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ABSTRACT 
 
In this work turbulent flow in a vegetated channel is studied numerically for various submergence ratios 
and vegetation densities. The submergence ratio, H/h (H=flow depth, h=vegetation height) varies from 
1.17 to 5.0 and the vegetation density α (α= A/V , A= frontal area of the cylinder and V= volume 
influenced by a single cylinder )  from 2.46 to 4.3. The vegetation is considered rigid, simulated as 
cylindrical roughness and arranged in a staggered or a non-staggered pattern according to experimental 
data (Dunn et al., 1996 and Poggi et al., 2004). The 3D flow around a single cylinder is computed with 
the 3D RANS, a turbulence model of the k-ε type and appropriate boundary conditions. Based on 
detailed, “micro” flow characteristics (mean velocity, turbulent kinetic energy, shear stress etc.) the 
distributions of the respective “macro”, spatial-averaged characteristics are analysed and are compared 
with respective experimental data (Dunn et al., 1996). 
Implications for the macroscopic modeling of such flows are discussed and the significance of 
additional terms, resulting from volume-averaging, is analysed. 
 
 
1. Introduction 
 
There is a plethora of studies dealing with flow characteristics in vegetated channels. From a physical 
viewpoint, vegetation may be submerged or emerged, rigid or flexible with high or low density. 

For the case of rigid vegetation the hydraulic behavior of the channel is similar to the behavior of 
a channel with macro-roughness which is caused by the presence of geometrical elements (cylinders, 
cubes etc.). For the second case the flexibility of the vegetation and the hydrodynamic of the flow 
contribute to the generation of several formations (erect, gently swaying, prone).  

The ratio H/h (H=flow depth, h=vegetation height) characterizes the vegetation as submerged or 
emerged. With increasing values of the submergence ratio, H/h, the flow forcing within the vegetation 
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changes from pressure-driven to stress-driven and the primary source of turbulence production shifts 
from stem wakes to the shear layer at the top of vegetation. 

The methodologies used for studying the flow above and within vegetation are either 
experimental or numerical. Dunn et al. (1996) modelled the mean flow and the turbulence structure in 
open-channel flows with submerged vegetation and they compared the results with experimental 
observations. Poggi et al. (2004) examined, experimentally, the inter-connection between vegetation 
density and key flow statistics within and just above the vegetation. Nepf and Vivoni (2000) used 
laboratory experiments and they reveal two distinct flow zones within an aquatic canopy. The lower 
canopy, called the “longitudinal exchange zone” exchanges with surrouding water predominantly 
through longitudinal advection. The upper canopy, called the “vertical exchange zone” exchanges with 
surrouding water predominantly through vertical exchange. Huthoff and Augustijn (2006) used 
laboratory measurments in order to describe vegetation resistance and determine a way for including 
vegetation resistance in hydraulic models. 

Experimental techniques, especially non-intrusive (LDA etc.), are quite satisfactory in cases of 
low vegetation density but are not applicable when vegetation is quite dense. However, some quantities 
(e.g. drag coefficient) are difficult to measure directly and their indirect estimation introduces errors in 
their magnitudes. In addition, due to limited point (local) measurements within the vegetation, the 
estimation of the respective volume (spatial) averaged quantities may not be accurate. 

Numerical modeling of flow with vegetation is based on the volume (spatial) - averaged Reynolds 
Averaged Navier-Stokes (RANS) equations (Finnigan, 2000). The Volume-Average Theory (VAT) has 
been used for developing such equations (Whitaker, 1999). However additional turbulence terms in the 
resulting equations and especially in the turbulence model equations are modeled at an ad-hoc manner. 
A vegetative drag term is added to the momentum equations and additional turbulence production terms 
to the transport equations for the turbulence characteristics, usually k, ε, ω, when a turbulence model of 
the k-ε or k-ω type is used (Neary, 2003) or jiuu−  when a Reynolds stress model is used (Choi and 
Kang, 2004). This results in non-satisfactory prediction of turbulence characteristics within the 
vegetative part of the flow for the case of submerged vegetation and especially near the top part of 
vegetation where the turbulence production is significant. Macroscopic models for porous media flow 
have been developed recently (Foudhil et al., 2005 and the references therein) but several drawbacks 
and limitations still exist. For example, the macroscopic modeling approach requires the turbulence 
modeling of the macroscopic turbulence and also a value for the drag coefficient Cd due to vegetation. 

In this study, numerical modeling of flow is performed based on the 3D “microscopic” approach. 
Rigid, submerged vegetation in staggered and non-staggered array is investigated. The ratio H/h takes 
the values 1.17, 1.66, 1.82, 3.33 and 5. Computations of the 3D RANS equations in conjunction with a 
turbulence model of the k-ε type are performed in a unit cell, with appropriate vegetation densities, 
applying periodic conditions at the inlet and outlet of the computational domain. In order to obtain 
spatial- averaged (macroscopic) quantities, the computed microscopic results are subsequently averaged 
over planes parallel to the channel bed. In general, volume- averaged (macroscopic) quantities are 

calculated using the relationships:  
fV

1 dV
V

ψ = ψ∫   and  
f

f

Vf

1 dV
V

ψ = ψ∫   where ψ=General fluid 

parameter, <ψ>= volumetric average (superficial), <ψ>f= Intrinsic average (fluid). In the case of spatial-
averaged quantities the volume is basically a plane, parallel to the channel bed, extensive enough to 
eliminate plant to plant variation in vegetation structure but thin enough to preserve the characteristic 
variation of properties in the vertical. Such an approach has several advantages over the other 
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approaches mentioned above. It allows the direct computation of Cd and also the accurate estimation of 
volume (spatial) averaged quantities since the latter are the result of detailed 3D computations. 
 
2. Governing equations 
 
2.1 Microscopic RANS and Numerical Procedure 
 
The 3D RANS equations for steady, incompressible flow in conjunction with the standard k-ε model 
(Rodi, 1980), for calculating the turbulent stresses, are described as: 
 

• Continuity equation          
 

i

i

U 0
x

∂
=

∂
                                                                                                                                        (1) 

 
• Momentum equation         
 

      ji i
j

j i j j i

UU U1 PU v
x x x x x

⎡ ⎤⎛ ⎞∂∂ ∂∂ ∂
= − + + −⎢ ⎜ ⎟⎜ ⎟∂ ρ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

i ju u ⎥                                                                          (2) 

 
where Ui= time−averaged fluid velocity in the xi direction,  P= effective pressure (the difference 
between the static and the hydrostatic pressure),  ρ= fluid density , ν= (μ/ρ)=fluid kinematic viscosity. 
For modelling the Reynolds stresses, jiuu− , the eddy- viscosity concept is used: 
 

      ji
i j t ij

j i

UU 2u u v k
x x 3

⎛ ⎞∂∂
= + −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

δ                                                                                                      (3)  

 

where  νt=
εμ

2kC = eddy viscosity ( =0.09), δμC ij= Kronecker delta, 2

2
1

iuk = =turbulent kinetic energy. 

The standard k-ε model (Rodi, 1980) is a semi- empirical model based on model transport 
equations for the turbulence kinetic energy (k) and its dissipation rate (ε). The turbulence kinetic energy 
and the dissipation rate are obtained from the following equations: 
 

      t i
j

j j k j j

v Uk kU u
x x x x

⎛ ⎞ ⎛ ⎞∂∂ ∂ ∂
= + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ σ ∂ ∂⎝ ⎠ ⎝ ⎠

i ju − ε                                                                                   (4)                      

 

     
2

t i
j 1 i j

j j j j

v UU c u u
x x x k xε

ε

⎛ ⎞ ⎛ ⎞∂∂ε ∂ ∂ε ε ε
= + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ σ ∂ ∂⎝ ⎠ ⎝ ⎠

2c
kε                                                                     (5)                

 
where ,  , =model constants (1.0, 1.3, 1.44, 1.92 respectively). κσ εσ 1Cε 2C ε
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A steady k-ε model is used which does not account for the vortex shedding, generally present in 
flow around cylinders, and the associated momentum exchange and turbulence production, however its 
unsteady version would increase significantly the computational time and would require computational 
domain with no periodic conditions as it is described in the following paragraphs. 

The segregated solver approach is used by which the governing equations are solved sequentially. 
Because the equations are non-linear (and coupled), several iterations of the solution loop must be 
performed before a converged solution is obtained. In the segregated solution method the discrete, non-
linear governing equations are linearized to produce a system of equations for the dependent variables 
in every computational cell. The resultant linear system is then solved to yield an updated flow-field 
solution. The cases studied use the implicit form of linearization. By implicit we mean that for given 
variable, the unknown value in each cell is computed using a relation that includes both existing and 
unknown values from neighboring cells. Therefore each unknown will appear in more than one 
equation in the system, and these equations must be solved simultaneously to give the unknown 
quantities. 

The FLUENT (6.0.12) CFD code (FLUENT Inc. 2001) is used which uses a control-volume 
technique to convert the governing equations to algebraic equations that can be solved numerically. 
This technique consists of integrating the governing equations about each control volume, yielding 
discrete equations that conserve each quantity on a control volume basis. 
         The discretized governing equation for a scalar quantity φ may be described as: 

                                                                                           (6)                        ( )
faces facesN N

f f f f f fnf f
u A A Sφρ φ ⋅ = Γ ∇φ ⋅ +∑ ∑ V

where  = number of cell faces,  = value of φ convected through face f,  facesN fφ fff Au ⋅ρ  =  mass flux 

through the face, fA   = area of face, ( )nφ∇  = magnitude of φ∇  normal to face f,  V =  cell volume. By 
default, the program stores descrete values of the scalar φ at the cell centers. However the face values φf 
are required for the convection terms in eq. (6) and must be interpolated from the cell center values. In 
this study for the pressure, momentum, Turbulence Kinetic Energy and Turbulence Dissipation Rate the 
second-order upwind scheme is used (FLUENT Inc. 2001). Pressure-velocity coupling, is achieved with 
the SIMPLE algorithm. Under-relaxation factors are used for controlling the change of φ. Typical 
values of under-relaxation factors, used in the study, are 0.3 for pressure, 0.7 for velocities and 0.8 for 
turbulence quantities.  
   
3. Cases studied 
 
The cases studied are based on experimental arrangements of Dunn et al. (1996) (Figure 1) and Poggi et 
al. (2004) (Figure 2). In these figures the boundary conditions are shown. For solid walls (channel bed 
and cylinders) Standard wall functions were used for both cases. The first is staggered and the latter is 
non-staggered. For each one of the above arrangements, flows with different submergence depth ratio 
were simulated while the plant density and bed slope were constant. The vegetation and flow 
characteristics are shown in tables 1 and 2. Regarding porosity, the value remains also constant for each 
arrangement. In all cases the porosity is very high. 
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Figure 1: Plan view for the staggered case- Dunn et al. (1996) 

 
Table 1: Flow characteristics (staggered cases) 

 
Case Plant density 

α (1/m) 
Porosity 

φ 
Bed slope 

So 
Flow depth 

H (m) 
Veg.Height 

h (m) 
H/h 

1 2.46 0.988 0.0036 0.1375 0.1175 1.17 
2 2.46 0.988 0.0036 0.214 0.1175 1.82 
3 2.46 0.988 0.0036 0.391 0.1175 3.33 

 

 

FLOW 

periodic 

symmetry 

FLOW 

symmetry

periodic 

Figure 2: Plan view for the non-staggered case- Poggi et al. (2004) 
 

Table 2: Flow characteristics (non-staggered cases)  
 

Case Plant density 
α (1/m) 

Porosity 
φ 

Bed slope 
So 

Flow depth 
H (m) 

Veg.Height 
h (m) 

H/h 

1 4.3 0.986 1.26e-04 0.2 0.12 1.66 
2 4.3 0.986 1.26e-04 0.4 0.12 3.33 
3 4.3 0.986 1.26e-04 0.6 0.12 5 

 
For the construction of the grids the GAMBIT program was used. The grids were three-

dimensional, structured and the shape of the cells was hexahedral. Also, the density of the grids was 
higher near the solid surfaces for estimating accurately the near-wall flow and turbulence 
characteristics. Finally the density of the grids inside the vegetative region was exactly the same. 
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For the staggered cases the computational cells varied between 33.000 and 76.000 depending on 
the value of H/h. Around the cylinder the number of nodes were 42, in the x-direction (flow direction) 
the nodes were 30, 34 and 62 for H/h=1.17, 1.82 and 3.33 respectively, in the z-direction the nodes were 
14 and in the y-direction (normal to the bed) the nodes were 49, 55 and 65 for H/h=1.17, 1.82 and 3.33 
respectively. Similarly, for the non-staggered cases the number of the computational cells was varied 
between 56.000 and 80.000 due to the higher values of H/h. Around the cylinder the number of nodes 
were 40, in the x-direction (flow direction) the nodes were 20 for all the cases, in the z-direction the 
nodes were 10 and in the y-direction (normal to the bed) the nodes were 85, 90, 130 for H/h=1.66, 3.33 
and 5 respectively. The computational domain with the grid used is shown in figure 3 for both cases. 
 

                                 

periodic

periodic 
                

Figure 3: Computational domain and grid used (a) staggered, (b) non-staggered   
 
In figure 4 details of the grid used at characteristic horizontal and vertical planes are shown.                                      
 

  
 
Figure 4: Detailed grid at characteristic planes 
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4. Analysis of results 
 
In this section computed results are analyzed as directly derived from the computational 3D code 
(microscopic level). Also, spatial-averaged flow characteristics (macroscopic level) are presented and 
analyzed and finally the Boussinesq approximation for the spatial average shear stress ( >−< uv ) is 
tested as well as the relationship for calculating >< tv  from  <k> and <ε>. 
 
4.1 Three dimensional (3D) flow field 
 
The computed 3D flow characteristics (U, k and - uv ) are presented in figures 5-10 for both 
arrangements (staggered and non-staggered) at characteristic planes, parallel to the channel bed, close to 
the top of vegetation. 

Figures 5 and 6 show the velocity field at three planes for the staggered (Dunn et al., 1996) and 
non staggered arrangement (Poggi et al, 2004) respectively. The effect of vegetation (cylinders) on the 
velocity variation within a plane is clearly shown especially for the planes close to the top of vegetation. 
The magnitude of velocities in the first case (figure 5) is higher due to the higher bed slope. 

Figures 7 and 8 show the k field at three planes for the two cases respectively. Again, the effect of 
cylinders on the turbulence field with increased values of k behind the cylinder (wake turbulence) 
especially at planes close to the top of cylinders. Similar conclusions can be derived from the shear 
stress fields (figures 9 and 10). 
 
4.2 Spatial averaged flow field 
 
Spatial averaged quantities have been calculated at various planes, parallel to the channel bed, using the 
relationship presented previously. The distribution of <U> within the flow depth is shown in figure 11 
for the two arrangements (staggered and non staggered) and for different submergence ratio H/h and 
hence the effect of H/h on the <U> distribution within the flow depth can be studied. The velocity has 
been made dimensionless with the shear velocity at the interface oShHgU )(( * −= ) and hence the 
velocity distribution above the vegetation can be compared with that over an impermeable (solid) wall. 
For both arrangements and for all H/h the velocity distribution is similar qualitatively. For the greater 
part of the vegetation layer, away from the channel bed and the interface, the distribution is uniform 
with a value equal to that derived from the balance between gravity forces and drag forces. Close to the 
interface, the velocity distribution is exponential with high velocity gradients while in the region above 
the vegetation the velocity seems to follow a logarithmic profile. The comparison of computed and 
experimental (Dunn et al., 2001) results for one case is satisfactory within the vegetation region, 
however, above the vegetation, the experimental velocities seem to be lower than the computed ones. 
The comparison of computed results with experimental ones of Poggi et al. (2004) for H/h=5 (the 
experimental profiles are based on local measurements) indicates that the experimental distribution is 
underestimated by the computations, but this may be due to the non full development of flow in the 
laboratory channel and the non-accurate estimate of the channel slope (1.26E-04). In figure 12 the 
dimensionless velocity <U>/U* is shown against the dimensionless distance y+=((y-h)U*/ν) from the 
top of vegetation. In the same figure the log-law for flow over a solid wall is shown for comparison 
purposes. It is shown that the velocities under interacting conditions due to vegetation are much lower 
than those under isolated conditions (solid wall at the top of vegetation). The reduction of velocities is 
higher with increasing H/h. 
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Figure 5: Velocity distribution at various planes within the vegetation (staggered) 
 

 
 
Figure 6: Velocity distribution at various planes within the vegetation (non-staggered) 
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Figure 7: Turbulent Kinetic Energy distribution at various planes within the vegetation            
(staggered) 
 

 
 
Figure 8: Turbulent Kinetic Energy distribution at various planes within the vegetation (non-staggered) 
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Figure 9: Reynolds stresses ( uv− ) distribution at various planes within the vegetation (staggered) 
 

 
 
Figure 10: Reynolds stresses ( uv− ) distribution at various planes within the vegetation (non-staggered) 
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Figure 11: Distribution of  <U> 
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Figure 12: Logarithmic distribution of <U>  
 

In figure 13 the distribution of >−< uv within the flow depth is shown. The shear stress has been 
made dimensionless with the and hence a comparison of the distribution of 2

*U >−< uv  above the 
vegetation with that over a solid wall is possible. It is shown that, for all H/h, the dimensionless shear 
stress varies from 1.0 (at the top of vegetation) to 0.0 (at the free surface) indicating that the shear 
velocity, based on the flow depth above the vegetation (H-h), is a characteristic variable which can be 
used for dimensional analysis purposes. Within the vegetation layer the shear stress takes values close 
to zero due to the uniform velocity distribution in this region. In cases with highly dense vegetation, the 
flow may become laminar in the central part of the layer and hence a low-Reynolds turbulence model 
would be appropriate for capturing the flow characteristics. 
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Figure 13: Distribution of  < uv− > 
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Figure 14: Distribution of  <k> 
 

In figure 14 the distribution of <k> is shown for the aforementioned cases together with 
experimental results and the semi empirical distribution of Nezu and Nakagawa (1993) for the 
distribution of k over a solid wall. The <k> levels at the top of vegetation (made dimensionless with 

) are lower than the asymptotic value, D=4.7, of the semi-empirical relationship while above the 
vegetation the <k> values are similar to those of the semi-empirical relationship. Below the top of 
vegetation the <k> values remain high close to the top and fall suddenly to low values in the central part 
of the layer where turbulence is not considerable. The experimental values in the vegetation layer are 
comparable with the computed ones, however close and at the top of vegetation the values of <k> are 
lower in accordance with the low values of experimental velocities. 

2
*U
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In figure 15 the distribution of turbulence intensity is shown. The square root of k, made 
dimensionless with the local <U>, shows a peak value within the vegetation region with levels up to 
40% of the mean <U>, indicating an increased turbulent activity in the upper 50% of the vegetation 
layer. The computed distribution is in accord with measurements of k / U< >  by Nepf and Vinoni 
(2000) who found a similar distribution with maximum values below the top of vegetation (Figure 7 of 
their paper). The maximum turbulence intensity decreases with decreasing depth ratio H/h. 
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Figure 15: Distribution of   
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U
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4.3 The Boussinesq Approximation for i ju u< − >  

Based on the Boussinesq approximation for determining the shear stress in a clear fluid, the respective 
volume averaged shear stress can be determined, with the use of Volume Average Theory (VAT)  as 

ij
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⎞
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><∂
+

∂
><∂

⋅>ν>=<−<                     (11)                 

The second and third term in the rhs of the above equation include spatial fluctuation quantities which 
need modeling. In most volume-averaged turbulence models (Foudhil et al, 2005 and the references 
therein) these terms have been assumed negligible and hence the Boussinesq approximation was 
assumed valid for the spatial – averaged shear stresses.  

The validation of this approximation was also tested in this study. The most significant shear 
stress uv< − > , calculated by (11), is plotted  in figure 16. Also, the shear stress uv< − >  calculated 
directly from the microscopic values at the respective planes is included. It is shown that both 
distributions are in close agreement except in the region close to the top of vegetation where the two 
values are different. Hence, in most part of the vegetation layer and the surface layer the Boussinesq 
approximation for the spatial-averaged values holds. This is due to the low plant density (high porosity) 
in all these cases which results in negligible spatial variation of νt and velocity gradients and hence the 
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terms of eq. (11) with spatial fluctuations are very small. It is expected that for low porosities (high 
plant densities) these terms will be significant and further modeling will be required. 

Finally, the relationship <νt> = cμ <k>2/<ε> has been tested, since it used in all macroscopic 
turbulence models with a value of cμ equal to 0.09  as in the microscopic models. Figure 17 indicates 
that such a value is not appropriate and a rather higher value (0.12-14) gives a better correlation 
between <νt> and  <k>2/<ε>. 
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Figure 16: Validation of Boussinesq approximation for < uv− > 
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Figure 17: Variation of Cμ based on spatial-averaged quantities    
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5. Conclusions 
 
Three-dimensional turbulent flow within and above submerged, rigid vegetation has been computed 
numerically using the 3D-RANS equations and a turbulence model of the k-ε type for submergence 
ratio H/h from 1.17 to 5.0, vegetation density from 2.46 to 4.3 and various staggered and non-staggered 
arrangements. Computed “micro” flow characteristics are used for calculating the respective “macro” 
spatial-averaged flow characteristics which are analyzed. Implications for the macroscopic modeling of 
such flows are discussed. The following conclusions can be derived: 
 (a) “Micro”, three-dimensional flow characteristics (mean velocities, turbulence kinetic energy and 
shear stresses) indicate the effect of vegetation on the flow characteristics and in particular the increased 
turbulent activity in the wake of vegetation elements close to the top of vegetation. 
 (b) “Macro”, spatial-averaged flow characteristics, calculated at characteristic planes, show distinct 
flow features within and above the vegetation region in comparison with flow characteristics over a 
solid wall. 
(c) The Boussinesq approximation for the spatial-averaged shear stress >−< uv  is found to be valid due 
to a rather low vegetation density (high porosity) of the cases examined. 
(d) The relation between <νt> and turbulence quantities <k> and <ε> is tested and a higher value of cμ 
(0.12-0.14) is recommended for use in macroscopic turbulence models of the <k>-<ε>   type. 
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