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Abstract
The Role of Document Structure and Citation Analysis in Literature Information Retrieval

Haozhen Zhao
Advisor: Xiaohua (Tony) Hu, Ph.D

Literature Information Retrieval (IR) is the task of searching relevant publications given

a particular information need expressed as a set of queries. With the staggering growth of

scientific literature, it is critical to design effective retrieval solutions to facilitate efficient

access to them. We hypothesize that particular genre specific characteristics of scientific

literature such as metadata and citations are potentially helpful for enhancing scientific

literature search. We conducted systematic and extensive IR experiments on open informa-

tion retrieval test collections to investigate their roles in enhancing literature information

retrieval effectiveness.

This thesis consists of three major parts of studies. First, we examined the role of

document structure in literature search through comprehensive studies on the retrieval ef-

fectiveness of a set of structure-aware retrieval models on ad hoc scientific literature search

tasks. Second, under the language modeling retrieval framework, we studied exploiting ci-

tation and co-citation analysis results as sources of evidence for enhancing literature search.

Specifically, we examined relevant document distribution patterns over partitioned clusters

of document citation and co-citation graphs; we examined seven ways of modeling document

prior probabilities of being relevant based on document citation and co-citation analysis;

we studied the effectiveness of boosting retrieved documents with scores of their neighbor-

hood documents in terms co-citation counts, co-citation similarities and Howard White’s

pennant scores. Third, we combined both structured retrieval features and citation related



xii

features in developing machine learned retrieval models for literatures search and assessed

the effectiveness of learning to rank algorithms and various literature-specific features.

Our major findings are as follows. State-of-the-art structure-ware retrieval models

though reportedly perform well in known item finding tasks do not significantly outperform

non-fielded baseline retrieval models in ad hoc literature information retrieval. Though rel-

evant document distributions over citation and co-citation network graph partitions reveal

favorable pattern, citation and co-citation analysis results on the current iSearch test collec-

tion only modestly improve retrieval effectiveness. However, priors derived from co-citation

analysis outperform that derived from citation analysis, and pennant score for document

expansion outperforms raw co-citation count or cosine similarity of co-citation counts. Our

learning to rank experiments show that in a heterogeneous collection setting, citation related

features can significantly outperform baselines.

Abstract
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Chapter 1: Introduction

1.1 Introduction

The body of scientific literature is growing at a staggering rate. Take the biomedical domain

as an example, the literature has been growing at a “double-exponential pace”; both the

total size and the number of new papers published each year have a compounded annual

growth rate of about 3% to 4%2. A quick search on PubMed shows that on average more

than 3,000 papers were published per day in 2013. Effective literature search solutions are

thus crucial for researchers and professionals to stay on top of the torrent of publications.

Although web search has enjoyed great technological and commercial successes over the

past two decades, building effective information retrieval (IR) systems for specific domains

is still a challenging task. In specific domains, e.g. scientific literature or patents search,

both the corpus to be searched and the queries submitted by the end users often possess

particular characteristics that have the potential to be leveraged for effective retrieval. For

example, queries in domain specific search may differ from queries in web search, which are

typically short and ambiguous.

Scientific Literature Search (SLS) is the task of searching related publications for schol-

ars. Scientific literature here includes online library public access catalog, journal and

conference research papers’ bibliographic records and their full text, etc. An effective SLS

system could facilitate a quick and accurate knowledge access, which is critical for both

academia and industry. But the dramatic growing publications have posted serious chal-

lenges for efficient literature search.

The importance of effective literature search engine is evident for any researcher or
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professional in practice, because researches are built upon previous endeavors in science

and in conducting any research a researcher must acquire a good knowledge of the subject

at hand through finding and reading important relevant literature.

There are several characteristics of scientific literature.

• Semi-structured: Scientific literature contains many metadata. For example, bib-

liographic records contain fields such as title, authors, venue information, subject

headings, keywords, abstract, description and so on.

• Interconnected: Scientific literature, especially, journal and conference papers contain

many references and citations that interconnect them. These connections convey

important information about the relation among them.

• Heterogeneous: There are different types/genres of scientific literature and each with

their own particular metadata schema, vocabularies, term and corpus statistics.

These characteristics pose both opportunities and challenges to designing effective solu-

tions to facilitate the access to scientific literature.

First, intuitively field information of the scientific literature should be used in enhancing

retrieval. In fact, the purpose of some of the metadata fields, e.g. subject heading and

keywords, are designed for making access of the resources easy and most of them can be

used in designing better browsing access to scientific literature. However, not many existing

retrieval models make use of the structure information. Most retrieval models in existing

researches take a non-structured view of the document and merge all fields into one. Of

the few that are structure-aware, still is unknown of their performance in literature search

tasks.

Second, though citation analysis on scientific literature is well developed in the domain

Chapter 1: Introduction
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of bibliometrics, how to ingest the insights from bibliometric analysis into building effective

retrieval models is an open question. There are various approaches in leveraging citations

in facilitating search, but the results are not conclusive. Moreover, very few information

retrieval studies paid attention to co-citation analysis, which potentially can be a good

source of evidence for retrieving literature.

Third, given the heterogeneous nature of the scientific literature, we need new retrieval

framework that can embrace its heterogeneity. Traditional IR models generally use fed-

erated search and data fusion techniques to deal with heterogeneous collections, while the

recent arising learning to rank framework is powerful enough to include multitude sources of

evidences as features and to deliver retrieval functions based on established machine learn-

ing techniques. It would be interesting to compare these two paradigms in our scientific

literature search scenario.

These observations motivate us to investigate enhancing scientific literature search that

leverages structure, citation and learning to rank techniques.

The premise of this thesis is that particular characteristics of scientific literature should

be leveraged in building effective IR systems for literature search. Structure and citation

information in scientific literature that are not well treated in established IR modeling

approaches should be re-examined in contributing evidence for determining the relevance

of a document against a query. The goal of this thesis is to enhance literature search with

models that capture important aspects of the scientific literature corpus.

Before proceeding with our discussion, we need to clarify the focus of this dissertation.

First, we distinguish the two most general ad hoc retrieval tasks related to literature search:

known item search and subject search. The known item search task is to search for the

documents that the users know their existence in the system, therefore they are also called

Chapter 1: Introduction
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look-up search3. Examples of known item search include looking up books or papers writ-

ten by a concerned author in the library catalog system, or searching for homepage of a

person or an organization on the Web. The information need is generally met with one

or few best candidates. Subject search involves searching for documents related to certain

subject/topic, for example, “string theory” in the physics domain. The goal for the IR sys-

tem is to retrieve as many and as accurate relevant items as possible. In this thesis, we are

going to focus on subject search, specifically, keyword-based search over semi-structured in-

terconnected documents, and leaving known item literature search for future work. Second,

there is also related work on providing effective literature search though interface-designing

innovations. Faceted search is one approach to leverage fields in search and browsing. But

there are several drawbacks of faceted search: it is expensive to maintain metadata of high

quality; it costs screen real estate, especially when there are many fields; not all fields

are suitable for faceted display. This thesis will focus on retrieval algorithm and model

perspectives, instead of interface and user studies.

1.2 Research Questions

The overall research question of this dissertation is how to leverage structure and citation

information in developing effective retrieval models for searching in heterogeneous scientific

literature collection. We approach this question in a “divide and conquer” manner. We first

separately deal with developing structure-aware retrieval models for literature search and

leveraging citation and co-citation analysis in designing retrieval models. Then we target

retrieval solutions in the heterogeneous information space and include findings from the first

and the second research questions into an integral learning to rank framework for literature

search. Therefore, the overall question is divided into three major research questions:

Chapter 1: Introduction
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RQ 1 Can we leverage document structure with structure-aware retrieval mod-

els?

Many researches on retrieving structured information have been conducted by the database

community and XML retrieval community. The database community generally deals with

exact data match, while in IR partial match is the case. Our focus differs from theirs in

that (1) we deal with semi-structured information; (2) fields in our semi-structured docu-

ments are non-repeatable and non-hierarchical4. In the IR community, there are mainly

two kinds of approaches in modeling semi-structured document retrieval: (1) small doc-

ument combination approach, which treats each field as individual small document, and

linearly combine their scores as the document score; (2) in-model combination approach,

which preserves properties of underlying retrieval model while combining evidences based

on fields5. Structure-aware retrieval models, such as PL2F, Mixture of Language Model

(MLM) and Probabilistic Retrieval Model for Semi-structured Documents (PRMS) have

been shown to be effective for in known item finding tasks according to previous reported

studies. But there performance in ad hoc literature search tasks is still unknown. Can

we leverage the rich structural data of scientific literature with these models? How will

different stcuture-aware retrieval models perform in literature search?

RQ 2 How to leverage citation and co-citation analysis information to enhance

literature search?

Citation is an integral part of scientific literature and plays an important role in commu-

nicating researches. It is assumed that citation has great potential for enhancing literature

Chapter 1: Introduction
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search. But how to model them in retrieval frameworks is an open question. How to leverage

bibliometric analysis results to enhance search results ranking? How to use models based

on the structure and properties of the information space to enhance IR model? Whether

there is some favorable pattern in about citation network such that we can use for enhanc-

ing literature search? Under the language modeling framework, there are several possible

ways to ingest citation analysis results into the retrieval model. Will using language model

document prior and selective search strategies help?

RQ 3 How to effectively rank documents in a heterogeneous literature collec-

tion?

With features derived from fields and citation analysis, there will be many features

for scientific literature. Moreover, of different genres, e.g. catalog, bibliographic records

and full-text, documents generally have different sets of features. How to rank document

in such a heterogeneous environment is challenging. One approach to deal with different

genres or document types is to use the fusion techniques. In a fusion framework, retrieval

runs returned from different retrieval strategies, retrieval systems, indices are merged with

some algorithm into the final results to present to end users. It is expected that this way the

effectiveness of different retrieval strategies can be captured, and each index is optimized

according to its own properties, thus the overall retrieval effectiveness will be improved.

However, results from a previous study which tried a collection fusion method over the

iSearch test collection, indicates that this method does not beat the single index baseline

method6.

With the advent of learning to ranking techniques, it is possible to include more features

Chapter 1: Introduction
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in retrieval models. We thus plan to try the learning to rank methods to solve the problem of

searching in heterogeneous collections. We will derive a set of features for literature search,

and test them with the state of the art learning to rank algorithms. We pay particular

attentions to features that are specific to literature search domain, e.g. citation related

features, and fields related features.

We want to investigate whether learning to rank approach works for literature search;

whether it can capture promising evidences based on structure-aware and bibliometric-

enhanced retrieval models.

1.3 Thesis Outline

In this thesis, we study how to use structure-aware retrieval models and citation-aware

approaches to enhance literature search. Specifically, we investigate the following aspects of

literature search: (1) leverage structure/field information to enhance literature search; (2)

leverage citation and co-citation analysis information to enhance retrieval. (3) use learning

to rank methods to find out effective features for literature search.

This dissertation is organized as following: Chapter 1 covers the background of this

thesis and proposes the research questions, and introduces the datasets that will be used in

this dissertation and evaluation methodologies. Chapter 2 discussed basics of information

retrieval and review related subject areas. Chapter 3 evaluates structure aware retrieval

model on the iSearch test collection. Chapter 4 studies enhancing literature search with

citation and co-citation analysis. Chapter 5 investigates learning to rank for literature

search. Chapter 6 concludes this dissertation and discusses future directions.

1.4 Contributions

The following contributions are made in this dissertation:

Chapter 1: Introduction
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1. We compared the performance of major existing structure-aware retrieval models on

literature search tasks exhaustively. We find out that structured-aware retrieval mod-

els though reportedly perform well in known item finding tasks do not perform well

in ad hoc literature search tasks.

2. We discovered that partitioning scientific literature corpus based on analysis of the

citation and co-citation network will be potentially beneficial for deploying selective

search strategy which will be more efficient while not necessarily less effective than

that of exhaustive search strategy.

3. We empirically studied seven ways of deriving language model document priors based

on citation and co-citation analysis, and evaluate their performance on an open IR

test collection.

4. We studied several ways of document expansion approaches based on co-citation anal-

ysis, and showed that the newly proposed pennant score based similarities outperforms

more established similarity measures.

5. We extensively studies the performance of three learning to rank algorithms and a

set of structure and citation related features in developing machine learned retrieval

models.

1.5 Dataset and Evaluation Methodology

We evaluate our approaches using the iSearch Collection.

1.5.1 The iSearch Collection

The iSearch collection was prepared by the iSearch team. It approximately consists of

18K book MAchine-Readable Cataloging (MARC) records (BK), 291K articles metadata
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(PN) and 160K PDF full text articles (PF), plus 3.7 million extracted internal citation

entries among PN and PF. 65 topics drawn from physics researchers’ real information needs

with corresponding relevance judgment data also come with the collection7. Of all the PN

and PF documents, 259,093 are cited at least once, which is chosen as the subset for our

experiment for reducing citation sparseness consideration, we call this subset PNPFCited

collection. Table 1.1 shows the basic statistics of the iSearch test collection.

Table 1.1: iSearch Test Collection Statistics

Section Description Number

BK Library Records 18,441
PN Abstracts, arXiv.org 291,244
PF PDF items, arXiv.org 143,569

There are two separate processing of the iSearch dataset for our experiment. One is

the full dataset; the other is a subset, which focus on the investigation of the citation

feature. The same subset is also used in our previous work8, where we keep items that

are cited at least once for studying the citation prior. For the subset, accordingly, we

removed documents not in our index from the relevance judgment files, then filtered out

topics without any relevant documents in the relevance judgment data, resulting 57 valid

topics out of the original 65 topics (topic 5, 6, 15, 17, 20, 25, 42, 54, 56 are excluded). The

full dataset is used in Chapter 3, 5, and the subset is used in Chapter 4.

1.5.2 Topics and Relevance Judgments

The iSearch dataset come with 65 topics with relevance judgment results, based on 65

natural search tasks (topics) from 23 researchers and students from university physics de-

partments. The topic owners were given a search task description form with five fields:

(a) What are you looking for? (current information need)

(b) Why are you looking for this? (work task)

Chapter 1: Introduction
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(c) What is your background knowledge of this topic? (background knowledge)

(d) What should an ideal answer contain to solve your problem or task? (ideal answer)

(e) Which central search terms would you use to express your situation and information

need? (search terms)

An example of the iSearch topic is shown in Figure 1.1.

<topic_id>002</topic_id>

<author_id>085</author_id>

<current_information_need>

I am looking for information about manipulation and sorting of

magnetic particles, beads or spheres on nanoscale. This might be in

a micro fluidic system.

</current_information_need>

<work_task>

As a part of my master thesis it is interesting to fabricate a

sorting device which can sort magnetic nano spheres from a sample.

This will often be in a micro fluidic device because the nano

sphere/particles often will be diluted in some sort of solution.

</work_task>

<background_knowledge>

I have been making sorting devices for micro particles based on flow

profiles in a microfluidic system.

</background_knowledge>

<ideal_answer>

Published material on how to sort magnetic beads, particles or

spheres on nanoscale.

</ideal_answer>

<search_terms>

Nano spheres, beads, magnetic, sorting

</search_terms>

Figure 1.1: Example topic of the iSearch collection, number 002

Table 1.2 gives the distribution of the iSearch relevance judgment (qrels) dataset.

1.5.3 iSearch Citation and Co-citation Network

The iSearch citation network contains 82% of all the PNs and 97% of all the PFs. On

average each item in PN has 32.2 citations and each item in PF has 36.1 citations.

We also processed the iSearch collection to generate the paper co-citation network of
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Table 1.2: Distribution of relevant documents over tasks1

Range of relevant docs No. of tasks (N=65)

>100 9
75-100 3
50-74 8
25-49 13
15-24 12
10-14 8
<10 12

Table 1.3: Descriptive Statistics of Relevant Documents across the iSearch Document
Types

BK PN PF All

Total 424 1078 1376 2878
Mean 6.4 16.3 20.8 43.6
Var 6.3 20.9 30.8 47.7
Median 5 8 7 24.5

the iSearch collection. We calculated the document co-citation counts and compiled all the

co-citation among the indexed papers, resulting a weighted undirected graph with 259,093

vertices and 33,888,861 edges, with edge weights being the number of times two papers are

cited together.

1.5.4 Evaluation Metrics

IR systems generally can be evaluated in terms of effectiveness and efficiency. Since the

Cranfield studies set up the paradigm of IR evaluation, majority of IR studies are concerned

with effectiveness evaluation. In the Cranfield paradigm, IR evaluation setup consists of

a set of topics, a document collection and a set relevance judgments. Most widely used

retrieval performance evaluation measures include Precision@k, MAP, and NDCG.

Given a function R defined as R(i) = 1 if the document at rank i is relevant and R(i) = 0
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otherwise, then Precision@k is

Precision@k =

∑
i≤k R(i)

k
(1.1)

Average Precision (AP) measures the average precision after each relevant document is

retrieved

AP =

∑
k:R(k)=1 Precision@k

|R|
(1.2)

where |R| denotes the total number of relevant documents in the result set. Mean

Average Precision (MAP) is AP averaged over all topics.

MAP =

∑
q∈QAP (q)

|Q|
(1.3)

AP and MAP are set-based retrieval evaluation metrics as they take a binary view of

relevance, without distinguishing a highly relevant document from a marginally relevant

document. Discounted cumulative gain (DCG) is a metric proposed in , which allows

graded relevance. In DCG, it is assumed that relevant documents at a low rank should be

discounted by their rank. DCG is calculated as with the following formula:

DCG(k) =
∑
j≤k

G(j) ·N(j) (1.4)

where G(·) is the gain function and N(·) is the normalization function. Let reli denotes

the graded relevance value at position i of the result list, we define the gain function and

discount function respectively as:
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G(i) = 2reli − 1 (1.5)

N(i) =
1

log2(i+ 1)
(1.6)

Then DCG@k is:

DCG@k =
k∑
i=1

2reli − 1

log2(i+ 1)
(1.7)

There are two ways of defining DCG, with minor difference. Definition in Equation 1.7

is often used in reported learning to rank studies.

In IR research, DCG@k is further normalized by an ideal DCG@k, IDCG@k, which is

the maximum DCG@k in all possible permutation of the k results. The normalized DCG,

NDCG@k is defined as:

NDCG@k =
DCG@k

IDCG@k
(1.8)

Previous work on the iSearch Collection was generally evaluated with the NDCG@10001.

The best performed retrieval model is language model with Jelinek-Mercer smoothing.

BPREF, binary preference, is a retrieval effectiveness measure when the relevance judg-

ments are incomplete9. Given a topic has R relevant documents and r is a relevant document

and n is a document from the set of judged non relevant documents that are ranked higher

than r, then bpref is given as Equation 1.9. BPREF correlates with AP when the relevant

judgments are complete and is more robust than AP when the relevant judgments are in-

complete as it penalizes judged non relevant document ranking higher than judged relevant

1This is the default implementation in trec-eval, http://trec.nist.gov/trec_eval/.
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document regardless of retrieving unjudged documents.

bpref =
1

R

∑
r

(1− |n ranked heigher than r|
R

) (1.9)

Expected Reciprocal Rank is a new measure proposed in . It is argued that NDCG does

not take use’s effort into consideration. In DCG, each document has a constant gain which

is independent to other documents in the search result list. ERR is used in learning to rank

for training rankers. Previous researches shows that trained on one measure, e.g. ERR,

then test on another e.g. NDCG, can result good results. Given Pi is the probability of a

user satisfied with the i-th search result,

Pi =
2reli − 1

2relmax
(1.10)

where relmax is the maximum relevance grade, ERR@k is computed as

ERR@k =

k∑
i=1

Pi
i

k−1∏
j=1

(1− Pj) (1.11)

All retrieval results in this thesis, except those in Chapter 5, are evaluated using the

standard IR evaluation toolkit trec eval from NIST. Performance scores in Chapter 5 are

calculated with the internal evaluation functions implemented in RankLib.

In IR, comparison two retrieval setup is also tested for significance. In this dissertation,

we use pair Student t test, from SciPy implementation, to ascertain if the difference between

two retrieval settings is significant or not.
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Chapter 2: Literature Review

In this chapter, we review the basics of information retrieval to establish the background

for this thesis work. We first review the basics of information retrieval. Then we review

existing structured information retrieval work, citation based IR work, and learning to rank

researches.

2.1 Information Retrieval

The goal of an information retrieval system is to find information that meets the end user’s

information need. Broadly information retrieval is defined as “a field concerned with the

structure, analysis, organization, storage, searching, and retrieval of information”10. As

a domain of which the major goal is to help users find information their want11. From a

schematic perspective, every information retrieval system consists of three components: col-

lection to be indexed, the user’s request, generally keywords, and the matching algorithm.

The effectiveness of the IR system depends on better understanding of the user’s informa-

tion need. At its core, IR is about modeling relevance. Information retrieval systems are

essentially based on the underlying retrieval models.

In a typical information retrieval system evaluation environment, there are user infor-

mation need and their queries, search corpus or collections and the relevance judgment

results.

P (R,Q,D) = P (R|Q,D)P (Q,D) (2.1)
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2.2 Statistical Language Model

Language modeling approach started when the probabilistic retrieval approach was pro-

posed. In this model, the ranking problem is turned into an estimation problem. In this

model, both the user’s query and the documents are treated as language models. In this

model, the purpose is to estimate an accurate query language model and document language

model.

Given a query from the user, the goal of an IR system is to rank returned documents as

accurately as possible such that the user’s information needs will be satisfied. To achieve

this goal, we need to design a retrieval model that can capture the query and document

relationship effectively, such that relevant documents are delivered while non-relevant doc-

uments are avoid at best. Over the years, many different IR models have been developed.

The key concept in a retrieval model is relevance. IR models differ in how they formalize

the concept of relevance. For example, in the vector space retrieval model, query and docu-

ments are represented as term vectors over the vocabulary space, and the relevance between

a query and a document is modeled as the distance between their term vectors. In other

words, the more similar a document to a query, the more relevant it is to the query.

The probabilistic retrieval model takes a difference approach; it directly models on

relevance by representing relevance as a binary-valued event12;13. The Probabilistic Rank-

ing Principle (PRP), justified in14, underpins the probabilistic retrieval model. The PRP

prescribes that optimal retrieval effectiveness is achieved when documents are ranked in

decreasing order of probability of relevance or usefulness to the request and “probabilities

are estimated as accurately as possible on the basis of whatever data has been made avail-

able on to the system”14. This implies that it is possible to go beyond document text and

incorporate any evidence that might be helpful to improve the retrieval effectiveness in a
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principled way. Strong probabilistic and statistical foundations make probabilistic retrieval

models powerful to address complex retrieval problems.

Statistical language model is the recent generation of probabilistic retrieval models15;16.

A language model is a probability distribution over sequences of words. Each document can

have its own language model. If we regard a query as a sample from a document language

model, then we will desire to rank documents based on the probabilities of generating the

query using their language models. The retrieval task then becomes to “infer a document

model for each document, then [to] estimate the probability of generating the query from

each of these models”17.

Thus the score of document against a query in the language model is based on the condi-

tional probability P (D|Q), given Q, D represent the query and the document respectively.

Using the Bayes’ rule, we can derive P (D|Q) in the following way:

P (D|Q) =
P (Q|D)P (D)

P (Q)
(2.2)

∝ P (Q|D)P (D) (2.3)

∝
∏
w

P (w|D)P (D) (2.4)

One reason for this derivation is that in practice P (Q|D) is usually easier to estimate and

implement than P (D|Q). Note that in the above equations, we dropped the P(Q) because

it does not depend on the document thus not affect the ranking. With this derivation, we

get two important components of the language model P (Q|D), the query likelihood, and

P (D), the document prior. This type of language model therefore is also known as the

query likelihood language model.
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If we take independence assumption of query term occurrence, the query likelihood

P (Q|D) can be further rewritten as
∏
w∈Q P (w|D). Now P (w|D) is determined by the

distribution of the terms in the document. In Ponte’s paper, multiple Bernoulli distribution

is used17. Nowadays multinomial word distribution is more often used. With this distribu-

tion, the query likelihood language model is also called unigram language model. In this

model, P (w|D) is equal to proportion of their occurrence count to the document length,

with the maximum likelihood estimation:

P (w|D) =
c(w,D)

|D|
(2.5)

where c(w,D) denotes the count of word w in document D and |D| is the length of D.

The document prior, P (D), is often assumed to be uniform for all documents and

thus not affect the ranking, and can be dropped when scoring the document. However,

in fact, P (D) provides an elegant manner to incorporate non-textual evidences into the

language model. Some successful applications of P (D) in particular retrieval tasks include:

using URL type as a source of P (D) for named page finding18, using document quality

as document prior19, using temporal evidence as document priors for retrieval in newswire

collection20, etc.

2.2.1 Language Model Smoothing

One problem lies in the query likelihood model is that for a multiple-word query when the

document does not contain one word from the query, P (Q|D) will become zero, even when it

contains all the rest of the query words. This behavior is undesirable and should be avoided.

Many smoothing techniques are developed to avoid the problem of zero probabilities for

unseen terms, though the role of smoothing include both for assigning proper weights for

Chapter 2: Literature Review



19

unseen terms and improve the discriminant power of some elite terms21. We review here

some representative smoothing methods.

The Jelinek-Mercer smoothing interpolates the document language model with a collec-

tion language model:

Pλ(w|D) = (1− λ)Pml(w|D) + λP (w|C) (2.6)

where Pml(w|D) and P (w|C) are the maximum likelihood estimation of the document

model and collection model, respectively, and λ controls the relative weights of the two

models.

The Bayesian smoothing using Dirichlet priors, or simply, Dirichlet smoothing, is a

smoothing method that set the conjugate prior the multinomial distributed document model

using a Dirichlet distribution with the following parameters related to the collection model

(µP (w1|C), µP (w2|C), . . . , µP (wn|C)) (2.7)

and the document model is then

Pµ(w|D) =
c(w;D) + µP (w|C)

|D|+ µ
(2.8)

where c(w;D) is the term frequency of w in document D, and |D| is the document

length. The intuition behind the Dirichlet smoothing is that long documents should be

smoothed less than short documents.

The statistical translation model proposed by22 can be also regarded as a smoothing

method. In this model, the query is treated as a translation of the document by all the
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words in the document:

Pt(w|D) =
|D|
|D|+ µ

∑
µ∈D

P (w|u)P (u|D) +
µ

|D|+ µ
P (w|C) (2.9)

where P (w|µ) is the probability of translating word u to v. With this, it is possible to

score a document with non-zero probability even when w does not occur in D, as long as

there are words in D, which are semantically related to w.

The semantic smoothing method proposed by23;24 is a smoothing method inspired by the

translation language model. It leverages topic signatures, which are meaningful multi-word

phrases or ontology concepts, in smoothing P (w|D):

P (w|D) = λPt(w|D) + (1− λ)P (w|C) (2.10)

= λ
∑
k

P (w|tk)P (tk|D) + (1− λ)P (w|C) (2.11)

where tk is the topic signature that co-occurs with term w, P (tk|D) is maximum likeli-

hood estimation of the probability of generating tk from a document

P (tk|d) =
c(tk, D)∑
i c(ti, D)

(2.12)

and P (w|tk), the translation probability from topic signature tk to term w, is estimated

using an Expectation Maximization (EM) algorithm25. Specifically, they account the occur-

rence of term w with a mixture of topic signature tk’s language model and the background
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collection language model,

P (w|θtk , C) = λP (w|θtk) + (1− λ)P (w|C) (2.13)

and maximize the log likelihood of generating document sets associated with tk, Dk,

logP (Dk|θtk , C) =
∑
w

c(w,Dk) logP (w|θtk , C) (2.14)

2.2.2 Kullback-Leibler Divergence Language Model

One limitation of the query likelihood language model is that it cannot handle relevance

feedback and query expansion in a principled way. The Kullback-Leibler (KL) divergence

language model is proposed to address this problem26. KL divergence is a measure origi-

nated from information theory, which measures the distance between two probability dis-

tributions. If we use θQ and θD to denote the query and document word distributions,

i.e., query and document language models, respectively. The KL-divergence of θQ from θD,

denoted DKL(θQ‖θD), measures the information lost when θQ is used to approximate θD
27.

In IR, it is desirable that the less information is lost the better. Therefore we should rank

documents using negative KL divergence:

Score(Q,D) = −DKL(θQ‖θD) (2.15)

= −
∑
w∈Q

P (w|θQ) log
P (w|θQ)

P (w|θD)
(2.16)

=
∑
w∈Q

P (w|θQ) log p(w|θD)−
∑
w∈Q

P (w|θQ)logP (w|θQ) (2.17)

∝
∑
w∈Q

P (w|θQ) logP (w|θD) (2.18)
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∑
w∈Q P (w|θQ) logP (w|θQ) in the above equations does not affect document ranking,

therefore can be dropped in speeding up the scoring process. With this formalization, now

we can do both relevance feedback and document expansion in language model. In the case

of relevance feedback, we need to come up with a better query language model, θ̂Q, which

can be, as an example, interpolated with an expanded query model θF :

θ̂Q = (1− λ)θQ + λθF (2.19)

where λ controls the relative weights between the original query language model and

the relevance feedback model. In the case of document expansion, the goal is to develop a

better document language model θ̂D.

The Relevance Model use a different way to deal with relevance feedback28.

2.2.3 Cluster-based Retrieval Model

Cluster-based retrieval models are founded on the famous Cluster Hypothesis which states

that “closely associated documents tend both to belong to the same clusters and to be

relevant to the same requests”29? . Justifications of using clustering in language models

as shown in previous studies include: (1) similar information need under the query can be

met with similar documents30; (2) corpus structure should be a good source of evidence for

smoothing documents31; (3) using good neighborhood documents can solve the insufficient

document sampling issue32.

Liu and Croft proposed to use cluster to smooth language model33. They interpolate

the document language model with a cluster language model:
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P (w|D) = λPML(w|D) + (1− λ)P (w|Cluster) (2.20)

= λPML(D) + (1− λ)[βPML(w|Cluster) + (1− β)PML(w|Coll)] (2.21)

where P (w|Cluster) is the cluster language model and PML(w|Cluster) is its maximum

likelihood estimation. They further studied three ways of representing a cluster: concatenat-

ing all member documents of a cluster into a large document; term frequency (TF) mixture

representation consisting of a weighted mixture of term frequencies of member documents;

document model (DM) mixture consisting of a weighted mixture of document language

models of member documents34. Of the three methods, DM mixture method performs the

best.

Other than being used for smoothing language model, cluster can also be used as a

retrieval strategy. It is based on the observation that often a large percentage of relevant

documents belong to some query-specific clusters. If we can retrieve these optimal clusters

and then either interactively improve it based on user’s feedback or automatically do a local

re-ranking, the retrieval effectiveness will be increased35.

Citations indicate strong relationships among documents, and have been used in clus-

tering documents36. They are potentially helpful for both the cluster-based smoothing and

cluster-based retrieval tasks. However, based on our knowledge, no previous research has

experimented with citation-based clustering for either of the tasks. This may due to that

datasets used in previous related studies usually do not carry citation information. In lit-

erature search task domain, citations is an important part and abundant. Therefore, it will

be very interesting to examining citation’s role in these tasks for literature search.

Chapter 2: Literature Review



24

2.3 Semi-structured Retrieval Models

In most retrieval models, documents are represented as bags of words, omitting the struc-

ture of the document. One way to deal with semi-structured documents is to simply merge

words from fields as a single document. But that fails to exploit the structure information of

the document, which is potentially useful. In the early Text REtrieval Conference (TREC)

tasks, researchers found that retrieval effectiveness can be improved when multiple repre-

sentations of the document or collection are combined in a post retrieval fusion approach37.

This brought about a set of data fusion methods, such as CombSum37, CombMNZ37, Con-

dercet38, etc., which fuse either the score result or the rank result of multiple runs over

different document representations or retrieval algorithms. The first retrieval approach

that deal with semi-structured document is based on this data fusion approach. It is called

the small document approach. In this approach, each field of the document will be consid-

ered and a small document and scored against the query. At the ranking stage, these scores

will be combined using data fusion techniques. For a document D consisting of k Fields F .

The document score against a query Q is given by:

Score(Q,D) =
k∑
j=1

vj × Score(Q,Fj) (2.22)

where Score(Q,Fj) can be scored using any appropriate retrieval model, e.g., BM25,

query likelihood language model, etc., and vj is the weight for Fj , which is trained or

assigned based on some kind of prior information. Wilkinson39 studies combining multiple

representations of document fields in retrieving structured documents comprehensively.

However, Robertson criticized this approach in that when using BM25 as the field scoring

model, it can lead to poor performance, because, among other reasons, it breaks “the
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carefully constructed non-linear saturation of term frequency in the BM25 function”4. In

BM25 and most modern term weighting functions, there is a non-linearity on the term

frequency component based on that “information gain on observing a term first time should

be greater than the information gain on subsequently seeing the same term” (Robertson et

al., 2004). The small document approach apparently will break this non-linearity, because

terms may be observed multiple “first time” in a document if the fields are scored using

BM25 separately. To address this issue, Robertson proposed the BM25F model, in which the

original fields terms are merged into a single unstructured document and term frequencies

of terms in a field are weighted based on its original field weight. For example, given a

term w occurs in the title field once, and we give the title field a weight of 2, w will be

merged to into the final document with a term frequency of 2 to be combined with its other

occurrences. Then the final score of the document against a query is given by this new

pseudo document D′:

Score(Q,D) = Score(Q,D′) = Score(Q,
k∑
j=1

vj Fj) (2.23)

where Fj is the term frequency vector for the j-th field, and vj is its weight. This

approach is called the in-model combination approach5. The key of this approach is to

preserve the properties of the underlying retrieval model, e.g. BM25, as much as possible.

Another popular in-model combination approach for semi-structured information retrieval

is the mixture-based language model proposed in40. In this model, a language model

developed for each field, the document is a mixture of the individual language models:

P (Q|D) =
m∏
i=1

P (qi|D) =
m∏
i=1

k∏
j=1

P (qi|Fj)P (Fj |D) (2.24)
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where P (qi|Fj) is probability of generating query term qi from field Fj , P (Fj |D) can

be regarded as the weight of a particular field. It is important to note that the generative

nature of the model is preserved by ensuring
∑k

j=1 P (Fj |D) = 1. This model is found to

be effective for known item search tasks40.

In existing field-based retrieval models, both the BM25F and the mixture language

model, fields are assumed to be non-repeatable, non-hierarchical and of which the terms are

draw from the same vocabulary. These assumptions may not hold, when we are dealing with

certain fields. For example, the author and keyword fields in literature search are usually

drawn from completely different vocabularies. Therefore there is a need to address the

vocabulary mismatching issue across fields when scoring the field against the query term.

We have not seen any work done in this respect for semi-structured information retrieval

yet.

2.4 Bibliometrics and information retrieval

Searching in scientific literature differs from that in the general domain in that the under-

lying scientific literature corpus is with regularities governed by the dynamics of scientific

community and communications. These laws and regularities inherent in scientific liter-

atures can be used in enhancing retrieval efficiency and effectiveness. The last century

witness discovery of several important bibliometric laws, including the Bradford Laws of

scattering of scientific literatures, Lotka’s law of author productivity and Price’s law of lit-

erature decay. These laws reveal important characteristics of the scientific literature space.

But their application in information retrieval is limited.
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2.4.1 Existing work on using citation in information retrieval

Recent years have seen growing interests in combining bibliometrics and information re-

trieval (IR), the two major specialties of information science41. White proposed a synthesis

of the two under Sperber and Wilson’s relevance theory, leading to a novel Pennant visual-

ization for accessing literature42. Extensive researches have been carried on leveraging the

inherent regularity and dynamics of bibliographical entities in scientific information spaces

to improve search strategies and retrieval quality43;44. Mutschke et. al. argue that concep-

tualization of scholarly activity and structure in science can be used to improve retrieval

quality43. Their examples include using co-word analysis for query expansion, using Brad-

ford’s law of information distribution pattern and co-authorship network analysis results to

re-rank search results.

In practice, the idea of systematically using citation to assist searching scientific litera-

ture at least started as early as Garfield’s initiation in creating citation indexes for scientific

articles in the 1950s45. Citation following functions are integral component of existing lit-

erature search systems such as the Thomson Reuters Web of Science (formally ISI Web of

Science), Citeseer46, and Google Scholar.

The IR community also studied citation’s potential in enhancing retrieval effectiveness.

Salton found out that textual similarity correlated with citation similarity and proposed

using terms from bibliographic citation documents to augment original document repre-

sentation47. Many other early work on using citation relations in information retrieval is

reviewed by Smith48. In some studies, citation is regarded as a separate/alternative repre-

sentation of the textual content therefore can be used in retrieval of the document49;50.

We can categorize recent researches on leveraging citation in retrieval as following:

• Model citation as a source of query independent score and combine them with content
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based score: Yin et al. studied linearly combining content score and link score modeled

under the BM25 model to improve biomedical literature retrieval51.

• Derive language model document priors based on citation analysis: Meij and de Rijke

studied deriving document priors from citation counts52. Zhao and Hu explored deriv-

ing document priors based on citation induced PageRank and co-citation clustering8.

• Use citation as retrieval strategies: Larsen studies the “boomerang” effect, which is

to use frequently occurring citations in top retrieval result to query against citation

indexes for relevant documents53.

• Use citation network as a relevance propagation mechanism: Norozi et al. experi-

mented with a contextualization approach to boost document scores with the scores

of their random walked neighborhood documents over the in-link and out-link citation

network54.

• Finding index terms through citation: Bradshaw proposed the idea of Reference Di-

rected Indexing (RDI), in which document are index by terms from their citation

windows55. Ritchie studied using citation context to enhance retrieval effectiveness56.

They extract terms from citation index context, and use those terms to enhance the

representation of the cited papers56. Their results shows that terms from citation

context can improve the retrieval effectiveness by up to 7.4%, and weighting terms

from citation context higher increase the improvement (Ritchie, 2008).

However, in some approaches, using citation brings improvements in retrieval effec-

tiveness, while in others not. The overall question on whether citation will help improve

retrieval effectiveness is inconclusive. Moreover, no study exists in using citation structure

to smooth language model.
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2.5 Learning to Rank for IR

Established retrieval models such as BM25 and query likelihood language model are pop-

ular because they are fast enough to be run over the entire document index and usually

deliver reasonable good results. However, they mostly rely on term and document statistics

features, ignoring many other potentially useful features. The process of incorporating ad

hoc features into those models is cumbersome and involves a lot of tuning. For example,

it is non trivial to include document independent features such as PageRank, URL length

and Click Distance to the BM25 model as shown in previous research57. As more and more

features are available, it is even more difficult to find appropriate ranking/scoring functions

that can utilize them. In this respect, a new paradigm of great surging interest arises in

recent years, which is to use discriminative machine learning approaches to learn implicit

ranking functions58. In this framework, large amount of features can be easily applied,

and varieties of established machine learning algorithms can be used in train rankers with

training data sets.

The learning to rank problem can be formulated as given a set of query- document pairs,

< q, d >, we want to learn a set of function f(q, d) which will classify those pairs in correct

order. Machine learning techniques are generally used in finding the f . There are two

ways to categorize learning to rank methods, either by their loss functions or the machine

learning techniques they use59. In the former taxonomy, learning to rank methods can be

categorized into: point-wise, pair-wise and list-wise approaches. In the latter, they may be

categorized into SVM-based, Boosting SVM, Neural Network-based and other approaches.

Using machine learning techniques to learn parameters for retrieval models has been

explored in early 1990s60. But it was unsuccessful then. With the rise of the web, as more

and more training data are available, machine learned techniques become more and more
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used in information retrieval.

2.5.1 Point-wise Approach

In the point-wise learning to rank approach the goal is, for a input document dii, to

learn either a real value or categorical label yi, and then to rank all the concerned doc-

uments based on yi. Regression and classification algorithms are generally used in point-

wise approach. Representative point-wise ranking algorithms include: subset ranking61;62,

McRank63, Prank62, etc.

2.5.2 Pair-wise Approach

In information retrieval, we generally care more about the ordering of the returned doc-

uments than their actual scores. In other words, given we know the preferences over any

pair of documents in a search result set, it is possible to construct an overall ordering of

all the documents in it. With this insight, the pair-wise learning to rank approach turns

the ranking problem into a binary classification problem. The input here becomes docu-

ment pairs, e.g. (du, dv), and the output is the preference yu,v. Such a reformulation of

the ranking problem makes it possible to use many powerful classification algorithms such

as Support Vector Machines (SVM) for learning to rank tasks. Representative pair-wise

ranking algorithms include Ranking SVM64, RankBoost65, LambdaMART66, RankNet67,

etc.

2.5.3 List-wise Approach

Methods such as pairwise approaches has the drawback that a difference between two items

on the top of the search results list has the same effect as the pair near the bottom of

the list, which is counter-intuitive in a ranking setting. The list-wise approach solved

this problem by learning over the whole search results list, in other words, it explicitly
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consider the order effects of documents. Later researchers found that directly optimizing

towards the IR metrics, e.g. DCG@k has been shown an effective measures than point-

wise and pair-wise approaches. The input here becomes a list of document, ~d = dj
m
j=1,

and the output is the optimal permutation of ~d, πy. The difficulty in this approach is

that IR metrics are not continuous, therefore are difficult to optimize. Some measures are

taken to make them optimizable. Representative list-wise ranking algorithms: ListNet68,

ListMLE69, AdaRank70, SVMMAP71, etc.

Overall, list-wise and pair-wise approaches generally outperform point-wise approaches.

And the current state of the art learning to rank algorithms are: LambdaMART, Rank-

Boost, RankNet and AdaRank. Many learning to rank algorithms are implemented in open

source toolkits. Several existing popular learning to rank toolkits include Ranklib , jforests

and sofia-ml .

2.5.4 General Process of Learning to Rank

The general process of learning to rank include sampling, learning the ranking model based

on training data and application the learned model to test data. A typical learning to rank

process follows a top k retrieval and feature extraction72;73.

• Top k Retrieval: retrieve top k, e.g. 1000, documents use a state of art retrieval

model, e.g. BM25, as the basis for re-ranking.

• Feature Extraction: extracting features, such as fielded weighting scheme, query fea-

tures.

• Model Learning/Application: learn the ranking model based on the training data/deploy

the learned model to running IR system.
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Recently Dang et. al. proposed a two-stage learning to rank framework for information

retrieval: first, retrieve a best subset of documents using a limited set of textual features,

then train a final ranking model with a larger set of query-and document-dependent features

to re-rank the subset74. Their experiments show that this method outperforms the general

learning to rank approach, which does not optimize the top-k retrieval. This indicates

that different feature groups may be appropriate for different stages of the learning to rank

process.
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Chapter 3: Structure-aware Retrieval Models for Literature Search

This chapter investigates structure-aware retrieval models for literature search. Mainstream

IR researches are built around the unstructured document model. Documents are treated

as bag of words, and document structure and entities though play great role as part of the

document, are not emphasized enough in existing IR modeling approaches. This can be

shown in that most reported ad hoc IR experiments are typically conducted on title and

abstract parts, ignoring other information such as subject descriptors, author names, and

publishing venues so on.

Academic literature information resources are generally metadata rich. For example,

books are with title, author, publisher fields and papers have title, author, venue, references,

citations and other fields. These fields as alternative representations can potentially help

retrieval of documents. But there are not many efforts in leveraging them in building

effective retrieval models. This chapter first reviews several retrieval models that can deal

with semi-structured documents, and then conduct experiments with non-field, single filed

and field-based retrieval models on the iSearch BK and PN sections to investigate their

performance in leveraging scientific literature structure information.

3.1 Structure-aware Retrieval Models

When dealing with fields, the Principle of Combination is generally employed, which states

that “effective integration of more information should lead to better IR”49. The justifi-

cation of combining multiple representations of documents in information retrieval is that

all evidence may be helpful50. Combination can be done in two manners: combine term
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frequency level from different fields or combine scores of different fields. BM25F and PL2F

belongs to the former category and Mixture of Language Models (MLM) and Probabilistic

Retrieval Model for Semistructured Data (PRMS) the latter.

3.1.1 BM25F

The BM25F model is proposed for extending the BM25 model to structured information4.

In this model, term frequencies are expanded in advance to form a joint document model,

then the query are evaluated over this single document instead of the individual fields. In

BM25F, the weighting scheme for a term in a fielded document is given by the following

formula:

w =
(k1 + 1)

∑
f vf tff

k1((1− b) + b dl
avdl ) +

∑
f vf tff

log
N − df + 0.5

df + 0.5
(3.1)

where tff is term frequency of a term in field f , vf is the weight given to that field, dl

is the document length, avdl is the average document length, df is document frequency of

the term in the whole collection, and N is the total number of documents, k1 and b are free

parameters.

3.1.2 PL2F

PL2F is another field-based weighting model from the Divergence from Randomness (DFR)

framework. PL2F applied a per-field term frequency in scoring a fielded document75. In

PL2F, the score of a document against a query is given by

Score(d,Q) =
∑
t∈Q

qtf

qtfmax

tfn

tfn+ 1
(tfn∗ log2

tfn

λ
+(λ−tfn)log2e+0.5 log2(2π∗tfn)) (3.2)

Chapter 3: Structure-aware Retrieval Models for Literature Search



35

where qtf is the query term frequency, and qtfmax is the maximum query term frequency.

tfn is the normalized term frequency:

tfn =
∑
f

(wf ∗ tff ∗ log2(1 + cf ∗
avglf
lf

)) (3.3)

where wf is the parameter for the weight of field f and cf is length normalization

parameter for f .

3.1.3 Mixture of Language Models (MLM)

Mixture of language models is an approach to handle structured documents in the language

modeling framework. It constructs a language model for each field, and compute the doc-

ument score based on weighted combination of the individual field scores40. The score of

query Q against D in MLM is given by:

P (Q|D) =

m∏
i=1

P (qi|D) =

m∏
i=1

k∏
j=1

P (qi|Fj)P (Fj |D) (3.4)

where P (qi|Fj) is probability of generating query term qi from field Fj , P (Fj |D) can

be regarded as the weight of a particular field. It is important to note that the generative

nature of the model is preserved by ensuing
∑k

j=1 P (Fj |D) = 1.

3.1.4 Probabilistic Retrieval Model for Semistructured Data (PRMS)

In aforementioned models, the weights for combining fields are often given heuristically or

trained using optimization algorithms. In the probabilistic retrieval model for semistruc-

tured data, Kim proposed a method to calculate the weights based on the probability of

mapping a query term to a field P (f |q)76. In this model, the probability of generating the
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query Q from a fielded document D is given by:

P (Q|D) =

m∏
i=1

n∑
j=1

PM (Fj |qi)P (qi|Fj , D) (3.5)

where the weights, or mapping probability of a query term qi to a field Fj is estimated

as:

PM (Fj |qi, C) =
P (qi|F,C)∑

Fk∈F P (qi|Fk, C)
(3.6)

This implies that the more probable a term being generated from a field’s collection

language model, the larger its mapping probability to that field. To illustrate this with an

example, in a semi-structured movie dataset, term “meg ryan” will have high weight to be

associated with the cast field, while “ romance” will have high weight to be associated with

genre field.

3.2 Problem Description and Research Design

Our purpose of this study is to assess the effectiveness of aforementioned four structure-

aware retrieval models for literature search. To achieve this goal, we run IR experiments of

different structure-aware retrieval models on two fielded test collections. As it is nontrivial

to correctly implemented all models in a single retrieval toolkit which scales to our collection,

we adopt the most authoritative implementation of each model in well-known open source

information retrieval libraries. Specifically, for BM25F and PL2F, we choose the Terrier

toolkit1, MLM the Indri toolkit 2 and PRMS the Galago toolkit 3 . Using different retrieval

libraries necessarily make it difficult to compare the results among different structure-ware

1http://terrier.org/
2http://sourceforge.net/p/lemur/
3http://sourceforge.net/p/lemur/wiki/Galago/
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retrieval models, but as our focus here is to assess effectiveness of structure-aware retrieval

models for literature search instead of comparing them with each other. Therefore, in the

experiments conducted with each toolkit, we compare the structure-aware model run with

the non-fielded baseline run in that toolkit. The baseline is generally BM25 or Language

Model with Dirichlet smoothing, the two state of the art IR baseline models.

3.3 Datasets

We use the BK and PN sections of the iSearch test collection for our experiments in this

section. Table 3.1 and 3.2 show the basic statistics of the iSearch-BK and iSearch-PN

sections. All collections are stemmed using the Porter stemmer and filtered out stop words

with a stop word list of 741 common words from the Terrier IR toolkit.

Table 3.1: Dataset Statistics

Number of Documents Vocabulary Size # of Tokens

iSearch-BK 18441 48655 573678
iSearch-PN 291244 182123 26667623

Table 3.2: iSearch BK and PN Field Statistics

Field # of Tokens Avg. # of Tokens

BK TITLE 168759 9.15
AUTHOR 59420 3.22
SUBJECT 89190 4.84
DESCRIPTION 256309 13.90

PN TITLE 2059682 7.07
AUTHOR 1248335 4.29
SUBJECT 1473399 5.06
DESCRIPTION 21886207 75.15

3.4 Evaluation of BM25F and PL2F

For BM25F and PL2F models, we use the implementation in Terrier toolkit. We index the

BK and PN sections of the iSearch collection using the Terrier toolkit. Both BK and PN

come with four fields: TITLE, AUTHOR SUBJECT, and DESCRIPTION. For each field,
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we build a separate index. We use the total 65 topics as our queries. For both BK and

PN, three sets of experiments are run: (1) Non-field experiments in which all fields of a

document are collapsed into a single text field and retrieval is conducted over this index

using both BM25 and PL2 retrieval models. (2) Single field experiments in which separate

field index are used for the retrieval. For simplification, we use only the PL2 retrieval model

for these runs. (3) Field-based experiments in which field-based retrieval model BM25F and

PL2F are used for the retrieval.

3.4.1 Parameter Training

For field-based retrieval model, it is challenging to find out the set of proper parameters for

the model. Robertson77 recommends several approaches for finding out parameters for the

BM25F models. In this chapter, following (Macdonald, 2009)78 we train the parameters for

each field-based retrieval models. Both BM25F and PL2F have two sets of parameters, one

is for per-field length normalization, and the other field weighting. We used the Simulated

Annealing algorithm79 to tune the parameters for different retrieval models.

For field based retrieval models, the learned field weights are shown in Table 3.3.

Table 3.3: Learned weights for different fields for BM25F and PL2F on iSearch- PN
and iSearch-BK

Field Weights TITLE AUTHOR SUBJECT DESCRIPTION

BK BM25F 2.4685 22.4991 15.7894 10.9714
PL2F 1.8645 13.6240 7.1845 5.6643

PN BM25F 9.6350 3.9478 0.9888 5.7248
PL2F 27.3662 2.3240 17.1356 8.5037

3.4.2 Results and Discussion

Table 3.4 and 3.5 are the experiment results for BK and PN sections respectively.

Based on the experiment results, we can see that field-based models achieve better than

non field retrieval models setups for both BK and PN. The improvement in PN is greater
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Table 3.4: iSearch-BK Fielded Experiment Results

Model map P@10 ndcg bpref

Non Field PL2 0.1994 0.1407 0.3381 0.3819
BM25 0.2025 0.1542 0.3406 0.3889

Single Field TITLE PL2 0.1016 0.0678 0.2334 0.3913
AUTHOR PL2 0.0559 0.0492 0.1711 0.2662
SUBJECT PL2 0.1031 0.0932 0.2383 0.3523
DESCRIPTION PL2 0.1174 0.1102 0.2522 0.2851

Field-based PL2F 0.1999 0.1492 0.3433 0.4224
BM25F 0.2096 0.1542 0.3486 0.4194

Table 3.5: iSearch-PN Fielded Experiment Results. A N indicates significant improve-
ment over BM25 baseline at the p < 0.05 level using two-tailed paired t-test.

Model map P@10 ndcg bpref

Non Field PL2 0.1044 0.1359 0.2776 0.3213
BM25 0.0946 0.1234 0.2652 0.3008

Single Field TITLE PL2 0.0573 0.0750 0.1680 0.2247
AUTHOR PL2 0.0002 0.0000 0.0072 0.0211
SUBJECT PL2 0.0003 0.0000 0.0104 0.0429
DESCRIPTION PL2 0.0997 0.1156 0.2635 0.2975

Field-based PL2F 0.1083 0.1406 0.2868 0.3326
BM25F 0.1231 0.1422N 0.2919 0.3128

than that in BK. We hypothesize the quality of the metadata matters. The iSearch-BK

dataset are based on the bibliographic records of the national library of Denmark while

iSearch-PN is a crawl of the arXiv bibliographic records. Quality of the former should be

better than that of the latter because they are created by professional librarians, while the

latter are provided by the authors.

Single field runs are worse than both non-field and field-based runs. This is as expected

because each field is only a part of the original document. Across the two collections, single

field runs of PN is generally worse than that of BK, even though their average length is

longer than that of BK. We think this again can be attributed to the metadata quality

difference between the two collections.

Comparing the performance of the four fields setup, we can see that AUTHOR field is
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the worst performing field in both collections. We hypothesize this is due to the vocabulary

mismatch between the query and the AUTHOR field. More work needs to be done to

address this vocabulary mismatch issue before AUTHOR field and other fields with similar

mismatch can be used effectively in a structure-aware retrieval model.

3.5 Evaluation of PRMS

The PRMS model differs from other fielded retrieval models in that it does not predefine

field weights. Instead the weight of a query term in a field is derived as a mapping prob-

ability estimated based both on field terms statistics and collection term statistics. With

the implementation of PRMS in Galago search engine, we compared its performance with

BM25F and baseline Dirichlet Language Model in Galago. Figure 3.1 is an example PRMS

query #prms(Diffractive optics) converted to native query format.

We conducted the performance of PRMS and BM25F on the iSearch collection. We

report the following results.

3.5.1 Results and Discussion

Table 3.6 and 3.7 gives the results of BM25F and PRMS in isearch BK and PN section

respectively. In both collections, PRMS performs worse than baseline non fielded retrieval

model.

Table 3.6: BK field models results. Results better than baseline are in bold. A N

indicates significant improvement over baseline.

map P@10 ndcg bpref

baseline 0.2524 0.1915 0.3997 0.4638
prms 0.1026 0.086 0.2323 0.3395
bm25f 0.1124 0.1035 0.2345 0.3432
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#combine:norm=false(

#wsum:0=0.0:1=0.0:2=0.0:3=0.0(

#dirichlet:lengths=title(

#lengths:title:part=lengths()

#counts:Diffractive:part=field.title())

#dirichlet:lengths=author(

#lengths:author:part=lengths()

#counts:Diffractive:part=field.author())

#dirichlet:lengths=subject(

#lengths:subject:part=lengths()

#counts:Diffractive:part=field.subject())

#dirichlet:lengths=description(

#lengths:description:part=lengths()

#counts:Diffractive:part=field.description()))

#wsum:0=0.2436:1=0.0462:2=0.6337:3=0.0763(

#dirichlet:lengths=title(

#lengths:title:part=lengths()

#counts:optics:part=field.title())

#dirichlet:lengths=author(

#lengths:author:part=lengths()

#counts:optics:part=field.author())

#dirichlet:lengths=subject(

#lengths:subject:part=lengths()

#counts:optics:part=field.subject())

#dirichlet:lengths=description(

#lengths:description:part=lengths()

#counts:optics:part=field.description())))

Figure 3.1: Example Galago PRMS Query

3.6 Evaluation of MLM

We build fielded index with the Indri search engine. Baseline: mixture model for fielded

search. We used the Indri toolkit to execute a structured query on the corpus. For example,

for a sample query, “manipulation nano spheres peptides immobilisation”, the query syntax

for mixture language model is formulated as in Figure 3.2.

3.6.1 Results and Discussion

Table 3.8 and 3.9 gives the results of MLM on iSearch BK and PN section respectively.
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Table 3.7: PN field models results. Results better than baseline are in bold. A N

indicates significant improvement over baseline.

map P@10 ndcg bpref

baseline 0.0551 0.0857 0.198 0.2431
bm25f 0.0639 0.0937 0.1993 0.2297
prms 0.0438 0.0762 0.1737 0.2401

#combine( #wsum( 3.0 manipulation.author

5.0 manipulation.title

1.0 manipulation.description

2.0 manipulation.subject )

#wsum( 3.0 nano.author

5.0 nano.title

1.0 nano.description

2.0 nano.subject )

#wsum( 3.0 sphere.author

5.0 sphere.title

1.0 sphere.description

2.0 sphere.subject )

#wsum( 3.0 peptide.author

5.0 peptide.title

1.0 peptide.description

2.0 peptide.subject )

#wsum( 3.0 immobilise.author

5.0 immobilise.title

1.0 immobilise.description

2.0 immobilise.subject ) )

Figure 3.2: Example Indri MLM Query

The MLM model performs well on the BK collection but not the PN collection.

3.7 Conclusions

In this chapter, we experiment with multiple structure-aware retrieval models on the iSearch

test collection. Based on our experiments, in most case fielded retrieval models do not

outperforms baseline non-field retrieval model (BM25 and language model with Dirichlet

smoothing). This is in contrast with previously reported studies. We can conclude that

structure-aware models though shown effective in known item finding task in earlier studies,

Chapter 3: Structure-aware Retrieval Models for Literature Search



43

Table 3.8: BK fielded Indri Resutls

map P@10 ndcg bpref

baseline 0.1795 0.1424 0.3233 0.3943
MLM 0.2492N 0.1847N 0.3995N 0.4925N

Table 3.9: PN fielded Indri Results.

map P@10 ndcg bpref

baseline 0.1298 0.1531 0.3309 0.3585
MLM 0.1222 0.1547 0.3246 0.3758N

do not work well in ad hoc literature retrieval task.

In Chapter 5 on learning to rank for literature search, we will further study including

weighting model based features built up on fielded retrieval models and non fielded retrieval

models, and query independent features into the learning to rank framework and examine

their performances on enhancing retrieval effectiveness.
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Chapter 4: Bibliometric-enhanced Literature Search

In this chapter, we explore using citation and co-citation analysis in enhancing literature

search. We test using document priors derived from citation and co-citation analysis; we ap-

ply citation, co-citation, textual and topical induced similarity in the cluster-based retrieval

framework.

4.1 Problem Definition

In this part, we are going to study using citation network to enhance literature retrieval. We

hypothesize that citation information are helpful for searching literature. Our purpose is to

leverage inter-document similarity derived from bibliometric analysis for literature search.

We tested multiple retrieval frameworks to leverage citation in information retrieval.

We first assess the potential of using citation in literature search. An exploratory study

on the distribution of relevant documents in the iSearch test collection reveals that citation

based clusters show a great pattern that has the potential to be exploit for effective literature

search. We then use document priors in language model based literature search. Thirdly,

we explored document expansion based on neighborhood documents in terms of citation

related similarity measures.

4.2 Relevant documents distribution in citation clusters

We test the cluster hypothesis in the context of citation based document expansion. Inter

document similarities are based on citation.

Many efficient and scalable graph cutting algorithms can be used in partitioning the

citation and co-citation graphs. The multilevel graph clustering algorithms are particular
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suitable because they can handle prohibitively large graphs by eliminating the need for

eigenvector computation80. The normalized cut version of the algorithm takes the objective

function to minimize the number of edges among different partitioned subgraphs:

NCut(G) = min
V1,...,Vk

k∑
c=1

edges(Vc, V \ Vc)
degree(Vc)

(4.1)

where edges(A,B) is the sum of the edge weights between nodes in set A and set B,

edges(A,B) =
∑

i∈A,j∈B Aij .

4.2.1 Partition Literature Space via Cutting Citation Graphs

We first conducted a preliminary study to explore the validity of using citation network

based clustering as a way to shard scientific literature for effective and efficient literature

search.

4.2.2 Distribution of relevant documents in each cluster

Our results show that relevant documents are often concentrated in a few clusters resulted

from graph cutting citation graphs. This indicates that it is promising to adopt a selective

search strategy during the search process because the retrieval effectiveness would not be

harmed.

We used the iSearch test collection in our experiment. The iSearch collection is an infor-

mation retrieval test collection prepared by the iSearch team 4.1. It approximately consists

of 18K book MAchine-Readable Cataloging (MARC) records (BK), 291K articles metadata

(PN) and 160K PDF full text articles (PF), and 66 topics drawn from physics researchers’

real information needs with corresponding relevance judgment data7. The iSearch collec-

tion is particularly suitable for our experiment in that it has 3.7 million extracted internal

citation entries among papers in both the PN and PF sections. With these citations, we can
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Table 4.1: Statistics of the Citation and Co-Citation Graph of the iSearch Collection

Citation Graph Co-citation Graph

Size 259,093 259,093
Volume 3,768,409 33,888,861
Clustering coeffiient 0.2261 0.5910

build both citation and co-citation graphs of the PN and PF sections. For easy to compare

sharding results between the citation graph and the co-citation graph, we choose a subset

of the iSearch collection, the 259,093 PN and PF documents that are cited at least once.

Two graphs are constructed, with their basic statistics reported (Table 4.1 and Figure

4.1, 4.2). We can see that the co-citation graph has a larger clustering coefficient than that

of the citation graph, which is reasonable because it has more edges, thus better connected.

The degree of both graphs follows a power law distribution. We then used the Graclus 4.2

graph clustering software, which implements the aforementioned normalized cut algorithm,

to create a 10-cluster cut for each of the graphs. As a baseline, we also created a 10-cluster

partition of the collection based on random document allocation.

For each query, we examine the number of relevant documents in each shard, and order

the shards in descending order based on the number of their consisting relevant documents.

For each sharding policy, we aggregated the shard ranks over all the involved topics/queries.

The final results for the shard rank are plotted in Figure 4.3.

An advantageous pattern of relevant document distribution in shards for selective dis-

tributed literature search is shown from the results of our proposed sharding policy. When

documents are randomly assigned to shards, they tend to be evenly distributed in different

shards. However, when the shards are resulted from citation or co-citation graph cutting,

a few shards consist of most of the relevant documents for the search query. These shards

can then be the optimal shards for a given query. Comparing the two kinds of graphs, we
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Figure 4.1: iSearch Citation Graph Degree distribution

can see that sharding based on co-citation graph partition performs even better than that

of citation graph partition in terms of the potential to retrieve one or a few optimal shards.

This interesting pattern indicates that sharding via citation and co-citation graph cutting

is a promising direction for distributed literature search.

Our results shows that partition a scientific literature collection through citation graph

partition will lead to effective search results.

4.3 Language Model Document Priors

We proposed a way to include document priors into the language model retrieval framework.

We test several ways to model document citation in the language modeling for information

retrieval framework.
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Figure 4.2: iSearch Co-citation Graph Degree distribution

4.3.1 Document Priors and Their Estimation

Analyzing paper citation and co-citation network of the iSearch dataset, we propose three

kinds of document priors: paper citation count, paper PageRank score induced from citation

relationships and co-citation clusters. We tested two kinds of prior estimation methods:

maximum likelihood estimation (MLE) and binned estimation. For the MLE approach we

also tried a logarithm version. We explain here the three kinds of document priors and how

to calculate them.

Paper Citation Count Prior In this case, document prior P (D) is directly estimated

based on the proportion of the number of times of a paper being cited (Ci) to the total
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Figure 4.3: Distribution of relevant document across shards

number of times of all papers being cited:

Pcitedcount−mle(D) =
Ci∑N
k=1Ck

, (4.2)

and the logarithm version:

Pcitedcount−log−mle(D) =
log(Ci)∑N
k=1 log(Ck)

. (4.3)

Paper PageRank Prior We use the internal citation structure of the iSearch test collec-

tion to calculate the PageRank value for all the papers in our index. The PageRank value
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of a given paper d is:

PageRank(d) = λ
∑

x∈D∗→d

PageRank(x)

|Dd→∗|
+

1− λ
N

, (4.4)

where D∗→d and Dd→∗ denotes papers citing d and cited by d respectively, N is the

total number of papers in the collection. λ = 0.85 is called damping factor81. Let PRi be

the PageRank score of paper i, then document PageRank prior using MLE is:

Ppagerank−mle(D) =
PRi∑N
k=1 PRk

, (4.5)

and the logarithm version:

Ppagerank−log−mle(D) =
log(PRi)∑N
k=1 log(PRk)

. (4.6)

Paper Co-citation Cluster Prior In this case, documents get prior probabilities based

on the cluster they belong to. We calculated the document co-citation counts and compiled

all the co-citation among the indexed papers, resulting a weighted undirected graph with

259,093 vertices and 33,888,861 edges, with edge weights being the number of times two

papers are cited together. We then use the graph clustering software Graclus1 to cluster the

document co-citation network. Graclus provides two clustering algorithms, Normalized Cut

(NCT) to minimize the sum of edge weights between clusters and Ratio Association (ASC)

to maximize edge density within each clusters80. We tried both algorithms and decided to

use NCT here because with ASC, most papers are easily clustered into one huge cluster,

preventing effective prior estimation.

In the co-citation binned estimation method, the probability a document d from a given

1http://www.cs.utexas.edu/users/dml/Software/graclus.html
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bin is given by:

Pcocited(D) =
#relevant documents of a bin

#documents of a bin
/

#documents of a bin

#total number of documents
. (4.7)

We used a cross validation method to estimate P (D) in bins. We first order the 57 topic

randomly and divide them into 5 folds (11, 11, 11, 12, 12). Then at each round we use 4

folds to estimate the P (D), and use the other 1 fold to test with the prior. We rotate 5

rounds, with each fold being testing set once, then we average results in all the testing folds

as the final scores.

We also applied binned estimation methods on Citation Count and PageRank priors.

We divide all papers into 10 bins and used the aforementioned five fold cross validation

approach to geting the final scores. In total, there are 8 runs reported in Table 4.2

All estimated P (D) values are converted into logarithm values and applied as Indri

prior files and combined with the index using makeprior application of Indri. During the

retrieval process, they are applied to query terms according to the Indri Query Syntax

#combine(#prior( PRIOR ) query terms).

4.3.2 Experiment Results and Discussion

With the baseline no prior setup, we extensively tested JelinekMercer (JM) smoothing with

λ ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}, Dirichlet prior smoothing

with µ ∈ {100, 500, 800, 1000, 2000, 3000, 4000, 5000, 8000, 10000}, and two-stage smooth-

ing with {λ × µ}. We find JM smoothing with λ = 0.7 performs top almost on all the

four metrics we chosen. Therefore, we choose it as our retrieval model setting for the

reporting baseline and other runs. For each run, we report four mainstream retrieval effec-
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tiveness measurements: Mean Average Precision (MAP), Precision at 10 (P@10), NDCG

and BPREF.

Table 4.2: Retrieval performance using different document priors and estimation meth-
ods compared with baseline using no prior. The best overall score is shown in bold. A
N indicates significant improvement over the no document prior baseline at the p < 0.05
level using two-tailed paired t-test.

MAP P@10 nDCG BPREF

baseline-noprior 0.1152 0.1474 0.3134 0.3079
citedcount-mle 0.0990 0.1351 0.2825 0.2846
citedcount-log-mle 0.1092 0.1439 0.3046 0.3005
citedcount-bin10 0.1139 0.1452 0.3103 0.2943
pagerank-mle 0.1036 0.1386 0.2972 0.2941
pagerank-log-mle 0.1072 0.1421 0.3031 0.2989
pagerank-bin10 0.1137 0.1434 0.3099 0.2969
cocited-bin10 0.1155 0.1397 0.3122 0.3013

Table 4.2 shows our results in different setups. We can see that the overall effectiveness

of applying document priors based on citation counts, PageRank and co-citation clusters

comparing to our strong baseline no prior setup is limited. The only marginal improvement

over the baseline happens in cocited-bin10 on MAP. Still we can still see difference across

priors: overall, logarithm smoothed estimations are better than non-smoothed; binned es-

timations perform better than MLE estimation.

There are several possible reasons for our results. First, our relevant documents set is

relatively small. The total number of relevant documents in our subset of the iSearch test

collection qrels is 964, of which there are 863 distinct documents. Though that averages to

17 (964/57) relevant documents for each topic, more than half of topics (29) has only 7 or

fewer documents judged as being relevant. This may contribute to the underperformance in

binned estimation of document priors. Second, our current approach is totally independent

to content features, only considering the citation dimension. A better approach may be

to combine citation features with content features or to use document priors in a query
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dependent manner. Third, performance of document priors may depend on the type of

search tasks or queries.

We also conducted experiments with good query subset. By good query, we mean queries

with more than 9 (inclusive) relevant documents in the collection. The results are similar

to the above results. Priors are not very helpful in enhancing retrieval effectiveness.

A set of further experiments are run based on this good query set. The results are

reported as in Table 4.3.

Table 4.3: Retrieval performance using different document priors and estimation meth-
ods compared with baseline using no prior on good query set. Scores better than no
prior baseline are in bold. A N indicates significant improvement over the no document
prior baseline at the p < 0.05 level using two-tailed paired t-test.

map P@10 ndcg bpref

good-baseline 0.1109 0.2107 0.3643 0.4178
good-CITEDCOUNT 0.0955 0.175 0.3241 0.3618
good-CITEDCOUNTBIN10 0.1102 0.1929 0.3678 0.4214
good-CITEDCOUNTLOGMLE 0.1081 0.1857 0.354 0.4041
good-COCITEDBIN10 0.1122 0.2107 0.3674 0.4221
good-PAGERANKBIN10 0.1123 0.2 0.3662 0.4174
good-PAGERANKLOGMLE 0.1096 0.1893 0.3563 0.402
good-PAGERANKMLE 0.1028 0.175 0.3416 0.3894

4.4 Document Expansion based on Co-Citation Analysis

Given the unpromising results on exploiting document citation and co-citation analysis re-

sults for estimating language model document priors. In this section, We explore document

expansion approaches for boosting literature search. We hypothesize that by expanding

documents with their most similar neighborhoods we can achieve better representation of

the candidate document or boosted retrieval status value. As our focus is on bibliometric

aspects, we choose to focus on similarity functions based on citation and co-citation analysis

results. In terms of expansion, we test both expand with neighborhood document text, i.e.

term frequencies, and with neighborhood document scores.

Chapter 4: Bibliometric-enhanced Literature Search



54

4.4.1 Inter-document Similarities

We choose to compare raw co-citation count, co-citation based cosine similarity, and Howard

White’s pennant similarity.

Co-citation Counts

This similarity is based on the raw co-citation count of two papers. Often a threshold is set

to filter out low co-cited counts. We set here the threshold to 5.

Cosine Similarity based on Co-citation Counts

Given the full co-citation matrix of all the documents in the collection, the cosine similarity

between two documents can be computed using Equation 4.8. We use cosine similarity to

compute the inter document co-citation similarity.

cos(d1, d2) =

∑N
i=1CC1i ∗ CC2i√∑N

i=1CC
2
1i

√∑N
i=1CC

2
2i

(4.8)

where CC1i and CC2i are documents co-cited with d1 and d2 respectively.

Pennant Score

Pennant score is a tf · idf like score proposed by Howard White as a way to depict the

relationship between two descriptors42;82. Here we use it to describe the similarity between

two co-cited papers.

The pennant score of document d1 to document d2 is defined as the following equation:

s<d1,d2> = log(|Cooc(d1, d2)|+ 1)× log
|D|

|Cited(d2)|
(4.9)

where |Cooc(d1, d2)| is the co-citation frequency of paper d1, d2 in the corpus, |Cited(d2)|

is the total cited frequency of d2, and |D| is the total number of documents in the corpus.
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It should be noted that the score is asymmetric, such that s<d1,d2> is not necessary equal

to s<d2,d1>.

4.4.2 Document Expansion with Neighborhood Document Text

In this experiment, we expand the content of each document with its five most similar

documents. In defining the similarity, we used both document co-citation count and pennant

score.

Table 4.4 shows the results of the iSearch queries on these two expanded collections,

comparing to the baseline run based on the original collection. The experiment is run over

three indexes. The baseline consists of the full PNPFCited dataset (cf. Section 1.5.1). Run

cooc5 is based on the index constructed by expanded each document with its 5 top co-cited

documents, Run pennant5 is with 5 documents with top pennant scores.

Table 4.4: cooc5 and pennant5 document expansion experiment results

Run map P@10 ndcg bpref

Baseline 0.0970 0.1281 0.2805 0.2808
cooc5 0.0557 0.0877 0.1951 0.2383
pennant5 0.0541 0.0825 0.2024 0.2528

We can see that performance actually downgrades when we directly expand documents

with raw terms of their similar neighborhood documents. This implies that more principled

ways need to be employed for the document expansion. In the following section we further

this line of investigation.

4.4.3 Boosting Document Scores with Neighborhood Document Scores

We experiment several ways to boost the document score with its neighborhood documents

over the citation and co-citation based similarity space. The experiments are run on the

same PNPFCited collection as in previous sections.

We then use the Indri search engine to run a two step retrieval process. First do a
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baseline retrieval use our previous optimized settings (cf. Section 4.3.2), then we expand

this baseline document set with neighborhood documents based on the given similarity

measures. Three similarity matrices are generated in advance. With the original result set

and the expanded documents as the working set, we run a second retrieval run and rerank

the returned documents based on Equation 4.10.

ˆS(i) = (1− λ)S(i) + λ
∑
j∈N(i)

S(j)w(j) (4.10)

where the size of N(i) is the major parameter we tested and w(j) is normalized over

all selected neighborhood documents, S(i)is the original score of document i and S(j)

is original score of neighborhood document j. ˆS(i) is the final score used to rerank the

document set. Then this final ranking is evaluated. As our underlying retrieval model

is language model, the returned document scores are negative log probability values. To

make the score combination working properly, we recover the original document probability

by taking exponential operation, without further normalization. In the future, we will try

min-max normalization on these scores before the combination.

For each of the three similarity types, we test expanding document count from 1 to

20, and tuning the interpolate parameter λ in Equation 4.10 from 0.1 to 0.9. In total, we

get 630 set of results. 135 setups outperforms the baseline in terms of MAP, 41 cooccount

setups and 94 pennant. Top 40 are pennant setups. The best performing setup is pennant

score based expansion with 11 neighborhood documents and λ = 0.8.
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Chapter 5: Learning to Rank for Literature Search

In previous chapters, we observed that there exist many sources of evidence that are poten-

tially helpful for increasing the effectiveness of literature search. This chapter goes beyond

modeling different evidences separately by investigating a consistent way to embrace all

available evidences for literature search. We adopt the state of the art learning to rank

(LETOR) algorithms to derive composite ranking models for literature search tasks. These

machine-learned retrieval models cover a multitude of features that go beyond dominated

term statistics-based features. Under this framework, we compare several LETOR algo-

rithms as well as the performance of multiple groups of features for literature search.

Our purpose is to assess the effectiveness of structure and citation features for literature

search in the LETOR framework, as well as the performance of these features and LETOR

algorithms in a heterogeneous environment.

5.1 LETOR Algorithms

We employed the following learning to rank algorithms: Regression tree-based method

LambdaMART66;83 , Adarank70, and Coordinate Ascent84. Adarank is a list-wise learning

to rank algorithm. These algorithms are selected because of their representativeness as

being the mainstream LETOR algorithms. All LETOR algorithms are based on the imple-

mentation in the Ranklib library . During the training step, we used NDCG@100 as the

metric to optimize.
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5.1.1 AdaRank

AdaRank is a list-wise learning to rank algorithm70. Given a ranking list (permutation of

the retrieved documents) π, and the corresponding list of grades y, the AdaRank algorithm

minimize the object function
∑M

i=1(1−E(πi, yi)), where E is a listwise evaluation measure,

e.g. NDCG. Because most IR evaluation measures are generally not smooth or differentiable,

direct optimization of them is difficult. Therefore AdaRank choose to optimize the upper

bound of the above objective function,
∑M

i=1 exp(−E(πi, yi)). The learning algorithm for

AdaRank is like AdaBoost in that it outputs a set of weak rankers which will be linearly

combined as the final ranking model.

5.1.2 Coordinate Ascent

Coordinated Ascent is another linear feature-based ranking model84. It turns multivariate

optimization problems into a set of single variate problems, in that each time it chooses

only one parameter to optimize while holding all others fixed. This process repeats for all

parameters until the objective function converges.

5.1.3 LambdaMART

LambdaMART is a boosted regression tree method. LambdaMART is MART with Lamb-

daRank as the gradient. Instead of finding a linear combination of features, LambdaMART

constructs a set of regression trees using thresholds of particular features as the decision

criteria for splitting the tree.

LambdaMART has achieved good performance in several learning to rank challenges85.

Work that proposed using bagged ensembles of LambdaMART can further improve the per-

formance via combining boosting’s low bias learning potential with bagging’s lower variance

potentials86.

Chapter 5: Learning to Rank for Literature Search



59

5.2 Problem Definition

Our problem is to leverage all the available features for learning to rank in literature search.

This problem consists of the following sub questions: (1) What are the most effective feature

set? (2) Which LETOR algorithms are most effective in general and can leverage structure

and citation features?

5.3 Dataset

We use multiple subsets of the iSearch collection as our dataset. There are 65 queries

from the iSearch test collection, of which a good portion are with fewer than 9 relevant

documents. It would be difficult to reliably assess performance of learning to rank algorithms

on such a small dataset. Therefore, we propose a way to expand our LETOR dataset by

segmenting subsets of the queries by sessions. We choose queries that with more than 9

relevant documents into our pool; queries with too few relevant documents are detrimental

as training set. We recognize that many queries are actually a set of subqueries, e.g. query

002 (see Figure 1.1) has four sub queries: nano spheres, beads, magnetic, and sorting. To

expand our training and testing collections, we use these queries to generate a set of bi-

subqueries as our training and testing dataset. For example, original query 002 results six

new queries. The purpose of using bi-subqueries, rather than single subquery, is to balance

between expanding query-document sets and preserving the meaning of the original query

as much as possible for training and testing thus the confidence of the relevance label.

Table 5.1: iSearch Query Sets

BK PN PF all

Total Valid Queries 55 61 59 65
Selected Queries 16 32 30 55
Generated Bi-Subqueies 93 248 215 359

Table 5.1 gives the statistics of the original and expanded iSearch queries. With this
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query set, we reuse the original qrels to prepare the learning to rank dataset.

5.4 Experiment Design

We developed a set of features for learning to rank in scientific literature search. These fea-

tures can be categorized as query dependent, query independent, global or local features.

Some features have strong bibliometric background, e.g. co-authorship centrality and cita-

tion related features. The goal of our experiment is to evaluate the effectiveness of different

feature sets when being added to or removed from our machine learned ranking model, and

how they contribute to the final ranking functions.

The same index in previous structural retrieval models experiments are used for BK

and PN section. We build two additional indices, one for the PF section, PF, and one for

all of the BK, PN, and PF sections, i.e. BKPNPF. We used BM25 retrieval model with

query expansion to do the sampling step. Previous study shows that training parameters

for weighting models is unnecessary when treating weighting model scores as features87.

Therefore, for weighting model features, we generally used the default parameter setup,

except for field-based weighting models BM25F and PL2F, of which we use the field weights

trained with simulated annealing algorithms.

5.4.1 Features

Based on our review of previous work, we compile the following features for our experiments.

We remarks on the details of how to compute them here.

Weighting models: BM25, P2L, LM(Dirichlet LM, Hiemstra LM, TFIDF)

Field weighting models: BM25F, PL2F and individual field weighting models.

Citation related features: cited count and paper PageRank.
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Table 5.2: LETOR Features

BK PN PF all

Sampling BM25 X X X X
IR Models Features DirichletLM X X X X

Hiemstra LM X X X X
LemurTF IDF X X X X
TF IDF X X X X
DFRDependenceScore X X X X
MRFDependenceScore X X X

Cite Features Citation X X X
PageRank X X X

Field Features BM25F X X X
PL2F X X X
TITLE BM25 X X X
AUTHOR BM25 X X X
SUBJECT BM25 X X X
DESCRIPTION BM25 X X X

All features valued are normalized using the following function:

Ss =
s− smin

smax − smin
(5.1)

where s is the original score, smin and smax are the minimal and maximum scores. For

citation feature, we applied a logarithm transformation of the raw count, following previous

practice88:

ŝ = log(1 + s) (5.2)

where s is the original cited count, ŝ is the transformed count.

We conduct a baseline run using the above feature sets in literature search. We use the

Terrier IR toolkit to conduct our experiment. Weighting model features are generated with

Terrier IR Toolkit.

We choose a five-fold cross validation setup. We first learn a ranking model with all
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available features. Then an additional feature ablation process is employed to determine

the contribution of different feature groups to the final outcome.

5.5 Results and Discussion

Table 5.3, 5.4, 5.5 and 5.6 report our experiment results on the four indices: BK, PN,

PF and BKPNPF. The baseline ranker for all the indices is BM25. For each index, three

LETOR algorithms are used: AdaRank, Coordinate Ascent and LambdaMART. The train-

ing metric is NDCG@100 and the testing metrics are MAP, NDCG@20 and NDCG@100.

The results of different feature setup are reported: “all” means all applicable features are

used. “fieldbased” means only sampling score and field-based weighting model features are

used. “nofieldbased” means all features except field-based features are used. The same

naming convention applies on “singlefield”, “citation”, “pagerank”. Special note should be

given to the “cite” which consists both “citation” and “pagerank” features and “nocite”

excludes these two features. Figure 5.1, 5.2 5.3, and 5.4 show the box plots of MAP scores

for different LETOR algorithm and feature group setups for all four indices.

Table 5.3: BK LETOR results. A N indicates significant improvement over BM25
baseline at the p < 0.05 level using two-tailed paired t-test.

Ranker FeatureSetup MAP NDCG@20 NDCG@100

Baseline BM25 0.2004 0.2246 0.3192
AdaRank all 0.2332N 0.2436N 0.3544N

AdaRank fieldbased 0.2143N 0.2223 0.3311N

AdaRank nofieldbased 0.2298N 0.2316 0.3596N

AdaRank nosinglefield 0.2313N 0.2327 0.3487N

AdaRank singlefield 0.1979 0.2257 0.3196
CoordinateAscent all 0.2461N 0.2339 0.3724N

CoordinateAscent fieldbased 0.2283N 0.2180 0.3369N

CoordinateAscent nofieldbased 0.2442N 0.2424 0.3776N

CoordinateAscent nosinglefield 0.2521N 0.2380 0.3815N

CoordinateAscent singlefield 0.1904 0.2180 0.3155
LambdaMART all 0.2962N 0.3597N 0.4653N

LambdaMART fieldbased 0.2177N 0.2257 0.3434N

Continued. . .
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Ranker FeatureSetup MAP NDCG@20 NDCG@100

LambdaMART nofieldbased 0.2942N 0.3577N 0.4638N

LambdaMART nosinglefield 0.2433N 0.2580N 0.3820N

LambdaMART singlefield 0.2466N 0.3018N 0.4089N

Table 5.4: PN LETOR results. A N indicates significant improvement over BM25
baseline at the p < 0.05 level using two-tailed paired t-test.

Ranker FeatureSetup MAP NDCG@20 NDCG@100

Baseline BM25 0.0976 0.1245 0.1928
AdaRank all 0.0970 0.1150 0.1809
AdaRank fieldbased 0.1151N 0.1443N 0.2113N

AdaRank nofieldbased 0.0954 0.1139 0.1793
AdaRank nosinglefield 0.0844 0.0985 0.1512
AdaRank singlefield 0.0805 0.1049 0.1757
AdaRank cite 0.0267 0.0224 0.0444
AdaRank nocite 0.1171N 0.1402 0.2113N

AdaRank citation 0.0978 0.1265N 0.1941
AdaRank nocitation 0.1110 0.1354 0.2036
AdaRank pagerank 0.0976 0.1250 0.1929
AdaRank nopagerank 0.1111 0.1356 0.2041
CoordinateAscent all 0.1277N 0.1574N 0.2319N

CoordinateAscent fieldbased 0.1169N 0.1477N 0.2133N

CoordinateAscent nofieldbased 0.1166N 0.1442N 0.2229N

CoordinateAscent nosinglefield 0.1239N 0.1545N 0.2259N

CoordinateAscent singlefield 0.0983 0.1254 0.1943
CoordinateAscent cite 0.0977 0.1260 0.1939
CoordinateAscent nocite 0.1283N 0.1578N 0.2340N

CoordinateAscent citation 0.0980 0.1264N 0.1944
CoordinateAscent nocitation 0.1294N 0.1604N 0.2356N

CoordinateAscent pagerank 0.0973 0.1246 0.1924
CoordinateAscent nopagerank 0.1255N 0.1556N 0.2285N

LambdaMART all 0.1249N 0.1548N 0.2290N

LambdaMART fieldbased 0.1073N 0.1331 0.2001
LambdaMART nofieldbased 0.1259N 0.1563N 0.2295N

LambdaMART nosinglefield 0.1289N 0.1589N 0.2290N

LambdaMART singlefield 0.0987 0.1260 0.1937
LambdaMART cite 0.1003 0.1295 0.2014
LambdaMART nocite 0.1273N 0.1555N 0.2261N

LambdaMART citation 0.0965 0.1236 0.1917
LambdaMART nocitation 0.1329N 0.1621N 0.2336N

LambdaMART pagerank 0.0972 0.1196 0.1890
LambdaMART nopagerank 0.1233N 0.1535N 0.2268N
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Table 5.5: PF LETOR results. A N indicates significant improvement over BM25
baseline at the p < 0.05 level using two-tailed paired t-test.

Ranker FeatureSetup MAP NDCG@20 NDCG@100

Baseline BM25 0.1176 0.1608 0.2291
AdaRank all 0.0502 0.0614 0.1084
AdaRank cite 0.0762 0.1015 0.1535
AdaRank nocite 0.0746 0.1058 0.1671
AdaRank citation 0.1169 0.1619 0.2292
AdaRank nocitation 0.0594 0.0800 0.1330
AdaRank pagerank 0.1176 0.1618 0.2288
AdaRank nopagerank 0.0570 0.0792 0.1294
CoordinateAscent all 0.1179 0.1791 0.2507N

CoordinateAscent cite 0.1130 0.1554 0.2244
CoordinateAscent nocite 0.1258 0.1874N 0.2613N

CoordinateAscent citation 0.1174 0.1617 0.2284
CoordinateAscent nocitation 0.1205 0.1806 0.2546N

CoordinateAscent pagerank 0.1163 0.1612 0.2277
CoordinateAscent nopagerank 0.1220 0.1872N 0.2572N

LambdaMART all 0.1257 0.1874N 0.2573N

LambdaMART cite 0.1117 0.1560 0.2257
LambdaMART nocite 0.1272 0.1833 0.2535N

LambdaMART citation 0.1126 0.1587 0.2256
LambdaMART nocitation 0.1260 0.1881N 0.2565N

LambdaMART pagerank 0.1097 0.1539 0.2219
LambdaMART nopagerank 0.1288 0.1894N 0.2588N

Table 5.6: BKPNPF LETOR results. A N indicates significant improvement over
BM25 baseline at the p < 0.05 level using two-tailed paired t-test.

Ranker FeatureSetup MAP NDCG@20 NDCG@100

Baseline BM25 0.1107 0.1297 0.1966
AdaRank all 0.1161 0.1366 0.2052N

AdaRank fieldbased 0.0256 0.0153 0.0286
AdaRank nofieldbased 0.1161 0.1366 0.2052N

AdaRank nosinglefield 0.1097 0.1313 0.2030
AdaRank singlefield 0.1127 0.1344 0.2030N

AdaRank cite 0.1179N 0.1385N 0.2050N

AdaRank nocite 0.1161 0.1366 0.2052N

AdaRank citation 0.1167N 0.1371N 0.2050N

AdaRank nocitation 0.1161 0.1366 0.2052N

AdaRank pagerank 0.1105 0.1272 0.1938
AdaRank nopagerank 0.1166 0.1376 0.2074N

CoordinateAscent all 0.1217N 0.1447N 0.2157N

Continued. . .
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Ranker FeatureSetup MAP NDCG@20 NDCG@100

CoordinateAscent fieldbased 0.1114 0.1311 0.2022N

CoordinateAscent nofieldbased 0.1191N 0.1410N 0.2153N

CoordinateAscent nosinglefield 0.1176N 0.1389N 0.2117N

CoordinateAscent singlefield 0.1150 0.1383 0.2064N

CoordinateAscent cite 0.1142 0.1350 0.2029N

CoordinateAscent nocite 0.1180N 0.1388N 0.2103N

CoordinateAscent citation 0.1179N 0.1380N 0.2055N

CoordinateAscent nocitation 0.1182N 0.1391N 0.2124N

CoordinateAscent pagerank 0.1070 0.1263 0.1932
CoordinateAscent nopagerank 0.1193N 0.1418N 0.2138N

LambdaMART all 0.1230N 0.1512N 0.2240N

LambdaMART fieldbased 0.1106 0.1293 0.2009
LambdaMART nofieldbased 0.1278N 0.1580N 0.2246N

LambdaMART nosinglefield 0.1236N 0.1522N 0.2180N

LambdaMART singlefield 0.1123 0.1361 0.2036
LambdaMART cite 0.1184N 0.1426N 0.2065N

LambdaMART nocite 0.1191 0.1486N 0.2208N

LambdaMART citation 0.1163 0.1354 0.2025
LambdaMART nocitation 0.1189 0.1493N 0.2202N

LambdaMART pagerank 0.1092 0.1311 0.1986
LambdaMART nopagerank 0.1235N 0.1518N 0.2229N

The overall performance of learning to rank for literature search is better than the

baseline retrieval models. Adding features to the baseline model will enhance the retrieval

performance.
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Figure 5.1: Performance of different algorithms on BK collection
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Figure 5.2: Performance of different algorithms on PN collection

5.5.1 Comparison of LETOR algorithms

According to NDCG@100, with all features used, LambdaMART is generally the best per-

forming learning algorithm, except in PN, of which is Coordinate Ascent.

Best overall setup

According to NDCG@100, the best overall setup in BK is LambdaMART with all features,

PN Coordinate Ascent with “nocite” feature setup, PF LambdaMART with “nopagerank”

setup, BKPNPF LambdaMART with “nofieldbased” feature setup.

Chapter 5: Learning to Rank for Literature Search



67

all cite nocite citation nocitationpageranknopagerank

feature

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
A
P

AdaRank

all cite nocite citation nocitationpageranknopagerank

feature

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
A
P

LambdaMART

all cite nocite citation nocitationpageranknopagerank

feature

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
A
P

CoordinateAscent

PF Collection

Figure 5.3: Performance of different algorithms on PF collection

5.5.2 Comparison of Features

Field features

Field features consist of PL2F, BM25F and single field BM25. The concerned indices are

BK, PN and BKPNPF. Selecting LambdaMART as the LETOR algorithm and NDCG@100

as the evaluation metric, we can examine the contribution of field related features in the

concerned indices.

For BK: With “fieldbased” features, NDCG@100 increases from 0.3192 to 0.34686

(+8%). without “fieldbased” features, NDCG@100 drops from 0.46984 to 0.46834 (-0.3%).

This indicates that even though “fieldbased” features are helpful for enhance the LETOR

algorithms, its contribution is mitigated by other weighting model features. With “single-

field” features, NDCG@100 increases from 0.3192 to 0.41204 (+29%). without “singlefield”

features, NDCG@100 drops from 0.46984 to 0.38548 (-17%). This indicates single field fea-

tures are much more important than “fieldbased” features in learning to rank for the BK

section.

For PN: With “fieldbased” features, NDCG@100 increases from 0.1928 to 0.2001 (+3%).

without “fieldbased” features, NDCG@100 increase from 0.2291 to 0.2296 (+0.2%). With
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Figure 5.4: Performance of different algorithms on BKPNPF collection

“singlefield” features, NDCG@100 increases from 0.1928 to 0.1938 (+0.5%). without “sin-

glefield” features, NDCG@100 drops from 0.2291 to 0.2290 (-0.04%). Both indicate effect

of field related features is almost negligible for learning to rank for PN.

For BKPNPF: With “fieldbased” features, NDCG@100 increases from 0.1966 to 0.2010

(+2%). without “fieldbased” features, NDCG@100 increase from 0.2241 to 0.2247 (+0.2%).

With “singlefield” features, NDCG@100 increases from 0.1966 to 0.2037 (+3%). without

“singlefield” features, NDCG@100 drops from 0.2241 to 0.2181 (-2%). These indicate the

effect of field related features in a heterogeneous environment is minor.
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Cite features

Cite features consist of citation and pagerank. Collections that involves citation related

features are PN, PF and BKPNPF. Selecting LambdaMART as the LETOR algorithm

and NDCG@100 as the evaluation metric, we can examine the contribution of field related

features in the concerned indices.

For PN: With “cite” features, NDCG@100 increases from 0.1928 to 0.2013 (+4%). with-

out “cite” features, NDCG@100 drops from 0.2291 to 0.2263 (-1%).

For PF: With “cite” features, NDCG@100 drops from 0.2291 to 0.2257 (-1%). without

“cite” features, NDCG@100 drops from 0.2547 to 0.2535 (-0.4%).

For BKPNPF: With “cite” features, NDCG@100 increases from 0.1966 to 0.2067 (+5%).

without “cite” features, NDCG@100 drops from 0.2241 to 0.2208 (-1%).

The above results indicate citation related features contribute mildly for learning to rank

for literature search in the iSearch test collection. This may attribute to the low quality of

the citation data.

5.6 Conclusions and Future Work

The overall effectiveness of learning to rank techniques for scientific literature search is good;

with more weighting models features added, the performance gets better than the BM25

baseline. Our detailed analysis of field and citation related features indicates that only in

BK do field related features has a strong contribution, in other settings, the effect of these

two category of features is little.

In this work, we used BM25 as the sampling algorithm. It is possible to try other

algorithms, e.g. field-based retrieval models, to do sampling and to see whether there is any

improvement. Also other evaluation metrics, such as ERR@k, instead of NDCG@100, can
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be used during training step.

The current research focuses on common retrieval model and structured retrieval features

and citation related features. In the future, we will study more bibliometric-entity related

features, such as author and venue features.
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Chapter 6: Conclusions

We conclude this dissertation with the following findings:

• Current structure-aware retrieval models are not effective for ad hoc scientific litera-

ture retrieval task.

• Cluster scientific literature based on citation and co-citation graph cutting is promising

for implementing selective search strategies for search scientific literature.

• Under the learning to rank framework, field and citation related features are only

modest helpful when other weighting model features are used.

6.1 Future Work

There are several directions can be furthered based on this dissertation.

6.1.1 Structure and Annotation enhanced Search

With the progress in natural language processing and automatic information extraction

and annotation studies, there shall be more fielded information resource. Semi-structured

information and entity annotated information resources are expected to explode. Structure-

aware retrieval models will be useful for retrieval with these annotations.

6.1.2 Literature Search

Literature search becomes a fruitful research domain as more and more scientific literature

information goes to open access. Our research can be furthered with better corpus of

scientific literature.
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