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3D LESCOMPUTATIONS OF A SHALLOW LATERAL EXPANSION USING AN
IMMERSED BOUNDARY METHOD

Harmen Talstrg Wim S.J. Uijttewadland Guus S. Stellifig

ABSTRACT

In environmental shallow flows, the phenomenonloWfseparation often gives rise to large-scale
turbulent structures (vortex shedding). In thigdgtu8D LES computations of three Shallow Lateral
Expansion geometries are performed. The resolveptdscale turbulent structures are studied in
detail in order to allow a comparison with laborgt@xperiments, carried out using the Particle
Image Velocimetry (PIV) technique. When LES is a&blfor practical cases involving flow
separation, immersed boundaries are often an ésspatt of the geometry. These boundaries can
cause problems with respect to the Navier Stokésesased, especially regarding the pressure
correction module. A solution to this problem, kmows Immersed Boundary Method (IBM), is
found by using body forces to ensure the imperntigatf internal boundaries. In this study an
alternative implementation of a Direct Forcing IB8/proposed, based on momentum fluxes instead
of body forces. This model is applied to Shallowtdral Expansion geometries of various aspect
ratios. In order to analyze the real-time largdestarbulent structures, the vector potential fuoct

of the velocity field is computed. This is a venyitable tool to detect large-scale flow structures.
The turbulence features observed in the 3D LES ctatipn are compared with the PIV data,
especially regarding the vortex shedding behavidur. analysis of Reynolds stresses and the
downstream development of eddy length scales revkalexistence of two different regimes in the
vortex shedding behaviour. The difference can ha@xed by the interaction of shed vortices with
the primary and secondary recirculation cells #ratpresent.

1. INTRODUCTION
1.1 Background and objective

Shallow flows in which flow separation plays a r@ee abundant in the natural environment. In
rivers, for example, flow separation past obstadegxpansions often gives rise to large-scale
coherent structures that bear typical charactesisti quasi two-dimensional turbulence. In pragtice
these coherent structures may cause problems megaelg. navigation and bed erosion.
Environmental shallow flows, like rivers, are beinglized for lots of purposes: e.g. water
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discharge, navigation, transport, ecological valuBsese purposes may often conflict. For an
optimal river management, it is necessary to knath ®ome accuracy what effects will occur if the
flow system is changed by human intervention. Bseashallow flow turbulence can affect

navigation as well as sediment transport and mixafigconveyed material, improving the

understanding and modelling of large-scale turbzéan shallow flows is of practical relevance.

The turbulent flow studied here has two key chanastics. First, the flow is shallow, i.e. the
water depth is much smaller than the dominant bate flow length scales (typical aspect ratio 5%
or less). Therefore, most of the large-scale twnhcg may be considered as quasi two-dimensional.
Second, the flow is separating: due to an advemsgspre gradient the main flow separates from a
wall, inducing a zone of flow recirculation andesfta street of coherent structures emerging from
the separation point (vortex shedding). Both kegrabteristics come together in many rivers and
coastal flow geometries.

In this study, three-dimensional Large Eddy Sirtiafes (LES) are performed in order to
study the behaviour of large-scale shed vortices simple shallow separation flow geometry, the
Shallow Lateral Expansion (SLE). Obviously, a 3DS_Eomputation is a useful tool for a real-time
study of the dynamics of individual large eddiestHis way, a good comparison can be made with
existing laboratory data. These data have beeniracgitom shallow flow experiments carried out
using the measurement technique of Particle Imagmcinetry (PIV). These experiments are
described in Talstra, Uijttewaal & Stelling (2008he vortex shedding phenomenon, as indicated
by the experimental data, is expected to be fouadk bwithin the LES data. The acquired
experimental and numerical information is beingduse inspire further development of simpler
numerical models useful for shallow flow geometiresvhich separation plays a role.

1.2 Previous experimental results

Figure 1 shows a perspective view of a shallow isepay flow past an expansion, visualised by the
injection of dye (located at the shallow flow fagil of the Environmental Fluid Mechanics
Laboratory, Delft University of Technology). Behitite lateral expansion, the separation gives rise
to a primary and secondary recirculation cell. Tisia well-known flow pattern, reported many
times in literature; see e.g. Babarutsi, Nassi€i8u (1996). At the interface between main flow and
recirculation zone, lateral exchange of momenturd dissolved matter takes place due to the
presence of large-scale coherent structures. Tésepce of steady recirculation zones makes the
flow behaviour different from that of a plane hartal mixing layer with only a lateral velocity
difference.

In their experimental study on shallow groyndde Uijttewaal, Lehman & Van Mazijk
(2001) observed a qualitative difference betweem tiypes of large-scale structures: firstly mixing
layer vortices, and secondly coherent structurasdhe larger in scale. The latter type of striegur
is associated with the interaction with the secopndacirculation cell, while the first type is
associated with lateral shear instabilities.

From the experimental PIV study of Talstra, Uijttal & Stelling (2006), the difference
between these two large eddy types can be clarifibd experimental setup (which is identical to
the geometry of the 3D LES computations) will beat#ed in Section 2.1.

In the initial stage of a developing shallow sepag flow, no secondary gyre does exist; the
primary gyre fills the entire expansion area. Tatedal velocity difference between mean flow and
recirculation zone is small and gradually changswthat relatively weak and gentle mixing layer
eddies are present. As soon as the secondaryulationn has sufficiently developed, the initial
mixing layer changes character and much largeicasrtare shed than before. It is observed that the
largest eddy scales are emerging not from the agparpoint, but from a point some distance
downstream — approximately at the point where thenm layer starts to be influenced by the
primary recirculation. In this area a sudden insecia vortex sizes is visible, which is labeledenher



Figure 1 Large-scale structures in a shallow sejparélow, visualised by dye. Shown are: main
flow direction (U), steady primary recirculatior}j1steady secondary recirculatiori2and the
approximate “scale jump” location. In yellow: s@aistructure of the mixing layer eddies

as “scale jump”. Between the far-field coherenicires downstream from the scale jump location,
the velocity field is stretched in diagonal streasavdirection and compressed in the direction
perpendicular to it (saddle points). At these spbteng vortex stretching takes place due to the
velocity field deformation, resulting in long stkesaof strong upwelling and downwelling of fluid.
The scale jump phenomenon can be explained bwé#yethe shallow mixing layer interacts

with both steady recirculations. If the flow geomyets such that a large and well-developed
secondary recirculation exists, the secondary mefloiv comes very close to the streamwise main
flow immediately downstream of the separation pofitthis location a considerable lateral shear is
present. From this point on, a mixing layer stéostgrow. The size of mixing layer eddies, however,
remains small because the mixing layer is confitetween main flow and the secondary
recirculation. At the point downstream where the&ing layer starts to be influenced by the primary
recirculation, the lateral shear is much lower.nfrrthat point on, there is a positive interaction
between mixing layer eddies and the primary re@tan. It appears that much larger eddies are



being formed. This can be explained from the conhoépvortex merging”: quasi two-dimensional
vortices with the same vorticity sign are knownmerge, while vortices of opposite vorticity sign
tend to coexist without much interaction. Indeedstantaneous velocity fields from the PIV
experiments show merging of mixing layer structw the primary recirculation.

As (in a shallow separating flow) the primary realation has the same vorticity sign as
mixing layer eddies, while the secondary reciréafathas the opposite sign, two different spatial
regimes can be distinguished. Consequently, the digonct large eddy types as observed by
Uijttewaal, Lehman & Van Mazijk (2001) represent iaternal flow phenomenon: the different
interaction of shed vortices with two steady radiations.

The scale jump phenomenon can be ascribed touasi ¢qwo-dimensional character of the
considered flow geometry. Although vortex sheddatgp occurs within the context of Backward
Facing Step flow with infinite spanwise extent @metry which has been extensively studied in
literature, see e.g. Netet al 1993), the behaviour of shed vortices there iseqifferent from a
shallow expansion. Due to three-dimensionality shed vortices are breaking up rapidly and their
turbulent kinetic energy does not shift to largealss, this in contrast with a shallow separating
flow.

2. DESCRIPTION OF 3D-LESEXPERIMENTS
2.1 Geometry and numerical setup

Figure 2 and 3 show the three flow geometries, wiaiee almost identical for LES computations
and PIV experiments, both in shape and scale. dih@rdtory setup has a length of 20.00m, a width
of 2.00 m and a water depth of 92 mm. The outflawtlvh, is 2.00m in all three cases; the inflow
width by is 0.50, 1.00 or 1.50 m. The inflow/outflow widtatio /b, is respectively 1:4, 2:4 and
3:4. The lateral expansion width © defined as: d= bp — by. The length of the inflow section is
5.00 m in order to ensure a sufficiently developgthulent flow. The dimensions of the numerical
LES setup resemble those of the PIV experimengsthtee cases are referred to asltde2:4 and

3:4 geometry. The LES setup length, however, is madeé®@Bm. By doing this, it can be assumed
that the numerical outflow boundary condition hasdly any effect on the turbulent flow.
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Figure 2 Overview of the three PIV and LES georast(iL:4, 2:4 and 3:4 case)
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Figure 3 Sketch of the 2:4 geometry with time-agethstreamlines. Location of expected flow

features: 1) primary recirculation, 2) secondagirreilation and secondary separation point, 3)

intermittent opposite recirculation, 4) far-fieldximg layer, 5) near-field mixing layer, 6) primary
reattachment point

The LES solver being used is a finite volume foiatian with a predictor-corrector algorithm
(pressure correction). The computational meshusifmrm Cartesian grid consisting of 1200 x 80 x
16 cells. The 1:4 and 2:4 cases have horizontahreee of 0.025 m and a computational time step
of 0.01 s, ensuring a maximum Courant number otiaba10. In the 3:4 case, both the horizontal
spatial and the temporal resolution are doubleorder to maintain a sufficiently high resolution to
resolve the secondary recirculation cell. In thémilaw, the dimensionless wall-normal distance y
has a typical value between 30 and 45; within go#rculation areas, it is usually lower. Outputadat
of the turbulent velocity field are stored with angpling frequency of 10 Hz (the PIV sampling
frequency is 9.67 Hz). The sampling duration isd®@ames (1000 s). The set of equations solved
are the 3D incompressible Navier-Stokes equatiodsaastraightforward Smagorinsky formulation
(without Van Driest damping) to account for the gudb-scale stresses. The used Smagorinsky
constant has a value of 0.10. Instead of a frelacyra free-slip rigid lid boundary condition has
been used.

The uniform inflow velocity { is 0.30 m/s; the far-field Reynolds number (basadthe water
depth and the average main flow velocity) variesveen 7500 and 22500. Like in the experiments,
the computational inflow boundary lies at 5.00 nstogam of the separation point. At this inflow
plane, random velocity disturbances are imposednga maximum of 5% of the (uniform) inflow
velocity W. This is done in order to trigger 3D bottom tudnde conditions similar to the
experimental situation.

The open inflow boundary condition is of the Diliehtype; a Neumann-type outflow boundary
condition (with respect to the predicted velocisld) has been used. Wall shear stresses at bottom
and sidewalls are imposed by means of surface $paeing on those grid cell boundaries where
impermeable walls are present. Any arbitrary laiyriof dry grid cells and thin dams can be
handled in this way without any need for “mirrorla@ty points” at boundaries (which are
sometimes used in order to impose velocity gradiemt solid walls). Of course, the use of wall
functions for LES computations is quite common; beer, it is emphasized here that the use of
surface forces is to be preferred above the useirobr points, because it is more generic. The wall
function includes no-slip region, buffer layer dadarithmic layer (partial slip) and reads:

u' =y, Dy < 5  (viscous sublayel
u*=-2.90+ 491logy" ), Sy < 27.5 (buffer layer) (2)
u* =5.29+ 2.441logf" ), y' = 27.5 (lgthmic layer

with
u'=u/u and y=uyVv (2)



where Y is the distance of the first velocity point frohretwall, y is the near-wall flow velocity,u

is the friction velocityy is the kinematic viscosity, yis the dimensionless wall-normal distance and
u” is the number of velocity units (in the formulatiabove, “y” can stand for x or y in case of the
horizontal distance from a sidewall, or z in cas@ wertical distance from the bottom). Actually,
the formulations above assume a fully developeoutent boundary layer along solid walls. This is
obviously not correct for separation regions. Hogrevin the neighbourhood of secondary
separation points (the most critical zones in shisly) the near-wall velocities are very small; ¢een
the first grid point is close enough to the wallaiblow for the application of a no-slip boundary
condition, which is correct regardless how well bioeindary layer has been developed.

The predictor module of the applied Navier-Stolsgdver uses a second-order Adams-
Bashfort discretisation in time and a central ddfecing scheme in space to account for the
momentum advection. Within the pressure correctimdule, the 3D Poisson equation system is
solved by cosine transformations in the horizorgkne (or Fast Fourier Transformations in
periodical cases) and Gaussian elimination in #r&cal direction.

2.2 Onimmersed boundaries; an alternative |BM for mulation

Internal (immersed) boundaries are often an esdquairt of flow geometries, especially for cases
involving flow separation. Therefore it is requirdtht a LES formulation must be able to satisfy
boundary conditions at any location within the ride of the model. The latter, however, is not
straightforward for the efficient kind of LES solvihat is described above, i.e. a solver using FFT
or cosine transformations. Internal impermeablelsadirectly influence the way in which the 3D
Poisson matrix system of the pressure correctioduleocan be solved. Internal boundaries cause
this matrix to have a non-standard form and hentteduce non-standard eigenvalues. An FFT-type
solving procedure for the Poisson matrix becomegossible, which implies that other and less
efficient solution methods are required, considigrattreasing the computational effort.

A common and effective solution to this problempwn as the Immersed Boundary Method
(IBM), is to maintain the standard 3D Poisson mxastructure, and applying the internal boundary
conditions to the predictor module only; see e.gdlén et al. (2000) or Breugem (2004) for a
general description. To this end, body forces mwgoised on immersed boundaries in order to ensure
wall impermeability. This can be done iterativelyeédback Forcing) or immediately (Direct
Forcing). Due to the application of the standargs&wn matrix structure, small residual normal-wall
velocities will remain. These errors can be mineaizy updating the pressure every time step:

p™t = p"+ p (see Breugem, 2004). After some simulation tinses@on as the influence of initial

conditions has disappeared, the residual velocties often much smaller than the mean flow
velocity (a difference of many orders of magnituded can therefore be neglected. The general
Direct Forcing numerical scheme reads:

G =y +At(-RH + 1), (3a)
ou.u. - du
whereRHg = 2t +m_iu(ﬂ+i} (@)
ox, pOx O0x |0x O0x
Eazﬁ :a_l'ji (SC)
p ox* 0%’
o~ AP
u™ =04 -——, and (3d)
p 0x

n+l _

pt=p"+p (3e)



where 0 is the predictor velocity,p is the pressure updatd, is the body force at solid wall

boundaries At is the time stepi is the dimensional direction and is the time level. TheRHS
accounts for the explicit terms in the equatiorntesys the convective and diffusive terms as well as
a predictor pressure gradient. These can be cochpateording to either an Euler-Explicit of
Adams-Bashfort numerical scheme. Figure 4 illusgdhe action of body forces at some arbitrary
boundaries on a rectangular computational grid.

An extra effect of the application of an IBM, aftencountered in literature, is the possibility
to compute complex flow geometries on a simpleamgtlar grid by means of interpolation of
velocities and body forces (e.g. ghost-cell IBMcat-cell IBM). Fadlun et al. (2000) and Mittal &
laccarino (2005) give an extensive overview of thailable variety of IBM implementations.
Tessicini et al. (2002) describe an applicatiorDakct Forcing IBM to 3D LES computation in
combination with an advanced boundary layer eqoatiéreugem (2004) applies Direct Forcing
IBM to a Direct Numerical Simulation of a flow thugh a porous (permeable) medium.
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Figure 4 Action of body forces at impermeable walla computational grid. Blue: location of
pressure points and velocity vectors. Red: locatiomormal-wall body forces ensuring wall
impermeability

In this study, the IBM Direct Forcing formulatiors implemented in an alternative way. The
implementation is strongly correlated with the ierpentation of the wall function described in
Section 2.1. No body forces are used; at solidsyalbll-normal fluxes of wall-parallel momentum
are put to zero. In equation 3a, the teRHS' consists of the divergence of momentum fluxes (due
to convection and viscosity) in all directions;¥&s across solid walls must be cancelled. Henee, th
body force f." is not imposed separately on the predicted veld@td U, , but is “immersed” into

RHS' itself, so that the ternf." becomes unnecessary. In this way conservationoofientum is

achieveda priori, instead of making a correctian posteriori Also, the wall impermeability at
immersed boundaries remains guaranteed.

Please note that this method is only applied td-n@mal fluxes of wall-parallel momentum. Wall-
normal fluxes of wall-normal momentum, on the othand, are being maintained. These fluxes
may never be put to zero, because they represemfdirces acting on solid structures, e.g. at
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Figure 5 lllustration of alternative IBM approadteft: normal-wall flux of wall-parallel momentum
is set to zero. Middle: flux is cancelled only poojonal to blocking ratio. Right: normal-wall flux
of normal-wall momentum is being maintained

stagnation points. If these fluxes are set to zmwaetheless, severe numerical instabilities at
stagnation points do appear. The alternative methdldistrated in Figure 5 for three different eas

of grid-aligned walls: a wall parallel to the mdiow, a thin dam and a wall normal to a flow
(stagnation point).

2.3 Largeeddy visualisation using vector potential functions

A topic requiring special attention is the way irhieh large-scale eddies can be detected and
visualized. Although a look at the velocity fieltten reveals the presence of these large eddiss, it
not always easy to define a straightforward detectilgorithm. Bonnet et al. (1998), Scarano et al.
(1999), Adrian et al. (2000) and Van Prooijen (20@scribe a variety of commonly used
identification methods for coherent structures, ®éased on vorticity, swirling strength or spatial
correlations. The drawback of the latter methothés spatial inflexibility of the results; the forme
methods have the disadvantage that they are qnt@tve to noise, like all gradient-based methods,
because they tend to enhance the importance shthaélest length scales.

In this study, therector potential functiof a velocity field is used to detect large eddiEse
use of vector potentials is not common within thatext of fluid dynamics. Yet, vector potentials
are very elegant in use because they allow largéexcscales to be determined directly from
instantaneous flow kinematics. They very much rdderthe concept of 2D stream functions, but
are computed in an alternative way in order to mak®rrection for the divergence of a 2D plane
within a 3D velocity field. Vector potentials came lsonstructed by solving a Poisson equation for
each separate component of the vorticity, usingdganeous Neumann boundary conditions. See
the appendix for a full explanation.

Each local maximum or minimum of a vector potdriiield uniquely identifies a large-eddy
core of positive, respectively negative vorticityhe shape of the eddy is given by the surrounding
isolines, which approximately coincide with locklv velocity vectors (see Figure 6).

When vector potentials are applied to separatimg) @ecirculating flows, the permanently
present primary and secondary recirculation cebsd@minant; therefore, intermittent large mixing
layer eddies will not be very visible. When the eiaveraged flow pattern is subtracted from the
instantaneous pattern, however, the residual vepteential function will show a streamwise
sequence of large vortices being shed from theragpa point.
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Figure 6 Detection of large-scale eddies by meéisvector potential function. White vectors
visualize the instantaneous velocity field at 3@wdstream of separation point. The upper part
shows the main flow (from left to right); the lowgart shows the primary recirculation backflow

and a secondary separation point

3. RESULTS
3.1 General flow features

A good comparison can how be made between the bE$@tations and PIV experiments for the 3
geometries. Within the experimental context, moagadchave been obtained than with the 3 PIV
cases shown here: altogether 18 flow cases havedtedied by visual observation. Three of these
cases have been selected for comparison with catimoal data (see Figure 2 and Section 2.1).
Some general features of both PIV data and LES al@asummarized here; for a more elaborate
description see Talstra, Uijttewaal & Stelling (B)O

First, a decreasing dimensionless depth Wiklds a shorter primary recirculation cell: inrye
shallow cases the reattachment lengthdécreases and scales with water depth, while deper
cases the maximum reattachment length is of theroofl L, = 8d;. This is also known from
literature; see e.g. the experimental results dfaBatsi, Ganoulis & Chu (1989). Second, from the
current PIV experiments, it appears that the dinoesss length p/d; of the secondary
recirculation cell increases for decreasing depths is understandable because, as the primary
recirculation flow decreases in size, discharge emergy, it will separate more easily from the wall
because of the local adverse pressure gradientd,Tdm intermittent gyre can exist opposite to the
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primary recirculation, approximately opposite te firimary reattachment point. This gyre is caused
by large-scale mixing layer vortices that sometiraegain so much fluid from the main flow that
the main flow incidentally separates from the gfinawall.

Fourth, a mixing layer is observed downstreamhefdeparation point. The stability and small
width of the near-field mixing layer is strikingy ispite of the presence of a strong lateral shear
between the secondary gyre and the main flow. Thallscoherent structures emerging from the
separation point seem to be almost insensitivéeairitense local shear. From the point where the
mixing layer touches the primary gyre, at a doweestn distance of the order of the expansion width
di, the structures appear to be amplified in scaimisitantly. Downstream from this point a
considerably stronger fluid entrainment takes plagronounced scale jump is visible in cases
where the secondary recirculation cell is largsize (L/d; values larger than e.g. 2). For smaller
secondary gyres, the mixing layer development isathrer. In between the far-field large eddies,
long streamwise streaks of upwelling and downwgllftuid occur, which is explained by the
stretching of the local velocity field which intefiss the (small-scale) vortices at sub-depth scale

The flow features mentioned above, observed withenPIV data set, are recognized in the
results of the corresponding LES computations.iNall cases, however, the quantitative properties
are equal. In the sections below, both datasetsampared.

3.2 LESdataanalysis: statistics

Time series were obtained from the LES by sampiivegvelocities every 0.1 s during a period of
1000 s, which is equivalent to approximately 50&Msecutive large eddies passing through a
cross-section in the far field.

Figures 7a to 7f show the time-averaged streamsuskce velocity fields for each of the 3
geometries. The experimental and computationalscase compared. Only a part of the LES
domain is shown (expansion area including the s#gnrecirculation) in order to make a 1-to-1
comparison with the PIV data domain. The main fisWrom left to right. It can be seen that the
relative length of the secondary gyrgd, is largest for the 1:4 geometry. This is the sivedist case
where the dimensionless depth;h&lsmallest. In each case the predictions of s#sgyngyre length
and secondary gyre discharge are in good agreetespite a slight underprediction. The computed
locations of the secondary separation point afeeradccurate. This may be called an achievement
resulting from the way the wall shear stressesharalled. From the many numerical tests carried
out in this study, it is concluded that: a) the haary layer formulation must be able to handle both
no-slip and partial-slip conditions, and b) a motonemnconservative IBM formulation is needed, in
order to obtain a correct secondary recirculatearding strength and size.

In figures 8a to 8f, the horizontal Reynolds stessu'v' at the surface are compared.
Quantities like these are harder to compare thaannflow quantities. Because quantities like
Reynolds stresses and turbulent kinetic energgamstructed from flow fluctuations, they are
sensitive to resolution differences between measeinés and simulations. Although the resolutions
of the PIV and LES data sets are the same, theaRBlysis essentially contains an interpolation
procedure because of the use of interrogation wisdd hese windows are approximately 100 x
100 mm?, while the distance between data point24ismm. Hence, some spatial filtering is
unavoidable when using PIV, whereas the LES d&aemolved on the grid and are not filtered. The

PIV spatial filtering has consequences for timeeseand time statistics: the valuesuw®, v'2 and

u'v' found in the LES data are exceeding the PIV dataes, even up to a factor 2. Although the
contours and patterns of the computed quantitesamparable, there is a difference in the velocity
scale. In this case, the LES data are likely tanoee accurate than the PIV data set because of the
better resolution. It can be shown that especitilé small turbulence scales account for the big
differences. For a fair comparison, a practicalpaai#on should be made to the LES data set: when
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Figure 7a-f Comparison of experimental and comparat streamwise velocities at the surface.
Black solid lines are zero velocity contours; tleck circles are locating the secondary separation
points; £' = location primary gyre;" = location secondary gyre.

the LES velocity fluctuations are filtered usingl@0 mm wide top-hat filter, the obtained LES

values ofu'?, v'2 andu'v' are in better agreement with the PIV data. Thesttations in Figures
8a to 8f show the LES quantities based on thishatpfitering procedure.

The problem described above can be expected aasdls where small-scale flow fluctuations are
retrieved from measurement techniques with a lidhitesolution or involving some interpolation
(like PIV). Large-scale flow fluctuations are repeated much better by PIV measurements, which
is fortunate because this study focuses on largkesarbulent structures. Regardless  of  the
resolution problem described above, the pattemslaar. Maximum values are found around a line
downstream of each separation point. For the hot@&dReynolds stresses, this is a negative peak
because the large eddies have a clockwise vottiathe near field only small-scale fluctuations
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Figure 8a-f Experimental and (filtered) computasibhorizontal Reynolds stresses (same domain as
Figure 7)

are present, whereas the data contours show thatléhelopment of large-scale turbulence and
increased momentum transfer starts from a pointvdmt primary and secondary recirculation:
x/d =1.

3.3 LESdataanalysis: length scales and conditional aver ages

From the computed Reynolds stresses a Prandtl gnigimgth can be derived. To do this, the time-
averaged deformation tensor at the mixing layetrees computed. In each flow cross-section, the
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location of the minimum of the Reynolds stress gallhas been chosen to determine the mixing
length. These locations form an almost straighe lsiownstream of the separation point. A

straightforward relation between the horizontal Rags stresa'v' and Prandt| mixing length

has been used, which reads:
— v ou)
uvi=22| 2422 4)
ox oy

The figures 9a and 9b compare the computed Prarigihg lengths at the surface, obtained from
the PIV experiments and respective LES simulatiéineam the latter, the top-hat filtered Reynolds
stresses have been used. The solid black linestinfigures are trend lines.

The PIV data show a clear similarity in the mixilgpgth profiles of all three geometries,
whereas the 2:4 case shows the most pronounceahtliiagity in scale growth. The location of this
jump lies around x/d= 0.8. The LES data mixing length profiles are msmoother than the PIV
profiles, which is true for the filtered LES turleakce properties in general. The profiles of the 1:4
and 3:4 case are more or less in accordance wathPtid data; the 2:4 case profile appears to be
considerably underpredicted. All cases show theespaitern: the large turbulence scales emerge
from the scale jump location.
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Figure 9a-b Comparison of Prandtl mixing lengthes®ased on horizontal Reynolds stresses,
scaled by d Left: PIV experiments, right: (filtered) LES conations. Red dashed line: 1:4 case,

magenta dotted line: 2:4 case, blue dash-dot 8recase, solid black line: suggested trend line

It is not surprising that the above method yiditgth scales that are much smaller than the
actual large-eddy sizes, because time-averagedstismtare used to describe an intermittent
phenomenon. The vortex length scale developmenbetiar be examined by conditional averaging
of the shed vortices. The procedure is describé&mbe
The mixing layer centre is located in the neighbood of the straight line downstream of the
separation point. For each point along this lite tross section of the flow is checked for the
presence of a large eddy. This is done by seardboed minima in the vector potential time series
(see Section 2.3), after subtraction of the meaw fbattern. The latter has to be done in order to
remove the dominant contributions by the steadyaelations. The velocity maps containing large
eddies are stored for further statistical operatidiigure 10a gives an illustration of the results.

Conditional averaging of the spanwise velocity algs used as the quantity for determining local
large-eddy length scales. The spanwise velocityngés sign at the location of conditionally
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averaged eddy cores. An eddy length scale can tigedeas the distance between the successive
centroid locations of the vortex velocity profiles.

Please note that in this study, vector potentiatfions are used only for detection of large edties
order to perform the conditional averaging procediut they are not suitable as an object of any
further data statistics. For determining eddy saieis better to turn back to the velocity signal
itself. Furthermore, the unfiltered LES data haeerbused to perform the conditional averaging;
there is no need to filter here, because no vagiancovariance of the data is involved.

In principle, conditional averaging can be done dgery point within the measured flow domain.
Obviously, the averaging procedure makes most sehsa it is performed along the mixing layer
centre line. Far-field mixing layer vortices canWwell examined in this way and also their length
scales can be determined directly from their comagtlly averaged velocity profiles. The near-field,
however, is more problematic; the number of daiatpger wave length of mixing layer vortices is
much lower here, resulting in poor statistical Hssand eddy length scales that are noisy. For the
near field, a more robust approach is needed. ddrnisbe achieved by determining the passage time
scales of conditionally averaged vortices and rplyitng these by the propagation speed of the
large-eddy core, using Taylor's hypothesis of “Bopzturbulence”. In this way an “eddy wave
length” is obtained; the real eddy size is aboWb 0 this wave length. Because the examined
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Figure 10a-b Conditional averaging of large-scalleetent structures shed from the separation
point. Left: conditionally averaged (unfiltered)lweity field and vector potential function,
constructed by approximately 50 consecutive ladgkes. Right: spatial development of large-eddy
length scales determined using Taylor’'s hypothé&sl dashed line: 1:4 case, magenta dotted line:
2:4 case, blue dash-dot line: 3:4 case

turbulent flow is stationary rather than homogersgaine obtained data are more suitable for
temporal than spatial statistics. This approacleappless sensitive to near-field noise and yialds
more smooth length scale development, which catobgared with the Prandtl length scales found
before.

Figures 10b shows the computed length scales ofdtiminant eddies caused by vortex
shedding, as a function of x/dfor each of the 3 LES cases. Both axes are sdaleithe lateral
expansion width d Please note the order of magnitude being mudaetafapproximately 15-20
times) than the Prandtl length scales of Figurdi®e eddy sizes are now of the same order of
magnitude as the width of the mixing layer. Agdirtan be seen that the large-eddy development is
starting slowly and is boosted at some distancendawam, although the shift in Figure 10b is more
gradual than the jump in the Figures 9a-b.
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4. CONCLUSIONSAND APPLICATION

Three-dimensional LES computations of Shallow LalteExpansion geometries have been
performed in order to make a comparison with cgoesing experimental PIV results. Special
attention was paid to boundary conditions at imeeisoundaries in combination with a wall shear
stress model. The IBM implementation used here ressa proper treatment of momentum fluxes
near solid walls. The result is a simple but genrmulation. This formulation contributes to de
proper simulation of shallow separating flows, esgéy with respect to the steady recirculation
sizes and the location of the secondary separptont.

The large-scale turbulence structures in the floerewisualized by means of a vector potential
function. Due to resolution differences between soeaments and simulations, as well as the
practical difficulty to obtain sufficient PIV readion, the direct comparison of turbulent kinetic
energy and horizontal Reynolds stress is problem#dthen a spatial top-hat filter is being applied
to the LES turbulence quantities, however, the emgent of measured and simulated quantities is
fair. Determining the large-eddy length scalesiffecent ways shows the presence of a scale jump
between the near-field and far-field mixing laykrappears that a simple 3D Smagorinsky subgrid
model contributes well to the simulation of quaBi-2urbulence features, such as the spatial
development of large-scale coherent structures.

The knowledge obtained on the scale jump phenomanshallow separating flows, resulting from
both experiments and computations, can be of usever engineering purposes. Because vortex
shedding behaviour is influenced by the presenck strength of a secondary recirculation, the
possibility exists to mitigate the large-scale tudmce by manipulating this recirculation. By
changing the shallow flow geometry, the secondacyrculation can be altered with respect to size
or energy. Especially the shape of the body alohgchvthe main flow separates is an important
factor, as well as the presence or absence of dmams obstacles. Apart from physical
experiments, LES computations are an effective @rehp way of investigating the influence of
geometrical changes on large-scale turbulence lmimavio this end, a number of new shallow
separation flow geometries, slightly different fraiime geometries described in this paper, are
currently being studied.
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APPENDIX: VECTOR POTENTIALS
Given a 3d solenoidal velocity vector field:
d=(u,v,w, with 0@ =0 andOxU =@ (1)
For such a vector field, a vector potentfalexists such that
d=0xg, (ii)

Since by definitiond] [ x¢ = 0. Please note tha¥ is determined apart from an arbitrary gradient
field Og, becausey =@ + g is also satisfying equation (ii).
The vorticity & now can be written as

w=0x(0x@)=0(0W)-0% (iii)

Because)y has a degree of freedom, it can be chosen sutlytha also solenoidal. In that case,
expression (iii) for the vorticity reduces to a $&mn equation:

w=-0% (iv)
The wonderful thing about the Laplacian operatahia expression is that it operates on each vector

component separately. Therefore, if only one corepoof the vorticity is known, yet the full z-
component of the vector potential can be constdudtethis study, the emphasis is on the vertical
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vorticity componentw,, that is made up by horizontal surface velocitieand v. At the velocity
field edges, it is sufficient to use homogeneousii@nn boundary conditions for solving the
Poisson equation.

Taking the curl of the constructed vector potenti@nponenty, yields in turn a vector field that

practically resembles the original velocity field,\{). It only differs slightly from the original
velocity field because a 2D plane within a 3D flbas a nonzero divergence. Therefore, the vector
potential functiony, only makes sense if the flow is quasi-2D. Thisditon is obviously satisfied

in case of a shallow flow with large coherent stwues in the horizontal plane. In that case, taking
the curl of the vector potential is practically aglent to:

u=0¢,/dy andv=-0y,/0x, (V)

which shows thaty, very much resembles a 2D stream function of (exgept for the fact that an

important correction has been made to circumvenhtinsolenoidality of the (u,v)-plane.

In fact, computing a vector potential is a wayintegratethe associated velocity field, revealing
large-scale rotation patterns. On the contrary,mamg a vorticity means takingderivativeof that
velocity field, effectively favouring small-scaletation patterns. This explains why vorticity data
are often very noisy while, on the other hand, @epbtential data are quite smooth and hence much
easier to interpret.

Each local maximum or minimum of a vector potentiadction identifies a vortex core of positive
respectively negative vorticity sign. The functisolines are very well parallel to the original tec
field. It may be concluded that vector potentiaks @ most suitable tool for identifying large eddie





