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Abstract 

 

 

The giant panda (Ailuropoda melanoleuca) is one of the most endangered 

vertebrates and an iconic symbol of conservation. While progress has been made in 

understanding its genome, landscape ecology and anthropogenic effects on its populations, 

many aspects of its biology are unknown. I measured resting metabolic rate of the giant 

panda and compared it to metabolic rates of other large mammals. The giant panda has a 

thermal neutral zone that ranges from at least 9 to 26 °C. Its metabolic rate is 6.0% to 44.3% 

below that predicted by regressions of mass vs. metabolic rate in the literature and that 

may be due to its strictly herbivorous bamboo diet. These results raise questions about the 

universal predictive power of physiological relationships such as the metabolic theory of 

ecology that attempt to predict ecological relationships based on metabolism and body 

size without considering other variables. For these predictions to be useful and truly 

reflective of the study animal, basic metabolic data are needed on more large mammals 

and animals with varied diets, before reliable predictive theories can be formulated. 

I also measured the field metabolic rate of giant panda. The results showed that 

FMR varied between individuals despite the active time for each individual being very 

similar. The water-loop of the giant panda is much faster than predicted. The mean daily 

energy expenditure (DEE) was 21,592 KJ, (SD = 13,323) per day. That means there is 

enough bamboo in 1 km
2
 of the Wolong Reserve to provide food for 81,726 panda days.
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I measured the resting metabolic rate of red panda as well. There was no difference 

in metabolic rate between male and female red pandas. The RMR of red panda was higher 

in the winter than in the summer. McNab measured 2 red pandas in 1987 and found a very 

low metabolic rate, 0.153 ml/g/h. In my 17 red panda experiments, 0.204 ml/g/h was the 

lowest value that I measured. The average in summer (0.290 ml/g/h) was twice as high as 

McNab‟s mean. The red panda has a higher metabolic rate than previously measured. 
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CHAPTER 1: INTRODUCTION 

 

The giant panda (Ailuropoda melanoleuca) is a mysterious creature that has 

enthralled the public since Père Armand David first discovered it for Western science in 

1869. The giant panda is one of the most endangered vertebrates and an iconic symbol of 

conservation. It is now the focus of intense conservation efforts in China and there has 

been considerable success in breeding giant pandas in captivity and in studying their 

genome (Li et al., 2010). The main long-range goal of captive breeding efforts is to 

reintroduce giant pandas back into their wild habitat so that they can survive and breed, 

and reestablish viable populations in protected reserves. However, we lack a basic 

understanding of the physiological ecology of the giant panda that is necessary for 

ensuring that there are sufficient resources for the animals and that they will be able to 

adapt to the effects of climate change that are and will be occurring in their reserves 

(Tuanmu et al., 2013). Due to these reasons my research focused on the metabolic rates of 

the giant panda and red panda (Ailurus fulgens). Knowing the metabolic rate of these 

animals is the first step in understanding their energetic requirements or food requirements, 

which is needed before we proceed with the reintroduction project.  

Giant pandas are large mammals and red pandas are small mammals. It is known 

that body mass is one of the most important factors affecting metabolic rate. There is a 

positive relationship between metabolic rate and body mass, and a negative relationship 
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between metabolic rate per unit mass and body mass. It is the classic body size vs. 

metabolic rate theory of Kleiber (1961). This is because small animals have less ability to 

maintain a constant body temperature than large animals because they are more closely 

tied to the environment through heat exchange (Porter and Gates, 1969). Therefore, we 

need to know how body mass affects the metabolic rates of pandas. 

Sieg et al. (2009) discuss the relationship between body size and metabolic rate. 

There has been much discussion about a power law in which the slope of metabolic rate to 

body mass relationship is either 0.67 or 0.75 (White and Seymour, 2003; O‟Connor et al., 

2007). Brown and others state that the slope is 0.75 and that this is a universal law in 

ecology- the metabolic law of ecology (Brown and Richard, 2012). However, Sieg et al. 

(2009) demonstrate that 0.75 is not always in the 95% confidence intervals of slope 

estimates and clade-specific slopes vary from 0.5 to 0.85, depending on the clade and 

regression model. For example, the slope of Soricids is 0.527, the slope of Chiropterans is 

0.872, the slope of Rodents is 0.533, the slope of Primates is 0.775 and the slope of 

Marsupials is 0.757. So Sieg et al. suggest that there is no set approach to analyzing 

allometric data, and disagree with the existence of universal scaling of metabolic 

allometry in mammals. Finally, they suggest new measurements of mammalian basal 

metabolism should be done in order to better understand the application of particular 

analytical models to allometry data. 
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The metabolic rates of bears 

The closest relatives of the giant pandas are the bears. Therefore, we should be 

able to estimate the metabolic rate of giant pandas from the metabolic rates of bears. 

However, there are no good data on that subject. There are only a few papers about the 

metabolic rates of bears. Most of them discuss the metabolic rates of hibernating animals. 

Watts (1988a) did an experiment on hibernating grizzly bears (Ursus arctos horribilis). 

Metabolic rate averaged 68% of predicted values from Kleiber (1975) for basal (resting) 

metabolism, 2788 kcal/day (-22℃) and 3779 kcal/day (-16℃). Watts also did experiments 

on polar bears (Ursus maritimus) and black bears (Ursus americanus) in 1987 and 1988 

(Watts et al., 1987; Watts and Cuyler, 1988b). But, all of the experiments were on 

hibernating animals. 

In 1981, Best‟s paper, on physiological indices of activity and metabolism in the 

polar bear, showed the relationship between metabolic rate and cardiac frequency and 

walking speed. He used a power law equation to calculate the metabolic rate of the bear 

and estimated that the energy cost per step per kg would increase if walking speed 

increased and that it would decrease with body size increase. 

McNab (1992) measured the rate of oxygen consumption in two female sloth bears 

(Melursus ursinus) at ambient temperatures of 9-38.5 °C. Measurements of resting sloth 

bears were not obtained at temperatures < 9 °C. At temperatures near 10 °C the bears 

became active and it was not possible to measure basal metabolic rate. The mean basal 
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rate of metabolism was 0.126 ml/g/h O2. The rate of metabolism during activity ranged 

from 0.300 to 0.713 ml/g/h O2, which was 2.4-5.7 times the basal metabolic rate. 

Immediately after eating, the bears had a rate of metabolism ca. 1.3 times the basal 

metabolic rate (ca. 0.160 ml/g/h) O2. McNab stated that vertebrate-eating bears, in contrast, 

have higher basal rates, even when denning, but he provided no data. The thick fur coat of 

the sloth bear may partly compensate for its low basal rate. 

Giant pandas 

No one has measured the metabolic rate of giant pandas (Ailuropoda melanoleuca). 

However, some papers discussed the related question of panda‟s activity and energy. 

Han‟s (2001) paper measured daily activities of five pandas in Wolong Wu-Yi-Peng 

Reserve during 1981-1982. He used variance analysis as the index for outdoor activities of 

giant pandas. The results show that season and sex have significant influence on daily 

activities. Sex of the animal also had a great influence on yearly activities. 

Zhou et al. (1990) measured the digestion of giant pandas. In that paper, they 

studied two pandas and measured total food intake, excretion, and total digestion. In 

addition, the authors also measured the percentage of crude protein, crude fat, crude fiber 

and nitrogen free extract digestion. Protein has the highest digestion rate, then fat, and 

nitrogen free extract. Fiber has the lowest digestion rate. According to their experience in 

feeding pandas, fiber can increase the activity of stomach and intestine. It is good for 
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panda digestion. If pandas reduce the intake of fiber, the digestion efficiency also is 

reduced.  

Wei (2000a) analyzed the energy flow through populations of both giant panda and 

red panda (Ailurus fulgens). The results indicate that energy flow through the giant panda 

population is higher than that through the red panda population. Giant panda energy flow 

is 1.86*10
6
 kJ/km

2
·yr, 2.9 times as much as the red panda (6.34*10

5
 kJ/km

2
·yr). Though 

useable food resources of giant pandas and red pandas made up only 12.79% and 3.93% of 

total above ground standing biomass, energy intake and energy flow through populations 

of the two species each year accounted for 0.01% to 1.0% of the usable food biomass or 

above ground standing biomass. Wei (2000a) concluded that bamboo resources would not 

be a limiting factor for the population increases of both pandas unless the bamboo reached 

its reproductive age.  

Red pandas 

Wei (2000b) also studied the seasonal energy utilization of bamboo by red pandas. 

The results show that energy digestibility is high in summer-autumn, intermediate in 

spring, and low in winter. These variations correlated positively with the nutrients of 

bamboo. The daily metabolic energy requirement measured varied from 2603.3 kJ in the 

spring to 3139.8 kJ in the summer-autumn to 2740.8 kJ in the winter. In spring, the new 

leaves are just beginning to form and newly formed leaves are only a small proportion of 

the leaves on the branches. Leaves are less nutritious in this season than in the 
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summer-autumn. However, the red panda can get supplemental energy to meet its 

requirements through feeding on shoots during this season, similar to the giant panda, 

because shoots are the most nutritious parts of bamboo. In the summer-autumn, when the 

leaves are most nutritious, the animals digested and assimilated more energy from leaves 

and exhibited the highest energy digestibility. During this period, the red panda digested 

20.87% more energy than in the spring and 12.89% more than in winter to meet its energy 

requirements. During the winter, as leaves begin to turn yellow and die, their nutritional 

value declines, and the energy digestive efficiency decreased to the lowest. 

McNab (1988) measured the resting metabolic rates of two red pandas from a zoo. 

He found that red pandas decreased metabolic rate at low environmental temperatures 

without reduced body temperature. Red panda has a low rate of metabolism, which was 

0.153 ml/g/h oxygen consumption at ambient temperature between 25 ℃ and 36 ℃. 

This is 39% of Kleiber‟s prediction. As the temperature falls from 25 ℃ to 19 ℃, the 

metabolic rate increases. However, when the temperature drops below 19 ℃, the 

metabolic rate decreases to a minimum of 0.074 ml/g/h between 0 ℃ and 10 ℃. This 

metabolic rate equals 19% of the value expected from Kleiber and 48% of the rate 

measured between 25 ℃ and 36 ℃. However, the metabolic rates that McNab measured 

were also much below those predicted by allometric equations of metabolic rate vs. body 

size in mammals (Sieg et al., 2009).  
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Methods of studying MR 

Flow-through respirometry method  

All flow-through systems for measuring animal respiration measure the CO2 and 

O2 concentration changes made by an organism from an air stream by gas analyzers to get 

metabolism information. This method can have accurate data measurement, but the flow 

rate must be known, the gas analyzers must be accurate and recently calibrated, and the 

effects of the system‟s configuration must be known. Moreover, an animal must be put 

into an area such as a chamber from which air can be pumped at a known flow rate and 

sampled for gas analysis. This method can be used to measure the animal‟s metabolic rate 

with good precision by using flow-through systems. A mask or a chamber or a burrow, 

which is made by the animal itself, is needed for flow-through systems. Because the 

experiment will pull air through the chamber, the downstream flow rates have to be 

measured. In addition, the flow measurements will be influenced by the water vapor that is 

in the air stream, added by the animal, and also by the O2 consumed and the CO2 produced 

by the animal. Likewise, O2 will be diluted by water vapor and CO2, and CO2 will be 

diluted by water vapor and enriched by the extraction of O2 consumed by the animal. 

Because of these reasons the air samples must be dry when they go into the analyzer 

(Lighton, 2008). 
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Double labeled water 

The double labeled water method (DLWM) was first described by Lifson et al. 

(1955) It can be used for measuring the metabolic rates of free range mammals and birds 

accurately and reliably. It is based on the different pathways of hydrogen and oxygen in 

water overlap of organisms. Hydrogen is only lost by water loss. However, oxygen is lost 

by both CO2 loss and H2O loss, so the oxygen in a given quantity of H2O will be lost more 

quickly than the hydrogen. In other words, oxygen has the higher loss rate, and the 

difference between oxygen and hydrogen decline per unit time is the metabolic rate. 

(Lighton, 2008) 

The DLWM has been used successfully on rats, bats, birds, reptiles, small and 

large mammals. The daily energy expenditure of root voles (Microtus oeconomus), rat 

(Rattus norvegicus), shrew (Sorex araneus) and chipmunk (Tamias stratus) are now 

known (Lee and Lifson, 1992; Poppitt et al., 1993; Careau et al., 2012; Careau et al., 2013; 

Szafrańska et al., 2014). The same is true for several species of birds (Williams and Prints, 

1986; Visser et al., 2000; Welcker et al., 2013). The field metabolic rates (FMR) of two 

species of bats (Pipistrellus pipistrellus and Eptesicus fuscus) indicate some variation 

between individuals (Speakman and Racey, 1988; Kurta et al., 1990). For reptiles, the 

FMR of the desert lizard (Ctenophorus nuchalis) differs with season (Nagy, 1995). 

However, there is no seasonal difference in FMR of juvenile green turtles (Chelonia 
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mydas) (Southward et al., 2006). Leatherback turtles (Dernochelys coriaces) have low 

FMR so they avoid overheating in the tropics (Wallace et al., 2005).  

The daily energy expenditure (DEE) of two kinds of working dog, hunting dog and 

Inuit sled dog, (Canis familiaris) varies from 6647 KJ/day to 16600 KJ/day (Gerth et al., 

2010; Ahlstrøm et al., 2011). Junghans et al. (1997) studied goats (African dwarf goat) 

with two isotope methods, 
13

C bicarbonate (
13

C-M) and doubly labeled water method 

(DLWM). They report that 
13

C-M is good for measuring short-term (6-12 hours) FMR. 

The DLWM is good for a long-term FMR study. Black-tailed deer (Thylogale billardierii ) 

have about three times higher FMR (1.063 ml/g/h CO2) than kangaroos (Macropus 

giganteus ) (0.369 ml/g/h CO2) (Nagy et al., 1990). For marine animals, the DLWM gives 

a higher DEE reading for fur seal (Callorhinus ursinus) than a respiratory system (Dalton 

et al., 2014). The DLWM gave accurate measurements of the FMR of the grey seal 

(Halichoerus grypus) (Sparling et al., 2008). Variation in FMR among individual walrus 

(Odobenus rosmarus) depends upon activity levels (Acquarone et al., 2006). The DLWM 

has been widely used in energetic studies of hundreds of men, women and children 

(Kashiwazaki et al., 1995; Black, 1996; Johnston et al., 2007; Djafarian et al., 2010; 

Ojiambo et al., 2013). Recently this technique has also been used on fruit flies 

(Drosophila melanogaster), a very small insect (Piper, et al., 2014). 
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Heart rate methods 

Boothby (1915) and Krogh and Lindhard (1917) demonstrated that there is a linear 

relationship between heart rate and oxygen consumption. The heart rate can be obtained 

by telemetry on free-ranging animals. One needs to derive a calibration equation for the 

species. The elements in the equation include: 1. Cardiac stroke volume-the amount of 

blood pumped per heartbeat. 2. Oxygen content of arterial blood. 3. Oxygen content of 

mixed venous blood. The equation is oxygen consumption = heart rate * Cardiac stroke 

volume * (Oxygen content of arterial blood - Oxygen content of mixed venous blood). 

This method relies on the premise that a change in heart rate is a major component in the 

response of the cardiovascular system of a species to an increase in the demand for oxygen. 

So it is a linear relationship between heart rate and oxygen consumption, the latter could 

be used to determine the oxygen consumption (Butler et al., 2004).  

Methods in this study 

  Each method has its own disadvantages. For example, in the respiration system, 

the gas analyzer is very sensitive and needs care to make it work reliably (Lighton, 2008). 

You have to be very careful to deal with air temperature, air pressure, air flow rate and in 

removing vapor. Expenditure and isotope sustaining time are the two major issues for 

doubly labeled water method (Butler et al., 2004). The price of doubly labeled water is 

around 200 USD per gram, and 15 grams are needed for each giant panda. The cost is 

3000 USD per giant panda. Meanwhile, you need to resample before isotopes run out, or 
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you will lose 3000 USD. The biggest problem of the heart rate method is that you need to 

derive a calibration equation for each new species (Butler et al., 2004), and the 

relationship is difficult to develop between activity and heart rate because it is a nonlinear 

relationship. 

Objectives of the Dissertation 

 In this dissertation I sought to measure the resting metabolic rates of giant pandas 

and red pandas. I also tested the DLW method to determine if that method was appropriate 

for measuring the metabolic rate of active giant pandas in the field. In Chapter 2 I present 

the data and discuss the results for the resting metabolic rate of the giant panda. In chapter 

3 I present the field metabolic rate for giant pandas in the Chengdu Research Base of 

Giant Panda Breeding in Sichuan Province, China. The DLW method worked for giant 

pandas, but there were some problems that need to be considered in taking that method 

into the field. In Chapter 4 I present the results for the resting metabolic rates of red 

pandas. The results differ from those of McNab. Finally, in Chapter 5 I review the 

findings of the experiments and discuss conservation implications. 
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CHAPTER 2: RESTING METABOLIC RATES OF THE GIANT PANDA, A 

HERBIVOROUS CARNIVORE 

 

Introduction 

The giant panda (Ailuropoda melanoleuca) is a mysterious creature that has 

enthralled the public since Père Armand David first discovered it for Western science in 

1869. It is now the focus of intense conservation efforts in China and there has been 

considerable success in breeding giant pandas in captivity and in studying their genome 

(Li et al., 2010). Schaller et al. (1985) documented the feeding habits, home range, 

behavior and basic population biology of the giant panda in the Wolong Reserve in 

Sichuan Province, China. Since then there has been considerable research on population 

genetics and anthropogenic impacts on the giant panda (Liu et al., 2001; Zhu et al., 2013). 

However, there is still much that is unknown about its basic biology and ecology.  

 The main long-range goal of captive breeding efforts is to reintroduce giant 

pandas back into their wild habitat so that they can survive and breed, and reestablish 

viable wild populations in protected reserves. However, we lack a basic understanding of 

the physiological ecology of the giant panda that is necessary for ensuring that there are 

sufficient resources for the animals and that they will be able to adapt to the effects of 

climate change that are and will be occurring in their reserves (Tuanmu et al., 2013). For 

example, we need to know; what are the energetic requirements of the giant panda and 
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how are those requirements manifested in its habitat requirements? Giant pandas are 

thought to prefer habitats with dense conifer forests at higher altitude (Qi et al., 2009; Qi 

et al., 2011). However, is that because of physiological constraints due to energetics and 

temperature tolerance, or is it due to the presence of human activity at lower elevations 

(Liu et al., 2001, Qi et al., 2011)? Ecology is based on the exchange of energy and matter 

between an animal and its environment (Gates, 1962). From the animal‟s perspective their 

ecology is basically metabolic and ecological interactions that are based on the biological 

processing of energy and naturally available materials (Brown et al., 2012). Therefore, we 

cannot proceed with reintroduction of giant panda until we know the metabolic 

requirements of the giant panda. The giant panda metabolic rate will give resource and 

reserve designers or managers basic data to determine how much food must be available 

and how that might change seasonally. We must design reserves that have sufficient food 

reserves for summer, fall, winter and spring conditions, which may place widely different 

energetic constraints on these animals, as well as provide differing standing biomass of 

forage available to eat. 

The study of vertebrate metabolism has produced important insights into the role 

of body size in the biology of animals and has led to continuing controversy about the 

scaling relationship between body size and metabolic rate (White and Seymour, 2005; 

Sieg et al., 2009). It has also led to development of the metabolic theory of ecology (MTE) 

that aims to provide mathematical equations for the mechanistic underpinnings of ecology 
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(West et al., 1997; Brown et al., 2004) relating how body size and temperature, through 

their effect on metabolic rate, affect rates and timing of ecological processes. However, the 

MTE has been controversial and there are continuing discussions of the proper scaling 

exponent in the allometric equation of body size vs. basal metabolic rate (BMR = aM
b
) in 

mammals where M is body mass. Is b = 2/3 or ¾ ? (Kleiber, 1961; White and Seymour, 

2003; O‟Connor et al., 2007). One of the problems in this discussion has been the paucity 

of data from large mammals. More than 80% of values in the mouse to elephant regression 

analyses have been from small mammals and small and large mammals may lie on 

different regression lines for body mass vs. metabolic rate (Heusner, 1991). Therefore, it is 

important to obtain accurate measurements of metabolic rates in large mammals, despite 

the difficulty in studying such mammals in the laboratory. Ecological theory is only as 

strong as the data that underlie its equations. 

The giant panda provides an interesting case for a large mammal. It is a member of 

the Family Ursidae related to omnivorous bears (O‟Brien et al., 1985; Hu, 2000; Ellis et 

al., 2006). Its digestive system is that of a carnivore, but its diet is primarily herbivorous 

(Li et al., 2010). It is specialized for eating primarily one plant type, bamboo. We might 

expect that it would have a metabolic rate below that expected for a mammal of its size 

based on its diet of bamboo leaves and stalks since mammals such as sloths (Bradypus 

griseus, Choloepus hoffmanni) that feed extensively on leaves have low basal metabolic 

rates (McNab, 1978) and sloth bears (Melursus ursinus) that eat termites also have a lower 
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than expected metabolic rate (McNab, 1992). Therefore, the object of this experiment was 

to measure the BMR of the giant panda, both to obtain knowledge of its physiology and to 

add data to test the MTE. Giant pandas are rare and not readily available for physiological 

studies. However, I was fortunate to be able to measure the metabolic rate of 9 giant 

pandas at the Research Base of Giant Panda Breeding in Chengdu, China. The focus of 

this study was to determine the standard metabolism of resting giant pandas within a range 

of temperatures. 

Methods 

Giant panda acquisition and maintenance 

I studied giant pandas (Ailuropoda melanoleuca) at the Research Base of Giant 

Panda Breeding (Panda Base) (www.panda.org.cn) and conducted all experiments in 

cooperation with the research, veterinary and husbandry staff there. The Research Base of 

Giant Panda Breeding was a nonprofit organization with offices in Chengdu, Sichuan 

Province, China. It was a center for wildlife research, giant panda captive breeding, 

conservation education, and educational tourism. It was not possible to carry out 

metabolic studies of giant pandas in the past because they were very rare and most zoos 

only had one or two individuals. I was fortunate that the Panda Base had 107 giant pandas 

and I was allowed to use 9 of them for these experiments under very close veterinary 

supervision. The staff there had unique experience in breeding and husbandry of giant 

pandas based on more than 30 years of research. Giant pandas lived in their normal 

http://www.panda.org.cn/
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enclosures and ate a diet composed primarily of bamboo supplemented with foods such as 

apples and “panda cake”, a biscuit made of a mixture of grains with vitamins. I transported 

pandas to the laboratory for each experiment. 

Metabolic rate experimental design 

I measured metabolic rate during two seasons, summer and winter. Because there 

was no effective air temperature-control room at the Panda Base I had to use natural air 

temperature change during the seasons to study pandas under warm and cool conditions. I 

did that to assess the thermal neutral zone of the giant panda. However, according to the 

husbandry rules of the Panda Base, giant pandas should not be exposed to temperatures 

greater than 25℃. Past experience showed that if giant pandas experienced temperatures 

above 25℃, they became heat stressed and experienced health problem. So in our 

experiment, I attempted to keep the maximum experimental temperature at 25.0℃. In 

winter I could not obtain an experimental temperature below 9.1℃. 

I studied 5 giant pandas during each season, including young animals (1-2 years 

old), sub adults and adults. One adult was studied twice. Because giant pandas are diurnal, 

I conducted all experiments during night hours (2200-0400). Giant pandas were weighed 

before and after each experiment. 

 Our goal was to measure the BMR of these animals keeping in mind the criteria 

of Kleiber (1961) that the animals be post-absorptive and at rest. Normally I would fast 

the animals for 24 h before an experiment. However, past experience at the Panda Base 
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indicated that if giant pandas did not eat for 24 h they became restless and agitated, paced 

around their enclosures and were very active. Therefore, animals fasted for 12 h before an 

experiment, but could drink water. Some animals did pass feces during experiments so 

they may have been digesting vegetation. Speakman et al., (1993) stated that it is not 

always possible to adhere completely to the Kleiber criteria in studies on wild animals and 

that it is necessary to trade off the strict adherence to arbitrary rules with the constraints of 

reality for the species under study. Even Kleiber (1961) stated that measurement of a true 

BMR was probably only possible in humans. Many authors use the term standard 

metabolic rate or resting metabolic rate rather than BMR for non-human animals. I believe 

that our measurements of the resting metabolic rate (RMR) of giant pandas are as close to 

BMR as it is possible to obtain under realistic conditions. 

I measured metabolic rate in a Plexiglas chamber using a flow through system to 

measure oxygen consumption and carbon dioxide production. The chamber was 1.5 m * 

1.5 m * 2.0 m and constructed of 2.0 cm Plexiglas with a steel frame for added strength. 

One side of the chamber was a door held by steel hinges, sealed with a rubber gasket and 

closed with metal latches (Figure 1). There were three 2.5 cm holes with 60 cm long 

tubing attached to avoid backflow for air intake at the bottom right side of the chamber. 

There was one 2.5 cm exit hole at the top left side of the chamber that connected to 

spiral-wound tubing leading to a Flowkit -500 mass flow system (Sable Systems 

International). A subsample of air went from the Flowkit pump to a FOXBOX oxygen and 
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carbon dioxide analyzer (Sable Systems International). The three air intake holes and one 

air exit hole eliminated negative pressure in the system. The placement of the holes 

reduced air stagnation and two small battery operated fans in the chamber assured that the 

air was well mixed. Six 24-gauge Cu-Co thermocouples (+/- 0.05℃) located inside the 

chamber on the top, right side, left side, back side, and in the mouth of the air intake and 

exit holes measured chamber temperatures.  

The Sable System Flowkit used a precision mass flow sensor with a rotary pump 

controlled by a microprocessor to control air flow rate to within 2 % of reading. The 

Flowkit pump‟s air flow was set at 150L/min. After leaving the Flowkit pump, air was 

subsampled though a small plastic tube and drawn into the FOXBOX system at a rate of 

200 ml/min. The subsample went through a relative humidity meter and temperature meter 

before it entered the gas analyzers. Sample air passed through the CO2 analyzer and then a 

drierite (anhydrous calcium sulfate (gypsum) with cobalt (II) chloride added as a color 

indicator) column before entering the O2 analyzer to remove water vapor which would 

interfere with the fuel cell in the oxygen analyzer. The accuracy of the Sable System 

Foxbox was 0.1 % for O2 over a range of 2-100% and 1 % for CO2 over a range of 0-5% 

when calibrated used using calibration gas (14.93 % O2, 3.99 % CO2) from Dalian Special 

Gas Industry Company and tested by National Institute of Measurement and Testing 

Technology. 100 % dry N2 and room air were also used to calibrate the system. I converted 

gas measurements to standard temperature and pressure dry (STPD). 
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Statistical analysis 

I used a fitting linear model (LM) in program R (R Development Core Team 2011). 

The LM consisted of the interactions between two fixed factors that included age and sex 

with temperature and mass as covariates. I used model comparison and simplification to 

remove factors that were not significantly related to RMR. The final linear model 

contained the effects of mass and age. I accepted P ≤ 0.05 as a statistically significant 

difference.  

Results 

The resting metabolic rate (RMR) of the giant panda ranged from 0.127 ml/g/h to 

0.242 ml/g/h (Figure 2). The LMER model ANOVA (Table 1) indicated that there was a 

statistically significant effect of age (df = 2, 9; F = 80.16; P = 0.002), mass (df = 1, 9; F = 

17.22; P = 0.025) and an interaction between sex and age (df = 1, 9; F = 37.29; P = 0.009). 

The RMR of adult and sub-adult giant pandas was 0.150 ml/g/h (range = 0.126 ml/g/h to 

0.189 ml/g/h) and RMR for young giant pandas was 0.204 ml/g/h (range = 0.183 ml/g/h to 

0.225 ml/g/h. There was no difference in RMR between males and females, and no 

difference in RMR due to environmental temperature and season. The effect of mass is 

clear in Figure 2 and mass and age are obviously related. Because both sub-adult pandas 

were female the effect of sex was not significant. The interaction of age and sex was 

coincident and may also be related to the small sample size. The RQ data were variable. 

Values ranged from 0.59 to 0.85 (Table 2). 
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Discussion 

There were differences in metabolic rate between young cub and adult giant 

pandas. In our study both age and mass affected RMR. Age affects RMR because young 

animals have higher RMR than adults (Karasov, 2007). However, the masses of young 

giant panda cubs were from 63 kg to 68 kg, smaller than those of adults at 78 kg to 132 kg. 

Therefore, mass also was important in determining the RMR. Although the effects of mass 

and age were confounded, the statistical significance of the effects suggested that age had 

a greater effect than mass on RMR. 

There was no difference in metabolic rate between male and female giant pandas. 

Some mammals have behavioral and physiological differences between males and females 

that cause differences in RMR due to hormones (McNab, 2000, Henry, 2005, Black et al., 

1996). For example, in humans, males have higher BMR and active metabolic rate than 

females, but female margays (Leopardus wiedii) have higher BMR than males. Captive 

and wild male giant pandas are more active in the daytime than female giant pandas (Liu 

et al, 2002). Female giant pandas have more restricted habitat requirements than males (Qi 

et al., 2011). Those differences would probably be reflected in their active metabolic rates. 

There was no difference in activity of males and females in our metabolic chamber. Both 

sexes were quiescent. Therefore, there was no difference in their RMR.  

Temperature is an important factor affecting RMR. Mammals have a thermal 

neutral zone in which animals have a minimum RMR. Below that zone metabolic rate 
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increases due to thermoregulation. Above that zone metabolic rate increases due to a loss 

in the ability of the animal to cool its body temperature by behavioral and physiological 

means (Withers, 1992). In our experiment, there was no significant difference in metabolic 

rates of giant pandas at environmental temperatures between 9.1℃ and 26.5℃. Therefore, 

these temperatures were within the thermal neutral zone. There was no indication that the 

animals were more active at these temperatures and they showed no signs of behavioral 

stress. 

The RQ data were variable. An animal digesting fat has a RQ of 0.7, an animal 

digesting carbohydrates has an RQ of 1.0 and an animal digesting protein has an RQ of 

0.8-0.9. RQ values lower than 0.7 are often considered to be in error (Livesey and Elia, 

1988). However, low RQs are not unusual for metabolic studies of animals. For example, 

studies on birds (King, 1957), hibernating black bear (Ursus americanus) (Nelson, 1973), 

pig (Thorbek, 1974; Chwalibog, et al., 2002), white rat (Wang, et al., 1975), and green 

turtle (Chelonia mydas) (Jackson, 1985) report some RQs below 0.7. Low RQs also occur 

in humans (Owen et al., 1998). Benedict (1932) and Benedict and Lee (1938) discussed 

this problem and suggested that low RQs were due to fat transformation into carbohydrate 

through the process of gluconeogenesis. The RQ for gluconeogenesis is 0.4 (Schutz, 1997) 

so if this occurs in an animal the resulting RQ would be below 0.7. Walsberg and Wolf 

(1995) suggest that RQ below 0.7 may be due to incomplete oxidation of fat and 

non-pulmonary CO2 loss. It may also be due to incomplete ketone oxidation and the loss 
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of oxidation products through urine or breath (Schutz and Ravussin, 1980). I cannot be 

sure of the cause of RQ below 0.7 in some of our giant pandas. Additional studies are 

needed to clarify that situation. Elevated RQs above 0.7 were probably due to animals that 

were not post-absorptive. Giant pandas in this study were only fasted for 12 h due to 

veterinary concerns and the passage time for bamboo through the gut may be longer than 

this fasting period. There was a tradeoff between fasting them longer and having them get 

active due to hunger, and limiting the time of fasting so that they were resting. In order to 

be sure giant pandas are post-absorptive a longer fast would be needed. The limitation in 

numbers of animals available for experimentation and the restlessness of animals that are 

hungry will make it very difficult to obtain such data.  

Contrary to our expectations, based on its diet of bamboo leaves and stalks 

(McNab, 1978), the metabolic rate of the giant panda was similar to that of other 

mammals of the same size. I compared the resting metabolic rate in ml/h (MR) of the giant 

panda to those reported for 21 other mammals ranging in size from 50 kg to 193 kg taken 

from Sieg et al. (2009) (Table 2). The metabolic rate of the giant panda was higher than 

that of the sloth bear (McNab, 1992) but lower than that of the tiger (Panthera tigris), lion 

(Panthera leo), cow (Bos taurus), and eland (Taurotragus oryx)  (McNab, 2000; Taylor 

and Lyman, 1967; Taylor et al., 1969). At similar mass, humans have a similar RMR as 

young (2 year old) giant pandas. Dolphins and sea lions have higher metabolic rates 

(Williams et al., 2001; Rosen and Trites, 2002). This is because they were not as quiet as 
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land animals during the metabolic experiments. In addition, water has a much higher heat 

transfer rate than air and the higher rate of heat loss in water requires a higher RMR 

(Spotila, 1980).  

I plotted the MRs of the giant panda and the 21 other large mammals (Table 3) 

from Sieg et al. (2009) (Figure 3). The regression line through those data (log10 (MR) = 

0.8227 Log10 (Mass) + 0.2359, r
2
 = 0.57; P = 0.000) was almost the same as that of Sieg et 

al. (2009) for carnivores/ungulates/pangolins (Fereuungulata) (Waddell et al., 1999; 

Springer et al., 2005). Both of those lines were above the line calculated from all 695 

mammals in their data set. That supports their conclusion that phylogenetic relationships 

affect the body size- metabolic rate regression and that there is not a single universal 

metabolic rate-body mass scaling relationship in mammals.  

Giant panda metabolic rates were 6.0% to 44.3 % below those predicted by the 

Fereuungulata regression line (Table 3). White and Seymour (2005) suggest that the 

presence of large herbivores in a data set will elevate the scaling exponent because large 

herbivores are less likely to be post-absorptive when metabolic rate is measured. In 

support of this suggestion our data indicated that even if some of our giant pandas were 

not post-absorptive, their metabolic rates were still below predicted values for mammals 

of similar size. Therefore, a combination of phylogenetic relationships and physiological 

factors affect the metabolic rate of individual species and no one predictive line can 

account for all variation in the body size-metabolism relationship among mammals.  
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The proponents of the MTE (West and Brown 2005; Allen and Gillooly 2007; 

Moses et al., 2008) indicate that minimization of transport costs of metabolites to 

metabolically active tissues require a scaling exponent of ¾ for metabolism. However, our 

data on the metabolic rate of the giant panda in comparison to allometric analysis of the 

metabolic rates of large mammals (Sieg et al., 2009) indicates that the MTE has extremely 

limited predictive power. It does not accurately predict the metabolic rate of a giant panda. 

Inherent variation in the metabolic processes of individual species such as the giant panda, 

an animal with the digestive system of a carnivore that has an herbivorous diet, affects the 

slope estimate for the relationship between body size and metabolic rate in a group of 

mammals. Only with more detailed studies of the metabolism of additional species of 

mammals, both herbivores and carnivores, will we clarify any potential universal theories 

for mammalian physiological ecology. For example, there are no data on the RMR of 

species such as the black bear (Ursus americana), a common inhabitant of eastern North 

America, except for hibernating individuals (Watts et al., 1987; Watts and Cuyler, 1988a; 

Watts and Jonkel, 1988b). Yet bears are the closest relatives of the giant panda and 

knowledge of their metabolic rates will clarify whether the lower than expected metabolic 

rate of giant pandas is unique to their digestive physiology or is common to closely related 

members of their phylogenetic clade. Before we can have confidence in major theories 

about metabolic ecology we need to acquire more data on large animals because it is 

apparent that understanding the basis for variation between individuals and species is 

important in understanding animals in the laboratory and the real world. 
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Table 2.3. Metabolic rates of 21 large mammals compiled by Sieg et al (2009) and 

juvenile and adult giant pandas measured at the Chengdu Research Base of Giant 

Panda Breeding. 

 

 

 

  

Number Animal Mass RMR O2 Log10(Mass) Log10(MR O2)
1 Jaguar 50400 0.222 4.70 4.05
2 White Tailed Deer 51190 0.226 4.71 4.06
3 Ribbon Seal 54700 0.363 4.74 4.30
4 Red Deer 58000 0.283 4.76 4.22
5 Giant Panda Young 66250 0.204 4.82 4.13
6 Sloth Bear 66957 0.126 4.83 3.93
7 Bighorn Sheep 67332 0.342 4.83 4.36
8 Homo 67650 0.198 4.83 4.13
9 American Badger 76020 0.300 4.88 4.36

10 Arabian Oryx 84100 0.221 4.92 4.27
11 Caribou 85000 0.346 4.93 4.47
12 Lion 98000 0.173 4.99 4.23
13 Water Buck 100000 0.267 5.00 4.43
14 Giant Panda Adult 109833 0.150 5.04 4.22
15 Llama 115000 0.164 5.06 4.28
16 Sea Lion 121833 0.350 5.09 4.63
17 Eland 125000 0.239 5.10 4.48
18 Tiger 137900 0.174 5.14 4.38
19 Wildebeest 140000 0.213 5.15 4.47
20 Harp Seal 150000 0.195 5.18 4.47
21 Bottlenosed Dolphin 165625 0.335 5.22 4.74
22 Ass 177500 0.164 5.25 4.46
23 Cow 193000 0.175 5.29 4.53
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FIGURES 

 

 

 

 

Figure 2.1. Metabolic chamber used to measure the metabolic rates of giant pandas 

at the Research Base of Giant Panda Breeding in Chengdu, China. 
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Figure 2.2. Metabolic rates of giant pandas measured at the Research Base of Giant 

Panda Breeding in Chengdu, China. Animals were at rest in a metabolic chamber at 

temperatures between 9.1 and 26.5 °C. M represents males and F represents females. 
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Figure 2.3. Relationship between body mass and metabolic rate in giant pandas and 

21 other large mammals. GP represents giant panda. Regression lines for all 

mammals and for Ferreuungulate mammals are from Sieg et al. (2009). Solid line is 

regression line calculated by us with the addition of the giant panda.  

 

 



           42 

 

 

CHAPTER 3: THE FIELD METABOLIC RATE OF GIANT PANDA IN 

CAPTIVITY USING DOUBLY LABELED WATER TECHNIQUE 

 

Introduction 

The captive population of giant pandas (Ailuropoda melanoleuca) in the 

world has increased over the last 30 years from about 6 to 350. However, the 

ultimate goal of giant panda captive breeding is to release pandas into the wild to 

supplement natural populations in nature reserves. No one has successfully 

introduced captive bred giant pandas into the wild. In order to do so it will be 

necessary to have a better understanding of their basic biological requirements. This 

includes knowledge of their energetics and food requirements. There are no reports 

of energetic research on giant pandas and only a few articles about habitat use and 

temperature tolerance (Qi et al., 2009; Qi et al., 2011). Recently I measured the 

resting metabolic rate (RMR) of nine pandas at two temperatures (Fei, 2015, Chapter 

2) and compared it to metabolic rates of other large mammals. The giant panda has a 

thermal neutral zone that ranges from at least 9 to 26 °C. Higher temperatures are 

stressful. Its metabolic rate is below that predicted by regressions of mass vs. 

metabolic rate in the literature and that may be related to its bamboo diet.  

There are a few studies of metabolic rates of bears. However, most of them 

are on animals in hibernation (Watts et al., 1987; Watts and Cuyler, 1988a; Watts and 
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Jonkel, 1988b) so they are not useful in establishing the true metabolic cost for a 

bear in nature and cannot be extrapolated to the giant panda. McNab (1992) 

measured RMR of two female sloth bears in Florida. He found that their metabolic 

rates were much below those predicted by regression lines of metabolic rate vs. body 

size in mammals. The thick fur of sloth bear can decrease the heat loss rate and is 

one reason the sloth bear presents a low RMR. There is only one physiological study 

of an active polar bear. They did not measure the metabolic rate directly. However, 

they exercised the bear on a treadmill and found that cardiac frequency was linearly 

related to estimated metabolic rate. Best et al. (1981) estimated that the energy cost 

per step per kg would increase if walking speed increased and that it would decrease 

with body size increase. 

There is a need to determine the metabolic cost of activity of the giant panda 

under natural conditions so that we can have a basis for determining the carrying 

capacity of natural reserves. If we know how much energy it costs a giant panda to 

go about its daily life and the amount of food (bamboo) available in its natural 

environment than we can calculate how many animals can live in a given area. He 

(2000) reports that wild giant pandas eat 13.14kg to 14.58 kg of bamboo leaves and 

stems a day or 43.74 kg of shoots a day. Chen (1998), Liu (2002) and Yang (2005) 

measured the protein digestion rate and fiber digestion rate of bamboo. The apparent 

digestibility of crude protein had a negative relationship for 1.5 to 2.5 year old giant 
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pandas. However, it showed a positive relationship for 2.5 to 4.7 years old giant 

pandas (Liu et al., 2002). Gross energy density had a negative relationship with the 

apparent digestibility of crude protein (Yang et al., 2005). Giant pandas have a higher 

coarse cellulose digestion rate with mechanically ground bamboo that fresh bamboo 

(Chen et al., 1998). Energy intake and output should be in a dynamic balance. 

However, Schulz et al (1992) report that there can be a difference between energy 

intake in food and activity metabolic rate in humans and that the difference can be 

due to differences in accuracy in the two methods. Therefore, the best way to 

determine the metabolic cost of activity for an animal is to actually measure active 

metabolic rate in the field rather than rely on food intake and digestion efficiency 

measurements. Therefore, we need to measure the active metabolic rate of the giant 

panda to complete the circle from food to activity. The best way to do that is through 

the use of doubly labeled water (DLW) (Speakman, 1997). 

The doubly labeled water method (DLWM) was first described by Lifson et 

al. (1955). It can be used accurately and reliably for measuring the metabolic rates of 

free range mammals and birds. The DLWM is based on the different pathways of 

hydrogen and oxygen in water consumed by organisms. Hydrogen is only lost by 

water loss. Oxygen is lost through both CO2 loss and H2O loss. So, the oxygen in a 

given quantity of H2O will be lost more quickly than the hydrogen. In other words, 

oxygen has the higher loss rate, and the difference between oxygen and hydrogen 
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loss per unit time allows calculation of the metabolic rate (Lighton, 2008). 

The DLWM has been used successfully on rats, bats, birds, reptiles, small 

and large mammals. The daily energy expenditure of root voles (Microtus 

oeconomus), rat (Rattus norvegicus), shrew (Sorex araneus) and chipmunk (Tamias 

stratus) are now known (Lee and Lifson, 1992; Poppitt et al., 1993; Careau et al., 

2012; Careau et al., 2013; Szafrańska et al., 2014). The same is true for several 

species of birds (Williams and Prints, 1986; Visser et al., 2000; Welcker et al., 2013). 

The field metabolic rates (FMR) of two species of bats (Pipistrellus pipistrellus and 

Eptesicus fuscus) indicate some variation between individuals (Speakman and Racey, 

1988; Kurta et al., 1990). For reptiles, the FMR of the desert lizard (Ctenophorus 

nuchalis) differs with season (Nagy, 1995). However, there is no seasonal difference 

in FMR of juvenile green turtles (Chelonia mydas) (Southward et al., 2006). 

Leatherback (Dernochelys coriaces) turtles have low FMR so they avoid overheating 

in the tropics (Wallace et al., 2005).  

The daily energy expenditure (DEE) of two kinds of working dog (hunting 

dog and Inuit sled dog, (Canis familiaris) varies from 6647 KJ/day to 16600 KJ/day 

(Gerth et al., 2010; Ahlstrøm et al., 2011). Junghans et al. (1997) studied goats 

(African dwarf goat) with two isotope methods, 
13

C bicarbonate (
13

C-M) and DLWM. 

They report that 
13

C-M is good for measuring short-term (6-12 hours) FMR. The 

DLWM is good for a long-term FMR study. Black-tailed deer (Thylogale billardierii ) 
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have about three times higher FMR (0.369 ml/g/h CO2) than kangaroos (Macropus 

giganteus ) (1.063ml/g/h CO2) (Nagy et al., 1990). For marine animals, fur seal 

(Callorhinus ursinus) the DLWM gives a higher DEE reading than a respiratory 

system (Dalton et al., 2014). The DLWM gave accurate measurements of the FMR 

of the grey seal (Halichoerus grypus) (Sparling et al., 2008). Variation in FMR 

among individual walrus (Odobenus rosmarus) depends upon activity levels 

(Acquarone et al., 2006). The DLWM has been widely used in energetic studies of 

hundreds of men, women and children (Kashiwazaki et al., 1995; Black, 1996; 

Johnston et al., 2007; Djafarian et al., 2010; Ojiambo et al., 2013). Recently this 

technique has also been used on fruit flies (Drosophila melanogaster), a very small 

insect (Piper, et al., 2014). 

Here I report the successful use of the DLWM to measure the active 

metabolic rate of giant pandas under captive conditions at the Research Base of 

Giant Panda Breeding in Chengdu, China. Giant pandas under zoo like conditions 

have an active metabolic rate 2 times higher than resting metabolic rate measured in 

the laboratory. 
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Methods 

Giant panda acquisition and maintenance 

I studied giant pandas at the Research Base of Giant Panda Breeding (Panda 

Base) (www.panda.org.cn) and conducted all experiments in cooperation with the 

research, veterinary and husbandry staff there. The Research Base of Giant Panda 

Breeding was a nonprofit organization with offices in Chengdu, Sichuan Province, 

China. It was a center for wildlife research, giant panda captive breeding, 

conservation education, and educational tourism. It has not been possible to carry out 

studies of the active metabolic rates of giant pandas in the past because they are very 

rare and most zoos only have one or two individuals. I was fortunate that the Panda 

Base had 107 giant pandas and I was allowed to use 8 of them for these experiments 

under very close veterinary supervision. The staff there had unique experience in 

breeding and husbandry of giant pandas based on more than 30 years of research. 

Giant pandas lived in their normal enclosures and ate a diet composed primarily of 

bamboo supplemented with foods such as apples and “panda cake”, a biscuit made of 

a mixture of grains with vitamins. The giant pandas were trained to present their 

forearm for blood sampling making it possible to obtain samples with minimum 

disturbance to the animal. 

DLW experimental design 

There was no information on equilibration time and water loop rate of giant 

http://www.panda.org.cn/
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pandas or similar animals. Therefore, I picked one giant panda to do a safety test to 

be sure that there was no harm to the animal and also to measure the equilibration 

time. I took a background blood sample first, and then injected 10.12 g of doubly 

labeled water (Sigma-Aldrich deuterium oxide-18 99%D 75%O18) mixed with 

physiological saline. The dose depended upon mass. In that way, I obtained 80 p.p.m. 

oxide-18 above the background level at equilibration time. After two physiological 

half-lives the concentration would be 20 p.p.m. above background level, which was 

the minimum concentration that the mass spectrometer could accurately measure. 

The elimination half-life is 5 days for a 50 kg mammal or larger (Speakman, 1997). 

That meant that there would be about 10 efficacious experimental days. After 

injection, I took blood samples every 2 h for 8 h to measure the equilibration time. 

Then, I took blood samples after 3 days, 5 days and 10 days to measure the 

physiological half-life. I sealed all blood samples in individual glass tubes using an 

alcohol burner, placed them in a bigger PVC tube with cotton to protect them and 

stored them in a freezer at -40℃.  

For a normal experiment, I took a background blood sample first and injected 

10.15g to 12.56g DLW depending on the mass of the panda. After 5 h equilibration 

time, I took a sample. After 3 days and 5 days I took additional blood samples, 

treating them as before.  

I also set up a video camera for each experimental animal to record its 
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behavior during the experimental period in summer. The camera operated 24 h a day 

from the beginning of the first blood sample to the end of taking the last blood 

sample. I used this record to calculate the active time of the animal. The camera was 

not available for winter experiments. 

Sample analysis and calculation 

Samples were tested and analyzed by the Laboratory of Isotope Geology at 

Chengdu University of Technology (formerly: Chengdu College of Geology). 

I used the two-sample technique (Speakman, 1997) to calculate the CO2 

production. I used 0.9 as RQ to predict oxygen consumption. I used Nagy (1999) to 

predict the FMR and food requirement. Microsoft Excel was used to store data and 

for calculations.  

Results 

I did 8 experiments on 7 individuals in two different seasons. One giant 

panda did not cooperate. It would not let us take blood samples after the DLW 

injection. Therefore, I obtained 7 valid results for 6 animals. The CO2 production 

ranged from 0.265 ml/g/h - 0.628 ml/g/h (Mean = 0.426 ml/g/h; SD = 0.277) in the 

winter (Mean temperature = 8.6 ℃, range = 5 ℃ to 18 ℃ during experiment time) 

and 0.126 ml/g/h - 0.404 ml/g/h (Mean = 0.256 ml/g/h; SD = 0.126) in the summer 

(Mean temperature = 25.2 ℃, range = 22 ℃ to 33 ℃ during experiment time). 
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The O2 consumption was 0.379 ml/g/h - 0.628 ml/g/h (Mean = 0.513 ml/g/h; SD = 

0.308) in the winter and 0.180 ml/g/h - 0.577 ml/g/h (Mean = 0.284 ml/g/h; SD = 

0.140) in the summer. I used 0.9 as the FMR RQ to convert oxygen consumption to 

kilojoules. The average DEE was 21,592 KJ/day (SD =13,323, range = 9,401 KJ/day 

to 47,716 KJ/day). Total body water percentage was 66.4% to 75.7%. Water turnover 

rate was 15.52 kg/day (SD = 4.44) or 17.45% of TBW/day (SD = 3.15%). Isotope 

half-life was 2.28 days to 3.81 days. There was considerable individual variation in 

these values (Table 3.1). 

The camera was not available during the winter. However, according to my 

observations, giant pandas were active about 40% of the time during the DLW 

experiments. Based on video camera recordings, giant pandas were active 30.3% to 

34.0% in the summer experiments. The daily time table was very regular for each 

giant panda, no matter the season. They usually were active from 0730 to 1200. This 

was the most active time during the day, but they would rest periodically during that 

time. Then they would rest until 1600 with short periods of activity. After that they 

were awake, ate for about 1 or 2 h and walked around a little. After 1900, they would 

sleep until 0700. However, most giant pandas would wake up once or twice to eat 

some bamboo during the night. There was no direct relationship between the activity 

times of the giant pandas and their active metabolic rates.  
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Discussion 

The active metabolic rates of giant pandas varied between individuals despite 

the active time for each individual being very similar. The active time was greatly 

influenced by husbandry practices. Keepers usually cleaned the large cage of a giant 

panda inside a building and gave the animal new bamboo at 0730. At that time the 

giant panda was allowed out into the enclosure. However, if the temperature was 

greater than 25℃ in the summer, keepers would keep giant pandas inside the 

building so that they did not get heat stressed. Husbandry experience indicated that 

giant pandas would have health problems after long exposure to temperatures higher 

than 25℃. The keepers would add new bamboo in the afternoon around 1600 and 

call the giant panda back to the cage. Giant pandas were less active in the summer 

than in the winter. In the summer, giant pandas rarely walked around. They just ate 

and drank water, or just found a cool spot to rest. In winter, they actively moved 

around in the enclosure. They climbed trees, played with each other, made scent 

marks on trees and other objects and even watched people who were watching them. 

I recorded their active time but was unable to measure the magnitude of activity. 

That was the reason why they had similar activity times but quite different FMRs. 

The difference in FMR in summer and winter was illustrated by looking at the same 

individual. The panda Shishi had a much higher active metabolic rate in summer 

than that in winter (Table 3.1).  
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The mean DEE of 21,592 KJ, SD = 13323) per day was similar to the 

estimation of daily digestible energy intake (17,222 KJ to 28,329KJ) of wild giant 

pandas (He et al., 2000). It was not surprising that some individuals had lower FMR 

because they were captive animals living in a small area of an enclosure. However, 

all of them were similar to the prediction from Nagy‟s et al. (1999) equation. I 

calculated that giant pandas would have to eat about 13.13 (SD = 8.10) kg of 

bamboo to support the metabolic rates that I measured (He et al., 2000). Giant 

pandas at the Panda Base usually ate around 15 kg to 20 kg bamboo per day 

(unpublished data). Giant pandas in the Xiangling Mountains eat 13.14 kg to 14.48 

kg of bamboo a day (He et al., 2000). However, the prediction from Nagy‟s (1999) 

equation about food requirement was smaller than what the giant pandas actually ate. 

So the prediction was not adequate for this special carnivore with an herbivorous diet. 

The diet of the giant panda is 99% bamboo and bamboo has a large water content 

and contains a lot of fiber. Giant pandas have a carnivore‟s digestive system, which 

has a limited ability to digest cell walls. So bamboo is a low energy source for them. 

Giant pandas need to eat more bamboo than predicted to get enough energy intake. 

The water-loop of the giant panda is much faster than predicted. Speakman 

(1997) predicted that a 50 kg or larger animal would have a 5-day half-life for 

doubly labeled water. However, a 100 kg giant panda had a rate twice as high as the 

prediction. This was probably due to their special diet, 99% bamboo. Giant pandas 
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do not drink water very often, but they do drink a lot each time. They will continue 

drinking for 2 to 3 min (personal observation). In addition, the giant panda has a 

different kidney type from other bears (Hu, 2000). The kidney of the giant panda is 

formed by 6 to 11 renal lobes. Each renal lobe is comprised of 2-3 primary small 

kidneys, which is an archaic type. A bears‟ kidney is a duplex kidney, build up by 

many renculus (Li, 2003).  

Comparing the FMR of the giant panda to those of 10 similar sized mammals 

(Hudson et al. 2013) it appears that it is lower than most similar sizes mammals, like 

the seal (Arctocephalus gazella), deer (Odocoileus hemionus and Cervus elaphus), 

oryx (Oryx leucoryx) and kangaroo (Macropus giganteus) However, it is higher 

than that of the reindeer (Rangifer tarandus). It is not surprising that the FMR of my 

giant pandas are lower than that of most similar sized mammals, since they were in a 

captive zoo-like environment and are not very active. The low FMR of the reindeer 

may have been because they were in an energy conserving mode due to cold 

conditions in the field. 

It does not appear that bamboo is the limiting factor in the number of giant 

pandas that can live in a given nature reserve. For example, in the Yele Nature 

Reserve, there is 1,634,529.3 kg of bamboo (Bashania spanostachya) per km
2
 (Wei 

et al., 2000). Based on our FMR measurements and digestive efficiency 

measurements (He et al., 2000) a giant panda needs to eat about 20 kg of bamboo a 
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day. That means there is enough bamboo in 1 km
2
 of the Reserve to provide food for 

81,726 panda days. Assuming that the giant pandas eat no more than ½ of the 

standing crop of bamboo than that would provide about 40,000 food days for a 

standing crop of 110 pandas in a year. If they used only 10% of the bamboo 

resources a year, then 1 km
2
 would support 22 giant pandas, and that is for just one 

species of bamboo in that reserve. However, the home range of a giant panda is 

usually 3.0 to 6.0 km
2
 (Schaller et al., 1985). So there must be limitations in the 

biology of the giant panda that go beyond the food supply, since that size home range 

provides a density of giant pandas that is 1 to 2 % of what would be supported by 

food alone.  

Based on food supply the 2000 km
2
 Wolong Nature Reserve, with 50% 

undisturbed area (Liu et al., 2001; Linderman et al., 2005) could support 22,000 

giant pandas if all of the area is covered with bamboo, but only 166 to 333 giant 

pandas based on home range. In fact the estimated number of giant pandas living in 

the reserve was 143 reported by State Forestry Administration of the People‟ 

Republic of China 2003. If the disturbed area was rehabilitated as giant panda habitat 

the number of giant pandas in the Reserve could be doubled. Therefore, more data 

are needed on both home range and FMR of giant pandas in the wild under natural 

conditions if we are to obtain a better estimate of the carrying capacity of nature 

reserves. 
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CHAPTER 4: THE METABOLIC RATE OF THE RED PANDA, AILURUS 

FULGENS, A DIETARY BAMBOO SPECIALIST 

 

Introduction 

The red panda (Ailurus fulgens) (Cuvier, 1825) is called a “panda”, but molecular 

and chromosomal data place it in its own family, Ailuridae. It is related to weasels, otters, 

raccoons, kinkajous and skunks that are all members of the superfamily Musteloidea 

(Flynn, et al. 2000; Nie, et al 2002). The red panda has a similar diet, primarily bamboo, 

and shares the same habitat as the giant panda, Ailuropoda melanoleuca (Wei, et al., 2000). 

The false thumb (carpal bone) of the red panda evolved as an adaptation to climbing and 

secondarily developed for item manipulation. Thus, its adaptation for eating bamboo is a 

case of convergent evolution with the giant panda (Salesa et al., 2006). Ecological studies 

of the red panda have defined its home range and seasonal activity in different nature 

reserves (Reid, et al. 1991; Wei et al. 2000; Zhang, et al. 2009) and described habitat use 

and separation between the red panda and the giant panda (Wei et al. 2000). Threats to its 

survival and conservation have been known for some time (Yonzon and Hunter 1991). 

However, there appears to be a high level of genetic diversity in the red panda populations 

in Sichuan and Yunnan Provinces (Su, et al. 2001).  

There are considerable efforts underway to understand the ecology of the red 

panda and to increase its populations in natural reserves. Yet it is difficult to design an 

effective strategy for red panda reintroduction if we do not understand its basic biology. 

Surprisingly there are few studies on the physiology of the red panda. In addition, we do 

not know the thermoregulatory adaptations that allow this animal to function in the 

mountains at 2800-3000 m during winter and summer. Ultimately what is needed is 

http://en.wikipedia.org/wiki/Ailuridae
http://en.wikipedia.org/wiki/Musteloidea
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knowledge of its biophysical ecology and climate space (Porter and Gates 1969). The 

basis for such analyses is information on the metabolic rate of the red panda.  

In one of a series of classic studies McNab (1988) measured the resting metabolic 

rates of two red pandas from a zoo. He found that red pandas decreased metabolic rate at 

low environmental temperatures without reduced body temperature. However, the 

metabolic rates that McNab measured were much below those predicted by allometric 

equations of metabolic rate vs. body size in mammals (Sieg et al., 2009). In addition, his 

descriptions of his experimental animals suggest that they were very docile, perhaps even 

lethargic. That is quite unlike red pandas at the Research Base of Giant Panda Breeding 

(Panda Base) in Chengdu, Sichuan Province China (www.panda.org.cn) that live in large 

enclosures and are very active. They are anything but docile and are difficult to restrain. 

Therefore, I measured the resting metabolic rate (RMR) of red pandas during winter and 

summer at the Panda Base to obtain information on animals that were living under more 

natural conditions than in McNab‟s study. My measurements indicated that red pandas 

have metabolic rates similar to those expected from allometric relationships and that red 

pandas elevate their metabolic rates at low temperatures. 

Methods 

Red panda acquisition and maintenance 

I studied red pandas at the Research Base of Giant Panda Breeding (Panda Base) in 

Chengdu, China (www.panda.org.cn) and conducted all experiments in cooperation with 

the research, veterinary and husbandry staff there. The Research Base of Giant Panda 

Breeding was a nonprofit organization with offices in Chengdu, Sichuan Province, China. 

It was a center for wildlife research, giant panda and red panda captive breeding, 

http://www.panda.org.cn/
http://www.panda.org.cn/
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conservation education, and educational tourism. Because red pandas are rare and most 

zoos only have a few individuals there have not been many animals available for 

metabolic studies. I was fortunate that the Panda Base had more than 100 red pandas and I 

was allowed to use 17 (all adults) of them for these experiments under very close 

veterinary supervision. The staff there had unique experience in breeding and husbandry 

of giant pandas and red pandas based on more than 30 years of research. Red pandas lived 

in their normal enclosures with access to large outside areas and ate a diet composed 

primarily of bamboo supplemented with foods such as apples and “panda cake”, a biscuit 

made of a mixture of grains with vitamins. I transported red pandas to the laboratory for 

each experiment. 

Metabolic rate experimental design 

I measured metabolic rate during two seasons, summer and winter. Because there 

was no effective air temperature-control room at the Panda Base I had to use natural air 

temperature change during the seasons to study the red pandas under warm and cool 

conditions. I did that to assess the thermal neutral zone of the red panda.  

I studied 10 red pandas in summer and 7 red pandas in winter. Because red pandas 

are diurnal, I conducted all experiments during night hours (2200-0400). Red pandas were 

weighed before and after each experiment. My goal was to measure the basal metabolic 

rate (BMR) of these animals keeping in mind the criteria of Kleiber (1961) that the 

animals be post-absorptive and at rest. Speakman et al., (1993) stated that it is not always 

possible to adhere completely to the Kleiber criteria in studies on wild animals and that it 

is necessary to take into consideration the constraints of reality for the species under study. 

Even Kleiber (1961) stated that measurement of a true BMR was probably only possible 
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in humans. So many authors use the term standard metabolic rate or resting metabolic rate 

(RMR) rather than BMR for non-human animals. I believe that my measurements of the 

resting metabolic rate (RMR) of red pandas were as close to BMR as it was possible to 

obtain under realistic conditions because I fasted the animals for 24 h before an 

experiment and the animals were at rest and not active in the metabolism chamber.  

I measured metabolic rate in a Plexiglas chamber using a flow through system to 

measure oxygen consumption and carbon dioxide production. The chamber was 1 m * 1 m 

* 1 m and constructed of 2.0 cm Plexiglas with a steel frame for added strength. One side 

of the chamber was a door held by steel hinges, sealed with a rubber gasket and closed 

with metal latches (Figure 1). There were three 2.5 cm holes, with 60 cm long tubing 

attached to avoid backflow, for air intake at the bottom right side of the chamber. There 

was one 2.5 cm exit hole at the top left side of the chamber that connected to spiral-wound 

tubing leading to a Flowkit -500 mass flow system (Sable Systems International). A 

subsample of air went from the Flowkit pump to a FOXBOX oxygen and carbon dioxide 

analyzer (Sable Systems International). The three air intake holes and one air exit hole 

eliminated negative pressure in the system. The placement of the holes reduced air 

stagnation and two small battery operated fans in the chamber assured that the air was well 

mixed. Six 24-gauge Cu-Co thermocouples (+/- 0.05℃) located inside the chamber on the 

top, right side, left side, back side, and in the mouth of the air intake and exit holes 

measured chamber temperatures.  

The Sable System Flowkit used a precision mass flow sensor with a rotary pump 

controlled by a microprocessor to control air flow rate to within 2 % of reading. The 

Flowkit pump‟s air flow was set at 25 L/min. After leaving the Flowkit pump, air was 
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subsampled though a small plastic tube and drawn into the FOXBOX system at a rate of 

200 ml/min. The subsample went through a relative humidity meter and temperature meter 

before it entered the gas analyzers. Sample air passed through the CO2 analyzer and then a 

drierite column before entering the O2 analyzer. Since water vapor would interfere with the 

fuel cell in the oxygen analyzer I removed the water before it entered that analyzer. The 

accuracy of the Sable System Foxbox was 0.1 % for O2 over a range of 2-100% and 1.0 % 

of span for CO2 over a range of 0-5%). I used calibration gas (14.93 % O2, 3.99 % CO2) 

from Dalian Special Gas Industry Company and tested by National Institute of 

Measurement and Testing Technology, 100 % dry N2 and room air to calibrate the system. 

I converted gas measurements to standard temperature and pressure (STP). 

Statistical analysis 

I used a fitting linear model (LM) in program R (R Development Core Team 2011). 

The LM consisted of the interactions between two fixed factors that included season and 

sex with temperature and mass as covariates. I used model comparison and simplification 

to remove factors that were not significantly related to RMR. The final linear model 

contained the effects of season and temperature. I accepted P ≤ 0.05 as a statistically 

significant difference. 

Results 

The resting metabolic rate (RMR) of the red panda ranged from 0.204 ml/h∙g to 

0.406 ml/h∙g (Figure 2). The LMER model ANOVA (Table 1) indicated that there was a 

statistically significant effect of season (df = 1, 11; F = 28.149; P = 0.000) and temperature 

(df = 1, 11; F = 6.541; P = 0.027). The RMR of red pandas was 0.290 ml/h/g (range = 

0.204 ml/h∙g to 0.342 ml/h∙g) in the summer (temperature range from 15.3℃ to 20.2℃); 
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and it was 0.361 ml/h/g (range = 0.331 ml/h∙g to 0.406 ml/h∙g) in the winter (temperature 

range from 5.3℃ to 9.1℃). There was no difference in RMR between males and females, 

and no difference in RMR due to mass.  

Discussion 

There was no difference in metabolic rate between male and female red pandas. 

Some mammals have behavioral and physiological differences between males and females 

that cause differences in RMR. For example, in humans, males have higher BMR and 

active metabolic rate than females, but female margays (Leopardus wiedii) have higher 

BMR than males (McNab, 2000; Henry, 2005; Black et al., 1996). Those differences 

would probably be reflected in their active metabolic rates. There was no difference in 

activity of males and females in my metabolic chamber. Both sexes were quiescent. 

Therefore, there was no difference in their RMR. 

Temperature is an important factor affecting RMR. Mammals have a thermal 

neutral zone in which animals have a minimum RMR. Below that zone metabolic rate 

increases due to thermoregulation. Above that zone metabolic rate increases due to a loss 

in the ability of the animal to cool its body temperature by behavioral and physiological 

means (Withers, 1992). In my experiments, metabolic rates of red pandas were statistically 

significantly higher in winter at environmental temperatures between 5.3℃ to 7.6℃ than 

in summer at environmental temperatures of 15.5℃ to 20.2℃. Temperatures in summer 

season were probably within the thermal neutral zone, but winter temperatures were below 

the thermal neutral zone. There was no difference in activity by red pandas in the chamber 

during winter and summer. However, I expect that red pandas will reduce their activity to 
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conserve heat during winter in nature. Two red pandas spent more time resting in winter 

than summer in the Wolong Nature Reserve, Sichuan Province, China (Reid et al. 1991). 

Energy digestibility of bamboo, Bashania spanostachya, in the Yele Nature Reserve, 

Sichuan Province is low in winter and red pandas take in more energy in summer-autumn 

than in winter (Wei et al. 2000). Therefore, red pandas should reduce their activity in 

winter to conserve energy and thermoregulation. 

Species comparisons 

Contrary to my expectations based on its major diet of bamboo leaves and stalks 

and McNab‟s data from two red pandas (McNab, 1988) the metabolic rate of the red panda 

was similar to that of other mammals of the same size. I compared the resting metabolic 

rate in ml/h (MR) of the giant panda to those reported for 49 other mammals ranging in 

size from 2010 g to 10,550 g taken from Sieg et al. (2009) (Table 2). The metabolic rate of 

the red panda was higher than that of the some similar mass species such as the 

chimpanzee (Pan troglodytes), crab-eating fox (Cerdocyon thous), eyra cat (Puma 

yagouaroundi), and plains vizcacha (Lagostomus maximus); but lower than that of the 

raccoon (Procyon lotor), golden-mantled howling monkey (Alouatta palliata), Bornean 

orangutan (Pongo pygmaeus), culpeo (Lycalopex culpaeus), North American porcupine 

(Erethizon dorsatum), Guinea baboon (Papio papio) and lowland paca (Cuniculus paca) 

(Bruhn, 1934; Milton et al., 1979; Kohl, 1980; Hennemann, et al., 1983; McNab, 1995; 

Fournier and Thomas, 1999; McNab, 2000; Fournier and Thomas, 1999; Silva et al., 2004; 

Arends and McNab, 2001). There was no pattern in the metabolic rates of those animals 

because there was too much variation between species. Taxonomic, physiological and 

environmental differences are not adequately explained by current theories (Glazier 2005; 
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Sieg et al. 2009). Diverse adaptations in thermoregulation and metabolism have evolved in 

the context of physiological, biochemical and ecological constraints. 

McNab’s red pandas 

McNab measured 2 red pandas in 1987 and found a very low metabolic rate, 0.153 

ml/g/h. The data of McNab were well below those in my study and well below the values 

predicted by the regression line in Sieg et al. (2009). In my 17 red panda experiments, 

0.204 ml/g/h was the lowest value that I measured. The average in summer (0.290 ml/g/h) 

was twice as high as McNab‟s mean. It is possible that his red pandas had a subclinical 

condition that lowered their metabolic rate. McNab stated that the red pandas could be 

grasped by their tails to move them around. Normal red pandas are not docile. They are 

easily frightened and aggressive. When you get close to them, they will shout and warn 

you. If you try to touch them, they will scratch and bite. So you must be very careful and 

have thick gloves and thick sleeves for protection, when you transfer them. Nevertheless, 

once in the metabolic chamber the red pandas in my experiments settled down and rested 

peacefully. The lowering of metabolic rate that McNab‟s red pandas underwent without a 

drop in body temperature also suggests that the animals may have been ill. That is not to 

state that McNab‟s experiments were poorly done. Rather they were groundbreaking. 

However, my experiment shows the value of a larger sample size, more natural conditions 

in the red panda enclosures at the Panda Base and a better understanding of the normal 

biology of the animal.  

Metabolic scaling 

I plotted the RMRs of the red panda and the 49 other similar size mammals from Sieg 

et al. (2009) (Figure 3). The regression line through those data (log10 (MR) = 1.1641 Log10 
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(Mass) - 1.0771, r
2
 = 0.74; P = 0.000) was different from that of Sieg et al. (2009) for 

carnivores/ungulates/pangolins (Fereuungulata) (Waddell et al., 1999; Springer et al., 

2005). The new regression line was steeper than that both of the Fereuungulata and 

universal regression lines, which were calculated from all 695 mammals in their data set. 

That supports their conclusion that phylogenetic relationships affect the body size- 

metabolic rate regression and that there is not a single universal metabolic rate-body mass 

scaling relationship in mammals (Sieg. et al., 2009). In addition, different mass domains of 

mammals show different regression scaling (Clarke et al, 2010). Small mammals and large 

mammals may have different scaling relationships (Glazier, 2005). This is due to the 

variation of RMR within or among animal species. Metabolic rate is greatly affected by 

temperature, activity, food digestion and so on. Temperature and activity are the two major 

factors related to RMR. They are often well controlled during the experiment. However, 

some other important factors like growth or age may not be controlled. In Sieg‟s 695 

mammal species dataset, there are some species that were not adults so they would not 

provide the metabolic rate for an adult of that size. In addition, some species exhibit 

sexual differences in RMR. That will increase the variation in metabolic data for a species. 

Furthermore, factors such as light intensity, season, geographical location, nutritional level, 

parasitic infection and exposure to air or water will also affect the metabolic status of 

experimental animals. Therefore, it is hard to truly measure BMR of wild animals. White 

laboratory rats and humans may be the only animals that will provide a true BMR because 

they are adjusted to a stable laboratory environment (Kleiber, 1961; Speakman et al., 

1993).  
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The data sets used to calculate MR vs. body mass regressions, typically have more 

small size mammals than large size mammals and metabolic scaling is steeper in large 

than in small mammals. In addition, a combination of phylogenetic relationships and 

physiological factors affect the metabolic rate of individual species and no one predictive 

line can account for all variation in the body size-metabolism relationship among 

mammals (Glazier 2005). More research should focus on RMR variation within and 

among species. These experiments will have to take into account the myriad factors that 

affect metabolism in a species and the repeatability of measurements on an individual 

animal under the same test conditions. Davy et al. (2014) discuss the importance of 

repeatability and rank repeatability in behavioral experiments. Past studies of RMR 

indicate that there is considerable variability between individuals of the same species in an 

experiment. That suggests that differences in RMR may be subject to natural selection. 

Future metabolic studies should determine the repeatability of RMR within an individual 

and the rank repeatability of RMR between individuals within a test group. Such 

measurements will help to refine our estimates of RMR vs. body mass for a given species 

and perhaps reduce the inter- specific variation in in those estimates.  
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Table 4.3. Metabolic rates of 49 large mammals compiled by Sieg et al (2009) and red 

pandas measured at the Chengdu Research Base of Giant Panda Breeding. 

 

  

Number Animal Genus Species
Mass

(g)

RMR O2

(ml/g/h)

Log10

(Mass)

Log10

(MR O2)

1
Small-toothed

palm civet
Arctogalidia trivirgata 2010 0.275 3.30 2.74

2 Southern viscacha Lagidium viscacia 2056 0.340 3.31 2.84

3 Striped civet Fossa fossana 2260 0.401 3.35 2.96

4
South African

Springhare
Pedetes capensis 2300 0.341 3.36 2.89

5 Common brown lemur Eulemur fulvus 2330 0.139 3.37 2.51

6 Kinkajou Potos flavus 2406 0.334 3.38 2.91

7 Jamaican coney Geocapromys brownii 2456 0.300 3.39 2.87

8 Wildcat Felis silvestris 2617.8 0.180 3.42 2.67

9 Desmarest's hutia Capromys pilorides 2630 0.227 3.42 2.78

10 Groundhog Marmota monax 2660 0.270 3.42 2.86

11 Red-rumped agouti Dasyprocta leporina 2687 0.580 3.43 3.19

12 Tayra Eira barbara 2950 0.414 3.47 3.09

13 Red fox Vulpes vulpes 2965.3 0.488 3.47 3.16

14 Patas monkey Erythrocebus patas 3000 0.213 3.48 2.81

15 Verreaux's sifaka Propithecus verreauxi 3000 0.243 3.48 2.86

16 Asian palm civet Paradoxurus hermaphroditus 3160 0.241 3.50 2.88

17 Brazilian porcupine Coendou prehensilis 3280 0.282 3.52 2.97

18 Margay Leopardus wiedii 3550 0.283 3.55 3.00

19 White-nosed coati Nasua narica 3630 0.327 3.56 3.07

20 Yellow-bellied marmot Marmota flaviventris 3706.5 0.343 3.57 3.10

21 Collared mangabey Cercocebus torquatus 3750 0.428 3.57 3.21

22 Azara's agouti Dasyprocta azarae 3849 0.490 3.59 3.28

23 South American coati Nasua nasua 3850 0.260 3.59 3.00

24 Arctic fox Vulpes lagopus 3932.9 0.458 3.59 3.26

25 African palm civet Nandinia binotata 4270 0.202 3.63 2.94

26 Coypu Myocastor coypus 4325 0.710 3.64 3.49

27
Golden-mantled

howling monkey
Alouatta palliata 4670 0.428 3.67 3.30

28 Bornean orangutan Pongo pygmaeus 4970 0.305 3.70 3.18

29 Common chimpanzee Pan troglodytes 5020 0.280 3.70 3.15

30 Raccoon Procyon lotor 5385 0.387 3.73 3.32

31 Culpeo Lycalopex culpaeus 5418 0.888 3.73 3.68

32 Crab-eating fox Cerdocyon thous 5614 0.272 3.75 3.18

33 Red panda Ailurus fulgens 5740 0.153 3.76 2.94

34
North American

porcupine
Erethizon dorsatum 5974 0.476 3.78 3.45

35 Red panda this study Ailurus fulgens 6068.8 0.290 3.78 3.25

36 Eyra cat Puma yagouaroundi 6105 0.255 3.79 3.19

37 Guinea baboon Papio papio 6760 0.404 3.83 3.44

38 Plains viscacha Lagostomus maximus 6804.5 0.234 3.83 3.20

39 Lowland paca Cuniculus paca 6831.5 0.346 3.83 3.37

40 Black-backed jackal Canis mesomelas 7720 0.505 3.89 3.59

41 Aardwolf Proteles cristata 7928.2 0.254 3.90 3.30

42 Blue monkey Cercopithecus mitis 8500 0.399 3.93 3.53

43 European otter Lutra lutra 8671.4 0.555 3.94 3.68

44 Japanese macaque Macaca fuscata 9300 0.469 3.97 3.64

45 Bobcat Lynx rufus 9400 0.449 3.97 3.63

46 Olive baboon Papio anubis 9500 0.311 3.98 3.47

47 Raccoon dog Nyctereutes procyonoides 9800 0.409 3.99 3.60

48 Serval Leptailurus serval 10120 0.329 4.01 3.52

49 Coyote Canis latrans 10171.4 0.358 4.01 3.56

50 Mantled guereza Colobus guereza 10450 0.285 4.02 3.47

51 Gray wolf Canis lupus 10550 0.375 4.02 3.60
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Figure 4.1. Metabolic chamber used to measure the metabolic rates of red pandas at the 

Research Base of Giant Panda Breeding in Chengdu, China. 
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Figure 4.2. Metabolic rates of red pandas measured at the Research Base of Giant Panda 

Breeding in Chengdu, China. Animals were at rest in a metabolic chamber at temperatures 

between 5.3 and 20.2 °C. M represents males and F represents females. Blue means RMR 

measured at winter time, and red is in the summer. 
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Figure 4.3. Relationship between body mass and metabolic rate in red pandas and 49 other 

large mammals. RP represents red panda. Regression lines for all mammals and for 

Ferreuungulate mammals are from Sieg et al. (2009). Solid line is regression line 

calculated by us with the addition of the red panda.  
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CHAPTER 5: CONCLUSIONS   

 

I measured the metabolic rates of giant pandas at rest and when active in a zoo like 

setting. I also measured the metabolic rates of red pandas at rest. These data support the 

conclusion that bamboo should not be a limiting factor in the number of giant pandas in 

the wild. 

RMR of giant pandas 

There were differences in metabolic rates between young cub and adult giant 

pandas. In our study both age and mass affected RMR. Although the effects of mass and 

age were confounded, the statistical significance of the effects suggested that age had a 

greater effect than mass on RMR. 

There was no difference in metabolic rate between male and female giant pandas. 

There was no difference in activity of males and females in our metabolic chamber. Both 

sexes were quiescent. Therefore, there was no difference in their RMR. 

In my experiment, there was no difference in metabolic rates of giant pandas at 

environmental temperatures between 9.1℃ and 26.5℃. Therefore, these temperatures are 

within the thermal neutral zone. There was no indication that the animals were more active 

at these temperatures and they showed no signs of behavioral stress. 

I compared the resting metabolic rate in ml/h (MR) of the giant panda to those 

reported for 21 other mammals ranging in size from 50 kg to 193 kg taken from Sieg et al. 

(2009). The metabolic rate of the giant panda was higher than that of the sloth bear 

(McNab, 1992) but lower than that of the tiger (Panthera tigris), lion (Panthera leo), cow 

(Bos taurus), and eland (Taurotragus oryx)  (McNab, 2000; Taylor and Lyman, 1967; 
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Taylor et al., 1969). 

I also plotted the MRs of the giant panda and the 21 other large mammals from 

Sieg et al. (2009). The regression line was almost the same as that of Sieg et al. (2009) for 

carnivores/ungulates/pangolins (Fereuungulata) (Waddell et al., 1999; Springer et al., 

2005). Both of those lines were above the line calculated from all 695 mammals in their 

data set. That supports their conclusion that phylogenetic relationships affect the body 

size- metabolic rate regression and that there is not a single universal metabolic rate-body 

mass scaling relationship in mammals. Also, Giant panda metabolic rates were 6.0% to 

44.3 % below those predicted by the Fereuungulata regression line. Therefore, a 

combination of phylogenetic relationships and physiological factors affect the metabolic 

rate of individual species and no one predictive line can account for all variation in the 

body size-metabolism relationship among mammals. 

FMR of giant pandas 

The active metabolic rates of giant pandas varied between individuals despite the 

active time for each individual being very similar. The active time was greatly influenced 

by husbandry practices. I recorded the active time of giant pandas but was unable to 

measure the magnitude of activity. That was the reason why they had similar activity times 

but quit difference FMRs. 

The mean DEE of 21,592 KJ, SD = 13323) per day was similar to the estimation of 

daily digestible energy intake (17,222 KJ to 28,329KJ) of wild giant pandas (He et al., 

2000). It was not surprising that some individuals had lower FMR because they were 

captive animals living in a small area of an enclosure. I calculated that giant pandas would 

have to eat about 13.13 (SD = 8.10) kg of bamboo to support the metabolic rates that I 
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measured based on the work of He et al. (2000). Giant pandas at the Panda Base usually 

eat around 15 kg to 20 kg bamboo per day (unpublished data). Giant pandas in the 

Xiangling Mountains eat 13.14 kg to 14.48 kg of bamboo a day (He et al., 2000). However, 

the prediction from Nagy‟s (1999) equation about food requirement based on metabolic 

rate was smaller than what the giant pandas actually ate. So the prediction was not 

adequate for this special carnivore with an herbivorous diet. 

The water-loop of the giant panda was much faster than predicted. Speakman 

(1997) predicted that a 50 kg or larger animal would have a 5-day half-life for doubly 

labeled water. However, a 100 kg giant panda had a rate twice as high as the prediction. 

This was probably due to their special diet, 99% bamboo. Giant pandas do not drink water 

very often, but they do drink a lot each time. They will continue drinking for 2 to 3 min 

(personal observation). In addition, the giant panda has a different kidney type from other 

bears (Hu, 2000). 

Comparing the FMR of the giant panda to those of 10 similar sized mammals 

(Hudson et al. 2013) it appears that it is lower than most similar size mammals, like the 

seal (Arctocephalus gazella), deer (Odocoileus hemionus and Cervus elaphus), oryx (Oryx 

leucoryx) and kangaroo (Macropus giganteus) However, it is higher than that of the 

reindeer (Rangifer tarandus). It is not surprising that the FMR of my giant pandas were 

lower than that of most similar sized mammals, since they were in a captive zoo like 

environment and not very active. 

It does not appear that bamboo is the limiting factor in the number of giant pandas 

that can live in a given nature reserve. For example, in the Yele Nature Reserve, there is 

1,634,529.3 kg of bamboo (Bashania spanostachya) per km
2
 (Wei et al., 2000). Based on 
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our FMR measurements and digestive efficiency measurements (He et al., 2000) a giant 

panda needs to eat about 15-20 kg of bamboo a day. That means there is enough bamboo 

in 1 km
2
 of the Reserve to provide food for 81,726 panda days. Assuming that the giant 

pandas eat no more than ½ of the standing crop of bamboo than that would provide about 

40,000 food days for a standing crop of 110 pandas in a year. If they used only 10% of the 

bamboo resources a year, then 1 km
2
 would support 22 giant pandas, and that is for just 

one species of bamboo in that reserve. However, the home range of a giant panda is 

usually 3.0 to 6.0 km
2
 (Schaller et al., 1985) so there must be limitations in the biology of 

the giant panda that go beyond the food supply, since that size home range provides a 

density of giant pandas that is 1 to 2 % of what would be supported by food alone.  

Based on food supply the 2000 km
2
 Wolong Nature Reserve, with 50% 

undisturbed area (Liu et al., 2001; Linderman et al., 2005) could support 22,000 giant 

pandas if all of the area is covered with bamboo, but now only support 166 to 333 giant 

pandas based on home range. In fact the estimated number of giant pandas living in the 

reserve was 143 reported by state forestry administration of the People‟ Republic of China 

2003. If the disturbed area was rehabilitated as giant panda habitat the number of giant 

pandas in the Reserve could be doubled. Therefore, more data are needed on both home 

range and FMR of giant pandas in the wild under natural conditions if we are to obtain a 

better estimate of the carrying capacity of nature reserves. 

RMR of red panda 

There is no difference of RMR of red panda between males and females. However, 

The RMR of red pandas was statistically significantly higher in winter at environmental 

temperatures between 5.3℃ to 7.6℃ than in summer at environmental temperatures of 
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15.5℃ to 20.2℃. Temperatures in summer season were probably within the thermal 

neutral zone, but winter temperatures were below the thermal neutral zone. The RMR of 

the red panda was similar to 49 other mammals ranging in size from 2010 g to 10,550 g 

taken from Sieg et al. (2009).  

McNab (1988) measured 2 red pandas in 1987 and found a very low metabolic rate, 

0.153 ml/g/h. The data of McNab were well below those in my study and well below the 

values predicted by the regression line in Sieg et al. (2009). It is possible that his red 

pandas had a subclinical condition that lowered their metabolic rate. The lowering of 

metabolic rate that McNab‟s red pandas underwent without a drop in body temperature 

also suggests that the animals may have been ill. 

I plotted the RMRs of the red panda and the 49 other similar size mammals from 

Sieg et al. (2009). The new regression line was steeper than that both of the Fereuungulata 

and universal regression lines, which were calculated from all 695 mammals in their data 

set. That supports their conclusion that phylogenetic relationships affect the body size- 

metabolic rate regression and that there is not a single universal metabolic rate-body mass 

scaling relationship in mammals (Sieg et al., 2009). In addition, different mass domains of 

mammals show different regression scaling (Clarke et al., 2010). Small mammals and 

large mammals may have different scaling relationships (Glazier, 2005). This is due to the 

variation of RMR within or among animal species. 

Conservation implications  

    Based on my research data, the FMR of captive giant pandas varies greatly 

between individuals. However, the active time for each individual is very similar. The 

active time was greatly influenced by husbandry practices. In order to reintroduce giant 
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pandas to the wild, there should be changes in captive management. Giant pandas should 

have larger inside rooms with better cooling systems in the summer. In natural habitats 

summer temperature will be much cooler than in the modified environment of a zoo. 

Therefore, giant pandas should have large enclosures of several hectares in which they can 

be active under natural conditions. In this way, they will develop the ability to function in 

nature. 

Because of the fast water turnover rate, giant panda may be sensitive to some 

medicines, and the concentration of drugs will drop quickly in the blood stream and 

tissues. Veterinarians should take this information into account when doing medical 

treatment on giant pandas. Husbandry staff should make sure giant pandas can get enough 

clean water to stay hydrated, especially in the summer. 

In most natural reserves there is enough bamboo for the current populations of 

giant pandas. For example, in the Yele Reserve 1 km
2
 would support at least 22 giant 

pandas. Other factors must limit the population. Perhaps it is home range as discussed 

above (Schaller et al., 1985). Perhaps it is habitat disturbance. If we can rehabilitate 

disturbed areas in nature reserves into giant panda habitat, the carrying capacity of nature 

reserves could be increased. Knowledge of the metabolic rate of giant pandas in nature 

reserves will help to establish the true limitations on panda populations and the cost to the 

giant pandas of living in disturbed and undisturbed areas of the reserves. 
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