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On the determination of spherical nanoindentation
stress–strain curves
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Instrumented nanoindentation experiments, especially with sharp tips, are a
well-established technique to measure the hardness and moduli values of a wide range
of materials. However, and despite the fact that they can accurately delineate the onset
of the elasto-plastic transition of solids, spherical nanoindentation experiments are less
common. In this article we propose a technique in which we combine (i) the results of
continuous stiffness measurements with spherical indenters – with radii of 1 �m and/or
13.5 �m, (ii) Hertzian theory, and (iii) Berkovich nanoindentations, to convert
load/depth of indentation curves to their corresponding indentation stress–strain curves.
We applied the technique to fused silica, aluminum, iron and single crystals of
sapphire and ZnO. In all cases, the resulting indentation stress–strain curves obtained
clearly showed the details of the elastic-to-plastic transition (i.e., the onset of yield,
and, as important, the steady state hardness values that were comparable with the
Vickers microhardness values obtained on the same surfaces). Furthermore, when both
the 1 �m and 13.5 �m indenters were used on the same material, for the most part,
the indentation stress–strain curves traced one trajectory. The method is versatile and
can be used over a large range of moduli and hardness values.

I. INTRODUCTION

In the past 20 years, instrumented nanoindentation ex-
periments have emerged as a powerful tool in under-
standing the mechanical behavior of solids in general,
and single crystals and thin films in particular. However,
since the majority of the work has been carried out using
Berkovich indenters, the emphasis has been more on ex-
tracting moduli and hardness values.1 Berkovich or cube
corner indenters are quite sharp and result in plastic de-
formation almost instantly; consequently, much of the
information about the purely elastic region and, as im-
portant, the elastic-to-plastic transition is lost, a fact that
has long been appreciated.2

As discussed herein, that information can be readily
obtained by using spherical indenters. To do so, however,
use is made of the continuous stiffness measurement
technique (CSM), a technique with which it is possible to
apply a load to the indenter tip, while simultaneously
superimposing an oscillating force, with force amplitudes
that are roughly an order of magnitude smaller than the
nominal load.3 This technique is thus capable of accu-
rately measuring the contact stiffness at every load and
eliminates the need to carry out multiple loading–

unloading measurements, as described in the Field and
Swain method,4,5 to calculate the variations in hardness
and moduli values with load and displacement into the
surface.

Given that the conversion of load–displacement curves
to indentation stress–strain curves is almost as old as the
technique of using indentations to probe the mechanical
properties of solids,2 it is somewhat surprising that this
conversion is not much more common than it is. This
comment notwithstanding, there have been a number of
papers in which spherical nanoindenters have been
used.4,6–9 Roughly a decade ago, Field and Swain sug-
gested a method to extract indentation stress–strain
curves from load–displacement curves.5,10 But for rea-
sons that are not clear, and with some exceptions,6–9,11,12

their methodology has not caught on and as importantly,
Swain et al. have not used this technique in their more
recent work. Instead, in some recent publications,6,11,12

plots of hardness versus indentation penetration were
presented, but none as indentation stress–strain curves.
Before acquiring the CSM option, we used the Field and
Swain method to convert load–displacement results ob-
tained on Ti3SiC2,13 and single crystals of mica14 and
graphite,15 loaded parallel to the c-axis to indentation
stress–strain curves.

Herbert et al.7 described a methodology that is almost
identical to the one described here and applied it to Al;

a)Address all correspondence to this author.
e-mail: barsoumw@drexel.edu

DOI: 10.1557/JMR.2006.0324

J. Mater. Res., Vol. 21, No. 10, Oct 2006 © 2006 Materials Research Society2628



they concluded that the method was a qualified success in
that more work was needed to better delineate the yield
points of Al. Again for reasons that are not clear, and as
far as we are aware, neither Pharr and coworkers, nor
others, have attempted to develop the technique further.

In summary, and despite the use by some of spherical
nanoindenters—and the ease by which the load can, in
principle, be converted to stress—as far as we are aware,
there has been little effort in trying to systematically
study and convert nanoindentation load–displacement re-
sults to their corresponding stress–strain curves.

The objective of this article is to apply a variation of
the Herbert et al.7 technique to a number of quite differ-
ent solids, namely amorphous silica, polycrystalline alu-
minum, Al, iron, Fe, and single crystals of sapphire and
ZnO. In all cases, the results were compared with the
moduli reported in the literature and those measured us-
ing the Oliver and Pharr1 method and a Berkovich in-
denter. The hardness values obtained here were, in turn,
compared with the results obtained using Vickers and
Berkovich indenters. We show herein that this approach
is quite powerful and versatile.

II. SPHERICAL INDENTATION MODEL

Typically, a nanoindentation test results in the load (P)
and displacement into surface (ht) data. Additionally, the
CSM attachment provides the harmonic contact stiffness
(S) values over the entire range of loading. The vast
majority of spherical nanoindentation data analysis is
based on the Hertz equation in the elastic region1,2,5,10

P =
3

4
EeffR

1�2he
3�2 , (1)

where R is the radius of the indenter, he is the elastic
distance into the surface (Fig. 1), and Eeff is the system
composite modulus given by

1

Eeff
=

1 − �2

E
+

1 − ��2

E�
, (2)

where E� and ��, respectively, refer to the modulus and

Poisson’s ratio of the diamond indenter (1140 GPa and
0.07). The other terms refer to those of the sample.

For a rigid spherical indenter, Sneddon16 showed that
the elastic displacements of a plane surface above and
below the contact circle are equal, and given by

he = ht =
a2

R
, (3)

where a is the contact radius during indentation (Fig. 1).
Combining Eqs. (1) and (3) yields

P

�a2 =
4

3�
Eeff�a

R� . (4)

The left side of the equation represents the indentation
stress or mean contact pressure, also referred to as the
Meyer hardness.2 The expression in parentheses on the
right side represents the indentation strain.2 Henceforth
in this article, these will be referred to as indentation
stress and indentation strain, respectively. Note these are
not the same as the stresses and strains measured in uni-
axial compression tests.

In the remainder of this section we outline a method by
which a can be calculated from a knowledge of P, S, and
the total displacement of the indenter into the surface, ht,
first in the elastic regime, and then in the elasto-plastic
regime.

A. Elastic regime

Both the Oliver and Pharr1 and Field and Swain5 meth-
ods use the slopes of the initial portions of the unloading
curves, dP/dh, to calculate he. Differentiating Eq. (1)
with respect to h yields

dP

dh
= 2EeffR

1�2he
1�2 , (5)

which when substituted in Eq. (1), results in

P =
2

3

dP

dh
he . (6)

Therefore,

he =
3

2
P

dh

dP
. (7)

Since dP/dh is nothing but the stiffness, S*, of the system
composed of the specimen and the load frame, the stiff-
ness of the material itself can be calculated from

1

S
=

1

S*
−

1

Sf
, (8)

where Sf is the load-frame stiffness, which in our case isFIG. 1. Schematic representation of spherical indentation.
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5.5 MN/m. This value is the one obtained from the manu-
facturer of the instrument. Replacing dP/dh in Eq. (8)
with S, one obtains

he =
3

2

P

S
. (9)

Once he is known, a is calculated from Eq. (3).

B. Elasto-plastic regime

Again following Oliver and Pharr1 and Field and
Swain5 we assume the “contact depth”, hc, defined as the
distance from the circle of contact to the maximum pen-
etration depth (Fig. 1) to be given by

hc ≈ ht −
he

2
. (10)

Combining Eqs. (9) and (10) yields

hc = ht −
3

4

P

S
. (11)

For reasons discussed below, we modified this equation
to read

hc = ht −
3

4

P

S
+ � , (12)

where � is an adjustable parameters of the order of a few
nm needed to obtain the correct elastic moduli.

Once hc is known, a can be calculated assuming

a = �2Rhc − hc
2 ≈ �2Rhc . (13)

Note the right-hand expression is only valid if hc � a,
and the indenter tip is perfectly spherical. In the purely
elastic regime, hc � ht/2 � he/2 and Eq. (3) and Eq. (10)
become identical. Also note that for the most part in the
plastic regime, since ht �he/2 and it follows that hc ≈ ht

[Eq. (10)].
For an isotropic elastic solid, indented with a spherical

indenter,1

a =
S

2Eeff
. (14)

To date the most commonly used method for measur-
ing nanoindentation hardness values is the Oliver and
Pharr method, in which hc is calculated from Eq. (11),
and the contact area, A, is determined from a calibrated
area function of the form1

A�hc� = C0hc
2 + C1hc + C2hc

1�2 + C3hc
1�4 + C4hc

1�8

+ . . . . (15)

In this paper we calculate a from Eq. (13). The validity
of the results are then judged by two simple criteria. The
first criterion is that the initial portion of the indentation
stress–strain curves be linear, with the higher of two

slopes: either the slope obtained from Eq. (14), or the one
measured by the standard method, namely a Berkovich
indenter and the Oliver and Pharr method. Second, that
the stress level at higher strains corresponds to the stress
measured on the same material using a Vickers micro-
hardness indenter.

III. EXPERIMENTAL DETAILS

The nanoindenter (XP System, MTS, Oak Ridge, TN)
used in this work was equipped with a CSM attachment.
All tests were carried out with a load rate over load factor
of 0.1. The harmonic displacement for the CSM was 2
nm with a frequency of 45 Hz. The tests were carried out
to various loads for different materials depending on
their hardness. Once the surface is detected, the indenter
is loaded at a constant value of (dP/dt)/P � 0.1 (the
loading rate divided by the load), which has the advan-
tage of logarithmically scaling the data density so that
there is just as much data at low loads as high. Constant
(dP/dt)/P tests also have the advantage of producing a
constant indentation strain rate, (dh/dt)/h, provided the
hardness is not a function of the depth.17

Two diamond spherical tips—with radii of 13.5 �m and
1 �m—were used. As noted in Sec. I, we used a number
of materials: fused silica (GM Associates Inc., Oakland,
CA); sapphire single crystal (C-orientation) (Kyocera
Industrial Ceramics, Vancouver, WA); C-orientation
ZnO single crystal (Wafer World, Inc., West Palm
Beach, FL); and two metals: Al (Puratronic 99.999%,
Alfa Aesar, MA) and Fe (99.99 % Alfa Aesar, MA).

In all cases, the Vickers microhardness values of the
same surfaces used for the nanoindentations were meas-
ured using a microhardness indenter (M-400 Hardness
Tester, LECO Corp., St. Joseph, MI) and a 10 N load. We
also used the Oliver and Pharr1 method and a Berkovich
indenter tip to measure the hardness, HBr, and moduli,
EBr, of all samples. The latter will henceforth be referred
to as the standard method.

Lastly, to compare the indentation stress–strain curves
with those measured in uniaxial compression, a Fe cyl-
inder (9.7 mm diameter × 35 mm long) was loaded at a
nominal stress rate of approximately 13.5 MPa/s. The
strain was measured using an extensometer attached to
the sample.

IV. RESULTS

A. Stiffness versus contact radii

Before plotting the indentation stress–strain curves it
is crucial to determine the effective elastic stiffness of the
various materials examined. According to Eq. (14), a plot
of S versus a should result in straight lines with slopes
proportional to Eeff as observed [Fig. 2(a)]. [The results
for Al are not shown in Fig. 2(a), since they are almost
identical to those for fused silica.] The linearity over the
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entire loading regime implies that S is not affected by
pop-ins or plastic deformation. The reproducibility is
also noteworthy—each group of results was obtained
from multiple locations—as is the excellent agreement
between the slopes obtained using the 1 �m and 13.5 �m
indenters on fused silica and ZnO. (The 1-�m results are
not shown.) In other words, Eeff is not a function of
indenter radius, as one would expect. The moduli values
calculated from both spherical and Berkovich nano-
indentation were also compared in Fig. 2(b). The linear
agreement between the values, for the wide range of

solids used during this work, shows the potential for
using the spherical nanoindentation technique in parallel
to the more famous Berkovich technique.

The Young’s moduli values calculated from Eqs. (2)
and (14) are listed in Table I as ESp (column 4) together
with the literature data, E, (column 3) and the values
determined using the standard method, namely EBr (col-
umn 5). Comparison of the former two sets of results
make it amply clear that ESp < E. Similarly, and with the
exception of Fe, ESp < EBr. The good correlation between
ESp and EBr [Fig. 2(b)] suggests that the determination of
moduli with spherical indentors is as valid as the more
common standard method.

B. Moduli corrections

Given that the standard method is a well-established
technique to measure moduli, we used it to determine EBr

as we assumed the latter to be the correct modulus but
only if ESp < EBr. If ESp > EBr we assumed the former to
be more correct. The reason is simple: experimentally,
there are many reasons one can obtain lower moduli,
but it is difficult to conceive of a scenario where the
measured moduli would be higher than actual. In other
words, the higher the modulus the closer it must be to the
true modulus. This conclusion is corroborated in this
work; in all cases, the moduli measured, whether EBr or
ESp were < E.

After plotting the indentation stress–strain curves from
the as-received data, � was adjusted so that the linear, or
elastic portions of the indentation stress–strain curves
corresponded to EBr. In most cases that entailed positive
�-values. Once the latter were plotted they were shifted
mechanically so all plots passed through the origin. In the
case of Fe, where ESp > EBr, we assumed ESp to be the
more correct value, and the curves were simply mechani-
cally shifted.

To best illustrate this methodology, consider the in-
dentation stress–strain results for Al shown in Fig. 3(a).
[A typical load/depth of penetration curve is shown in the
inset in Fig. 3(a).] While the steady state stresses con-
verge onto the dashed horizontal line representing the
Vickers hardness of the same surface (Table I), the initial
portions varied from location to location. The inset in
Fig. 3(b) illustrates the effect of increasing � on the
shapes of the indentation stress–strain curves shown in
Fig. 3(a). With one exception, where � � 25 nm, the
shifts required for the elastic portions of the curves to
correspond to EBr were of the order of 10 nm. The me-
chanically shifted curves are shown in Fig. 3(b). In ad-
dition to obtaining the higher moduli, shifting the curves
by �, has the added advantage of rotating the initial
points in Fig. 3(a) counterclockwise in such a way that
they now all fall on the same straight line as the other
data points [Fig. 3(b)]. The initial hump is also greatly
reduced.

FIG. 2. (a) Plot of contact harmonic stiffness versus contact radius as
determined from spherical nanoindentation; and (b) comparison of
moduli values determined from Berkovich and spherical nanoinden-
tation.
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In the remainder of this article we discuss each mate-
rial separately starting with the standard material of
choice, fused silica.

C. Fused silica

Typical load-displacement curves for the 1 �m and
13.5 �m indenters on fused silica are shown in Fig. 4(a).
Figure 4(b) plots the indentation stress–strain curves [i.e.,
Eq. (4)], for five different locations, for both the 1 �m
and 13.5 �m indenters; the results for the latter were
shifted by 0.3, to the right for clarity’s sake. The repro-
ducibility of the 13.5-�m results is excellent, those of the
1 �m ones less so, but acceptable, nevertheless. Least
squares fits of the linear portions in Figs. 2(a) and 4(b)
yield slopes that correspond to an ESp 59 ± 2 GPa
(Table I), rather than the established value of 72 GPa
measured by the standard method. Figure 4(c) re-plots
the results shown in Fig. 4(b), after the �-correction and
the mechanical shift of the curves. The range of �-cor-
rection was quite small: ± 1.5 nm. The curves derived
from the 1 �m and 13.5 �m indentations [Fig. 4(c), open
squares] appear to superimpose onto each other lending
great validity to our method. In other words, in the case
of fused silica, the results obtained, after the yield point,
do not depend on the indenter diameter. [For the sake of
clarity only one indentation stress–strain curve from the
13.5-�m data set is plotted in Fig. 4(c). The spread in the
results for five locations was no more than the widths of
five symbols across.]

Based on Fig. 4(c), a clear “yield” point is observed for
both indenters at ≈ 6.5 ± 1 GPa. Interestingly, this yield
point occurs at a stress that is slightly higher than the
5.6 ± 0.6 GPa obtained from our Vickers microhardness
measurements for the same sample at 10 N. (Higher mi-
crohardness values are obtained at lower loads.) Whether
this is simply coincidental remains to be determined. The

nature of the micro-yielding is not clear at this time, but
is most probably related to the densification of the amor-
phous silica under the indenter.

Note that our method is valid for the 1 �m indenter tip
only up to ht depths of the order of ≈300 nm. Above that
the tip is no longer spherical and Eq. (12) is not valid,
which is why there are no results beyond a strain of 0.7
in Fig. 4(c). This is not a problem for the 13.5 �m in-
denter until penetration depths of ∼4500 nm, but the
maximum load applicable was 700 mN [Fig. 4(a)]. To
obtain the entire range of stresses for silica with one
indenter, its diameter would have to fall in between the
ones used here.

D. ZnO

The typical load-displacement curves obtained when
the ZnO C-planes are indented with the 13.5 �m indenter
[Fig. 5(a)] are characterized by large pop-ins that occur
between 80 mN and 120 mN depending on location.
When these results are converted into indentation stress–
strain plots [Fig. 5(b)] it is obvious that the response is
linear elastic up to a maximum stress of 6.5 ± 1 GPa,
before dropping substantially to just under 3 GPa, before
slowly rising with further strain. The average �’s needed
to obtain the EBr of 135 GPa, were 4.5 ± 2 nm and all
positive.

By design the initial slopes of the indentation stress–
strain curves obtained using the 1 �m tip [Fig. 5(b),
crosses] were identical to those obtained using the larger
diameter indenter. The average � was 3.7 ± 2.5 nm and
positive. For the sake of clarity only one indentation
stress–strain curve of the 1 �m indenter was plotted in its
entirety (crosses). For the other locations only the region
for which the strain >0.25 were plotted. At ≈6 ± 1 GPa,
the peak stresses (not shown) were statistically indistin-
guishable to those measured using the 13.5 �m indenter.

TABLE I. Summary of Poisson’s ratios, v, and Young’s moduli, E, or 1/s33 taken from the literature, the moduli values measured in this work
using the spherical indenters, ESp, a Berkovich indenter, EBr, and the hardness values using the latter, HBr. Also listed in last column are the Vickers
microhardness values measured herein using a load of 10 N.

Material v
E or 1/s33

(GPa)
ESp (Fig. 2)

(GPa)
EBr

(GPa)
HBr

(GPa)

Vickers
�-Hardness

(GPa)

Silica 13.5 �m 0.18 72 59 ± 1 71.7 ± 0.7 9.3 ± 0.2 5.6 ± 0.6b

SiO2 1 �m 59 ± 2
Al 13.5 �m 0.3 70 58 ± 4 60 ± 4 0.48 ± 0.02 0.29 ± 0.02
Fe 13.5 �m 0.3 210 163 ± 9 155 ± 1 1.2 ± 0.1 1.3 ± 0.1

203a

C-ZnO 13.5 �m 0.2 1/s33 � 149 130 ± 4 135 ± 3 4.8 ± 0.2 3.3 ± 0.1
C-ZnO 1 �m 131 ± 4
C-Al2O3 1 �m 0.2 1/s33 � 458 394 ± 4 412 ± 8 25 ± 1 22.5c

a This work.
b This value depends on load; lower loads yield higher values.
c According to manufacturer.
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After the pop-ins, the hardness values (not shown) drop
to ≈3.5 ± 1 GPa, before increasing more or less linearly
with strain. For reasons that are not clear, but could be
related to the indenter size effect, the hardness values
calculated from the 1 �m indentions appear to be ≈1 GPa
higher than those measured using the 13.5 �m indenta-

tions. The Vickers microhardness values on the same
surface were ≈3.3 ± 0.1 GPa (Table I).

E. Sapphire

Typical load-displacement curves obtained when the
C-planes of sapphire are loaded with the 1 �m indenter
are characterized by a “pop-in” event at a load of
≈15 mN.18 The corresponding indentation stress–strain
curves (Fig. 6) are characterized by a linear elastic re-
gion, with EBr ≈412 ± 8 GPa (Table I). Because of the
pop-ins, at ≈45 ± 4 GPa the stresses drop precipitously to
≈28 GPa, before rising more or less linearly with further
penetration of the indenter. (In Fig. 6 the points to the left
of the elastic line were erased.) Note that for sapphire the
limit for the 1 �m indenter occurs at a strain of ≈0.5.

A more thorough and detailed study of spherical na-
noindentations into C- and A- sapphire planes can be
found in Ref. 18. In that work we show the deformation
under the indenter was solely dislocation-based and
dominated by basal slip, even at room temperature. We
also showed that there is little plastic deformation before
the pop-ins.

F. Iron

Here since ESp > EBr, the indentation stress–strain
curves for pure Fe were plotted assuming � � 0
[Fig. 7(a)]. Inset in Fig. 7(a) shows a typical load-
displacement curve. The mechanically shifted curves—
for which the points to the left of the elastic line were
removed—are shown in Fig. 7(b).

At 1.1 ± 0.1 GPa, the steady-state hardness values are
in reasonably good agreement with the 1.3 ± 0.1 GPa
Vickers microhardness value measured on the same
sample [horizontal dashed line in Fig. 7(b)]. To compare
the uniaxial compression results with those shown in
Fig. 7(b) we multiplied the former stress by three and
the strain by a factor of 10. The agreement between
yield values of the two sets of results is surprisingly
good.

G. Aluminum

The Al results were shown in Fig. 3 and discussed
above. The initial variations in the indentation stress–
strain response for the different locations [Fig. 3(a)] were
ironed out by assuming �-values in the order of 10 nm
(with one exception in which � � 25). The reproduc-
ibility of the shifted curves is noteworthy; especially
when it is appreciated that the Al tested was polycrys-
talline.

The elastic-to-plastic transition for a majority of the
curves is sharp and the stresses obtained hovered around
the Vickers microhardness value measured on the same
sample, namely 0.29 ± 0.02 GPa (Table I).

FIG. 3. Indentation stress/strain curves in pure Al in various locations,
(a) as-received data. Inset shows a typical load/depth-of-penetration
curve, (b) same as (a), but after �−correction (see text) and mechanical
shifting of curves. Inset shows the results before mechanical shifting.
The numbers listed in the inset represent the values of � needed to
obtain the correct modulus. Note shifting the curve also rotates the
initial nonsensical points counterclockwise and aligns them with the
other results. Dashed horizontal lines represent the Vickers microhard-
ness values measured on the same Al sample.
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V. DISCUSSION

A. Critical analysis of method

Based on the totality of the results, there is little doubt
that our method is a relatively simple way to convert
indentation load-penetration results into the much more
informative and useful indentation stress–strain curves.
The method is versatile and is applicable to Al, as well as
sapphire, that between them span quite a large moduli

FIG. 4. Indentation results for fused silica, (a) load/depth-of-
penetration results for the 1 �m and 13.5 �m indenters used, (b)
corresponding stress–strain curves with no-correction (i.e., � � 0); the
13.5 �m results are shifted by 0.2 to the right for clarity. (c) Same
results after �−correction, the values of which are listed. In this figure
we eliminated the data points to the left of the dashed line, which
represents the elastic response of the solid. Also shown is a typical
result obtained using the 13.5 �m indenter. The agreement between
the two sets of results in excellent. Dashed horizontal lines represent
the Vickers microhardness values measured on the same silica.

FIG. 5. Indentation results for single crystal ZnO C-planes, (a) load/
depth-of-penetration results 13.5 �m indenter. Note large pop-ins
around 100 mN. (b) Corresponding stress–strain curves after �−cor-
rection and mechanical shifting. Here again data points to the left of
the dashed line were removed. Dashed horizontal lines represent the
Vickers microhardness values measured on the same ZnO C-planes.
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and hardness values range. The method is relatively
straightforward and with the exception of a small �-cor-
rection, otherwise devoid of adjustable parameters and/or
any calibration procedures. The approach described
herein was not arrived at easily; for over 2 years we tried
and discarded numerous techniques before choosing the
one described herein. Note that for the most part, the
same conclusions are reached if � � 0.

The usefulness and acceptance of the method proposed
here depends on a number of factors, the most important
of which is whether the resulting indentation stress–
strain curves yield new information that is reliable, re-
producible, and meaningful. To answer these questions
we compare the results obtained in this work to previous
work, with special emphasis on the hardness and moduli
values obtained by the standard method.

B. Fused silica

It is clear from the results shown in Fig. 4(c) that the
indentation stress–strain curves derived from the 1 �m
and the 13.5 �m indenters are superimposable, not only
at stresses below the ≈7 GPa “yield” point, but as impor-
tant above that value. In other words, for silica we do not
observe the indentation size effect that is well docu-
mented in the literature and observed below for ZnO.

C. ZnO

The modulus for ZnO calculated from Fig. 2(a), 130 ±
4 GPa, is close to the value of 111 ± 5 GPa, reported by

Kucheyev et al.12 on C-planes of ZnO, determined using
the Field and Swain method5 with a 4.2 �m radius in-
denter. Our value is also slightly lower than the value of
1/s33, namely 149 GPa, one would expect if a ZnO crys-
tal were uniformly loaded along the c-axis. (The elastic
constants were taken from Ref. 19.) The value of EBr

obtained—and ultimately used in Fig. 5(b), 135 GPa—is

FIG. 6. Indentation stress–strain curves after �−correction and me-
chanical shifting for single crystal sapphire C-planes loaded with a
1 �m radius spherical indenter. Note large pop-ins in the 40–50 GPa
range. Dashed horizontal lines represent the Vickers microhardness
values reported by the manufacturer for the same surface.

FIG. 7. Indentation stress–strain curves for Fe loaded with a 13.5 �m
radius spherical indenter (a) before �−correction. Inset shows typical
indentation results. (b) Same results after mechanical shifting and
�−correction, the values of which are shown. Also plotted are bulk
compression results (open squares) on the same Fe after multiplying
the stress by 3 and the strain by 10. The agreement between the two
sets of results is excellent. Dashed horizontal lines represent the Vick-
ers microhardness values measured herein on the same sample.
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in even better agreement with 1/s33. That the measured
stiffness would be slightly lower than 1/s33 is expected
given the highly nonuniform nature of the stress under an
indenter. These results are crucial because they provide
independent evidence that our technique and procedures
of extracting the moduli values are valid on a near model
system.

The hardness values immediately after the pop-ins
seem to straddle the Vickers microhardness value of
3.5 GPa, measured herein on the same substrate
[Fig. 5(b) and Table I]. Why the hardness continues to
increase is unclear at this time, but could be related to
work hardening. Interestingly, Kucheyev et al.12 report a
steady-state hardness value of 5.0 ± 0.1 GPa, and no
work hardening whatsoever. More careful work is
needed to better understand what is occurring beyond the
pop-in stresses.

D. Sapphire

At 412 GPa, the moduli calculated from Berkovich
nanoindentation for sapphire are ≈10% smaller than
1/s33, namely 458 GPa, one would expect had the crystal
been uniformly loaded. (The elastic constants were taken
from Ref. 20.) Here again these values are quite reason-
able given the highly nonuniform nature of the load un-
der the indenter. The modulus value measured from the
“S” versus “a” plot is slightly lower compared with EBr

(Table I).
At ≈28 GPa, the minimum hardness values after the

pop-ins in Fig. 6 are higher than those reported by the
manufacturer, or those measured by the standard method
(Table I). The increase in hardness values beyond the
minimum is most probably an artifact of our methodol-
ogy because Eq. (12) is not valid beyond a strain of ∼0.5.

E. Iron

For reasons that are not clear, the values of EBr and ESp

we measure for Fe (Table I) are ≈30% lower than the
value of 211 GPa reported in the literature, or the 203
GPa we obtained from our uniaxial compression results
(not shown). Because in this case ESp > EBr, no shifting
was needed to adjust the moduli; they were simply me-
chanically shifted to pass through the origin.

It has long been appreciated that the Meyer hardness,

P

�a2 ≈ 3�y ,

where �y is the yield point.2 It was thus gratifying to
obtain the excellent agreement between uniaxial com-
pression results and the indentation results [Fig. 7(b)].
Along the same lines, the indentation strain is related to
the uniaxial strain, �, by2

a

R
≈ 5� .

In Fig. 7(b), a factor of 10 was used instead of 5. The fit
is good, in part because the moduli we determine from
indentation in the case of Fe are significantly lower than
the moduli measured under uniaxial loadings (Table I).
The exact relationship between a/R and � has not been
studied in detail to date but is important that it be better
understood. This is a fruitful area of research that we are
embarking on.

The agreement between the Vickers microhardness
values measured here and those shown in Fig. 7(b) must
be considered excellent. The scatter is believed to be real
and due to the polycrystalline nature of the sample. More
careful work, especially on Fe single crystals, is indi-
cated, however, to better understand the subtleties of the
elastic-to-plastic transition and the effect of grain bound-
aries on the local deformation. Note that in this case our
Berkovich hardness values are in excellent agreement
with our Vickers microhardness results.

F. Aluminum

For reasons that are not clear, the moduli values for Al
obtained from Fig. 2(a), are ≈30% lower than those re-
ported for pure Al reported in the literature and ≈20%
lower than EBr (Table I). They are also lower than the
value of 70 GPa reported by Herbert et al.7 essentially
using the same technique applied here. It is this large
discrepancy that led us to introduce the �-correction and
explains why it is the greatest for that solid.

The hardness values measured herein are also roughly
1⁄3 of the values reported by Field and Swain5 for pure Al.
The reason for the discrepancy is unclear, but Field and
Swain did not work with the CSM attachment. Also for
reasons that are not clear, the indentation stress–strain
curves derived by Herbert et al.7 from spherical nanoin-
dentation experiments on 6066-T1 Al—essentially using
the same technique described here—obtained quite dif-
ferent results. In the same paper, the hardness values did
not asymptote or reach a steady state, but continually
increased with strain. Two possibilities for the discrep-
ancy could be that Herbert et al. used an Al-alloy rather
than pure Al and/or the fact that they used much larger
spherical indenters. These discrepancies notwithstand-
ing, there is little doubt that our quasi–steady-state hard-
ness values are in good agreement with the Vickers mi-
crohardness values measured on the same Al [Fig. 3(a)
and Table I], which is comforting.

VI. SUMMARY AND CONCLUSIONS

When load-penetration nanoindentation results, ob-
tained with spherical indenters, are properly converted to
indentation stress–strain curves, the latter can provide
invaluable information about one of the most important
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transitions in materials: the elastic-to-plastic transition;
information that, as has long been appreciated, is lost
when sharp indenters are used.2 Indentation stress–strain
curves can also shed light on work hardening, micro-
yielding, or simply whether what is occurring under an
indenter is dislocation-based or not.

In this article we combine the CSM measurements,
with Hertzian theory, the Oliver and Pharr method, and
Berkovich indentations to convert spherical nanoinden-
tation load–displacement curves to indentation stress–
strain curves. The results are judged by how closely they
match the Vickers microhardness measurements on the
same solids, the latter an easy, straightforward, but cru-
cial criteria that, as far as we are aware, has never been
previously used in conjunction with nanoindentation re-
sults. This comment notwithstanding, there is still much
that must be learned. For example, in all cases examined
here, the work hardening after the yield or pop-ins is not
negligible. Whether this is an artifact of our method or a
real effect is unclear at this time. Also why the “yield
point” in Fig. 4(c) is higher than the one measured by
Vickers indentations is not clear.

Lastly we hope that this work will stimulate others to
continue refining this potentially very fruitful and versa-
tile method to obtain indentation stress–strain curves.
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