

NeuroHub: Portable and Scalable Time Synchronization Instrument for Brain-

Computer Interface and Functional Neuroimaging Research

A Thesis

Submitted to the Faculty

of

Drexel University

by

Nicholas V. Grzeczkowski

in partial fulfillment of the

requirements for the degree

of

Master of Science in Biomedical Engineering

December 2014

© Copyright 2014

Nicholas V. Grzeczkowski. All Rights Reserved.

P a g e | ii

Acknowledgments

I would like to acknowledge my parents, for their support. I would also like to

thank everyone in the CONQUER Collaborative lab that assisted me, especially Yichuan

Liu and Adrian Curtin, as well as those that provided assistance in other Drexel

University labs, especially Dan Luig in the Electrical and Computer Engineering

Department.

Most of all, I would like to thank my thesis advisor, Dr. Hasan Ayaz, for

consistently challenging, supporting, and inspiring me, as well as easing my tensed

nerves through clarification in difficult moments.

P a g e | iii

Table of Contents

List of Tables .. vi

List of Figures .. vii

Abstract ... ix

Chapter 1: Introduction .. 1

1.1 Motivation .. 1

1.2 Specific Aim .. 2

1.3 Approach .. 2

Chapter 2: Background .. 4

2.1 Brain-Computer Interfaces ... 4

2.1.1 Locked-In Syndrome .. 5

2.1.2 Non-invasive BCIs .. 6

2.2 Electroencephalography in BCIs ... 7

2.2.1 EEG Principles .. 7

2.2.2 Sensors and Instrumentation ... 9

2.2.3 Examples of EEG based BCIs .. 10

2.3 Functional Near-Infrared Spectroscopy in BCIs .. 14

2.3.1 fNIR Principles ... 14

2.3.2 Sensors and Instrumentation ... 16

2.3.3 Signal Processing and Analysis .. 17

2.3.4 Examples of fNIR based BCIs .. 19

2.4 Hybrid BCIs ... 21

2.4.1 Unimodal Hybrid BCIs ... 22

2.4.2 Multimodal Hybrid BCIs .. 25

2.5 Need for a Solution .. 28

2.6 Current Approaches ... 28

Chapter 3: Device Design and Development ... 32

3.1 Device Design .. 32

3.1.1 System Requirements .. 32

3.1.2 System Specifications ... 34

3.2 Device Development and Implementation ... 38

P a g e | iv

3.2.1 Development Platform and Microcontroller Selection ... 40

3.2.2 Generation 1 Development ... 43

3.2.3 Generation 2 Development ... 56

Chapter 4: Testing and Validation ... 63

4.1 Reliability and Variability Testing Setup ... 63

4.2 Program Design and Development .. 64

4.3 Data Analysis ... 69

4.4 Results .. 71

4.4.1 Oscilloscope Measured Lag Time ... 72

4.4.2 Serial to Serial and TTL to Serial ... 75

4.4.3 USB and Native Serial With and Without Additional Information Influx 81

4.4.4 Different Operating Systems on the Same Hardware ... 92

4.5 Discussion .. 97

Chapter 5: Use Case Demonstrations... 99

5.1 Use Case #1 – Multimodal Spatial Navigation BCI .. 100

5.1.1 Introduction ... 100

5.1.2 Background ... 100

5.1.3 Materials and Methods .. 101

5.1.4 Results and Conclusion ... 106

5.2 Use Case #2 – Synthetic Speech Perception BCI .. 109

5.2.1 Introduction ... 109

5.2.2 Background ... 110

5.2.3 Materials and Methods .. 111

5.2.4 Results and Conclusion ... 114

Chapter 6: Future Work and Conclusion ... 117

6.1 Future Work ... 117

6.2 Conclusion ... 120

List of References .. 122

Appendix A: Board Assembly Guide .. 137

Appendix B: Schematics and Board Layouts .. 145

Generation 1 ... 145

P a g e | v

Generation 2 ... 148

Generation 3 ... 150

Appendix C: Source Code ... 153

Microcontroller Code ... 153

Time Testing Code ... 159

Time Testing GUI .. 165

TTL Time Testing Code .. 166

TTL Time Testing GUI .. 170

MATLAB Analysis Code Example ... 171

Appendix D: All Testing Results ... 174

Serial to Serial and TTL to Serial .. 174

USB vs. Native Serial .. 214

Operating Systems ... 227

Appendix E: Development Platform Selection Spreadsheet .. 232

P a g e | vi

List of Tables

Table 1: Mean and standard deviation of lag time from all tests from all serial ports to other serial

ports and TTL to all serial ports and the standard deviation between individual tests. 80

Table 2: Mean and standard deviation of lag time from all tests in the configurations explained in

this section, and the standard deviation between individual tests. ... 92

Table 3: Mean and standard deviation of lag time from all tests from all serial ports to other serial

ports and TTL to all serial ports and the standard deviation between individual tests. 96

Table 4: First 20 synchronization markers from use case 1 experimental protocol. Showing byte

received by EEG and fNIR recording systems, as well as the timestamp (from start of recording)

and time from the first marker received. .. 107

Table 5: First 20 synchronization markers from use case 2 experimental protocol. Showing byte

received by both fNIR recording systems, as well as the timestamp (from start of recording) and

time from the first marker received. .. 114

P a g e | vii

List of Figures

Figure 1: Picture of a male DE-9 connector and serial pinout. .. 35

Figure 2: Picture of a BNC connector. ... 36

Figure 3: Picture of a male DB-25 connector and parallel port pinout. ... 37

Figure 4: Board bring-up cycle diagram. ... 39

Figure 5: Picture of an Arduino Mega 2560. ... 44

Figure 6: Atmel AVR ATmega2560 pinout. ... 46

Figure 7: TTL Pulse to serial transmission of bytes with ASCII values equivalent to the changed

state of the line. Left represents the line being pulled low, transmitted as "0”, or 0x30 in hex.

Right represents the line being pulled high, transmitted as “1”, or 0x31 in hex. 51

Figure 8: Schematic wiring of first generation NeuroHub... 52

Figure 9: Printed circuit board design of first generation NeuroHub. ... 53

Figure 10: First generation NeuroHub PCB. ... 55

Figure 11: First generation NeuroHub assembled. .. 56

Figure 12: Additional schematics added for second generation NeuroHub................................... 58

Figure 13: Printed circuit board design of second generation NeuroHub. 58

Figure 14: Second generation NeuroHub assembled. .. 61

Figure 15: Timing program process loop diagram. .. 66

Figure 16: Successful byte transmission in the tests. ... 71

Figure 17: Oscilloscope screenshot of one byte transmission. The first (top) line is the input signal

(receiving Rx line), the second (bottom) line is the signal being sent from NeuroHub (all other Tx

lines). .. 73

Figure 18: Byte transmission timing explanation, at 9,600 bits per second. 74

Figure 19: Bar graph of serial port 1 to serial port 2 mean transmission time, as determined by the

timing program, with error bars. .. 76

Figure 20: Histogram of transmission times from serial port 1 to serial port 2, as determined by

the timing program. .. 77

Figure 21: Bar graph of TTL to serial port 1 mean transmission time, as determined by the timing

program, with error bars. ... 78

Figure 22: Histogram of transmission times from TTL to serial port 1, as determined by the

timing program. ... 79

Figure 23: Bar graph of mean serial transmission time over USB ports without input from other

USB ports, as determined by the timing program, with error bars. ... 82

Figure 24: Histogram of transmission times over USB ports without input from other USB ports,

as determined by the timing program. ... 83

Figure 25: Bar graph of mean serial transmission time over USB ports with input from other USB

ports, as determined by the timing program, with error bars. .. 84

Figure 26: Histogram of transmission times over USB ports with input from other USB ports, as

determined by the timing program. .. 85

P a g e | viii

Figure 27: Bar graph of mean serial transmission time over native serial ports, as determined by

the timing program, with error bars. .. 86

Figure 28: Histogram of transmission times over native serial ports, as determined by the timing

program. ... 87

Figure 29: Bar graph of mean serial transmission time over native serial ports with input from

non-native serial ports (as in other tests, with USB serial ports), as determined by the timing

program, with error bars. ... 88

Figure 30: Histogram of transmission times over native serial ports with input from non-native

serial ports (as in other tests, with USB serial ports), as determined by the timing program. 89

Figure 31: Bar graph of mean serial transmission time over native serial ports without the use of

NeuroHub, as determined by the timing program, with error bars. ... 90

Figure 32: Histogram of transmission times over native serial ports without the use of NeuroHub,

as determined by the timing program. ... 91

Figure 33: Bar graph of mean serial transmission time using Windows XP, as determined by the

timing program, with error bars. .. 93

Figure 34: Histogram of transmission times using Windows XP, as determined by the timing

program, with error bars. ... 94

Figure 35: Bar graph of mean serial transmission time using Windows 7, as determined by the

timing program, with error bars ... 95

Figure 36: Histogram of transmission times using Windows 7, as determined by the timing

program, with error bars .. 96

Figure 37: Diagram describing the flow of information in use case 1 without NeuroHub

implementation. ... 102

Figure 38: Diagram describing the flow of information in use case 1 with NeuroHub

implementation. ... 104

Figure 39: Left – the 3x3 P300 BCI matrix used. Right – the training manual selection screen.

From [118]. .. 105

Figure 40: Time line for a run. From [118]. ... 105

Figure 41: Histogram showing the frequencies of the difference in EEG and fNIR times from the

first marker. .. 108

Figure 42: Diagram describing the flow of information in use case 2 without NeuroHub

implementation. ... 112

Figure 43: Diagram describing the flow of information in use case 2 with NeuroHub

implementation. ... 113

Figure 44: Histogram showing the frequencies of the difference in fNIR times from the systems’

first markers. .. 115

P a g e | ix

Abstract

NeuroHub: Portable and Scalable Time Synchronization Instrument for Brain-Computer

Interface and Functional Neuroimaging Research

Nicholas V. Grzeczkowski

Dr. Hasan Ayaz, PhD

The advent of new and improved brain imaging tools in recent decades has provided

significant progress in understanding the physiological and neural bases of motor and

cognitive processes and behavior. As neuroimaging and brain sensing technologies are

further developed, they are miniaturized and become portable and wearable, allowing brain

activity monitoring in ecologically-valid everyday environments. This introduces the

possibility of using multiple systems concurrently on i) the same brain: multimodal/hybrid

measurements for better identification of neurophysiological markers, and ii) multiple

brains: hyperscanning for novel investigations of brain functions during social interactions.

In all of these new directions, seamless integration of various neuroimaging

systems is required. More specifically, precise time synchronization of acquired data

streams is necessary for proper analysis and interpretation of results. However, there are

currently no standards for interoperability and neuroimaging systems have many different

designs and interfaces. Experiment setups using multiple systems may require extensive

development for a customized solution that would need reconfiguration at the expense of

additional time and effort, with the risk of possibly varying precision based on the custom

solution.

To address these issues, we have developed NeuroHub, a scalable device that can

provide plug and play and reliable time synchronization by interfacing with common ports

P a g e | x

in neuroimaging systems. The device consists of a custom printed circuit board that fits

atop an inexpensive and readily available development board for an Atmel ATmega2560

embedded microcontroller. It is housed in a 6 x 11 x 3.5 cm durable plastic casing, smaller

than most smart phones, and includes BNC, serial, and parallel communication ports

located around its perimeter. The device propagates any synchronization marker it receives

from one of the ports and broadcasts it to all systems connected at other ports. The device

can be extended as necessary by connecting multiple NeuroHub units. Verification and

validation tests indicated reliable byte transmission with 100% accuracy of transmission

and a consistent 1.020 millisecond latency in its standard configuration. A program was

also developed for automated testing with Monte Carlo simulation, by sending and

receiving event markers in various configurations. Through these tests, it became clear how

unfit the use of multiple common computer ports is for sub-millisecond precise modality

recording, due to their non-embedded nature. This problem is alleviated using NeuroHub

as it allows synchronization of each computer through only one port.

NeuroHub was implemented in two use cases to demonstrate its potential: i)

Multimodal spatial navigation brain computer interface (BCI) that used simultaneous EEG

and fNIR for enabling controlling actions within MazeSuite generated virtual environment.

ii) Synthetic speech perception study which utilized two different fNIR systems

simultaneously to record from a larger area. In the first use case, the naïve P300 response

is used as a selection mechanism for a number of options for first-person navigation of a

maze. fNIR measurements are used to assess if the person is attentive to the stimuli, which

results in higher accuracy scores. For this setup to be successful, markers between the

P a g e | xi

software for stimulation presentation, EEG recording, P300 analysis, maze presentation,

and fNIR recording must be synchronized. In the second use case, subjects are presented

with audio recordings of 5 sentences over 4 levels of quality of speech signal, ranging from

natural speech to low quality synthesized speech, and asked to rate them for naturalness

and intelligibility, while fNIR measurements are recorded to provide quantitative data

about how cognitively taxing the synthesized speech is that has become common in

everyday devices. In this experiment, information must be synchronized between the

stimulus computer and the two fNIR recording devices. Both of these use cases

demonstrate NeuroHub’s utility in next generation experiment setups with the goal of

helping brain computer interface and functional neuroimaging research.

P a g e | 1

Chapter 1: Introduction

1.1 Motivation

In the rapidly expanding field of neuroscience and brain-computer interface (BCI)

research, there is a proliferation of experimental setups that incorporate the use of more

than one recording modality. With multiple modalities, it is possible to extract new

features that aren’t possible otherwise, resulting in a more robust BCI or experimental

recording setup. This typically makes the experimental setup more complex and the

synchronization of data more difficult as there are more computers that need to work in

unison and more data to temporally align. Another type of experimental setup, in which

the neural basis for social interaction is studied by simultaneous recording from multiple

subjects, is referred to as hyperscanning. As with multimodal setups, the separate streams

of data must be aligned temporally. Event markers are used to align the data in both of

these types of setups, but this raises the problem of sending the markers from multiple

systems to multiple other systems in order to accurately align the data. Not only does this

require cumbersome setup, extra planning to get everything to work together seamlessly,

but it also involves the use of information transmission protocols that are not compatible

and were not designed to accommodate signals with high temporal resolution, and

therefore are not precise in their transmission.

P a g e | 2

1.2 Specific Aim

This project aims to develop a portable and scalable device to alleviate the

complexities that arise from hybrid multimodal and hyperscanning setups, for efficient

arrangement of custom setups and reliable event marker transmission. Currently, the

markers must be sent via temporally unreliable protocols and each setup requires the

development of this information flow. This project also aims to review current brain-

computer interface literature on hybrid setups and categorize them. With a device that is

specifically designed to overcome these challenges, new setups could more easily be

developed and temporal imprecision could be eliminated.

With the use of a dedicated embedded system, the envisioned device could

implement common ports (serial, parallel, and digital) and protocols (RS-232, SPP and

TTL) broadcast a received marker out to all other on-board ports with respective

protocols. The device would act as a hub that bridges multiple independent systems

including stimulus presentation, functional neuroimaging (EEG, fNIR and fMRI) and

other recording systems. The result would be that all recording computers receive all

event markers, which would allow simple data alignment. This would also eliminate the

need for a dedicated solution that can only work with a specific experimental setup.

1.3 Approach

First, current hybrid brain-computer interfaces are reviewed and common

neuroimaging modalities noted. This provided the foundation and basic understanding of

the present state of the field, and the context for which the device is intended. It does not

P a g e | 3

provide an in-depth review of modalities or meta-analysis which can be found elsewhere,

rather, it shows the trend of hybrid setups and why they are a growing interest. From

there, the difficulty of setting up these systems is outlined, and design requirements are

identified. Then, system specifications are defined to accommodate these requirements.

Next step is the implementation of prototype systems and testing. The first few iterations

of the devices are prototyped, implementing new features and design changes. Finally,

the device is then tested for lag time and reliability.

P a g e | 4

Chapter 2: Background

This chapter aims to review the literature in the field that has necessitated the

device. Brain computer interface research is especially useful for locked-in syndrome

patients who have no other way of communicating with the outside world. It provides

them with a method to control a computer or other machinery using their brains alone.

There are various paradigms that use different techniques to extract information from one

or more neuroimaging modalities. These modalities are being more and more frequently

used sequentially or in parallel to gain faster, more accurate control of a BCI, a more

useful BCI, or a deeper understanding of how the brain functions. With these increasingly

complex setups, communication protocols are utilized to synchronize the data being

recorded and analyzed on multiple computers. However, computers are not designed to

be highly accurate in their timing of the protocols, which results in varying lag times that

decrease the precision of timing. The proposed device is meant to both simplify the setup

of these complex systems and solve the lag time problem.

2.1 Brain-Computer Interfaces

Brain-computer interfaces, or BCIs, are systems that allow the user to voluntarily

control the computer using thoughts alone, in the case of active BCIs, record the response

to a stimulus intentionally chosen by the user, as in the case with reactive BCIs, or record

a response to understand the state the user’s brain is in, as with passive BCIs [1-3]. A

reactive BCI is one that is used for voluntary control, but relies on a response from an

P a g e | 5

external stimulus, such as a light blinking at a certain frequency. These interfaces can be

either invasive or noninvasive. Invasive BCIs (also referred to as Brain-machine

interfaces, or BMIs) involve the implantation of electrodes, for single cell recordings

(which can be arranged in matrices) with high spatial frequency or implantation of

electrodes directly over the cortex under the skull to record large amounts of neurons

firing synchronously, known as electrocorticography (ECoG) [4]. Non-invasive imaging

has many forms, some examples being electroencephalography (EEG) [5],

magnetoencephalography (MEG) [6], functional magnetic resonance imaging (fMRI) [7,

8], functional near-infrared spectroscopy (fNIR)[9, 10], and positive emission

tomography (PET)[11]. The most popular brain imaging techniques rely on the

hemodynamic or electrophysiological responses. The following sections aim to outline a

medical condition BCIs are typically intended for, two popular and portable

neuroimaging methods, EEG and fNIR, their usefulness in BCIs, and a review of hybrid

BCIs.

2.1.1 Locked-In Syndrome

Locked-in syndrome is a condition in which the affected is aware of their

surroundings but is unable to take action in it. It can be the result of various forms of

medical complications, such as amyotrophic lateral sclerosis (ALS), also known as Lou

Gehrig’s disease, multiple sclerosis, brain injury or hemorrhage, nerve damage, stroke, or

some circulatory diseases[11]. The most common cause for locked-in syndrome,

however, is ALS. ALS is a progressive neurodegenerative disease that causes the

P a g e | 6

degeneration of motor neurons, resulting in an inability for the brain to control muscle

movement.[12, 13]. It starts with muscle weakness and eventually, as muscles become

less and less stimulated, they atrophy (become smaller). Eventually the afflicted can

become totally paralyzed and therefore categorized as having locked-in syndrome.

Locked-in syndrome patients cannot move anything with the exception of their eyes and

sometimes facial muscles, however cognitive activity and brain function stays intact

throughout this process in majority of these patients [14, 15].

Living in such a state is understandably a difficult hardship to cope with, with no

output to the ideas they wish to express. Their thoughts are absolutely suppressed and the

afflicted constantly need to be cared for by others, greatly decreasing their quality of life.

This is where the necessity for brain-computer interfaces is relevant. If better methods to

control communication setups or physical mechanisms are developed, some of the pain of

locked-in syndrome could be alleviated.

2.1.2 Non-invasive BCIs

Non-invasive brain imaging has typically been used in brain-computer interfaces

to provide an output for the patient, although invasive devices have also been under

development for some time and the field is currently growing rapidly [2]. These non-

invasive BCIs use different modalities and rely on different techniques to come up with

an appropriate method of control. Each of these modalities has benefits and

disadvantages which have to be weighed carefully according to application. By using

different modalities together, those benefits can be combined and new dynamics can be

P a g e | 7

understood. Because communication is so important for the wellbeing and quality of life

of the patient, a lot of focus has been placed on developing speller setups and techniques

to make them faster. Research has not been limited to helping the disabled, however.

Much can be learned about the brain using BCIs and non-invasive imaging systems are

widely used for various forms of neuroscience research.

2.2 Electroencephalography in BCIs

2.2.1 EEG Principles

Electroencephalography, or EEG, utilizes electrodes (conductive passive sensors)

to capture the electrical changes due to neural activity over the scalp noninvasively. The

change in voltage over the scalp is due to massive numbers of neurons firing in synch at

different frequencies. This is mainly due to the interactions between neurons: a synapse

from one neuron could excite or inhibit another neuron in various complex ways that are

beyond the scope of this review. The electrical signals picked up by the electrodes placed

on the skull are known as local field potentials (LFPs). Oscillations of LFPs due to

synchronous activity are more commonly known as brain waves. Reading these brain

waves allows certain insight on what is happening in the brain.

Historically four major types of continuous rhythmic sinusoidal EEG waves

(rhythms) are recognized (alpha, beta, delta and theta). Delta is the frequency range up to

4 Hz and is often associated with the very young and certain encephalopathies (cerebral

diseases) and underlying lesions. Theta is the frequency range from 4 Hz to 8 Hz and is

P a g e | 8

associated with drowsiness, childhood, adolescence and young adulthood. This EEG

frequency can sometimes be produced by hyperventilation. Theta waves can be seen

during hypnagogic states such as trances, hypnosis, deep day dreams, lucid dreaming and

light sleep and the preconscious state just upon waking, and just before falling asleep.

Alpha (Berger's wave) is the frequency range from 8 Hz to 12 Hz. It is characteristic of a

relaxed, alert state of consciousness and is present by the age of two years. Alpha

rhythms are best detected with the eyes closed. Alpha attenuates with drowsiness and

open eyes, and is best seen over the occipital (visual) cortex. An alpha-like normal

variant called mu is sometimes seen over the motor cortex (central scalp) and attenuates

with movement, or rather with the intention to move. Beta is the frequency range above

12 Hz. Low amplitude beta with multiple and varying frequencies is often associated with

active, busy or anxious thinking and active concentration. Finally, Gamma is the

frequency range approximately 26–80 Hz. Gamma rhythms appear to be involved in

higher mental activity, including perception, problem solving, fear, and consciousness.

EEG recording has high temporal resolution, meaning it can differentiate activity

that are very close in time, as the readable signal has a fast fluctuation in voltage level.

One disadvantage of this modality, however, is that it has a low spatial resolution. It is

therefore difficult to identify and locate the source(s) of oscillations. Using high density

electrode array such as 128 or 256, and it may be possible to estimate source locations

and contributions using sophisticated techniques such as independent component

analysis[16]. Although more invasive techniques have been developed, such as

P a g e | 9

electrocorticography (essentially intracranial EEG), that offer higher spatial resolution,

EEG remains popular for its noninvasiveness and its many uses.

The most common use of EEG is for clinical applications specifically epilepsy

and sleep studies, in which neuropathologies yield abnormalities in the EEG signals.

Epilepsy results in seizures in which normally asynchronous brain oscillation behavior

abnormally synchronizes and fires in excess. Surgeons that are about to perform an

epilepsy surgery on epileptic patients who do not respond to medication use EEG in the

process of locating the region of the brain that is the source of the seizure. EEG has also

been shown able to detect the onset of a seizure. Other diagnostic uses for EEG include

comas, encephalopathies (a wide variety of brain disorders), and brain death. EEG is also

used in sleep studies, as brain oscillations change at different stages during the night.

2.2.2 Sensors and Instrumentation

The standardized layout of the electrodes is known as the International 10-20

system, 10 and 20 being the percentages of distance between electrodes from the anterior

to posterior and medial to lateral directions, respectively. The ground electrodes are

usually placed behind the ear. Most electrodes are passive, requiring amplification and

the injection of a special conducting gel (or, in some setups, saline solution) to get a

signal. Active electrodes are able to acquire readings without the use of gel, but the signal

they pick up is noisier and the electrodes are too expensive to be considered useful in

many settings. For simpler objectives, such as entertainment purposes or to provide

P a g e | 10

consumers with rough biometrics, active electrodes are used because they are simpler to

set up. For academic or clinical use, passive electrodes are usually used.

In passive electrode EEG setups, amplification of the signal is necessary. This is

accomplished with an amplifier that is hooked up to the electrodes on the cap which also

samples the signal and sends them to the recording program on the computer. The

particular model used in one of the use case setups was the NeuroScan NuAmps digital

amplifier model 7181. It has 40 unipolar analog inputs, and can also be used for other

types of neurophysiological signals, such as ECG, EOG, and EMG. It has a parallel port

connection in the back that allows the integration of event markers from a stimulation

software package to the recorded signal.

There are many software packages available for custom stimulus presentation.

Among the more popular packages are E-Prime, Presentation, and BCI2000. They offer

standard paradigms and the ability to customize them to suit the needs of the

experiment/BCI. Mazesuite [17], a spatial navigation software developed at Drexel

University, was another stimulation package that was used in one of the use case setups.

2.2.3 Examples of EEG based BCIs

Over the past 30 years EEG has been demonstrated in many settings as a

successful brain sensing modality for various BCI paradigms. Among the most well

studied of these paradigms is the P300-based matrix speller [18] which uses the P300

evoked potential that occurs when a user recognizes a rare target stimulus. An event-

related potential (ERP) is an EEG based signal that is response to an internal or external

P a g e | 11

stimulus. Experimental psychologists and neuroscientists have discovered many different

stimuli that elicit reliable ERPs from participants. The timing of these responses is

thought to provide a measure of the brain's information processing and communication

timings. P300 response occurs at around 300ms as a positive peak in the oddball

paradigm, for example, regardless of the stimulus presented: visual or auditory. Because

of this general invariance in regard to stimulus type, this ERP is understood to reflect a

higher cognitive response to unexpected and/or cognitively salient stimuli.

 The P300 based BCI acts on a characteristic response due to a resolution of

anticipation of sorts. When an awaited stimulus presents itself, a positive response can be

seen at about 300 ms after the stimulus in the EEG recording. The usual stimulus

presentation is visual, although auditory [19, 20] and tactile [21, 22] based P300 BCIs

have also been developed [23].

 For visual stimuli, the presentation is usually a matrix of the alphabet and some

other characters necessary for typing. The characters randomly blink, one at a time, and

the user is instructed to watch their intended character and count the number of time it

blinks within a set amount of time. By identifying a consistent P300 response for a single

letter on all cycles of the run, the BCI analysis software can determine which of the

characters was intended to be selected during the run and in turn select that character.

This type of BCI was first developed in 1988 by Farwell and Donchin [18]. Other uses

for P300 in BCIs have been developed and include other types of speller layouts and

analysis techniques that have improved performance [24-27] and P300 for spatial

navigation [28]. For a review of P300 based BCIs paradigms, refer to [29]. Another

P a g e | 12

notable improvement was the use of delta and beta band powers to predict when the user

is paying attention to the system [30].

 Another common type of BCI also makes use of the visually evoked rhythms in

occipital lobe[31]. One can cause entrainment of the EEG signal to a frequency by

gazing at a display flashing at that frequency. Thus, flashing icons at different

frequencies provides the user with a frequency-coded selection that can be identified

through EEG recordings made between the Pz and Oz locations over the visual cortex.

This type of BCI works off of a response known as steady state visually evoked potential,

or SSVEP. The amplitude of SSVEP greatly increases near the center of the visual field,

and therefore is strongest when the user is gazing at a flashing icon. Therefore, by

looking at an icon, the user can select it.

 For analysis in searching for an SSVEP, first the peak frequency is detected, then

it is determined if the peak is above a certain threshold. If it is above the threshold, the

icon coded with the above-threshold frequency is selected. The amplitude of the response

also is dependent on the frequency, with some frequencies showing a greater response

than others. Therefore, it is advantages to use those frequencies that are more detectable.

Lower frequencies cause flickering that can be annoying to users, so higher frequencies

can be used; however, higher usable frequencies are more difficult to detect. The

advantages of SSVEP are that it is fast and there is no training required, as with most

other types of EEG based BCIs [32-34].

 Sensorimotor rhythms have also been incorporated in BCI[35]. Motor imagery

based BCIs require the user to imagine using parts of their body as a control mechanism

P a g e | 13

[36-38]. Typically this comes in the form of power asymmetry of mu (8 to 12 Hz)

rhythms between the left and right hemispheres [39]. For example, a user may be asked

to imagine moving their left, and alternatively their right, hand. Classifiers are identified

after training the BCI and online analysis used to control the system. These systems are

asynchronous and provide the user with self-paced timing of whatever the BCI is

intended to control, whether that be a wheelchair [40] or a specialized speller setup[41].

Another asynchronous feature that can be extracted from EEG to for control is the

regulation of slow cortical potentials, or SCPs [42, 43], although this is less commonly

used for inherent difficulties the method presents.

EEG has been shown to be a useful modality for controlling BCI systems, with a

few standard feature extraction methods with advantages and disadvantages of each.

Current research in the field often involves improving these methods by changing

stimulus presentation, using different analysis techniques, or using those features to

control different parts of a system. Other passive uses include sleep research [44] and

other neuroscience areas. All of these setups require event markers to align stimulus

presentation with sub-millisecond EEG data being acquired. It is therefore crucial for the

usefulness of the system that the event markers are precisely aligned.

P a g e | 14

2.3 Functional Near-Infrared Spectroscopy in BCIs

2.3.1 fNIR Principles

Optical brain imaging takes advantage of optical properties of hemoglobin in

blood to track metabolism related changes in order to reveal information about brain

function. Functional near-infrared spectroscopy, or fNIR, is the use of near infrared light

to measure the cortical hemodynamic changes of a brain area by observing changes of

light absorption in that specific area [45-47]. When neurons are activated, they use

energy in the form of glucose. This process requires oxygen, which is transported to the

cells by oxy-hemoglobin, which is then deoxygenated. Oxy-hemoglobin and deoxy-

hemoglobin absorb light at different wavelengths, hence two different near infrared

wavelengths can be used to spectroscopically resolve concentration changes of each

chromophore (light absorbing molecule). The changes in oxy-hemoglobin (HbO), deoxy-

hemoglobin (HbR), total-hemoglobin (summation of HbO + HbR) and hbD (difference in

hemoglobin) changes can be used to determine the brain activity in a specific location or

over time. This is also similar to functional magnetic resonance imaging (fMRI) based

Blood Oxygenation Level Dependent (BOLD) signal as both measure the same

underlying hemodynamic changes. However, due to large instrumentation, high cost,

complicated setup and subject restrictions (no metal, need to stay motionless in supine

position, high data collection nose) of fMRI, it is not as amenable to neuroergonomic

studies as fNIR. Diffuse optical techniques (those used for fNIR) have been shown to

P a g e | 15

have similar results to fMRI measurements [48] and therefore could be used in situations

where fMRI is impractical either by nature of experimental protocol or cost.

fNIR operates on the fact that human tissue is relatively transparent to light in the

near infrared wavelength window (the optical window is around 650 to 950 nm) and light

in this range is therefore able to penetrate and read the relative changes in transparency.

While skin and bone are relatively invisible to near-infrared light, hemoglobin, the

protein that transports oxygen in red blood cells, is responsible for most of the attenuation

in tissue. Laser diode or LEDs are used to transmit light at wavelengths at which oxy-

Hemoglobin and deoxy-Hemoglobin are most responsible for absorption: 850 nm and

730 nm, respectively. The light travels through the tissue in a banana shaped curve to

sensors placed in the surrounding area, with the distance from the transmitter determined

by the depth of tissue intended to be read, which is approximately half the separation of

the light source to the sensor.

This modality is much less expensive to build and operate than fMRI, and is also

much more portable, which are reasons that it is gaining in popularity in research.

However, fNIR can only measure outer cortex and cannot measure deeper brain

structures as an inherent limitation due to optical nature of the tissue. However, temporal

resolution of fNIR can be much higher than fMRI, allowing recording more temporal

characteristics. The ability of the system to measure the hemodynamic response using

such a portable, even wearable low cost system has increased the popularity of the

modality. It is most commonly used in passive BCIs but, as it has been shown that a user

can voluntarily activate the hemodynamic response, it is also able to be used for active

P a g e | 16

BCIs. It has also been used in clinical applications such as depth of anesthesia monitor

[49], and even variations of the technology has been implemented as medical devices that

has received FDA approval for use in a portable handheld intracranial bleeding monitor,

Infrascanner [50].

2.3.2 Sensors and Instrumentation

There are various devices available that make use of optical diffusion techniques

to provide metrics about the hemodynamic response, and depending on their complexity,

are able to utilize several techniques for more information, at the tradeoff of a more

complex and expensive system. These measurement types are time domain, frequency

domain, and continuous wave. Time domain involves very short pulses into the tissue

that are measured and analyzed for temporal distribution of light by scattering and

diffusion. Frequency domain involves modulating the amplitude of the light at various

frequencies, where the amplitude decay and phase shift give information about the optical

properties of the tissue. Continuous wave flashes light at a constant amplitude and

measures the attenuation of the signal at relevant wavelengths. Each of these systems is

composed of one or more transmitters, sensors, and electronic hardware. If there is only

one light source, the system is a point-measurement system, while more than one source,

providing a map of brain activity, the device is classified as an imaging instrument.

The portable continuous wave fNIR sensor for prefrontal cortex has been

developed by the Optical Brain Imaging team at Drexel University in collaboration with

Dr. Britton Chance. The system has been used in a spectrum of application areas that

P a g e | 17

require quantitative measurements of the hemodynamic response in a natural

environment, such as an objective analysis of cognitive workload [9, 51-54], working

memory [55-58], attention[59, 60], problem solving[61, 62], learning/training [46, 63],

neuromarketing[64], brain disorders[15, 65], and rehabilitation [66-69]. For such

applications, the continuous wave method is utilized, because it is portable, affordable,

and easier to engineer than time domain or frequency domain methods. This makes it

able to be used in a variety of situations that the other methods would be unable to.

The current fNIR imaging system consists of a headband that attaches to a base

system. The headband contains a flexible circuit board inside a silicone band, with 4 LED

light sources and 10 detectors, each 2.5 cm away from the light source. Each of the light

sources are measured by the four surrounding detectors for a total of 16 fNIR acquisition

channels, or voxels. Each source pulses 2 or 3 different wavelengths: one for oxy-

hemoglobin, one for deoxy-hemoglobin, and one for dark current. The sampling rate is 2

Hz, and during a sampling period 48 measurements are made (at each voxel, at each

wavelength). The measurement data is sent via USB port to a computer and recorded

using COBI Studio, also developed at Drexel University [47, 70].

2.3.3 Signal Processing and Analysis

 To obtain useful information from the data acquired, the Modified Beer-Lampert

law is used. The Beer-Lampert law states that the amount of light that passes through a

medium is proportional to the amount of light absorbing molecules in the medium. It also

takes into account the absorption properties and concentration of the molecule and the

P a g e | 18

distance the light must travel through the medium. It must be modified, however, to take

into account the scattering effects of tissue. Using the following equation, one can

determine the amount of oxy-hemoglobin and deoxy-hemoglobin in the area between the

source and the detector.

log (
𝐼0
𝐼
) = 𝛼𝑐𝐿𝐵 + 𝐺

 𝐼0 represents the intensity of the light entering the medium, and 𝐼 is the intensity

of the light measured after passing through the medium. 𝛼 represents the absorption

coeffiencent of the molecule in question, 𝑐 is the concentration of the molecule, and 𝐿 is

the length the light must travel through the medium. 𝐵and 𝐺are the modified parts of the

equation, and they represent an experimentally derived correction factor for 𝐿 and a

constant attenuation factor due to the optical properties of tissue, respectively. To assess

the effect that a stimulus has on signal attenuation, a baseline recording is made and

compared to the post-stimulus reading. The difference can be rearranged to make the

following relation between the attenuation ratio and the change in concentration:

∆𝑐 =
log (

𝐼𝑟𝑒𝑠𝑡
𝐼𝑡𝑒𝑠𝑡

)

𝛼𝐿𝐵 + 𝐺

 Although continuous wave systems are less susceptible to motion artifacts [71],

there is still a need for motion artifact correction. Motion artifacts appear as spikes that

corrupt the data. Numerous methods have been deployed to address this need, either by

using an accelerometer [72] to sense movement or by using signal processing methods

such as statistical filtering[73] or wavelet based algorithms [74] to reject the artifacts.

Also contaminating the data are scattering and absorption changes from the superficial

P a g e | 19

layers of the scalp, another problem which correction efforts have been applied. Both

principle component analysis and independent component analysis have been applied to

remove changes due to the hemodynamic response in skin blood flow, as this is irrelevant

to brain function [75]. Classical statistical analysis methods, such as ANOVA and t-tests,

are commonly used to analyze fNIR data. A review of motion artifact removal for fNIR

can be found in [76]. A review of fNIR instrumentation and methodology can be found in

[77].

2.3.4 Examples of fNIR based BCIs

 This section reviews various recent BCIs that utilized fNIR. A wide variety of

applications have been found for fNIR. Although there have been systems developed that

use the hemodynamic response as a voluntary control mechanism, the majority of fNIR

based BCIs are passive studies on cognitive load. As fNIR measurements are directly

related to changes in levels of oxy-hemoglobin and deoxy-hemoglobin due to the

hemodynamic response, and the hemodynamic response is caused by brain activation,

fNIR can be used to predict brain activation due to cognitive workload with the correct

correlates [9]. It has also been used to monitor training of simulated piloting of unmanned

aerial vehicles (UAVs), where Ayaz et al. found a high correlation of brain activity to the

users’ performance as well as their self-reported experience [9, 56, 78]. Moreover, other

followup studies also confirmed that fNIR measurements can be used to predict the

mental task load as well as the training effect, level of expertise in a given task[46, 52,

54, 57, 58].

P a g e | 20

 In [79, 80], the assessment of cognitive neural correlates was convincing enough

to suggest the use of fNIR as a BCI mind switch. In other words, the user of the BCI

would be able to control a BCI by volitionally changing their mental state. A simple, one-

channel fNIR BCI was developed for this purpose in [81]. This idea was taken further

through implementation into a virtual environment in which the user navigated using a

traditional computer keyboard but interacted with doors in the environment using fNIR.

After a training phase in which the user received fNIR biofeedback, the user was then

assigned the task of navigating a maze with 5 doors, each being opened by voluntary

changes in brain state [82]. In another example, called Brainput, Solovey et al.

demonstrate the possibility of using fNIR data to control a passive negative feedback

system that in turn controls the autonomy of a system the user is controlling. They

showed that with this approach they were able to improve performance metrics [83].

 fNIR has also been used to study how the brain learns. In [47], fNIR was used in

combination with Mazesuite [17] to show how to study the brain while it leans spatial

navigation. In other learning protocols, verbal-spatial working memory was studied for

increased working memory capacity in training, as well as other improvements to

learning that are based on experimental data [57]. That particular study found a negative

relationship between verbal working memory performance and bilateral ventrolateral

prefrontal cortex (VLPFC) activation.

 More uses have been found to use fNIR as a BCI besides a two state mind switch.

In one study, fNIR data was used for a 4 class (left hand, right hand, left foot, and right

foot) motor-imagery BCI with which all three participants of the experiment achieved

P a g e | 21

accuracies that were higher than chance (54 %, 50 %, and 33 %) [84]. It would then be

logical to use this in combination with EEG based motor imagery for a more accurate

system than the two modalities achieve individually. As fNIR used in the previous

example reads from the prefrontal cortex only, it is understandably more difficult to

predict intended movements than by measuring oxy and de-oxy hemoglobin at the motor

cortex, which was done successfully in [85]. Although this study was only comparing 2

states (left hand vs. right hand) compared to the other study’s 4, they achieved 73 %

accuracy using Support Vector Machines (SVM) and 89 % accuracy using Hidden

Markov Model (HMM) algorithms.

The number of uses for fNIR is growing constantly and are too numerous to list

everything here. Other notable examples include using fNIR for developmental

neuroscience [71, 86] and imaging the medial prefrontal cortex (where information about

self is processed) to understand how basic psychological need satisfaction affects the

difficultly of deciding while answering questions about self [87]. Following this trend,

studies will continue to improve fNIR data analysis and fNIR-based BCI performance.

2.4 Hybrid BCIs

 Hybrid BCI (or hBCI [88]) research has stemmed from the need for better

performance systems, which is necessary if BCIs are ever to be commonly used in

clinical settings [89]. A hybrid BCI is one that employs the use of more than one BCIs, or

one BCI and another system, or both [90]. It has been noted in [91] that there is

inconsistent language used in literature to describe the differences in hybrid BCIs and

P a g e | 22

attempts to categorize them. That group defines two BCIs being used together as a pure

hybrid, a BCI that also incorporates another physiological signal as a physiological

hybrid, and a system that uses another, non-physiologically based assistive technology as

a mixed hybrid. In these definitions, they fail to categorize BCIs that use different

features from the same modality. This is necessary as unimodal hybrid BCIs have also

become a recent trend. The multiple systems can also be classified as being combined

sequentially, where one system controls the other, or simultaneously, where both systems

are processed in parallel. Reviews in hybrid BCI research can be found at [90] and [91].

This section aims to define the differences in unimodal and multimodal BCIs and

give examples of each. The main categories can be broadly defined as follows: BCIs that

utilize multiple analytical techniques from the same modality, BCIs that employ multiple

modalities, and those that use a combination of both. The third category will not be

covered thoroughly, however, because no systems were found that match this description.

Physiological and mixed hybrids will not be separately covered.

2.4.1 Unimodal Hybrid BCIs

 Unimodal Hybrid BCIs make use of multiple paradigms from the same modality

at the same time. They extract different features from the same modality, but not

necessarily the same set of data. One EEG feature could be extracted from the occipital

lobe, which is being combined in a BCI with a motor imagery scheme that uses data from

the around the sensorimotor cortex. The advantages of various analysis techniques are

combined by using the strengths of each used feature in creative and appropriate ways.

P a g e | 23

Using more than one modality can combine the advantages of each modality and make a

faster, more informative, and easier to use BCI setup. For example, an unimodal hybrid

setup mentioned earlier used both P300 in its traditional form, but added the use of delta

and beta band powers to improve accuracy by attempting to understand when the user

was paying attention to the system [30]. Another type of unimodal hybrid BCI technique

is known as hyperscanning. Hyperscanning typically involves measuring the same

modality on more than one subject to study social interaction. For examples of this

reference [92-97].

 P300 ERPs and SSVEPs were used together in a P300-based speller matrix for an

asynchronous BCI that used SSVEP techniques to determine control state (on or off)

[98]. This is an improvement because P300-based BCIs are typically synchronous and

require that the user be actively engaged at all times or the system will produce false

results. Looking at the screen produced an SSVEP, which the system responded to by

activating the P300 system. Because SSVEP is better suited for asynchronous control

than P300, it was also used to make another P300-based BCI asynchronous, in which the

user selected discrete commands for a smarthome environment in [99]. In this case,

SSVEP was used as an on/off switch for the system, and resulted in high accuracy and

reliability.

 As P300 is a good feature to use when discretely selecting one out of many

options and motor imagery is better for continuous control of fewer options, the two have

been used together for various purposes. In [100], the two were combined sequentially to

control a wheelchair. P300 is first used to select a location to which the wheelchair is to

P a g e | 24

travel, then for stopping the wheelchair, first a fast P300 stop command was

implemented, then a motor imagery stop command was used in its stead to see the

difference. Although the response time was very similar, the motor imagery command

managed to attain zero false acceptances. The two features were used together for control

of a virtual environment, using motor imagery for navigation and P300 to control virtual

devices [101]. Although this setup did not improve accuracy, it showed P300 and motor

imagery used in combination for a novel setup. The two features were also used in

combination in another example to control a robot [102].

 Motor imagery has also been used in combination with SSVEP in various setups.

In [103], the two were used together to show that higher classification accuracy is

possible using both rather than each individually. LEDs blinking at SSVEP-appropriate

frequencies were used to indicate which direction the user was imagining. With motor

imagery alone, 74.8 % accuracy was achieved and with SSVEP alone, the average was

76.9 % accuracy. Using the two together in a hybrid system produced higher accuracy

that averaged at 81.0 %. Furthermore, the number of BCI illiterate subjects, who achieve

less than 70 % accuracy, was reduced to 0 (originally 5) in the hybrid setup. This is

significant as illiterate subjects are a great challenge for BCI research [104]. Motor

imagery was also used as a brain switch to turn on an SSVEP controlled orthosis. SSVEP

was used to control opening and closing tasks, and in combination with the motor

imagery controlled mind switch, false positives were reduced by more than 50 % [105].

Another example of an SSVEP-motor imagery hybrid BCI is [106], in which the two

were used in sequential combination to control functional electrical stimulation (FES), a

P a g e | 25

technique used to control limbs that can no longer be controlled by the brain but still have

functioning muscles.

2.4.2 Multimodal Hybrid BCIs

 Multimodal hybrid BCIs use more than one modality at a time. They work

together to overcome physiological and recording limitations imposed on systems by the

individual modalities, and in their combination are able to come to new findings, as well

as improving accuracy and reducing error. The most common modalities record

electrophysiological or hemodynamic changes. Since unimodal setups do not have high

spatial and temporal resolutions, combining modalities allows for a new spatiotemporal

resolution. Multimodal setups have also given insight to the mechanisms that govern

neurovascular coupling [107] although a clear description of it remains elusive [108].

 Multimodal hybrid BCI analysis methods are categorized, although it is notably

difficult to do so. There are asymmetric or symmetric methods, and supervised,

unsupervised or model driven methods. Supervised methods are asymmetric because they

choose an independent variable from one modality, to which the other modality is fitted.

Unsupervised methods do not require the predictor variable, but interpretation of results

is not as easy as with supervised methods. Model driven analyses are difficult to develop

because a robust realistic model of hemodynamic and electrophysiological measurements

is difficult to establish [107].

 Electrooculography (EOG), the measurement of eye muscle potentials, has been

used as a control mechanism on its own [109-111], but has also recently been used in

P a g e | 26

parallel with EEG for a novel control scheme [112]. In it, the user controls the direction

of a machine using EOG while controlling the state (stop, forward, or do nothing) of the

system with EEG. To control the state, power spectral density in the alpha and beta bands

were used, with different methods to control the bands instructed to the user. To stop, the

user closed their eyes, which increased the alpha band. To move forward, the user thinks

about moving forward, which increases beta. If both bands were under threshold, nothing

was done. In this fashion, 100 % accuracy was reached for stopping completely and

turning left or right, 87 % for moving forward, and 95 % for the no action state. In

another example, EEG was used in an EOG controlled system to tell if the user was

paying attention [113]. The combination of EOG with EEG is advantageous because

there is a relatively high accuracy rate, it doesn’t require many electrodes, and there is a

short training time.

 EEG has also been used with other modalities. It was used with electromyography

(EMG), recording the electrical activity from skeletal muscles, to assist with the problem

of muscle fatigue [114]. Also using EEG with EMG, [115] proposed the development of

a speller using EMG to control a selection “click” on whatever letter the user was

viewing. In the paper, they compare the use of EEG to EOG for letter selection.

 More frequently, EEG is being used with fNIR for improved systems. In [116],

the two were used together to improve accuracy in motor execution and motor imagery

tasks, although the slow hemodynamic response may increase reaction time. For executed

motor tasks, the mean accuracies without EEG were 71.1 % and 73.3 % for HbO and

HbR, respectively, but with EEG accuracies were improved to 92.6% and 93.2%. For

P a g e | 27

motor imagery tasks, the accuracies improved from 71.7% and 65.0 % to 83.2 % and 80.6

%. In the study, it is reported that classification accuracy was able to be improved in over

90 % of the subjects using the hybrid approach. NIRS measurements were also used as a

mind switch for an EEG motor imagery controlled robot in [117]. In chapter 5, a setup

using P300 with fNIR is presented in more detail.

 In another example, fNIR was used for a mind switch to turn on or off an SSVEP-

based orthosis control BCI. With this setup, Pfurtscheller et al. were able to achieve 100

% accuracy [105]. In [118], fNIR data was used in parallel with a P300 spatial navigation

BCI to predict performance rates. In another study, NIRS measurements were used with

transcranial Doppler ultrasonography (TCD) to improve accuracies during a verbal

fluency task in a block-stimulus paradigm [119]. Used alone, NIRS produced a mean

accuracy of 76.1 ± 9.9 %, and TCD an accuracy of 79.4 ± 10.3 %. Used together, they

produced a mean accuracy of 86.5 ± 6.0 %. In this study, 5 out of 9 participants were able

to significantly improve accuracies (p<0.05) using the hybrid setup over the two imaging

techniques used individually.

 As stated previously, one of the advantages of using fNIR is the ability to use it in

more common situations than fMRI could for its size and nature of the signal. Also, it has

been shown to improve results being used in real life situations rather than mock tasks

that are common with fMRI. In one such example, the results from an fMRI and fNIR

recorded mock apple peeling task on the prefrontal cortex were compared to prefrontal

cortex readings on a real apple peeling task that would not have been possible in an fMRI

setup [120]. The results showed increased activation in the real apple peeling sessions,

P a g e | 28

showing the potential for fNIR to be used in real situations that would not be otherwise

possible with fMRI. Also using fNIR data with fMRI data, [121] found that it was

possible to use fNIR to reduce variance in fMRI residual error by up to 36 %.

2.5 Need for a Solution

Because of the nature of novel experimental BCI setups, they require features

specific to the experimental design. This requires the added task of making all of the

involved systems work together, which is time consuming and gets in the way of the

research. These systems are often complex themselves, and when the data from more

than one monitor is required to be synchronized to markers that corresponds with the time

of an important protocol event or stimulus, there is the added task of temporally aligning

the data. Also, the imprecise timing schemes of standard computer protocols would cause

imprecise recording of event marker times, increasingly so with more data arriving at

another port, such as from a neuroimaging device or even a computer mouse. More

information on this in provided in chapter 4.

2.6 Current Approaches

Recording can be done on an expensive, hardware dedicated data acquisition

device, as long as the output is in volts. This leaves out the usefulness of transmission

protocols. Other efforts to synchronize data in real time include frameworks multimodal

interactions with virtual environments[122], augmented reality[123], and activity

recognition such as through wearable and ambient sensors [124]. Highly precise timing is

P a g e | 29

not pertinent in these situations. There are a number of costly options at websites like

http://gridconnect.com/ that offer RS-232 to UDP options, RS-232 splitters, or similar

pieces of hardware, which could be used as routing solutions for the signals. However,

most previous efforts have been custom assembled for the requirements of a setup.

This issue has been addressed in a software based solution developed by the

Swartz Center for Computational Neuroscience at UC San Diego called the Lab

Streaming Layer, or LSL (https://code.google.com/p/labstreaminglayer/). It provides

support for a variety of devices to work over a network and temporally aligns them. It is

full featured, with a recording program, online viewers, and more, but requires

programming experience to integrate into a custom experimental setup. As is described

later in this document, through testing it was found that using the computers’ protocols

for time synchronization can be disastrous for temporal precision of data, for they are not

embedded systems and this sort of timing is inherently unimportant to the operating

system, and communication over these protocols is necessary for recording from devices.

Because of this, there is often lag that is unknown and unaccounted for in the results,

which could lead to false conclusions being reached. Effort is required if the user intends

to have a minimal lag time.

In LSL, each stream of data must have an offset timing according to the nature of

the stream for temporal correction. Different modalities in the streams have been tested

with varying results (http://sccn.ucsd.edu/~mgrivich/Synchronization.html). Also, the

attached computers are running on different computer clocks, and a variable drift likely

caused by temperature variations on the clocks speeds. This website explains that in their

http://gridconnect.com/
https://code.google.com/p/labstreaminglayer/
http://sccn.ucsd.edu/~mgrivich/Synchronization.html

P a g e | 30

testing of LSL, outliers can be explained by OS lag or drift due to a statistical error in the

fit of a DAQ: http://sccn.ucsd.edu/~mgrivich/LSL_Validation.html. That is with one

stream of data from one computer to another, measured using a 2048 Hz sampling rate.

Time synchronization in LSL is described here:

https://code.google.com/p/labstreaminglayer/wiki/TimeSynchronization and is not

specialized for synchronization of multiple streams. It relies on the timestamp each

system/device provides via UDP, and if the device isn’t reliable, neither are the

timestamps. There are documented efforts to characterize devices’ lag time using LSL,

such as http://wiki.neuroelectrics.com/images/a/a5/NEWP201401-WhitePaper-

EventSynchronization.pdf. Essentially, lag time can only be corrected so much.

It is those drawbacks in mind that the device being presented here aims to

alleviate. Researchers ideally should be able to focus on the experiment at hand rather

than devoting time to working out inevitable technical difficulties. These difficulties both

distract the researcher with frustration and waste time that should be used on the

experiment itself, setting back the flow of progress.

An ideal setup would allow the researcher to simply connect all event trigger

output ports (whatever type of port it might be) to a single plug and play microcontroller-

based device that is also connected to the computers that need to receive the markers

through those same ports. The device would replicate all data flowing in to all ports

flowing out for maximum simplicity in setup. Because the system would be a dedicated

embedded device, all input to the device is being sent to all receiving computers at the

http://sccn.ucsd.edu/~mgrivich/LSL_Validation.html
https://code.google.com/p/labstreaminglayer/wiki/TimeSynchronization
http://wiki.neuroelectrics.com/images/a/a5/NEWP201401-WhitePaper-EventSynchronization.pdf
http://wiki.neuroelectrics.com/images/a/a5/NEWP201401-WhitePaper-EventSynchronization.pdf

P a g e | 31

same time, and lag time due to OS port protocol would be negligible because all data is

coming in through one port.

P a g e | 32

Chapter 3: Device Design and Development

3.1 Device Design

The selection of the microcontroller used required an understanding of both the

specifications of the desired application as well as what is available on the market to fill

those requirements. The first step was deciding what the most important features the

device must have, and from there make a list of general requirements. After determining

the general requirements necessary for the device, a microcontroller and development

platform were chosen that could fulfill those needs, and development was continued from

there.

3.1.1 System Requirements

The device must be able to make connecting computers in BCI setups simpler. It

must be highly temporally precise and reduce the time needed to wire the system

together. The first and most important two requirements decided were that the device had

to be fast enough to respond in time to sub-millisecond event triggers and that the most

popular communication protocols used for transmitting event triggers must be available.

The timing was so important because EEG requires high temporal precision and the event

triggers must be sent immediately after they are received. The popular protocols are

important because the device is meant to make custom setups easier, so the popular

protocols are the most important to be incorporated. That way, incorporating systems

with different networking options can easily be integrated, providing an easy plug and

P a g e | 33

play setup procedure. Another advantage of having multiple commonly used ports is the

ability to convert protocol types to types without having to write custom conversion

scripts in the stimulus software.

Design constraints were decided on with the idea to make the device inexpensive

and simple to use. For example, the device was first developed (when still in the

breadboard development phase) to have switches from each of the ports to each of the

other ports, to provide custom routing abilities. That way, the user could control which

port is sending to which other port. Several methods were implemented and tested, but

this was later decided to be omitted, as this could provide a problem to a researcher. In

the nature of a simplistic design, the extra complexity was deemed unnecessary and could

possibly cause more harm than good. Redundancy of information showing up at ports

would not be a problem, as the researcher must intentionally be listening to the data

anyway. It is likely that during the setup of an experiment, the user could become

frustrated trying to troubleshoot why a marker isn’t being transmitted because a switch

was accidently overlooked, and typically some software is listening to the signal, which

is why information being redundant is not a problem. Compared to the complexity and

cost of neuroimaging systems, the device should be simple to use and the cost of making

it should be minimal. Testing must show the device to have negligible and repeatable lag

time to prove efficacy.

P a g e | 34

3.1.2 System Specifications

In picking the most useful connection types to integrate, the serial port was

determined to be the most important because of its popularity. Another important event

marker method is through the use of a transistor-transistor logic, or TTL pulse, which was

to somehow be transmitted in some fashion to the other ports. For the first generation of

the device, these two were deemed necessary and other protocols were to be implemented

in later generations.

Because the serial port is so commonly used in these applications and provides

bidirectional information transfer, it was decided to put 4 serial ports on the board. If

more ports are needed, NeuroHub could be daisy chained to other NeuroHubs by simply

connecting a serial cable between them. Typically, serial communication is achieved

using the RS-232 protocol, which does not operate at the same voltage levels as most

microcontrollers. Microcontrollers operate at 0 V (logic 0) to 5 V (logic 1), while RS-232

operates at around 13 V (logic 0) and – 13 V (logic 1). A level conversion chip is

necessary in this case.

Software serial communication is possible by bit banging. Bit banging is the

process of sampling the pins at a rate sufficient to read all bits and implementing the

protocol by use of software. However, bit banging is notoriously unstable and therefore

not optimal for this application. Microcontrollers often have UART communication that

allows the hardware to control the serial data. This method is more stable and therefore

hardware serial communication was decidedly necessary.

P a g e | 35

 The serial communications settings were to be set for standard, i.e. the most

common, settings, and the settings of the computer needed to be adjusted if necessary.

The standard RS-232 connector is the DE-9 connector, shown below. For more

information on RS-232 protocol, see the development section, 3.4.

Figure 1: Picture of a male DE-9 connector and serial pinout.

TTL pulses were to be sensed by input pins and converted to a byte to be

transmitted through the other ports. A popular connector used to connect TTL

communicating devices, and the one on the back of the fNIR Devices fNIR Imager, is a

Bayonet Neill-Concelman, or BNC, connector. Perhaps the BNC port could send the byte

serially, but this would add unnecessary complexity for an uncommon procedure in this

sort of setup. Serial digital interface (SDI) using a BNC connection exists in the

professional video world, but is not used to send event markers in experimental setups

and therefore is unnecessary. Because the bytes from other ports could not simply be

P a g e | 36

converted to a TTL pulse, the TTL port was decided to be input only. The way this was

handled was sending the American Standard Code for Information Interchange (ASCII)

code for the character “1” to all other ports if the TTL line was pulled high, and likewise

“0” if the line was pulled low. Any other TTL cable could easily connect to the BNC

connector by attaching the signal wire to the inner wire and the ground to the outer

conductor and it would work the same way, as long as it operates at 5 V.

Figure 2: Picture of a BNC connector.

During development of the first generation board, more research went into

popular communication connections that event markers are sent across. One such

connection, the parallel port, has become somewhat outdated in the computer world and

is no longer included on most computers, but is still used for event marker

communication from various software and hardware packages. For example, the

P a g e | 37

NeuroScan NuAmps EEG amplifier receives event markers via parallel port and places it

alongside the incoming EEG data. There are different protocols that are used over the

parallel port. There is protocol for automatically detecting the type of protocol that will

be used to communicate over the line, but because only basic parallel communication was

found to be used on available systems, implementation of other protocols was put off

until found to be necessary. The parallel port was implemented into the second generation

board, and although basic parallel communication does not require all of the pins to be

used, the lines were still physically connected to microcontroller ports in the case that

other protocols were to be implemented. For this, the chip used needed to have enough

digital in and out ports to accommodate the 25 pins on the DB-25 connector, the most

common connector used for parallel ports and the one that was to be used the NeuroHub.

Figure 3: Picture of a male DB-25 connector and parallel port pinout.

P a g e | 38

The reasoning for the inclusion of mentioned protocols and microcontroller

selection was stated above for the purpose of reasoning design decisions. The specifics of

development of these features will be described in the development section that follows.

3.2 Device Development and Implementation

After making the decision as to what the development environment and

microcontroller should be, the development of required features was begun. Initial

implementation was completed on a breadboard before committing to a design. The

printed circuit board was designed using CAD software, printed, and tested for

functionality after the chip was programmed. The device was then assembled into a

finished product.

P a g e | 39

Figure 4: Board bring-up cycle diagram.

The development of an entire electronic device system is known as board bring-

up. It includes validation and debugging, and the sequence is repeatable at any stage of

the prototype development. It involves the assembly of the device, the hardware

development, the coding of the software, and programming the firmware of the

microcontroller. It must be verified that the board has been assembled correctly. The

hardware is then tested for basic functional connectivity. The code is debugged, and the

firmware uploaded and tested. This is repeated through the development of new

prototypes.

Software
Test: Recode

Assembly
Test: Repair

Hardware
Test: Rework

Firmware
Test: Reflash

P a g e | 40

3.2.1 Development Platform and Microcontroller Selection

During the initial stages of device development, it was difficult to understand

what specifications the device needed, as microcontrollers have an overabundance of

options, and it wasn’t clear which of them were absolutely necessary from the design

decisions made. Therefore, the necessary options were laid out, the microcontroller

market was researched, and the least expensive microcontroller that fit the description

was selected, because the device was to be kept at as low a cost as possible. Also

important to select before development was started was the development platform.

Typically, in microcontroller based device design, the microcontroller is attached to a

board with the necessary components to have it up and running, while having the pins

available to be attached to a breadboard or other prototyping platform. This allows the

developer to eliminate microcontroller setup as a possible source of error during

debugging the software testing phase of board bring-up.

For serial communications, at least 4 hardware dedicated universal asynchronous

receiver/transmitters (UART) were required. As mentioned before, software implemented

serial communications are reputably less stable than their hardware counterparts. A

UART basically translates data between serial and parallel communications, which is

important because the microcontroller deals with bytes in parallel. An integrated chip

made for this purpose could possibly have been used, but this would take up additional

ports on the microcontroller which could prove to be limiting. It was decided that the

microcontroller selected should have the necessary UARTs built in. This was the

bottleneck requirement; most chips with 4 UARTs supplied the other options as well.

P a g e | 41

 Because the device requires superior temporal precision, a high clock speed was

required. A pin change interrupt pin on the chip was necessary for TTL pulses. Enough

digital in and out ports were required for when the parallel port protocol was to be

implemented in generation 2, and an SPI bus for Ethernet and SD logging card was

necessary for when generation 3 was to be developed.

For efficient development, it was decided that a hardware debugging setup would

be useful as part of the setup, whether it be on board or with an external

debugger/programmer, although this was later decided against due to weighing

advantages (see development section). A breadboard/prototyping area was preferred but

not necessary, as most pins can be accessed via wires to a breadboard. It was to be

programmed in C.

The development setup selection was important, for there are many options and

the selection would have a major impact on the project workflow. The two major setups

in question were using a development/evaluation board, or using a surface mount (SMD

or SMT) breakout board on top a breadboard and using a programmer with debugging

capabilities. A breakout board makes the pins of a surface mount chip available to use on

a breadboard for development and prototyping. The breakout board would be needed

when picking a specific chip because the chips with at least the specifications required

are SMD which cannot be used by itself on a breadboard. Only through-hole components

can be used directly on a breadboard and all of the chips with required features were not

available in through-hole configuration. The reasons against using a breakout board is

that it requires hardware configurations that are already available on a development

P a g e | 42

board, which would be time consuming and more risk for human error where it isn’t

necessary. However, the chips are very inexpensive compared to development boards,

and it was possible that the hardware setup would need to be eventually transferred to a

PCB, so setup knowledge would have be useful for when the PCB is to be designed. As is

described later in the document, this (transferring to the breadboard) was not the case,

and the added frustration of debugging hardware configurations would surely have been a

setback. It was decided early on to obtain a development board rather than constructing

one myself using a breakout board.

All boards examined offered a programming environment tailored for use with its

respective board, and most, if not all, could be programmed in C. C was chosen as the

programming language as it is currently the most popular language to program

microcontrollers with, as well as being well documented with most example code being

written in that language. An 8-bit chip was chosen for its relative simplicity in setup

compared to 16 or 32 bit systems, which are generally more expensive and draw more

power. The additional resources they offer were also not necessary for this device.

FGPAs were considered but not included in the search as the extra complexity and

configurability was not needed. Popular development boards marketed to hobbyists such

as Arduino, Raspberry Pi, and the Intel Galileo, were also considered.

The most relevant microcontroller development boards were selected from top

microcontroller producers and compiled on a spreadsheet alongside certain attributes key

to selecting the most appropriate board. Where it was appropriate, a parametric search

was used pointing to the options with the most available UARTs, as stated before, this

P a g e | 43

was the bottleneck feature. A wide variety of available options were included in the

search to give a clear idea of what is available on the market. The spreadsheet can be

found in appendix E.

3.2.2 Generation 1 Development

3.2.2.1 Serial Capability Integration

As mentioned before, during the initial stages of device development and while a

chip and development environment were being selected, a basic development board and

integrated development environment (IDE), Arduino, was used. The specific board used

was the Arduino Mega 2560. It has the highest specification microcontroller of all of the

Arduino boards, the Atmel ATMega2560 microcontroller chip. The Arduino platform

was useful at this stage because of its simplicity and ease at implementing features, which

comes at the expense of speed and memory.

The development phase commenced using a breadboard and the Arduino

programming environment. The Arduino programming language was used in this case to

make sure the hardware was wired correctly, but it was not used in the device except for

initial development purposes. The integrated development environment, or IDE, for

Arduino takes up too much overhead for this application when compiling the code,

making the code run slower. As per the design requirements of speed, lag was to be kept

at a minimum, so C was used for the programming of the device. C is typically the

language used to program AVR microcontrollers. Upon comparing sizes of the .hex files

P a g e | 44

(the result of compilation and that which is programmed onto the chip) from simple code

in both the Arduino IDE and its identically functioning counterpart in Atmel Studio 6 in

C, we found that the Arduino compiled version takes up about 10 times the amount of

space in the flash memory, although a quantitative comparison of speed was not

conducted.

Figure 5: Picture of an Arduino Mega 2560.

The first protocol implemented was serial communication. While parallel ports

send all the information in a byte across 8 data lines, serial communication uses one line

for data transmitted in a string of pulses. The hardware dedicated UARTs convert the

serial data to usable parallel bytes to be processed by the firmware on the chip. However,

P a g e | 45

because the microcontroller and the serial operate at different voltage levels, a level

shifter IC made specifically for this application, MAX-232 by Maxim Integrated, can be

implemented. The microcontroller operates at TTL levels: 0 V is logic 0 and 5 V is logic

1. RS-232 operates at a much higher voltage range: +13 V is logic 0, while -13 V is logic

1. The logic levels are flipped and voltages are dangerously high for the chip. The MAX-

232 chip converts the voltage and logic levels of both transmitting and receiving lines.

The actual chip used was the MAX-3232 on a breakout board. The MAX-3232 is a

variation that offers conversion of 2 bidirectional serial channels. It was wired to the

Arduino board on pins TX0 (transmit serial 0) and RX0 (receive serial 0) for one serial

connection and TX1 and RX1 for another.

P a g e | 46

Figure 6: Atmel AVR ATmega2560 pinout.

The setup was assembled on a breadboard and the code tested for functionality.

Once the setup was validated as functioning as intended, we switched programming

environments to Atmel Studio 6, a free compiler used to program Atmel chips in C. A

USBtinyISP programmer which was soldered together and assembled was used in

combination with AVRDude, an AVR utility used to edit the contents of the ROM and

P a g e | 47

EEPROM memory of the AVR line of microcontrollers, to write the .hex files to the

chip’s flash memory. The .hex files are the output files of the compile process, formatted

for use in microcontrollers, and burned to the chip with the programmer. In this method

of development, the in-circuit serial programming (ICSP) pins on the Arduino board are

utilized instead of the USB port to program the board. Every time the chip is rewritten,

the old contents are erased, which leads to the Arduino bootloader being erased. The

bootloader is there originally to allow the Arduino user to program the device without

any additional hardware, as in with the USB port. Programming the chip via the ICSP

chips erases this bootloader as well, and unfortunately the programmer that we were

using came out before the ATmega2560, and was not compatible with it. This was not of

consequence, because the future iterations of the software were to be uploaded to the

board in the same way and the Arduino IDE was not to be used.

As for the programming of the chip to deal with serial data as specified by the

design, two methods of routing the data from these ports were initially considered. The

first code to be written used a method known as polling, which involved checking all the

ports, one at a time, for information, and if it found information there, it would output

that same information at all of the other ports.

The next method to be implemented was an interrupt based system. An interrupt

driven system is advantageous in this sort of situation because the program doesn’t

manually check each port, but has dedicated triggers that initiate a segment of code. In

this way, a flag is posted which breaks the program off from wherever it is and completes

the interrupt code. Essentially the microcontroller is automatically constantly checking

P a g e | 48

for certain actions to take place if it is set up properly. These actions stop the main

portion of the firmware code and run another section of code specially designed for that

action. Because interrupts can be fired in the middle of running other interrupt code, at

the beginning of each interrupt service routine (ISR), global interrupts are turned off, then

turned back on after the code is complete. The microcontroller then looks to the other

interrupt addresses and if a flag was set it jumps to the appropriate ISR. This was added

in the case that two event markers are sent simultaneously, which otherwise might have

resulted is partial bytes being sent.

Each serial port had its own ISR programmed. First, global interrupts were turned

off, as mentioned previously. Second, the byte was stored to a variable, then that variable

was written to all other ports. Interrupts were then turned back on and the flag was

cleared.

A method (a custom function) was created to initialize all four of the UARTs and

set them to the most standard serial communication settings by changing the registers for

those options. It would be run whenever the program was started, i.e. when the device

was plugged in. The desired baudrate and was used to calculate the settings of two

registers used to regulate baudrate by using a timing crystal attached to the Arduino

board. The baudrate could then be easily changed in the code if for some reason it was

needed in communicating with other devices or computers in the setup with a different

baudrate. It was set to default at 9,600 bits per second, what serial ports are typically set

to as default. It was decided that the UARTs would not require stop bits or parity, and

P a g e | 49

that characters received and transmitted would be 8 bits long (which can be changed, if

necessary).

It was at this point that it was realized that the ATmega2560 is an ideal chip for

the project, as it contains all of the necessities for the project and the features that we

intended to implement. It was decided that development would continue on the Arduino

board for a few reasons. The boards are inexpensive and readily available, making the

device easier to replicate and daisy chain if needed. Also, if absolutely needed, the

firmware code can be customized as necessary for a project. We were familiar with the

development setup by this time so staying with the Arduino saved development time as

well. Also, rather than having to design a board that catered to the microcontroller’s

needs, focus would be placed on functionality and a board would be designed to be used

as a “shield,” or custom board made for Arduino. The board has a need for external

physical components, which would have been time consuming to debug and transfer to a

PCB design after the features had been developed. There were no notable disadvantages

(with the exception of no debugging capabilities) to this approach, and the advantages

were numerous enough to come to the conclusion that it was the most reasonable method.

3.2.2.2 TTL Pulse Sensing Capability Integration

In the development section, it was mentioned that an input pin would be used to

detect TTL pulses and convert the pin changes to bytes, “1” for when the pin went high

and “0” for when the pin went low. There are a few pins on the ATmega2560 that can be

attached to interrupt routines for level changes. Second in interrupt priority only to the

P a g e | 50

RESET pin is the INT1 pin, the External Interrupt Request 1, so when the pin changes the

response is immediate. The INT pins can be configured to interrupt in one of four

conditions (low, high, rising, or falling) and are viewed as independent interrupts, rather

than triggering an entire port’s interrupts with any pin change like with PCINT. The pin

can detect a rising pin or a falling pin as long as the pulses are longer than 50

nanoseconds. Because the microcontroller operates at 5 V, no level conversion was

necessary.

Like with the serial initiation, a custom function was created to run on device

startup that set the registers for options required for TTL pulse functionality. Pin 1 on

port D is where the INT1 interrupt is located.INT1 was configured to sense any level

change edge, and the interrupt was activated. More information can be found in

Appendix C.

The code proceeded as follows. If a pin change was detected, as in the case of

receiving an event trigger, the interrupt is fired. It first turns off global interrupts, then

checks if the pin is high or low (different interrupts cannot be set up for each,

unfortunately). If the pin is high, it stores the character “1”, or 0x31 in hex, to a variable,

and if the pin is low, it stores the character “0”, or 0x30 in hex, to a variable. It then sends

the variable to all other ports as it did with the serial ports.

P a g e | 51

Figure 7: TTL Pulse to serial transmission of bytes with ASCII values equivalent to

the changed state of the line. Left represents the line being pulled low, transmitted

as "0”, or 0x30 in hex. Right represents the line being pulled high, transmitted as

“1”, or 0x31 in hex.

The code was tested by creating a breadboard friendly BNC connector, with the

signal line connected to the interrupt pin and the outside shield connected to ground. It

was tested using the fNIR system, which sends a TTL pulse event marker when various

actions are completed. Every time one of these actions was completed, a “1” then a “0”

would appear on serial monitoring software connected to a serial port, which showed that

the port was functioning as intended.

3.2.2.3 PCB Design

After testing the code out on a circuit board setup, a more complete product, a

printed circuit board, was developed. The boards were first printed then assembled, in

different methods for different versions of the board. The board was to fit over an

Arduino board as a “shield.” A plastic case meant to encase an Arduino with a shield was

used for the device case. The board was improved in a second version.

P a g e | 52

A common PCB CAD program, Eagle CAD, was selected because it is one that is

commonly used and well documented so it was relatively easy to set up the board. The

device parts to be used were either found in existing parts libraries or created from

scratch. A MAX238 through-hole IC chip was used, and the necessary capacitors were

attached accordingly. The serial ports were wired to their spots on the chip, and the chip

was attached to the headers corresponding to the correct pins on the Arduino. The BNC

port was also attached to its necessary pin and to ground. The parts were wired together

as shown in figure 8.

Figure 8: Schematic wiring of first generation NeuroHub.

P a g e | 53

The PCB was then arranged and routes created. The first generation board was to

be printed at Drexel’s Electrical Engineering facilities, but problems with the machine-

printed board slowed development for a brief period of time. The machine could only

print two layers, and the through holes weren’t plated. This resulted in the necessity to

solder only the side of the board from which a trace emerges, which was often under the

plastic of the piece being soldered on. Routing everything on the opposite side of the

board from the part on the next print fixed the problem. Vias, holes that connect different

sides of the board, could be added, but those available were the wrong size for most

components and had to be placed at a free spot on the board rather than the component

hole.

Figure 9: Printed circuit board design of first generation NeuroHub.

P a g e | 54

Another problem encountered with the board was the ability of the traces to stick

to the board. The PCB printer was an LPKF ProtoMat S62, a prototype PCB milling

machine. Much like a protoboard, the copper traces were relatively lightly attached. In

the first design, the RS-232 connectors were to stick out of the side of the case through

holes, attached to the PCB at a right angle. Therefore, whenever the serial ports were

attached or detached, there was strain on the traces that were attached to the pins from the

right angle connector, which caused the traces to break connection on a few occasions. In

retrospect, the traces could have been made larger, which could have helped, but it was

also not clear what the problem was at the time. The board would work, then would stop

working without anything haven been intentionally changed. For this reason, the plans for

the second generation of the board included a setup where the ports are attached to the

side of the case with wires to the board. That way, the strain goes to the strong plastic

case and freely moving flat ribbon cables.

The milling machine caused other development setbacks as well. On one printing,

the printer’s alignment was off so the top traces and outline were not correctly aligned.

On the final board of generation one, a few wires were used to bridge connections that

had broken.

P a g e | 55

Figure 10: First generation NeuroHub PCB.

Because the board was going to fit over an Arduino board, the board was made

the same outline as the Arduino Mega 2560. The BNC port was put on the opposite side

of the power and USB connections, and 2 serial ports were put on each side. As

mentioned before, they were to be soldered on using right angle connectors, as was the

BNC connector.

Initially, the case was to be printed with a 3D printer, but typically prototype

cases are selected from the large variety of premade electronics cases on the internet. One

was found that suited the needs of the project. To access the ports with the case on,

adjustments needed to be made to the case. This was done using a Dremel tool. The

initial cuts were made to the size of the port, then additional material was grinded away

P a g e | 56

to fit the top of the case on correctly and provide space for the metal casing that fits

around the ports. Unfortunately, this left an unsightly gap from the bottom of the

connectors to where the bottom part of the case met the top part. The previously

mentioned idea to have the connectors detached from the board would solve this. The

case was labeled, and with that NeuroHub generation 1 was completed.

Figure 11: First generation NeuroHub assembled.

3.2.3 Generation 2 Development

The second generation board was to both add features and improve the setup from

lessons learned in developing the first generation. The original idea of having a parallel

port for the second generation was the most important improvement, while a

P a g e | 57

professionally printed board, a new layout, and a different assembly approach were

additional improvements to be made.

3.4.3.1 PCB Design

Parallel port development was started on a solderless breadboard but was not

completed until after the PCB was finished and files sent to a printing house in an effort

to save time. In Eagle CAD, the BNC port was moved to the opposite side of the board to

fit into a convenient hole in the plastic casing meant for an Ethernet connection that is

very similar in size. Where the BNC port was, two parallel lines of header holes were

placed to connect to the parallel port. These header holes were attached to appropriate

ports on the microcontroller. The entire range of pins on the parallel port was attached to

microcontroller ports, in case other protocols were to be implemented later in

development.

The most important 8 bits of the parallel port, the data line, were attached to port

A of the ATmega2560. Ports E and G were to be used for control and status lines,

respectively. All 3 of these ports were located directly underneath the location of the

parallel port connector. This proximity made routing the board more simple for a two-

sided design.

P a g e | 58

Figure 12: Additional schematics added for second generation NeuroHub.

Figure 13: Printed circuit board design of second generation NeuroHub.

3.4.3.1 Parallel Port Integration

The board was then sent to a PCB printing house, OSH Park

(https://oshpark.com/), for a durable, quality printed board, which was then assembled.

P a g e | 59

The serial and parallel port connectors were attached to one end of ribbon cables with the

other end being attached to a line of pin headers to fit in designated holes on the board.

Rather than carving up the side of the plastic casing, holes were drilled to the size of the

ports (with the exception of the BNC connector). The idea is that the headers can be slid

through the port holes, put in their designated holes, and soldered from the other side of

the board. The ports were screwed into place. The assembly process is explained in more

detail in appendix A.

There are two roles played in parallel port protocol, and usually the computer

plays the “master” role, controlling a “slave” attached device and requesting information

from it. When there is a parallel port available on a computer, it is usually a female

connector.

As the board was to be implemented first with setups in the Drexel University

labs, it seemed an appropriate starting place to research the type of parallel port protocol

to be used. The EEG amplifier available was the NeuroScan NuAmps digital amplifier

model 7181. A specially designed stim-to-scan cable is used to connect the male DB-25

parallel port at the back of a computer to a female DE-9 connector on the amplifier.

Typically, a stimulation protocol software package sends event triggers over the parallel

port, which is received by the amplifier and stored alongside the EEG data sent to a

recording computer. It uses no special protocol, it just sets the data line to the byte to be

sent for a brief duration and returns all of the lines to low. Further research showed that

this is often the case, and checking for responses from a receiving device (such as part of

standard parallel protocol) is normally overlooked to save time. For this reason, the

P a g e | 60

parallel port was developed into a female unidirectional port that takes incoming bytes

from the other ports and puts them in parallel over the data line.

Once again, a function was created to initialize the parallel port. All lines of the

standard parallel port protocol were appropriately set to input and output lines, although

this wasn’t completely necessary for the setup described. In fact, all serial and TTL ISRs

had been programmed to send the received byte to the parallel port using SPP protocol,

but because there was no acknowledgement from the amplifier, the protocol

implementation added no further function.

The idea was to further develop the port to act as a computer would, automatically

detecting the type of protocol the receiving device was capable of. However, this had the

problem of not being able to be the slave from another computer. This could be

accomplished by switching the state of the port with a mechanical switch or possibly

adding another port that is male, but such physical altercations would have to wait for the

next generation of the device, and the current implementation was sufficient for the

available setups.

To test the code, an event marker diagnostic that is part of the NeuroAmps

Acquire software (which is used for EEG data collection). Bytes were sent from a

computer to one of the serial ports that relayed the byte to the parallel port. At the end of

the other ISRs (including whichever was sending the byte), the data line would be set to

all zeroes, to terminate sending of the byte. The code runs at a speed that, with the brief

time that the byte is on the data line, the amplifier being used to test the port rarely saw

the byte. To solve this, code was added that pulled the data line low every 5 milliseconds.

P a g e | 61

That way, nothing would be affected if the code was interrupted while counting to 5, but

the parallel port would remain high for 5 milliseconds, and if the event marker isn’t

picked up, it is due to the amplifier’s sampling frequency of the event markers and not

the fault of NeuroHub. When tested alongside EEG data recording, the markers show up

as the decimal equivalent of the hexadecimal value that represents the byte sent.

Figure 14: Second generation NeuroHub assembled.

P a g e | 62

Development of the third generation of NeuroHub was started, and the plan is to

implement Ethernet capabilities as well as SD card data logging capabilities. For future

plans for the device, please see the future development section in chapter 6.

P a g e | 63

Chapter 4: Testing and Validation

 The first tests to assess system characteristics were completed using the first

generation board and custom timing software. Upon reviewing the initial results, it was

realized that they have much more to do with how the computer handles protocols than

lag resulting from the device. To acquire actual lag time produced by the device, an

oscilloscope was used. Those results are presented first. A full set of tests was then

completed to address the protocol lag problem and expose its weakness, which the results

are then presented afterwards. First, however, the testing setups are presented.

4.1 Reliability and Variability Testing Setup

During the development of the device, performance tests were devised to

determine the properties of the system and how it performs in a setup, specifically

studying lag time. As defined by the design requirements, one of the most crucial features

is extreme precision of the timing of the system. This equates to minimal lag time. It is

important to test the device over many iterations, for experimental protocols can be

lengthy and the device cannot lose precision over time. As doing this testing manually

would prove to take an unreasonable amount of time, applications were developed to

automate the testing and record the results. The data was then statistically analyzed to

produce metrics that represent the system. As it turned out, the information acquired

about lag time had more to do with variability of the computer hardware/software setup

than of the device. This, along with the knowledge that the device has a very consistent

P a g e | 64

1.020 millisecond lag time as measured with the oscilloscope, further proves the need for

the device in these setups.

4.2 Program Design and Development

The initial purpose of testing was to determine the reliability and speed of the

setup. It was to be tested to be sure that the bytes being transmitted were the same as

those being received and in a reasonable amount of time. The program was to run in

every possible configuration, then compare the variations in outcome. The various setups

included from each port to other ports. The tests were to be run over many iterations, to

show the mean lag time and standard deviation over many tests. While testing, it became

obvious that the differences in the computer’s setup had a great effect on lag time, so

these differences were tested as well. To fulfill these testing requirements, specialized

timing programs were developed in C#.

The language chosen for the development of the testing program was C#. This

was chosen for its simplicity in implementing the necessary features, for development

time was intended to be minimal and C# embodied the low-level/complexity tradeoff

required for such a program. It contains the necessary functions for sub-millisecond

timing accuracy and easy access to serial ports. Microsoft Visual Studio was the chosen

development environment. To make the testing setup as simple as possible, a basic

graphical user interface (GUI) was developed. When the program is started, it checks for

available COM ports on the computer and presents them in two drop down selection

boxes, one to send and one to receive. The user also defines the length of the test in

P a g e | 65

iterations of bytes to send and receive. Two buttons were included: one to start recording,

and one to exit the program. When the “Start “button is pressed, the selected COM ports

are opened with a baud rate of 9,600, that which the device operates at, and all buttons

and selection controls disabled.

To prevent other processes from interrupting during testing, the ThreadPriority

and ProcessPriorityClass properties were set to the highest value. To stabilize the CPU

cache and pipeline, a warmup of 1,500 milliseconds was used. This significantly

improved the results of the first few iterations, which otherwise were unusually higher

than the rest of the data. A system diagnostic tool, the Stopwatch class, contains methods

to provide sub-millisecond timing metrics, and is part of the System.Diagnostics

namespace. This was chosen for its robust feature set and ability to count at a high

temporal resolution. It has the ability to measure in clock ticks, therefore providing the

most accurate resolution possible. At the start of the warmup, the stopwatch object is

reset, then started and run until its ElapsedMilliseconds property reaches 1,500. The

actual testing is then begun.

P a g e | 66

Figure 15: Timing program process loop diagram.

Whatever value was set in the “Iterations” input box is compared to a counter in a

for loop. Inside the loop, a random byte is placed in an array, after which the stopwatch is

reset and started, then the byte is send out over the selected “COM Out” port. The

program then waits until there is an incoming byte to read on the “COM In” port, stops

P a g e | 67

the stopwatch, and checks to see if the random byte that was sent out was properly

received. Stringbuilder was used to store the data as it is being recorded. This was

preferable to string concatenation because it is an intrinsically mutable string class,

whereas string concatenation is actually making a new string every time something is

added to it, which takes significantly longer. The data being recorded is also displayed in

the GUI’s textbox while it is recording for debugging purposes.

Because there is not a simple TTL out setup on most PCs, a custom setup needed

to be devised to test the BNC port on the device. The first attempt at a solution used

automated triggers to control COBI studio, the program used to interact with and record

data from the fNIR system, which has the ability to be controlled by triggers sent via a

serial port. It also has the ability to record other incoming bytes to a marker file with

timestamps attached. These features were exploited for the custom timing setup. One

such trigger to control the program is byte 251, which initiates baseline. There are two

other triggers, 253 for starting recording, and 254 for ending recording, but when

recording has ended, the program also stops the current experiment, which would not

work in this case, as 1,000 measurements needed to be made at a time. Typically, as soon

as baseline is complete, recording begins, but there is a feature in COBI studio to turn

that off.

A C# program was written to send the baseline byte every 11 seconds, to allow

time for the baseline reading to be taken and restarted. The TTL pulses from the fNIR

device goes high when the baseline is started, then low again 150 milliseconds later, then

high again when the baseline is completed, and low, once again, 150 milliseconds later.

P a g e | 68

Since the NeuroHub device was designed to send the character “1” (byte 45) when the

line goes high to 5V, and character “0” (byte 48) when the line goes low to 0V, each

baseline recording supplied 4 marker timestamps. As such, 250 baseline measurements

were taken per testing session, for a total of 1,000 measurements.

These markers were routed back to COBI studio to be stored in the marker file.

Because COBI studio listens to only one COM port, both the baseline trigger and the

TTL high and low markers were sent through the NeuroHub device, through serial port

and BNC connector, respectively. A serial cable was also connected to the computer

running COBI studio, so it was able to listen to both the testing program running on one

computer and the TTL pulses coming from the back of the fNIR device. This shows how

NeuroHub makes setups simpler by overcoming the limitations of available testing

software. As in previous tests, the resulting marker file was imported into MATLAB to

be analyzed.

After the data had been acquired, there was found to be a much higher standard

deviation for the TTL pulse setup than the serial setup. Because there were so many

points in the testing setup that could have added lag time that were out of my control,

simplification of the setup was required to remove other variability.

The 5 V digital pins on an Arduino are the right level and relatively easy to

control, so a script was written in the Arduino IDE to fulfill this purpose. It pulls the pin

high for 25 ms, then pulls it low for 25 ms. The C# timing program was modified to be

used to with this setup. It listens to the COM port, and makes sure that it is receiving “1”

P a g e | 69

then “0” byte, as well as recording the time between them (which should be 25

milliseconds).

4.3 Data Analysis

To describe the characteristics of the device in a clearer way, a MATLAB script

was used to perform calculations and display the information. Because the testing

program exported a tab-delimited text file with ticks in the first column, a Boolean value

representing if the byte received was the same as the one that was sent in the second, and

milliseconds calculated (ticks/frequency times 1,000, frequency is in ticks per second) in

the third, the values were easily imported into MATLAB. It then created relevant graphs

and calculations to describe the results of each test.

All ten tests in the session were stored in one folder with the script. The script

started by clearing all data in the workspace and provides a location to enter the

identification of the test session in the same folder (for example, computer 1, running on

Windows 7, using USB ports, serial port 1 to serial port 2). The workspace was then

saved in case it was to be used later. All data was loaded into easy to read matrices,

separating all tests in the session into different columns. Two matrices were created, one

for the lag time calculated in milliseconds, and one with all of the Boolean success

values.

The success values were first checked to be all true, as any incorrect byte would

constitute a failure and would not be acceptable. 2 arrays were then created to find the

mean of each test and the standard deviation of each test.

P a g e | 70

The next part of the script created plots of the data. It started by plotting each of

the tests in the session on subplots, the x-axis being the iteration, and the y-axis being the

lag time of that iteration. The title of the plot, as well as all generated graphs, was created

using the identification string at the beginning of the program for ease of labeling. This

plot was stored, then another plot was created using all data points in the session.

After the plots were completed, the script created histograms. The histogram is

meant to show the probability that the lag time would fall within a certain window after

the byte was sent. This gives a clear picture as to what the typical response time is. Like

with the plots, the histograms were made first on a subplot for each test, then in one big

histogram for all tests in the session. Also like the plots, the histograms were

automatically saved in the same folder. A bar graph was then created which showed the

mean lag time of all the tests in the session as different bars, with error bars showing

standard deviation of each test. The standard deviation between the all tests in the session

was found, as well as the mean of all iterations in all tests in the session.

The script was copied to each folder with data and the identification of the test

was changed accordingly. All tests were run and their results were stored, either

automatically for the figures, or copied to an Excel spreadsheet for all other calculated

values, for easy reference. The data was analyzed the same way.

P a g e | 71

4.4 Results

All tests were determined to be successful, as the success rate for correct byte

transmission was 100%.This is necessary, as any unsuccessful transmission would result

in inaccurate event marking, potentially ruining the data.

Figure 16: Successful byte transmission in the tests.

P a g e | 72

The rest of the results will be arranged by testing purpose, according to

comparisons that seemed most necessary. The specifications for each computer are also

included. The most important results are included here; please refer to appendix D for all

results.

4.4.1 Oscilloscope Measured Lag Time

By the time the testing of the first generation by the testing program was

completed (again, presented after this section), the second generation of the board was

ready. All testing was immediately switched to generation two. The first tests’ results

showed little about how the device responded and more about the flaws of using non-

embedded systems for high temporal precision brain computer interfaces and

experimental protocols. Because of this, testing was moved from custom timing programs

to the oscilloscope. The setup for testing each port was conducted and the results were

very consistent.

On the oscilloscope used, there were two BNC connections for the two available

channels. One computer was used to send repeated bytes over a serial connection, while

another was used to acquire a screenshot of the oscilloscope. To measure the lines going

in and out of the device, only the appropriate lines were wired to both the data stream and

the oscilloscope channels, i.e. the Tx and Rx lines, as well as ground. The following is a

screenshot of the oscilloscope measuring lag time of serial data transmission. The lag

time was found to be negligible.

P a g e | 73

Figure 17: Oscilloscope screenshot of one byte transmission. The first (top) line is

the input signal (receiving Rx line), the second (bottom) line is the signal being sent

from NeuroHub (all other Tx lines).

The results were very precise, with a consistent delay of 1.020 milliseconds, for

the entire duration of testing and at all ports. Even after a considerable length of time

(about 30 minutes) of constantly receiving and transmitting bytes, the lag time remained

the same. As is seen in figure 17, the device waits until it has received the entire byte

before sending it to the other ports. There is negligible delay from after having received

the byte to sending it out. In the firmware, writing the data to all of the other ports comes

after the parallel port, so the fact that testing the parallel port on the oscilloscope isn’t

P a g e | 74

possible (there are 8 parallel lines and only 2 inputs on the oscilloscope) was of no

negative consequence because it is guaranteed to be faster.

Figure 18: Byte transmission timing explanation, at 9,600 bits per second.

The lag time is mostly the time it takes to send a byte serially at a baud rate of

9,600 bits per second. This was the baud rate used because it is the standard default on

P a g e | 75

most systems, but if needed the code for NeuroHub could easily be changed to

accommodate another baud rate. Also, because the parameters of the UARTs can be

individually set, they could easily be set for their own settings and NeuroHub act as a

baud rate converter. With a higher baud rate, the lag time would be shorter, but this

increases risk of faulty byte transmission. At a rate of 9,600 bits per second, each bit is

held on the line for 0.1047 milliseconds. With the start bit, there are 9 bits to send,

totaling 0.9375 milliseconds. After the USART completes reception of the byte, it causes

the microcontroller to jump to that particular USART’s interrupt code, which then takes

time to run. The lag time was measured to be 1.020 milliseconds and 0.9375 milliseconds

were needed to receive the byte, which leaves 0.0825 milliseconds to carry out the

interrupt code. The microcontroller’s clock is running at 16 MHz (or 62.5 nanoseconds

per cycle), so the interrupt code takes 1,320 cycles to complete.

4.4.2 Serial to Serial and TTL to Serial

The first computer tested on was a Sony Vaio laptop. Under the hood, it has a 64

bit Intel i5 CPU running at 2.53 GHz, with 4 GB RAM. This computer was used to test

all serial ports to each other, to assure consistency across all ports. The computer had no

native serial ports, so serial to USB converters were used. The results across all ports

were very similar, and so only port 1 to port 2 and TTL to port 1 are included here. See

appendix D for the rest of the testing results.

First shown is serial transmission from serial port 1 to port 2. The first graph

shows the mean lag time of each test with standard deviation bars. The tests were

P a g e | 76

completed at different times, and the results were fairly consistent. The second graph

shows a histogram of all iterations of all tests from port 1 to port 2 for a clear

visualization of the data. All charts show consistent results, as do the results from the

other ports. The mean lag time was 2.788 ms, with a standard deviation of 0.250 ms, and

a standard deviation between tests of 0.033 ms.

Figure 19: Bar graph of serial port 1 to serial port 2 mean transmission time, as

determined by the timing program, with error bars.

P a g e | 77

Figure 20: Histogram of transmission times from serial port 1 to serial port 2, as

determined by the timing program.

The following results are from the BNC port to port 1. It has a consistently

slightly higher lag time, which was unexpected, but once again is likely due to the testing

setup rather than the device itself. The mean lag time was 3.525 ms, with a standard

deviation of 1.449 ms, and a standard deviation between tests of 0.329 ms.

P a g e | 78

Figure 21: Bar graph of TTL to serial port 1 mean transmission time, as determined

by the timing program, with error bars.

P a g e | 79

Figure 22: Histogram of transmission times from TTL to serial port 1, as

determined by the timing program.

In conclusion, the test results from TTL to serial port 1 were much more varied

than those from serial port 1 to port 2. The original TTL to serial test results are not

included because they were entirely too variable. This testing setup removed most of that

variance, but it is suspected that much of the inconsistency is again due to the testing

setup, as an Arduino and a different timing program was used. That is not to say that the

P a g e | 80

Arduino is or the timing program itself were inconsistent, rather that the introduction of

different testing variables could create unknown timing inconsistencies.

Table 1: Mean and standard deviation of lag time from all tests from all serial ports

to other serial ports and TTL to all serial ports and the standard deviation between

individual tests.

Mean

(ms)

Standard Deviation

(ms)

Standard Deviation between Tests

(ms)

P1 to P2 2.788 0.250 0.033

P1 to P3 2.681 0.316 0.028

P1 to P4 2.812 0.252 0.042

P2 to P1 2.828 0.248 0.045

P2 to P3 2.782 0.295 0.051

P2 to P4 2.826 0.242 0.041

P3 to P1 2.817 0.270 0.053

P3 to P2 2.814 0.244 0.039

P3 to P4 2.816 0.251 0.043

P4 to P1 2.794 0.274 0.062

P4 to P2 2.819 0.270 0.066

P4 to P3 2.590 0.323 0.018

TTL to P1 3.525 1.449 0.329

P a g e | 81

TTL to P2 3.420 1.298 0.253

TTL to P3 3.375 1.175 0.281

TTL to P4 3.412 1.252 0.354

4.4.3 USB and Native Serial With and Without Additional Information Influx

These tests were intended to compare the use of a USB to serial converter to a

native serial port, as the first computer didn’t have a native serial port. Also, it is running

Windows 7 as computer 1, but on different hardware. The tests on this computer had the

most interesting results which further clarified the need for the device.

In this section, there are results of 5 different types of tests. While testing the USB

port, it was noted that the lag times are significantly higher when the mouse was being

moved. The mouse was a USB mouse, and was therefore inputting information to the

USB port on the computer when it was moving. As such, comparing the tests moving the

mouse and not moving the mouse would yield interesting results. To test if the lag was

due to the fact that the mouse was also using a USB port, the two types of tests, moving

mouse and still mouse, were conducted when the native serial ports were being tested.

First examined is the serial to USB port with the mouse still. It appears that there are

times that are preferred by the fact that there are histogram bins with high amounts of

instances next to bins with nothing. The fact that the distribution isn’t even close to being

even is a result of the protocol and not random chance. The mean lag time was 5.860 ms,

P a g e | 82

with a standard deviation of 1.201 ms, and a standard deviation between tests of 0.172

ms.

Figure 23: Bar graph of mean serial transmission time over USB ports without

input from other USB ports, as determined by the timing program, with error bars.

P a g e | 83

Figure 24: Histogram of transmission times over USB ports without input from

other USB ports, as determined by the timing program.

The same tests were repeated, but this time while moving the mouse. There is

significantly higher mean lag time and standard deviation. The variability in between

tests could have been due to moving the mouse at different rates, but the conclusions

drawn are the same nonetheless. The mean lag time was 13.27 ms, with a standard

deviation of 5.768 ms, and a standard deviation between tests of 0.284 ms.

P a g e | 84

Figure 25: Bar graph of mean serial transmission time over USB ports with input

from other USB ports, as determined by the timing program, with error bars.

In the following histogram, it appears that there are lag times that were preferred,

specifically at 17 ms, which is unacceptable. This presumably had something to do with

the other information being received at the USB port where the mouse was plugged in.

This is the most glaringly obvious reason why USB ports should not be used in high

temporal precision neuroimaging setups.

P a g e | 85

Figure 26: Histogram of transmission times over USB ports with input from other

USB ports, as determined by the timing program.

The native serial port was much more consistent, even when information is being

inputted into the USB port, pinpointing the extreme lag time problem to the USB port

usage. The mean lag time was 7.054 ms, with a standard deviation of 0.023 ms, and a

standard deviation between tests of 0.012 ms.

P a g e | 86

Figure 27: Bar graph of mean serial transmission time over native serial ports, as

determined by the timing program, with error bars.

P a g e | 87

Figure 28: Histogram of transmission times over native serial ports, as determined

by the timing program.

Very similar results were found even when the mouse was moving, unlike with

the USB port. The mean lag time was 7.048 ms, with a standard deviation of 0.028 ms,

and a standard deviation between tests of 0.006 ms.

P a g e | 88

Figure 29: Bar graph of mean serial transmission time over native serial ports with

input from non-native serial ports (as in other tests, with USB serial ports), as

determined by the timing program, with error bars.

P a g e | 89

Figure 30: Histogram of transmission times over native serial ports with input from

non-native serial ports (as in other tests, with USB serial ports), as determined by

the timing program.

Here, the tests were completed on the native serial ports without the device. These

results were also very consistent, at about 1 ms faster than the same port with the device.

These tests were completed before oscilloscope testing, which also showed a consistent 1

ms lag time. This is when it was understood that the variance in the tests is due to the

computer and not the device. The mean lag time was 6.044 ms, with a standard deviation

of 0.023 ms, and a standard deviation between tests of 0.009 ms.

P a g e | 90

Figure 31: Bar graph of mean serial transmission time over native serial ports

without the use of NeuroHub, as determined by the timing program, with error

bars.

P a g e | 91

Figure 32: Histogram of transmission times over native serial ports without the use

of NeuroHub, as determined by the timing program.

The tests performed on this computer demonstrated the unacceptable variability of

lag time between protocols, especially USB. Testing without the device also yielded

relevant results, as it showed that the device had little to do with the lag times that were

being experienced in the tests.

P a g e | 92

Table 2: Mean and standard deviation of lag time from all tests in the configurations

explained in this section, and the standard deviation between individual tests.

 Mean (ms) Standard Deviation (ms) Standard Deviation between Tests (ms)

USB, Mouse Still 5.860 1.201 0.172

USB, Mouse Moving 13.27 5.768 0.284

Serial Port, Mouse Still 7.054 0.023 0.012

Serial Port, Mouse Moving 7.048 0.028 0.006

Serial Port, No Device 6.044 0.023 0.009

4.4.4 Different Operating Systems on the Same Hardware

The purpose of these tests was to see the effect of the operating system used. The

computer was running Windows XP when it was first tested, then the operating system

was replaced with Windows 7 and tested again. The mean lag time for XP was 6.594 ms,

with a standard deviation of 0.823 ms, and a standard deviation between tests of 0.219

ms.

P a g e | 93

Figure 33: Bar graph of mean serial transmission time using Windows XP, as

determined by the timing program, with error bars.

P a g e | 94

Figure 34: Histogram of transmission times using Windows XP, as determined by

the timing program, with error bars.

Here, the operating system was changed to Windows 7 and tested again. The

mean lag time was consistently higher using Windows 7, which was likely due to the fact

that the same hardware was being used to run a more taxing operating system. It also

appears that there was a greater difference between tests, indicating a greater variance

from using the ports at different times. The mean lag time was 7.660 ms, with a standard

deviation of 0.845 ms, and a standard deviation between tests of 0.1621 ms.

P a g e | 95

Figure 35: Bar graph of mean serial transmission time using Windows 7, as

determined by the timing program, with error bars

P a g e | 96

Figure 36: Histogram of transmission times using Windows 7, as determined by the

timing program, with error bars

Table 3: Mean and standard deviation of lag time from all tests from all serial ports

to other serial ports and TTL to all serial ports and the standard deviation between

individual tests.

 Mean (ms) Standard Deviation (ms) Standard Deviation between Tests (ms)

Windows XP 6.594 0.823 0.219

Windows 7 7.660 0.845 0.162

P a g e | 97

4.5 Discussion

One of the main design objectives for this device was to alleviate the problem of

different computers running on their separate clocks. The results from these tests opens

discussion on using standard computer ports for scientific research.

The differences in testing results from system to system and the relatively large

variances found in the data sets appear to show less about the device itself and more

about the systems on which it was running. The device is an embedded system with a

precise clock running at a high speed, and the computation needed for this program was

not taxing the system heavily. With the exception of Windows Embedded Compact,

made for use in embedded systems, no version of Windows is a real-time operating

system. A real-time operating system operates as an embedded system does: timing is

critical so it is put as top priority. All other versions of Windows are general-purpose

operating systems, meaning they take their time to complete the time at task, and the time

they take to finish the task is not important. For example, the time it takes for a program

to open or complete an action in Windows is not important, but the timing of a brake

system in a car is critical.

 Serial ports are going the way of the dinosaur and are seen on less and less

computers each year as newer protocols such as USB are on every computer. As these

tests have showed, USB is unfit for temporally reliable event marker routing. Part of the

USB protocol is a Start of Frame (SOF) packet identifier sent from the host every 1 ms to

provide a time base. This explains why the lag times are on the millisecond, but not why

P a g e | 98

there would be so much more lag when one USB port was receiving information. At a

sub-millisecond resolution modality, such as EEG, a lag time of 17 or 18 ms is a serious

problem, and the variance in lag times is unacceptable. Native serial ports have a

reasonable lag time, but faking one with USB converters in not advised. A better solution

would be a custom embedded BCI system.

P a g e | 99

Chapter 5: Use Case Demonstrations

To demonstrate the utility of NeuroHub and its use in experimental setups, this

chapter describes two different scenarios. Using the equipment in Drexel University’s

CONQUER Collaborative lab, multimodal and hybrid setups were tested with the device,

and data was gathered from the devices for online classification as well as post analysis.

These entirely different two experiment setups also highlight the flexibility of NeuroHub.

Although future work will expand possibilities, this section aims to show that NeuroHub

is useful in various setups and does in fact simplify and improve the experiment setup

procedures.

The first scenario used to demonstrate the application of NeuroHub is a hybrid

fNIR and EEG BCI setup. It aims to find a correlation between attention state and fNIR

recorded hemodynamic changes to improve performance of a spatial navigation P300-

response based EEG BCI [118]. NeuroHub coordinates event markers between BCI2000,

the P300 stimulus software, NeuroScan Acquire, the EEG recording software, MazeSuite,

the maze navigation software, and COBI Studio, the fNIR recording software. All but one

of the ports were used making the otherwise difficult setup much easier to assemble and

have the markers go where they need to go.

The second scenario was an unimodal setup that monitored different parts of the

brain with multiple fNIR instruments to quantitatively compare the unconscious effort of

the brain to understand various qualities of synthesized speech to natural speech [125].

This is particularly important for user experience research because synthesized speech is

P a g e | 100

more and more frequently being used on devices we use daily. Different devices were

useful to use to measure a greater portion of the brain and define stronger neural

correlates. The information from these devices needed to be aligned through a setup that

sent different types of markers from the stimulus software to the two fNIR recording

systems through two serial ports. With NeuroHub, the setup is made simpler by sending

one marker through one port to both systems.

5.1 Use Case #1 – Multimodal Spatial Navigation BCI

5.1.1 Introduction

The first setup used demonstrated the application of NeuroHub to a hybrid fNIR

and EEG setup. The experiment itself aims to find a correlation between attention state

and fNIR recorded hemodynamic changes to improve performance of a spatial navigation

P300-response based EEG BCI. NeuroHub coordinates event markers between BCI2000,

the P300 stimulus software, NeuroScan Acquire, the EEG recording software, MazeSuite

[17], the maze navigation software, and COBI Studio, the fNIR recording software. Here

the experiment is presented in a simplistic fashion, in the context of shedding light on the

usefulness of NeuroHub. Refer to the original paper for further details.

5.1.2 Background

 As outlined in chapter 2, P300 based BCIs show the user a sequence of stimuli

and the user is asked to attend to the stimuli and wait for a particular desired stimulus. If

P a g e | 101

the user is attentive, a noticeable positive response can be measured in the EEG signal

about 300 ms after the stimulus. Typically, this involves a number of selections on a

screen individually flashing randomly. As such, the user can select an object onscreen by

counting the number of times it flashes during a set amount of time. By performing

online analysis, the computer can understand which of the objects the user wished to

select. This is dependent on the user being attentive, however, as lower performance is

achieved if not. Performance results are determined by asking the user which icon they

intended to select.

 Also explained in chapter 2 is fNIR, an optical brain imaging technique used to

measure changes in oxygenation of hemoglobin in the prefrontal cortex. Activity in the

brain is linked with an increase in oxygenation, and therefore this technique is used to

measure localized brain activity. This has been shown to be useful in a number of BCIs,

and here is used to measure how attentive the user is to the stimuli being presented to

them. In this experimental protocol, it is used passively to examine if there is a link

between high performance accuracy of the P300 and oxygenation changes in hemoglobin

in the frontal lobe. Detection of attention shift for increasing P300 BCI performance has

also been demonstrated previously using EEG only [30].

5.1.3 Materials and Methods

In this experiment, the subject is seated in front of two computer monitors

connected to two computers. One computer is used to display the P300 stimulus, record

EEG data from the EEG amplifier, and provide online analysis of the data to determine

P a g e | 102

the P300 icon selected. The second was used to display a first person view of the maze

and record the fNIR data.

The following diagram is representative of the setup without using NeuroHub.

Figure 37: Diagram describing the flow of information in use case 1 without

NeuroHub implementation.

Coordination of event markers between both computers and their software takes

considerable effort. For example, MazeSuite only accepts event markers to control the

maze by serial or TCP/IP, COBI Studio only accepts serial or parallel markers and sends

only serial markers or TTL pulses for certain events, and NeuroScan Acquire only

P a g e | 103

receives data markers via a custom parallel port cable. In this experiment, all event

markers should be available for all recording software for post-hoc analysis as well as

controlling the MazeSuite software.

To accomplish this, NeuroHub was used. The EEG recording computer was

connected to one of the serial ports on NeuroHub, while the EEG amplifier was attached

to the parallel port. The second computer was connected to two serial ports, and the BNC

connector on the back of the fNIR Imager was connected as well (although, in hindsight,

this was unnecessary as fNIR was being recorded the entire time and therefore there were

no TTL pulses on the line). In this way, all stimulus presentation markers were sent to

both EEG and fNIR data streams, and control markers were sent to MazeSuite and COBI

Studio. All event data was transferred to all locations using this very simple setup. EEG

data was recorded from 9 locations at 250 Hz: FCz, Cz, CP3, Cpz, CP3, P3, Pz, P4, and

Oz. fNIR data was recorded at 2 Hz.

P a g e | 104

Figure 38: Diagram describing the flow of information in use case 1 with NeuroHub

implementation.

The experimental protocol consisted of two parts. In the first part, EEG data was

recorded to train the P300 BCI system. The subject was instructed to select a specific

icon, and count how many times it flashes, then click, when instructed, on the icon that

P a g e | 105

they intended to select. This was repeated for 24 runs. In the second part of the

experiment, the subject is asked to navigate to the exit of a series of mazes. The subjects

were instructed when to look at the matrix and when to look at the maze navigation

screen.

Figure 39: Left – the 3x3 P300 BCI matrix used. Right – the training manual selection

screen. From [118].

Figure 40: Time line for a run. From [118].

The EEG signals were bandpass filtered from 0.5 to 12 Hz and stepwise linear

discriminant analysis, or SWLDA, was used to classify weights to predict the intended

P a g e | 106

target during on line analysis. fNIR data was lowpass filtered at 0.1 Hz for each run from

0 to 15 seconds, as well as using an artifact detection system (sliding window motion

artifact rejection). Changes in oxygenated and deoxygenated hemoglobin were calculated

from this data.

5.1.4 Results and Conclusion

 The experiment was determined to be a success, because the system worked

seamlessly and markers made it to all necessary data, control, and online analysis

locations. The fNIR and EEG marker files show all spatial navigation markers. The user

was able to successfully train the system and navigate the maze, but because the results

from this particular setup were from only one subject, only a brief description of results

from the original publication will be presented here for conclusiveness.

The following table shows the first 20 synchronization markers received, in

decimal format and the timestamp (in seconds, since recording was started) that the

device marked as the time the marker was received.

P a g e | 107

Table 4: First 20 synchronization markers from use case 1 experimental protocol.

Showing byte received by EEG and fNIR recording systems, as well as the

timestamp (from start of recording) and time from the first marker received.

EEG

Data

fNIR

Data

Byte

Value

Timestamp

(s)

Time from

first marker

(s)

Byte

Value

Timestamp

(s)

Time from

first marker

(s)

95 0.376 0 95 90.089 0

77 5.316 4.94 77 95.019 4.93

67 38.012 37.636 67 127.714 37.625

77 41.724 41.348 77 131.432 41.343

68 74.432 74.056 68 164.139 74.05

77 78.136 77.76 77 167.841 77.752

66 110.832 110.456 66 200.53 110.441

77 114.536 114.16 77 204.248 114.159

65 147.228 146.852 65 236.929 146.84

77 150.964 150.588 77 240.662 150.573

72 183.604 183.228 72 273.304 183.215

77 187.332 186.956 77 277.037 186.948

66 220 219.624 66 309.706 219.617

77 223.728 223.352 77 313.43 223.341

67 256.432 256.056 67 346.144 256.055

13 260.124 259.748 77 349.828 259.739

66 292.796 292.42 66 382.502 292.413

77 296.54 296.164 77 386.236 296.147

67 329.22 328.844 67 418.927 328.838

77 332.924 332.548 77 422.629 332.54

 To find the discrepancies in the timestamps, the difference was found between the

amounts of time recorded from the first timestamps of each device. The mean

discrepancy in time recorded by the recording devices was found to be 0.0136 seconds,

P a g e | 108

with a standard deviation of 0.0073 seconds. The following histogram shows the

distribution of differences from the fNIR timestamp to the EEG timestamp.

Figure 41: Histogram showing the frequencies of the difference in EEG and fNIR

times from the first marker.

 For both left and right hemispheres, oxygenated hemoglobin increases and

deoxygenated hemoglobin decreases more for high performance runs than for low

performance runs over the course of the stimulus presentation. The effect is stronger in

P a g e | 109

the left hemisphere. These results show that fNIR can be used as a predictor for attention

in a P300 based BCI system. This could further be implemented into a sort of switch that

turns off control if the user is not paying attention, rather than guessing at what is

essentially noise for the desired target.

The purpose of this experiment was to demonstrate if fNIR data can be used to

make a better P300 BCI. In the original publication, it is mentioned that more subjects

and larger sample sizes would be needed for validation. NeuroHub made setup and

accurate alignment of event markers simple as it was intended to do. If the experiment is

repeated in future studies, NeuroHub should be used in the setup.

5.2 Use Case #2 – Synthetic Speech Perception BCI

5.2.1 Introduction

 The second use case demonstration involved the implementation of NeuroHub

into an experimental setup that aims to measure cognitive processing costs associated

with synthetic speech perception. The setup is unimodal and involves event markers from

a stimulus program presenting the sounds to 2 fNIR recording systems. The two systems

have different requirements for receiving event markers, which originally were dealt with

by sending the markers in their required formats over two separate serial ports. With the

NeuroHub, they were able to be sent from the same serial port on the stimulus computer

to two different fNIR recording systems that image different parts of the brain. Although

precise event marker timing is not as crucial for fNIR as it is for EEG because of the slow

P a g e | 110

nature of the hemodynamic response, this is an example where NeuroHub makes the

setup simpler.

5.2.2 Background

As synthesized speech more commonly becomes a part of daily life through the

use of devices that need to speak a more widely varying vocabulary than would be

practical to use all natural recordings, it unconsciously causes the brain to fill in gaps

while trying to understand what is being said. This can lead to an inaccurate

understanding of the information being transmitted, as well as longer reaction times and

eventually fatigue. Typically, tests that assess these negative features are self-reported

and therefore are difficult to obtain quantitative results from. Brain imaging modalities

such as fMRI [126] and PET [127] have been used for this purpose, but introduce noise

and are unable to place the subject in a realistic situation. These studies showed that the

prefrontal cortex, the area of the brain monitored by the fNIR system used here, is

significantly activated in response to this type of task.

 The purpose of this experimental setup was to identify neural correlates using a

prefrontal cortex monitoring fNIR system in combination with an fNIR system that is

capable of imaging other parts of the brain than the prefrontal cortex. Using information

from different parts of the brain, a more complete understanding of the effects

synthesized speech has on cognitive processing can be gained.

P a g e | 111

5.2.3 Materials and Methods

In this experiment, the subjects listen to a series of statements in varying qualities:

1 being natural speech, the other 3 being synthesized speech. There were 5 different 5

second long sentences that were repeated in these differing qualities, to which the user

then had to give a self-reported metric on intelligibility, naturalness, and overall quality

of sound on a scale of 1 to 5, 5 being the best.

Event markers were sent from the audio stimulus program via serial to both the

computer connected to the fNIR Devices system and to the Hitachi ETG-4000 fNIR

system. The difficulty with this setup, however, is that the Hitachi receives the event

markers in packets of three bytes, whereas the computer setup recording from the fNIR

Devices system receives only one byte. The three bytes received by the Hitachi are a start

byte, the event marker byte, and a stop byte. Therefore, the stimulus presentation

computer setup was customized to send the separate formats over two separate serial

ports. To simplify the setup, they only need to be sent over one serial port to both

systems.

The following diagram is representative of the setup without using NeuroHub.

P a g e | 112

Figure 42: Diagram describing the flow of information in use case 2 without

NeuroHub implementation.

The following diagram is representative of the setup with the NeuroHub.

P a g e | 113

Figure 43: Diagram describing the flow of information in use case 2 with NeuroHub

implementation.

 The fNIR signals were low-pass filtered at a cutoff of 0.1 Hz to remove high

frequency noise. The stimulus package sent event markers which were used to extract the

fNIR data from 5 seconds pre-audio playing to 5 seconds after the audio was completed.

The rest periods before the audio playing were compared to the periods while audio was

playing to obtain average oxygenation change for each run.

P a g e | 114

5.2.4 Results and Conclusion

The discrepancies in timestamps was found in the same way it was for use case 1.

The following are the first 20 markers.

Table 5: First 20 synchronization markers from use case 2 experimental protocol.

Showing byte received by both fNIR recording systems, as well as the timestamp

(from start of recording) and time from the first marker received.

Hitachi

fNIR Data

fNIR

Devices

Data

Byte

Value

Timestamp

(s)

Time

from first

marker

(s)

Byte

Value

Timestamp

(s)

Time from

first marker

(s)

1 61287.35 0 1 403.198 0

8 61288.56 1.21 8 404.331 1.133

2 61289.95 2.6 2 405.8 2.602

3 61294.95 7.6 3 410.812 7.614

4 61295.75 8.4 4 411.649 8.451

8 61303.56 16.21 8 419.421 16.223

8 61303.65 16.3 8 419.442 16.244

3 61307.56 20.21 3 423.418 20.22

4 61308.25 20.9 4 424.103 20.905

8 61316.06 28.71 8 431.868 28.67

3 61318.95 31.6 3 434.778 31.58

4 61319.65 32.3 4 435.488 32.29

8 61327.45 40.1 8 443.294 40.096

3 61328.85 41.5 3 444.677 41.479

4 61330.25 42.9 4 446.066 42.868

8 61341.65 54.3 8 457.456 54.258

3 61343.54 56.19 3 459.344 56.146

4 61344.85 57.5 4 460.729 57.531

8 61356.25 68.9 8 472.164 68.966

3 61358.04 70.69 3 473.847 70.649

P a g e | 115

The mean of all discrepancies is 0.0081 seconds, and the standard deviation is

0.0466. The following is a histogram showing the distribution of discrepancies:

Figure 44: Histogram showing the frequencies of the difference in fNIR times from

the systems’ first markers.

All synchronization markers were successfully received by both systems so

NeuroHub was successful. In this second setup, the arrangement of marker information

flow was not necessarily simpler, but would save the researcher time in developing the

setup, as they would not have to send two different formats of markers out from separate

P a g e | 116

serial ports. Instead, only one marker was necessary, and if other devices needed to be

added, they would simply need to be attached to the NeuroHub that is already in place.

P a g e | 117

Chapter 6: Future Work and Conclusion

6.1 Future Work

NeuroHub currently supports serial, parallel, and TTL pulse event marker

transmission. These are the first set of communication protocols to be implemented

because they were the most common for setups. Development has already been started on

a third generation device that would offer even more features. This sections describes

present the work that has been completed on it as well as ideas and direction for future

improvements.

 The next major improvement for the device is the implementation of Ethernet

capabilities and an SD card based data logging feature. The device would be able to send

and receive information being sent over a UDP or TCP/IP stream. This would be useful

for a number of reasons. First, as with the protocols already implemented, the device

would be able to send the markers received there to other ports and send information

arriving at other ports to a computer on the network. Secondly, it could be used as an

extension to lab streaming layer to benefit from the advantages of both systems, in the

same way that hybrid systems benefit from the advantages of different features or

modalities. Although LSL has its drawbacks which this device aims to remedy, the

usefulness of its features cannot be dismissed, as it offers many options which would be

useful in custom setups. NeuroHub, being a microcontroller based embedded system

dedicated to eliminating lag time due to non-embedded operating systems and un-

complicating event marker connection setups, could be implemented with lab streaming

P a g e | 118

layer, with its full featured customizability, over Ethernet, providing the best of both

worlds.

A chip was selected, the ENC28J60 by Microchip, that is designed to handle

Ethernet protocol over serial peripheral interface (SPI) protocol, which the ATmega2560

supports. SPI operates in master/slave mode in which multiple slaves can operate on the

same line sequentially, selected over individual slave select lines controlled by the

master. SD card protocol also operates over SPI. So, if the microcontroller (the master)

wished to address the ENC28J60, it would first notify the chip over the slave select line

then interact with the chip over the master out slave in (MOSI) and master in slave out

(MISO) lines. If the chip then wanted to address the SD card, it would stop

communication with the ENC28J60, select the SD card as slave, then interact with the

card over the same MOSI and MISO lines. Because the Arduino programming language

is much simpler to implement new features, the wiring of the chip to the microcontroller

has been tested on a breadboard using Arduino first. A few C based AVR libraries for the

ENC28J60 exist, which would be useful in speeding development time. Further

development would result in the Ethernet port functioning first as the other ports

function, duplicating information, then a solution would be developed to include LSL, as

mentioned previously.

 The idea of developing an SD card data logging setup is to provide an accurate

backup, in case the computers somehow fail to correctly record the markers. As

mentioned previously, SD card protocol is also SPI, but the SD card and the

microcontroller operate at different voltage levels. The microcontroller operates at 5

P a g e | 119

volts, while the card operates at 3.3 V. Directly connecting the card to the chip would

likely cause damage to either or both. Therefore, a level conversion IC would be needed.

The HEF4050BP chip by NXP Semiconductors was selected as a suitable option to meet

this need. Development would proceed much like for Ethernet: first Arduino language on

a breadboard, then a suitable C library would be used.

 These chips, especially the ENC28J60, require other external components to

function. The schematics including these components and how the chips are to be

connected to the Arduino pins have been started, but it is likely that the board would need

4 sided printing, as arranging the components and routing the wires on the board layout

proved difficult if not impossible with 2 layers, and the parallel port hasn’t been added

yet. With 4 layers, the design would be much simpler.

 The components would also need to be rearranged, as presently the Ethernet jack

is where the BNC port is on the second generation board and an appropriate spot for

either the BNC port or parallel port has not been decided on. No additional code, except

initial attempts to use the ENC28J60 with the ATmega2560, has been generated. It would

also be useful to further develop the parallel port code. These is no suitable library

available to handle more advanced protocols, and because they are master/slave based

protocols, a solution would need to be developed which dealt with this decision, possibly

with a switch that designated the port as master or slave, or the addition of a male parallel

port.

 In short, there are many directions this project could go. Earlier in the thesis, it

was mentioned that this device would not be able to completely solve the problem but

P a g e | 120

only alleviate some of its symptoms. To complete solve the problem, an embedded

recording system would need to be developed. It would be optimal if existing software

and drivers could be ported to the specialized recording device. As for the device itself,

suggestions have been made for its further development, but this list is not complete and

other options should be explored.

6.2 Conclusion

 This project set out as an attempt to shed light on problems arising from

complications due to the use of multiple computers in a BCI system and propose and

develop a solution. The problem of setup complexity was relatively simple to illustrate,

whereas the problem of needing millisecond precise timing from computers and protocols

that are not embedded or intended for millisecond precise timing at all was less

straightforward. The incredible amount of variation in lag times in USB data transmission

is unfit for use in BCIs. Also, the incompatibility of event marker transmission protocols

used by different software or recording devices leaves the researcher with the task of

finding the way to make the system work together. NeuroHub was designed for

remedying these issues in a simple, inexpensive tool that can be assembled by anyone

with little to no experience in electronic devices.

 With future improvements, the design and plans of NeuroHub could accomplish

these goals even more completely, handling more protocols and offering more features to

give the user more time to do research by taking away time spent on attempting to make

everything work together. The possibility of using NeuroHub alongside a software-based

P a g e | 121

data handling system such as the lab streaming layer opens the door to even more options

and useful setups. Although this project focused on its intended use, BCIs, the device

could also be used in any situation where precise timing of event markers to coordinate

data between computers is needed.

 What was initially intended to test the device attached to a real computer turned

into an exhibition of just how bad the problem of variable lag time actually is, and

provided more than adequate data to show beyond a doubt that the issue is real and open

discussion on the adequacy of personal computers for high temporal resolution recording

and the possibility of developing a true solution to the problem. As such, NeuroHub is

only a crutch for this problem which researchers can easily utilize, but the problem still

remains and thus should be more thoroughly addressed. NeuroHub on its own performed

consistently and reliably with an 100 % transmission accuracy rate and virtually no

deviation from a 1.020 millisecond lag time.

 NeuroHub reliably broadcasts event markers over a few standard protocols which

simplifies the setup of BCI systems and ensures markers are being sent to all recording

devices at the same time. The intent is that this will aid BCI research and in turn help

alleviate some of the psychological pain that comes with not being able to communicate

with loved ones or do anything for oneself at all due to locked-in syndrome, as well as

further our understanding on how the brain works and other useful findings resulting

from neuroimaging research.

P a g e | 122

List of References

[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M.

Vaughan, "Brain-computer interfaces for communication and control," Clinical

Neurophysiology, vol. 113, pp. 767-91, Jun 2002.

[2] M. Lebedev, "Brain-machine interfaces: an overview," Translational

Neuroscience, vol. 5, pp. 99-110, 2014.

[3] T. Zander, C. Kothe, S. Jatzev, and M. Gaertner, " Enhancing Human-Computer

Interaction with Input from Active and Passive Brain-Computer Interfaces ," in

Brain-Computer Interfaces, D. S. Tan and A. Nijholt, Eds., ed: Springer London,

2010, pp. 181-199.

[4] G. Schalk, E. C. Leuthardt, P. Brunner, J. G. Ojemann, L. A. Gerhardt, and J. R.

Wolpaw, "Real-time detection of event-related brain activity," Neuroimage, vol.

43, pp. 245-9, Nov 1 2008.

[5] N. V. Thakor, "Translating the Brain-Machine Interface," Science Translational

Medicine, vol. 5, pp. 210-17, 2013.

[6] J. Mellinger, G. Schalk, C. Braun, H. Preissl, W. Rosenstiel, N. Birbaumer, et al.,

"An MEG-based brain–computer interface (BCI)," Neuroimage, vol. 36, pp. 581-

593, 2007.

[7] C. R. deCharms, "Applications of real-time fMRI," Nat Rev Neurosci, vol. 9, pp.

720-729, 2008.

[8] R. Sitaram, N. Weiskopf, A. Caria, R. Veit, M. Erb, and N. Birbaumer, "fMRI

brain-computer interfaces," Signal Processing Magazine, IEEE, vol. 25, pp. 95-

106, 2007.

[9] H. Ayaz, P. A. Shewokis, S. Bunce, K. Izzetoglu, B. Willems, and B. Onaral,

"Optical brain monitoring for operator training and mental workload assessment,"

NeuroImage, vol. 59, pp. 36-47, 2012.

P a g e | 123

[10] S. M. Coyle, T. E. Ward, and C. M. Markham, "Brain-computer interface using a

simplified functional near-infrared spectroscopy system," Journal of neural

engineering, vol. 4, pp. 219-226, 2007.

[11] J. J. Daly and J. R. Wolpaw, "Brain–computer interfaces in neurological

rehabilitation," The Lancet Neurology, vol. 7, pp. 1032-1043, 2008.

[12] G. Gallegos-Ayala, A. Furdea, K. Takano, C. A. Ruf, H. Flor, and N. Birbaumer,

"Brain communication in a completely locked-in patient using bedside near-

infrared spectroscopy," Neurology, vol. 82, pp. 1930-1932, May 27, 2014.

[13] M. R. Turner, O. Hardiman, M. Benatar, B. R. Brooks, A. Chio, M. de Carvalho,

et al., "Controversies and priorities in amyotrophic lateral sclerosis," The Lancet

Neurology, vol. 12, pp. 310-322, 2013.

[14] L. H. Goldstein and S. Abrahams, "Changes in cognition and behaviour in

amyotrophic lateral sclerosis: nature of impairment and implications for

assessment," The Lancet Neurology, vol. 12, pp. 368-380, 2013.

[15] H. Ayaz, P. A. Shewokis, L. Scull, D. Libon, J. , S. Feldman, J. Eppig, et al.,

"Assessment of Prefrontal Cortex Activity in Amyotrophic Lateral Sclerosis

Patients with Functional Near Infrared Spectroscopy," Journal of Neuroscience

and Neuroengineering, vol. 3, pp. 41-51, 2014.

[16] S. Makeig, S. Debener, J. Onton, and A. Delorme, "Mining event-related brain

dynamics," Trends in cognitive sciences, vol. 8, pp. 204-210, 2004.

[17] H. Ayaz, S. L. Allen, S. M. Platek, and B. Onaral, "Maze Suite 1.0: A complete

set of tools to prepare, present, and analyze navigational and spatial cognitive

neuroscience experiments," Behavior Research Methods, vol. 40, pp. 353-359,

2008.

[18] L. A. Farwell and E. Donchin, "Talking off the top of your head: toward a mental

prosthesis utilizing event-related brain potentials," Electroencephalography and

clinical neurophysiology, vol. 70, pp. 510-523, 1988.

P a g e | 124

[19] I. Käthner, C. A. Ruf, E. Pasqualotto, C. Braun, N. Birbaumer, and S. Halder, "A

portable auditory P300 brain-computer interface with directional cues," Clinical

neurophysiology : official journal of the International Federation of Clinical

Neurophysiology, vol. 124, p. 327, 2013.

[20] H. Nojo, M. Kawasaki, T. Jyo, A. Ishiyama, N. Kasai, and Y. Ono, "Appropriate

auditory stimuli for P300 brain–computer interface," Neuroscience research, vol.

68, p. e327, 2010.

[21] A.-M. Brouwer and J. B. F. van Erp, "A tactile P300 brain-computer interface,"

Frontiers in neuroscience, vol. 4, p. 19, 2010.

[22] R. Ortner, Z. Lugo, Q. Noirhomme, S. Laureys, and C. Guger, "A tactile Brain-

Computer Interface for severely disabled patients," in Haptics Symposium

(HAPTICS), 2014 IEEE, 2014, pp. 235-237.

[23] T. M. Rutkowski and H. Mori, "Tactile and bone-conduction auditory brain

computer interface for vision and hearing impaired users," J Neurosci Methods,

Apr 21 2014.

[24] D. J. Krusienski, E. W. Sellers, F. Cabestaing, S. Bayoudh, D. J. McFarland, T.

M. Vaughan, et al., "A comparison of classification techniques for the P300

Speller," Journal of Neural Engineering, vol. 3, pp. 299-305, 2006.

[25] D. J. Krusienski, E. W. Sellers, D. J. McFarland, T. M. Vaughan, and J. R.

Wolpaw, "Toward enhanced P300 speller performance," Journal of neuroscience

methods, vol. 167, pp. 15-21, 2008.

[26] W. Speier, I. Fried, and N. Pouratian, "Improved P300 speller performance using

electrocorticography, spectral features, and natural language processing," Clinical

neurophysiology : official journal of the International Federation of Clinical

Neurophysiology, vol. 124, pp. 1321-1328, 2013.

[27] C. S. Throckmorton, K. A. Colwell, D. B. Ryan, E. W. Sellers, and L. M. Collins,

"Bayesian Approach to Dynamically Controlling Data Collection in P300

Spellers," IEEE Transactions on Neural Systems and Rehabilitation Engineering,

vol. 21, pp. 508-517, 2013.

P a g e | 125

[28] A. Curtin, H. Ayaz, Y. Liu, P. A. Shewokis, and B. Onaral, "A P300-based EEG-

BCI for spatial navigation control," United States, 2012, pp. 3841-3844.

[29] R. Fazel-Rezai, S. Gavett, W. Ahmad, A. Rabbi, and E. Schneider, "A

comparison among several P300 brain-computer interface speller paradigms,"

Clinical EEG and neuroscience, vol. 42, p. 209, 2011.

[30] Y. Liu, H. Ayaz, A. Curtin, P. A. Shewokis, and B. Onaral, "Detection of

attention shift for asynchronous P300-based BCI," United States, 2012, pp. 3850-

3853.

[31] N. Galloway, "Human brain electrophysiology: Evoked potentials and evoked

magnetic fields in science and medicine," The British journal of ophthalmology,

vol. 74, p. 255, 1990.

[32] E. E. Sutter, "The brain response interface: communication through visually-

induced electrical brain responses," Journal of Microcomputer Applications, vol.

15, pp. 31-45, 1992.

[33] M. Middendorf, G. McMillan, G. Calhoun, and K. S. Jones, "Brain-computer

interfaces based on the steady-state visual-evoked response," IEEE Transactions

on Rehabilitation Engineering, vol. 8, pp. 211-214, 2000.

[34] Y. Wang, Y. T. Wang, and T. P. Jung, "Visual stimulus design for high-rate

SSVEP BCI," Electronics Letters, vol. 46, p. 1057, 2010.

[35] A. Kübler, F. Nijboer, J. Mellinger, T. M. Vaughan, H. Pawelzik, G. Schalk, et

al., "Patients with ALS can use sensorimotor rhythms to operate a brain-computer

interface," Neurology, vol. 64, pp. 1775-1777, 2005.

[36] W.-P. Teo and E. Chew, "Is Motor-Imagery Brain-Computer Interface Feasible in

Stroke Rehabilitation?," PM&R, vol. 6, pp. 723-8, Aug 2014.

[37] G. Pfurtscheller and C. Neuper, "Motor imagery and direct brain-computer

communication," Proceedings of the IEEE, vol. 89, pp. 1123-1134, 2001.

P a g e | 126

[38] D. Wang, D. Miao, and G. Blohm, "Multi-class motor imagery EEG decoding for

brain-computer interfaces," Frontiers in neuroscience, vol. 6, p. 151, 2012.

[39] H. Ehrlichman and M. S. Wiener, "EEG asymmetry during covert mental

activity," Psychophysiology, vol. 17, pp. 228-235, 1980.

[40] C. S. L. Tsui, J. Q. Gan, and H. Hu, "A self-paced motor imagery based brain-

computer interface for robotic wheelchair control," Clinical EEG and

neuroscience, vol. 42, p. 225, 2011.

[41] B. Blankertz, G. Dornhege, M. Krauledat, M. Schröder, J. Williamson, R.

Murray-Smith, et al., "The Berlin Brain-Computer Interface presents the novel

mental typewriter Hex-o-Spell," 2006.

[42] T. Hinterberger, S. Schmidt, N. Neumann, J. Mellinger, B. Blankertz, G. Curio, et

al., "Brain-computer communication and slow cortical potentials," IEEE

Transactions on Biomedical Engineering, vol. 51, pp. 1011-1018, 2004.

[43] A. Kbler, N. Neumann, J. Kaiser, B. Kotchoubey, T. Hinterberger, and N. P.

Birbaumer, "Brain-computer communication: Self-regulation of slow cortical

potentials for verbal communication," Archives of Physical Medicine and

Rehabilitation, vol. 82, pp. 1533-1539, 2001.

[44] I. G. Campbell, "EEG recording and analysis for sleep research," Curr Protoc

Neurosci, vol. Chapter 10, p. Unit 10.2, Oct 2009.

[45] M. Izzetoglu, K. Izzetoglu, S. Bunce, H. Ayaz, A. Devaraj, B. Onaral, et al.,

"Functional near-infrared neuroimaging," IEEE Transactions on Neural Systems

and Rehabilitation Engineering, vol. 13, pp. 153-159, 2005.

[46] H. Ayaz, B. Onaral, K. Izzetoglu, P. A. Shewokis, R. McKendrick, and R.

Parasuraman, "Continuous monitoring of brain dynamics with functional near

infrared spectroscopy as a tool for neuroergonomic research: Empirical examples

and a technological development," Frontiers in Human Neuroscience, vol. 7, pp.

1-13, 2013.

P a g e | 127

[47] H. Ayaz, P. A. Shewokis, A. Curtin, M. Izzetoglu, K. Izzetoglu, and B. Onaral,

"Using MazeSuite and Functional Near Infrared Spectroscopy to Study Learning

in Spatial Navigation," J Vis Exp, p. e3443, 2011.

[48] G. Strangman, D. A. Boas, and J. P. Sutton, "Non-invasive neuroimaging using

near-infrared light," Biological psychiatry, vol. 52, pp. 679-693, 2002.

[49] K. Izzetoglu, "Neural correlates of cognitive workload and anesthetic depth: fNIR

spectroscopy investigation in humans," Dissertation/Thesis, ProQuest, UMI

Dissertations Publishing, 2008.

[50] H. Ayaz, B. Ben Dor, D. Solt, and B. Onaral, "Infrascanner: Cost Effective,

Mobile Medical Imaging System for Detecting Hemotomas," Journal of Medical

Devices, vol. 5, p. 27540, 2011.

[51] D. Afergan, E. M. Peck, E. T. Solovey, A. Jenkins, S. W. Hincks, E. T. Brown, et

al., "Dynamic Difficulty Using Brain Metrics of Workload," presented at the

CHI2014, 2014.

[52] G. Derosière, S. Dalhoumi, S. Perrey, G. Dray, and T. Ward, "Towards a Near

Infrared Spectroscopy-Based Estimation of Operator Attentional State," PLoS

ONE, vol. 9, p. e92045, 2014.

[53] F. A. Fishburn, M. E. Norr, A. V. Medvedev, and C. J. Vaidya, "Sensitivity of

fNIRS to cognitive state and load," Frontiers in Human Neuroscience, vol. 8,

2014.

[54] G. Derosiere, K. Mandrick, G. Dray, T. E. Ward, and S. Perrey, "NIRS-measured

prefrontal cortex activity in neuroergonomics: strengths and weaknesses,"

Frontiers in Human Neuroscience, vol. 7, September 19 2013.

[55] Y. Hoshi, B. H. Tsou, V. A. Billock, M. Tanosaki, Y. Iguchi, M. Shimada, et al.,

"Spatiotemporal characteristics of hemodynamic changes in the human lateral

prefrontal cortex during working memory tasks," NeuroImage, vol. 20, pp. 1493-

1504, Nov 2003.

P a g e | 128

[56] H. Ayaz, B. Willems, B. Bunce, P. A. Shewokis, K. Izzetoglu, S. Hah, et al.,

"Cognitive Workload Assessment of Air Traffic Controllers Using Optical Brain

Imaging Sensors," in Advances in Understanding Human Performance:

Neuroergonomics, Human Factors Design, and Special Populations, T. Marek,

W. Karwowski, and V. Rice, Eds., ed: CRC Press Taylor & Francis Group, 2010,

pp. 21-31.

[57] R. McKendrick, H. Ayaz, R. Olmstead, and R. Parasuraman, "Enhancing dual-

task performance with verbal and spatial working memory training: continuous

monitoring of cerebral hemodynamics with NIRS," NeuroImage, vol. 85 Pt 3, pp.

1014-1026, 2014.

[58] C. Herff, D. Heger, O. Fortmann, J. Hennrich, F. Putze, and T. Schultz, "Mental

workload during n-back task—quantified in the prefrontal cortex using fNIRS,"

Frontiers in Human Neuroscience, vol. 7, p. 935, January 16 2014.

[59] C. Bogler, J. Mehnert, J. Steinbrink, and J. D. Haynes, "Decoding Vigilance with

NIRS," PLoS One, vol. 9, p. e101729, 2014.

[60] A. R. Harrivel, D. H. Weissman, D. C. Noll, and S. J. Peltier, "Monitoring

attentional state with fNIRS," Frontiers in Human Neuroscience, vol. 7,

December 13 2013.

[61] A. C. Ruocco, A. H. Rodrigo, J. Lam, S. Di Domenico, B. Graves, and H. Ayaz,

"A Problem-Solving Task Specialized for Functional Neuroimaging: Validation

of the Scarborough adaptation of the Tower of London (S-TOL) using Near-

Infrared Spectroscopy," Frontiers in Human Neuroscience, vol. 8, 2014.

[62] H. Ayaz, P. A. Shewokis, M. İzzetoğlu, M. P. Çakır, and B. Onaral, "Tangram

solved? Prefrontal cortex activation analysis during geometric problem solving,"

in 34th Annual International IEEE EMBS Conference, San Diego, CA, 2012, pp.

4724 - 4727

[63] H. Ayaz, M. P. Cakir, K. Izzetoglu, A. Curtin, P. A. Shewokis, S. Bunce, et al.,

"Monitoring Expertise Development during Simulated UAV Piloting Tasks using

Optical Brain Imaging," presented at the IEEE Aerospace Conference, BigSky,

MN, USA, 2012.

P a g e | 129

[64] D. Gefen, H. Ayaz, and B. Onaral, "Applying Functional Near Infrared (fNIR)

Spectroscopy to Enhance MIS Research," AIS Transactions on Human-Computer

Interaction, vol. 6, pp. 55-73, 2014.

[65] F. Irani, S. M. Platek, S. Bunce, A. C. Ruocco, and D. Chute, "Functional near

infrared spectroscopy (fNIRS): an emerging neuroimaging technology with

important applications for the study of brain disorders," The Clinical

Neuropsychologist, vol. 21, pp. 9-37, 2007.

[66] P. M. Arenth, J. H. Ricker, and M. T. Schultheis, "Applications of functional

near-infrared spectroscopy (fNIRS) to neurorehabilitation of cognitive

disabilities," The Clinical Neuropsychologist, vol. 21, pp. 38-57, 2007.

[67] H. Saitou, H. Yanagi, S. Hara, S. Tsuchiya, and S. Tomura, "Cerebral blood

volume and oxygenation among poststroke hemiplegic patients: Effects of 13

rehabilitation tasks measured by near-Infrared spectroscopy," Archives of

Physical Medicine and Rehabilitation, vol. 81, pp. 1348-1356, Dec 2000.

[68] S. Bunce, K. Izzetoglu, M. Izzetoglu, H. Ayaz, K. Pourrezaei, and B. Onaral,

"Treatment Status Predicts Differential Prefrontal Cortical Responses to Alcohol

and Natural Reinforcer Cues among Alcohol Dependent Individuals," in

Advances in Brain Inspired Cognitive Systems. vol. 7366, H. Zhang, A. Hussain,

D. Liu, and Z. Wang, Eds., ed: Springer Berlin / Heidelberg, 2012, pp. 183-191.

[69] A. C. Merzagora, M. T. Schultheis, B. Onaral, and M. Izzetoglu, "Functional

near-infrared spectroscopy–based assessment of attention impairments after

traumatic brain injury," Journal of Innovative Optical Health Sciences, vol. 4, pp.

251-260, 2011.

[70] H. Ayaz and B. Onaral, "Analytical software and stimulus-presentation platform

to utilize, visualize and analyze near-infrared spectroscopy measures," Masters

Degree Thesis (MS), Drexel University, Philadelphia, PA, 2005.

[71] S. Lloyd-Fox, A. Blasi, and C. E. Elwell, "Illuminating the developing brain: The

past, present and future of functional near infrared spectroscopy," Neuroscience &

Biobehavioral Reviews, vol. 34, pp. 269-284, Feb 2010.

P a g e | 130

[72] A. Blasi, D. Phillips, S. Lloyd-Fox, P. H. Koh, and C. E. Elwell, "Automatic

detection of motion artifacts in infant functional optical topography studies," in

Oxygen Transport to Tissue XXXI, ed: Springer, 2010, pp. 279-284.

[73] H. Ayaz, M. Izzetoglu, P. A. Shewokis, and B. Onaral, "Sliding-window Motion

Artifact Rejection for Functional Near-Infrared Spectroscopy," Conf Proc IEEE

Eng Med Biol Soc, pp. 6567-70, 2010.

[74] B. Molavi and G. A. Dumont, "Wavelet based motion artifact removal for

Functional Near Infrared Spectroscopy," in Engineering in Medicine and Biology

Society (EMBC), 2010 Annual International Conference of the IEEE, Buenos

Aires, Argentina, 2010, pp. 5-8.

[75] J. Virtanen, T. Noponen, and P. Meriläinen, "Comparison of principal and

independent component analysis in removing extracerebral interference from

near-infrared spectroscopy signals," Journal of Biomedical Optics, vol. 14, p.

054032, 2009.

[76] F. C. Robertson, T. S. Douglas, and E. M. Meintjes, "Motion Artifact Removal

for Functional Near Infrared Spectroscopy: A Comparison of Methods," IEEE

Transactions on Biomedical Engineering, vol. 57, pp. 1377-1387, 2010.

[77] F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf,

et al., "A review on continuous wave functional near-infrared spectroscopy and

imaging instrumentation and methodology," NeuroImage, vol. 85, Part 1, pp. 6-

27, Jan 15 2014.

[78] H. Ayaz, S. Bunce, P. Shewokis, K. Izzetoglu, B. Willems, and B. Onaral, "Using

Brain Activity to Predict Task Performance and Operator Efficiency," in

Advances in Brain Inspired Cognitive Systems. vol. 7366, H. Zhang, A. Hussain,

D. Liu, and Z. Wang, Eds., ed: Springer Berlin / Heidelberg, 2012, pp. 147-155.

[79] H. Ayaz, M. Izzetoglu, S. Bunce, T. Heiman-Patterson, and B. Onaral, "Detecting

cognitive activity related hemodynamic signal for brain computer interface using

functional near infrared spectroscopy," Conf Proc 3rd IEEE/EMBS on Neural

Eng, pp. 342-345, 2007.

P a g e | 131

[80] H. Ayaz, P. A. Shewokis, S. Bunce, M. Schultheis, and B. Onaral, "Assessment of

Cognitive Neural Correlates for a Functional Near Infrared-Based Brain

Computer Interface System," in Foundations of Augmented Cognition.

Neuroergonomics and Operational Neuroscience, D. Schmorrow, Ed., ed, 2009,

pp. 699-708.

[81] S. M. Coyle, T. E. Ward, and C. M. Markham, "Brain-computer interface using a

simplified functional near-infrared spectroscopy system," J Neural Eng, vol. 4,

pp. 219-26, Sep 2007.

[82] H. Ayaz, P. A. Shewokis, S. Bunce, and B. Onaral, "An optical brain computer

interface for environmental control," Conf Proc IEEE Eng Med Biol Soc, vol.

2011, pp. 6327-30, 2011.

[83] E. Solovey, P. Schermerhorn, M. Scheutz, A. Sassaroli, S. Fantini, and R. Jacob,

"Brainput: enhancing interactive systems with streaming fnirs brain input," 2012,

pp. 2193-2202.

[84] A. M. Batula, H. Ayaz, and Y. E. Kim, "Evaluating a Four-Class Motor-Imagery-

Based Optical Brain-Computer Interface," in IEEE Engineering in Medicine

Conf., Chicago, USA, 2014.

[85] R. Sitaram, H. Zhang, C. Guan, M. Thulasidas, Y. Hoshi, A. Ishikawa, et al.,

"Temporal classification of multichannel near-infrared spectroscopy signals of

motor imagery for developing a brain-computer interface," Neuroimage, vol. 34,

pp. 1416-27, Feb 15 2007.

[86] V. Quaresima, S. Bisconti, and M. Ferrari, "A brief review on the use of

functional near-infrared spectroscopy (fNIRS) for language imaging studies in

human newborns and adults," Brain and Language, vol. 121, pp. 79-89, May

2012.

[87] S. I. Di Domenico, M. A. Fournier, H. Ayaz, and A. C. Ruocco, "In search of

integrative processes: basic psychological need satisfaction predicts medial

prefrontal activation during decisional conflict," Journal of experimental

psychology.General, vol. 142, p. 967, 2013.

P a g e | 132

[88] J. D. R. Millán, R. Rupp, G. R. Müller-Putz, R. Murray-Smith, C. Giugliemma,

M. Tangermann, et al., "Combining Brain-Computer Interfaces and Assistive

Technologies: State-of-the-Art and Challenges," Frontiers in neuroscience, vol. 4,

2010.

[89] P. Brunner, L. Bianchi, C. Guger, F. Cincotti, and G. Schalk, "Current trends in

hardware and software for brain-computer interfaces (BCIs)," Journal of neural

engineering, vol. 8, p. 025001, 2011.

[90] G. Pfurtscheller, B. Z. Allison, C. Brunner, G. Bauernfeind, T. Solis-Escalante, R.

Scherer, et al., "The hybrid BCI," Frontiers in Neuroscience vol. 4, p. 30, 2010.

[91] S. Amiri, R. Fazel-Rezai, and V. Asadpour, "A Review of Hybrid Brain-

Computer Interface Systems," Advances in Human-Computer Interaction, vol.

2013, pp. 1-8, 2013.

[92] L. Astolfi, J. Toppi, F. De Vico Fallani, G. Vecchiato, S. Salinari, D. Mattia, et

al., "Neuroelectrical hyperscanning measures simultaneous brain activity in

humans," Brain topography, vol. 23, pp. 243-256, 2010.

[93] F. Babiloni, F. Cincotti, D. Mattia, M. Mattiocco, F. De Vico Fallani, A. Tocci, et

al., "Hypermethods for EEG hyperscanning," Conf Proc IEEE Eng Med Biol Soc,

vol. 1, pp. 3666-3669, 2006 2006.

[94] M. Hirata, T. Ikeda, M. Kikuchi, T. Kimura, H. Hiraishi, Y. Yoshimura, et al.,

"Hyperscanning MEG for understanding mother-child cerebral interactions,"

Frontiers in human neuroscience, vol. 8, p. 118, 2014.

[95] N. Osaka, T. Minamoto, K. Yaoi, M. Azuma, and M. Osaka, "Neural

Synchronization During Cooperated Humming: A Hyperscanning Study Using

fNIRS," Procedia - Social and Behavioral Sciences, vol. 126, pp. 241-243, 2014.

[96] P. R. Montague, G. S. Berns, J. D. Cohen, S. M. McClure, G. Pagnoni, M.

Dhamala, et al., "Hyperscanning: Simultaneous fMRI during Linked Social

Interactions," NeuroImage, vol. 16, pp. 1159-1159, 2002.

P a g e | 133

[97] L. Holper, F. Scholkmann, and M. Wolf, "Between-brain connectivity during

imitation measured by fNIRS," NeuroImage, vol. 63, p. 212, 2012.

[98] R. C. Panicker, S. Puthusserypady, and Y. Sun, "An Asynchronous P300 BCI

With SSVEP-Based Control State Detection," IEEE Transactions on Biomedical

Engineering, vol. 59, pp. 1781-1788, 2011.

[99] G. Edlinger, C. Holzner, and C. Guger, "A Hybrid Brain-Computer Interface for

Smart Home Control," in Human-Computer Interaction. Interaction Techniques

and Environments. vol. 6762, J. Jacko, Ed., ed: Springer Berlin Heidelberg, 2011,

pp. 417-426.

[100] B. Rebsamen, E. Burdet, Q. Zeng, H. Zhang, M. Ang, C. L. Teo, et al., "Hybrid

P300 and mu-beta brain computer interface to operate a brain controlled

wheelchair," in Proceedings of the 2nd International Convention on

Rehabilitation Engineering & Assistive Technology, Bangkok, Thailand, 2008,

pp. 51-55.

[101] Y. Su, Y. Qi, J.-x. Luo, B. Wu, F. Yang, Y. Li, et al., "A hybrid brain-computer

interface control strategy in a virtual environment," Journal of Zhejiang

University SCIENCE C, vol. 12, pp. 351-361, 2011.

[102] H. Riechmann, N. Hachmeister, H. Ritter, and A. Finke, "Asynchronous, parallel

on-line classification of P300 and ERD for an efficient hybrid BCI," in Neural

Engineering (NER), 2011 5th International IEEE/EMBS Conference on, 2011, pp.

412-415.

[103] B. Z. Allison, C. Brunner, V. Kaiser, G. R. Müller-Putz, C. Neuper, and G.

Pfurtscheller, "Toward a hybrid brain–computer interface based on imagined

movement and visual attention," Journal of Neural Engineering, vol. 7, p.

026007, 2010.

[104] C. Vidaurre and B. Blankertz, "Towards a cure for BCI illiteracy," Brain

topography, vol. 23, pp. 194-198, 2010.

[105] G. Pfurtscheller, T. Solis-Escalante, R. Ortner, P. Linortner, and G. R. Muller-

Putz, "Self-paced operation of an SSVEP-Based orthosis with and without an

P a g e | 134

imagery-based "brain switch:" a feasibility study towards a hybrid BCI," IEEE

Trans Neural Syst Rehabil Eng, vol. 18, pp. 409-14, Aug 2010.

[106] A. Savić, U. Kisić, and M. B. Popović, "Toward a Hybrid BCI for Grasp

Rehabilitation," in 5th European Conference of the International Federation for

Medical and Biological Engineering. vol. 37, Á. Jobbágy, Ed., ed: Springer Berlin

Heidelberg, 2012, pp. 806-809.

[107] F. Biessmann, S. Plis, F. C. Meinecke, T. Eichele, and K.-R. Muller, "Analysis of

Multimodal Neuroimaging Data," IEEE Reviews in Biomedical Engineering, vol.

1, pp. 26-58, 2011.

[108] N. K. Logothetis, "What we can do and what we cannot do with fMRI," Nature,

vol. 453, pp. 869-878, 2008.

[109] S. Aungsakul, A. Phinyomark, P. Phukpattaranont, and C. Limsakul, "Evaluating

Feature Extraction Methods of Electrooculography (EOG) Signal for Human-

Computer Interface," Procedia Engineering, vol. 32, pp. 246-252, 2012.

[110] R. Barea, L. Boquete, M. Mazo, and E. López, "Wheelchair Guidance Strategies

Using EOG," Journal of Intelligent and Robotic Systems, vol. 34, pp. 279-299,

2002.

[111] C.-C. Postelnicu, F. Girbacia, and D. Talaba, "EOG-based visual navigation

interface development," Expert Systems with Applications, vol. 39, p. 10857,

2012.

[112] Y. Punsawad, Y. Punsawad, Y. Wongsawat, Y. Wongsawat, M. Parnichkun, and

M. Parnichkun, "Hybrid EEG-EOG brain-computer interface system for practical

machine control," United States, 2010, pp. 1360-1363.

[113] T. O. Zander, M. Gaertner, C. Kothe, and R. Vilimek, "Combining Eye Gaze

Input With a Brain-Computer Interface for Touchless Human-Computer

Interaction," International Journal of Human - Computer Interaction, vol. 27, pp.

38-51, 2011.

P a g e | 135

[114] R. Leeb, H. Sagha, R. Chavarriaga, and J. d. R. Millán, "A hybrid brain–computer

interface based on the fusion of electroencephalographic and electromyographic

activities," Journal of Neural Engineering, vol. 8, p. 025011, 2011.

[115] X. Yong, M. Fatourechi, R. K. Ward, and G. E. Birch, "The Design of a Point-

and-Click System by Integrating a Self-Paced Brain-Computer Interface With an

Eye-Tracker," IEEE Journal on Emerging and Selected Topics in Circuits and

Systems, vol. 1, pp. 590-602, 2011.

[116] S. Fazli, J. Mehnert, J. Steinbrink, G. Curio, A. Villringer, K.-R. Müller, et al.,

"Enhanced performance by a hybrid NIRS-EEG brain computer interface,"

NeuroImage, vol. 59, pp. 519-529, 2012.

[117] T. Tsubone, T. Muroga, and Y. Wada, "Application to robot control using brain

function measurement by near-infrared spectroscopy," Conf Proc IEEE Eng Med

Biol Soc, vol. 2007, pp. 5342-5345, 2007 2007.

[118] Y. Liu, H. Ayaz, A. Curtin, B. Onaral, and P. A. Shewokis, "Towards a Hybrid

P300-Based BCI Using Simultaneous fNIR and EEG," in Foundations of

Augmented Cognition, ed: Springer, 2013, pp. 335-344.

[119] A. Faress and T. Chau, "Towards a multimodal brain-computer interface:

combining fNIRS and fTCD measurements to enable higher classification

accuracy," NeuroImage, vol. 77, pp. 186-194, 2013.

[120] M. Okamoto, H. Dan, I. Dan, K. Shimizu, K. Takeo, T. Amita, et al.,

"Multimodal assessment of cortical activation during apple peeling by NIRS and

fMRI," NeuroImage, vol. 21, pp. 1275-1288, 2004.

[121] R. J. Cooper, L. Gagnon, D. M. Goldenholz, D. A. Boas, and D. N. Greve, "The

utility of near-infrared spectroscopy in the regression of low-frequency

physiological noise from functional magnetic resonance imaging data,"

NeuroImage, vol. 59, pp. 3128-3138, 2012.

[122] D. Touraine, P. Bourdot, Y. Bellik, and L. Bolot, "A framework to manage

multimodal fusion of events for advanced interactions within virtual

environments," presented at the Proceedings of the workshop on Virtual

environments 2002, Barcelona, Spain, 2002.

P a g e | 136

[123] M. Dellisanti, M. Fiorentino, G. Monno, and A. Uva, "Flexible Architecture for

Multimodal Augmented Reality Engineering Applications."

[124] D. Bannach, O. Amft, and P. Lukowicz, "Automatic Event-Based

Synchronization of Multimodal Data Streams from Wearable and Ambient

Sensors," in Smart Sensing and Context. vol. 5741, P. Barnaghi, K. Moessner, M.

Presser, and S. Meissner, Eds., ed: Springer Berlin Heidelberg, 2009, pp. 135-148.

[125] H. Ayaz, P. Crawford, A. Curtin, M. Syed, B. Onaral, W. M. Beltman, et al.,

"Differential Prefrontal Response during Natural and Synthetic Speech

Perception: An fNIR Based Neuroergonomics Study," in Foundations of

Augmented Cognition. vol. 8027, D. Schmorrow and C. Fidopiastis, Eds., ed:

Springer Berlin Heidelberg, 2013, pp. 241-249.

[126] R. R. Benson, D. H. Whalen, M. Richardson, B. Swainson, V. P. Clark, S. Lai, et

al., "Parametrically dissociating speech and nonspeech perception in the brain

using fMRI," Brain and language, vol. 78, pp. 364-364, 2001.

[127] D. J. Sharp, S. K. Scott, and R. J. S. Wise, "Monitoring and the controlled

processing of meaning: distinct prefrontal systems," Cerebral cortex (New York,

N.Y.: 1991), vol. 14, pp. 1-10, 2004.

P a g e | 137

Appendix A: Board Assembly Guide

NeuroHub was designed and developed to be made by readily available

components and easily assembled so it can be duplicated and expanded on. This guide

intends to provide the reader with step-by-step instructions on obtaining the necessary

parts, assembling the board, and programming the microcontroller.

All of the parts are relatively common and certainly not difficult to obtain. The

can be found at Mouser Electronics or Digikey Electronics. The Arduino Mega 2560 can

be purchased for much less from other online stores. Here is a parts list and, if a specific

part is required, their corresponding Digikey part number:

- MAX238 IC – Serial logic conversion: MAX238CNG+-ND

- AC to DC Wall Adapter – Arduino power supply: T983-P5P-ND

- Plastic case: 1050-1003-ND

- BNC Mount: A97553-ND

- 5x 1.0 uF Capacitors (any will work)

- 4x Female Serial Connectors (any will work)

- Female Parallel Port Connector (any will work)

- Header pins

- 24 pin IC socket adapter

- Ribbon cable

P a g e | 138

Some basic tools are also needed. Basic soldering supplies such as a soldering

iron, flux, solder, helping hands, etc. are required, as well as a wire stripper and a Dremel

tool. If you are building this device and don’t have access to the original schematics,

layout, or code, you can refer to appendix B for schematics and board layouts, and

appendix C for the code.

The board layout then needs to be printed, either by an in-house PCB milling

machine or by being sent to a fabrication house. Getting the board sent to a fabrication

house is preferable as, in my experience, in-house milled boards can be problematic. The

board pictured here was printed at OSH Park (https://oshpark.com/).

First, solder the IC socket in place, as well as the capacitors. Be sure they are the

correct polarity: refer to appendix B. Solder the headers into place on the opposite side of

https://oshpark.com/

P a g e | 139

the board. The BNC connector can also be attached at this point. After soldering, the

MAX238 IC can be placed in the socket adapter. The following image shows the board

with all components soldered in place.

Next, ribbon cable should be used to attach the ports to the board. For the serial

ports, cut a short strip of 5 wires and strip both ends of the wires. You can either separate

the wires using a blade and individually strip them or, if you have one available, a wire

stripper that can handle multiple wires at once can be used. One end should be soldered

to the top row of pins on the DE-9 connector, while the other end should be soldered to

either a single row of headers or the headers can be soldered to the board first and a press

connector can be attached to the other side of the ribbon cable. The press connector

option allows for the device to be taken apart if necessary. The press connector is

attached by setting the connector, with the unstripped cable inside, in a vice, which is

then slowly closed on the connector and cable inside. Repeat the process with the DB-25

P a g e | 140

connector for the parallel port. Electrical tape is used to separate the rows of wires and

electrically isolate them from each other. Heat shrink wrap can also be used. The

following is a parallel port connector being assembled.

Here is a picture of a DE-9 connector attached to a row of headers. The bottom

line of pins on the connector is not attached to anything because they are not used.

P a g e | 141

The Arduino board then needs to be programmed. This can be done in a number

of ways. The way used during development of NeuroHub was using a simple in circuit

serial programmer (ICSP), the USBtinyISP. It is an option that is inexpensive, easy to

assemble, and simple to use. The kit can be purchased from http://www.adafruit.com/ and

is compatible with AVRDUDE (http://www.nongnu.org/avrdude/), a utility used to

download, upload, or otherwise manipulate the ROM and EEPROM contents of AVR

microcontrollers. The following steps will outline the programming process using these

tools, although many other options are available.

After assembling the programmer as the instructions provided outline and setting

up AVRDUDE, the code must be compiled and uploaded to the board. Open the Atmel

Studio solution or, if the code is not available, start a new one in C for the Atmel

ATmega2560 and copy the code in appendix C. After compiling the project, connect the

programmer to the board, open a Windows command line and change the directory to

where the .hex file was compiled (should be in the Release folder in the folder where the

P a g e | 142

project is saved). Check the configuration by using the command “avrdude –c usbtiny –p

m2560”. The response should not indicate an initialization fail or not being able to find

the USB device, USBtinyISP. If there are no errors (consult the AVRDUDE and

USPtinyISP online information if there is), using the command “avrdude –c usbtiny –p

m2560 –U flash:w:filename.hex” where filename is the name of the project. This will tell

the programmer to write the .hex file (the compiled code) to flash memory on the

microcontroller.

Alternatively, the board can be programmed using the Arduino IDE, although the

code has not been developed or tested. This would avoid requiring the programmer, but

could possibly introduce lag time due to the overhead required by Arduino.

The plastic case must be modified to fit the electronics inside. This can be done

using a Dremel tool. Mark the locations where the headers are and trace the back (behind

the plating) of the connector on the casing. Starting holes can then be drilled, and the hole

cleared with an appropriate Dremel bit. The pictures below show the plastic case after

modification.

P a g e | 143

Make sure the connectors fit inside their locations, then mark the screw locations

and drill pilot holes. If the headers for the connectors are attached to the ribbon cable, put

them through their holes and put them in their positions. They can then be soldered in

place, then the connectors can be screwed in as well. If push connectors were used, the

connectors can be screwed to the plastic case, and the connectors hooked up to the

headers that were previously soldered to the board. The Arduino can be fit into the

bottom half of the casing and the top half fit in place, but only after the plastic posts that

are in the way of the top portion of the device are cut in half.

P a g e | 144

During assembly of the second generation of NeuroHub, possible improvements

were noted. Header spacing should replace the DE-9 connectors that were still used from

the first generation board, and an “on” LED light should be used. See chapter 6 for more

discussion on possible future directions of the project. With more capabilities, the

NeuroHub could be an even more useful tool for new hybrid BCI setups.

P a g e | 145

Appendix B: Schematics and Board Layouts

Generation 1

P a g e | 146

P a g e | 147

P a g e | 148

Generation 2

P a g e | 149

P a g e | 150

Generation 3

P a g e | 151

P a g e | 152

P a g e | 153

Appendix C: Source Code

Microcontroller Code

#define F_CPU 16000000UL

#include <avr/io.h>

#include <util/delay.h>

#include <avr/interrupt.h>

#define BAUDRATE 9600

#define BAUD_PRESCALLER (((F_CPU / (BAUDRATE * 16UL))) - 1)

//Declaration of our functions

void USART_init(void);

void parallel_init(void);

void TTL_init(void);

int main(void){

 USART_init(); //Call the USART initialization

 parallel_init();

 TTL_init();

 sei();

 while(1)

 {

 _delay_ms(5);

 PORTA = 0x00;

 }

 return 0;

}

void parallel_init(void){

 // Parallel Port setup

 DDRA = 0xFF; // Make all of PORTA output, this is the data line

 DDRE |= (1<<PE5); // Make PE pin5, or pin 3 on Arduino, output, this is strobe

line

 DDRE &= ~(1<<PE4); // make PE4 pin4, or pin 2 on Arduino, input, this is busy

line

 PORTE |= (1<<PE4); // Activate pull-ups in PORTE pin 4

P a g e | 154

}

void TTL_init(void){

 //BNC setup

 DDRD &= ~(1<<PD1); //Configure PORTD pin 1 (pin 20 or INT1) as an input

to check the level

 PORTD |= (1<<PD1); //enable pullup resistor

 EICRA=(EICRA&(~(0<<ISC11|1<<ISC10)))|(0<<ISC11|1<<ISC10);

//Configure INT1 to sense any edge

 EIMSK|=(1<<INT1); //Enable INT1 interrupt

}

void USART_init(void){

 UBRR0H = (uint8_t)(BAUD_PRESCALLER>>8); // Register where we set the

baudrate

 UBRR0L = (uint8_t)(BAUD_PRESCALLER);

 UCSR0B = (1<<RXEN0)|(1<<TXEN0)| (1<<RXCIE0); // Activate the RX and

TX pins, and enable UART interrupts

 UCSR0C = (3<<UCSZ00); // sets USCZ00 to 1 and USCZ01 to 1 as well,

 UBRR1H = (uint8_t)(BAUD_PRESCALLER>>8);

 UBRR1L = (uint8_t)(BAUD_PRESCALLER);

 UCSR1B = (1<<RXEN1)|(1<<TXEN1)| (1<<RXCIE1);

 UCSR1C = (3<<UCSZ00);

 UBRR2H = (uint8_t)(BAUD_PRESCALLER>>8);

 UBRR2L = (uint8_t)(BAUD_PRESCALLER);

 UCSR2B = (1<<RXEN2)|(1<<TXEN2)| (1<<RXCIE2);

 UCSR2C = (3<<UCSZ00);

 UBRR3H = (uint8_t)(BAUD_PRESCALLER>>8);

 UBRR3L = (uint8_t)(BAUD_PRESCALLER);

 UCSR3B = (1<<RXEN3)|(1<<TXEN3)| (1<<RXCIE3);

 UCSR3C = (3<<UCSZ00);

}

ISR(INT0_vect)

{

 cli();

 char ReceivedByte;

 if((PIND & (1<<PD1)) == 0)

P a g e | 155

 {

 ReceivedByte = 0x30; // Send '0'

 }

 else

 {

 ReceivedByte = 0x31; // Send '1'

 }

 // Write to parallel port

 PORTA = ReceivedByte;// write byte to the data port

 // For SPP protocol

 while(PE4 != 1){} // is the busy line low? if its high, wait

 PORTE &= ~(0<<PB5); //when it is low, pull strobe low

 //

 // Serial send

 UDR0 = ReceivedByte;

 UDR1 = ReceivedByte;

 UDR2 = ReceivedByte;

 UDR3 = ReceivedByte;

 //

 // Finishing SPP protocol

 PORTE &= ~(1<<PE5);// pull strobe high

 // PORTA = 0x00;

 //

 sei();

}

ISR(USART0_RX_vect) // USART0 Received Byte Interrupt

{

 cli();

 char ReceivedByte;

 ReceivedByte = UDR0;

 // Write to parallel port

 PORTA = ReceivedByte;// write byte to the data port

 // For SPP protocol

 // while(PE4 != 1){} // is the busy line low? if its high, wait

 // PORTE &= ~(0<<PB5); //when it is low, pull strobe low

 //

P a g e | 156

 // Serial send

 UDR1 = ReceivedByte;

 UDR2 = ReceivedByte;

 UDR3 = ReceivedByte;

 //

 // Finishing SPP protocol

 // PORTE &= ~(1<<PE5);// pull strobe high

 // PORTA = 0x00;

 //

 sei();

}

ISR(USART1_RX_vect)

{

 cli();

 char ReceivedByte;

 ReceivedByte = UDR1;

 // Write to parallel port

 PORTA = ReceivedByte;// write byte to the data port

 // For SPP protocol

 // while(PE4 != 1){} // is the busy line low? if its high, wait

 // PORTE &= ~(0<<PB5); //when it is low, pull strobe low

 //

 // Serial send

 UDR0 = ReceivedByte;

 UDR2 = ReceivedByte;

 UDR3 = ReceivedByte;

 //

 // Finishing SPP protocol

 // PORTE &= ~(1<<PE5);// pull strobe high

 // PORTA = 0x00;

 //

 sei();

}

P a g e | 157

ISR(USART2_RX_vect)

{

 cli();

 char ReceivedByte;

 ReceivedByte = UDR2;

 // Write to parallel port

 PORTA = ReceivedByte;// write byte to the data port

 // For SPP protocol

 // while(PE4 != 1){} // is the busy line low? if its high, wait

 // PORTE &= ~(0<<PB5); //when it is low, pull strobe low

 //

 // Serial send

 UDR0 = ReceivedByte;

 UDR1 = ReceivedByte;

 UDR3 = ReceivedByte;

 //

 // Finishing SPP protocol

 // PORTE &= ~(1<<PE5);// pull strobe high

 // PORTA = 0x00;

 //

 sei();

}

ISR(USART3_RX_vect)

{

 cli();

 char ReceivedByte;

 ReceivedByte = UDR3;

 // Write to parallel port

 PORTA = ReceivedByte;// write byte to the data port

 // For SPP protocol

 //while(PE4 != 1){} // is the busy line low? if its high, wait

 //PORTE &= ~(0<<PB5); //when it is low, pull strobe low

 //

 // Serial send

P a g e | 158

 UDR0 = ReceivedByte;

 UDR1 = ReceivedByte;

 UDR2 = ReceivedByte;

 //

 //Finishing SPP protocol

 //PORTE &= ~(1<<PE5);// pull strobe high

 //PORTA = 0x00;

 //

 sei();

}

ISR(INT1_vect)

{

 /*

 THIS IS HERE FOR WHEN EEP IS DEVELOPED

 */

}

P a g e | 159

Time Testing Code

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

using System.IO.Ports;

using System.IO;

using System.Diagnostics;

using System.Threading;

namespace DeviceTest

{

 public partial class Form1 : Form

 {

 ///Declare variables

 // Start stopwatch

 Stopwatch stopwatch = new Stopwatch();

 decimal dataPoints;

 bool correctByte;

 //Open a stringbuilder

 StringBuilder sb = new StringBuilder();

 Random random = new Random();

 // Declare byte to send

 byte[] sentByte = new byte[1];

 byte[] receivedByte = new byte[1]; // read byte allocation

 public Form1()

 {

 InitializeComponent();

 }

 private void Form1_Load(object sender, EventArgs e)

 {

P a g e | 160

 {

 /// Load up COM port settings

 List<String> tList = new List<String>();

 comPortOut.Items.Clear();

 foreach (string s in SerialPort.GetPortNames())

 {

 tList.Add(s);

 }

 tList.Sort();

 //comPortOut.Items.Add("Select COM port"); // COM OUT loadup

 comPortOut.Items.AddRange(tList.ToArray());

 comPortOut.SelectedIndex = 0;

 //comPortIn.Items.Add("Select COM port"); // COM IN loadup

 comPortIn.Items.AddRange(tList.ToArray());

 comPortIn.SelectedIndex = 1;

 }

 }

 private void startButton_Click(object sender, EventArgs e)

 {

 // Disable all options

 comPortOut.Enabled = false;

 comPortIn.Enabled = false;

 startButton.Enabled = false;

 exitButton.Enabled = false;

 // Enable the stop button

 stopButton.Enabled = true;

 /// Set the serial ports to selected values

 serialPort1.PortName = comPortOut.SelectedItem.ToString();

 serialPort1.BaudRate = 9600;

 serialPort1.Open();

 serialPort2.PortName = comPortIn.SelectedItem.ToString();

 serialPort2.BaudRate = 9600;

 serialPort2.Open();

 // Testing prep and warmup

 Process.GetCurrentProcess().ProcessorAffinity = new IntPtr(2); // Uses the

second core

 Process.GetCurrentProcess().PriorityClass = ProcessPriorityClass.High; //

Prevents other processes from interrupting Threads

P a g e | 161

 Thread.CurrentThread.Priority = ThreadPriority.Highest; // Prevents other threads

from interrupting this thread

 textBox1.AppendText(Environment.NewLine);

 textBox1.AppendText("Warmup");

 textBox1.AppendText(Environment.NewLine);

 stopwatch.Reset();

 stopwatch.Start();

 // Clear the stringbuilder (for multiple testing in one session)

 sb.Clear();

 while (stopwatch.ElapsedMilliseconds < 1500) // A warmup of 1500ms to

stabilize the CPU cache and pipeline

 { }

 stopwatch.Stop();

 textBox1.AppendText("Beginning Testing");

 textBox1.AppendText(Environment.NewLine);

 // Testing begins here

 serialPort2.DiscardInBuffer();

 serialPort1.DiscardOutBuffer();

 serialPort1.DiscardInBuffer();

 serialPort2.DiscardOutBuffer();

 for (int repeat = 0; repeat <= dataPoints; ++repeat)

 {

 //sentByte = Convert.ToChar(Convert.ToInt32(Math.Floor(26 *

random.NextDouble() + 65)));

 sentByte[0] = (Byte)random.Next(255);

 textBox1.AppendText("Write byte: " + sentByte.ToString());

 textBox1.AppendText(Environment.NewLine);

 stopwatch.Reset();

 // Test Start

 serialPort1.Write(sentByte, 0, 1); //Send the byte

 stopwatch.Start();

 while (serialPort2.BytesToRead == 0)

 { }

 stopwatch.Stop();

P a g e | 162

 serialPort2.Read(receivedByte, 0, 1);

 // Test Stop

 textBox1.AppendText("Read byte: " + receivedByte.ToString());

 textBox1.AppendText(Environment.NewLine);

 // Is the byte received the same as the one sent out?

 if (receivedByte[0] == sentByte[0])

 correctByte = true;

 else

 correctByte = false;

 // Display information in real time

 textBox1.AppendText(Environment.NewLine);

 textBox1.AppendText("Elapsed ticks: " + stopwatch.ElapsedTicks + "

Frequency: " + ((stopwatch.ElapsedTicks * 1000.0) / Stopwatch.Frequency) + " Correct?

" + correctByte + stopwatch.ElapsedMilliseconds);

 textBox1.AppendText(Environment.NewLine);

 // Add to string builder for storing in .txt file

 sb.AppendLine(stopwatch.ElapsedTicks + "\t" + correctByte + "\t" +

((stopwatch.ElapsedTicks * 1000.0) / Stopwatch.Frequency)); // Add the new data points

to the Stringbuilder

 decimal dataLeft = dataPoints - repeat;

 // clear serial port buffers

 serialPort2.DiscardInBuffer();

 serialPort1.DiscardOutBuffer();

 }

 textBox1.AppendText("Done");

 // Testing is complete

 textBox1.AppendText(sb.ToString()); // Shows results in the test box for a quick

lookover

 StopRecording();

 this.Invoke(new EventHandler(SaveDialog));

 }

 private void exitButton_Click(object sender, EventArgs e)

 {

 StopRecording();

 Application.Exit();

 }

P a g e | 163

 private void stopButton_Click(object sender, EventArgs e)

 {

 dataPoints = 0;

 StopRecording();

 }

 public void SaveDialog(object sender, EventArgs e)

 {

 /// When the timer runs out or STOP is pressed, a Save Dialog appears

 SaveFileDialog saveFileDialog1 = new SaveFileDialog();

 saveFileDialog1.Filter = "txt files (*.txt)|*.txt|All files (*.*)|*.*";

 saveFileDialog1.FilterIndex = 1;

 saveFileDialog1.RestoreDirectory = true;

 saveFileDialog1.FileName = "DeviceTest0";

 if (saveFileDialog1.ShowDialog(this) == DialogResult.OK)

 {

 File.WriteAllText(saveFileDialog1.FileName, sb.ToString());

 }

 }

 public void StopRecording()

 {

 dataPoints = 0;

 // Enable all custom options

 comPortOut.Enabled = true;

 comPortIn.Enabled = true;

 startButton.Enabled = true;

 exitButton.Enabled = true;

 // Diable the stop button

 stopButton.Enabled = false;

 // Close Com ports

 if (serialPort1.IsOpen)

 {

 serialPort1.Close();

 }

 if (serialPort2.IsOpen)

 {

 serialPort2.Close();

 }

 }

P a g e | 164

 private void label1_Click(object sender, EventArgs e)

 { }

 }

}

P a g e | 165

Time Testing GUI

P a g e | 166

TTL Time Testing Code

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

using System.IO.Ports;

using System.IO;

using System.Diagnostics;

using System.Threading;

namespace fNIRautomation

{

 public partial class Form1 : Form

 {

 // Start stopwatch

 Stopwatch stopwatch = new Stopwatch();

 decimal dataPoints;

 bool correctByte;

 bool byteReceived; // Has a byte been sent? True or false

 int inByte;

 decimal waitTime;

 long totalTicks;

 long stopTicks;

 long startTicks;

 double TTLms;

 //Open a stringbuilder

 StringBuilder sb = new StringBuilder();

 Random random = new Random();

 // Declare byte to send

 byte[] receivedByte = new byte[1];

 byte[] lastByte = new byte[1]; // read byte allocation

 public Form1()

P a g e | 167

 {

 InitializeComponent();

 }

 private void Form1_Load(object sender, EventArgs e)

 {

 /// Load up COM port settings

 List<String> tList = new List<String>();

 comPortOut.Items.Clear();

 foreach (string s in SerialPort.GetPortNames())

 {

 tList.Add(s);

 }

 tList.Sort();

 comPortOut.Items.AddRange(tList.ToArray());

 comPortOut.SelectedIndex = 0;

 }

 private void button1_Click_1(object sender, EventArgs e)

 {

 // Disable all custom options

 comPortOut.Enabled = false;

 startButton.Enabled = false;

 /// Set the serial ports to selected values

 serialPort1.PortName = comPortOut.SelectedItem.ToString();

 serialPort1.BaudRate = 9600;

 serialPort1.Open();

 // Set number of data points to take based on inputted value

 dataPoints = dataPointBox.Value;

 // waitTime = wait.Value * 1000;

 Process.GetCurrentProcess().ProcessorAffinity = new IntPtr(2); // Uses the

second core

 Process.GetCurrentProcess().PriorityClass = ProcessPriorityClass.High; //

Prevents other processes from interrupting Threads

 Thread.CurrentThread.Priority = ThreadPriority.Highest; // Prevents other threads

from interrupting this thread

 // Clear the stringbuilder (for multiple testing in one session)

 sb.Clear();

P a g e | 168

 stopwatch.Start();

 while (stopwatch.ElapsedMilliseconds < 1500) // A warmup of 1500ms to

stabilize the CPU cache and pipeline

 { }

 stopwatch.Stop();

 // Testing begins here

 serialPort1.DiscardOutBuffer();

 serialPort1.DiscardInBuffer();

 // First byte received should be 1, so pretend last byte received was 0

 lastByte[0] = 48;

 stopwatch.Start();

 for (int repeat = 0; repeat < dataPoints; ++repeat)

 {

 // stopwatch.Reset();

 startTicks = stopwatch.ElapsedTicks; // mark start of test

 // Test Start

 while (serialPort1.BytesToRead == 0)

 { }

 stopTicks = stopwatch.ElapsedTicks; // mark stop of test

 serialPort1.Read(receivedByte, 0, 1);

 serialPort1.DiscardInBuffer();

 // Is the byte received the same as the one sent out?

 if (receivedByte[0] == 49) // received byte was 1

 correctByte = (lastByte[0] == 48);

 else if (receivedByte[0] == 48) // received byte was 0

 correctByte = (lastByte[0] == 49);

 // Store current byte to lastByte to be compared for correctByte received

 lastByte[0] = receivedByte[0];

 totalTicks = stopTicks - startTicks;

 TTLms = 25-((totalTicks * 1000.0) / Stopwatch.Frequency);

 // Add to string builder for storing in .txt file

 sb.AppendLine(totalTicks + "\t" + correctByte + "\t" + TTLms); // Add the new

data points to the Stringbuilder

 textBox1.AppendText(totalTicks + "\t" + correctByte + "\t" + TTLms); // Add

the new data points to the Stringbuilder

P a g e | 169

 textBox1.AppendText(Environment.NewLine);

 // clear serial port buffers

 // serialPort1.DiscardOutBuffer();

 }

 StopRecording();

 this.Invoke(new EventHandler(SaveDialog));

 }

 public void SaveDialog(object sender, EventArgs e)

 {

 /// When the timer runs out or STOP is pressed, a Save Dialog appears

 SaveFileDialog saveFileDialog1 = new SaveFileDialog();

 saveFileDialog1.Filter = "txt files (*.txt)|*.txt|All files (*.*)|*.*";

 saveFileDialog1.FilterIndex = 1;

 saveFileDialog1.RestoreDirectory = true;

 saveFileDialog1.FileName = "DeviceTest0";

 if (saveFileDialog1.ShowDialog(this) == DialogResult.OK)

 {

 File.WriteAllText(saveFileDialog1.FileName, sb.ToString());

 }

 }

 public void StopRecording()

 {

 // Close Com port

 if (serialPort1.IsOpen)

 {

 serialPort1.Close();

 }

 }

 }

}

P a g e | 170

TTL Time Testing GUI

P a g e | 171

MATLAB Analysis Code Example

%% Serial to Serial Data Analysis - Computer 1, Windows 7, USB, P1 to P2

% Nicholas Grzeczkowski

%% Preparation

% Cleanup workspace

clc, clear, close all

% Identify Testing Configuration

testId = '1, Windows 7, USB, P1 to P2'; %declare computer test number here

height = 170; % height of individual histogram bars, raise if clipping, lower if they look

like lumps

errorSpace = .1; % space around error bar, raise if they look too close to borders

%Import all relevant data in this folder

DeviceTest01 = importdata('DeviceTest01.txt');

DeviceTest02 = importdata('DeviceTest02.txt');

DeviceTest03 = importdata('DeviceTest03.txt');

DeviceTest04 = importdata('DeviceTest04.txt');

DeviceTest05 = importdata('DeviceTest05.txt');

DeviceTest06 = importdata('DeviceTest06.txt');

DeviceTest07 = importdata('DeviceTest07.txt');

DeviceTest08 = importdata('DeviceTest08.txt');

DeviceTest09 = importdata('DeviceTest09.txt');

DeviceTest10 = importdata('DeviceTest10.txt');

% store all in data.mat

save('data');

%% Load data into usable files

% Not loading ticks, just calculated milliseconds

success = [DeviceTest01.textdata(:,2) DeviceTest02.textdata(:,2)

DeviceTest03.textdata(:,2) DeviceTest04.textdata(:,2) DeviceTest05.textdata(:,2)

DeviceTest06.textdata(:,2) DeviceTest07.textdata(:,2) DeviceTest08.textdata(:,2)

DeviceTest09.textdata(:,2) DeviceTest10.textdata(:,2)];

lagtime = [DeviceTest01.data DeviceTest02.data DeviceTest03.data DeviceTest04.data

DeviceTest05.data DeviceTest06.data DeviceTest07.data DeviceTest08.data

DeviceTest09.data DeviceTest10.data];

% compile all lag times into one array

P a g e | 172

completeLag = [lagtime(:,1); lagtime(:,2); lagtime(:,3); lagtime(:,4); lagtime(:,5);

lagtime(:,6); lagtime(:,7); lagtime(:,8); lagtime(:,9); lagtime(:,10)];

% Number of bins array

bin = min(lagtime(:)):.05:max(lagtime(:));

%% Finding accuracy, averages, standard deviations

%Check if 100% accurate

%Create a cell array of all 'True', then compare to output file

trueCellArray = repmat({'True'},[1001 10]);

allCorrect = isempty(setxor(trueCellArray,success)) %if this is 1, all values are true

for i = 1:10

 meanTests(i) = mean(lagtime(:,i)); % Column 1 will contain averages

 stdTests(i) = std(lagtime(:,i)); % Column 2 will contain std dev

end

%% Plots

% All tests in individual plots

ind_plots = figure;

for i = 1:10

 y = 1:length(lagtime);

 s2(i) = subplot(2,5,i);

 plot(y,lagtime(:,i));

 % All tests in graph

 title(['Test ', num2str(i)])

 axis([0 1000 min(lagtime(:)) max(lagtime(:))])

 xlabel('Iteration')

 ylabel('Lag time (ms)')

end

suptitle(['Plots of All Tests, Computer ', num2str(testId)])

print(ind_plots, '-dpng',['Ind_Plot_comp ',testId]);

% plot of all tests

all_plots = figure;

plot(completeLag)

axis([0 10000 min(lagtime(:)) max(lagtime(:))])

suptitle(['Plots of All Tests, Computer ', num2str(testId)])

xlabel('Iteration')

ylabel('Lag Time (ms)')

print(all_plots, '-dpng',['All_Plot_comp ',testId]);

P a g e | 173

%% Histograms

% All tests in individual histograms

ind_hist = figure;

for i = 1:10

 s(i) = subplot(2,5,i);

 hist(s(i),lagtime(:,i),bin)

 axis([0 max(lagtime(:)) 0 height])

 xlabel('Lag time (ms)')

 ylabel('Number of instances')

 title(['Test ', num2str(i)])

end

suptitle(['Histograms of All Tests, Computer ' , testId])

print(ind_hist, '-dpng', ['Ind_Hist_comp ',testId]);

% Histogram of all tests

all_hist = figure;

hist(completeLag,bin);

xlabel('Lag time (ms)')

ylabel('Number of instances')

suptitle(['Histogram of All Tests, Computer ' , testId])

print(all_hist, '-dpng',['All_Hist_comp ',testId]);

%% Bargraph with error bar

bargraph = figure;

bar(meanTests,'r','Edgecolor','b')

axis([0 11 min(meanTests(:))-max(stdTests(:))-errorSpace

max(meanTests(:))+max(stdTests(:))+errorSpace]);

hold;

errorbar(meanTests,stdTests,'k')

suptitle(['Mean Lag Time Across All Tests, Computer ', num2str(testId)])

xlabel('Test Number')

ylabel('Lag time (ms)')

print(bargraph, '-dpng',['Bargraph_comp ',testId]);

%% Overall calculations

meanAll = mean(lagtime(:)) % mean of all data points

stdAll = std(lagtime(:)) % standard deviation of all data points

stdBetweenTests = std(stdTests) % std deviation between entire test scores

P a g e | 174

Appendix D: All Testing Results

Serial to Serial and TTL to Serial

P a g e | 175

P a g e | 176

P a g e | 177

P a g e | 178

P a g e | 179

P a g e | 180

P a g e | 181

P a g e | 182

P a g e | 183

P a g e | 184

P a g e | 185

P a g e | 186

P a g e | 187

P a g e | 188

P a g e | 189

P a g e | 190

P a g e | 191

P a g e | 192

P a g e | 193

P a g e | 194

P a g e | 195

P a g e | 196

P a g e | 197

P a g e | 198

P a g e | 199

P a g e | 200

P a g e | 201

P a g e | 202

P a g e | 203

P a g e | 204

P a g e | 205

P a g e | 206

P a g e | 207

P a g e | 208

P a g e | 209

P a g e | 210

P a g e | 211

P a g e | 212

P a g e | 213

P a g e | 214

USB vs. Native Serial

P a g e | 215

P a g e | 216

P a g e | 217

P a g e | 218

P a g e | 219

P a g e | 220

P a g e | 221

P a g e | 222

P a g e | 223

P a g e | 224

P a g e | 225

P a g e | 226

P a g e | 227

Operating Systems

P a g e | 228

P a g e | 229

P a g e | 230

P a g e | 231

P a g e | 232

Appendix E: Development Platform Selection Spreadsheet

