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Abstract 
 
Many organizations employ lessons learned (LL) 
processes to collect, analyze, store, and distribute, 
validated experiential knowledge (lessons) of their 
members that, when reused, can substantially improve 
organizational decision processes.  Unfortunately, 
deployed LL systems do not facilitate lesson reuse and  
fail to bring lessons to the attention of the users when 
and where they are needed and applicable (i.e., they 
fail to bridge the lesson distribution gap). Our 
approach for solving this problem, named monitored 
distribution, tightly integrates lesson distribution with 
these decision processes. We describe a case-based 
implementation of monitored distribution (ALDS) in a 
plan authoring tool suite (HICAP). We  evaluate its 
utility in a simulated military planning domain. Our 
results show that monitored distribution can 
significantly improve plan evaluation measures for this 
domain.  

1 Introduction 
Verified experiential lessons teach improvements about a 
work practice [Fisher et al., 1998].  Many large government 
(e.g., DOD, DOE, NASA) and private organizations 
develop lessons learned (LL) systems to assist with the 
knowledge management process of collecting, analyzing, 
storing, distributing, and reusing lessons [Davenport and 
Prusak, 1998; Weber et al., 2001a].  Lessons record tacit 
experiential knowledge from an organization’s employees 
whose knowledge might be lost when they leave the 
company, shift projects, retire, or otherwise become 
unavailable.  It is often crucial to record lessons; lives are 
sometimes saved by preventing recorded catastrophes from 
recurring [DOE, 1999].  Thus, sharing lessons, even if they 
are used infrequently, can be very important.  LL processes 
and systems are needed to assist with lesson sharing, which 
can be complicated, especially for large organizations or 
large lesson databases. 

 
Lessons are usually in unstructured text format, and 
distribution is commonly supported using standalone text or 
keyword retrieval tools that require users to “pull” lessons 
from a repository. Unfortunately, problems with text 
representations and with this approach to distribution 
negatively affect lesson reuse, which results in widespread 
underutilization [Weber et al., 2001a].  In particular, they 
are responsible for what we term the lesson distribution gap. 
This gap exists when an organization fails to properly 
promote lesson reuse and available lessons are not deployed 
when and where they are needed and applicable. 
 At least three approaches exist to eliminate this gap.  
First, identified lessons can be incorporated directly into 
doctrine, which defines the processes to be employed by an 
organization’s members. The doctrine is updated to include 
the knowledge contained in the lesson.  For example, the 
Army’s CALL Center [CALL, 2001] deploys teams of 
lesson analysts and doctrine experts to perform such 
updates.  However, not all lessons can be incorporated into 
rule-like doctrine (e.g., because they may be true 
exceptions), and not all organizations have close working 
relations between doctrine and lessons learned personnel.  
 A second way to bridge this gap involves “pushing” 
lessons to potential users, such as via list servers (e.g., 
[SELLS, 2000]) or intelligent spiders. For example, two of 
the DOE’s sites already employ portals containing spiders 
[SELLS, 2000].  However, spiders are not integrated with 
the decision support processes that the lessons target.  Thus, 
after retrieving lessons with a spider, users must 
characterize the situations for which they are useful, recall 
them when they encounter an applicable decision support 
context, and interpret them correctly so that they are 
properly reused.  These are challenging tasks, requiring a 
high level of expertise and time that most users do not have.  
 We investigate a third approach to bridging the lesson 
distribution gap that involves tightly integrating the lesson 
repository with a decision support tool.  Our approach, 
detailed in Section 2, requires inserting a monitor into the 
decision support process so that it can determine when a 
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lesson’s conditions are well matched by a decision context. 
In Section 3, we describe a case-based implementation of 
this monitored distribution approach in ALDS (Active 
Lesson Delivery System), a module of the HICAP plan 
authoring tool suite [Muñoz-Avila et al., 1999]. We describe 
ALDS’s evaluation in Section 4, where we provide evidence 
that it can significantly improve performance measures for 
HICAP-generated plans for a simulated military planning 
domain (i.e., noncombatant evacuation operations (NEOs)).   
 Based on a recent survey [Weber et al., 2001a] and 
analysis of the AAAI’00 Workshop on Intelligent Lessons 
Learned Systems [Aha and Weber, 2000], we believe that 
monitored distribution is novel with respect to deployed LL 
systems, and has great potential for deployment.  We 
discuss the implications of our findings and future research 
issues in Section 5. 

2 Monitored Lessons Learned Processes 
A lesson is a knowledge artifact that represents a validated 
(i.e., factually and technically correct) distillation of a 
person’s experience, either positive or negative, that, if 
reused by others in their organization, could significantly 
improve a process in that organization.  In particular, it 
identifies a specific design, process, or decision that reduces 
or eliminates the potential for failures and mishaps, or 
reinforces a positive result [Secchi et al., 1999]. The 
knowledge management process involving lessons (i.e., the 
lessons learned process (LLP)) implements strategies for 
collecting, analyzing, storing, distributing, and reusing a 
repository of lessons to continually support an 
organization’s goals. 
 LLPs typically target decision-making or execution 
processes for various types of user groups (i.e., managerial, 
technical) and organizations (e.g., commercial, military). In 
this paper, we focus on managing lessons to support 
planning processes. 
 Flowcharts describing LLPs abound; organizations 
produce them to communicate how lessons are to be 
collected, analyzed, and distributed [SELLS, 2000; Fisher et 
al., 1998; Secchi, 1999]. Figure 1 displays a typical LLP, 
composed of the five sub-processes mentioned above, where 
reuse does not take place in the same environment as the 
other sub-processes.  

Existing, deployed LL systems do not support all processes 
in a LLP. In particular, organizations typically do not 
develop software to support verification or reuse. Instead, 
they use electronic submission forms to facilitate lesson 
collection, and use a standalone retrieval tool for lesson 
distribution [Weber et al., 2001a].  Users interacting with 
this standalone tool are expected to browse the stored 
lessons, studying some that can assist them with their 
decision-making processes. However, based on our 
interviews and discussions with members of several LL 
organizations (e.g., in the Navy, Joint Warfighting Center, 
Department of Energy, and NASA), and many intended 
users, we found that they do not use available standalone LL 
systems, which are usually ineffective because (1) they 
force users to master a separate process from the one they 
are addressing, and (2) they impose the following unrealistic 
assumptions: 
 

• Users are convinced that using an LL system is beneficial 
(e.g., contain relevant lessons). 

• Users have the time and skills to successfully retrieve 
relevant lessons. 

• Users can correctly interpret retrieved lessons and apply 
them successfully. 

• Users are reminded of the potential utility of lessons when 
needed. 

 

We believe that lessons should be shared when and where 
they are applicable, thus promoting their reuse. This 
motivated us to develop an architecture for proactive, 
integrated lesson distribution (Figure 2). In this monitored 
distribution approach, reuse occurs in the same environment 
as other sub-processes; the decision process and LLP are in 
the same context.  This embedded architecture has the 
following characteristics/implications: 
• The LLP interacts directly with the targeted decision-

making processes, and users do not need to know that the 
LL module exists nor learn how to use it. 

• Users perform or plan their decision-making process 
using a software tool. 

• Lessons are brought to the user’s attention by an 
embedded LL module in the decision-making 
environment of the user’s decision support tool. 

Objects 

Analyze 

Figure  2. Monitored lesson distribution integrates the lessons
learned process with lesson-targeted decision processes. 
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Figure  1. Most lessons learned processes are separated from the
decision processes they support. 
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• A lesson is suggested to the user only if it is applicable to 
the user’s current decision-making task and if its 
conditions are similar to the current conditions. 

• The lesson may be applied automatically to the targeted 
process. 

This process shifts the burden of lesson distribution from a 
user to the software, but requires an intelligent “monitoring” 
module to determine whether/when a lesson should be 
brought to a decision maker’s attention. 

3 Implementation 
We implemented the monitored distribution process in 
ALDS, a module of HICAP [Muñoz-Avila et al., 1999].  
This section details HICAP and then ALDS. 

3.1 Plan authoring using HICAP 
HICAP (Hierarchical Interactive Case-based Architecture 
for Planning) is a multi-modal reasoning system that helps 
users to refine a planning hierarchy [Muñoz-Avila et al., 
1999]. A hierarchy is represented as a triple H = {T,p,:}, 
where T is a set of tasks, p defines a (partial) ordering 
relation on T, and t1:t2

 means that t1 is a parent of t2 in T. 
Task hierarchies are created in the context of a state 
S={<q,a>+}, represented as a set of <question,answer> 
pairs. 
 HICAP provides three ways to refine tasks into subtasks. 
First, it supports manual task decomposition. Second, users 
can decompose a selected task using HICAP’s interactive 
case retriever (NaCoDAE/HTN), which involves iteratively 
answering prompted questions that refer to state variables. 
Third, users can select a generative planner (SHOP) to 
automatically decompose t.   

3.2 Monitored lesson distribution using ALDS 
Planning tasks (e.g., for military operations) involve several 
decisions whose affect on plan performance variables (e.g., 
execution time) depends on a variety of state variables (e.g., 
available friendly forces).  Without a complete domain 
theory, HICAP cannot be guaranteed to produce a correct 
plan for all possible states.  However, obtaining a complete 
domain theory is often difficult, if not impossible. In 
addition to representing typical experiential knowledge, 
lessons can help fill gaps in a domain theory so that, when 
reused appropriately during planning, they can improve plan 
performance.  This is the motivation for applying lessons 
while using HICAP. 
 Figure 3 summarizes the behavior of ALDS, the 
monitored distribution module.  ALDS monitors task 
selections, decompositions, and state conditions to assess 
similarities between them and the stored lessons. When a 
stored lesson’s applicable decision matches the current 
decision and its conditions are a good match with the 
current state, then the lesson is brought to the user’s 
attention to influence decision-making. When a user 
implements a prompted lesson’s task decomposition (i.e., 
reusing the lesson), the current task hierarchy is modified 
appropriately.  

Abstractly, reusable lessons contain indexing and reuse 
components. Indexing components include the target task 
and the lesson’s applicability conditions.  The reuse 
components include a suggestion that defines how to reuse 
an experience and an explanation that records how the 
lesson was learned.  This explanation can be used to justify 
the lesson’s use in a new situation.   In ALDS, a lesson is 
indexed by the (target) task that it can modify and a set of 
<question,answer> pairs defining its applicability 
conditions, and contains a suggestion (e.g., a task 
substitution) and the lesson’s originating event (i.e., the 
explanation).   
 We use a case-based approach for lesson distribution 
primarily because the indexing components (i.e., task and 
conditions) must support a partial matching capability.   
Furthermore, the applicability of a lesson depends on the 
context of the task that it targets, which suggests using 
domain-specific similarity functions. 
 Thus, if both the task and the conditions are a “good” 
match to the current planning state, then the user should 
consider decomposing the current task into the lesson’s 
suggested subtasks. We borrowed NaCoDAE/HTN’s 
similarity function for cases, and used a thresholded version 
to define “good” (i.e., determine when a lesson should be 
prompted to a user).  

4 Evaluation 
We wanted to evaluate the hypothesis that the monitored 
distribution approach (e.g., as implemented in ALDS) is 
superior to the traditional standalone approach for lesson 
distribution and promoting lesson reuse. For HICAP/ALDS, 
this hypothesis requires evaluating the plans created by 
operational users who use the two lesson distribution 
approaches in repeated planning tasks.  Dependent variables 

Figure 3. HICAP’s lessons distribution sub-process,
implemented in ALDS, during plan elaboration. 
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would include agreed-upon measures of plan quality, which 
depend on the planning domain. 
 Unfortunately, HICAP/ALDS has not yet been 
scheduled for testing in a military training exercise, which 
prevents us from working with operational planners.  
Therefore, we instead performed an evaluation using 
simulated users on a simulated NEO (noncombatant 
evacuation operations) domain.  Sophisticated full-scale 
NEO simulators do not yet exist.  Therefore, we constructed 
our own plan evaluator for a simulated NEO domain 
(Section 4.1).  This allowed us to evaluate HICAP/ALDS’s 
plan authoring and lesson distribution capability for an 
entire plan, rather than be limited to an evaluation on a 
single task decomposition task [Muñoz-Avila et al., 1999]. 
 Simulating how a user might benefit from a standalone 
lesson distribution tool is difficult. Therefore, we instead 
compared plan generation when using ALDS vs. not using it 
(Section 5.2), where our revised hypothesis is that using 
lessons will improve plan quality.  This central hypothesis to 
LLPs, although simple, has not been previously investigated 
for lessons learned systems, and thus is appropriate for an 
initial evaluation focus. 

4.1 Methodology 
The plans authored by HICAP concerned performing a 
rescue mission where troops are grouped and move between 
an initial location (the assembly point) and the NEO site 
(where the evacuees are located), followed by evacuee re-
location to a safe haven. 81 possible routes and 4 means of 
transportation were encoded.  In addition, other conditions 
were determined during planning such as whether a 
communications expert was available and the method for 
processing evacuees.  HICAP’s plans had 18 steps, and its 
knowledge base included 6 operators, 22 methods, and 51 
cases. We randomly selected 100 initial plan states (12 
independent variables) and produced plans for each state 
with the simulated user interacting with HICAP.  This user 
assigned, through task decomposition, an additional 18 
variables (with from one to four values each) for each plan, 
which required HICAP an average of about 40 seconds to 
generate.  The same set of initial states to produce plans in 
HICAP was used (to guide task decomposition) both with 
and without lessons. Each of the two sets of 100 plans (i.e., 
one set obtained using lessons, and the second set obtained 
without using lessons) authored by HICAP was input to the 
evaluator (Section 4.2). Due to the non-deterministic 
behavior of the evaluator, we executed each plan ten times. 
 The version of HICAP used in this paper is 
deterministic; given a state and a top-level goal (i.e., 
perform a NEO), it will always generate the same plan. A 
simulated user interacts with HICAP by choosing task 
decompositions to generate a plan, using the process shown 
in Figure 3. In NaCoDAE/HTN conversations, it always 
answers the top-ranking displayed question for which it has 
an answer, and it answered questions until either none 

remained unanswered or until one of the solutions exceeded 
a retrieval threshold, which we set to 50%. 
 We selected 11 lessons for our experiment, representing 
a subset of approximately 56 NEO-related lessons from the 
Active Navy lesson repository (containing 5120 lessons) 
from the November 2000 copy of the unclassified Navy 
Lessons Learned System.  These were selected according to 
their relevance to NEOs and their clarity, so that we could 
recognize their relation to the plans authored using HICAP.  
For example, one lesson was defined as: 
 

Task: Standard Medical Inventory  
• Applicability Conditions: (<q,a> pairs) 
• Is the medical inventory of standard size or is it standard 

minus 1/3? Yes 
• Is the climate tropical?  Yes 
Suggestion: Add 1/3 to the medical inventory 

4.2 Plan evaluation 
We built a stochastic evaluator for NEO plans that take into 
account general knowledge of the NEO domain and 
computes the performance measures (described below). This 
evaluator is not a simulator because it does not use specific 
distributions for each type of event, but simply computes, 
according to a uniform distribution, what are the expected 
consequences of some choices in building a plan (i.e., the 
causal chain of events that are generated by these choices 
will influence each of the dependent variables differently). 
We built the evaluator and the HICAP knowledge base for 
mock NEOs based on available applicable lessons. 
 We defined plan quality based on official measures of 
NEOs, which are planning domain dependent. These 
measures are defined in the Universal Naval Task List 
[UNTL, 1996] under measures of performance suggested 
for Joint and Naval tasks. These measures primarily concern 
execution duration and casualty rates. To avoid a redundant 
evaluation, we have selected one measure for total duration 
of the operation, one for duration until evacuees receive 
medical assistance, and the percentage of casualties among 
evacuees, friendly forces, and enemies.  These summarize 
the most important aspects suggested in the UNTL. 
 We defined bounds for variables based on actual NEOs. 
For example, we limited the percentage of casualties that 
occurred after a severe enemy attack takes place. Enemy 
attacks will only be possible in two planning segments (out 
of a total of five segments) and their likelihood increases 
when users choose land transportation and decreases when 
weather is troublesome. There is a small chance of a crash 
when helicopters are used that increases if the weather is not 
favorable; the resulting number of casualties is proportional 
to the number of passengers in each aircraft. A long 
planning segment flown by helicopter will have added the 
time and risks associated with in-flight refueling (e.g., 
[Siegel, 1991]). 

4.3 Results 
As summarized in Table 1, ALDS using lessons 
substantially improved the first four of five performance 



variables.  A brief examination of the results (i.e., the first 
run for each of the 100 plans), using a standard student’s t 
test, revealed significant differences for both overall 
duration (p<0.1, t=1.60, df=99) and duration until medical 
assistance arrived (p<0.1, t=1.39).  All lessons were used in 
generated plans, and an average of approximately three 
lessons were used per plan. 

Table 1. Experimental results with the 100 plans. 

 Without 
lessons 

With 
lessons 

% Reduction 
with lessons  

mean duration 39h50 32h48 18 
s.d. 16h51 16h12 - 

mean duration  
until medical asst. 

29h37 24h13 18 

s.d. 11h13 10h26 - 
mean % casualties:  

to evacuees 
11.48 8.69 24 

 to friendly forces 9.41 6.57 30 
to enemies 3.08 3.14 -2 

 
 The significance of an overall reduction of 24% in the 
percentage of casualties among evacuees was estimated in 
each plan based on the parameter number of evacuees, 
which was randomly set to dozens, hundreds, or thousands.  
Based on the number of evacuees selected for these 
simulated NEOs, using the lessons reduced the average 
number of casualties by 24, from 100 to 76.  
 These results suggest that the monitored distribution 
approach can potentially generate better plans for realistic 
problem domains (e.g., planning for NEO operations). 
However, the experimental conditions were designed so that 
lessons were available for a reasonable percentage of the 
generated plans, and thus could be prompted to the 
simulated HICAP user so that, when applied, they could 
improve plan quality (with high probability). Nonetheless, 
we expect that similar improvements may yield benefits in 
plans for domains where safety issues and speed are 
paramount to success.   
 The capabilities of certain learning algorithms can be 
evaluated by varying dataset characteristics to determine 
when certain learning algorithms can be expected to 
perform well (e.g., [Aha, 1992]).  Similarly, we plan to 
characterize the set of experimental conditions for which 
ALDS can use lessons to significantly improve plan 
evaluation performance measures. 

5 Discussion 
This paper proposes a technology (i.e., case-based 
reasoning) solution to part of a knowledge management 
(KM) problem (i.e., managing lessons learned).  However, 
KM problems typically require challenging organizational 
dynamics issues, and these require precedence in the context 
of bridging the lesson distribution gap.  Thus, monitored 
distribution can at most play only one part of a much larger 
solution. 
 Our evaluation of ALDS demonstrates how monitored 
distribution, when embedded in a decision-making (i.e., 

planning) process, can improve the results of that process.  
Although we used simulated users in our experiments to 
reduce human biases during the evaluation, we stress that 
this is a mixed-initiative approach, where humans interact 
with HICAP to generate plans.  The unique aspect of ALDS 
is that it allows users to execute a lesson’s suggestion (i.e., 
here, a task substitution), rather than limit them to simply 
browsing the suggestion.   
 HICAP’s NaCoDAE/HTN module manipulates cases 
that represent task decompositions corresponding to either 
standard operating procedures or decompositions that were 
derived from decision making during training exercises and 
actual operations. In contrast, ALDS manipulates lessons 
that capture experiences that, if reused, can significantly 
improve the performance of subsequent plans.  Unlike 
cases, lessons are not conceptually limited to representing 
task decompositions, but can be used to apply edits to any of 
HICAP’s objects (e.g., resource assignments, resources, task 
durations).  
 Several workshops (e.g., organized by the Department of 
Energy, the European Space Agency, the Joint Warfighting 
Center, and each branch of the armed services) have now 
taken place on the topic of lessons learned. However, few 
efforts on lessons learned systems have examined the 
potential utility of AI (e.g., Vandeville and Shaikh [1999] 
briefly mention using fuzzy set theory to analyze elicited 
lessons), and there is a lack of closely related work to 
monitored distribution.  However, one recent workshop 
brought attention to this area from an AI perspective [Aha 
and Weber, 2000], and a few of its contributors touched on 
issues related to proactive lesson distribution.  For example, 
Leake et al.’s [2000] CALVIN system implements a task-
oriented LLP that collects lessons about research topics and 
research results with an active distribution sub-process.  
Like ALDS, CALVIN prompts users with suggestions (i.e., 
alternative WWW pages to browse) that can be immediately 
executed.  However, while CALVIN focuses on a diagnosis 
task, ALDS operates in the context of a synthesis task (i.e., 
planning), and can potentially update any of the planning 
scenario’s objects. Like both of these systems, Watson 
[2000] also describes a case retrieval system, in this case for 
extending Cool Air to distribute trouble tickets.  However, 
Cool Air does not operate in a mixed-initiative setting. 
Some KM approaches [Reimer et al., 2000; Abecker et al., 
2000] also target distribution in the context of 
organizational knowledge, but use formats that do not 
support indexing.  
 Several limitations exist concerning our approach and its 
implementation in ALDS.  For example, lessons can be 
complex, and suggest changes to a variety of objects in the 
planning scenario.  Although HICAP represents several 
such objects (e.g., resources, resource assignments), it is 
currently limited to processing only task substitution 
lessons.  In future implementations of HICAP and ALDS, 
lessons will be able to represent suggestions that, when 
applied, will not be limited to task substitution.  For 
example, a lesson might suggest a task decomposition, or 
using an alternative resource assignment for a given task, 



recommend changing some temporal orderings of tasks, or 
suggest edits to any of the objects used by HICAP to define 
plans. 
 In addition, to be useful, our approach assumes that the 
decision processes targeted by the lessons are managed by a 
software tool, thus allowing integration with ALDS.  
Furthermore, our approach requires identifying each 
lesson’s indexing and reuse components, which requires 
significant knowledge engineering effort.  We are currently 
developing lesson collection tools that reduce this effort.  
Weber et al. [2001b] describe interactive elicitation 
approaches that use taxonomies to guide lesson collection to 
populate ALDS’s lesson repository.  
 In future work, we will conduct subject experiments that 
compare the monitored distribution approach vs. traditional 
keyword search tools for lesson distribution.  We will also 
demonstrate how monitored distribution is not restricted to 
planning tasks. 

6 Summary 
We identified a problem with distributing lessons, called the 
lesson distribution gap, which is crucial to many lessons 
learned organizations.  To address this problem, we 
introduced an approach called monitored distribution, which 
is characterized by a tight integration with a decision 
support tool that manages processes that the lessons can 
potentially improve.  We implemented this approach in 
ALDS, a case retrieval system, and evaluated its capability 
in the context of a module for HICAP, a plan authoring tool. 
Our experiments with a simulated military planning domain 
(i.e., for noncombatant evacuation operations) showed that, 
by using lessons, monitored distribution can help to 
significantly improve plan performance measures.  In 
summary, we demonstrated a technology that brings lessons 
to the attention of users when and where they are needed 
and applicable. 
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