
Task Partitioning for Distributed Assembly

A Thesis

Submitted to the Faculty

of

Drexel University

by

James Worcester

in partial fulfillment of the

requirements for the degree

of

Doctor of Philosophy in Mechanical Engineering and Mechanics

2015

Acknowledgments

I would like to thank my advisor, Ani Hsieh, for providing continual direction and en-

couragement. My collaborator Rolf Lakaemper was invaluable in providing the code for

the Kinect. I would also like to thank the members of my committee, including Paul Oh,

David Breen, Suhada Jayasuriya, Youngmoo Kim, John Lacontora, and Alan Lau. This

research owes a debt to all the undergraduates who helped out along the way, most espe-

cially Joshua Rogoff, Mary Conrad and Zach Block. I am also grateful for the support and

advice of the graduate students of SASLab, they are Bill Mather, Ken Mallory, Dean Ga-

lorowicz, Dennis Larkin, Matt Michini, and John Alexander. This work was supported by

the National Science Foundation [CNS-1143941]; and the National Institute of Standards

and Technology [ARRA-NIST-10D012].

ii

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . 1

1. Introduction . 2

1.1 Contribution . 5

1.2 Organization . 6

2. Graph Search Strategies and Evolutionary Algorithms. 10

2.1 Graph Search Algorithms . 10

2.2 Evolutionary Algorithms, Genetic Algorithms and Ant Colony Optimization 11

3. Problem Description . 16

4. Dijkstra-Based Methods . 19

4.1 Analysis. 26

5. Online Workload Balancing and Error Correction . 29

5.1 Online Workload Balancing . 29

5.1.1 Node Trading Algorithm . 30

5.1.2 Communications Protocol. 31

5.2 Complexity . 34

5.3 Online Error Correction. 36

6. Ant Colony Optimization Methods . 37

6.1 Baseline Strategy . 38

6.2 Variant Strategies . 41

7. Towards Cooperative Manipulation for Distributed Assembly. 44

7.1 Task Management . 46

7.2 Minimum Number of Robots . 47

7.3 Communications Protocol . 48

iii

7.4 Avoiding deadlock . 50

8. Simulations . 51

8.1 Dijkstra-Based Methods . 51

8.1.1 Results . 52

8.1.2 Discussion . 53

8.2 Online Workload Balancing . 54

8.2.1 Results . 55

8.2.2 Discussion . 57

8.3 Ant Colony Optimization . 59

8.3.1 Results . 60

8.3.2 Discussion . 68

8.4 Cooperative Manipulation . 71

8.4.1 Results . 71

8.4.2 Discussion . 76

9. Experimental Validation . 78

9.1 Results . 80

9.1.1 Dijkstra-Based . 80

9.1.2 Online Workload Balancing and Error Correction . 81

9.1.3 Ant Colony Optimization . 85

9.2 Discussion . 86

10. Conclusions and Future Work . 88

Bibliography . 91

iv

List of Tables

8.1 Simulation results . 53

8.2 Examples demonstrating flexibility . 55

8.3 Variable size cubes built with seven robots . 57

8.4 Variable numbers of robots on a structure with 512 nodes . 58

8.5 Performance as a Function of Team Size . 63

8.6 Results on Asymmetric Structures . 63

8.7 Workload Variance on Larger Structure with Clustered Start Nodes, Average

of 5 Runs . 68

8.8 Workload Variance on Larger Structure with Scattered Start Nodes, Average of

5 Runs . 69

8.9 Performance with Different Decay Rates . 69

8.10 Results for Arch . 73

8.11 Results for 4 Legged Arch . 73

8.12 Results for Arch Tunnel. 74

8.13 Results for Da Vinci Bridge . 74

9.1 Experimental results . 82

9.2 Initial Allocation for the 3D Structure in Fig. 9.2(b) . 83

9.3 Allocation After Detection of a Missing Tile. 84

9.4 Experiment Completion Times in Seconds . 87

9.5 Two M3 robots with variable manipulation times . 87

v

List of Figures

2.1 An example of a depth first search. 12

2.2 An example of a breadth first search . 12

2.3 An example of Dijkstra’s Algorithm . 13

3.1 (a) A structure graph, navigation between nodes is only possible if an edge is
present between those nodes. (b) A constraint graph requiring that the central
node be built before the adjacent nodes. (c) An example of a structure that
would not be in SA. The displayed constraints state that each of the outer nodes
must be placed before the central node. Assuming the robot can only move
through the displayed spaces, a robot cannot reach the central node once all of
its supports have been placed. 17

4.1 An example of phase I applied to a graph. The red nodes represent the roots
of the two trees. One robot claims the green nodes, the other claims the blue.
The green robot cannot claim any more nodes during phase I because it has
distance 3 to all the blue nodes, while the blue robot has distance at most 2 to
any of its nodes. 21

4.2 (a) The desired structure, composed of two towers with a connecting bridge. (b)
Structure as built by Algorithm 1. Blue and orange represent the two robots,
and the white x’s represent their root locations. (c) The same structure as built
by Algorithm 2. Note the decrease in potential conflicts between the robots. 25

6.1 An example task allocation, with each node labeled by its distance from the
root. 43

8.1 (a-g) Structures 1-7 and (h) Structure 9 partitioned by Algorithm 3. Black
denotes empty space, while different colors represent different robots. 52

8.2 The structure used as example 11 . 55

8.3 Graphs showing relatively linear growth in both completion time and number
of messages with respect to structure size. Data listed in table 8.3. 56

8.4 Graphs showing number of messages and completion time relative to number
of robots. As the size of the team increases, the completion time drops linearly
while the number of messages shows slight growth. Data listed in table 8.4. 56

vi

8.5 (a) The base structure, consisting of nine towers connected by ground paths. (b)
A typical decomposition, in this case by DAACO-S using 8 robots. Different
colors represent the task sets of different robots. 60

8.6 Solutions for six robots, as solved by DAACO-S (a) and the deterministic al-
gorithm (b). Task sets are delineated by different colors. 61

8.7 Standard deviation of workload between robots when building the base struc-
ture, consisting of nine towers connected by ground paths. 62

8.8 Two asymmetric structures. (a) Tower structure with one tower triple the height
of the rest (b) 2-d structure with lopsided areas . 64

8.9 Plans created for asymmetric tower structure by (a) DAACO, (b) DAACO-S,
(c) DAACO-D, and (d) deterministic algorithm. 64

8.10 Plans created for 2-D structure with lopsided areas by (a) DAACO, (b) DAACO-
S, (c) DAACO-D, and (d) deterministic algorithm. 65

8.11 The larger structure, showing a plan for 10 robots determined by DAACO-SCII. 66

8.12 Workload variance between robots when building the larger structure, a house
of 1360 nodes. 67

8.13 (a) Basic arch structure. (b) Four legged arch. (c) Tunnel composed of inde-
pendent arches. (d) Da Vinci bridge. 72

8.14 Side (a) and front (b) views of a Da Vinci bridge. 72

8.15 (a) Number of nodes built per robot for each structure type. (b) Finish times for
each structure type. (c) Total wait times for each structure type. (d) Number of
messages per robot for each structure type. 75

9.1 Team of two assembly robots and one VI-robot with a raised Kinect around a
partially completed structure. 79

9.2 (a) Sample assembly tiles. (b) Desired structure to be assembled. 80

9.3 Two M3 robots working on a structure. 81

9.4 ((a) Tile removed. (b) Missing tile reported by the scanning robot. 83

9.5 Two assembly robots with a completed structure. 85

vii

9.6 (a) The target structure. (b) The parts available in the experimental setup. 86

1

Abstract
Task Partitioning for Distributed Assembly

James Worcester
Advisor: M. Ani Hsieh

This thesis addresses the problem of how to plan a strategy for a team of robots to coop-

eratively build a structure, henceforth referred to as the distributed assembly problem. The

problem of distributed assembly requires a range of capabilities for successful completion

of the task. These include accurate sensing and manipulation using a mobile robot, the

ability to continuously adhere to precedence constraints on placements, and the ability to

guarantee static stability at every stage of construction.

The fundamental contribution of this work is to propose methods to address task allo-

cation problems in the presence of constraints on task ordering. Algorithms are presented

to partition 2- and 3-D assembly tasks into N separate subtasks that satisfy local and global

precedence constraints between the assembly components. The objective is to achieve a

partitioning that minimizes completion time by minimizing the workload imbalance be-

tween the robots, and maximizes assembly parallelization. Towards this objective four

approaches are presented. The first is an approach where each robot runs a simultaneous

Dijkstra’s Algorithm with its own root. The second approach incorporates online workload

balancing and error correction by adding a communication scheme and a scanning robot

equipped with a visual depth sensor. The third approach addresses the task partitioning

using an algorithm inspired by Ant Colony Optimization. Finally, the problem of coopera-

tive manipulation for tasks that require close coordination is addressed. All approaches are

tested in both simulation and experiment.

1. INTRODUCTION 2

1. Introduction

Distributed autonomous assembly of general two (2D) and three dimensional (3D)

structures is a complex task requiring robots to have the ability to: 1) sense and manipulate

assembly components; 2) interact with the desired structure at all stages of the assembly

process; 3) satisfy a variety of precedence constraints to ensure assembly correctness; and

4) ensure static stability and structural integrity throughout the assembly process. While

the distributed assembly problem represents a class of tightly-coupled tasks that is of much

interest in multi-robot systems (Chaimowicz et al., 2001), it is also highly relevant to the

development of next generation intelligent, flexible, and adaptive manufacturing and au-

tomation. of different sizes, shapes, and weights onto a pallet; while over 60% of goods

shipped worldwide is achieved by stacking them onto pallets, these tasks are still carried out

mostly by humans (Balakirsky et al., 2010; Schuster et al., 2010b). Palletizing, construc-

tion, manufacturing and maintenance of locomotives, power turbines, etc. are all examples

of 3D assembly where automation can significantly boost productivity and reduce worker

injuries and operational costs.

The execution of tightly-coupled tasks by multi-robot teams has mostly focused on co-

operative grasping and manipulation (Mataric et al., 1995; Fink et al., 2008). These works,

however, do not address the challenges imposed by the need to satisfy specific precedence

constraints during assembly process. These constraints are especially important in appli-

cations like automated palletizing, construction, manufacturing, infrastructure repair and

maintenance since automated strategies must ensure correctness as well as stability of the

resulting structures. While there has been significant focus in micro/nano-scale assembly

(Klavins, 2007; Evans et al., 2010; Matthey et al., 2009; Rai et al., 2011), automated macro-

scale assembly is gaining increased attention. Recent work in this area includes (Petersen

et al., 2011; Yun et al., 2009; Yun and Rus, 2010; Stein et al., 2011; Heger and Singh, 2010;

1. INTRODUCTION 3

Lindsey and Kumar, 2012).

In Werfel and Nagpal (2008); Petersen et al. (2011); Werfel et al. (2014), assembly is

achieved through a combination of robots with limited sensing and actuation capabilities

and assembly components capable of storing and communicating location information with

the robots. The focus of these works is on designing a set of consistent local attachment

rules that ensure completeness and correctness of the assembly, while obeying local con-

straints between pieces and avoiding unrecoverable situations. In Yun et al. (2009); Yun

and Rus (2010); Stein et al. (2011); Schoen and Rus (2013), a workload partitioning strat-

egy is presented to enable a team of robots to achieve parallel construction at the macro

scale. The approach maintains a Voronoi decomposition of the structure based on the as-

sembly robots’ locations by minimizing the total difference in the masses of the assembly

components in each cell. Failures of robots, ordering constraints, and changes to an exist-

ing structure are also addressed. Lastly, the synthesis of assembly instructions for special

cubic structures by a team of quadrotors is discussed in Lindsey et al. (2011). While the

assembly instructions can be executed by quadrotor teams of any size, correctness of the

assembly strategy is achieved through serial execution of the assembly instructions. As

such, this approach does not take advantage of the potential for parallelization afforded by

a multi-robot team. In Schoen and Rus (2013), another strategy for task ordering to handle

these precedence constraints is presented. This strategy also handles the problem of limited

part availability. Lastly, the synthesis of assembly instructions for special cubic structures

by a team of quadrotors is discussed in Lindsey et al. (2011). While the assembly instruc-

tions can be executed by quadrotor teams of any size, correctness of the assembly strategy

is achieved through serial execution of the assembly instructions. As such, this approach

does not take advantage of the potential for parallelization afforded by a multi-robot team.

Amorphous materials are used in Napp and Nagpal (2014) as a way of handling potential

obstacles within the construction site. Khoshnevis (2004) considers the problem of apply-

1. INTRODUCTION 4

ing 3-D printing technology to building scale projects, although this still requires building

a gantry taller than the building. D’Andrea (2011) demonstrates that robotic placement of

parts can be made reliable enough to build large structures.

There has also been considerable work done on task partitioning from a swarm robotics

perspective (Gerkey and Mataric, 2004). The focus from a swarm robotics perspective is

on decentralization, limited perception and communication, and robustness to single robot

failures. Pini et al. (2013) considers a foraging task, composed of independent tasks which

do not have constraints on task ordering. In the hierarchical auction setup of Jones et al.

(2011), precedence constraints are handled by having two sets of robots applied to a prob-

lem where fires need to be extinguished on a map of a town. Each fire truck plans a route

to use for bidding on the fires, and part of this process is to determine how many rubble

piles will need to be cleared from the proposed route. To do this it holds an auction for

each rubble pile among the bulldozers (the second type of robot). This method allows for

two types of tasks where one task can depend on any number of the other type of task.

The distributed assembly problem requires a more general structure where any task may

be dependent on another task, so long as there are no cycles in dependency. Another type

of contraint is considered in Khaluf and Rammig (2013). In this work, time constraints

are allowed, where each task must be completed by a certain deadline or have a cost im-

posed. Only soft deadlines (missing the deadline adds a cost) are considered, as they cannot

guarantee that a hard deadline (missing the deadline implies failure of the task) will not be

missed. This could potentially be used for task ordering, although guarantees that tasks

would not happen out of order would be needed.

The problem of cooperative grasping and manipulation has been considered in Mataric

et al. (1995); Sugar and Kumar (1999); Pereira et al. (2004); Fink et al. (2008); Michael

et al. (2011); Yamashita et al. (2003); Spletzer et al. (2001); Chang et al. (2000). These

works focus on the question of how a team of robots can work in close coordination to

1. INTRODUCTION 5

accomplish a common task. I am interested in how these cooperative manipulation tasks

affect the task partitioning problem. Specifically, given a larger team of robots, how subsets

of this team get assigned to work in close coordination for a specific task and then rejoin

the larger team.

Despite these successes, significant challenges still remain. First, existing macro-scale

assembly strategies often reduces to a serialization of the assembly procedure despite em-

ploying multiple robots (Werfel et al., 2014; Lindsey and Kumar, 2012). While this ensures

correctness of the resulting structure and safe execution, it can significantly hamper pro-

ductivity by not exploiting parallelization in the assembly process. Second, existing strate-

gies often rely on external sensors for localizing the assembly components (Lindsey and

Kumar, 2012; Schoen and Rus, 2013), i.e., stationary sensors mounted in the workspace.

While such a strategy may be feasible for small work cell volumes, such an approach may

be challenging for large workspaces since it would be difficult to provide enough coverage

and accurate localization. This work will seek to provide an approach that minimizes con-

struction time while addressing the precedence constraints likely to be found in an assembly

problem.

1.1 Contribution

The main contribution of this work is to extend graph search techniques and evolution-

ary algorithms, in particular Ant Colony Optimization, to be applicable to the problem of

distributed assembly. The objective throughout the approaches presented is to minimize

completion time, usually by minimizing the related characteristic of workload imbalance.

Minimizing this imbalance between robots will minimize the time robots spend idle, which

will in turn minimize completion time. Various aspects of the problem are considered in

detail, including task parallelization, preplanning, online workload balancing through ex-

changes of assigned tasks, communication schemes, and finally extending the approach

1. INTRODUCTION 6

to handle more complicated arch-like structures that require close coordination between

robots.

The approaches presented here can also be applied more broadly to other task partition-

ing problems involving complex constraints. One broad area would be paralell processing

problems on how to assign jobs to multiple processors, where the tasks are not cleanly

separable but have precedence constraints on ordering of tasks. Other areas within robotics

would be warehouse problems requiring more complex interaction between robots. The

best known warehouse solution is Kiva systems (http://www.kivasystems.com), where hu-

man packers are required to combine the items into one package. One of the obstacles

to automating that process would be the uncertainty in what order items will arrive. By

adding ordering constraints, the approaches presented here could ensure that items arrive

in a specified order, making it possible to automate this process using palletizing software

such as Schuster et al. (2010a). The most direct application of these approaches would be

to an automated construction approach, using robots designed to perform specific routine

construction activities, from pouring concrete to spreading mortar, in concert with humans

performing more varied tasks. With either sensing to detect when the human tasks are

completed or manual check-ins, the robots could plan a task ordering to accomplish their

workload at appropriate times relative to related tasks.

1.2 Organization

Chapter 2 will review background material in graph search techniques, evolutionary

algorithms, and particularly Ant Colony Optimization. As robotics is necessarily a multi-

disciplinary field, the goal of this chapter is to provide enough information so that readers

unfamiliar with these topics will still find the rest of the thesis clear after reading this

background. This chapter will not attempt to provide a comprehensive discussion of these

topics, but rather will seek to introduce the most relevant aspects that will be important to

1. INTRODUCTION 7

later discussion throughout this work.

Next, Chapter 3 lays out the problem to be solved, and introduces variables and repre-

sentations that will be used throughout the thesis. This chapter will be limited to material

that will remain relevant throughout the document, and will not include representations

used only in specific chapters. Where necessary, later chapters will include additional in-

formation about changes to problem definitions or representations used.

Chapter 4 will address the partitioning of the assembly task into separate subtasks to

be performed by individual robots. The objective is to achieve a partitioning that mini-

mizes the workload imbalance between robots, similar to (Yun et al., 2009; Yun and Rus,

2010),. Specifically, the focus is on a class of structures where the precedence constraints

between the various assembly components can be described by a graph, and construct an

allocation strategy that explicitly accounts for the constraints and discrepancies in the size

of the assigned tasks. Chapter 5 considers the partitioning of the heterogeneous robot team

into assembly and scanning robots. Assembly robots will be tasked to assembly the desired

3D structure using a collection of assembly components of varying shapes and sizes, while

scanning robots provide real-time visual feedback of the state of the structure during as-

sembly. Additionally, this chapter will also include online workload balancing that does not

violate local precedence constraints between assembly components. An advantage of the

proposed workload balancing strategy is that it can be used with any pre-existing assembly

plan modeled as a tree where the root node represents an assembly component located on

the exterior of the desired structure. The main contribution of this chapter is a cooperative

assembly framework that integrates the planning, sensing, and workload balancing into a

single coordination architecture for teams of heterogeneous robots.

In Chapter 6, the problem is approached with an Ant Colony Optimization (ACO)

(Dorigo et al., 1999; Sauter et al., 2002) based solution to the assembly partitioning prob-

lem, which I call Distributed Assembly by Ant Colony Optimization (DAACO). The pri-

1. INTRODUCTION 8

mary contribution of this chapter is the modification of ACO to manage teams of cooper-

ating agents, rather than to determine a policy for a single agent. Where traditional ACO

uses groups of ants exploring the search space of solutions for a single ant, DAACO uses

groups of teams of ants to explore the search space of solutions for a single team. The ap-

proach uses N teams of M ants each. Each team acts independently during a generation, but

pheromone is shared across teams, allowing them to learn from each others’ experience.

Each team has a manager which directs the interaction of the team members, orchestrating

a sequential node-claiming sequence.

Chapter 7 extends the online approach to handle the problem of more closely coordi-

nated manipulation needed for some structures. Specifically, this chapter considers a class

of archlike structures, where most partial assemblies require the support of one or more

robots until later pieces are added. Building on the approach in Chapters 4 and 5, the

assembly task is separated into subcomponents to enable parallel assembly by the assem-

bly robots. This planning phase minimizes the workload imbalance between the assembly

robots without violating local attachment constraints, given by the geometry of assembly

tiles/components, and global precedence constraints, required for structural stability. Dur-

ing construction, robots coordinate online to ensure that each piece is made stable by later

pieces before being released. This chapter will examine how this affects the minimum num-

ber of robots needed for assembly, as well as how to avoid potential deadlock scenarios.

The main contribution of this chapter is a cooperative assembly framework that is capable

of assembling more complicated structures that are not guaranteed to be statically stable

for all intermediate states of assembly.

Simulation results and discussion are presented in Chapter 8. The focus here will be

on how the approaches perform in terms of minimizing workload imbalance on different

structure types, amount of communication needed, and how the approaches scale with the

size of the structure and the number of robots in the team.

1. INTRODUCTION 9

Experimental results are given and discussed in Chapter 9. This chapter provides the

experimental validation for the approaches presented, and discusses some of the challenges

inherent to this problem.

Some concluding remarks and directions for future work are given in Chapter 10. The

main contribution of the work is discussed, the relation to the rest of the field is considered,

and areas for extension are proposed.

2. GRAPH SEARCH STRATEGIES AND EVOLUTIONARY ALGORITHMS 10

2. Graph Search Strategies and Evolutionary Algorithms

In this chapter background material will be provided for graph search strategies, such

as Dijkstra’s Algorithm, as well as evolutionary algorithms, in particular Ant Colony Opti-

mization.

2.1 Graph Search Algorithms

The fundamental purpose of a graph is to represent relations between pairs of objects

or events. In this work, these objects will be parts of a structure being built. A graph, such

as that in Figure 2.1, has a set of nodes or vertices, V , that represent individual objects or

events, and edges, E, that represent some relation between them. In this work, edges are

generally used to represent a direct connection between parts within the structure. While

graphs are widely used for many purposes, this discussion will focus on just one of those

areas: finding a path between a pair of nodes. As edges often represent a physical distance,

the most direct application of this is finding a route between two points, and for some

algorithms that becomes finding the shortest route.

Two basic methods of approaching this type of problem are depth-first search (DFS)

and breadth-first search (BFS). In DFS, the search is conducted by following a path as far

as it goes (or until it revisits a node already on the path), and then backing up and trying a

different path until the target node is reached. An example of DFS can be seen in Fig. 2.1,

with the nodes labeled in the order vistited. As this algorithm terminates as soon as a path

to the target is found, it is not guaranteed to find the shortest path. In BFS, the algorithm

first checks all neighbors of the starting node, then all neighbors of those nodes, and so on,

as shown in Fig. 2.2. The downside of this is that it can be very demanding for memory

usage. Additionally, if edges have weights on them, for example representing distance, this

2. GRAPH SEARCH STRATEGIES AND EVOLUTIONARY ALGORITHMS 11

approach is not guaranteed to find the shortest path, just a path with the fewest possible

edges. Another way of looking at DFS and BFS is to consider the data structure holding

the possible routes. BFS uses a queue, where the first node put into the queue is the first

node taken out and looked at. In contrast, DFS uses a stack, where the last node placed into

the stack is the first one removed and visited.

An algorithm that is guaranteed to find the shortest path from a start node to a sepa-

rate goal node is Dijkstra’s Algorithm. This algorithm is structured similarly to BFS, but

changes how nodes are added to the queue when a new node is visited. In BFS, all new

neighbors are added, with the ordering ignored. In Dijkstra’s algorithm, the queue is re-

placed by a priority queue, where each node added is also given a priority, and the lowest

priority node is the next to be removed from the queue and visited. For Dijkstra’s Algo-

rithm, this priority is the distance from the root (starting node). When a node is visited,

it considers a path through that node to each of its neighbors. If that path gives a shorter

distance to that neighbor than has been found previously, the neighbor is assigned the new

shorter distance. This means that each node visited is guaranteed to have found the shortest

path back to the root, as all unvisited nodes must have a higher distance, and therefore could

not be part of a shorter distance (note that this requires non-negative edge weights). The

algorithm does not terminate until the goal node is removed from the queue and visited,

at which time this guarantee of having found the shortest path applies to the goal node as

well. An example is shown in Fig. 2.3, note that the path to the node labeled 5 takes a route

that has more edges but a lower cost than the alternate path through node 6.

2.2 Evolutionary Algorithms, Genetic Algorithms and Ant Colony Optimization

Many problems involve searching a high-dimensional space for an optimal solution,

and often in these situations finding the global optimum is an NP-hard problem, so it is not

practical to look for a guarantee of global optimality in those cases. This leaves us with

2. GRAPH SEARCH STRATEGIES AND EVOLUTIONARY ALGORITHMS 12

Figure 2.1: An example of a depth first search.

Figure 2.2: An example of a breadth first search

the question of how to approach these problems. There are many approaches available

in the various techniques used in machine learning, but the focus here is on biologically-

inspired evolutionary algorithms. Based on natural selection, these algorithms attempt to

provide a framework where gradual improvement of the candidate solutions through many

generations reaches a fairly good overall solution by the end of the process.

2. GRAPH SEARCH STRATEGIES AND EVOLUTIONARY ALGORITHMS 13

Figure 2.3: An example of Dijkstra’s Algorithm

For any evolutionary algorithm, there are a few broad concerns. The first is how to

define the fitness function, which determines what approaches will be kept for the next

generation. This is analogous to an objective function, and how it is defined varies from

problem to problem, but anything not included in the fitness function will not be optimized

for in the outcome of the algorithm. Throughout the approaches discussed in this thesis,

one central consideration will be the variance of the workload between robots. This is done

in order to minimize completion time by ensuring that all robots have similar amounts of

work.

Another consideration in evolutionary algorithms is to maintain diversity in the pop-

ulation, so that more of the search space is evaluated. A common failure mode for these

algorithms is an early convergence into one local minimum, where the rest of the genera-

tions are spent on small refinements within that local minimum without ever discovering

better areas of the search space. This is similar to the problem of overfitting in other ma-

chine learning algorithms, where the solution becomes too finely tuned to a particular data

set and the broader picture is lost.

2. GRAPH SEARCH STRATEGIES AND EVOLUTIONARY ALGORITHMS 14

The most common type of evolutionary algorithm is a genetic algorithm. This works by

having a population of candidate solutions with some number of ”genes” defining each so-

lution. In each generation, the best candidates are kept and replicated with random changes

made to some genes, which serves the same purpose as mutations in evolution. The exact

way that these changes are made varies, and sometimes includes combining pairs of can-

didates to create a ”child” candidate with some propoerties of each parent. The purpose of

combining two candidate solutions is to explore new areas of the search space that may be

outside the current set of local minima represented by the candidate population.

A more recent form of evolutionary algorithm is Ant Colony Optimization (ACO),

which will be applied to the distributed assembly problem in Chapter 6. This algorithm

takes inspiration from the behavior of ants using pheromone to communicate about paths

to food. Similar to genetic algorithms, ACO is a biologically inspired algorithm that grad-

ually refines candidate solutions through many generations to optimize performance on

some objective function. The main difference between the two is that ACO stores the in-

formation in the simulated environment through depositing pheromone, while GA stores

the information in the genes of the candidate population. Storing the information in the

environment can lead to a more natural representation for tasks closely linked to a spatial

representation, for example path finding. In the implementation presented here, the envi-

ronment where pheromone is deposited is a graph representing the structure to be built.

One advantage of this method is that information is shared by all candidate solutions rather

than held within each candidate. However, this means there is still the danger of early con-

vergence to one local minimum, so methods to maintain solution diversity are important

for any implementation of ACO. A final advantage of ACO for this application is that the

extension to a team of robots is more natural than it would be for GA. To apply GA to a

team of robots, one needs to either have all robots share the same genes, or be faced with

a dimensionality problem if each robot keeps it’s own genes. Since all candidates in ACO

2. GRAPH SEARCH STRATEGIES AND EVOLUTIONARY ALGORITHMS 15

already share information, which is dependent on position in the environment, a team of

robots using an ACO strategy can differentiate their behavior based on their location more

easily.

3. PROBLEM DESCRIPTION 16

3. Problem Description

The approaches here will use a team of N homogeneous robots, each capable of trans-

porting a single assembly component from a cache location to the assembly site. In Chap-

ter 5, this is further subdivided into Na assembly robots with the above capability, and

Ns scanning robots, equipped with Microsoft Xbox Kinect visual depth sensors. Let M

denote the number of distinct assembly components/tiles/nodes where ti denotes a compo-

nent/tile/node of type i. It will be assumed that each tile of type i can be described as a

general polytope and that the robots know the geometries of the different tile types a pri-

ori. Furthermore, every tile of type i will have a fixed number of attachment sites. These

attachment sites are locations where tiles can mate and lock onto other tiles. Let W denote

the workspace and S denote a desired target structure. The structure-free portion of W is

given by W f = W \ S. Let GS = {VS,ES} denote the structure graph where each node in

VS represents each structural component that can be placed next to or on top of other com-

ponent(s) by a single robot to form larger structures. An edge (u,v) exists in ES if v can

be reached from u through a path in W f and vice versa. For every (u,v) ∈ ES, a weight is

assigned equal to the planar Euclidean distance between u and v. The mass of a node is the

amount of time required to build the node. It is also assumed that S is finite in size or VS is

a finite set.

In this work, the impact of precedence constraints on the order of assembly for task

partitioning will be considered. It is assumed the constraints are of the form u ≺ v, or

u must be built before v which represents a variety of assembly constraints, e.g., different

materials that must be combined in a specific sequence or the placement order of supporting

components for structural stability during assembly. For a desired S, let a constraint graph

be defined as a directed graph GC = {VC,EC} such that VC =VS and EC = {(u,v)|u≺ v} and

for every (u,v)∈EC, u will be called a support, and v a supported node. In general, given S,

3. PROBLEM DESCRIPTION 17

(a) (b) (c)

Figure 3.1: (a) A structure graph, navigation between nodes is only possible if an edge is
present between those nodes. (b) A constraint graph requiring that the central node be built
before the adjacent nodes. (c) An example of a structure that would not be in SA. The
displayed constraints state that each of the outer nodes must be placed before the central
node. Assuming the robot can only move through the displayed spaces, a robot cannot
reach the central node once all of its supports have been placed.

these constraints can be obtained by adding an edge for each node that is directly supported

by another node (i.e., must be placed after that node), derived from an AND/OR graph

representation (Sanderson et al., 1990), or derived from a sequential assembly plan similar

to (Grushin and Reggia, 2008). Finally, define a directed graph GR = {VR,ER}, i.e., the

route graph, where VR =VS and ER is given by ER = {ES \ED} with ED = {(u,v)| (v,u) ∈

EC}. The route graph represents all the viable paths within the structure that do not travel

from a supported node to its support. It is assumed that there exists an obstacle-free and

fully connected W prior to the assembly of S to simplify the motion-plans used to estimate

the time to assembly for individual components and to ensure all components in S are

reachable at some point in the assembly process.

The set of admissible structures SA includes only structures whose GR is strongly con-

nected and GC has no cycles. For 3-D structures, the limitations of the mobile manipulator

adds the restriction that to be a member of SA, each node must be reachable from W f ac-

cording to the geometry of the assembly robot. In this work, the objective is to partition S

into N (or Na in Chapter 5 subcomponents that can be assigned to individual robots for as-

sembly. The resulting allocation should minimize the workload imbalance between robots

3. PROBLEM DESCRIPTION 18

while satisfying the constraints in GC. Furthermore, the desired decomposition of the task

should result in robots spending an approximately equal amount of time on their tasks,

while minimizing the time robots wait for one another.

Finally, it is assumed robots are able to localize within the workspace, identify and ma-

nipulate the components located at the parts/components cache, and are able to determine

thier position relative to the structure throughout assembly. While this work is focused on

ground mobile manipulators, the proposed partitioning strategies can be extended to other

autonomous robots.

4. DIJKSTRA-BASED METHODS 19

4. Dijkstra-Based Methods

This chapter proposes three variants of one algorithm whose inputs are GS, GC, and

the following information for each node in the structure: location, time required to build,

distance to cache, and whether that node is on the boundary of S, i.e. directly adjacent to

W f . The outputs of the algorithms are N assembly sequences each specifying the order in

which the components should be placed.

The base algorithm for the partitioning of S consists of three phases. Phase I of the

algorithm begins by running a simultaneous Dijkstra’s algorithm for each robot. Different

from a standard Dijkstra’s algorithm, this algorithm replaces the root with a set of starting

roots, and runs a simultaneous Dijkstra’s algorithm by finding at each step the shortest

distance of any node to any root. The set of starting roots is found by determining the

angular density of the structure about the center of mass, and then spacing the starting roots

such that the wedge mapped out between any two starting roots has the same portion of the

mass of the overall structure. This generates a set of trees Zi for robots i= 1, . . . ,N, where it

is guaranteed that every node’s path to its root is the shortest path to any root (Cormen et al.,

1990). This can also be viewed as a single-bid auction with the modification of allowing

bids on all lots simultaneously rather than sequentially auctioning each node. The lowest

bid on any node wins that node, and then the auction is restarted. One advantage of this

approach over a Voronoi based approach is that it yields a spanning tree for each subtask,

which is useful in planning the assembly order within each task. Having this tree structure

also allows us to maintain a guarantee of an open path back to the root by only building

leaves of the remaining tree as will be seen in Phase III.

To ensure that no constraints in GC are violated, there is a check each time a node is

added that its ancestor set does not include any of its supports. If an addition violates this

condition, the edge in GS that allowed this connection is removed. Because one node of

4. DIJKSTRA-BASED METHODS 20

this edge is already in this tree, the only effect of removing that edge is to prevent this

assignment. It is important to note that this addition to Dijkstra’s algorithm removes the

guarantee that each node has the shortest path to a root node, and as such the solutions

generated by this part of the algorithm will not retain the shortest path property. These

situations are resolved by running an A* search in GS from the current node back to the

root of the tree attempting to claim it, throwing out any routes that would go through the

current node’s support. The restriction to the class of structures SA guarantees that a route

will be found. The algorithm then reassigns the parents of each node in the path to follow

this new route, allowing us to claim the node in question. This phase of the algorithm is

summarized in Algorithm 4.0.1.

Algorithm 4.0.1 Algorithm 1 Phase I
while there are unclaimed nodes do

node←closest node to any root
if no constraint is violated then

assign node to the closest root’s associated tree.
else

run A* from node to the closest root
if A* succeeds then

assign node and change parentage of all nodes along the discovered path
else

sever the connection used to reach this node and continue
end if

end if
end while

After Phase I, each partition consists of a spanning tree describing one portion of the

task. By choosing the root nodes of the Zi’s to be nodes along the outside of S, it is possible

to guarantee completion of the structure without robots becoming stuck in a partially built

structure via the following strategy. At each assembly step, robots are restricted to building

one of the leaves of their current tree, and removing that leaf from their tree. While the

4. DIJKSTRA-BASED METHODS 21

current outlined strategy guarantees completeness and correctness, the overall performance

may still be poor since there is no guarantee that the resulting tasks will be similar in size,

as shown in fig. 4.1. This figure shows a scenario where phase I has led to an unbalanced

distribution of work, since the root node on the left is closer to most of the structure.

Figure 4.1: An example of phase I applied to a graph. The red nodes represent the roots of
the two trees. One robot claims the green nodes, the other claims the blue. The green robot
cannot claim any more nodes during phase I because it has distance 3 to all the blue nodes,
while the blue robot has distance at most 2 to any of its nodes.

The main purpose of Phase II is to balance the distribution of work between the various

trees via an exchange of nodes while ensuring no violations to the constraints specified by

GC. A weighted average of three criteria is used to evaluate potential trades. Those criteria

are: 1) the total Euclidean distance along the path leading back to the root node; 2) the sizes

of both the giving and receiving trees in relation to the average tree size; 3) the benefit of

including both parts of a constraint within the same tree. The last criterion minimizes the

number of delays due to robots pausing during construction to wait for others. The trade

with the highest value is chosen at each step.

To determine which nodes to exchange between any two trees Zi and Z j, Algorithm

4.0.2 is used. This strategy alternates between having the smallest tree look for a node to

take and having the largest tree look for a node to give away. In both cases, a set consisting

of that node and all of its descendants is created to ensure that the tree structures for each

robot are preserved. Thus, trades of individual leaves and trades of larger branches are both

4. DIJKSTRA-BASED METHODS 22

considered. The process is repeated until no trade above a certain threshold value is found

by either method, or until a hard limit on the number of trades is reached. This hard limit

is included to guarantee termination of the algorithm, although in practice the number of

trades was found to be significantly lower than the limits imposed.

Algorithm 4.0.2 Algorithm 1 Phase II
repeat

tree← smallest tree
for i = 1 to N do

score← value of this tree taking node i
if score < bestScore then

bestScore← score
bestNode← i
newTree← tree
oldTree← i.getTree()

end if
end for
tree← largest tree
for i = 1 to N do

score← value of this tree giving away node i to the best candidate tree
if score < bestScore then

bestScore← score
bestNode← i
newTree← tree chosen to receive node
oldTree← tree

end if
end for
newTree takes bestNode from oldTree

until no trade is found

Once the task has been divided among the robots, all that remains is to specify how

each robot should build its own subtask to best avoid delays resulting from split constraints.

During construction, a path is guaranteed from every remaining node back to the root if the

robot is restricted to building only leaves. As these leaves are built, they are removed from

the structure, thus creating new leaves to be built. For a 2-D structure with robots smaller

4. DIJKSTRA-BASED METHODS 23

than components, this represents the physical path of the robots, while in the experimental

setup used in this work it represents the path of the end effector. To determine the order in

which the leaves of a given tree should be assembled, a weighted average of three factors is

used to give a value to each node. Priority will be given to nodes with lower values, though

a node will not be considered for building until all of its child nodes and supports are

built. The first is the distance from the center of the structure, to encourage robots to build

outward from the center. This simplifies the collision avoidance problem as robots navigate

to and from the cache and the next assembly location. The second criterion is based on the

out degree of a node in GC, counting only edges that cross a boundary between two tasks.

This criterion gives preference for building nodes with a higher out degree in GC early to

provide as much time as possible for their higher number of supported nodes to be built.

The final criterion is determined by the time at which a node’s most recent support was built

by another robot, ignoring the supports built by the robot itself. Maximizing this criterion

avoids robots getting into a situation where they have to pause and wait for another robot

to place a needed support.

Note that while the third criterion does change value during the construction, this crite-

rion must settle to a final value before a node can be built, i.e. when the node’s last support

is placed. Therefore, rather than attempt to sort all nodes at the beginning of construction,

the algorithm adds nodes to the queue as soon as they can be built, knowing that the evalua-

tion of this node will no longer change after that point. In this implementation, a min-heap

is maintained for each robot, which allows both adding a new element and removing the

minimum element in O(log m) time. The structure of a min-heap is a binary tree with a

simple requirement that the value in each node be smaller than both of its children. The

time taken to perform an addition to the heap or to remove the minimum element is primar-

ily used to maintain this heap property. The value given to each node as it is added to the

heap is a weighted average of the three criteria defined above.

4. DIJKSTRA-BASED METHODS 24

Each robot populates its initial heap with the set of leaves of its spanning tree except

for any nodes that are supported nodes. Each robot begins its task by taking the minimum

element of its heap, setting its current time based on the time that will be needed to build

this node, and then finding all nodes that can now be built. The set of new buildable nodes

generated whenever a node B is built will include the parent of B if it has no other unbuilt

children, and any nodes supported by B that have no other unbuilt supports. Performing

these checks is done by maintaining an array of the number of unbuilt children and number

of unbuilt supports for each node. The construction sequence is generated by selecting at

each step the robot R with the minimum current time, as that is the next robot to finish

assembling an element. The algorithm then allows R to place the element at the root of its

heap, adding all new nodes to be built to their respective heaps. This process is repeated

until all robots have emptied their heaps, at which point construction is complete. This

process is summarized in Algorithm 4.0.3.

Algorithm 4.0.3 Algorithm 1 Phase III
while at least one heap is not empty do

heap← heap from robot with minimum current time
node← heap.removeMinimum()
if node is a support then

decrement indices of supported nodes and add any that reach zero to their respective heaps
end if
if node is not the root then

decrement childIndex of parent node and add that node to heap if it has no more children
end if

end while

Next, two variations of this algorithm are considered to further improve its performance.

To motivate the first change, consider the three-dimensional structure built out of Lincoln-

log style blocks shown in Fig. 4.2(a). The structure has two towers connected by an over-

4. DIJKSTRA-BASED METHODS 25

hanging bridge. The constraints on this problem are imposed by the nature of the materials

used and the need to ensure static stability throughout construction. The constraints for this

problem are that each node must be placed after the two nodes supporting it, thus a single

node within the structure can be a part of four distinct constraints. The result of the initial

algorithm is shown in Fig. 4.2(b). This is not the ideal allocation since there are more

split constraints than necessary, which can cause delays during construction as one robot

may need to wait for a placement by the other robot. In general, it is preferable to have

the robots’ sets of tasks as separated as possible to avoid these delays, such as in the plan

shown in Fig. 4.2(c). The reason for the resulting allocation is because the initial allocation

only considers the distance from the node to the root. Phase II is not enough to address this

issue since there is no perceived gain to move a node once the tasks are the same size.

(a) (b) (c)

Figure 4.2: (a) The desired structure, composed of two towers with a connecting bridge.
(b) Structure as built by Algorithm 1. Blue and orange represent the two robots, and the
white x’s represent their root locations. (c) The same structure as built by Algorithm 2.
Note the decrease in potential conflicts between the robots.

To avoid these types of partitions, Algorithm 2 is proposed, which omits Phase II, and

instead combines the node trading and the distance-based Dijkstra’s algorithm by having

the algorithm in Phase I use the full evaluation of a node’s value introduced in Phase II of

Algorithm 1. This means that for Algorithm 2, the Dijkstra’s algorithm considers distance

4. DIJKSTRA-BASED METHODS 26

to root, benefits from constraints, and the current size of the tree in forming the bid for each

node from each tree. Now there is a situation where the bid for a specific node is fluctuating

with every placement rather than only placements that provide a new route to that node.

However, from this one gains the benefit of having the initial allocation attempting to avoid

split constraints while also balancing the task sizes between the robots. Fig. 4.2(c) shows

that this change leads to the desired result on the structure under consideration, where the

two robots are able to minimize their interaction by working on separate towers until the

time comes to build the bridge. One consequence of this change is increased dependence

on the parameters chosen for the weighted average used to form the bids. That said, note

that it is possible to recover the same result as Algorithm 1 if desired by simply setting

the constraint and tree size weights to be very small relative to the weight applied to the

distance from the node to the root.

The combination of Phases I and II into a single phase provides more foresight during

Phase I, but does not preserve all the advantages of Phase II. This is because the node

trading phase in Algorithm 1 is done after the initial allocation of Phase I and can correct for

any discrepancies in size caused by unforeseeable irregularities in the shape of the structure.

To address this, Algorithm 3 is introduced, which uses the improved initial allocation in

Phase I of Algorithm 2, but still performs a separate Phase II to allow additional node

trading. Comparing the results of Algorithms 2 and 3 allows us to determine if Phase II is

redundant when Phase I is using the more complex criteria.

4.1 Analysis

In this section, the completeness and correctness properties of the partitioning strategy

presented are considered. Correctness of the assembly sequence is guaranteed by the fact

that each placement is made in accordance with the specified design, while completeness

is addressed in Theorem 1.

4. DIJKSTRA-BASED METHODS 27

Theorem 1 Given S ∈ SA, Algorithm 1, 2, or 3 will generate a complete plan in finite time.

Proof 1 The proof is composed of two parts. First, it will be shown that the trees generated

in Phase I will include all nodes and then it will be shown that once the trees are generated,

Phase III will generate a complete plan.

The first part is proved by contradiction. Suppose that a node v in the target structure

is not included in any of the trees generated by Phase I. There are only two cases in which

this can occur: 1) no tree ever considers a path to v, or 2) A* fails to find a path from v

back to its associated root.

If case 1 occurs, consider a path P that leads from v to any root r. Since a graph in SA

is strongly connected, such a path must exist. Along that path will be some point at which

a node u not in any tree has a neighbor w in the tree associated with r. The Dijkstra’s

algorithm associated with r will have considered u when w was added, and this creates a

contradiction.

Since A* is guaranteed to find a path within a finite graph if one exists (Cormen et al.,

1990), case 2 can only occur if there is no directed path in SA from v to its associated

root. Since a graph in SA is strongly connected, such a path must exist, and again there

is a contradiction. As such, v cannot be left out of the trees generated in Phase I. This

concludes the first part of the proof. Further, since the node trading in Phase II passes

nodes directly from one tree to another and thus cannot create an orphaned node. Since

this analysis does not depend on the values of the edge weights, it is equally valid for all

three algorithms.

Again, the second part will be proved by contradiction. Suppose that there is a node v

which does not get built. Since assembly continues until all heaps are empty, this means v

was never added to a heap. The only way that can occur is if v never became buildable,

which means either it still has unbuilt children, or it still has unbuilt supports. Since all

4. DIJKSTRA-BASED METHODS 28

heaps are empty, this means that these children or supports were also not built, and con-

sequently have their own unbuilt children or supports. Since any element of SA is a finite

structure, the only way this pattern can continue is if there is a cycle of parent-child and

support relationships preventing each other from being built. Since a spanning tree cannot

have a cycle of children, it must be the case that at least some of the relationships of this

cycle must be supports. Since S ∈ SA, GC cannot have a cycle of supports, at least some

of the relationships of this cycle must be parent-child. This means that there must exist a

node which has a support in its ancestor set, which violates the criteria used in building

the trees. Thus, since the trees from Phase I include all nodes, the assembly task will be

completed in finite time.

5. ONLINE WORKLOAD BALANCING AND ERROR CORRECTION 29

5. Online Workload Balancing and Error Correction

This chapter introduces an online workload balancing strategy for the distributed as-

sembly problem. The preplanning algorithm from the last chapter is modified by adding

an online algorithm to enable robots to trade tasks for faster completion. A scanning robot

equipped with a Microsoft Xbox Kinect is added to provide online error detection, so any

missing parts can be detected and replaced.

The objective can then be stated as requiring the Na assembly robots to build the de-

sired structure Sd , which must be a member of SA, without violating the constraint graph

GC. During this process, a balanced workload will be maintained via the online trading

algorithm and any errors will be reported by the Ns scanning robots to be corrected by the

assembly robots. All communications for a robot must be limited to the sets N1 and N2

defined for that robot.

5.1 Online Workload Balancing

This chapter extends the preplanning approach described above to include online work-

load balancing, accomplished by having each robot independently propose appropriate

trades of tasks. For online trading to be added, it is necessary to consider what com-

munications are allowed. For this purpose, two neighbor sets associated with each robot

are defined. The first, N1, is a static set of robots that the robot is allowed to make trades

with. This is chosen to be the two robots with neighboring entrance nodes as defined by

mapping the direction from the center to the entrance nodes onto a unit circle. The second,

N2, is a variable set encompassing all robots responsible for components adjacent to that

robot’s own components. This set N2 is the set of robots that may place a support node that

affects the current robot. The term neighbors will be used to describe the set N1.

5. ONLINE WORKLOAD BALANCING AND ERROR CORRECTION 30

The preplanning approach generates a starting plan represented by a set of tree struc-

tures, one for each robot’s subtask, with the restriction that the root node provides an exit

from the structure. Each robot begins with full knowledge of the preplan, but may be un-

aware of changes made to that plan by other robots. The overall strategy used is to maintain

accurate knowledge of N1, which is the set of neighbors a robot is allowed to trade with.

Outside this set, a robot has no knowledge of changes made to the plan unless they affect

a robot in its N1 set. These changes will be relayed by that robot, so no communication

with robots outside N2 is required. The only communications coming from outside N1 are

messages indicating that a support has been placed for an unbuilt node held by the robot,

which necessarily comes from a robot in N2. This class of messages could be replaced with

a sensor capable of determining whether a specific support is present for a node that is oth-

erwise ready to be built. By maintaining accurate knowledge of robots that can be trading

partners, each robot is able to independently plan and propose beneficial trades. A robot

will propose a trade whenever it is idle due to none of its task being currently buildable, or

when its workload is below the average of its neighbors by at least twice the average build

time for a node.

5.1.1 Node Trading Algorithm

The algorithm is based on Phase II of the preplanning algorithm, which is described

in Chapter 4. Similar to that method, the online approach uses a weighted average of the

distance from the root to the node being considered, the difference in task size between

the giving and receiving robot, and whether taking the node being considered would put

both parts of a constraint in the same task (which reduces the dependency between robots).

By applying this formula to all neighbors of the current task, a robot can find the highest

value trade it could currently make. For this application the algorithm has been revised

to work in a distributed fashion, with each robot managing its own subtask and holding

5. ONLINE WORKLOAD BALANCING AND ERROR CORRECTION 31

as accurate a representation as possible of neighbors’ subtasks. The method a robot uses

to manage its own task is to maintain a min-heap structure containing all nodes that are

ready to be built. For each node that has not yet been added to the heap, it maintains

two variables describing the number of unbuilt children in the tree structure representation

of the task, and the number of unbuilt supports (nodes that must be built before that node,

generally because they provide an immediate physical support). After building a node itself

or receiving a message from another robot building a node, the algorithm updates both of

these variables accordingly. When both have a value of zero, indicating that the robot can

build the node without blocking its access to other parts of the structure and all supports

are in place, it adds that node to the heap. The heap priority is described by:

P = dci− cki +(w∗ tsi) (5.1)

where P is the heap priority, dci is the distance from the center of the structure to node

i, tsi is the timestamp the last support was built for node i by another robot, and w is a

weighting factor. The variable cki represents the benefit from building this node in terms

of how many nodes it supports. The tsi factor gives a higher score, which corresponds to a

lower priority, to nodes with supports that were placed more recently. During this process,

the robot frequently checks for incoming messages, and sends a message to all robots in

set N1 whenever it builds a node.

5.1.2 Communications Protocol

This section details the types of messages, when they are sent and how they are dealt

with. Messages are passed with the following information: destination robot, message type,

source robot, and data. The destination robot field is used as a tag for what robot should

pick up this message, with two exceptions that will be discussed later. The source robot

is the robot sending the message (necessary in order to acknowledge receipt of messages),

5. ONLINE WORKLOAD BALANCING AND ERROR CORRECTION 32

and the data field is of variable length depending on the type of message. The message type

is interpreted as follows:

1. Sending robot built a node (data length 1)

2. Request to take a list of nodes (data length variable, first element gives length)

3. Answer to trade request (data length 1, yes or no)

4. Receipt of a new node along with the parent node it was attached to (data length 2,

node and parent)

5. Sent a list of nodes to another robot (data length variable, specified by first element)

6. Built a node which acts as a support for a node held by receiving robot (data length

2, built node and supported node)

7. Acknowledgement of received message

8. Request for a resend of message type 1 if a certain node is built (data length 1)

Message types 2 through 5 are only sent to robots in the set N1, while message types 1,

6, and 8 can also be sent to robots in the broader set N2.

Throughout most of the task, these messages are aimed at a single robot. There are two

exceptions which use a broadcast architecture, these are the coordination of the start and

end of the experiment. In these cases special flags are used in place of the destination robot

field, which indicate a different message structure then the norm. For the start case, there

is no more information in the message, all robots start building as soon as they receive the

message. For the end case, the rest of the message consists of a list of robots known to

have finished. A robot done with its own task will only replace this message if they can add

to its length (generally by adding their own id). When the list contains all IDs the robots

stop. Coordination of finish times is necessary in order to be able to continue responding to

5. ONLINE WORKLOAD BALANCING AND ERROR CORRECTION 33

requests for build confirmations until all tasks have been completed. Both of these message

types are relayed by each robot. This means that communication only needs to be possible

with robots in N2 in order for successful completion of an assembly task.

When a robot receives a type 1 (node built) message, it updates its representation of

the sending robot’s task, and checks whether the built node acts as a support for any of its

own nodes. For type 2 (trade request), the robot checks that 1) it is the current owner of

the requested nodes, 2) the nodes are not built, and 3) it is currently not building any of the

requested nodes. If all of these conditions are satisfied, the robot responds with a message

of type 3 saying ’yes’, sends a message of type 5 to N1 listing the nodes lost, and updates

its representation of its own task. The robot, however, does not yet update its neighbor’s

task because it does not know where the new nodes will be attached. If the conditions are

violated, it instead replies with a message of type 3 saying ’no’. For type 3 (answer to

trade), if the answer is no, the robot cancels the proposed trade and returns to the main

routine. If the answer is yes, the robot modifies its representations of both its own task and

its neighbor’s task, and then sends a message of type 4 to N1, detailing where on the tree

each of the new nodes is added. Upon receipt of a type 4 or type 5 message, robots modify

their representation of the sending robot’s task.

The last two message types usually come from robots in the set N2 \ (N1 ∩N2), and

deal with supporting nodes. Message type 6 informs a robot that a support has been built

for one of its nodes. When receiving this message, the robot first checks whether it still

holds that node. If it has traded that node, the sending robot may not be aware of that,

being outside N1. If it has that node, it modifies its own representation and decrements

the variable representing the number of unbuilt supports. If it does not, it forwards the

message to whichever robot it traded the node to, which it knows because it is maintaining

a full representation of robots in N1. The other message is type 8, which is a request for

confirmation that a certain node has been built. This message is sent when a robot has

5. ONLINE WORKLOAD BALANCING AND ERROR CORRECTION 34

an empty heap and can find nothing to take from its neighbors, but still has nodes with

unbuilt supports. In this situation, a robot may have missed the message informing it that

the support had been built and will request that message to be resent. When receiving a

message of type 8, a robot checks whether the node being asked about was actually built.

If so, the robot sends a message of type 1 to the requesting robot. If not, it does nothing.

Before building each node, a robot compares its own remaining task size with the av-

erage task size in its local neighborhood, which is defined as the set N1 plus itself. If the

robot’s own task size is below the average by at least twice the average node build time, it

searches among its representation of its neighbors for a valid trade, which it then requests.

The other time it looks for a trade is when its own build heap is empty, indicating that it

will be idle if it cannot find work to take from another robot. The benefit of looking for

trades even when it still has its own work to do is that earlier trading allows more flexibility

in what nodes are exchanged, because less of the structure has been built. Once the robot

decides to look for a trade, it scores the possible trades according to the formula described

above, considering relative task sizes, relative distances to the node in question, and the

benefit a robot gets from holding both parts of a constraint itself. The purpose of this last

criteria is to minimize the amount of cross-robot interaction. While the assembly robots

are doing this, the scanning robots inspect the structure to discover missed placements, as

described below.

5.2 Complexity

It is possible to determine bounds on the length of the experiment as well as the number

of messages sent, which are provided in the following two theorems.

Theorem 2 The length of the experiment will be O(M ∗D), where M is the number of tiles

and D is the maximum distance to the cache.

5. ONLINE WORKLOAD BALANCING AND ERROR CORRECTION 35

Proof 2 The only situation in which a robot will be idle while it has a non-empty task is if

its remaining tasks have unsatisfied constraints. Because it was assumed that the constraint

graph may not have cycles, there must be at least one unbuilt tile which does not have an

unsatisfied constraint. Therefore, at least one robot, the robot possessing that tile, will still

be working. The time to deliver a single tile will be twice the time taken to drive to the

cache combined with a constant amount of time for pickup and placement. This time is

O(D). The worst case scenario would be a chain of constraints such that only one tile can

be built at a time. In this case the time taken will be O(D) times the number of tiles M,

giving a total time of O(M ∗D).

Theorem 3 With the exception of message type 8 and responses to it, the total number of

messages sent will be O(M ∗Na).

Proof 3 Message types 1 and 6 will only be sent once per tile, except as a response to

message type 8, and are thus directly bound by O(M). Messages 2 through 5 are all bound

by the number of trades. There are two cases in which tiles are traded, either when a robot

is idle or when a robot has less work than its neighbors. If a robot is idle, it will immediately

build any tile it receives in a trade, which prevents that tile from being retraded, since a

robot cannot give away a tile being built. This limits the number of trades due to idle

robots to O(M), as each such trade results in a tile being built. A robot taking work from its

neighbors cannot take more than M/2 tiles unless it is then giving those tiles away, since

this would necessarily involve taking from a neighbor with fewer tiles. If it is giving those

tiles away, this pattern can only be repeated Na times before arriving back at the original

robot. Since each successive robot has to have fewer tiles, it is not possible for this chain to

repeat, as the first robot cannot have fewer tiles than itself. Therefore the total number of

trades is O(M ∗Na), which limits message types 2 through 5. Message type 7 is sent once

for each other message, and therefore increases the number of messages by a constant

factor of two, which does not change the complexity. It is not possible to limit the number

5. ONLINE WORKLOAD BALANCING AND ERROR CORRECTION 36

of messages of type 8, as this will request message type 1 to be resent until it is successfully

received.

5.3 Online Error Correction

The VI-robot(s) is responsible for assigning the replacement of any missing tiles it

discovers. It does this by managing an auction for each block that should have been placed

but is absent. Each assembly robot sends a message to the VI-robot(s) after placing a

tile. The VI-robot monitors these messages to maintain a state vector q, where qi is 1 if

the block has been placed and 0 otherwise. After each placement, the VI-robot reports a

sensing vector qs
j, where qs

j is 1 if the block is definitely present, −1 if it is missing, and 0

if the presence or absence of the block cannot be determined. Then, if qi ∗qs
j =−1, a block

that a robot claims to have placed is determined to be missing. Once the error has been

detected, the scanning robot sends a message to inform the assembly robots that the block

is missing and asks for bids to determine which robot will replace the missing block. Each

robot then constructs a bid based on the following criteria:

bi = wi−A∗ ci +B∗di j, (5.2)

where bi is the bid of the ith robot, wi is the remaining workload of the ith robot, ci is the

number of blocks still to be placed that are directly supported by the missing block, and di j

is the distance between the missing block and the ith robot’s cache. The constants A and B

are weights that can be optimized experimentally.

6. ANT COLONY OPTIMIZATION METHODS 37

6. Ant Colony Optimization Methods

In this chapter Ant Colony Optimization methods will be applied to the problem. The

preplanning Dijkstra-based method in Chapter 4 is deterministic, and only ever considers a

single solution. In more complicated structures where the deterministic approach may not

perform well, it would be useful to explore more of the potential solution space, for which

ACO is a good candidate. The main difference between this approach and a standard ACO

is that this approach will be dealing with a team of ants planning a candidate solution rather

than a single ant constructing and scoring its own solution.

For this approach, it is assumed that there exist P teams of N ants, with each ant rep-

resenting an assembly robot. Each edge (u,v) in ESd will be labeled by some amount of

pheromone, which encourages an ant to claim u if it already has v, or vice versa. The more

pheromone is present on that edge, the more likely u and v are to be assigned to the same

task.

The set of starting nodes is chosen in two ways. For smaller structures, the set of starting

nodes is determined by computing the angular density of the structure about the center of

mass, and then spacing the starting nodes such that the wedge mapped out between any

two starting nodes has the same portion of the mass of the overall structure, subject to the

restriction that starting nodes must be on the exterior of the top surface of the structure. For

the larger structure in simulation, starting nodes were chosen manually to test the effects of

the distribution of starting nodes. The same set of starting nodes is then provided to all team

managers so that pheromone can be meaningfully shared between teams, allowing them to

learn from each others’ experiences. The algorithm is then run for a prespecified number

of generations. In each generation, the ants within a team will collectively divide the set of

all tasks according to the pheromone present, then score their proposed solution according

to a metric based on workload variance, deposit their own pheromone in proportion to the

6. ANT COLONY OPTIMIZATION METHODS 38

quality of their solution, and finally reset their states in preparation for the next generation.

This is shown in Alg. 6.0.1.

Algorithm 6.0.1 Algorithm Overview
0: choose starting nodes

for i = 1 to number of generations do
for j = 1 to P do

Team j plans a task allocation (Alg. 6.1.1)
Team j scores its solution

end for
for j = 1 to P do

Team j deposits pheromone
Team j resets its plan to hold only starting nodes

end for
end for

6.1 Baseline Strategy

The baseline strategy will be presented first, and will be labeled as DAACO (Distributed

Assembly by Ant Colony Optimization). In each generation, the existing pheromone is

used to plan a decomposition of the structure into a subset of tasks for each ant. This is

achieved by each ant sequentially claiming a single node, continuing until no unclaimed

nodes remain. An individual ant makes its decision on which node to claim based on

summing the total amount of pheromone leading to each potential target node from all

nodes currently part of its task set. That is, for each target node j, it computes a probability

of taking that node according to equation 6.1:

p j = ((∑
i

xi j)+ pmin)/∑
k
((∑

i
xik)+ pmin) (6.1)

6. ANT COLONY OPTIMIZATION METHODS 39

where p j is the probability of claiming node j, xi j is the pheromone on the edge between

i and j, and pmin is a constant that provides a small chance of claiming each node, even

in the absence of pheromone. The sums only consider nodes for j that are adjacent to the

ant’s current task set, and only consider nodes for i that are within the ant’s current task set.

By considering all edges leading to the target node, it becomes more likely that an ant will

claim new tasks that share multiple adjacencies with the current task set, leading to a more

compact overall task set for the ant.

The purpose of pmin is to introduce a possibility of exploring previously untried assign-

ments. Effectively this provides a noise term to the exploration of the search space, giving

a possibility of exiting a local minimum. The pheromone is globally initialized to a value

of zero, meaning that initial decisions are chosen from a uniform distribution over all ad-

jacent nodes. To increase solution diversity, an ordering of the ants is randomly generated

by the team manager for each cycle (each ant claims at most one node during a cycle). The

manager also determines when all nodes have been claimed, at which point the solution is

scored. This process is summarized in Alg. 6.1.1.

Algorithm 6.1.1 Planning for a team
while There are unclaimed nodes do

order = randomized permutation of ants within team
for i = order do

for k = neighbors of current task set do
scores(k) = ∑ pheromone between k and current task set

end for
choose a node with probability proportional to scores(k) + pmin

if Ant i found a claimable node then
mark that node as claimed

end if
end for

end while

6. ANT COLONY OPTIMIZATION METHODS 40

Between the planning and scoring phases, the pheromone graph is subjected to a global

decay, removing a set fraction of the old pheromone each generation. This has the effect of

attaching more importance to more recent generations. The reason for the timing between

planning and scoring is to allow pheromone deposited in generation i to be used in gener-

ation i+ 1 before it is subjected to decay. This means it is possible to increase the decay

to a point where all pheromone is erased before new pheromone is deposited, making each

generation dependent only on the results of the immediately preceding generation. A decay

rate of d means (d ∗100)% of the pheromone is removed at this step.

A metric based on the variance of the workload of each ant is employed by the team

manager to score the solution. The metric is given by Eq. 6.2. This metric will provide

a score scaled between 0 and 1, with a higher score indicating a better performance. This

score is based on the entire team’s performance, and is then passed to each individual ant

to be used in depositing pheromone.

score = 1/(1+ var(WL)) (6.2)

After the team’s manager has computed a team score, each ant deposits an amount of

pheromone equal to the score to each edge connecting a pair of nodes within the ant’s task

set. Finally, at the end of each generation every ant is reset to contain only its assigned start

node before the next generation begins.

After all generations are concluded, a solution is extracted from the population of ants

by having one team run one last generation with a slight difference. Rather than stochas-

tically choosing nodes according to the probabilities described above, each ant selects a

node by deterministically selecting the node that would have the maximum probability, de-

scribed by equation 6.3, where c is the choice made. This allows us to extract a solution

that from the best knowledge the pheromone represents without adding the stochasticity

6. ANT COLONY OPTIMIZATION METHODS 41

found in a typical generation.

c = argmax j(∑
i

xi j) (6.3)

6.2 Variant Strategies

Several variants of the strategy are presented in this section:

1. Directional DAACO (DAACO-D)

2. DAACO with stealing (DAACO-S)

3. DAACO with stealing and restrictive contiguity fix (DAACO-SCI)

4. DAACO with stealing and less restrictive contiguity fix (DAACO-SCII)

The first variant, called DAACO-D, provides an alternative way of depositing pheromone.

As the baseline strategy deposits pheromone on all connections within the current task set,

it does not designate a direction, so the pheromone graph is undirected. This means that

an ant claiming a node on either side of an edge with a high value is likely to take the

node on the other side. Since this may not be desirable behavior for nodes near one of

the starting points, DAACO-D uses a directed pheromone graph. To determine where to

deposit pheromone on this directed graph, Dijkstra’s algorithm is run on an ant’s complete

task assignment to determine a distance back to the start for every node. Pheromone is then

only deposited on edges leading from a lower distance to a higher distance.

The second variant, DAACO-S, allows ants to claim nodes that have already been taken

by another ant, in order to more quickly reach an equal workload by not forcing an ant to

stop taking nodes in a situation where all adjacent nodes have been claimed. In order to

avoid ants repeatedly trading nodes back and forth, three restrictions are placed on this

behavior. First, an ant will only consider stealing a node if there are no unclaimed nodes

adjacent to its current task set. Second, an ant will only steal nodes if its current workload

6. ANT COLONY OPTIMIZATION METHODS 42

is below the target workload (based on an equal distribution of the total). Finally, ant i will

only steal a node from ant j if j has at least as much work as i. In order to encourage fewer

stolen nodes in successive generations, an ant that loses a node will remove a fraction of

the pheromone connecting it to that node.

When a node k is stolen, neighbors of k in the same task set can become orphans, with

no path back to the root of the task set. This set of orphaned nodes will be called Q. To

ensure that Q remains empty, two methods of ensuring task set contiguity for DAACO-S

are proposed. Both are dependent on keeping track of the distance to the root node for each

node in the task set (with each edge being assigned a distance of 1). The more restrictive

method, DAACO-SCI, requires all neighbors of the stolen node within the same task set

to have a lower distance to root, which ensures that removing that node cannot disconnect

any neighbors. This is compared with a less restrictive method, DAACO-SCII, that checks

each neighbor for alternate paths back to the root that do not use the removed node. This

can take O(n*b) time, where n is the number of nodes and b is the branching factor. Since

the normal process of claiming a node takes O(n) time to find neighbors of the existing task

set, the time taken to do this contiguity check before stealing a node is not much different

than the time taken to claim a free node, as long as the branching factor is low. For the

experiments in this work, the branching factor does not exceed six. These methods are

compared in Fig. 6.1(a). Note that in this example DAACO-SCI would be able to steal

only the node with distance 5, since all others have a neighbor with a higher distance. In

contrast, DAACO-SCII would be able to steal any node except the one with distance 2,

since alternate paths back to the root can be found after any other node is removed.

6. ANT COLONY OPTIMIZATION METHODS 43

(a)

Figure 6.1: An example task allocation, with each node labeled by its distance from the
root.

7. TOWARDS COOPERATIVE MANIPULATION FOR DISTRIBUTED ASSEMBLY44

7. Towards Cooperative Manipulation for Distributed Assembly

In this chapter we consider how to apply these methods to more complicated structures

where partial assemblies of the structure are not guaranteed to be stable. This approach is

similar in form to the initial Dijkstra-based method, but will require new representations

for many of the variables to accommodate the new class of structures. First, the structure

graph GS will be changed for this chapter so that a set of nodes representing cache locations

will be added, one for each robot. ES will now be changed to represent distances back to

the cache, so that an edge (u,v) represents the distance from cache node u to assembly

node v, and no edge exists if neither u nor v is a cache node. This changes the emphasis

from having contiguous tasks to focusing on distance back to the cache. The reason for this

change is that contiguous tasks become impossible for archlike structures when robots will

need to alternate placements to keep the structure stable.

In this chapter, the focus is on structures that require coordinated timing between robots,

and could not be built by a single robot. In particular, arch-like structures where placements

are not guaranteed to be stable when made, and must therefore be held in place until some

later time when they become stable. Tthe first node will be called an unstable node, and

the node which restores stability to the unstable node will be called a stabilizing node. It

is assumed that every unstable node in a structure will directly support its stabilizing node.

That is, when the next higher piece in the arch is placed, the lower node becomes stable.

A structure S that fits this criteria will be called an arch-like structure. To approach this

problem, the precedence constraints described above are replaced with a type of constraint

that prohibits taking both of a pair of nodes u,v. So a robot that has claimed node u cannot

claim v and vice versa. For a desired S, define a constraint graph as an undirected graph

GC = {VC,EC} such that VC =VS and EC is defined as follows. An edge will be added to GC

in two situations. First, every unstable node is given an edge with its stabilizing node, so the

7. TOWARDS COOPERATIVE MANIPULATION FOR DISTRIBUTED ASSEMBLY45

same robot cannot claim both. Second, for any node u which is a stabilizing node for more

than one unstable node, edges are created between every pair of unstable nodes associated

with u. Next, a directed graph called the support graph is created, with GU = {VU ,EU}

such that VU =VS and EU is given an edge from every node directly supporting another to

the node it supports. This will be needed during assembly to verify when a node is ready

for placement. The final graph is the arch graph, GA = {VA,EA}, which denotes each pair

of nodes with an archlike relationship. VA =VS and EA contains a directed edge from each

node that must be held in place to any nodes that must be placed before it can be released.

The node needing to be placed will be called an arch support of the unstable node being

held.

The approach for the partitioning of S consists of three phases. Phase I of the algorithm

begins by running a simultaneous Dijkstra’s algorithm for each robot. Different from the

initial method presented in Chapter 4, all edges lead to one of the cache locations, so

the output focuses on minimizing travel distance for the robots rather than encouraging

contiguous tasks. This can also be viewed as a single-bid auction with the modification

of allowing bids on all lots simultaneously rather than sequentially auctioning each node.

The lowest bid on any node wins that node, and then the auction is restarted. Bids are a

weighted combination of a robot’s current workload plus the distance to the node, defined

by Equation 7.1. The winning bid for each round is then selected according to Equation

7.2. To ensure that no constraints in GC are violated, there is a check for each bid that its

current task does not include anything with a constraint on the node under consideration.

If it does, that bid is set to infinity. This is shown in Algorithm 7.0.1.

Bi j =Wi +ES(i, j) (7.1)

Bwinner = argmin
i j

Bi j (7.2)

7. TOWARDS COOPERATIVE MANIPULATION FOR DISTRIBUTED ASSEMBLY46

Algorithm 7.0.1 Phase I
while there are unclaimed nodes do

for each robot and unclaimed node do
if no constraint is violated then

bidi j←Wi +ES(i, j)
else

bidi j← in f
end if

end for
node←minimum bid for any robot

end while

The main purpose of Phase II is to balance the distribution of work between the various

trees via an exchange of nodes while ensuring no violations to the constraints specified

by GC. Two criteria are considered when trading nodes: 1) the Euclidean distance back

to that robot’s cache; 2) the sizes of both the giving and receiving trees in relation to the

average tree size. A weighted average of these criteria is used to evaluate any potential

trade between two robots.

To determine which nodes to exchange between any two trees Zi and Z j, Algorithm

4.0.2 is still used, with no changes needed to this part.

Once the task has been divided among the robots, each robot is assigned its task and

the experiment begins. Robots will prioritize their workload and continue to exchange

workload online as described in the following sections.

7.1 Task Management

The online algorithm is based on Phase II of the preplanning algorithm, as described

above, with the difference that this is evaluated during the course of construction. For this

application the algorithm has been revised to work in a distributed fashion, with each robot

managing its own subtask and holding as accurate a representation as possible of neighbors’

subtasks. The method a robot uses to manage its own task is to maintain a min-heap

7. TOWARDS COOPERATIVE MANIPULATION FOR DISTRIBUTED ASSEMBLY47

structure containing all nodes that are ready to be built. For each node that has not yet been

added to the heap, it maintains a variable describing the number of unbuilt supports based

on the support graph GU (nodes that must be built before that node, generally because they

provide an immediate physical support). After building a node itself or receiving a message

from another robot building a node, the algorithm updates this variable accordingly. When

it has a value of zero, indicating that all supports are in place, it adds that node to the heap.

The heap priority is described by:

P = dci− cki +(w∗ tsi) (7.3)

where P is the heap priority, dci is the distance from the center of the structure to node

i, tsi is the timestamp the last support was built for node i by another robot, and w is a

weighting factor. The variable cki represents the benefit from building this node in terms

of how many nodes it supports. The tsi factor gives a higher score, which corresponds to a

lower priority, to nodes with supports that were placed more recently. During this process,

the robot frequently checks for incoming messages, and sends a message to all robots in

set N1 whenever it builds a node.

After a node is placed but before it is released, the robot checks for the presence of

archlike constraints in the arch graph GA. If any corresponding to the current node are

found, it holds that node in place until the necessary node(s) are placed. This creates a

possible deadlock situation where all robots are stuck holding an unstable node. This will

be addressed in section 7.4.

7.2 Minimum Number of Robots

In Chapters 4 and 5, it was possible for one robot to build the structures, and the ad-

vantage to using multiple robots was faster completion of the structure. In this work, the

7. TOWARDS COOPERATIVE MANIPULATION FOR DISTRIBUTED ASSEMBLY48

arch-like structures being considered cannot be built by a single robot, as there will be

pieces that must be held in place while an arch is completed. This raises the question of

how many robots are needed for any particular structure. It turns out that this number can

be determined from looking at the constraint graph GC.

Theorem 4 The minimum number of robots that can build a structure is at most one greater

than the degree of GC.

Proof 4 This problem can be represented as a graph coloring problem on the constraint

graph GC. The graph coloring problem asks how many colors are needed to color every

vertex of a graph such that no two neighboring vertices have the same color. The con-

straint graph has exactly this meaning, that no robot may hold two neighboring nodes. So,

by representing each robot as a color, the answer to the graph coloring problem on GC

will give us the minimum number of robots needed to ”color” the graph without violating

any constraints. Brooks’ theorem Brooks (1941) states that for any connected graph, the

number of colors (robots) needed is at most one greater than the maximum degree of the

graph. If the graph is not a complete graph or a cycle graph of odd length, the number of

colors needed is equal to the maximum degree of the graph. As one cannot rule out these

cases a priori, the result is that the minimum number of robots needed to build a structure

with constraint graph GC is at most one greater than the degree of GC.

7.3 Communications Protocol

This section details the types of messages, when they are sent and how they are dealt

with. Some of these are the same as in Chapter 5, but several are new and some of the

messages from that chapter are not used here. Messages are still passed with the following

information: destination robot, message type, source robot, and data. The destination robot

field is used as a tag for what robot should pick up this message, with two exceptions that

7. TOWARDS COOPERATIVE MANIPULATION FOR DISTRIBUTED ASSEMBLY49

will be discussed later. The source robot is the robot sending the message (necessary in or-

der to acknowledge receipt of messages), and the data field is of variable length depending

on the type of message. The message type is interpreted as follows:

1 Sending robot built a node (data length 1).

4 Receipt of a new node along with the parent node it was attached to (data length 2, node

and parent).

6 Built a node which acts as a support for a node held by receiving robot (data length 2,

built node and supported node).

7 Acknowledgement of received message.

8 Request for a resend of message type 1 if a certain node is built (data length 1).

9 A node has disputed ownership, this message tells another robot to claim it.

11 Used to convey robot’s availability to build.

14 Request to either build or reassign a node needed as an arch support.

15 Order to build a node, given by the robot which had ownership of the node to a robot

that is currently idle.

Message types 1, 4, 6, 7, 8, and 9 are the same as they were described in Chapter 5.

Message type 11 is used to communicate robot availability throughout the task. This

message is sent to all robots in N2, which is the set of robots that may assign work back

to this robot. A busy robot will send either 0 or a positive number, which are used for a

bidding scheme in the event that all robots become stuck, to determine which robot will

abandon its task and return to the cache. In the experiments conducted this situation does

not arise. A value of -2 indicates the robot is available but has a non-empty heap, while a

7. TOWARDS COOPERATIVE MANIPULATION FOR DISTRIBUTED ASSEMBLY50

value of -3 indicates an available robot with an empty heap. The next subsection explains

the importance of this message type.

Message type 14 is used to state that a robot is requesting a certain node to be built, as

an arch support for a node it is currently holding. When this happens, a message of type 15

is sent to an available robot to build that node. If no robot is available, the message will be

sent as soon as one becomes available.

7.4 Avoiding deadlock

It was found that the best way to avoid deadlock situations where all robots are stuck

waiting for arch supports was to keep around half the robots in reserve at all times, waiting

for messages of type 15. This is done by checking the number of available robots in N2

before any build determined by a robot’s build heap. If too few robots are available, a robot

will choose to wait rather than building something from its heap. Any available robot will

always respond to a type 15 message, regardless of how many robots will still be available.

This has the effect of concentrating the robots on a few parts of the structure at a time, so

that arch supports will be quickly built and robots will spend less time holding an unstable

node. Robots sending a value of -3 are chosen before those sending -2, so that if too many

robots become available, the idle robots are more likely to find work in their heap.

8. SIMULATIONS 51

8. Simulations

This chapter will present the implementation of results of each of the approaches dis-

cussed. Results for each approach will be followed with a discussion of significant findings.

8.1 Dijkstra-Based Methods

To evaluate the partitioning strategy presented in Chapter 4, this section will consider

the partitioning of various 2- and 3-D structures in simulation. Nodes are defined by their

global coordinates in W , their mass, and the time required to navigate from the node to

the nearest cache. In these simulations, it is assumed that the distance to the cache is large

relative to intra-structure distances. As such, all nodes were assigned a cache distance of

one, and for all but one of the cases, this was equal to construction time per node. Time

required to assemble a node is given by the construction plus travel times to and from the

cache.

All three algorithms were used to partition nine different structures. These are shown

in Fig. 8.1. Recall that Algorithm 1 is the baseline strategy, Algorithm 2 combines Phases

I and II by incoporating the additional criteria from Phase II into the initial Dijkstra’s Al-

gorithm, while Algorithm 3 uses this combined phase, but still keeps a separate Phase II to

balance workload. For the structure in Fig. 8.1(c), the top four rows consist of parts that

take 20 times longer to assemble than the rest. For the ones in Fig. 8.1(e) and 8.1(f) each

element in the boxed column must be built before the element to its right. In Fig. 8.1(h),

each boxed component must be built before its inward neighbor. The 8th structure is shown

in Fig. 4.2(a). The parameter values used to generate node scores for these simulations

were 1 for distance to root, 1 for size of tree, and 10 for constraints kept together.

8. SIMULATIONS 52

8.1.1 Results

Table 8.1 summarizes the results. Completion Time of the structure is set to the time

when the final structure component is placed. Max. Difference is the difference in time

between the first and last robot to finish. Ave. Wait Time measures the average amount of

time robots were forced to wait during construction for a support placed by another robot.

Split Constraints refer to the number of constraints divided between two different robots,

e.g., one robot builds the support for a part placed by another robot. In general, the more

split constraints, the more likely it is that robots will have to wait for each other.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.1: (a-g) Structures 1-7 and (h) Structure 9 partitioned by Algorithm 3. Black
denotes empty space, while different colors represent different robots.

8. SIMULATIONS 53

Table 8.1: Simulation results

Criterion Algorithm Structure Number
1 2 3 4 5 6 7 8 9

Completion Time
Algorithm 1 72 44 207 60 72 88 112 40 88
Algorithm 2 72 44 170 60 76 96 116 40 88
Algorithm 3 72 44 161 60 72 88 112 40 88

Max. Difference
Algorithm 1 4 8 171 12 8 48 8 0 4
Algorithm 2 8 8 42 8 16 64 20 0 4
Algorithm 3 4 8 29 8 8 48 4 0 4

Ave. Wait Time
Algorithm 1 0 0 0 0 0 0 0 0 0
Algorithm 2 0 0 0 0 0 0 0 0 0
Algorithm 3 0 0 0 0 0 0 0 0 0

Split Constraints
Algorithm 1 0 0 0 0 6 9 0 14 0
Algorithm 2 0 0 0 0 5 8 0 2 0
Algorithm 3 0 0 0 0 6 9 0 2 0

8.1.2 Discussion

Beginning with the Dijkstra-based algorithms, refer first to Table 8.1, where it can

be seen that in all cases Algorithm 3 does at least as well as the other two by the time

criteria, and in some cases is better. This is particularly true for case 3 which is the only

case with heterogeneous assembly materials. While the difference in Max. Difference

values between the three algorithms is harder to evaluate across the various cases, note that

Algorithm 3 generally provides more equal distribution of work.

First, note that the sequencing approach in Phase III is sufficient to prevent robots from

needing to wait for each other in these trials. This is because the approach is partially based

on early placement of supports. Next, Algorithm 2 consistently results in minimizing the

number of split constraints. Consider structure 8 where Algorithm 1 returns a solution

with 14 split constraints, while Algorithms 2 and 3 both provide a solution with only 2

split constraints while yielding the same time performance. For structures 5 and 6, there

appears to be a trade-off where allowing an additional split constraint yields a better time

performance. Since Phase I is identical for Algorithms 2 and 3, this suggest that Algorithm

8. SIMULATIONS 54

3 must be making a trade in Phase II that results in an additional split constraint to achieve a

more equal distribution of work. Finally, the scalability of the approach with respect to the

structure and team sizes is shown in Fig. 8.1(g) which shows the partitioning of a 230-node

structure for a team of 8 robots.

8.2 Online Workload Balancing

Next, the node trading algorithm from Chapter 5 was implemented on a network of

seven computers communicating over a wireless router, each simulating the activities of a

single robot. Building a node was simulated by subjecting the robot to a delay randomly

drawn from N (4,8), truncated at 0. In order to test the system’s robustness to high levels

of variability, a high standard deviation relative to the mean was used. The discussion will

analyze two trends in the scaling of the problem. The first considers all seven simulated

robots cooperatively building a structure that varies in size from 27 up to 512 nodes. The

second examines a variable number of robots applied to the same structure of 512 nodes. In

both cases, the primary focus is on how the completion time and the number of messages

sent scale with the structure size and the number of robots.

The structures used for the experiments described above were cubes, built out of cubic

pieces. The purpose of using a uniform structure is to isolate the effects of changes in

structure size and number of robots. Table 8.2 provides results of three specific experiments

to demonstrate the flexibility of the approach. Example 11 corresponds to the structure

shown in Fig. 8.2, which is one of the structures the experimental testbed used in this

work can build, built here by 4 robots. This demonstrates the approach’s ability to handle

heterogeneous building materials in a variety of configurations. Example 12 and 13 are

each based on a cube of 512 nodes built with 7 robots. In Example 12, one of the robots

is deliberately started with only a single node to force the approach to recover from a

lopsided workload distribution. Example 13 has the added constraint that each node with

8. SIMULATIONS 55

(a) (b)

Figure 8.2: The structure used as example 11

a y coordinate equal to 4 must be built before the adjacent node with a y coordinate equal

to 5. This is to demonstrate the ability to manage types of constraints other than those

imposed by gravity.

8.2.1 Results

Table 8.2: Examples demonstrating flexibility

Criterion Ex. 11 Ex. 12 Ex. 13
Structure size 43 512 512

of robots 4 7 7
Ave. # of nodes per task 10.8 73.1 73.1

St. Dev. of # of nodes per task 3.30 35.4 37.6
Total # of nodes traded 15 55 15

Ave. wait time during construction 192.3 17.5 33.3
Ave. wait time after construction 11.8 236.4 775.1

Ave. completion time 302.7 1063.0 992.9
of messages sent 508 1749 1615

8. SIMULATIONS 56

(a) (b)

Figure 8.3: Graphs showing relatively linear growth in both completion time and number
of messages with respect to structure size. Data listed in table 8.3.

(a) (b)

Figure 8.4: Graphs showing number of messages and completion time relative to number
of robots. As the size of the team increases, the completion time drops linearly while the
number of messages shows slight growth. Data listed in table 8.4.

8. SIMULATIONS 57

Tables 8.3 and 8.4 summarize the following quantities for each experiment: structure

size, mean and standard deviation for number of nodes built per robot, total number of

nodes traded, average time spent waiting during construction, average time waiting after

construction (waiting for other robots to finish), average completion time (not including

time spent waiting for other robots to finish, but including any wait time during construc-

tion), number of messages sent, and number of messages that were not acknowledged (giv-

ing an idea of how many messages are actually being received).

Table 8.3: Variable size cubes built with seven robots

Criterion Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6
Structure Size 27 64 125 216 343 512

Ave. # of nodes 3.9 9.1 17.9 30.9 49.0 73.1
St. Dev. of # of nodes 0.38 2.19 0.690 1.57 3.00 2.19

of nodes traded 0 3 0 3 23 11
Ave. wait time during construction 3.0 4.5 2.4 2.5 92.7 22.7
Ave. wait time after construction 22.8 25.6 51.7 37.2 55.0 33.7

Ave. completion time 44.0 123.7 246.8 383.6 704.3 912.6
of messages sent 76 193 325 579 1316 1454

8.2.2 Discussion

Next, this section will turn to the online workload balancing approach of Chapter 5,

examining how communication and completion time scale with structure size and number

of robots. Fig. 8.3 shows the approach being run with 7 robots on a variety of structure

sizes. Examining the number of messages sent, it can be seen that the communication vol-

ume increases linearly with the size of the structure. Average finish time is also increasing

8. SIMULATIONS 58

Table 8.4: Variable numbers of robots on a structure with 512 nodes

Criterion Ex. 7 Ex. 8 Ex. 9 Ex. 10 Ex. 6
of robots 3 4 5 6 7

Ave. # of nodes 170.7 128 102.4 85.3 73.1
St. Dev. of # of nodes 2.08 5.48 3.29 1.03 2.19

of nodes traded 6 9 13 7 11
Ave. wait time during construction 1.1 3.9 60.8 38.1 22.7
Ave. wait time after construction 56.1 31.6 98.0 156.6 33.7

Ave. completion time 2038.2 1647 1413.7 1092.7 912.6
of messages sent 1324 1414 1511 1454 1454

linearly with the size of the structure. This means that the rate at which the robots build is

unaffected by the size of the structure. Also, it is worth noting that the amount of messages

per time (number of messages divided by average completion time) is a constant relative to

structure size, meaning there is no communication barrier to scaling this approach to larger

structures.

Next, Fig. 8.4 shows how the approach scales with number of robots on a constant

structure. First, the number of messages sent stays fairly constant across different numbers

of robots, showing only a slight growth, so adding more robots does not cause any problem

in communications. For the structure used, multiplying the number of robots used by the

average completion time gives a relatively constant result. This means that adding an extra

robot does not introduce significantly extra inefficiency in terms of idle robots waiting for

placements. Certainly at some number of robots, this would stop being the case, but up

through seven robots there has not yet been significant additional idling. For this approach,

a hard limit on the number of robots that can be used is the number of valid root nodes

(recall that the root needs to be viable as the last node placed on the structure). For the

structure used, this would allow up to 64 robots to be applied to the problem.

Example 12 started one robot with a single tile to test the robustness of the algorithm to

lopsided initial conditions. As shown in Table 8.2, this resulted in a large number of nodes

8. SIMULATIONS 59

being traded,which is a result of nodes being moved towards the robot that started with a

single node. This robot ended the experiment having built 25 nodes, roughly a third of the

average size. This also resulted in an unusually high variance in number of nodes built

during this experiment. Example 13 had a wall of constraints requiring that each node with

a y coordinate of 4 be built before the corresponding node with a y coordinate of 5. This

resulted in a bimodal distribution for number of robots built, with two robots building 128

nodes each and the other 5 all in the range 45-55. This is likely caused by an inability to

trade across the wall of constraints imposed, which effectively divided the robots into two

separate teams based on the locations of their roots.

8.3 Ant Colony Optimization

Finally, the DAACO algorithms from Chapter 6 is tested on types of structures consist-

ing of towers connected by paths, with holes between the paths where nothing is to be built,

as well as a larger house structure. Both the number of robots dividing the structure and

the decay rate of the pheromone is varied. Each map is also compared against the results of

the algorithm described in Chapter 4 run on the same map. In this algorithm, the assembly

task is initially divided by running Dijkstra’s algorithm with multiple starting nodes, one

for each robot. This leaves each robot with a tree representation of its task, where the root

(the starting node) is guaranteed to be on the external boundary of the structure. By succes-

sively building leaves and removing built nodes from its tree, a robot can complete its task

without the danger of becoming trapped in a partially built structure. The algorithm then

goes through a node-trading phase which attempts to equalize the workload by exchanging

leaves or branches while maintaining the tree property of each task. This is a deterministic

algorithm, and hence generates only one solution for a given assembly task, in contrast to

DAACO and its variants, which explore the solution space by varying pheromone levels.

Results are compared using the standard deviation of the workload between different

8. SIMULATIONS 60

robots, with the goal being that this should be minimized in an effective plan. A more

balanced workload should lead to faster completion of the structure as no robots will finish

early and be left idle. To handle unexpected delays that may occur during construction,

one could incorporate the online workload balancing approach discussed above after using

ACO to create the initial plan. The base structure consists of 9 3x3 towers, built out of

351 pieces, shown in Fig. 8.5(a). Each reported result for DAACO and its variants is the

average of five runs, with each run lasting 20 generations. If parameters are not explicitly

stated, the experiment is done with 8 robots, using a decay rate of 0.1, and a node mass of

1 for each node.

8.3.1 Results

(a) (b)

Figure 8.5: (a) The base structure, consisting of nine towers connected by ground paths.
(b) A typical decomposition, in this case by DAACO-S using 8 robots. Different colors
represent the task sets of different robots.

First, the effects of using different numbers of robots to build this structure will be an-

alyzed. For each number, DAACO, DAACO-S, DAACO-SCI, DAACO-SCII, DAACO-D,

and the Dijkstra-based algorithm from Chapter 4 are applied. Results are shown in Fig-

ure 8.7(a) and Table 8.5. Each entry is the standard deviation of the workloads of the

8. SIMULATIONS 61

robots. In most cases the deterministic Dijkstra-based algorithm has the best performance,

closely followed by DAACO-S, while the basic DAACO has higher workload variance,

and DAACO-D is consistently the worst. A typical decomposition is shown in Fig. 8.5(b),

generated by DAACO-S for eight robots. However, the deterministic algorithm, as it only

generates one solution per problem, will occasionally encounter a situation that provides a

poor result. One instance of this can be seen for 6 robots dividing the base structure. Al-

though the deterministic algorithm generally produces slightly better results than DAACO-

S, in this case DAACO-S vastly outperforms the poor solution chosen by the deterministic

algorithm. These solutions are shown in Fig. 8.6.

(a) (b)

Figure 8.6: Solutions for six robots, as solved by DAACO-S (a) and the deterministic
algorithm (b). Task sets are delineated by different colors.

Next, the algorithm’s robustness to asymmetry is tested in the results of the two struc-

tures shown in Fig. 8.8. In one structure, one of the towers is much taller than the others,

while the second is a 2-D structure with lopsided areas. Table 8.6 shows a direct com-

parison between these cases. Note that these asymmetric cases can cause problems for

8. SIMULATIONS 62

(a)

Figure 8.7: Standard deviation of workload between robots when building the base struc-
ture, consisting of nine towers connected by ground paths.

8. SIMULATIONS 63

Table 8.5: Performance as a Function of Team Size

Algorithm Number of Robots
2 3 4 5

Deterministic 0.71 0 0.50 0.45
DAACO 0.71±0 0±0 0.50±0 3.15±3.35

DAACO-S 0.71±0 0±0 0.50±0 0.45±0
DAACO-SCI 0.71±0 0±0 0.50±0 0.45±0
DAACO-SCII 0.71±0 0±0 0.50±0 0.45±0

DAACO-D 2.12±0 30.11±5.01 18.17±1.81 23.87±1.88
Algorithm Number of Robots

6 7 8
Deterministic 9.01 0.69 0.36

DAACO 8.93±6.09 6.01±2.68 1.27±0.69
DAACO-S 0.55±0 0.38±0 0.59±0.36

DAACO-SCI 8.37±5.77 3.66±2.54 0.54±0.40
DAACO-SCII 0.52±0.24 0.38±0 0.49±0.40

DAACO-D 18.56±1.70 14.14±1.95 6.21±1.51

the deterministic algorithm, while DAACO-S still performs well. The plans generated for

these structures are shown in Figs. 8.9 and 8.10.

Table 8.6: Results on Asymmetric Structures

Algorithm One Tall Tower 2-d asymmetric
DAACO 5.52±1.87 5.62±1.74

DAACO-S 0.75±0.45 4.77±1.38
DAACO-SCI 4.23±2.14 5.07±1.53
DAACO-SCII 0.64±0.37 4.78±1.70

DAACO-D 8.68±1.32 9.41±0
Deterministic Algorithm 6.41 5.42

Next, the algoritms are tested on a larger structure, which is a house consisting of

1360 nodes of three different shapes, shown in Fig. 8.11. The sloped roof pieces and

8. SIMULATIONS 64

(a) (b)

Figure 8.8: Two asymmetric structures. (a) Tower structure with one tower triple the height
of the rest (b) 2-d structure with lopsided areas

(a) (b)

(c) (d)

Figure 8.9: Plans created for asymmetric tower structure by (a) DAACO, (b) DAACO-S,
(c) DAACO-D, and (d) deterministic algorithm.

8. SIMULATIONS 65

(a) (b)

(c) (d)

Figure 8.10: Plans created for 2-D structure with lopsided areas by (a) DAACO, (b)
DAACO-S, (c) DAACO-D, and (d) deterministic algorithm.

8. SIMULATIONS 66

corner pieces are given a mass of 1/2, while cubic pieces have a mass of 1. Results are

given in Table 8.7 and Table 8.8, and show that the best performers on this larger problem

tend to be the deterministic strategy and DAACO-D. Comparing the two contiguity fixes,

DAACO-SCI and DAACO-SCII, with the basic DAACO-S allows us to determine if any

performance is lost in terms of workload balance by adding these restrictions. DAACO-

SCII is usually similar in performance to DAACO-S, while DAACO-SCI has more cases

where performance differs significantly from DAACO-S.

Figure 8.11: The larger structure, showing a plan for 10 robots determined by DAACO-
SCII.

Varying the decay rate of the pheromone (what percentage evaporates between each

8. SIMULATIONS 67

generation) has little effect on the resulting standard deviation of the workload, as shown

in Table 8.9. These results were generated on the base structure.

(a)

Figure 8.12: Workload variance between robots when building the larger structure, a house
of 1360 nodes.

8. SIMULATIONS 68

Table 8.7: Workload Variance on Larger Structure with Clustered Start Nodes, Average of
5 Runs

Algorithm Number of Robots
3 4 5 6

Deterministic 1.3 7.3 2.5 3.5
DAACO 132±11.9 95.4±4.9 92.4±3.3 73.4±6.6

DAACO-S 198±133 172±104 72.3±23.3 61.1±27.0
DAACO-SCI 233±14.0 148±10.5 133±8.5 69.0±6.3
DAACO-SCII 97.7±121 117±64.7 111±55.2 69.9±36.7

DAACO-D 1.1±0.8 2.8±1.4 2.5±1.6 4.9±1.3
Algorithm Number of Robots

7 8 9 10
Deterministic 1.2 0.9 0.1 0

DAACO 57.0±3.8 46.9±4.0 41.9±3.2 31.7±2.6
DAACO-S 55.7±19.5 48.0±18.1 38.4±14.8 46.1±18.7

DAACO-SCI 68.0±4.6 52.4±4.2 40.4±3.9 33.5±3.5
DAACO-SCII 71.9±20.1 65.6±19.5 44.3±14.3 38.7±6.0

DAACO-D 4.6±1.0 5.0±1.0 5.1±1.2 58.7±0.0

8.3.2 Discussion

Very different results are obtained for the two types of structures tested. The larger

structure, while having the advantage of testing the algorithms at a larger scale, may actu-

ally not be as difficult a test because of how many connections each cube has. The smaller

structure has portions where there is only a single path, allowing more potential conflict

between robots. In the more connected house structure, it is easier for robots to find paths

around each other to continue claiming nodes.

The results on the tower-based structures show that allowing ants to steal nodes from

each other greatly improves the performance of DAACO-S, giving it comparable perfor-

mance to the Dijkstra-based algorithm from Chapter 4 in most cases, and superior per-

formance in some. This performance appears to be largely independent of how much

pheromone decay is present. Breaks in symmetry tend to be problematic for the deter-

ministic approach, but are handled well by DAACO-S. When looking at the data for the

8. SIMULATIONS 69

Table 8.8: Workload Variance on Larger Structure with Scattered Start Nodes, Average of
5 Runs

Algorithm Number of Robots
3 4 5 6

Deterministic 2.3 0 0 0.3
DAACO 18.4±4.6 24.7±4.7 28.7±4.0 30.4±4.1

DAACO-S 33.5±34.6 13.3±12.4 33.4±26.6 21.3±18.6
DAACO-SCI 38.3±6.6 14.0±3.0 23.1±2.2 37.7±4.2
DAACO-SCII 21.1±5.1 5.9±2.3 23.2±4.2 15.0±2.6

DAACO-D 3.7±1.5 3.1±1.6 3.4±0.8 3.5±1.5
Algorithm Number of Robots

7 8 9 10
Deterministic 0.2 0 0.1 0.2

DAACO 35.7±4.1 18.9±2.7 21.0±2.3 22.5±2.4
DAACO-S 23.2±16.7 20.8±12.2 18.1±5.3 25.1±3.8

DAACO-SCI 14.0±3.6 17.8±2.3 19.8±3.2 11.6±1.9
DAACO-SCII 29.1±2.9 25.2±3.7 22.6±3.9 19.7±3.0

DAACO-D 5.8±1.1 4.9±1.5 6.0±1.9 5.8±0.8

Table 8.9: Performance with Different Decay Rates

Algorithm Decay Rate
0 0.1 0.5 0.75 1

DAACO 5.11±2.57 5.96±2.52 6.28±2.40 6.22±2.35 6.42±3.21
DAACO-S 0.52±0 0.62±0.40 1.09±0.79 0.91±0.90 0.76±0.61

DAACO-SCI 3.48±2.30 3.92±2.76 4.31±2.35 4.34±2.71 4.47±2.40
DAACO-SCII 0.73±0.57 0.71±0.44 0.82±0.35 0.87±0.50 0.95±0.95

DAACO-D 8.54±1.07 8.67±1.35 8.59±1.00 8.64±0.99 8.61±1.31

larger structure, the deterministic strategy and DAACO-D become the best performers.

DAACO-SCII shows similar performance to DAACO-S for most trials, meaning that the

more flexible method of guaranteeing contiguity does not seem to impose additional costs.

DAACO-SCI, on the other hand, shows more significant deviation from DAACO-S, as a

result of its more restrictive rule for vetoing trades.

DAACO-D shows behavior that differs with the number of tasks. With fewer tasks,

DAACO-D is outperformed by DAACO, possibly because of the larger solution space that

8. SIMULATIONS 70

results from having twice as many pheromone markers, since each pair of directed edges

has separate pheromone, while an undirected edge only needs one value. Another potential

reason may be because not adding pheromone between nodes at the same distance from the

starting point weakens the incentive to tightly cluster the tasks chosen, and allows claiming

of more distant tasks which can block off other ants, leaving them with smaller workloads.

However, on the larger structure with 1360 nodes, DAACO-D shows superior results to

the other variants of DAACO. This may be because the increase in solution space is more

significant on the smaller structures, where DAACO and DAACO-S are able to do a more

exhaustive search in the smaller space. On the larger structure, the size of the solution space

is much larger relative to the number of solutions explored, so the number of samples

becomes a more important factor than the size of the solution space. By distinguishing

between the direction of the claim, DAACO-D is able to give a preference to claiming nodes

closer to the starting point, which may yield more compact task sets, giving each robot

more time to claim the nodes in its neighborhood before other robots begin to interfere.

This advantage may be able to make up for the discrepancy in solution space size for a

larger structure where a more exhaustive search is not possible.

Overall, the performance with scattered starting nodes was consistently superior to the

clustered starting node case, showing that the choice of starting nodes is a significant factor

in the performance of this task.

One aspect of this algorithm worth noting is that it can be used to maintain connectivity

back to an external node, similar to the Dijkstra-based algorithm. By requiring the starting

points to be on the exterior of the structure and limiting newly claimed nodes to be adja-

cent to already possessed nodes, DAACO, DAACO-D, DAACO-SCI, and DAACO-SCII

provide contiguous tasks that contain part of the exterior of the structure. This means each

robot can plan a way to build its own part that avoids being trapped in a partially complete

structure. As discussed in Hsieh and Rogoff (2010), when using Voronoi methods, robots

8. SIMULATIONS 71

can have entirely internal tasks, leaving them no way to escape the structure if other robots

build a wall around them.

DAACO-SCI and DAACO-SCII were implemented in order to maintain this connectiv-

ity. The cost of this was quite high for DAACO-SCI, as it shows results similar to DAACO,

implying that it is simply blocking most attempts to steal a node. However, it was found that

DAACO-SCII achieved similar performance to DAACO-S, while still maintaining conti-

guity.

8.4 Cooperative Manipulation

8.4.1 Results

The approach is tested on four types of archlike structures, shown in Fig. 8.13. The

structure types are a basic arch, an arch with four legs, a tunnel made of independent arches,

and a Da Vinci bridge. A Da Vinci bridge http://www.leonardodavincisinventions.com/leonardo-

da-vinci-models/leonardo-da-vincis-self-supporting bridge/, shown in Figure 8.14, is a struc-

ture designed to stand without any type of fasteners, and is of interest here as it is an archlike

structure with more complicated support relationships than a typical arch. For each struc-

ture type, four quantities are considered: number of nodes built per robot, finish time of the

structure, wait time per robot, and number of messages per robot. These figures are given

for the arch in Table 8.10, the four legged arch in Table 8.11, the tunnel in Table 8.12, and

finally the Da Vinci bridge in Table 8.13.

The trends for each structure type with increasing numbers of robots are compared

in four graphs. First, Figure 8.15(a) shows that the number of nodes built by each robot

declines as expected as the number of robots increases. One interesting phenomenon here

is that the standard deviation of nodes built for the standard arch is increasing as the number

of robots increases. What is occurring here is that some of the later robots are being given

almost no work throughout the course of the experiment. As the first available robot id is

8. SIMULATIONS 72

(a) (b)

(c) (d)

Figure 8.13: (a) Basic arch structure. (b) Four legged arch. (c) Tunnel composed of inde-
pendent arches. (d) Da Vinci bridge.

(a) (b)

Figure 8.14: Side (a) and front (b) views of a Da Vinci bridge.

8. SIMULATIONS 73

chosen to build arch supports, when there are more robots than needed, robots with higher

ids are generally left idle. This increase starts at the same number of robots as the increase

in finish time, discussed below, which reinforces the idea that this is caused by having extra,

idle robots.

Table 8.10: Results for Arch

Criterion Number of Robots
3 4 5

Nodes Built 14.0±1.7 10.8±0.5 8.8±1.3
Finish Time 755.7±3.0 489.6±11.0 380.1±6.6
Wait Time 560.9±50.3 332.7±52.7 254.1±27.7

Number of Messages per Robot 1451±149 929±48 831±38
Criterion Number of Robots

6 7 8
Nodes Built 7.5±1.4 6.6±2.4 5.8±2.6
Finish Time 389.3±11.7 434.4±15.8 442.8±26.8
Wait Time 261.2±56.6 324.2±26.9 356.1±57.4

Number of Messages per Robot 931±36 1082±70 1198±84

Table 8.11: Results for 4 Legged Arch

Criterion Number of Robots
5 6 7 8

Nodes Built 16.8±2.4 14.2±2.6 12.2±2.3 10.8±2.2
Finish Time 1141±94 1079±51 1917±21 1988±155
Wait Time 958±167 734±103 1445±100 1385±332

Number of Messages per Robot 2233±391 2209±242 3640±510 2990±1181

Figure 8.15(b) examines the relation of finish time to number of robots for each struc-

ture type. The general pattern is an initial decrease in finish times followed by an increase

8. SIMULATIONS 74

Table 8.12: Results for Arch Tunnel

Criterion Number of Robots
3 4 5

Nodes Built 26.3±2.5 20.0±0.8 16.6±2.9
Finish Time 1257.7±0.7 808.7±4.0 1181.8±91.0
Wait Time 839.5±42.3 481.8±49.1 1037±189.3

Number of Messages per Robot 1862±51 1489±30 3226±780
Criterion Number of Robots

6 7 8
Nodes Built 13.7±1.4 12.3±1.5 11.5±1.8
Finish Time 759.5±38.7 827.2±10.6 909.1±14.4
Wait Time 459.2±84.4 538.2±77.2 593.0±105.0

Number of Messages per Robot 1719±167 1984±84 2211±89

Table 8.13: Results for Da Vinci Bridge

Criterion Number of Robots
5 6 7 8

Nodes Built 3.4±1.1 3.0±0.5 2.7±0.7 2.5±0.5
Finish Time 275±23 185±40 184±45 201±37
Wait Time 280±129 210±48 248±43 187±67

Number of Messages per Robot 508±184 410±118 420±182 523±187

as more robots are added past a certain number for each structure. This contrasts strongly

with the findings for earlier approaches presented here, where increasing the number of

robots consistently decreases completion time of the structure.

Next, the average wait times per robot are given in Fig. 8.15(c). Unsurprisingly, this

closely follows the results for completion time, as the main factor that affects completion

time is how long each robot spends waiting. Finally, the number of messages sent per robot

is given in Fig. 8.15(d), which is also strongly correlated with completion times.

8. SIMULATIONS 75

(a) (b)

(c) (d)

Figure 8.15: (a) Number of nodes built per robot for each structure type. (b) Finish times
for each structure type. (c) Total wait times for each structure type. (d) Number of messages
per robot for each structure type.

8. SIMULATIONS 76

8.4.2 Discussion

One of the most interesting trends in the results is the increase in finish times when

more robots are added. As observed above, this seems to be strongly correlated with an

increasing number of messages. The reason that this is occurring is that the most common

type of message are the availability messages, which are frequently resent to ensure that all

robots can make an accurate decision as to which robot to assign work to. As this message

is sent to all robots in N2, the number of these messages is proportional to the size of N2,

which for these experiments is equal to the number of robots in the system. This could

be solved with a broadcast architecture that does not involve sending a separate message

to each robot, although this does not allow for acknowledgements of these messages to

be sent, as the number of acknowledgements of each availability message would again be

proportional to the number of robots. It also does not allow a smaller N2 for larger teams.

This introduces a trade-off, where one can either accept a penalty for increasing the size of

N2, or accept a higher probability of missed messages, potentially leading to inconsistencies

among robots about task assignments. For the number of robots being considered, it was

decided that the first cost was more acceptable. For a larger swarm of robots, one could

potentially solve this issue by adding more sensing to individual robots to allow them to

perceive if another robot has placed the node they are attempting to build.

However, in most cases this increase is fairly gradual, overwhelmed at first by the effect

of adding more robots to further split the workload. This seems to indicate that the benefit

of adding robots quickly levels off for these archlike structures. This is likely because of the

much more restricted space of nodes to build at any given time. If a robot builds a node that

does not act as an arch support for a node being held by another robot, it will immediately

become stuck waiting for its own arch support, thus limiting the pool of available robots.

All structures adhere very closely to the requirement established by Theorem 4. The

arch and arch tunnel both have a constraint graph with a degree of three one step below

8. SIMULATIONS 77

the top of the arch, and indeed it takes a minimum of three robots to build these structures.

The four legged arch has a degree of five one step below the top, and requires a minimum

of five robots. The Da Vinci bridge has a degree of four in GC, and takes five robots before

the algorithm is able to divide the workload. As the theoretical bound is one higher than

the degree of GC, this does not violate Theorem 4. Interestingly, the Da Vinci bridge can

in fact be built by three robots if one robot is assigned all of the cross pieces. Note that

this also does not violate Theorem 4, as that only establishes a maximum on the number of

robots that may be required to build the structure.

Although many of the nodes are built by assignment rather than according to the orig-

inal division of workload, that original division is still necessary for correct completion of

the structure. Assigning each node to be the responsibility of a single robot provides a guar-

antee that that robot will not complete its task until it knows that all of its nodes have been

built. This means that while it may be possible for some builds to be repeated if there is a

failure in communications, the approach will never terminate with an incomplete structure.

The possibility of a repeat build due to communications failure can be handled by locally

sensing whether that node has already been placed. Also, the initial assignment allows the

assignment of a needed arch support to be determined by the initial owner of that node,

which can then remove that work from its own task at the same time it assigns the task to

another robot. This again reduces the possibility of repeated builds due to dropped mes-

sages. Having examined the results of the different approaches, the next step is to verify

that these methods will work in experiment.

9. EXPERIMENTAL VALIDATION 78

9. Experimental Validation

The proposed distributed assembly strategies were implemented on the Drexel SASLab’s

multi-robot assembly testbed. The testbed consists of two mini-mobile manipulators (M3

robots), or Nc = 2, shown in Figure 9.5, each equipped with an iRobot Create base, a

Crustcrawler 5 DOF arm, 802.11b wireless communication, and a Hokuyo URG laser range

finder (LRF). The laser range finder is first used to detect the position and orientation of

the tile with respect to the robot. The arm is equipped with a 1 degree of freedom 2 finger

gripper. The arm is then commanded to pick up or place the block at the given position.

Tiles to be picked up are individually placed at fixed locations in the workspace. Since the

geometry of each tile and the desired structure is known a priori, the desired placement po-

sition and orientation of each tile can be computed in relation to the base of the structure as

detected by the laser range finder. Further, since each tile directly above another is defined

as being constrained by the supporting tile, the robots assume the tiles above the current

tile have not been placed yet, allowing us to assume an obstacle free path for the manipula-

tor. Two types of tiles are used, the first are interlocking Lincoln-Log style blocks, and the

second type attach and self-align using magnets. To test online error correction, some ex-

periments include one scanning robot equipped with a iRobot Create base and a Microsoft

Kinect visual depth sensor. This robot follows a fixed rectangle surrounding the workspace

of the assembly robots. Overhead localization for the robots was provided using two to

four visual cameras.

Each robot was given the global position of the structure’s center and the positions of

their respective parts cache.

To test error correction, each robot was assigned a preplanned assembly plan as de-

scribed, with no node trading allowed. The assembly plans consisted of a list of tile identi-

fiers in the computed assembly order. Distributed implementation of the plan was achieved

9. EXPERIMENTAL VALIDATION 79

Figure 9.1: Team of two assembly robots and one VI-robot with a raised Kinect around a
partially completed structure.

9. EXPERIMENTAL VALIDATION 80

(a) (b)

Figure 9.2: (a) Sample assembly tiles. (b) Desired structure to be assembled.

by encoding the immediate supports for each component in the plan to ensure robots wait

for the placement of a missing support tile by another robot before placing their parts.

The assembly tiles were placed in predefined cache locations in the workspace. These

experiments will test the distributed assembly of 3D structures composed of 5 distinct tile

types.

9.1 Results

9.1.1 Dijkstra-Based

To compare the variants of the Dijkstra-based preplanning strategy, Algorithms 1-3

were used to partition the assembly task for the structure shown in Fig. 4.2 for a 2-robot

team. Each robot was given the global position of the structure’s center and the positions

of their respective parts cache. The assembly parts were Lincoln-Log style plastic inter-

locking blocks, as in Fig. 4.2(a). Each robot was assigned their respective assembly plans

determined by Algorithms 1-3. The assembly plans consisted of a list of node identifiers

in the computed assembly order. Distributed implementation of the plan was achieved by

encoding the immediate supports for each node in the plan to ensure robots wait for the

9. EXPERIMENTAL VALIDATION 81

placement of a missing support by another robot before placing their parts.

Five experimental trials were executed for each plan. The time required by each robot

for assembly and the total distance traveled by each robot are shown in Table 9.1. It was

noted that Algorithms 2 and 3 produced the same plans, which will be referred to as Plan

2 (Fig. 4.2(c)), and the plan generated by Algorithm 1 as Plan 1 (Fig. 4.2(b)). Similar

to the simulation results, the experimental results show that neither plan resulted in any

waiting time. This suggests that the sequencing phase (Phase III) is sufficiently robust to

accommodate real-world uncertainties.

The cache positions used for this task were located along the long axis of the structure.

This means that Plan 1, where each robot had to place two blocks in the tower farther from

its associated cache, will require more travel time. This is supported by the results in Table

9.1 where Plan 1 performs slightly worse.

Figure 9.3: Two M3 robots working on a structure.

9.1.2 Online Workload Balancing and Error Correction

Next, the online workload balancing and error correction was tested. The assembly

parts were plastic tiles of various shapes and sizes (side lengths from 4−17 cm), each with

9. EXPERIMENTAL VALIDATION 82

Table 9.1: Experimental results

Measure Plan Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average

Finish Time (s)
Plan 1 1069 1065 1030 1109 1174 1089
Plan 2 1028 1037 1060 1021 1027 1035

Time Difference (s)
Plan 1 97 117 96 160 142 122
Plan 2 11 2 144 100 12 54

Distance Traveled (m)
Plan 1 32.10 32.25 32.18 32.33 32.22 32.22
Plan 2 31.58 31.30 31.27 31.32 31.34 31.36

a given set of magnetic attachment sites (see Figure 9.2(a)). Figure 9.2(b) shows the desired

structure used for the experiment. To simulate missed placements, random assembly tiles

were removed at various times during the assembly process.

Fourteen experimental trials were run on the scanning robot for the desired structure

shown in Figure 9.2(b). During each trial, one or more random assembly tiles were re-

moved at different parts of the assembly process. Figure 9.4 shows the results of one of

the experimental trials where the missing tile was successfully detected by the scanning

robot. Out of twenty-two removed blocks, the scanning robot was able to successfully de-

tect twelve of the missing tiles and reported undetermined for the other ten. There were no

false positives during these trials, and only one false negative where a tile was reported as

missing when it was actually present. The smaller tiles (square and triangle) were always

reported as undetermined, while the larger tiles were always detected as missing after they

had been removed in these trials.

Table 9.2 summarizes the assembly partition obtained at the start of an experimental

trial for each robot. The tiles allocated to each robot are shown in the order in which they

are supposed to be placed. Table 9.3 shows the updated assembly allocation as tiles are

removed during the experiment, including the workload reallocation after the detection of

errors.

9. EXPERIMENTAL VALIDATION 83

(a) (b)

Figure 9.4: ((a) Tile removed. (b) Missing tile reported by the scanning robot.

Robot 1 Tile ID Robot 2 Tile ID
Long Rectangle 3 Trapezoid 7

Trapezoid 6 Octagon 5
Octagon 4 Square 8
Square 9 Square 10

Long Rectangle 11 Long Rectangle 12
Triangle 13 Triangle 14

Table 9.2: Initial Allocation for the 3D Structure in Fig. 9.2(b)

In the next set of experiments the node trading was included to test for a reduction in

assembly time compared to the preplanned approach. Tests were also done with one robot

being given artificially longer assembly times to simulate the effects of a less efficient

robot. For this, the manipulation was replaced with a timed delay drawn from a specified

distribution. The typical manipulation times were measured to have a mean of 69.0 seconds

and a variance of 2.5 seconds. The first set of experiments is done with this scaled down

by a factor of 10. For the second set of experiments, robot 2 keeps the same distribution

while robot 1’s times are scaled up to half the original times (5 times that of robot 2). This is

9. EXPERIMENTAL VALIDATION 84

Robot 1 Tile ID Robot 2 Tile ID
Long Rectangle 3 Trapezoid 7

Removed tile 7
Trapezoid 6
Octagon 4 Trapezoid 7

Removed tile 4
Square 9 Octagon 5

Removed tile 5
Octagon 4 Square 8

Removed tile 8
Octagon 5

Long Rectangle 11 Square 10
Triangle 13 Long Rectangle 12

Removed tile 13
Square 8 Triangle 14

Triangle 13
Table 9.3: Allocation After Detection of a Missing Tile.

done in order to create a situation where the slower robot will need to give work to the faster

robot in order to minimize completion time. Another benefit of running the experiments

this way is that the unreliable placement does not need to be corrected with a scanning

robot, allowing the node trading to be analysed on its own. Table 9.5 shows results for the

two sets of experiments. From the results, it does not seem that the higher manipulation

time was sufficient to cause any trades to occur for such a small structure. In fact, one of

the trials with the higher manipulation time finished before the faster manipulation time.

Since this was adding about 20 seconds per placement for 5 placements, it should have

added 100 seconds to the completion time for the slower robot. However, the variation in

time taken to navigate and use the LRF to align with the cache and structure seems to have

been large enough to wash out the effect of a higher manipulation time. Larger experiments

are needed to see the effects visible in the simulations.

9. EXPERIMENTAL VALIDATION 85

Figure 9.5: Two assembly robots with a completed structure.

9.1.3 Ant Colony Optimization

In the final set of experiments, each robot was assigned their respective assembly plans

determined by DAACO-S. The assembly plans consisted of a list of block identifiers in

the computed assembly order. Distributed implementation of the plan was achieved by

encoding the immediate supports for each component in the plan to ensure robots wait for

the placement of a missing support block by another robot before placing their parts.

Each assembly block was placed in the cache in the order specified by the generated

plan. For this experiment, Figure 9.6 shows the desired structure for the experiment and

the parts available.

7 full trials were conducted, with 2 robots placing 5 blocks each, along with an ad-

9. EXPERIMENTAL VALIDATION 86

(a) (b)

Figure 9.6: (a) The target structure. (b) The parts available in the experimental setup.

ditional 3 half trials with only robot 2, for a total of 85 attempted placements. Of these,

there were 31 failures, 15 of those occuring during pickup, 16 occurring during placement.

This yields a 64% rate of successfully retrieving a piece and placing it correctly. The time

to pick up and place a block averaged 246.9 seconds with a standard deviation of 18.3

seconds. The highest time observed over the 85 placements was 309.6 seconds, while the

lowest was 209.7 seconds. The time for one robot to complete its task averaged 1230.1 sec-

onds with a standard deviation of 71.4 seconds. Completion times are given in Table 9.4.

These rates clearly do not allow for correct assembly of large-scale structures, but could be

improved upon by adding more accurate sensing and more reliable manipulation.

9.2 Discussion

The execution of complex tasks by a team of heterogeneous robots in a complex and

dynamic environment with limited resources poses significant challenges. Most existing

assembly strategies do not explicitly address the impact of sensing and actuation noise

9. EXPERIMENTAL VALIDATION 87

Table 9.4: Experiment Completion Times in Seconds

Trial Robot 1 Robot 2
1 1192.8 1169.1
2 1157.4 1202.5
3 1153.9 1253.1
4 1258.0 1214.2
5 1162.8 1272.6
6 1180.1 1188.3
7 1293.6 1256.2
8 N/A 1424.4
9 N/A 1205.6
10 N/A 1327.0

Table 9.5: Two M3 robots with variable manipulation times

Criterion Same speed Different speed Different speed, no trading
Structure Size 9 9 9

Ave. # of nodes 4.5 4.5 4.5
St. Dev. of # of nodes 0.71 0.71 0.71
Total # of nodes traded 0 0 0

Ave. wait during construction 0.6 0.4 0.6
Ave. wait after construction 165.8 220.4 156.3

Ave. completion time 1007.0 1066.4 953.0

on the performance of a team of autonomous robots tasked to assemble complex three

dimensional structures in an actual physical space.

The experimental setup involved two types of real-time on-board sensing: 1) the ability

to localize the individual assembly tiles for pick-up and placement by the assembly robots,

and 2) the ability to determine the state of the assembly structure during the entire assembly

process. In both cases, the relative small size of the assembly tiles in relation to the sensing

and actuation precision of the actuators and sensors used in the system posed significant

engineering challenges. However, the ability to overcome these limitations at the small

scale suggests that one can be more confident in the performance of the algorithms when

employed on larger full scale systems.

10. CONCLUSIONS AND FUTURE WORK 88

10. Conclusions and Future Work

The main contribution of this work is to extend graph search strategies, specifically

Dijkstra’s Algorithm, and evolutionary algorithms, specifically Ant Colony Optimization,

to address a distributed task involving constraints on task ordering. As the focus in this

work has been on distributed assembly, the approaches detailed have included methods that

are specific to the challenges in that task, notably in the types of constraints considered, the

communication needed for online workload balancing, and consideration of special types

of structures. However, the general form of these approaches could be adapted to other

applications having similar task relationships, such as job assignment in parallel processing,

or pallet planning for an automated warehouse.

The area of distributed assembly is still fairly new, and has a number of promising

approaches in it. A central issue is that many of these approaches are limited to specific

hardware and types of structures, which makes comparisons between approaches difficult.

Another problem is that these approaches do not all define their goals the same way, which

makes comparisons impossible unless a common objective can be agreed upon. In this

thesis the objective used has been either minimizing completion time, or the stand-in ob-

jective of balancing workload for preplanning approaches, which is intended to give plans

that will lead to minimizing completion time in experiment. This is similar to the objective

function used by Daniela Rus’s group (Yun et al., 2009; Yun and Rus, 2010; Stein et al.,

2011; Schoen and Rus, 2013) that is primarily dependent on balancing workload as well.

However, some other approaches, most notably Justin Werfel’s work on TERMES (Werfel

and Nagpal, 2008; Petersen et al., 2011; Werfel et al., 2014), does not present any objective

beyond guaranteeing successful completion of the structure. Given the present state of the

field, it seems to me that each of these approaches has something valuable to offer and

should be continued, although it would be helpful to agree on a common set of challenges

10. CONCLUSIONS AND FUTURE WORK 89

to aim for. In this thesis an attempt was made to extend the approach to handle situa-

tions involving unstable partial structures, this seems like a necessary step towards actual

automation of construction work. Other potential directions include more heterogeneity

of construction tasks, such as spreading mortar, laying bricks, and pouring concrete with a

team of robots of varying capabilities. There is also a human-robot interaction problem that

must be solved for automated construction, as early steps would likely involve specialized

tasks for a robotic team which then must coordinate with humans performing other tasks in

the same environment.

For the approaches presented here, it seems that in most cases the approach based on

Dijkstra’s Algorithm performs fairly well, especially if augmented by online workload bal-

ancing, although in practice communication difficulties remain a concern, and the approach

must be resilient to communication failures. The final approach presented here addressed

this to some extent, implementing a scheme where failures in communication will result in

redundant builds rather than missing pieces, since local sensing before placement can re-

solve a redundant build assignment by returning the part and labeling it built. The DAACO

approaches were able to improve on the performance of the deterministic algorithm in

some cases, particularly those with less symmetry, but this comes at a cost of considerably

more computation during preplanning. Whether this is worthwhile would depend on the

application, though in most construction tasks there is likely sufficient time between the

final blueprints and breaking ground on the site for DAACO to run enough generations

to be worthwhile. The best approach of those presented here would be DAACO-SCII for

preplanning combined with the online workload balancing approach during actual con-

struction.

There are many areas that could be expanded in future work. For the deterministic pre-

planning approach, one direction for future work is to enable the algorithm to change the

entrance locations during Phase II to allow more flexibility in workload exchange between

10. CONCLUSIONS AND FUTURE WORK 90

robots. For the online error correction, a possible direction for future work is to improve

the visual feedback system to provide more detailed assessment of the state of the assembly

structure. In particular, the reduction of false negatives by visually inspecting the structure

via different viewpoints. A second direction for future work is to extend the visual feed-

back system to enable identification of incorrect assembly placements as well as missing

tiles. The path of the scanning robot, which is currently a rectangle around the workspace,

could also be optimized to ensure each node gets more frequent views. Expanding the size

and reliability of the experimental testbed will allow more informative results to be seen.

Finally, in both simulation and experiment it is worth noting that in several cases significant

idle time is seen at the end of the experiment, meaning that robots that have completed their

own tasks do sometimes have a long delay before the last robot finishes. This means that

there is still room to gain from adding a mechanism for a robot to split its task in half, giv-

ing half to an idle robot. The complication with this will be revising the approach to allow

two or more robots to share a root node, which will require all of them to confirm they are

finished before one is allowed to build the root. Another way would be to split off a subtree

with its own valid root node. For DAACO and its variants, one area for future work is to

apply an idea from Simulated Annealing, and allow pmin to decay over time, starting with

a high value to encourage early exploration of the solution space, with the best solution

being further refined as the noise represented by pmin decreases.

Several directions for extension of the cooperative manipulation task are possible. First,

I am interested in extending the approach to apply also to structures that require pieces too

large for a single robot to carry. This should be possible within this approach by having the

first robot to arrive at such a piece assign one of the available robots to assist, in the same

way that arch supports are assigned. Another direction for future work is to handle the

broken robot case. For the approach to be robust to the loss of a robot will require solving

two problems. First, the work assigned to that robot must be claimed and managed by

10. CONCLUSIONS AND FUTURE WORK 91

another robot when a robot becomes completely unresponsive. Second, all robots in the N2

of the broken robot must be notified that a specific robot has been deemed nonresponsive,

as the number of robots that choose to stay available for assigned work is dependent on the

total number of functioning robots in N2. Even then, if the number of functioning robots

dips below the number given by Theorem 4, the structure may not be buildable by the

remainder.

Another direction for future work would be to expand the experimental system to larger

structures with larger teams of robots. In addition to being a more direct test of the assembly

plans being generated, this would allow the methods to be compared using completion time

of the structure as well as workload variance. These approaches could also be applied to

other hardware platforms, including those used in Lindsey et al. (2011), Petersen et al.

(2011), and Bolger et al. (2010).

Finally, I would like to directly compare these methods against other approaches on

the same structures. This has been difficult because many approaches are tied to specific

hardware or types of structures, which limits the comparisons that can be done.

BIBLIOGRAPHY 92

Bibliography

S. Balakirsky, F. Proctor, T. Kramer, P. Kolhe, and H. I. Christensen. Using simulation
to assess the effectiveness of pallet stacking methods. In Simulation, Modeling, and
Programming for Autonomous Robots, pages 336–349, Berlin, Germany, Sep 2010.

A. Bolger, M. Faulkner, D. Stein, L. White, S.K. Yun, and D. Rus. Experiments in de-
centralized robot construction with tool delivery and assembly robots. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2010.

R.L. Brooks. On colouring the nodes of a network. In Proceedings of Cambridge
Philosophical Society, volume 37, pages 194–197, 1941.

L Chaimowicz, T Sugar, V Kumar, and M F M Campos. An Architecture for Tightly
Coupled Multi-Robot Cooperation. In Proc. IEEE Int. Conf. on Rob. & Autom., pages
2292–2297, Seoul, Korea, May 2001.

K.S. Chang, R. Holmberg, and O. Khatib. The augmented object model: cooperative ma-
nipulation and parallel mechanism dynamics. In International Conference on Robotics
and Automation (ICRA00), volume 1, pages 470–475, Apr 2000.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press,
1990.

R. D’Andrea. Flight assembled architecture, 2011. URL http://raffaello.name/
dynamic-works/flight-assembled-architecture/.

M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete optimization.
Artificial Life, pages 137–172, 1999.

William C. Evans, Grgory Mermoud, and Alcherio Martinoli. Comparing and modeling
distributed control strategies for miniature self-assembling robots. In in the Proc. of the
2010 Int. Conf. on Robotics and Automation (ICRA10), pages 1438–1445, Anchorage,
AK, May 2010.

J Fink, M Ani Hsieh, and V Kumar. Multi-robot manipulation via caging in environments
with obstacles. In Proc. IEEE International Conference on Robotics and Automation
(ICRA08), pages 1471–1476, Pasadena, CA, May 2008.

B. Gerkey and M. Mataric. A formal analysis and taxonomy of task allocation in multi-
robot systems. International Journal of Robotics Research, 23(9):939–954, 2004.

BIBLIOGRAPHY 93

Alexander Grushin and James A. Reggia. Automated design of distributed control rules
for the self-assembly of prespecified artificial structures. Robotics and Autonomous
Systems, pages 334–359, 2008.

F Heger and S Singh. Robust robotic assembly through contingencies, plan repair and
re-planning. In Proceedings of ICRA 2010, May 2010.

M. Ani Hsieh and Josh Rogoff. Complexity measures for distributed assembly tasks. In
Proc. of the 2010 Performance Metrics for Intelligent Systems Workshop (PerMIS09),
Baltimore, Maryland, Sept 2010.

http://www.kivasystems.com. Kiva systems website.

http://www.leonardodavincisinventions.com/leonardo-da-vinci-models/leonardo-da-
vincis-self-supporting bridge/.

E.G. Jones, M.B. Dias, and A. Stentz. Time-extended multi-robot coordination for domains
with intra-path constraints. Autonomous Robots, 30(1):41–56, 2011.

Y. Khaluf and F. Rammig. Task allocation strategy for time-constrained tasks in robots
swarms. In European Conference on Artificial Life (ECAL’13), Sept 2013.

B. Khoshnevis. Automated construction by contour crafting related robotics and informa-
tion technologies. Journal of Automation in Construction Special Issue: The best of
ISARC 2002, 13:5–19, 2004.

E Klavins. Programmable Self-Assembly. In Control Systems Magazine, volume 24, pages
43–56, August 2007.

Quentin Lindsey and Vijay Kumar. Distributed construction of truss structures. In Proc. of
Workshop on the Algorithmic Foundations of Robotics (WAFR), 2012.

Quentin J. Lindsey, Daniel Mellinger, and Vijay Kumar. Construction of cubic structures
with quadrotor teams. Robotics: Science and Systems, June 2011.

M J Mataric, M Nilsson, and K Simsarian. Cooperative Multi-Robot Box-Pushing. In Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS95), pages
556–561, Pittsburgh, Pennsylvania, August 1995.

L Matthey, S Berman, and V Kumar. Stochastic Strategies for a Swarm Robotic Assembly
System. In Proc. 2009 IEEE International Conference on Robotics and Automation
(ICRA09), pages 1953–1958, Kobe, Japan, May 2009.

N. Michael, J. Fink, and V. Kumar. Cooperative manipulation and transportation with aerial
robots. Autonomous Robots, 30(1):73–86, Sept 2011.

N. Napp and R. Nagpal. Robotic construction of arbitrary shapes with amorphous materi-
als. In International Conference on Robotics and Automation (ICRA’14), 2014.

BIBLIOGRAPHY 94

G A S Pereira, V Kumar, and M F M Campos. Decentralized Algorithms for Multirobot
Manipulation via Caging. In International Journal of Robotics Research, volume 23,
pages 783–795, Nice, France, December 2004.

K. Petersen, R. Nagpal, and J. Werfel. Termes: an autonomous robotic system for three-
dimensional collective construction. In Robotics: Science and Systems VII, 2011.

G. Pini, A. Brutschy, C. Pinciroli, M. Dorigo, and M. Birattari. Autonomous task partition-
ing in robot foraging: an approach based on cost estimation. Adaptive Behavior, 21(2):
118–136, 2013.

V. Rai, A. van Rossum, and N. Correll. Self-assembly of modular robots from finite number
of modules using graph grammars. In Proceedings of the International Conference on
Intelligent Robots and Systems (IROS11), San Francisco, CA, Sep 2011.

A. C. Sanderson, H. Zhang, L. S. Homen De Mello, Amla Arthur C. S, Arthur C. S, Hui
Zhang, Hui Zhang, Luiz S. Homem De Mello, and Luiz S. Homem De Mello. Assembly
sequence planning. AI Magazine, 11:62–81, 1990.

J. A. Sauter, R. Matthews, H. V. D. Parunak, and S. Brueckner. Evolving adap-
tive pheromone path planning mechanisms. In Autonomous Agents and Multi-Agent
Systems (AAMAS02), pages 434–440, Bologna, Italy, 2002.

T.R. Schoen and D. Rus. Decentralized robotic assembly with physical ordering and timing
constraints. In International Conference on Intelligent Robots and Systems (IROS’13),
Nov 2013.

M. Schuster, R. Bormann, D. Steidl, S. Reynolds-Haertle, and M. Stilman. Stable stacking
for the distributor’s pallet packing problem. In Intelligent Robots and Systems (IROS10,
pages 3646–3651, 2010a.

Martin Schuster, Richard Bormann, Daniela Steidl, Saul Reynolds-Haertle, and Mike Stil-
man. Stable stacking for the distributor’s pallet packing problem. In Proc. 2010 Int.
Conf. on Intelligent Robots and Systems (IROS10), Taipei, Taiwan, Oct 2010b.

J. Spletzer, A.K. Das, R. Fierro, C.J. Taylor, V. Kumar, and J.P. Ostrokowski. Cooperative
localization and control for multi-robot manipulation. In International Conference on
Intelligent Robots and Systems (IROS01), volume 2, pages 631–636, Oct 2001.

D. Stein, R. Schoen, and D. Rus. Constraint-aware coordinated construction of generic
structures. In IEEE International Conference on Intelligent Robots and Systems
(IROS11), San Francisco, CA, Sep 2011.

T Sugar and V Kumar. Multiple Cooperating Mobile Manipulators. In Proc. 1999 IEEE
International Conference on Robotics and Automation (ICRA99), pages 1538–1543, De-
troit, Michigan, May 1999.

BIBLIOGRAPHY 95

J Werfel and R Nagpal. Three-dimensional construction with mobile robots and modular
blocks. In International Journal of Robotics Research, volume 27, pages 463–479, March
2008.

J. Werfel, K. Petersen, and R. Nagpal. Designing collective behavior in a termite-inspired
robot construction team. Science, 343(6172):754–758, Feb 2014.

A. Yamashita, T. Arai, J. Ota, and H. Asama. Motion planning of multiple mobile robots
for cooperative manipulation and transportation. IEEE Transactions on Robotics and
Automation, 19(2):223–237, Apr 2003.

S. K. Yun and D. Rus. Adaptation to robot failures and shape change in decentralized
construction. In Proc. of the Int. Conf. on Robotics & Automation (ICRA10), pages
2451 – 2458, Anchorage, AK USA, May 2010.

S. K. Yun, M. Schwager, and D. Rus. Coordinating construction of truss structures using
distributed equal-mass partitioning. In Proc. of the 14th International Symposium on
Robotics Research, Lucerne, Switzerland, Aug-Sept 2009.

