in all three datasets and 

determined which one had the most robust gene list with which to begin analyses. In 

Figure 1, we demonstrate that OMIM contained 42 gene results, NCBI GENE contained 

587 gene results and KEGG contained 139 gene results. Additionally NCBI GENE 

contained all but 50 genes of the OMIM and KEGG gene sets.  Based on these 

analyses and the previously stated linkages between OMIM and NCBI GENE, we have 

determined that NCBI GENE is the most robust dataset with respect to diversity of the 

genes represented and inclusion of the genes captured by other publicly available gene 

datasets.  

 

 

After determining that we could use the NCBI dataset as a strong input set, we wanted 

to outline the workflow that we intend to employ during the execution of this dissertation.  

 

Figure 1: Intersection of the Addiction gene sets identified in KEGG, NCBI OMIM and NCBI 

Gene. Genes involved in dopamine, opiate and GABA addiction were surveyed in each data 

set including: the Kyoto Encyclopedia of Genes and Genomes (N=139 genes), The Online 

Mendelian Inheritance Map (N= 42 genes) and the National Center for Bioinformatics 

Information Gene (N=587 genes).  
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In Figure 2 we outline the work flowchart for this dissertation. This dissertation seeks to 

identify significant human SNPs of interest in chronic disorders for which we have 

limited understanding of the biomarkers for disease. I propose to use gene sets 

identified through the NCBI Gene lists which are by and large the most complete data 

sets of their kind.  These gene lists for selected types of addiction, mental health and 

immune disorders will be mined for each disease constellation of interest.  

We will use NCBI gene sets as inputs covering addiction (specific aim 1), addiction with 

mental health (specific aim 2), and addiction with immunity (specific aim 3).  We will 

then conduct computational analyses to determine whether genes involved in different 

disorders shared genomic locality. If this was the case then we could use these 

locations to characterize the human variation present and make inference about the 

relationship between this variation and geographical/environmental variation. 
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Opioid, Dopamine and GABA Addiction  
Addiction disorders represent a major economic and health cost to human populations 

(2). Addiction is loosely defined as a chronic relapsing spectrum disorder characterized 

by loss of control over substance taking (3-5). It is a behavior-based phenomenon 

 

Figure 2: Flowchart of dissertation work inputs and outputs. NCBI Gene 
searches will be used to conduct computational analyses, identify complex disease 
hotspots, and then examining the variation found in human populations derived from 
the HapMap SNP dataset, the Human Genome Diversity Panel, and the 1000 
Genomes SNP dataset. 
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representing a diverse array of psychological, biological, and genetic attributes and 

environmental and cultural factors (6-8).  While the genetic components of addiction is 

not fully characterized, clear evidence in the form of single gene association studies, 

and genome wide association studies suggest a large role for heritable variation in 

shaping the phenotypes observed in dopamine, opiate and GABA based addictions. 

These studies provide a robust substrate on which to consider how addiction genes 

might be working together to create the functional characteristics of addiction seen in 

clinical populations.  

 

Traditional approaches to studying multiple gene interactions have focused on 

identifying how genes form gene networks and thereby contribute to functional 

pathways. These two approaches have provided significant insights into the functional 

role that genes play in relationship their network neighbor genes. These types of studies 

have led to the curation of a large list of genetic contributors to complex disease 

phenotypes such as substance addictions, mental health conditions, and infectious 

diseases. Currently, substance addiction contains a large set of genes identified as 

participating to the generation of its phenotypes. Researchers of addiction have also 

mapped many of these addiction related genes onto gene ontology pathways to further 

elucidate their role in addiction. This wealth of genetic targets for addiction has not lead 

to an understanding of which genes or polymorphic variants are the most important in 

identifying substance addiction susceptibility or addiction disorder progression. Faced 

with a wealth of genetic targets for analysis, we try to identify those genes that appear 

to have genetic relationships beyond their roles as functional agents in pathways.  
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Addiction Intersections with Schizophrenia, Depression and Bipolar Disorder 
As with addiction, neurological disorders such as depression, bipolar disorder, and 

schizophrenia represent a significant strain on health and judicial entities. Both addiction 

and mental health disorder classes have long been identified as co-morbid conditions 

(9). While we can make clear inferences about the role that genes play in Mendelian 

genetic disorders, characterizing the genetic underpinnings of complex disease has 

been significantly more challenging. The intersection of two complex diseases such as 

addiction and mental provides an additional level of genetic complexity. Both Substance 

addiction and mental health are behavior-based phenomenon representing a diverse 

array of psychological, biological, and genetic attributes and environmental and cultural 

factors (6-8, 10, 11).   

 

Schizophrenia is a mental illness that affects 1% of the global human population (12). It 

is identified as a disorder that disrupts brain neural networks and is characterized by 

hallucinations, delusions, lack of willpower, and cognitive deficits (13). Genealogy 

studies have shown that there is a strong genetic component to schizophrenia with 

genetic components accounting for as much as 80% of the risk variance (14). Linkage 

studies and candidate gene approaches have identified over 1000 candidate genes 

associated with schizophrenia.  

 

Bipolar disorder is complex and severe mental disorder found in approximately 2.6 

percent of American adults (15).  It is a disorder with genetic concordance rates for 

bipolar disorder in twin studies has been estimated to be between 60% and 80% (16).  
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Along with schizophrenia, there are a number of clinical symptoms overlap with bipolar 

disorder that may lead to these two disorders being consolidated into one mental health 

classification (17) . Finally, depression is a mood disorder experienced by 1 in 6 

Americans (18). These three mental health conditions taken together represent one of 

the top 10 diseases in terms of life years lost (19). Examining the intersection of genes 

involved in these complex disorders allows us to potentially determine the role that each 

play and how they contribute to trait sharing. 

 

Infectious disease and Immunity 
Human immunological interactions with their environment are the substrate for natural 

selection. One approach to studying natural selection in humans has been to examine 

single genes in a population to directly assess selection caused by some environmental 

effect (i.e. HBB and malaria, SLC24A5 and UV exposure)(20, 21). An analysis 

conducted on global populations has demonstrated success in identifying variation in 

allele frequencies between populations taking into account diet, subsistence strategy 

and ecoregions (22, 23).  

 

This approach allows for finer scale patterns of molecular evolution to be observed 

within a Bayesian framework. This method also harnesses the strengths of a candidate 

gene approach by selecting metabolic pathways involved in specific traits of interest 

(24).  Hancock et al. find that signatures of selection are seen in multiple pathways in 

human populations (22, 23).  Indeed this approach can be seen as a major innovation in 

multivariate analysis for factors affecting gene frequencies in human populations. 

Applying this approach to a chronic disease like addiction will be a novel use of a 
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relatively underutilized approach. The interplay of addiction, location, and immunity 

invoking exposure to pathogens are compelling external forces that impact individual 

survival and therefor gene patterns.  

 

By examining correlations between environmental, addiction, and disease conditions 

with allele frequencies, I will be able to search for allele frequencies consistent with 

signatures of selection on multi-locus traits.  This method is useful in identifying 

adaptations (whether tolerance or resistance focused) for complex infectious diseases. 

Tropical populations provide an opportunity to examine how environmental effects affect 

complex traits because they exhibit a variety of subsistence strategies, population 

histories and exposures to infectious disease. They also live in a variety of ecological 

regions, nutritional contexts and latitudes. These various conditions make them a living 

laboratory for studies in natural selection. Until recently there was not sufficient 

sampling coverage in Asian populations to make inference about populations. The 

confluence of novel population datasets spanning the world and a new methodology 

that can exploit a candidate gene-like approach to identifying selection in human 

populations makes tropical dwelling populations a compelling system to assess natural 

selection events.  
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Specific Aim I: Identification of Addiction Hotspots 

Introduction 
Addiction disorders represent a major economic and health cost to human populations 

(51). Addiction is loosely defined as a chronic relapsing spectrum disorder characterized 

by loss of control over substance taking (52-54). It is a behavior-based phenomenon 

representing a diverse array of psychological, biological, and genetic attributes and 

environmental and cultural factors(55-57).  Additionally, individuals addicted to illicit 

substances are stigmatized, with widespread marginalization of rehabilitation and 

recovery services, perhaps facilitating return to recidivism (58-60). Current methods in 

overcoming addiction induced destructive behavior include those emphasizing not the 

treatment but complete abstinence from addictive substances (37, 61).  

 

A large number of studies including genome wide association investigations has 

uncovered potentially relevant allelic contributors to the genetic and molecular basis of 

addiction phenotypes(62-68). Genetic studies such as those conducted on alcohol 

dehydrogenase variants and the ADH family has been important for advancing our 

understanding of the genetic basis of addiction phenotypes(69, 70). Literature points to 

two main molecular areas underlying addiction phenotypes. The first is the analysis of 

disruption of normal ranges of neurological function (71-73). This has been 

characterized well both in the literature and in the canonical pathways that have been 

identified as participating in addictions, such as the alcoholism, cocaine, and 

dopaminergic abuse (74-76). The second is addressed at the level of metabolic 

function(77) such as the characterization of the ADH gene family and its function in the 

metabolism of alcohol products (78, 79). 
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Association studies are yet to provide a complete picture for elucidating the complex 

pathways and mechanisms underlying addiction phenotypes. The population subtype 

dependent mechanisms of addiction have not been fully explored  (80-82) and so are 

epigenetic factors involved in addiction (36, 40, 83, 84). A big part of the problem is that 

tissues involved in addiction, neurons and liver tissue, cannot be experimentally 

investigated in the human. Hence animal models and in vitro experiments have been 

used to quantify epigenetic changes  along with those related to transcriptome  (85-87) , 

metabolome  (88-90), and proteome (91-93) in the neuron synoptic system and in the 

liver tissue under addiction disorder conditions. These animal studies have shown that 

there is a robust set of homologous genes and pathways involved in addiction (94).  

 

Studies on the human tended to focus attention on the predominantly European and 

African American addicted cohorts with few studies examining other populations (95, 

96). Familial addiction behavior patterns have long been observed to vary within and 

between ethnic communities (55, 97) . This has limited our ability to understand how 

addiction gene variation plays out in the geographically and ethnically diverse human 

populations that are afflicted by addiction disorders. Using a diverse array of ethnic 

populations representing major human geographical regions and ancestries would be 

particularly useful in understanding the role that variation at potential addiction complex 

sites in the genome plays.  
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In this study we focus on opiate, dopamine, and GABA addiction disorders. We map 

literature curated addiction genes onto human chromosomes. Clusters these genes 

form identify hotspot locations on the genome.  Addiction hotspots contain genes 

previously not linked to addiction as well as regulatory motifs with population subtype 

dependent polymorphisms. Our bioinformatics based discovery and subsequent 

investigation of addiction hotspots reveal their roles in addiction as well as the 

dependence of addiction motifs on population subtypes. Results point out multiple 

hotspots participating in pathways of addiction.  Our findings also point to possible roles 

of SLC membrane transport proteins on population type dependence of addiction.   

 

Specific Aim: Characterize the role of genome locality on addiction disorders and 

how that variation is partitioned in human populations 

 

I hypothesize that genes involved in the characterized opiate, dopamine and GABA 

addiction disorders will form genomic regions of with functional specificity. These 

regions should exist above and beyond that small subset of genes that are shared 

between these gene lists. This hypothesis derives from the anecdotal observation that 

individuals with chronic substance addiction have shared traits that appear to be 

maintained, despite the divergent mechanisms underlying metabolism of these 

substances. I further hypothesize that addiction hotspots have ethnic and regional 

specificity. The rationale behind pursuing this approach is that genes involved in 

common addiction phenotypes should have common variants underlying them. In order 

to understand the ways in which genetic variation segregates in human populations and 
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its potential implications in personalized treatment regimens to addiction, we need to 

survey how variation at regions of the genome responsible for addiction phenotypes is 

partitioned in human populations. 

 

METHODS 
Addiction linked genes and genome hotspots 
A simple search of NCBI Gene based on strings of two words shown in Fig. 1 was used 

in order to generate a list of genes with biological relevance to addiction. We focused on 

addiction linked to dopamine (cocaine and crystal methamphetamine), opiate (heroine 

and morphine), and GABA (Alcohol and GHB). Then we mapped the resulting list of 

genes on human chromosomes and considered the clusters they form (98-100).  Then, 

we used the output BED files to visualize the cluster genes at UCSD’s Genome browser 

as a custom track using the HG-19 build of the genome.  
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Figure 3: Flowchart for identifying biologically relevant addiction genes.  The 
search terms used at NCBI Gene to populate a list of unique addiction genes are 
shown. The heat maps indicate intersection of gene sets in three classes of addiction:  
dopamine, opiate, and GABA. Addiction hotspots were defined at a genomic region 
with six or more addiction genes within a 1-1.5Mb genomic window. A Venn diagram 
shows the comparison with the 387 genes identified through an alternate addiction 
study(1). 
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Hotspots were defined as genic regions approximately 1- 1.5 Mb in length along the 

genome, which contained six or more genes identified from our combined addiction 

gene list. Each hotspot contained genes not currently associated with the addiction 

phenotypes.  We included such genes into our analysis due to high probability of 

common regulation patterns within a hotspot. Next we investigated the statistical 

significance of observing six or more genes as hotspots, given a starting number of 587 

addiction associated genes. We ran in silico computations that choose 587 genes 

randomly in 10,000 simulations and counted the number of times one saw at least the 

same number of hotspots we found with our list.  

 

Functional Annotation of Hotspot Genes 
Genes located within hotspots were considered in two ways in statistical enrichments: 

all genes in the hotspot window, and only those previously linked to addiction.  All genes 

in the hotspots were annotated using DAVID’s Bioinformatics Resources Tool software 

(101, 102) for biological process, molecular function, cell compartment and KEGG 

pathways (46, 49). Functional enrichments were quantified using Benjamini score 

analysis cutoffs of 0.01 (103). A MATLAB code was written to multi-color the nodes in 

KEGG pathways to differentiate between genes belonging to different hotspots. 

 

Genetic variation in hotspots in population subtypes 
We examined the hotspot associated polymorphisms identified in 11 HAPMAP sample 

populations with distinct geographical occupation: East Asian ancestry [Japanese-JPT, 

Chinese (collected in Beijing)-CHB, Chinese (collected in Denver)-CHD], African 

ancestry populations [Yoruba-YRI, Masaai-MKK, Luhya-LWK, and African Americans-
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ASW], European ancestry populations [Europeans of Northern and Western Ancestry-

CEU and Toscana- TSI], a South Asian ancestry population [Guajarati in Houston-GIH]; 

and an admixed American population [Mexicans in Los Angeles-MEX] (104-106)  

(Table1).  To exclude the possibility of confounding effects of population-specific 

demography and to set up an empirically derived neutral estimate of allelic variation, we 

analyzed 20 concatenated autosomal loci across the human genome identified as 

neutrally evolving (107). It was assumed that the polymorphism variation undergoing 

selection will have non-neutral allele frequency patterns. SNP frequencies were trimmed 

to exclude SNPs that were almost fixed in populations (> 0.9) or of low frequency (< 

0.15). Average SNP frequencies were calculated across the window and compared in 

all populations.  

Geographical 
Region 

Population Population 
Code 

DNA 
Samples 

(2N) 
African Yoruba in Ibadan, Nigeria  YRI 220 

Maasai in Kinyawa, Kenya MKK 205 
Luhya in Webuye, Kenya LWK 122 
African Ancestry in SW USA  ASW 98 

East Asian Han Chinese in Beijing, China CHB 162 
Japanese in Tokyo, Japan  JPT 131 
Chinese in Denver, CO, USA CHD 129 

Western 
European  Northwestern European Ancestry in UT, USA CEU 180 

Toscana in Italia TSI 114 
    
South Asian Gujarati Indians in Houston, TX, USA  GIH 117 

American Mexican Ancestry in LA, CA, USA  MEX 104 
 
Table 1: Population subtypes considered at Addiction Hotspots. The eleven 
HapMap populations grouped into geographical regions. Populations are described by 
ethnic identity and by their sample collection location.  
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To test for polymorphism deviations from neutral demographic patterns, we used the 

neutral autosomal regions and then used these combined autosomal region to give us a 

sense of the average allele frequencies per population in the absence of selective 

forces.  The Kolmogorov-Smirnov test (108) was performed to test for significance 

between the frequencies of neutral regions and the seven addiction hotspots. 

Comparisons were also made between sample ethnic populations for each hotspot. 

Populations were clustered by regional ethnic origin: Africans (Luhya (LWK), Masaai 

(MKK), Yoruba (YRI), and African Americans (ASW)); Asians (Chinese-Beijing (CHB), 

Chinese-Denver (CHD), and Japanese (JPT)); and Europeans (Western Europeans 

(CEU) and the Toscana (TSI)).   

 

Populations were compared African to European, African to Asian and European to 

Asian in order to identify the pairwise significantly different polymorphisms among all 

comparisons using a chi squared test which tested the divergence of the frequency 

ratios from 1. The significant polymorphisms were then sorted by their genomic location, 

as coding, intronic or intergenic polymorphisms. 

Additionally, we examined common polymorphisms with significantly different allele 

frequencies using GWAS3D, a web-based software that identifies regulatory elements, 

long range linkage and cross chromosome interactions (109).  We also identified 17 

significant polymorphisms from six addiction studies curated by GWAS Central(110). 

These polymorphisms were then identified in the 11 sample populations of the HapMap 

dataset. 
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RESULTS 
Molecular functions and biological processes of addiction genes 
A list of biologically relevant genes for addiction was gathered from literature curated 

sources. Figure 1 shows the flowchart employed to identify biologically relevant 

addiction genes and the resulting number of genes in each addiction gene set. Three 

classes of addiction genes were obtained using the NCBI gene search: dopamine 

addiction genes (N=108), opiate addiction, (N=246) and GABA addiction genes (N= 

433). The search word chains consisted of ‘metabolism’ (N=398 genes) or ‘addiction’ 

(N=461) followed by the names of three addictive substances: dopamine, opiates and 

GABA receptor. The respective heat maps in Figure 3 illustrate the intersections within 

the search terms for both metabolism and addiction gene lists. Additionally, we 

compared our gene list to the one reported by Li, Mao and Wei (1),  containing 387 

genes involved in four addiction disorders.  This comparison is shown using a Venn 

diagram with the bulk of genes (N=311) not identified in our analyses belonging to 

nicotine addiction, an addiction disorder we do not address here.  The rest was added 

to our gene list. A set of addiction genes (N=587), compiled from the union of all search 

terms, was thus determined.   
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Figure 4: Gene ontology molecular function annotations for dopamine, 
GABA and opiate addictions. The top 75 significant functional annotations were 
obtained (Benjamini > 0.01) for gene ontology molecular function for each 
addiction gene class. The vertical axis of each graph shows the –log10 (p) while 
the horizontal axis indicates the functional annotations. The gene lists are color 
coded for opiates (green), GABA (red), and dopamine (blue).  
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Functional annotation was undertaken for the list of addiction genes, the GABA, opiate, 

and dopamine addiction classes, and their pairwise intersections. Figure 4 shows the 

top 75 statistically enriched molecular functions for the dopamine, opiate, and GABA 

gene sets. Functional annotation shows a wide range of biological processes dominated 

by cell-cell signaling.  Dopamine and opiate addiction gene lists shared many more 

molecular functions with each other than they did with the GABA addiction gene set. 

The genes common to three types of addiction under consideration included those with 

ligand-gated ion channel activity, neurotransmitter binding, and amine binding activities. 

The biological processes enriched included response to organic substances, synaptic 

transmission processes, and response to endogenous stimulus process (not shown).  

 

Figure 5 shows the overlap in the gene sets associated with the opiate, dopamine, and 

GABA classes of addiction. The figure provides the gene symbols for each intersection 

subset. Substantial sets of genes were shared amongst all addiction types (N=51 

genes). This subset included CREB genes, leucine zipper family of DNA binding 

proteins; GRIN genes, which code for glutamate-gated ion channels; and SLC genes, 

which are sodium: neurotransmitter transporters.  
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Genes sitting in the intersection of opiates and GABA addiction included genes of the 

GABR family, mediating the fastest inhibitory synaptic transmission in the central 

nervous system. Also present at this intersection subset were genes from the 

GNAO/B/G family, known to integrate signals between receptors and effector proteins, 

and the PPP1C genes involved in the regulation of cellular processes. Genes at the 

intersection of dopamine and opiate addictions included three PRKAC genes coding 

 

Figure 5: Genes shared between dopamine, opiate and GABA addiction sets. 
The figure provides the gene symbols for intersections of gene sets corresponding to 
dopamine, opiate, and GABA addictions.   
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cAMP-based signaling molecules; five genes from the CES gene family, responsible for 

the hydrolysis of xenobiotics; and two genes from the CDK family, cyclin-dependent 

kinases, implicated in neuronal growth and repair. The overlap of the dopamine and 

GABA addiction gene sets included two genes from the MMP family, involved in the 

breakdown of extracellular matrix. These results indicate that literature curated addiction 

genes under consideration were involved in diverse processes required of addiction  

 

Identification and annotation of addiction hotspots on the human genome 
The addiction gene list consisting of 587 genes for the three types of addiction was 

mapped onto the human genome. Most of the addiction genes were dispersed through 

the genome but 63 addiction genes mapped onto seven genomic hotspot regions, all 

less than 1.5 Mb, the typical length for a genetic recombination unit on human 

chromosomes (Figure 6). All these hotspots had at least six or more addiction genes. 

The statistical significance of finding the number of genes in each hotspot was 

calculated using hypergeometric tests for each chromosome. 

Three of the seven hotspots contained genes exclusively associated GABA addiction 

while the remaining four hotspots contained genes involved in GABA, dopamine, and 

opiate addictions (Figure 6). For each hotspot, we cataloged the co-located genes in the 

hotspots not yet identified as addiction-related. These additional genes represent 

candidates for further investigation. Hotspot windows contained 14 to 58 genes, with the 

number of addiction genes ranging from 6 to 19 curated genes located in a hotspot 

interval. The lists of genes in each hotspot are shown in Figure 6, with ones already 

linked to addiction shown in bold.  
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In addition to examining the distribution of those genes that existed in relatively short 

linear spaces, denoting the possibility for shared regulation across the genome, we also 

conducted hypergeometric tests to determine the statistical significance associated with 

these cluster of genes. Table 2 reports the hypergeometric values per hotspot location. 
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Table 2: Hypergeometric Analysis of the Addiction Hotspots identified along the Genome.  The seven 

hypergeometric values were calculated as a measure of genomic hotspots significance. 
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Figure 6: Hotspots participating in acute and chronic alcoholism pathways. The 
alcohol addiction pathway contains genes located in all seven of the addiction hotspots, 
each are colored according to the legend.  They participate in post-synaptic processes in 
both acute and chronic alcohol signaling. Additionally each component in the alcoholism 
pathway has a bar above the gene/component indicating their involvement in dopamine, 
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The hotspot gene lists were used to identify gene ontology biological processes and 

molecular functions enriched for each hotspot. Table 3 summarizes the results. The 

hotspot on chromosome 4 for GABA addiction is dominated by metabolic processes and 

enzymes. The GABA hotspot at chromosome 6 is crowded by genes involved in 

nucleosome assembly and DNA packaging. The GABA hotspot adjacent is also 

dominated by DNA binding proteins. The genes crowding the mixed hotspot on 

Chromosome 10 are involved in oxidation reduction and steroid metabolic processes.  

This hotspot has a series of neurological function genes that regulate appetite during 

stress in the brain and neuro-epithelial remodelers.  
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Table 3: Addiction genes within hotspots show distinct functional classification. 
The table shows the gene ontology molecular functions and biological processes 
statistically enriched in addiction hotspots (Benjamini coefficient < 0.03). Annotations in 
bold correspond to the addiction genes identified within a cluster and not the entire 
genome region. 
 

Region Biological Processes Molecular Function 
 Chr 

Location 
Functional 
Annotation 

Benjimani Functional 
Annotation 

Benjimani 

4q23 4:100Mb-
100.9Mb 

Ethanol metabolic 
process 

5.0E-9 Alcohol dehydrogenase  
activity 

2.9E-7 

 GABA 
Only 

 Ethanol oxidation 5.0E-9   

   Alcohol metabolic 
process 

5.0E-9   

       
6p22.2 6:25.7Mb-

26.4Mb 
Nucleosome assembly 3.2E-9 DNA binding 5.6E-3 

GABA 
Only 

 DNA packaging 3.4E-9 Ion membrane 
transporter activity 

7.5E-5 

  Chromosome 
organization 

1.8E-6 Alkali metal ion binding 7.5E-3 

       
6p22.1 6:27.8Mb-

28.9Mb 
Nucleosome assembly 2.9E-8 DNA binding 1.0E-3 

GABA 
Only 

 DNA packaging 2.2E-8   

   Chromosome 
organization 

1.3E-5   

       
10p15.1 10:5Mb-6Mb Oxidation reduction 1.8E-2 Steroid dehydrogenase 

activity 
1.5E-6 

Mixed  Steroid metabolic 
process 

2.8E-2 Trans- 1,2-
dihydrobenzene -1,2-
diol dehydrogenase 
activity 

5.7E-6 

    Aldo-keto reductase 
activity 

7.5E-5 

       
11q13.2-3 11:67Mb-

68.5Mb 
None NA Aldehyde 

dehydrogenase  activity 
3.6E-2 

Mixed      
         
16q22.1 16:55.5Mb-

57Mb 
None NA 

Cadmium ion binding 1.8E-16 
Mixed    Cation binding 2.2E-5 
    Transition metal ion 

binding 2.7E-3 
      
19q13.33 
Mixed 

19:48.8Mb-
49.9Mb 

Cell-cell signaling 0.02 Hormone activity 0.03 
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The hotspot in Chromosome 11 has multiple genes involved in actin creation/dynamics, 

cell development/differentiation, and lipid metabolism. The 16q22.1 locus has 

metallothionein genes involved in metabolism of xenobiotics. The 19q33.33 locus 

contains genes mediating spermatogenesis, hormone activity and signaling. It is clear 

from these results that addiction hotspots contain genes with complementary functions.  

 

The genes at the seven addiction hotspots were mapped onto KEGG cellular pathways.  

We found consistent participation of hotspot genes in pathways involved in neurological 

signal transmission. Figure 7 illustrates the roles that hotspot addiction genes play in 

canonical addiction pathways. The acute and chronic alcoholism pathways are heavily 

influenced at the post-synaptic neuronal cells by genes contained in all seven of the 

hotspot regions. The pathway contains genes that carry out the two major mechanisms 

of addiction regulation: neurotransmission remodeling and epigenetic modifications. The 

major pathways involved in dopaminergic and morphine addiction also show 

participation of genes with neurotransmitter molecular functions and synaptic 

transmission biological processes. It is clear from Figure 7 that genes belonging to 

different hotspots coordinate to function in cellular pathways involved in addiction.  
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Addiction hotspots exhibit population subtype dependent polymorphisms 
The presence of addiction hotspots on human chromosomes allowed us to identify 

genomic variation at shared polymorphism within a hotspot for the HapMap populations.  

We found significant differences in allelic distributions both among populations and from 

the population specific versus neutral comparisons.  When population specific allele 

frequencies were sorted into frequency bins, we were able to see whether the shape of 

their distributions were uniform, had an excess of high or low frequency alleles as 

compared to the neutral distribution (Figure 8).  As explained in the methods section, 

 

Figure 7: Hotspots participating in acute and chronic alcoholism pathways. The 
alcohol addiction pathway contains genes located in all seven of the addiction hotspots, 
each are colored according to the legend.  They participate in post-synaptic processes 
in both acute and chronic alcohol signaling. Additionally each component in the 
alcoholism pathway has a bar above the gene/component indicating their involvement 
in dopamine, GABA or opiate addiction. 
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the hotspot polymorphism distributions were then tested against the natural loci using 

the nonparametric Kolmogorov-Smirnov Test. Only the distributions with gray-scaled 

lines were not significantly different than the polymorphisms found in the neutral loci (p 

< 0.01). To better visualize these patterns, we generated the heat maps shown in Figure 

9 based on the p values obtained in population comparisons for each hotspot. The 

hotspot identified at 6p21.2 (25.7 – 26.4 Mb) in this figure shows considerable similarity 

on polymorphisms for populations from the same origin, Africa, Asia, Europe. This 

appears to be particularly true for the Chinese of Beijing (CHB), Chinese of Denver 

(CHD) and Japanese of Tokyo (JPT) populations who are significantly different in 

polymorphism expression from all non-Asian populations. These results indicate 

addiction hotspots at chromosome 6 as loci with polymorphisms highly dependent on 

population subtypes.  
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Responding to results observed in Figure 7, shared polymorphisms at each addiction 

hotspot region was grouped by population regional ancestry – Asian, African, and 

European so that we could make comparisons between these ethnic types. The 

population comparison is illustrated in Figure 8 for SNPs along the hotspots.  Figure 10 

shows quite a few SNPs in all addiction hotspots deciphered in this study have altered 

allele frequencies between Asian, African, and European populations, with the chi-

squared test (p < 0.01) in region level comparisons. The accompanying Table 4 

identifies significant SNPs along the hotspot 6p21.2 (25.7 – 26.4 Mb) for the three 

 

Figure 8: Allelic distributions at addiction hotspots show population and 
regional variation. Each graphic considers polymorphism distributions of addiction 
hotspots against the neutral distribution (in red). Hotspot distributions were tested 
against the neutral loci using the non-parametric Kolmogorov-Smirnov test. 
Distribution graphs with grey-scaled lines are those not significantly different from the 
neutral distribution.  
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population comparisons.  A large portion of these SNPs falls onto the intron regions of 

histone genes known to have roles in addiction. But three others fall onto the gene 

SLC17A4, which codes a sodium/phosphate co-transporter in the intestinal mucosa. 

The protein plays an important role in the absorption of phosphate from the intestine 

and its possible role in addiction is yet to be determined. Table 4 also shows five 

intergenic variants identified as significantly varying between these populations 

(rs6906576, rs6924948, rs7740793, rs9348699, rs933199). When the frequencies of 

significant polymorphisms identified through GWAS studies (Table 5) were examined, 

we found that there are strong allele frequency differences when populations were 

considered by region of origin. In particular we noted that rs8040009, rs2154294, 

rs2827312, rs6701037, and rs1109501 showed allele frequencies that differentiated 

East Asians from non-East Asian populations. Two alleles differentiate Europeans from 

non-European populations: rs2140418 (alcoholism- alcohol use disorder) and 

rs10908907 (alcoholism- heaviness of drinking).  
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Figure 9:  Heat maps of SNP distribution on hotspots show population and 
geographical Patterning.  Comparisons of the average reference allele frequencies 
are shown for each addiction hotspot across populations using -log10 of the p values 
obtained from the Kolmogorov-Smirnov test. The variation in neutral regions shows very 
little demographic patterning while the hotspot located at Chr6: 25.7-26.4 shows 
considerably more regional blocks.  
 
 
 
 

 

Figure 10: Hotspot SNPs with significantly altered expression in regional 
population subtypes. Significant polymorphisms were found for regional population 
comparisons between African-Asian (N=112), African-European (N=126), and 
European-Asian (N=122) using chi squared test with a p value cutoff of 1e-5 as shown 
by the blue line in the figure. The value for the red line cut off is 5e-8. 
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SNP   Africans Asians European  Other P values 

GENE TYPE MKK LWK YRI ASW CHB CHD JPT CEU TSI GIH MEX African-
Asian 

African-
European 

Asian-
European 

rs1800708 HFE intron 0.029 0.083 0.088 0.07 0.456 0.445 0.319 0.08 0.05 0.2 0.149 4.04E-01 9.69E-01 1.47E-07 

rs9366637 HFE Intron  0.045 0.077 0.075 0.079 0.493 0.495 0.385 0.066 0.059 0.173 0.216 3.96E-01 9.17E-01 2.57E-10 

rs2237231 HIST1H1A downstr. 
500B 

0.054 0.077 0.075 0.088 0.489 0.5 0.389 0.084 0.059 0.193 0.216 4.01E-01 9.78E-01 5.82E-08 

rs9393682 HIST1H1C upstr. 2KB 0.042 0.077 0.075 0.079 0.485 0.5 0.389 0.066 0.059 0.203 0.216 3.95E-01 9.27E-01 2.48E-10 

rs2051542 HIST1H1T missense 0.029 0.082 0.088 0.07 0.46 0.445 0.319 0.08 0.054 0.198 0.164 4.04E-01 9.97E-01 3.59E-07 

rs3830054 HIST1H2AB upstr. 2KB 0.042 0.077 0.075 0.088 0.496 0.5 0.389 0.084 0.059 0.203 0.216 3.97E-01 9.89E-01 4.85E-08 

rs6908263 HIST1H2AC intron 0.141 0.114 0.136 0.105 0.46 0.45 0.319 0.08 0.064 0.198 0.172 4.86E-01 4.70E-01 2.73E-06 

rs7760713 HIST1H2AC intron 0.138 0.114 0.139 0.105 0.463 0.449 0.321 0.076 0.064 0.193 0.216 4.85E-01 4.40E-01 1.11E-06 

rs9467684 HIST1H2BD intron 0.179 0.132 0.153 0.149 0.011 0.005 0.08 0.013 0.025 0.035 0.017 1.51E-04 1.60E-12 4.94E-01 

rs4145878 HIST1H2BF upstr.2KB 
intron 

0.391 0.405 0.412 0.404 0.106 0.092 0.018 0.5 0.495 0.381 0.414 4.28E-06 8.49E-01 3.92E-01 

rs1892252 SLC17A4 intron 0.362 0.232 0.248 0.316 0.051 0.032 0.075 0.133 0.098 0.03 0.172 6.90E-06 1.32E-01 5.86E-01 

rs3734525 SLC17A4 utr 3’ 0.106 0.186 0.211 0.193 0.007 0.005 0.075 0.004 0.01 0.005 0.017 5.73E-07 0.00E+00 1.67E-03 

rs3823151 SLC17A4 intron 0.388 0.336 0.35 0.272 0.099 0.087 0.111 0.04 0.049 0.03 0.078 1.64E-02 5.32E-11 2.21E-01 

rs199738 TRIM38 utr 5’ 0.337 0.403 0.445 0.36 0.074 0.046 0.053 0.19 0.157 0.183 0.147 1.21E-08 2.20E-01 5.04E-01 

rs6906576 intergenic genomic 0.074 0.114 0.175 0.14 0.391 0.408 0.35 0.058 0.039 0.183 0.241 5.02E-01 1.11E-01 5.31E-12 

rs6924948 intergenic genomic  0.023 0.028 0.028 0.035 0.485 0.495 0.386 0.076 0.054 0.215 0.207 3.49E-01 5.74E-01 1.91E-09 

rs7740793 intergenic genomic 0.122 0.114 0.19 0.149 0.391 0.408 0.35 0.058 0.039 0.175 0.241 5.32E-01 4.95E-02 5.31E-12 

rs9348699 Intergenic genomic 0.122 0.114 0.19 0.149 0.391 0.408 0.35 0.058 0.039 0.183 0.241 5.32E-01 4.95E-02 5.31E-12 

rs933199 intergenic  genomic 0.03 0.083 0.091 0.07 0.459 0.445 0.319 0.082 0.054 0.203 0.17 4.05E-01 9.94E-01 5.88E-07 

  

Table 4: SNPs identified as significant in comparisons between Africans, Asians and Europeans for the 6p21.2 
addiction hotspot. All SNPs were tested for significant differences in allele frequencies using a chi square test (cutoff < 
1e-5) in pairwise regional comparisons: Africans (ASW, YRI, LWK, and MKK), Europeans (CEU and TSI), and Asians 
(CHB, CHD, JPT). The Allele frequencies of variants in populations are given with the p values of the grouped regional 
ethnic populations. 
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Africans Asians Europeans S Asian American 

Alcohol 

Dependence 

GWAS ID SNP ID CHR Location pValue Allele MKK LUH YRI ASW CHB CHD JPT CEU TSI GIH MEX 

HGVRS1526 rs6701037 1 1.75E+08 2E-07 C 0.369 0.372 0.3 0.316 0.098 0.065 0.1 0.518 0.369 0.318 0.27 

HGVRS1526 rs750338 11 1.25E+08 0.000001 0.332 0.417 0.52 0.378 0.598 0.559 0.54 0.177 0.244 0.273 0.18 

                                    

Alcoholism, 

alcohol use 

disorder factor 

score 

HGVRS1536 rs6716455 2 1.51E+08 7E-07 G 0.895 0.978 1 0.969 0.817 0.869 0.76 0.845 0.787 0.898 0.83 

HGVRS1536 rs9556711 13 98016416 0.000002 G 0.5 0.356 0.34 0.449 0.78 0.735 0.87 0.929 0.943 0.909 0.91 

HGVRS1536 rs2140418 6 34975415 0.000004 C  0.44 0.283 0.39 0.541 0.439 0.359 0.48 0.774 0.784 0.568 0.76 

HGVRS1536 rs768048 18 50285398 0.000008 C  0.476 0.376 0.53 0.592 0.988 0.97 0.97 0.838 0.947 0.892 0.91 

                                    

Alcoholism, 

heaviness of 

drinking 

HGVRS1537 rs9512637 13 27920611 1E-07 C 0.591 0.411 0.39 0.347 0.232 0.282 0.16 0.673 0.591 0.443 0.42 

HGVRS1537 rs8040009 15 93044339 3E-07 T 0.461 0.443 0.31 0.385 0.812 0.859 0.84 0 0.807 0.949 0.76 

HGVRS1537 rs1109501 4 71329490 0.000005 G 0.88 0.906 0.97 0.929 0.573 0.559 0.55 0.741 0.636 0.756 0.68 

HGVRS1537 rs10908907 9 92249584 0.000006 G 0.413 0.356 0.26 0.357 0.527 0.421 0.5 0.739 0.619 0.339 0.44 

HGVRS1537 rs2827312 21 23631676 0.000008 G 0.542 0.689 0.56 0.664 0.915 0.946 0.91 0.628 0.551 0.648 0.63 

HGVRS1537 rs195204 1 1.16E+08 0.000009 T 0.86 0.9 0.91 0.857 0.537 0.624 0.5 0.765 0.773 0.562 0.65 

                                    

Alcoholism, 

12-mth wkly 

alc. consum. HGVRS1538 rs2154294 14 42655275 0.000003 G 0.462 0.456 0.56 0.561 0.744 0.835 0.84 0.549 0.545 0.591 0.57 

                                    

Alcohol 

dependence 

HGVRS1539 rs9556711 13 98016416 8E-07 G 0.5 0.356 0.34 0.449 0.78 0.735 0.87 0.929 0.943 0.909 0.91 

HGVRS1539 rs2140418 6 34975415 0.000004 C 0.44 0.283 0.39 0.541 0.439 0.359 0.48 0.774 0.784 0.568 0.76 

HGVRS1539 rs10253361 7 1.21E+08 0.000006 T 0.727 0.917 0.83 0.776 0.293 0.376 0.47 0.562 0.523 0.477 0.51 

HGVRS1539 rs933769 15 96052742 0.000007 T  0.839 0.872 0.96 0.898 0.634 0.72 0.61 0.867 0.807 0.642 0.77 

                                    

Alcohol 

dependence HGVRS1742 rs8062326 16 19156016 0.000004 T  0.115 0.078 0.08 0.082 0 

no 

data 0 0.031 0.034 0.028 0.06 

Table 5:  GWAS derived Addiction Alleles showed significant differences in allele frequencies between Asians 
and Non-Asian populations. Alleles identified as significant in GWAS studies were typed in the 11 HapMap populations. 
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Distant connections of hotspot polymorphisms  
We followed these frequency-based analyses of hotspots with analysis uncovering 

linkage to distant sites. For this purpose we used the web platform GWAS3D 

developed recently by Jun Li M et al. (109). The platform identifies genetic variants 

affecting regulatory pathways and underlying disease/trait associations by 

integrating chromatin state, functional genomics, sequence motif, and conservation 

information given a variant list. In the addiction case under study, we examined the 

distant regulatory landscape through linkage of the significant SNPs identified at 

hotspots in cross population comparisons.  

 

Figure 11 shows the significant common variants between Africans and Europeans 

projected onto the Yoruba population. In the outer ring, polymorphisms or genomic 

regions are identified. The second ring identifies the genes or chromosomal regions 

these polymorphisms sit in and finally the red lines indicate the strength of local or 

long range interactions. Thus, with the use of emerging bioinformatics web 

platforms, deciphering addiction hotspots on the human genome show potential for 

further discovery of DNA motifs distant to the hotspots. 
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Figure 11: Significant SNPs characterized in the Yoruba population show local and 
long range interactions. Polymorphisms identified as significant in African to European 
comparison were projected onto the GWAS3D platform.  At least six long-range trans-
chromosomal interactions were identified and numerous local interactions were 
observed. 
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DISCUSSION 
 

The NCBI Gene web platform recently began providing gene lists associated with 

disease or disorders, ordered according to prevalence in literature searches. Some 

of the genes in the list were inferred from genome wide association studies.  The 

others were derived from research focusing specific targets. Using NCBI curated 

gene lists, we investigated the biological processes and cellular pathways involved 

in three types of addiction: addiction linked to dopamine (cocaine and crystal 

methamphetamine), opiate (heroine and morphine), and GABA (Alcohol and GHB).  

Biological process annotations could be sorted into three categories. Those involving 

all addiction classes included neurological, behavioral and cell signaling function. 

Processes common to dopamine and opiate addiction included signal transduction, 

neurological system process, and transport. GABA specific processes, on the other 

hand, consisted of chromatin assembly, organization and homeostatic processes.    

 

The gene molecular functions involving all addiction classes included ion channel 

activity, receptor function and binding.  Those involved in dopamine and opiate 

addiction largely consisted of anion binding, kinase activity and channel regulation. 

Molecular functions specific to GABA addiction involved DNA binding, hormone 

activity, and deacetylase activity. These findings indicate that the differentiating 

mechanisms of GABA addiction from opiate and dopamine addictions all involved 

chromatin remodeling. Some of the addiction genes specific to GABA addiction, 

histone genes, are known to mediate methylation events, suggesting epigenetic 

modifications be an important component of alcohol addiction.      
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Recent studies point to hotspots on human chromosomes, where disease related 

genes clustered (111).  Similarly, a meta-analysis of GWAS studies on aging led to 

discovery of a number of disease hotspots on the human genome. Other studies 

indicate the presence of foci for susceptibility to autism (112).  Taking inspiration 

from these studies, we mapped the addiction gene lists onto human chromosomes 

and demonstrated the existence of addiction hotspots on the human genome. About 

11 percent of literature-curated addiction genes formed seven clusters of 6 or more 

genes within a span of 1.5 Mb, a typical length for genetic variation, along the 

chromosomes. The DNA segments containing the clusters were deemed as 

hotspots.  

 

The addiction hotspots fell onto chromosomes 4, 6, 10, 11, 16, and 19. 

Chromosome 6 contained two hotspots in close vicinity at 6p21.2. All hotspots also 

contained genes not previously linked to adhesion, gene regulatory motifs and 

polymorphisms. Three of the seven addiction hotspots (ones on chromosomes 4 and 

6) were related exclusively to GABA addiction, one on chromosome 4 linked to 

alcohol metabolic processes, and the two on chromosome 6 related to chromatin 

packaging and ion membrane transport.  The rest were mixed. The hotspot on 

chromosome 10 was related to steroid metabolism whereas the hotspot on 19 

exhibited cell-cell signaling through hormone activity. Overall, the genes in addiction 

hotspots crowded the canonical addiction pathways. The addiction hotspot gene list 

was also enriched in pathways for systemic lupus erythematous, viral 
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carcinogenesis, and steroid hormone biosynthesis, suggesting susceptibility of the 

addicted to other disease and disorders. The functional pleiotropic nature of these 

hotspots helps to explain how addiction creates a spectrum of disorders that are not 

limited to particular addictive substance (113, 114).  

 

The presence of hotspots on the human genome provides an opportunity for 

discovery of addiction related genes. Addiction genes accounted for a significant 

percentage of total genes (> 36 %) in the three hotspots exclusively related to GABA 

addiction with nearly all genomic regions containing near statistically significant or 

statistically significant numbers of NCBI identified genes within the hotspot region. 

The other four mixed hotspots contained a vast majority of genes not currently linked 

to addiction.  Consider for example, the gene RG9MTD2 in the GAMA only hotspot 

on Chromosome 4.  This gene codes a RNA transmethylase, expressing an 

acetaminophen-binding site. Acetaminophen has been shown to increase feelings of 

intoxication in combination with ethanol in a human cohort and does not mitigate 

subjective feelings of alcohol intoxication (115).  

 

Additionally, our mixed addiction hotspot located at Chr19 sits adjacent to the Killer 

cell Immunoglobulin-like Receptor (KIR) genomic region. This foci displays extensive 

diversity through allelic polymorphism within individual KIR genes(116). It is possible 

to speculate that the regulatory changes in our identified hotspot could change the 

regulatory landscape for the KIR region.  Another family of genes with potentially 

important roles (yet to be defined) is the SLC17A1-4 genes coding organic ion 
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transporters in a GABA only hotspot on Chr6.  These genes were identified as 

having storage activity (117) for neurotransmitters playing crucial roles in addiction 

(32). 

 

Addiction hotspots showed ethnic population dependent polymorphisms. We have 

identified polymorphism in hotspots, which significantly varied among the 11 ethnic 

HapMap populations. Pooling these populations by their geography of origin (East 

Asian, African, and European) allowed us to achieve a regional perspective of the 

importance of ethnic origin in future analyses at the genetic and epigenetic 

interactions. Our population-based variation analyses found significant population 

variation at the 6p21.2 region, which differentiated HapMap Chinese and Japanese 

populations from all other non-Asian populations. Analysis brought to light SNPs that 

fall onto histone and SLC genes, as the major differentiating factors. It is clear that 

the 6p21.2 locus is a potentially potent source of genetic variation that could help 

explain the phenotypes variation between East Asian and non-Asian populations. 

Additionally the Yoruba (Nigerian population) have unique signals of population 

variation at 4q23 and 6p21.1.  Additional analyses of addiction GWAS 

polymorphisms in HapMap populations showed similar patterns to those we saw in 

our dataset. This pattern showed strong East Asian to non-East Asian population 

differences in commonly shared allele frequencies. We believe that this observation 

supports our finding that the polymorphism analyses we perform here are 

representing some genomic phenomenon in Asian populations.  The list of candidate 
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polymorphisms presented in Table 3 may become substrates future association 

analyses.  

 

The gene contents of GABA only addiction hotspots suggest an epigenetic role in 

alcohol addiction (84, 118-120). The two hotspots on Chr6 are highly enriched with 

histone genes. It is well established that methylation state of histone proteins are 

directly related to genes in DNA being "off" or "on". Functional annotation shows 

histone involvement in non-addiction related KEGG pathways such as systemic 

lupus, viral carcinogenesis and transcriptional mis-regulation of cancer. In fact, 

histone protein modification through methylation has been identified as one of the 

possible reasons for the diverse phenotypes seen in addicted individuals (114, 121, 

122). The SNPs in histone genes on Chr6 may lead to alternate epigenetic 

modifications among ethnic population, a result previously seen in other 

datasets(123). Moreover, our GWAS3D analyses found that 6p21.2 SNPs identified 

as significant in our cross population assessments were also involved in local and 

trans-chromosomal interactions. Potential links between hotspots and addiction 

genes dispersed on human chromosomes merit further investigation.  
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Specific Aim II: Addiction and Mental Health  

Introduction  
Addiction disorders represent a major economic and health cost to human 

populations (51). Addiction is loosely defined as a chronic relapsing spectrum 

disorder characterized by loss of control over substance taking (52-54). Similarly, 

neurological disorders such as depression, bipolar disorder, and schizophrenia 

represent a significant strain on health and judicial entities. Both disorder classes 

have long been identified as co-morbidities (124). Both Substance addiction and 

mental health are behavior-based phenomenon representing a diverse array of 

psychological, biological, and genetic attributes and environmental and cultural 

factors (32, 33, 55-57).   

 

A number of studies have identified the clinical intersection of mental health and 

substance addiction traits (125, 126). This has been shown in a diverse variety of 

mental health conditions such as depression (127, 128), bipolar disorder (129-131), 

and schizophrenia (132-137). To date, the crosstalk of addiction and mental health 

genetic contributors has not been fully understood based on association studies (68, 

138) and functional genomics (41, 42). Studies show that drugs targeting specific 

mental health conditions such as schizophrenia have  

 

In this study we focus on the addiction disorders for opiate, dopamine, and GABA 

addiction as well as the mental health disorder identified as depression, bipolar 

disorder and schizophrenia. We map literature curated addiction and mental health 

genes onto human chromosomes. Clusters of these genes identify hotspot locations 
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within the genome.  These hotspots contain genes previously not linked to addiction 

and mental health as well as regulatory motifs with drug binding sites. Our 

bioinformatics based discovery and subsequent investigation of combined addiction 

and mental health hotspots reveal their functional roles. Results point out multiple 

hotspots participating in dual addiction and mental health phenotypes.     

 

Specific Aim II: Assessing the genomic regions sitting at the intersection of 

Addiction and Schizophrenia, Bipolar Disorder and Depression disorders and 

their interplay with drug binding sites. 

 

I hypothesize that when Addiction and mental health loci are jointly considered, we 

can identify hotspots for their interactions. A number of studies have identified the 

clinical intersection of mental health and substance addiction traits (125, 126). This 

has been shown in a diverse variety of mental health conditions such as depression 

(127, 128), bipolar disorder (129-131), and schizophrenia (132-137). To date, the 

crosstalk of addiction and mental health genetic contributors has not been fully 

understood based on association studies (68, 138) and functional genomics (41, 42).  

 

Methods 
Addiction linked genes and genome hotspots 
A search of NCBI Gene based on strings of disease words was used in order to 

generate a list of genes with biological relevance to addiction. We focused on 

dopamine, opiate and GABA addiction; bipolar disorder; depression; and 

schizophrenia. We mapped the resulting list of genes onto human chromosomes 
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and considered the clusters they form.  Then, we wrote a Matlab based program to 

cluster genes in the genome and report those hotspot regions back as an output file.   

 

Hotspots were defined as genic regions approximately 2 Mb in length along the 

genome, which contained 13 or more genes identified from our combined addiction 

and mental health gene list. These hotspot regions were elongated from those 

identified in specific aim I to accommodate the differences in recombination rate 

found in genomic regions and the starting number of genes in the initial gene list. 

Additionally we collapsed multiple small genomic hotpot windows into larger ones 

that spanned the 2Mb or smaller region. Each hotspot contained genes not currently 

associated with these joint addiction and mental health phenotypes.  We included 

such genes into our analysis due to high probability of common regulation patterns 

within a hotspot. Next we investigated the statistical significance of observing 18 or 

more genes as hotspots, given a starting number of addiction and mental health 

associated genes.  

 

Functional Annotation of Addiction and Mental Health Hotspot Genes  
Genes located within hotspots were considered in two ways in statistical 

enrichments: all genes in the hotspot window, and only those previously linked to 

addiction.  All genes in the hotspots were annotated using DAVIDs Bioinformatics 

Resources Tool software (101, 102) for biological process, molecular function, cell 

compartment and KEGG pathways (46, 49). Functional enrichments were quantified 

using Benjamini score analysis cutoffs of 0.01 (103). Finally, all genes in hotspots 

were annotated for drug interactions using Drug Bank (139-142). 
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Results 
Overlap in Gene Lists for Addiction, Schizophrenia, Bipolar Disorder and Depression 
We conducted searches to identify genes belonging to NCBI curated mental health 

and addiction genes lists. The bipolar disorder gene list comprised 626 genes, 

depression comprised 357 genes, schizophrenia comprised 1121 genes and 

Addiction comprised 587 genes garnered from opiate, GABA and dopamine 

addictions. When considered together this genes list represented 1968 genes 

encoding putative addiction and mental 

health

targets. Figure 12 is a Venn diagram that shows the overlap in genes from these 

four gene lists. Interestingly, there were 51 genes that were shared between all gene 

lists but only four of these shared genes were represented in the eight hotspots. 

These are indicated in red in Table 6. This overlap gene set contained the DRD, 

 
Figure12: Genes shared between dopamine, opiate and GABA addiction 
sets with common mental health conditions. The Venn diagram provides the 
gene symbols (N=1968 genes) for intersections of gene sets corresponding to 
dopamine, opiate, and GABA addictions with bipolar disorder, depression, and 
schizophrenia.  The gray boxed genes are those genes common to all disorders. 
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HTR and SLC6A gene families as well as a host of immune function genes 

including: ICAM1, IFNG, IGF1, IL1B, IL1RN, and TNF. Of this combined set of 

addiction and mental health genes, 192 genes fell into cluster regions within the 

genome.  Our analyses identified these eight genomic regions with significant 

numbers of genes involved in the dual disorders.  
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Chr Location N NCBI Identified Genes Candidate Interspersed Genes 
2 98444858- 99400475 13 INPP4A, MGAT4A, KIAA1211L, TSGA10, C2orf15, LIPT1, MITD1, MRPL30, 

LYG2, LYG1, TXNDC9, EIF5B, REV1 
C2orf64, UNC50 

3 51,741,081-53,752,625 33 GRM2, ALAS1, TLR9, TWF2, PPM1M, WDR82, GLYCTK, DNAH1, BAP1, 
PHF7, SEMA3G, TNNC1, NISCH, STAB1, NT5DC2, PBRM1, GNL3, 
SNORD19, SNORD19B, SNORD69, GLT8D1, SPCS1, NEK4, ITIH1, ITIH3, 
ITIH4, MUSTN1, TMEM110, SFMBT1, RFT1, PRKCD, TKT, CACNA2D3 

IQCF6, IQCF1, IQFC4, IQFC3, IQFC2, IQFC5, RRP9, PARP3, 
PCBP4, ACY1, ABHD14B, LINC00696, DUSP7, POC1A 

6 25782897-27450742 28 SLC17A3, HIST1H3A, HIST1H4B, HIST1H3B, HIST1H3C , HIST1H2AE, 
HIST1H3E,HFE, HIST1H3E, ,  HIST1H2BE, HIST1H4D, HIST1H4C, 
HIST1H3D, HIST1H3F, HIST1H4E,  HIST1H4F HIST1H3G, BC079832, 
HIST1H4H BTN3A2, BTN2A2, BTN3A1, HIST1H2BJ, HIST1H2AG, 
PRSS16, POM121L2, ZNF184 

 SLC17A2, TRIM38, HIST1H2AB, HIST1H1C, HIST1H1T, 
HIST1H2BC, HIST1H1E, HIST1H2AC, 
HIST1H2BDHIST1H2AD, HIST1H2BF, , HIST1H2BG, 
HIST1H1D, , HIST1H4G, HIST1H2BH, HIST1H2BI,BTN1A1, 
ABT1, ZNF322A, HIST1HBK, HIST1H41 

6 30,184,455-33621379 31 HLA-E, TUBB, LINC00243, DDR1, HLA-C, HLA-B, MICB,  LTA, TNF, 
PRRC2A, BAG6, HSPA1L, HSPA1A , HSPA1B, TNXB, ATF6B, RNF5, 
AGER, NOTCH4, HCG23, HLA-DRA, HLA-DRB1, HLA-DQA1,  HLA-DQB1, 
RXRB, KIFC1, PHF1, SYNGAP1, ITPR3 

ABCF1, PPPI110, MRPS18B, C6ORF134, DHX16, KIAA1949, 
MDC1,FLOT1, IER3, GTF2H4, VARS2, SFTA2, DPCR1, 
MUC21, CCHCR1, PSORS1C1, CDSN, TCF19, POU5F1, 
HCG27,  

11 64,803514- 66,033,706 22 MEN1, CAPN1, CDC42EP2, RELA, CFL1, GAL3ST3, SF3B2, PACS1, 
KLC2, RAB1B, CNIH2, YIF1A, TMEM151A, CD248, RIN1, BRMS1, 
B3GNT1, SLC29A2, NPAS4, MRPL11, PELI3, DPP3 

EHD1, ATG2A, PPP2R5B, GPHA2, BATF2, ARL2, ARL2-
SNX15, SAC3D1, NAALADL1, ZFPL1, TM7SF2, ZNHIT2, 
MRPL49, SYVN1, CDCA5, FAU, SPDYC, SLC22A20, POLA2, 
DPF2, TIGD3, FRMD8, SLC25A45, MALAT1,SCYL1, KCNK7, 
LTBP3,SSSCA1, FAM89B, EHB1L1, MAP3K11, PCNXL3, 
SIPA1, KAT5, CATSPER1, EIF1AD, TSGA10IP, C11orf68, 
FOSL1, EFEMP2, MUS81, SART1, FIBP, SNX32, AP5B1, 
BANF1, CST6 

11 66,034,695- 68008578 22 BBS1, ZDHHC24, ACTN3, CTSF, CCDC87, CCS, RBM14, RBM4, RBM4B, 
SPTBN2, C11orf80, RCE1, PC, LRFN4, C11orf86, SYT12, ADRBK1, 
CABP4, GSTP1, NDUFV1, ALDH3B2, ALDH3B1 

TBX10, NUDT8, DOC2GP, X15673, AK129926, ACY3, 
C11orf72, AIP,CDK2AP2, PITPNM1, TMEM134, CORO1B, 
GPR152, TBC1D10C, PPP1CA, RAD9A, POLD4, CLCF1, 7SK, 
CARNS1, PTPRCAP, RPS6KB2, SSH3, ANKRD13D, KDM2A, 
RHOD 

19 48047843- 49429398 27 SULT2A1, PLA2G4C, GRIN2D, SULT2B1, FAM83E, RPL18, SPHK2, DBP, 
CA11, NTN5, FUT2, MAMSTR, RASIP1, IZUMO1, FUT1, FGF21, BAX, FTL, 
LHB, CGB, CGB2, CGB1, CGB5, CGB8, CGB7, NTF4, SLC17A7 

GRWD1, KCNJ14, CYTH2, LMTK3, SPACA4, BCAT2, 
HSD17B14, PPP1R15A, TULP2, PLEKHA4, NUCB1, GYS1, 
RUVBL2, KCNA7, LIN7B, PPFIA3, HRC, TRPM4, 
SLC16A16,CD37, TEAD2, DKKL1, PTH2 

22 18906223-21207972 18 PRODH, DGCR2, DGCR14, UFD1L, CLDN5, TBX1, GNB1L, COMT, 
ARVCF, DGCR8, TRMT2A, RANBP1, ZDHHC8, RTN4R, MED15, PI4KA, 
GGT2  

TSSK2, SLC25A1, CLTCL1, HIRA, MRPL40, C22ORF39, 
CDC45L, SEPT5, GP1BB, C22ORF29 

Table 6: Addiction, bipolar disorder, depression, and schizophrenia form eight genomic hotspots. When genes 
were mapped to the genome, we found eight regions smaller  than 1.5 Mb each with 11- 38 genes identified from NCBI 
Gene curated gene lists.  Additionally we consider the genes interspersed with our set of addiction and mental health 
genes. Red gene names are those that were among the 51 genes shared by all addiction and mental health disorders. 
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These eight regions are shown in Figure 13 with their associated NCBI-identified 

genes (green) and the candidate genes (black) that are interspersed. Hotspots 

ranged from having 13- 33 literature curated genes in a genomic window 

approximately 2Mb or smaller.  

 

 
Functional annotation of Schizophrenia, bipolar, depression and addiction genes 
We performed a functional annotation on the complete list of NCBI identified genes 

in order to determine the major functional roles for addiction and mental health 

genes. Functional annotation of the combined set of depression, schizophrenia, 

bipolar and addiction genes found commonalities as identified in Figure 14, with 

shared function revolving around neurological function, response organic 

 

Figure 13: Eight bipolar, depression, schizophrenia and addiction hotspots 
identified on the human genome. Each karyotype of a chromosome shows the location 
of the genes that are represents as hotspots. Genes that lie within each hotspot were 
identified through USCS Genome Browser. The insets for each hotspot show genes 
identifies curated genes (green) and interspersed genes (black) with a red band showing 
the entire hotspot region.  
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substances and cell-cell signaling. Addiction and depression overlapped in three 

functional regulatory roles: cellular localization, cyclic nucleotide biosynthesis and 

metabolism. Additionally when pairwise comparisons were made (not shown), 

depression and schizophrenia gene lists overlapped in homeostatic processes, while 

bipolar and schizophrenia genes jointly participated in neuronal development and 

cellular differentiation. Hotspot gene lists were used to identify gene ontology 

biological processes and molecular functions enriched for each hotspot. When we 

considered the identified literature curated genes that identified each hotspot and 

then those genes that were not previously identified, but could be addiction and 

mental health candidates, we found no real differences in the functional annotation 

of these sets.  

 

 

Numerous targets found in Hotspot windows 
Drug target annotation was performed to determine the role that pharmacological 

products interacted to binding sites within these hotspots.  When the hotspot regions 

were annotated for drug interactions 16 drugs were found to have binding sites. 

Addiction, bipolar, depression and schizophrenia drug interactions are characterized 

in Table 2.  

 

 

Figure 14: Gene ontology molecular function annotations for addiction, bipolar 
disorder, depression and schizophrenia. The top 25 significant functional annotations were 
obtained (Benjamini > 0.01) for gene ontology molecular function for each addiction, bipolar, 
depression, schizophrenia gene class. The vertical axis of each graph shows the –log10 (p) 
while the horizontal axis indicates the functional annotations. The gene lists are color coded 
for depression (green), bipolar disorder (red), schizophrenia (blue). Addiction genes are a 
composite of opiate, GABA, and dopamine addiction genes (purple).  Thirteen functions are 
shared between the gene sets. 
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Chr Gene Target Drug Drug Name Mechanism of Action Treatment Targets 
3:51 TLR9 DB0546

3 
ISS-1018 immunostimulatory activity.  *Hepatitis B, b-cell or non-

hodgkin’s lymphoma. 
TLR9 DB0490

0 
Thymalfasin unspecified Influenza  

Hepatitis B 
11:64 GSTP1 DB0433

9 
Carboxymethyl
ene-cysteine 

unspecified unspecified 

MTR, MTRR, 
MMACHC, 
MTHFR 

DB0011
5 

Cyanocobalami
n 

unspecified pernicious anemia 
vitamin B 12 deficiency 

11:66 TOP2A, 
TOP2B 

DB0077
3 

Etoposide unspecified refractory testicular tumors, 
small cell lung cancer, 
Lymphoma 
non-lymphocytic leukemia 
glioblastoma multiform 

DNA DB0100
8 

Busulfan selective immunosuppressive 
effect on bone marrow 

conditioning regimen prior to 
allogeneic hematopoietic, 
progenitor cell transplantation 
for chronic myelogenous 

19:48 bglA DB0465
8 

(1S,2R,3S,4R,5
S)-8-
AZABICYCLO 
[3.2.1]OCTANE
-1,2,3,4-
TETROL 

unspecified unspecified 

BCL2, BAD 
BBC6, 
BCL2L8  

DB0576
4 

ABT-263 It blocks some of the enzymes 
that keep cancer cells from 
dying. 

lymphomas and other types of 
cancer 

CYP17A1 DB0581
2 

Abiraterone derivative of steroidal 
progesterone  

hormone refractory prostate 
cancer. 

KCNJ 
PTGS1 
COX11,  

DB0035
0 

Minoxidil direct-acting peripheral 
vasodilator 

reduces peripheral resistance 
produces a fall in blood 
pressure 

BRAF1, 
RAFB1 FLT4, 
FLT3, 
VEGFR3,  
VEGFR2,  

DB0039
8 

Sorafenib small molecular inhibitor of Raf 
kinase, PDGF (platelet-derived 
growth factor), VEGF receptor 2 
& 3 kinases and c Kit the 
receptor for Stem cell factor 

advanced renal cell carcinoma 
advanced hepatocellular 
carcinoma  

PTGS2, 
COX2, 
PTGS1, 
COX1, 

DB0031
6 

Acetaminophe
n 

analgesic and antipyretic 
effects 

Therapeutic effects are similar 
to salicylates, but it lacks anti-
inflammatory, antiplatelet, and 
gastric ulcerative effects. 

22:18 COMT DB0032
3 

Tolcapone inhibits the enzyme catechol-O-
methyl transferase (COMT) 

Parkinson’s disease 

 COMT DB0049
4 

Encapone reversible inhibitor catechol-O-
methyl transferase  (COMT)  

Parkinson’s disease 

 COMT DB0145
4 

3,4-
Methylenedi-
oxymethamphe
tamine 

classified as a hallucinogen and 
causes marked, long-lasting 
changes in brain serotonergic 
systems It is commonly referred 
to as MDMA or ecstasy 

post-traumatic stress disorder 
(PTSD) and anxiety associated 
with terminal cancer 

 COMT DB0123
5 

L-DOPA naturally occurring form of 
dihydroxyphenylalanine and the 
immediate precursor of 
dopamine. Unlike dopamine 
itself, it can be taken orally and 
crosses the blood-brain barrier. 
It is rapidly taken up by 
dopaminergic neurons and 
converted to dopamine 

idiopathic Parkinson's disease 
(Paralysis Agitans), 
postencephalitic parkinsonism, 
symptomatic parkinsonism 
which may follow injury to the 
nervous system by carbon 
monoxide intoxication, and 
manganese intoxication 
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While not all hotspots had drug binding sites located within their domains, five of the 

hotspots did. When we identified the types of drugs found at these five hotspots we 

found some thematic divisions in drug targets. Five drug binding sites are associated 

with cancer therapies: Sorafenib, Abiraterone, ABT-263, Etoposide, and 

Thymalfasin. Four drugs were associated with the mental health condition 

Parkinson’s disease, post-traumatic stress disorder or anxiety: L-DOPA, 3,4-

Methylenedi-oxymethamphetamine, Encapone, and Tolcapone. One drug binding 

sites was specifically targeted ecstasy.  

 

  

 COMT DB0066

8 

Epinephrine active sympathomimetic 
hormone from the adrenal 
medulla 

anaphylaxis and sepsis 

Table 7: Drug binding sites were annotated for the genes in the hotspots. When genes in the 

hotspots were annotated for drug interactions, 16 drug binding sites were found for both 

commercially developed and illicit substances. 
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Discussion 
We have observed that addiction and mental health genes create eight hotspots in 

the genome. Their shared functional annotation and drug binding site annotation 

support the idea that this clustering is meaningful. This approach helps to unify the 

disparate clinical, genetic, and functional observations about addiction and mental 

health co-morbidity. Our analyses demonstrate that genes curated for their 

involvement in opiate, GABA and dopamine addictions share significant genomic 

position overlap with genes involved in the bipolar disorder, depression and 

schizophrenia. Additionally when we perform functional annotation on these gene 

sets, we find that they share core molecular processes such as cell-cell signaling, 

synaptic transmission and responses to organic substances. These genes also 

share more amorphous processes such as learning, memory and behavior. Finally 

we found that when these addiction and mental health genetic hotspots were 

annotated for their drug interactions, they identified binding sites for illicit drugs, 

cancer drugs, and neurological degenerative disorders such as Parkinson’s disease.  

 

While there has been significant identification of the clinical synergies between 

addiction and some mental health phenotypes (32, 33, 82), we show here that a 

subset of these addiction and mental health genes actually sit in genomic windows. 

These genomic windows contain four of the 51 genes that are common to all gene 

lists (Table 6); instead we found that genes sitting in genomic hotspots were often 

shared by only two of the comparisons. When mapped to the genome, these regions 

were not random with respect to genome locality. These eight hotspot regions 

contain 192 of the 1968 unique genes identified as participating in addiction and 
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mental health genetics and represent nearly 10% of genes associated with addiction 

and mental health.  

 

Functional annotation of genes residing in the windows provides a verification of the 

role that these genes play within the wider context of the genomic region they 

inhabit. It is reassuring that our analyses return functional categories emphasizing 

the shared role that neurological system regulation, cell-cell signaling, stimulus 

response and organic substance response play in the development of mental health 

and addiction disorders. These findings support the complex functional interactions 

between opiate, dopamine and GABA addictions with schizophrenic, depressive and 

bipolar mental health disorders. 

 

Previous studies have identified that drugs involved with addiction and mental health 

may have pleiotropic effects (82). It is therefore of significant interest to characterize 

the drug targets in these hotspot regions. We found that drug binding sites fall in to 

three major therapeutic categories, those related to cancers, those related to up 

regulation of immune responses and those involved in neurodegenerative disorders. 

Of particular interest was the hotspots located on chromosome 19 (ABT-263, 

Abiraterone, Minoxidil, and Sorafenib) and chromosome 22 (Acetaminophen, 

Tolcapone, Encapone, 3,4-Methylenedi-oxymethamphetamine, L-DOPA,  and 

Epinephrine).  
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The observation of increased anxiety behaviors and morphine consumption in a 

Sprague-Dawley rat model suggests that genetic variation in the epinephrine-

mediated norepinephrine signaling pathway may be a novel mechanism for affective 

behavior such as anxiety and addiction(143). In a human study of African American 

young adults, levels of urinary epinephrine were predictive of drug use a year 

later(144). The drug binding site for epinephrine is located in the chr22 hotspot gene 

COMT. Sorafenib, a hepatocellular carcinoma treatment, is mediated by cellular 

signaling mechanisms. This drug target annotation is consistent with the genomic 

functional annotation of the genes underlying addiction and mental health disorders. 

There is some evidence of genetic variant mediated drug resistance. Sorafenib can 

activate addiction switches leading to reduced drug efficacy (145). While the 

mechanisms of this are not fully elucidated, the localization of Sorafenib among 

known addiction genes could be a reason for this trigger and bears further 

investigation. 

We hypothesized that we could identify genomic sites that sat at the intersection of 

addiction to opiate, GABA and dopamine with mental health disorders identified as 

depression, schizophrenia, and bipolar disorder. We have shown that genes 

involved separately in these two disorders are co-located at eight genomic regions. 

Additionally we hypothesized that each of these regions might have drug binding 

sites that share functional annotations with the genes identified in the region. Our 

analyses have identified 16 drug binding target regions located in five of the eight 

hotspot regions which share functional or therapeutic activity with addiction and 

mental health disorder phenotypes. This finding compels us to speculate on the role 
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that functional ontology plays in the primary of counter-indicative phenotypes that 

these drugs present. 
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Specific Aim III: Addiction and Immunity 

Introduction 
Human immunological interactions with their environment have long been 

considered the substrate for natural selection(6). While this has been the 

acknowledged paradigm in evolutionary medicine, few connections have been made 

between concerning the evolutionary relationships between the complex chronic 

diseases underlying substance addiction and selection for immunity (39, 83). For 

example, addiction phenotypes in chronically substance abusing individuals bear 

striking similarities to immunological compromised individuals. This is thought to be 

because of an as yet under-characterized interplay between addiction phenotypes 

and immunity phenotypes. While the relationship has been documented between 

chronic substance addiction and degenerative immunity, the converse reaction is 

less well characterized. For example, opioids are known to effect host defenses (38) 

with heroin addicts presenting higher prevalence of infectious disease than those 

non-heroin abusers.  

Our previous observations of immune genes sharing genome locality with 

addiction genes at addiction hotspots motivated our interest in further understanding 

whether addiction alleles might arise in ethnic populations as a result of natural 

selection against infectious disease at immune loci.  Specifically, we hypothesize 

that alleles associated with addiction that lie within hotspots adjacent to immune 

functioning genes will be correlated to infectious disease response and by extension 

will have allele frequencies that are tied to global distributions of infectious disease 

prevalence, where the associations are of a sufficient duration to be the substrate for 
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natural selection. To date this has been a challenging endeavor due to the lack of 

global population sets within which to test these hypotheses.  

 

One approach to studying natural selection in humans has been to examine 

single genes in a population to directly assess selection caused by some 

environmental effect (i.e. HBB and malaria, SLC24A5 and UV exposure) (146, 147). 

An analysis conducted on a global population set has demonstrated success in 

identifying variation in allele frequencies between populations taking into account 

diet, subsistence strategy and ecoregions (148). Indeed this approach can be seen 

as a major innovation in multivariate analysis for factors affecting gene frequencies 

in human populations. No portrait of environmental selection pressures would be 

complete without the inclusion of disease status and pathogen density. The interplay 

of nutrition, location, and exposure to pathogens are compelling external forces that 

impact individual survival.  

 

By examining correlations between environmental and disease conditions with allele 

frequencies, we will be able to search for allele frequencies consistent with 

signatures of selection on multi-locus traits(148).  This method is useful in identifying 

adaptations (whether tolerance or resistance focused) for complex infectious 

diseases. Asian populations provide an opportunity to examine how environmental 

effects affect complex traits because they exhibit a variety of subsistence strategies, 

population histories and exposures to infectious disease. They also live in a variety 
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of ecological regions, nutritional contexts and latitudes. These various conditions 

make them a living laboratory for studies in natural selection.  

 

Specific Aim III: Determine whether of infectious disease burden plays a role 

as an evolutionary driver of addiction genetics. 

 

I hypothesize that environmental factors such as geographical location, relative 

pathogen burden and infection rates will identify allele frequency differences in 

ethnic population for immune and addiction gene hotspots. We further hypothesize 

that these hotspots are consistent with natural selection within human populations 

living predominantly in tropical environments.  This finding would establish a critical 

link between the agent of natural selection, the genetic process and a complex 

disease that lies within the close proximity to an allele under selection. 

 

Methods 
Identification of Immune and addiction gene clusters 
To test whether there are correlative relationships between diet, ecoregions, disease 

and population allele frequencies, we use genes contained in addiction and immune 

gene step curated by NCBI. Immune associated genes were identified from NCBI 

gene lists using search terms, ‘adaptive immunity,’ ‘innate immunity,’ ‘autoimmunity,’ 

and ‘Th1/Th2.’ These terms were added to 587 genes previously identified as being 

involved in opiate, dopamine, and GABA reception addiction. These genes were 

then projected onto the genome to identify cluster regions of genetic importance for 
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immunity and addiction. Clusters were defined as regions of the genome with more 

than 25 genes within a 2.5Mb linear genomic window. 

 
Annotation of Genes in the Addiction and Immunity Windows 
To determine the functional role that these NCBI Genes for addiction and immunity 

as well as candidate genes hotspots play, we performed functional annotation for 

these three hotspot regions. Genes located within hotspots were considered in two 

ways in statistical enrichments: all genes in the hotspot window, and only those 

previously linked to addiction.  All genes in the hotspots were annotated using 

DAVID’s Bioinformatics Resources Tool software (101, 102) for biological process, 

molecular function, and KEGG pathways (46, 49). Functional enrichments were 

quantified using pV < 0.05 and Benjamini score analysis cutoffs of 0.01 (103). KEGG 

pathways were colored using a MATLAB code to differentiate between genes 

belonging to different hotspots.  

 

Populations Studied and Determination of Environmental Context 
 
In order to understand how populations vary at these key addiction and immunity 

clusters, we surveyed human polymorphism data from the 1054 individuals 

comprising 51 populations of the Human Genome Diversity Panel (HGDP), and the 

1078 individuals comprising the 11 sample populations of the HapMap project 

dataset. The set of polymorphism shared amongst these populations was identified 

and cross population comparisons were made on allele frequencies. Figure 16 

shows the sample populations.   
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To determine how populations fit into ecological regions, a map with population 

sampling locations was cross-referenced to global Bailey’s ecoregions maps (149). 

This map characterizes the environmental conditions under which study populations 

live.  Figure 16 also makes a comparison between those populations living in tropical 

environments as identified by the Bailey’s ecoregion map for a global population set. 

We used sampling locations as the determinant for the locality of the population. For 

this analysis, the Human Genome Diversity Panel populations were more 

appropriate to differentiate between those populations Population sample locations 

were cross-referenced with the World Health Organizations’ public health indicators 

(available online at: http://apps.who.int/gho/data/?theme=main).  Disease prevalence 

and pathogen load data for various infectious diseases including: malaria 

(Plasmodium vivax and P. falciparum), Cholera (Vibrio cholera), Polio (Poliovirus 

spp.), Schistosomiasis (Schistosoma japonicum and S. mansoni) and Yellow Fever 

(Yellow fever virus) were obtained from World Health Organization datasets to 

characterize the epidemiological environments within which population samples live 

along with additional health indicators which might determine the role that these 

pathogens might play in determining the in allele frequency variation.  
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 Populations SNPs typed N. of 
Individuals 

# of Tropical 
populations 

HapMap Populations 11  ~10 million through Phase 
III 

1078 1 

Human Genome Diversity 
Panel 

51 650,000 1054 15 

 Figure 15: Ethnic populations surveyed for immunity and addiction crosstalk from the HapMap and Human 
Genome Diversity Project.  The HapMap populations (populations described in Table 1) and the HGDP populations: 
HGDP Africans (green)- Moazibite,  Mandenka, Yoruba, Biaka, Mbuti, San, NE Bantu, and SAf Bantu. HGDP Asians 
(purple); N. Asia: Oroquen, Daur, N. Han, Hezhen, Japanese, Uygur, Xibo); C. China: Han, Yi, She, Tu; S.E. Asia: Naxi, 
Lahu, Dai, Miao, Cambodian), S. Asian (burgundy): HGDP Europeans (blue): Adygei, Basque, French, North Italian, 
Orcadian, Russian, Sardinian, and Tuscan ;  and HGDP Oceanians (orange): Melanesia, Papua  
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Geographical mapping of correlated variants 
To assess the effect of disease on the Acute Inflammatory Response Pathway, we 

surveyed 10 genes associated with this process (AHSG, APCS, C2, CEBPB, 

CFHR1, KRT1, LBP, MBL2, ORM1, and SIGIRR) were all part of our immune NCBI 

Gene lists. This subset of genes was identified using the Molecular Signatures 

database housed in the Gene Sets Enrichment Analysis database (available online 

at: http://www.broadinstitute.org/gsea/index.jsp). Acute Inflammatory Response 

functions in short lived antigenic challenge as is demonstrated from infectious 

diseases such as Hepatitis B and Hepatitis C. All single nucleotide polymorphisms 

(SNPs) typed in the 10 genes were assessed for their allele frequencies following 

the Hancock methodology (148). This refers specifically to SNPs typed in the HGDP 

populations using the Illumina 650Y platform. SNPs were filtered to exclude those 

that had minor allele frequencies that fell above 0.90 and below 0.10.  These sites 

were then sorted by geographical region of sample origin into major sub continental 

regions (Sub-Saharan Africa, Central Asia, Northern Asia, Central China, Southern 

Asia, and Oceania).   

 

To test whether there is a correlation between Hepatitis B, acute inflammatory 

response and geography, a Pearson correlation analysis was performed between 

the variables of mean acute inflammatory response frequency and disease (150). 

Candidate and neutral SNP sets were combined and a Spearman Rank Correlation 

was performed to determine whether candidate SNPs were found to be statistical 

outliers. 
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Results 
 

Addiction and Immunity Hotspots 
Our analyses identified three hotspots containing genes from both addiction and 

immunity NCBI Gene lists. We note that these three genomic hotspots were 

identified despite the lack of intersection of gene sets between the addiction and 

immunity. Addiction and immunity hotspots were located on chromosomes 11, 

17and 19. Table 8 identifies the genes in this study with NCBI identified genes 

bolded and those gene names were color coded to represent the category of gene 

list with which these genes were initially identified. Hotspots all shared genes from 

immunity and addiction gene sets.  The chromosome 11 hotspot contained 10 genes 

from autoimmune, cocaine, alcohol and innate immunity lists along with seven genes 

previously unidentified as participating in addiction and immunity phenotypes.  The 

chromosome 17 hotspot contains 11 genes from innate immunity, alcohol, morphine, 

and Th1 along with 44 previously unassociated genes. And finally the chromosome 

19 hotspot locus contains 18 genes from alcohol, GHB, autoimmune, innate 

immunity and Th2. 

 

Addiction and Immunity Hotspot Annotation 
 

We used David’s Functional Annotation web tool to annotate the genes that were 

identified in each hotspot and to determine the role that each hotspot played in 

addiction and immunity disorders. The chromosome 19 hotspot is located between 

47.8 and 49 Mb of the Hg18 build of the human genome.  
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Chr Location Genes in Window 
11 46,406,640-

47,606,115 
CREB3L1, DGKZ, MDK, CHRM4, AMBRA1, HARBI1, 
ATG13, ARHGAP1, ZNF408, SNORD67, F2 (autoimmune and 
innate), LRP4, C11orf49, CKAPS, ARFGAP2, 
ACP2(Autoimmune and alcohol), NR1H3 

17 39,393,369-
41,277,468 

KRT16, KRT42P, EIF1, GAST, HAP1, JUP, LEPREL4, 
KLHL10, FKBP10, ACLY, TTC25, CNP, DNAJC7, NKIRAS2, 
ZNF385C, DHX58, KAT2A, HSPB9, RAB5C, HCRT, GHDC, 
STAT5B, STAT5A(TH2 and Autoimmune), STAT3, PTRF, 
ATP6V0A1, NAGLU, HSD17B1, MLX, COASY, PSMC3IP, 
FAM134C, TUBG1, TUBG2, CCR10, PLEKHH3, CNTNAP1, 
EZH1, RAMP2, VPS25, WNK4, CNTDN1, BECN1, PSME3, 
AOC3, AOC2, G6PC, AARSD1, PTGES3L, RPL27, IF135, 
RUNDC1, VAT1, RND2, BRCA1 

19 47,870,466-
49,085,208 

SULT2A1, BSPH1, ELSPBP1, CABP5, PLA2G4C, LIG1, 
CARD8, ZNF114, CCDC114, TMEM143, EMP3, SYGR4, 
KDELR1, GRIN2D(alcohol and cocaine), GRWD1, KCNJ14, 
CYTH2, SULT2B, FAM83E, SPACA4, RPL18, SPHK2, DBP, 
CA11, NTN5, FUT2, MAMSTR, RASIP1, IZUMO1, FGF21 
PLEKHA4, PPP1R15A, TULP2, BCAT2, HSD17B14, DHDH, 
BAX, FTL, GYS1, RUVBL2, LHB, CGB, CGB2,  CGB1, 
CGB5, CGB8, CGB7, NTF4, KCNA7, SNRNP70, LIN7B , 
PPFIA3, HRC, TRPM4,  SLC6A16, CD37, TEAD2, DKKL1, 
CCDC155, ALD16A1, SLC17A7, PIH1D1, FLT3LG (Th1 and 
Adaptive), RPL13A, SNORD32A, RPS11, FCGRT, RCN3, 
NOSIP, PRRG2, RRAS, PRR12, SCAF1, IRF3 

 
Table 8: Genes identified at the intersection of Addiction and Immunity. Three 
hotspot regions were identified located on chromosome 17, 11, and 19. Each 
hotspot had genes identified through multiple addiction and immunity gene lists. 
 
 

. 
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 Biological Processes Molecular function KEGG Pathways 
CHR Process P Function P Pathways 
17 JAK-STAT Cascade 5.4-5 Phosphate binding 0.01 -Acute myeloid leukemia 

-Adipocytokine signaling pathway 
Growth hormone receptor 
signaling pathway 

2.5-4 GTPase activity 3.6-3 

Response to growth hormone 6.6-3 Steroid hormone receptor binding 5.8-3 

Homeostatic process 0.01 Ion binding 0.04 

eating behavior 0.02   

11 catalytic activity 
 

0.01 
 

nucleotide regulator activity 0.01 -Regulation of actin cytoskeleton 
-Neuroactive ligand-receptor 
interaction 
-Cholinergic synapse 
-Hepatitis B  
-Complement and coagulation 
cascades 
-Peroxisome 
-Hypertrophic cardiomyopathy 
-Nucleotide excision repair 
-Dilated cardiomyopathy 
-Alcoholism 

protein import 
 

0.02 enzyme activator activity 3.0-3 

regulation of cellular protein 
metabolism 

0.04   

Negative regulation of 
endocytosis 

0.02   

Regulation of phosphorylation 0.04   

19  fertilization 3.4-3 Hormone activity 6.6-4 -Ribosome 
 
  

Neurotransmitter transport 4.0-3   

Cell-cell signaling 7.7-3   

Single fertilization 0.02   

Table 9: Functional Annotation of Addiction and Immunity Hotspot Crosstalk Regions.  Genes identified in each 
hotspot were annotated from biological process, molecular function and pathway participation.  Annotation was 
undertaken using DAVID functional annotation with a P value cutoff of 0.05.  
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Figure 16:  Five SNPs underlying the Chr 11 hotspot vary between high 
tropical versus low tropical living HGDP populations. Allele frequencies were 
plotted in the tropical living climates (blue) versus those living in temperate climates 
(red). The inset shows the hotspot locations.  
 

Annotation of Tropical identified SNPs 
We further annotated the top five polymorphisms that showed allele frequency 

differences between populations that lived in temperate environments and those 

living in tropical environments as illustrated in Figure 2. These five SNPs were 

identified in the HGDP populations: rs11818969, rs17790342, rs12417519, 

rs752849, and rs901746. Annotation of these five SNPS varying showed that they 

exhibit addiction, mental health and immune function. These SNPs are further 

characterized in Table 7. Additionally we typed these five polymorphisms in the 11 

HapMap populations to understand whether these populations showed similar 

patterns to the HGDP population datasets. Our analyses confirm that they HapMap 



 

and HGDP populations show allelic congruence at these five sights, suggesting this 

pattern is a true representation of what is happening in human populations. 

Table 10: Top five SNPs have shared
in HapMap populations as in HGDP populations. 
location type and gene. We then typed these genes in the HapMap populations and 
found congruence in the tropical populations of the HapMap and those of the 
 

The rs11818969 polymorp

gene (AMBRA1) is intimately involved in the d

(151). It has been shown to b

autophagy, cell growth and cell death of crucial importance

(152). In particular, the rs118189

Schizophrenia associated polymorphism 

polymorphism has extended this work to find that it specifically a

related behavioral and neural traits 

than four times more prevalent in African populations than in Europeans and more 

than 15 times more prevalent than in East Asian populations of the HapMap. In an 

African American HapMap sample collected in the southwestern United States 

(ASW) the frequency was found to
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and HGDP populations show allelic congruence at these five sights, suggesting this 

pattern is a true representation of what is happening in human populations. 

SNPs have shared patterns of allele frequency differences 
in HapMap populations as in HGDP populations. SNPs are identified with their 

We then typed these genes in the HapMap populations and 
found congruence in the tropical populations of the HapMap and those of the 

polymorphism found in the autophagy/beclin-1 regulator 1

) is intimately involved in the development of the nervous system 

. It has been shown to be a component of a complex network between 

autophagy, cell growth and cell death of crucial importance to neural development 

. In particular, the rs11818969 polymorphisms have been identified as 

associated polymorphism (153). A follow up study of this 

extended this work to find that it specifically alters impulsivit

oral and neural traits (154). We note that the AMBRA2 gene is more 

es more prevalent in African populations than in Europeans and more 

than 15 times more prevalent than in East Asian populations of the HapMap. In an 

African American HapMap sample collected in the southwestern United States 

(ASW) the frequency was found to be 0.592 

and HGDP populations show allelic congruence at these five sights, suggesting this 

pattern is a true representation of what is happening in human populations.  

 

frequency differences 
SNPs are identified with their 

We then typed these genes in the HapMap populations and 
found congruence in the tropical populations of the HapMap and those of the HGDP. 

1 regulator 1 

ent of the nervous system 

omponent of a complex network between 

to neural development 

been identified as 

of this 

lters impulsivity-

We note that the AMBRA2 gene is more 

es more prevalent in African populations than in Europeans and more 

than 15 times more prevalent than in East Asian populations of the HapMap. In an 

African American HapMap sample collected in the southwestern United States 
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There were three polymorphisms, rs17790342, rs12417519, and rs752849, which 

are located in the Chromosome 11 open reading frame 49 (C11orf49). While open 

reading frame regions in the genome are not well characterized, these particular 

SNPs have been identified as participating in the liver interactome (155). The liver is 

the site of metabolism of xenobiotics so these SNPs may have metabolic function. 

 

Finally the rs901746 polymorphism is located in the Damage-Specific DNA Binding 

Protein 2 (DDB2). DDB2 is involved in the repair of UV damage to DNA. The DDB2 

gene participates in a complex that mediates the ubiquitylation of histones H3 and 

H4, which facilitates the cellular response to DNA damage. Additionally, the DDB2 

genes has been implicated in lung cancer susceptibility (156), and most importantly 

in the destabilized the Hepatitis B viral protein X (157). This destabilization of the 

viral protein X is thought to be a key component in the prevention of viral particle 

proliferation.  

 

We used GWAS3D software to look for local and long range interactions identified 

from genome wide association studies, regulatory variation. In particular it is good 

for characterizing noncoding phenotypically associated variants that underlie the 

molecular mechanisms of complex traits. Our analysis identified three long range 

interactions with AMBRA1 (see Figure 17). The first occurs between the AMBRA1 

gene, and 2 genes located in a chromosome 8 interaction window: ZNF705D is a 

zinc finger protein that is thought to be involved in transcriptional regulation, while 

FAM66D, is a human specific gene that is known to interact with 
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Tetrachlorodibenzodioxin. According to the Comparative Toxicogenomics Database, 

Tetrachlorodibenzodioxin has more than 1000 documented interactions with AHR 

(N=3255 Interactions) and CYP1A19 (N=1795 Interactions) and is also used as a 

treatment for drug-induced liver damage. 
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Table 11:  GWAS3D analysis of the tropical segregating polymorphisms showed interacting SNPs, transcriptions 
factors and ACP2, a gene involved in de-phosphorylation. We characterized the set of SNPs that were frequency 
divergent in tropical and non-tropical living populations. The set had interacting SNPs that were locally located, often in 
the same gene with the exception of rs901746 which interacted with rs2167079 at ACP2, an adjacent gene. Three of the 
interacting SNPs sat within transcription factors, with the ACP2 gene SNP (rs2167079) sat at the intersection of 62 
different transcription factors.

dbSNP ID GENE SNP Functional 
Annotation 

Interacting 
dbSNP ID  

CHR:location GENE Location Transcription 
Factors? 

rs11819869 AMBRA1 Schizophrenia 
associated  

rs7130141 11:46499874 AMBRA1 Intronic Yes- EBF1 

rs17790342 C11orf49 Liver interactome rs12576831 11:47082255 C11orf49 Intronic No 
rs12417519 C11orf49 Liver interactome rs11601798 11:47158392 C11orf49 Intronic No 
rs752849 C11orf49 Liver Interactiome rs7940473 11:47182353 C11orf49 Intronic Yes- CTCF 
rs901746 DDB2 Inhibition of Hepatitis B 

Protein X 
rs2167079 11:47270255 ACP2 Coding Yes- 62 TFs 
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Figure 17: GWAS3D analysis of the five single nucleotide polymorphisms 
found to differ in tropical versus non-tropical living populations show that 
SNPs have local and long range interactions. AMBRA1 showed 2 long range 
interactions on chromosomes 3 and 8 along with a local interaction on 
chromosome 11. The ACP2 gene (rs2167079), an interacting partner of rs901746, 
had three interactions: at Xq26.1, 1q21.1, and 7p15.2. 
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The second region with AMBRA1 interactions is a 10Kb chr3 interaction region 

(chr3:136520001-136530000) that lies just upstream of the SLC35G2 gene. While 

this gene is not well annotated, there are 13 ENCODE-identified different 

transcription factors found bundled together (FOS, KAP1, JUN, MEF2, NFIC, BATF, 

ATF2, USF1, USF2, CTCF, GATA3, and RUNX3). The third regional interaction is a 

local one located between the AMBRA1 gene and a local chr11 region 

(chr11:46180001-46190000). There is one polymorphism identified as rs7128538 

which has been associated with Systemic Sclerosis (158). 

 

Two regions were shown to have strong enhancer signatures:  chr11:46046791-

46539727 and chr11:46446962-46516078. These signatures are generated from the 

ENCODE analysis of H3K4me1, H3K27ac, P300, and DHS. These enhancers 

represent epigenetic enhancers of on genomic sequences. Finally there was one 

identified Conservation Region of GERP++ Elements located at chr11:46499803-

46500030. GERP++ Elements are constrained elements in multiple alignments and 

are estimates potential functional constraint. These are summarized in Table 11. 

 
Acute Inflammatory Response and Hepatitis B 

Following up on this observation that rs901746 is a polymorphism involved in 

Hepatitis B prevention, and our hypothesis that infectious disease might be the 

driving force shaping allele frequencies at adjacent addiction and mental health 

sites, we wanted to identify whether we could identify if there was a correlation 

between Hepatitis B infection prevalence in a global set of human populations and 

these populations. When we studied 10 genes associated with acute inflammation in 
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HGDP Africans (Africa- Mandenka, Yoruba, Biaka, Mbuti, San, NE Bantu, SAf 

Bantu), Asians (N. Asia: Oroquen, Daur, N Han, Hezhen, Japanese, Uygur, Xibo); C. 

China: Han, Yi, She, Tu; S. Asia: Naxi, Lahu, Dai, Miao, Cambodian) and Oceanians 

(Oceania: Melanesia, Papua),  we found that there was a trend towards significance 

(pV= 0.08). Alleles were then correlated to a map of hepatitis B prevalence 

described from sentinel surveillance conducted in 2004 (159). 

Mean allele frequencies were calculated within an ethnic group sample and 

then across a geographical region (Figure 18) . These candidate regions were 

compared to neutral SNPs identified using HOMINID coordinates representing 71 

regions of the human genome that are far from genes/motifs and are thought to be 

consistent with neutral evolutionary processes.  On the x axis – the mean minor 

allele frequency (MAF) for African populations was 0.3418, while the mean pan 

Asian MAF mean was 0.3781. This was significantly different (p = 0.00436). When 

Asian populations were grouped regionally, Central Chinese sample locations (Han, 

Yi, She, and Tu) had a MAF mean almost identical to African populations (0.3428), 

and the central Chinese population differed significantly from N. Asia and S. Asia 

regional means (p=0.0045 and p=0.0022, respectively) using  the Student’s T-test 

statistic to determine significance.  

To test whether there is a correlation between Hepatitis B, acute inflammatory 

response and geography, we performed a Pearson correlation analysis between the 

variables of mean acute inflammatory response frequency and disease (150). This 

result is consistent with the central Chinese region being a nexus of Hepatitis B 

transmission. The pattern observed in genes of the acute inflammatory response 
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pathway is consistent with the observation that acute inflammation is an integral part 

of the Hepatitis B infection process (155). When HGDP sampling locations are 

overlaid with Hepatitis B prevalence maps, there is trend towards congruence 

between high Hepatitis B prevalence and low MAF frequencies (159).  
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Fig 18: Neutral SNPs in global human populations and the Acute Inflammatory response gene set surveyed in a 
diverse set of African and East Asian populations. Neutral SNPs only show significant differences between Africans 
and non-African populations.  A Pearson correlation of Hepatitis B prevalence and mean acute inflammatory response 
allele frequency shows a trend toward correlation (p=0.08).  
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Discussion 
Our findings show that genes involved in opiate, dopamine and GABA addiction do 

form three genomic hotspot regions in conjunction with immunity regulating genes 

within the human genome. These positions are located on three separate 

chromosomes: chr 9, chr 11, and chr19. Functional annotation of these joint 

addiction and immunity hotspot regions confirmed that the genes previously 

identified in either addiction or immune surveys share broad functional classifications 

with those candidate genes that are their hotspot neighbors. Finally when we survey 

genetic polymorphisms that underlie these three genomic regions in a global 

distribution of human populations we find that when populations are grouped by their 

locality in tropical ecological zones, we identified polymorphisms that significantly 

differ at the chromosome 11 hotspot region. Further annotation of these climate and 

frequency divergent polymorphisms showed that they have been identified as 

playing key roles in liver interactome function, schizophrenia and Hepatitis B 

infection. A follow up analysis of the relationship between Hepatitis B and the acute 

inflammation process points to a correlation between Hepatitis B and acute 

inflammation pathways in African and Asian populations living in those areas of the 

continent that have high hepatitis burden. Taken together, our results point to a 

functional trifecta existing between immunity, addiction and mental health related 

SNPs at the chromosome 11 locus.  We can infer that hepatitis B is at least a 

contributing factor in the addiction and mental health allele frequencies that are seen 

in tropical living populations.  
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 When these addiction and immunity genomic hotspots were functionally 

annotated using the David’s functional annotation web tool (101, 102, 160, 161), we 

found that while hotspots were not well annotated with common computational tools, 

the genes underlying these regions represent candidates for both mental health ( 

and infectious disease genes. Interestingly, alcoholism was one of the KEGG 

pathways identified as participating in the metabolic dynamics of these genomic 

regions. This gives additional support to our conjecture that the SNPs for C11orf49 

may indeed play a role in the liver interactome in a manner that potentially creates 

susceptibility to alcoholic substances. 

We considered the relationship between tropical-living populations, as a 

climatological surrogate for multiple pathogen loads. These analyses determined 

that those populations living in highly tropical environments showed the highest 

polymorphism frequency differences to their temperate climate-living population 

comparisons. This was true when populations were considered without respect to 

ethnic origin, confirming that human population locality and more specifically 

proximity to pathogens was sufficient to explain the observed allele frequency 

differences. This finding further supports the idea that local climate and specifically 

potential disease burden appear to play a significant role in shaping both 

immunological but also co-located non-immunological phenotypes.  

Previous studies examining the role of climate – either as a surrogate for 

pathogen load (162) or as a function of climate change (163) have shown that local 

climate affects the availability of the pathogen substrates that are thought to drive 

natural selection in human populations. It is therefore not surprising that selection for 
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immune fitness can lead to hitchhiking of addiction associated SNPs. The proximity 

of these polymorphisms indicates that their evolutionary histories are intertwined. 

This concept now gives us a fertile ground on which to build further analyses 

between the addiction alleles and immune-regulatory elements under infectious 

disease based selection. Furthermore, there is evidence that opioid peptides may 

have first arisen as modulators of cellular immune function- where morphine down 

regulates immune processes in addiction, an action/function that it appears to 

normally perform (39). This strengthens our argument that these putatively adaptive 

features that increased human fitness in disease rich environments may now be 

causing secondary effects when the immune pressure is removed, or when 

xenobiotics such as the addictive substances we study here are given in non-

homeostatic doses.  

Our assessments of GWAS3D interacting polymorphisms showed that the 

five polymorphisms identified have both local and long distance interactions. These 

interactions include rs2167079, a coding SNP that sits in at least 62 transcription 

factors. These analyses demonstrate that addiction genes do indeed form genomic 

hotspots with immune genes, that these immune hotspots share functional 

cohesiveness, and that when SNPs at these addiction and immunity hotspots were 

compared between HGDP populations living in tropical versus temperate climates, 

they identified SNPs associated with hepatitis B, the liver interactome, and 

schizophrenia. A follow on analysis of a subset of immune genes involved in the 

acute inflammatory response show congruence with reported hepatitis B endemicity 

geographic distributions in central Asia and sub Saharan Africa.  This analysis begs 
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follow up in understanding how pervasive this phenomenon is in complex disorders 

and their associated immune responses.  
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Conclusions 
Summary of Findings 

Addiction disorders represent a major economic and health cost to human 

populations (51). Addiction is loosely defined as a chronic relapsing spectrum 

disorder characterized by loss of control over substance taking (52-54). It is a 

behavior-based phenomenon representing a diverse array of psychological, 

biological, and genetic attributes and environmental and cultural factors (55-57).  As 

with addiction, neurological disorders such as depression, bipolar disorder, and 

schizophrenia represent a significant strain on health and judicial entities. Both 

addiction and mental health disorder classes have long been identified as co-morbid 

conditions (124). While we can make clear inferences about the role that genes play 

in Mendelian genetic disorders, characterizing the genetic underpinnings of complex 

disease has been significantly more challenging. The intersection of two complex 

diseases such as addiction and mental provides an additional level of genetic 

complexity. Both Substance addiction and mental health are behavior-based 

phenomenon representing a diverse array of psychological, biological, and genetic 

attributes and environmental and cultural factors (32, 33, 55-57).  Schizophrenia is a 

mental illness that affects 1% of the global human population(132). It is identified as 

a disorder that disrupts brain neural networks and is characterized by hallucinations, 

delusions, lack of willpower, and cognitive deficits (164). Genealogy studies have 

shown that there is a strong genetic component to schizophrenia with genetic 

components accounting for as much as 80% of the risk variance (165). Linkage 

studies and candidate gene approaches have identified over 1000 candidate genes 

associated with schizophrenia. By examining correlations between environmental, 
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addiction, and disease conditions with allele frequencies, I searched for allele 

frequencies consistent with signatures of selection on multi-locus traits.  This method 

is useful in identifying adaptations (whether tolerance or resistance focused) for 

complex infectious diseases. Tropical populations provide an opportunity to examine 

how environmental effects affect complex traits because they exhibit a variety of 

subsistence strategies, population histories and exposures to infectious disease. 

 

A list of biologically relevant genes for addiction was gathered from literature curated 

sources. Figure 3 shows the flowchart employed to identify biologically relevant 

addiction genes and the resulting number of genes in each addiction gene set. 

Three classes of addiction genes were obtained using the NCBI gene search: 

dopamine addiction genes (N=108), opiate addiction, (N=246) and GABA addiction 

genes (N= 433). The search word chains consisted of ‘metabolism’ (N=398 genes) 

or ‘addiction’ (N=461) followed by the names of three addictive substances: 

dopamine, opiates and GABA receptor. The respective heat maps in Figure 3 

illustrate the intersections within the search terms for both metabolism and addiction 

gene lists. Additionally, we compared our gene list to the one reported by Li, Mao 

and Wei (1),  containing 387 genes involved in four addiction disorders.  This 

comparison is shown using a Venn diagram with the bulk of genes (N=311) not 

identified in our analyses belonging to nicotine addiction, an addiction disorder we 

do not address here.  The rest was added to our gene list. A set of addiction genes 

(N=587), compiled from the union of all search terms, was thus determined.   
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We hypothesized that genes involved in the characterized opiate, dopamine and 

GABA addiction disorders will form genomic regions of with functional specificity. 

These regions should exist above and beyond that small subset of genes that are 

shared between these gene lists. Our analyses demonstrate that genes associated 

with dopamine, opiate and GABA addictions cluster into seven regions of the 

genome that have a significant or near significant overabundance of addiction genes 

based on a hypergeometric test (Table 2). These seven hotspots were split between 

GABA specific (4q23, 6p22.2, 6p22.1) and mixed addiction hotspots, containing all 

genes, (10p15.1, 11q13.2-3, 16q22.1, and 19q13.33). 

 

Functional annotation was undertaken for the list of addiction genes, the GABA, 

opiate, and dopamine addiction classes, and their pairwise intersections. These 

genes when functionally annotated both with and independent of their interspersed 

neighbor genes shared functions. This finding supports the idea that these NCBI-

curated hotspot genes are truly identifying regions with functional genomic 

signatures for addiction. Functional annotation shows a wide range of biological 

processes dominated by cell-cell signaling.  Dopamine and opiate addiction gene 

lists shared many more molecular functions with each other than they did with the 

GABA addiction gene set. The genes common to the three types of addiction under 

consideration included those with ligand-gated ion channel activity, neurotransmitter 

binding, and amine binding activities. The biological processes enriched included 

response to organic substances, synaptic transmission processes, and response to 

endogenous stimulus process. This approach has identified additional candidate 
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genes such as those in the SLC17A family, which code a sodium/phosphate co-

transporter in the intestinal mucosa. The protein plays an important role in the 

absorption of phosphate from the intestine and its possible role in addiction is yet to 

be determined. 

 

We examined the hotspot associated polymorphisms identified in 11 HAPMAP 

sample populations with distinct geographical occupation: East Asian ancestry 

[Japanese-JPT, Chinese (collected in Beijing)-CHB, Chinese (collected in Denver)-

CHD], African ancestry populations [Yoruba-YRI, Masaai-MKK, Luhya-LWK, and 

African Americans-ASW], European ancestry populations [Europeans of Northern 

and Western Ancestry-CEU and Toscana- TSI], a South Asian ancestry population 

[Guajarati in Houston-GIH]; and an admixed American population [Mexicans in Los 

Angeles-MEX] (104-106).  To exclude the possibility of confounding effects of 

population-specific demography and to set up an empirically derived neutral 

estimate of allelic variation, we analyzed 20 concatenated autosomal loci across the 

human genome identified as neutrally evolving (107). It was assumed that the 

polymorphism variation undergoing selection will have non-neutral allele frequency 

patterns. When we considered genetic polymorphisms in 11 HapMap populations 

that span three major ethnic regional populations (East Asian, European, and 

African), we identified polymorphisms (as shown in Figure 9 that varied between 

East Asians and Africans/Europeans populations (rs6906576, rs6924948, 

rs7740793, rs9348699, rs933199).  
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We followed these frequency-based analyses of hotspots with analysis uncovering 

linkage to distant sites. For this purpose we used the web platform GWAS3D 

developed recently by Jun Li M et al. (109). The platform identifies genetic variants 

affecting regulatory pathways and underlying disease/trait associations by 

integrating chromatin state, functional genomics, sequence motif, and conservation 

information given a variant list. In the addiction case under study, we examined the 

distant regulatory landscape through linkage of the significant SNPs identified at 

hotspots in cross population comparisons. Figure 11 shows the significant common 

variants between Africans and Europeans projected onto the Yoruba population. In 

the outer ring, polymorphisms or genomic regions are identified. The second ring 

identifies the genes or chromosomal regions these polymorphisms sit in and finally 

the red lines indicate the strength of local or long range interactions. Thus, with the 

use of emerging bioinformatics web platforms, deciphering addiction hotspots on the 

human genome show potential for further discovery of DNA motifs distant to the 

hotspots. 

 

These addiction findings made us question whether our computational approach 

could be used to identify those genes that are sitting at the intersection of multiple 

complex disorders.  A number of studies have identified the clinical intersection of 

mental health and substance addiction traits (125, 126). This has been shown in a 

diverse variety of mental health conditions such as depression (127, 128), bipolar 

disorder (129-131), and schizophrenia (132-137). To date, the crosstalk of addiction 
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and mental health genetic contributors has not been fully understood based on 

association studies (68, 138) and functional genomics (41, 42). 

 

The bipolar disorder gene list comprised 626 genes, depression comprised 357 

genes, schizophrenia comprised 1121 genes and Addiction comprised 587 genes 

garnered from opiate, GABA and dopamine addictions. When considered together 

this genes list represented 1968 genes encoding putative addiction and mental 

health targets. Figure 12 is a Venn diagram that shows the overlap in genes from 

these four lists. Interestingly, there were 51 genes that were shared between all 

gene lists but only four of these shared genes were represented in the eight 

hotspots. These are indicated in red in Table 6. This overlap gene set contained the 

DRD, HTR and SLC6A gene families as well as a host of immune function genes 

including: ICAM1, IFNG, IGF1, IL1B, IL1RN, and TNF. Of this combined set of 

addiction and mental health genes, 192 genes fell into cluster regions within the 

genome.  Our analyses identified these eight genomic regions (with significant 

numbers of genes involved in the dual disorders of addiction and mental health.  

 

We performed a functional annotation on the complete list of NCBI identified genes 

in order to determine the major functional roles for addiction and mental health 

genes. Functional annotation of the combined set of depression, schizophrenia, 

bipolar and addiction genes found functional commonalities.  These functions are 

characterized in Figure 14. 
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Drug target annotation was performed to determine the role that pharmacological 

products interacted to binding sites within these hotspots.  When the hotspot regions 

were annotated for drug interactions 16 drugs were found to have binding sites with 

shared function. This function revolves around neurological function, response 

organic substances and cell-cell signaling. Addiction and depression overlapped in 

three functional regulatory roles: cellular localization, cyclic nucleotide biosynthesis 

and metabolism. While not all hotspots had drug binding sites located within their 

domains, five of the hotspots did. When we identified drugs that identified these five 

hotspots, we found some thematic division in the types of drug binding site targets. 

Five drug binding sites are associated with cancer therapies: Sorafenib, Abiraterone, 

ABT-263, Etoposide, and Thymalfasin. Interestingly, a survey of the literature 

regarding these drug’s effects showed that they were involved in secondary 

addiction and mood disorder phenotypes. Four drugs were associated with the 

mental health condition Parkinson’s disease, post-traumatic stress disorder or 

anxiety: L-DOPA, Encapone, Tolcapone, 3,4-Methylenedi-oxymethamphetamine. 

One drug binding sites were specifically directed at an illicit drug, ecstasy. These 

findings are summarized in Table 7. 

 

 We wanted to follow up our early observations that addiction hotspots genes at two 

hotspots the 6p21.1 and 4q23 were interspersed with immune function genes, and 

that polymorphisms at these hotspots showed allele frequency differences in the 

Yoruba population, a sub-Saharan tropical living African population. We 

hypothesized that environmental factors such as geographical location, relative 
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pathogen burden and infection rates will identify allele frequency differences in for 

immune and addiction gene hotspots between populations that are consistent with 

natural selection within human populations living predominantly in tropical 

environments.  

 

To test whether there are correlative relationships between ecoregions, disease and 

population allele frequencies, we use genes contained in addiction and immunity 

curated by NCBI. Immune associated genes were identified from NCBI gene lists 

using search terms, ‘adaptive immunity,’ ‘innate immunity,’ ‘autoimmunity,’ and 

‘Th1/Th2.’ These terms were added to 587 genes previously identified as being 

involved in opiate, dopamine, and GABA reception addiction (submitted in Jackson 

et al). These genes were then projected onto the genome to identify cluster regions 

of genetic importance for immunity and addiction. Clusters were defined as regions 

of the genome with more than 15 genes within a 1.5Mb linear genomic window. 

  

When addiction and immunity gene lists were combined, we found that they created 

three hotspots located on chromosomes 11,17, and 19.  In order to understand how 

populations vary at these key addiction and immunity clusters, we surveyed human 

polymorphism data from the 1054 individuals comprising 51 populations of the 

Human Genome Diversity Panel (HGDP), 1148 individuals comprising the 11 

sample populations of the HapMap Project and the 1092 individuals representing the 

1000 Genomes dataset. The set of polymorphism shared amongst these datasets 

was identified and cross population comparisons were made on allele frequencies. 
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To determine how populations fit into ecological regions, a map with population 

sampling locations was cross-referenced to global Bailey’s ecoregions maps(149). 

This map characterizes the environmental conditions under which study populations 

live.  We grouped populations into groups of tropical environment, moderate 

environment and non-tropical environment. This sorting process split African, Asian 

and American populations, thereby ensuring that the effect that we saw was not the 

result of ancestry but instead was eco-climate related.  Our analyses demonstrate 

that when we grouped a global set of 51 human populations into tropical versus non-

tropical living groups (the distal ends of our sorting spectrum), we found significant 

differences in allele frequencies at the hotspot located on chromosome 11 for 5 

polymorphisms (Table 10). Finally we used GWAS3D to identify local and long range 

interactions between our 5 significant SNPs and their cis and trans-chromosomal 

partners. 

 

These analyses have demonstrated that NCBI identified addiction genes form 

hotspots in the genome. These genomic hotspots for opiate, dopamine and GABA 

addiction share functional cohesiveness. Analyses of the SNPs typed in HapMap 

populations demonstrated that this approach can identify genomic variants of 

interest within these hotspot regions.  We then extended our analyses to the 

intersection of addiction with three mental health conditions: schizophrenia, 

depression and bipolar disorder. Each of these mental health conditions has a 

strong genetic basis and we identified 7 hotspot regions sitting in the intersection of 
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addiction and mental health. We characterized the 16 drug binding sites in five of the 

seven hotspots which recapitulated the functional intersections of addiction and 

mental health, while also indicating that again, infectious disease therapies had 

binding sites within our regions.  Finally we directly studied addiction and immunity 

genes sets to identify three genomic hotspots. These genomic hotspot again shared 

functional cohesiveness and when typed in the HGDP populations, we discovered 

that five polymorphisms had statistically different allele frequencies in tropical living 

versus non tropical living populations. These variants point to hepatitis B as a 

potential selective agent. Following this line of inquiry, we studied genes involved in 

acute inflammatory response, a subset of our immune gene set. We saw 

convergence between our geographic regions and those regions of the world with 

endemic hepatitis B infection. This result points to a strong link between infectious 

disease and addiction. We therefore propose that hepatitis B driven infection may be 

a major factor in the changes in allele frequencies in seen in five alleles on 

chromosome 11, of which three are involved with the liver interactome and one is 

involved with schizophrenia phenotypes. These alleles present compelling evidence 

for further selection analyses to identify whether hitchhiking, the rise of alleles in 

proximity to a selected allele, is the mechanism for these variant differences. 
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KEGG Pathways of Morphine Addiction in humans.  

 



 

Appendix B: KEGG Pathway of Dopaminergic Synapse in Humans. 
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Appendix B: KEGG Pathway of Dopaminergic Synapse in Humans. 
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Appendix C: KEGG Pathway of Systematic Lupus Erythematosus in humans. 
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Appendix D: Final SNP Table- All SNPs generated for the all allelic polymorphisms found in 
the genome. 

dbSNP ID Gene Position 
rs1800708 HFE intron 
rs9366637 HFE Intron  

rs2237231 HIST1H1A downstr. 500B 
rs9393682 HIST1H1C upstr. 2KB 
rs2051542 HIST1H1T missense 
rs3830054 HIST1H2AB upstr. 2KB 
rs6908263 HIST1H2AC intron 
rs7760713 HIST1H2AC intron 
rs9467684 HIST1H2BD intron 
rs4145878 HIST1H2BF upstr.2KB intron 
rs1892252 SLC17A4 intron 
rs3734525 SLC17A4 utr 3’ 
rs3823151 SLC17A4 intron 
rs199738 TRIM38 utr 5’ 
rs6906576 Intergenic genomic 
rs6924948 Intergenic genomic  
rs7740793 Intergenic genomic 
rs9348699 Intergenic genomic 
rs933199 intergenic  Genomic 
rs11819869 AMBRA1 intron 
rs17790342 C11orf49 intron 
rs12417519 C11orf49 intron 
rs752849 C11orf49 intron 
rs901746 DDB2 intron 
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Appendix E: GWAS3D- Identification of the European long distance interactions  
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Laboratory Assistant                          10/92-6/93 
University of Maryland College of Nutrition and Food Science, College Park MD 
• Worked with Faculty researchers to maintain the laboratory infrastructure.  
• Responsible maintenance of rat colony and primary data collector for research 

study on the role of corticosteroids on hunger management.   
 
PUBLICATIONS (*Borgelin was my married name) 
1. L. Jackson, C. Tanes, and A. Tozeren. Whole Genome Analysis of Addiction 

Pathways and their Population Subtypes (submitted to Addiction, Impact Factor: 
4.746) 

2. L. Jackson, A. Tozeren. Addiction and Mental Health Genes form Genomic 
Hotspots with Strong Drugable targets. (in prep) 

3. L. Jackson, M. Shestov, and A. Tozeren.  Genes and Geography: Addiction and 
Immune Pathway Analysis in a Global Human Sample (in prep) 

4. L. Jackson, J. Saini, C. Tanes, M. Shestov and U. Hershberg. Multilevel 
Selection Reveals Coding Bias in B cell populations at evolutionary timescales. 
(in prep)  

5. F.L.C. Jackson, and L.F. J. Borgelin*. Chapter: How Genetics Can Provide 
Detail to the Transatlantic African Diaspora in The African Diaspora and the 
Discipline. Indiana University Press, Bloomington, IN.  2010  

6. S.O.Y. Keita, F.L.C. Jackson, L. Borgelin*, and K.N. Maglo. Letter to the Editor: 
Commentary on the Fulani—History, Genetics, and Linguistics, an Adjunct to 
Hassan et al., 2008 American Journal of Physical Anthropology Published 
Online: 20 Jan 2010  

7. F.L.C. Jackson, K.M. Jackson, L. Jackson, S. Khan, L. Heywood, M. Raslan, X. 
Johnson, and R. A. Kittles. Strategies for overcoming current limitations on 
comparative genetic studies of African Atlantic Diaspora. American Journal of 
Physical Anthropology 590): 187-188 2000  

8. L. Jackson and J.G.  Rendon. Bright Ideas II: Innovative or Promising Practices 
in HIV Prevention and HIV Prevention Community Planning. CDC, AED, and 
NASTAD Publication. March 2001 

9. L. Jackson and J.G.  Rendon (15%). Bright Ideas: Innovative or Promising 
Practices in HIV Prevention and HIV Prevention Community Planning. CDC, 
AED, and NASTAD Publication. March 2000 

10. L. Jackson.  Technical Assistance and Capacity Building Provided by Health 
Departments to Community Based Organizations. NASTAD Issue Brief. March 
2000 

11. L. Jackson, L. Greabell, and J. Marin.  HIV Prevention Community Planning- Co-
chair’s Perspectives. NASTAD Issue Brief. May 1999 
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PRESENTATIONS 
1. “Addiction, Mental Health and Infectious Disease: A Complex Web of Genetic 

Interactions” Drexel University Office of Graduate Studies Books and Bagels 
Lecture Series May 14, 2014 

2. “Addiction and Immunity Intersections-a genomic approach“ Drexel University 7th 
Annual Student Conference on Global Challenges -Gender 2014 

3. “Genetic Implication of Infectious Diseases in African Populations” ASWAD 
Barbados 2007 

4. “Lessons Learned in International Technical Assistance” National HIV Prevention 
Conference 2001 

5. “Technical Assistance and Capacity Building between US Health Departments 
and Community Based Organizations” HIV/AIDS Prevention Community 
Planning Leadership Conference 2000 

6. “Youth Participation in HIV/AIDS Prevention and Care” United States Conference 
on AIDS 1999 

 
Posters 
1. Jackson, L., Liu, Y., and Tozeren, A. “Whole Genome Analysis of Addiction and 

Their Population Subtypes” Am Soc. Human Genetics International Meetings 
2013 

2. Borgelin, L.* and Hammer, M.F.  “What is structuring STRUCTURE? 
Understanding the underlying implications to a population structure algorithm” 
Society for Molecular Biology and Evolution International Conference 2010 

3. Borgelin, L.*, Keck, M, and Morales, D.A.M. “Using Entropy to Identify 
Functional Motifs on the Y-Chromosome in Humans” National Science 
Foundation IGERT Program Grantees Meeting 2006 

4. Jackson, L., Rastogi, R. and Sakolsky, N. “Technical Assistance and Capacity 
Building between US Health Departments and Community Based Organizations” 
HIV/AIDS Prevention Community Planning Leadership Conference 2001 

 
Academic Service 
Bioinformatics Mentor, Master Charter High School Internship Program                 
Spring2014 
Mentor, Sunnyside High School Students College Application Program 
 2007-2008 
Executive Secretary, University of Arizona Black Graduate Student Association
 2007-2008 
Panel Member, University of Arizona African American Recruitment Weekend 
 2007 
Contributor, Book: Min Første Dansker       Fall 2004 
Steering Committee Member, United States Conference on AIDS   
 1999-2001 
 
Professional Associations 
• Member, American Society for Human Genetics 
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• Member, Society for Molecular Biology and Evolution 
• Member, Society for Mathematical Biology 
• Past Member, Association for the Study of the Worldwide African Diaspora 
• Past Member, Genetics Society of America 
• Past Member, National Science Teachers Association 
 
Awards, Fellowships and Grants 
• Rice University XSEDE High-throughput Computer Science Fellow 

 2012-14 
• FASEB MARC Travel Award to ASHG 2013     2013 
• Drexel University Dept. of Education GAANN Fellow   

 2012-14 
• University of Arizona Outstanding Student Service Nominee  

 2007-8 
• NSF G-K12 Biology from Molecules to Ecology Fellow   

 2007-8 
• NSF Interdisciplinary Graduate Education and Research Traineeship Grant

 2005-7 
• University of Copenhagen Scholarship Award    

 2004-5 
• Office of Multicultural Student Education Academic Excellence Award  

 1993  
• University of Maryland-Africa in the Americas Seminar Grant Recipient 1994 
 
Laboratory Competencies 

Molecular Biology:   
DNA/RNA: PCR, DNA/RNA purification, cloning, 
Southern/Western/Northern blotting, genomic/cDNA library 
construction and screening, mutagenesis, DNA sequencing, gene and 
promoter analysis and many other common approaches for detection 
and manipulation of nucleic acids. 

Bioinformatics: 
• Gene identification/ annotation tools, gene prediction, motif prediction and 

analysis 
• Competancies in software packages including: Strider, Oligo, Primer3, 

Galaxy, STRUCTURE, ADMIXture, DNAsp, Arlequin, Netlogo, MrBayes.  
   
Computer Skills 

• Microsoft Office suite (such as Microsoft Word, Access, Excel, and Outlook) 
• Macintosh Apple word processing and graphics suite 
• Presentation Software: PowerPoint and Claris Impact 
• Desktop Publishing Software: Adobe PageMaker, Claris Works, Ofoto, Adobe 

Acrobat Writer, and Adobe Photoshop 
• Internet Software: Netscape and Internet Explorer 
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Extended International Travel 
Tanzania, Liberia, Lithuania, Poland, Hungary, Spain, Norway, Sweden, 
Denmark, Guyana, Bahamas, Dominican Republic, Egypt, England, Nigeria, 
Burkina Faso, Ivory Coast, Italy, Czech Republic, Turkey, Barbados,  Mexico 
and France. 

 
Languages 

Professionally Fluent in Danish  Professionally Proficient in French
  Professionally Fluent in American English  Conversational 
Rudimentary Arabic 

 
Programming language competancies: Matlab, PERL, and some familiarity 
with Python/R 
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