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Abstract
Narrative Information Extraction with Non-Linear Natural Language Processing Pipelines

Josep Valls Vargas
Santiago Ontañón and Jichen Zhu

Computational narrative focuses on methods to algorithmically analyze, model, and generate

narratives. Most current work in story generation, drama management or even literature analysis

relies on manually authoring domain knowledge in some specific formal representation language,

which is expensive to generate.

In this dissertation we explore how to automatically extract narrative information from unanno-

tated natural language text, how to evaluate the extraction process, how to improve the extraction

process, and how to use the extracted information in story generation applications. As our applica-

tion domain, we use Vladimir Propp’s narrative theory and the corresponding Russian and Slavic

folktales as our corpus. Our hypothesis is that incorporating narrative-level domain knowledge (i.e.,

Proppian theory) to core natural language processing (NLP) and information extraction can improve

the performance of tasks (such as coreference resolution), and the extracted narrative information.

We devised a non-linear information extraction pipeline framework which we implemented in Voz,

our narrative information extraction system. Finally, we studied how to map the output of Voz to

an intermediate computational narrative model and use it as input for an existing story generation

system, thus further connecting existing work in NLP and computational narrative. As far as we

know, it is the first end-to-end computational narrative system that can automatically process a

corpus of unannotated natural language stories, extract explicit domain knowledge from them, and

use it to generate new stories. Our user study results show that specific error introduced during

the information extraction process can be mitigated downstream and have virtually no effect on the

perceived quality of the generated stories compared to generating stories using handcrafted domain

knowledge.
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Chapter 1: Introduction

Computational narrative is an emergent field of research at the intersection of traditional narratology,

artificial intelligence, natural language processing and cognitive science. Computational narrative

focuses on methods to algorithmically analyze, model, and generate narratives. Moreover, compu-

tational models of narrative have applications to tasks such as machine translation, summarization

or information extraction in the contexts of reporting, education, and entertainment. For example

Narrative Science is an enterprise services company leading the transition to artificial intelligence

systems that ingest data and automatically generate written reports and provide high level insights1.

Computational narrative is also a key element in some of the latest trends around digital assistants

such as Apple’s Siri2, Amazon’s Alexa3 and Facebook’s chatbots4 as a novel communication mech-

anism to engage with their customers. A notable problem in computational narrative is that most

of the aforementioned systems and implementations rely on either large amounts of annotated data

in a machine readable format for training or, handcrafted models in some knowledge representation

formalism or human authored text templates. Moreover, these models and annotations tend to use

complex specifications and need to be authored by knowledgeable technical people making their

development tedious and expensive. This represents an even heavier burden when considering that

the input annotations and models for one system typically cannot be reused for another, leading to

the well known authorial bottleneck problem11;12.

Recent advances in natural language processing (NLP), information extraction (IE) and related

disciplines have recently led to a renewed interest in automatically extracting structured information

from text. Toward alleviating the aforementioned authorial bottleneck problem, in recent years, the

field of computational narrative has experienced cross-pollination with NLP and IE and seen sub-

stantial advancements in tasks such as automatically identifying characters13;14, narrative and plot
1https://narrativescience.com/Offers/Outlook-on-AI-Research-Report
2http://www.apple.com/ios/siri/
3https://developer.amazon.com/alexa
4https://developers.facebook.com/docs/messenger-platform

https://narrativescience.com/Offers/Outlook-on-AI-Research-Report
http://www.apple.com/ios/siri/
https://developer.amazon.com/alexa
https://developers.facebook.com/docs/messenger-platform
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structure15;16, and character relationships17–19. This efforts could enable computational narrative

systems to exploit vast amounts of existing material in the form of natural language that is cur-

rently available. This would not only allow the automatic processing of the existing body of human

literature or text in the Internet, but, would also allow non-technical people to input knowledge into

computational narrative systems by using natural language.

In this dissertation we explore how to automatically extract information for computational mod-

els of narrative from text, how to evaluate the extraction process, how to improve the extraction

process, and how to use the extracted information in story generation applications. We focus our

work on several individual tasks that allow for automatically acquiring structured narrative infor-

mation directly from natural language text. At the same time, we also look at the evaluation of

information extraction pipelines and how to improve the performance of narrative information ex-

traction tasks and off-the-shelf general-purpose natural language processing (NLP) systems in the

particular domain of fictional stories. We also survey computational models of narrative and how

to use the extracted narrative information in existing computational narrative applications. Our

hypothesis is that by leveraging existing work in NLP and computational narrative we can ease the

development of end-to-end computational narrative systems that can use natural language text as

their input.

In the next section we review some open problems in the fields of computational narrative and

natural language processing related to the research questions we address in this dissertation. Then

we provide a brief outline of this dissertation.

1.1 Open Problems

The main research question addressed in this work is wether we can automatically extract information

for computational models of narrative from text and use them in other computational narrative

applications. There is a collection of open research questions that are intimately related to the work

described in this dissertation. These are open problems that we will discuss and try to address in

the following chapters.

Chapter 1: Introduction 1.1 Open Problems
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Authorial Bottleneck: Some computational narrative systems, such as story generators4;20;21, or

experience managers22–24, require a significant amount of domain knowledge. Authoring such

knowledge is complex and time consuming, leading to the well known authorial bottleneck

problem11;12. How to ease the generation and encoding of such domain knowledge is still an

open problem.

Models of Computational Narrative: Two of the main areas of research within the field of com-

putational narrative are: research focused on modeling existing narratives in order to study

existing literature or validate narrative theories; and research focused on expressing narrative

spaces in order to study computational creativity and generate stories or interactive experi-

ences. Despite a long history of work on formal models to characterize narratives, starting

from the seminal work of Vladimir Propp25, or more recent AI-based representations such as

plans20;21, frames4, or plotpoints22–24, the problem of how to computationally model narra-

tives remains open. Large parts of what constitutes the plot and discourse of narratives, such

as authorial intent, conflict, or character subjectivity are not properly captured by existing

models26. Given the complexity of the current approaches, system builders tend to favor de-

veloping customized ad-hoc models to suit their particular implementation needs, leading back

to the authorial bottleneck problem previously identified.

Narrative Information Extraction: With recent advances and with a limited scope to standard

English language, several key tasks in NLP such as part-of-speech tagging and syntactic pars-

ing are mostly solved, tasks such as coreference resolution or semantic role labeling have seen

great progress over the recent years, but other tasks that depend on deep understanding of the

text such as question answering, dialog systems, paraphrasing or automatic summarization still

pose important problems. Moreover, with the goal of extracting narrative information, when

applying existing NLP techniques to specific literary domains such as folktales, we observe

higher error rates than previously reported in the literature for other more general domains.

We attribute this phenomena to the specific complexities in literary text (which includes fan-

tastic situations, anthropomorphic characters, specific rhetorical figures and different cultural

Chapter 1: Introduction 1.1 Open Problems
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backgrounds) which differs vastly from to the standard corpora used in the NLP community

for training and testing NLP techniques. Besides some domain-specific approaches27, there are

no general methodologies to adapt and reuse general-purpose NLP tools for specific domains

without requiring corpus re-annotation and retraining the NLP models.

Evaluation of Information Extraction Systems: Information extraction systems usually in-

tegrate several modules ranging from off-the-shelf parsers to specialized domain knowledge

databases into a pipeline. Basic modules used in NLP and IE pipelines have been studied ex-

tensively, often within the context of shared task competitions (e.g., CoNLL coreference resolu-

tion shared task28;29). These studies are typically conducted on a single module isolated from

a pipeline since no standard methodology exists to evaluate how error propagates in pipelined

architectures. However, when the information extracted by the system is not accurate, it is

hard to pinpoint which is the module responsible since there is no general methodology that

can be applied to arbitrary pipelined information extraction systems in order to evaluate how

error propagates down the pipeline and affects the final output of the system.

1.2 Thesis Statement

The central idea of this thesis is:

We can automatically extract structured narrative information from text and use the extracted

narrative information in computational narrative applications. Moreover, our hypothesis is that

incorporating narrative domain knowledge into the extraction process will improve the perfor-

mance of certain tasks within the extraction process and the final output of the process.

With this research statement to frame our work, in this dissertation we will try to answer the

question: How do we automatically extract structured narrative information from text?. In order to

answer this question we need to look at the narrative elements we are interested in extracting and

how to extract them. In our work we focused on several individual tasks related to natural language

processing and information extraction which we will assemble together using a pipeline architecture.

Chapter 1: Introduction 1.2 Thesis Statement
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Once we have a system capable of automatically extracting narrative information from text, we

will address follow-up questions such as How do we evaluate and improve narrative information

extraction pipelines?. Finally, and in order to tie our work with the first and second open problems

described in the previous section, we will also address the question How do we use the extracted

information in computational narrative systems, specifically, story generation applications?.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows:

Background and Related Work: In this chapter we first introduce some background concepts

relevant to our research and that will be used throughout the rest of the document, specially

related to natural language processing (NLP). Then we will present the fields of narratology

and computational narrative, review related work in the areas of information extraction, com-

putational narrative, how to model and annotate narratives, and finally some applications that

illustrate how computational narrative models can be used.

Proppian Stories: In this chapter we expand on describing the work of Vladimir Propp, a Soviet

folklorist and scholar who studied Russian and Slavic folk tales. We also talk about the folk

tales collected by Alexander Afanasyev, the Russian counterpart to the brothers Grimm and

describe the corpus and datasets used throughout our work.

Automated Narrative Inf. Extraction: In this chapter we describe Voz, our narrative informa-

tion extraction pipeline that has become the infrastructure of our experimental evaluation and

the individual contributions that we incorporated into that pipeline. We first describe the

individual tasks we addressed and then we describe our proposed framework to assemble those

task into a non-linear information extraction pipeline. Finally we describe additional tasks we

worked on and incorporated as modules of the pipeline.

Evaluation of IE Pipelines: In this chapter propose a methodology designed to assess how error

is introduced and propagated in information extraction pipelines and apply it to Voz, our

narrative information extraction pipeline.

Chapter 1: Introduction 1.3 Organization
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Non-linear IE Pipelines: In this chapter we revisit the feedback loop introduced in Chapter 4

and describe our proposed general purpose framework for defining non-linear pipelines. We

then present an empirical study of this methodology applied to Voz for two different tasks.

Bridging the Gap: In this chapter we present a taxonomy of computational models of narrative

reported in the literature and outline our approach to connect Voz to an existing story gen-

eration system in order to implement a full-fledged end-to-end, text-based, story generation

system. We report our analytical findings and the results of a user study on the system.

Conclusions and Future Work: In this chapter we summarize our work and revisit our contribu-

tions and how we addressed the open problems described before. We conclude the dissertation

with some directions for future work.

In the appendices we provide additional information about the Proppian stories used for our work,

detailed results from our work and early work that motivated the research presented in this disser-

tation.

Chapter 1: Introduction 1.3 Organization
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Chapter 2: Background and Related Work

In this chapter we first introduce some background concepts relevant to our research and that will

be used throughout the rest of the document and review related work in the areas of information

extraction and computational narrative, how to model and annotate narratives, and finally some

applications that illustrate how computational narrative models can be used.

2.1 A Brief Introduction to Natural Language Processing

The field of natural language processing (NLP) has received a lot of attention since the early days

of computing and artificial intelligence. NLP has had successful applications in areas such as infor-

mation extraction or machine translation. The history of NLP generally starts in the 1950s. Some

notably successful NLP systems were developed in the 1960s but up to the 1980s, most NLP systems

were based on complex sets of hand-written linguistic rules. Starting in the late 1980s, however,

there was a revolution in NLP with the introduction of statistical methods and machine learning

algorithms for natural language processing30.

Work in NLP in the last decade has been dominated by unsupervised and semi-supervised learn-

ing algorithms on large annotated corpora (i.e. treebanks)15;31 and statistical work on large datasets

and exploiting the web10. The latest trends involve using deep and or recurrent neural networks to

tackle specific NLP tasks. We will discuss these at the end of this section.

NLP is a broad research area addressing a wide range of different problems. Some of the most

prominent subfields and concentrations within NLP, relevant to this dissertation, are:

• Information Extraction (IE): focuses on automatically extracting structured information

from unstructured textual documents. IE plays a big role in document classification, indexing

and information retrieval32.

• Text Understanding: also known as machine reading, text understanding is related to IE

but differs in that its scope goes beyond information storage and seeks to extract a structured
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representation that enables further computation, such as problem solving applications to op-

erate on natural language input33. Text understanding implementations usually complement

the information obtained from text with additional common sense knowledge used to perform

inference and address problems such as question answering.

• Text Generation: also known as natural language generation (NLG), this field studies meth-

ods to convert computational representations of information into natural language that can be

used to interface with a human audience34. Dialogue agents or interactive fiction systems use

NLG to communicate an internal state to the user. Paraphrasing and summarization are text

generation tasks heavily related to text understanding.

Work on the aforementioned fields shares a collection of tasks and subtasks commonly referred to

“core” NLP tasks. In the remaining of this subsection we describe and provide an overview on some of

these core NLP tasks we will discuss later in the context of automatically extracting computational

models of narrative.

2.1.1 Segmentation, Chunking and Tokenization

Given a string of characters representing a chunk of text (or document) these tasks involve segment-

ing words, sentences or other elements like paragraphs or individual morphemes from compound

words. Sentence segmentation and document chunking are usually implemented using a combi-

nation of rule-based methods and heuristics. Tokenization usually involves punctuation splitting

and separation of some affixes like possessives. For English, state-of-the-art, high-performing im-

plementations rely on finite-state machines35. Other languages with different spacing rules such as

Chinese rely on statistical approaches36. Other languages such as Arabic require more extensive

token pre-processing35.

2.1.2 Morphological Analysis

Related to the previous tasks, given one or more tokens or words, the goal of this task is to identify

individual morphemes and recognize the lemma, stem or root for inflected words along with inflection

information (e.g., “singing” ⇒ sing 7→ lemma, -ing 7→ present continuous). This task includes other

Chapter 2: Background and Related Work 2.1 Natural Language Processing
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Figure 2.1: Part-Of-Speech (POS) tagging example.

operations such as word segmentation, lemmatization or stemming. Implementations for this task are

usually language dependent. Rule-based and heuristic approaches have been developed for English37

and have been improved by adding dictionaries and contextual information to resolve ambiguities35.

2.1.3 Part-Of-Speech (POS) tagging

Given a sentence, this task determines the part-of-speech each word plays for a specific language

grammar (e.g., “the red truck” ⇒ the 7→ determiner, red 7→ adjective, truck 7→ noun). Imple-

mentations for this task are also language dependent and a mixture of statistical and rule based

approaches have demonstrated high accuracies for English35;38. Figure 2.1 illustrate this task for

processing English using the Stanford CoreNLP.

2.1.4 Grammatical and Syntactic Parsing

Given a sentence, the goal of this task is to generate the structures of the syntactic and grammatical

roles and relationships between the words and phrases (e.g., “My truck is red.” ⇒ (S (NP (PRP$

My) (NN truck)) (VP (VBZ is) (ADJP (JJ red))) (. .))). Approaches to syntactic parsing typically

combine formal grammars with statistical models to deal with the complexity of natural language.

The use of simple grammars such as context free grammars is not feasible due to the ambiguity

and size of the lexicon of any typical natural language. Common approaches use probabilistic

context-free grammars (PCFG), which extend context-free grammars by assigning probabilities to

production rules. The probability of a derivation (parse) is the product of the probabilities of

the productions used in that derivation. A trained model including the production rules and the

probabilities is typically computed by machine learning algorithms over large annotated corpora

(called treebanks). Lexicalized PCFGs (where head words annotate phrasal nodes) are used for high

performance PCFG parsing. Great success in terms of parse disambiguation and language modeling

has been achieved by various lexicalized PCFG models39. Additional work combined lexicalized and

Chapter 2: Background and Related Work 2.1 Natural Language Processing
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Figure 2.2: Syntactic parse example.

unlexicalized PCFG for phrase structure and lexical dependency parsing39. Recent work has focused

on languages other than English, parsing ungrammatical sentences (e.g., microtext) and semantic

parsing. These approaches use combinatory categorial grammar40, conditional random fields and

neural networks41;42. Figure 2.2 illustrate the output of this process using the Stanford CoreNLP.

2.1.5 Named Entity Recognition (NER) and Information Extraction (IE)

Given a document, the goal of named entity recognition is to identify items in the text that map

to specific entities and recognize the type of each such entity (e.g., “Barack Obama is the president

of the United States” ⇒ Barack Obama 7→ person, United States 7→ country). Broadly speaking,

information extraction is tasked with extracting other items of interest such as relationships between

entities. Common approaches use patterns and regular expressions matched against the text of the

document in order to identify the entities or items of interest. For example, regular expressions can

define character level patterns for identifying named entities in specific domains of bioinformatics

(e.g., protein and gene names)43. Similar to regular expressions, Tregex 44, are a collection of utility

classes that allow matching patterns in trees, based on tree relationships and regular expression

matches on nodes from different annotation layers added by different tasks such as POS-tags or parse

information. Another prominent example of such approach is the Sundance Parser 45. Sundance

uses patterns that match certain tokens and grammatical categories and because those patterns may

be complex or not straightforward, the system is complemented with the AutoSlog utility to extract

such patterns from a given set of examples. Another approach for extracting information from text

is to use noun-verb tuples derived from the dependency parse of the document43;46;47.

Chapter 2: Background and Related Work 2.1 Natural Language Processing
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Figure 2.3: Pronominal coreference resolution example.

2.1.6 Coreference Resolution

Given a document, the goal of this task is to determine which referring expressions (i.e. mentions in

the text) refer to the same entities (e.g., “Alice is a beautiful girl. She is also intelligent.” ⇒ She 7→

Alice). Automatic identification of corefering entities and events has been a difficult problem in NLP

because in many situations may require inference and common sense knowledge, and because of the

limited amount of annotated training data48. State of the art techniques use entity-centric, precision-

ranked rules learned using machine learning29;49. Moreover, some systems tend to incorporate ad-hoc

domain-specific rules and heuristics to solve coreference16 due to the difficulty of this task beyond

pronominal coreference. Figure 2.3 illustrate this process using the Stanford CoreNLP.

2.1.7 Semantic Role Labeling (SRL)

Given a verb with multiple arguments (i.e. subject, direct object and multiple indirect objects),

the goal of this task is to map the arguments to semantic roles (e.g., “Bob bought a computer from

Alice.” ⇒ Bob 7→ buyer, Alice 7→ seller, computer 7→ good being sold). Some of the best performing

implementations use hybrid approaches of machine learning, inference and constraint satisfaction50.

Recent work also uses convolutional neural networks41.

2.1.8 Word Sense Disambiguation, Common Sense and Domain Knowl-
edge

Given a token or multi-word expression with multiple possible senses, the goal of this task is to

identify the intended sense in the context it appears (e.g., “He was sent to the pen for burglary.”

⇒ pen 7→ penitentiary) and map it to a database with additional knowledge that can be used for

further inference (e.g., penitentiary 7→ state institution). Although there are some hybrid statistical

and rule-based approaches51, this task usually involves mapping to rich databases of common sense

Chapter 2: Background and Related Work 2.1 Natural Language Processing
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and domain knowledge52;53 using contextual information and inference. Common sense and domain

knowledge are studied in the field of knowledge representation which seeks methods for encoding

general common sense or specific domain knowledge so it can be exploited by NLP applications54.

2.1.9 Natural Language Processing Pipelines

Most of NLP applications, and specially information extraction systems, involve one or more of the

NLP tasks presented in the previous enumeration. Moreover, some tasks such as parsing, typically

depend on part-of-speech tags which in turn depend on properly tokenized text. Because of this

interdependency, a pattern for a pipeline has emerged and pipelined architectures are used in many

NLP tasks55, and are specially prominent in text understanding, information extraction56;57 and

natural language generation34. Figure 2.13 shows a workflow diagram for this pipeline9;58.

There are several projects readily available that implement different modules in an NLP pipeline

and are widely used in both industry and academic environments35;55. For example, Stanford

CoreNLP is a package that includes Java implementations of several Stanford NLP tools including

the POS tagger, the named entity recognizer (NER), the Stanford parser, the coreference resolu-

tion system, and the sentiment analysis tools, and provides model files for processing English text

1. Natural Language Tool Kit (NLTK) is a suite of text processing libraries for classification, tok-

enization, stemming, tagging, parsing, and semantic reasoning written in Python with interfaces to

external tools and corpora. A book is also provided to introduce technical and non-technical people

to developing applications that feature NLP and computational linguistics 2. Apache OpenNLP is

another Java toolkit for the processing of natural language text supporting the most common NLP

tasks, such as tokenization, sentence segmentation, POS tagging, named entity extraction, chunking,

parsing, and coreference resolution. OpenNLP also includes maximum entropy and perceptron based

machine learning algorithms and models 3. General Architecture for Text Engineering (GATE) is an

integrated development environment for building NLP applications. It provides a user interface for

several text processing workflows (including annotation and visualization), and includes ANNIE (A
1Available: http://nlp.stanford.edu/software/corenlp.shtml
2Available: http://www.nltk.org/
3Available: http://opennlp.apache.org/
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Nearly-New Information Extraction System) focused on IE tasks on top of many common NLP tasks

and can be used programmatically using its Java API 4. The Curator (U. of Illinois) is a Java suite

integrating several natural language processing tools including a semantic role labeling (SRL) tool

using verb frame information 5. Combining several third-party systems, toolkits like OpinionFinder

(U. of Pittsburg, Cornell and U. of Utah)6 provide means of identifying subjectivity and sentiment

analysis along various other information extraction tasks. It is worth noting that recent work avoids

pipelines altogether for some tasks by using neural networks. Fonseca et al. proposed an architecture

based on deep convolutional neural networks that accomplish several NLP tasks and implemented

NLPNET7 that implements POS tagging, dependency parsing and semantic role labeling42.

2.1.10 Natural Language Generation

Related to natural language processing, the field of natural language generation (NLG) focuses on

methods to convert computational representations of information into natural language that can be

used to interface with a human audience34. Story generation and interactive fiction systems use

NLG to communicate an internal representation of the story to the user. Other related areas of

application include dialogue agents, machine translation paraphrasing and text summarization.

There are several techniques to approach different NLG tasks; focusing on computational narra-

tive and story generation systems, usually there is a specialized module often referred as a realizer

or surface realizer that produces the final output from the given intermediate representation. For

this task, simple template-based approaches have been widely used with successful results59. These

template-based solutions (often referred to as canned text) are easy to implement and appropriate for

some situations, however, have several limitations; the main drawback is the necessity of authoring

a large database of annotated templates. The resulting systems are relatively inflexible and their

expected output has to be anticipated ahead of time. Additionally, these tend to work best when

the expected output is brief60. Figure 2.4 shows a simple synthetic example of a template that could

be used to generate natural language text for a flight reservation system using substitutions.
4Available: http://gate.ac.uk/
5Available: http://cogcomp.cs.illinois.edu/page/software_view/Curator
6Available: http://mpqa.cs.pitt.edu/opinionfinder/
7Available: https://github.com/erickrf/nlpnet
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Searching flights from :SRC to :DEST on :DATE. One moment please.

Figure 2.4: Example of a template that could be used to generate natural language text.
Tokens starting with a colon are placeholders for substituting the relevant information to be
shown to the final user.

Modern text generation systems are designed to produce fluent multiparagraph text in response

to a goal presented to the system. A commonly used architecture implements a pipeline with four

major modules: a domain-specific knowledge module that completes gaps given an internal data

representation and a communication goal; a high-level text planning module that organizes the

relevant information and decides how to present the content to the reader; a sentence generation

module based on a large systemic grammar of the desired output language; and an evaluation

and plan-perturbation module which revises generated text generation plans and adapts them as

required34. Recent research has focused data-driven and trainable systems that can learn directly

from a corpus of text61.

2.1.11 Neural Networks for Natural Language Processing

As mentioned earlier in this chapter, the latest trends in NLP involve the use of deep and

recurrent neural network approaches. Instead of pipelines of individual core NLP tasks that build

upon one another to achieve higher-level tasks (as described in Section 2.1.9), the latest developments

exploit access to large datasets or corpus of text which are processed directly by statistical methods

such as deep and recurrent neural networks. These networks are usually fine-tuned for task specific

approaches but have shown high performance and great flexibility in a number of areas.

Neural networks were first used to find novel encodings for text information and phrase and

word representations that could then be operated onto for different tasks (e.g., word embeddings)62.

These have been used to beat the state-of-the-art on other methods discussed earlier in this chapter

in tasks such as coreference resolution63 but also to address higher-level composite tasks such as

document modeling and sentiment analysis 64 and all the way to the implementation of fully-fledged
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machine understanding and question answering systems, directly from text65.

The same family of approaches have been used in other areas such as natural language gener-

ation (described in Section 2.1.10), where pipeline-based approaches have yield to neural network

architectures as well. Again, here we see different neural network architectures to tackle specific high-

level tasks that involve natural language generation ranging from generating captions for images66

to fully fledged machine-translation systems67 and conversational agents for question answering68.

Relevant to our research, at the end of the next section we will discuss work on story generation

using recurrent neural networks69;70.
2.2 Narrative

Narratives are found in all kinds of everyday situations: from video games to movies or news reports

to scientific articles and informal conversations with friends. Narratives are used to communicate

complex ideas, deliver precise accounts of events or argument about one’s beliefs. Narratology

work in the early XIX century focusing on folkloric fantasy stories25 provided ground work for

narrative theory71 and has been revised and updated for the study, systematic analysis and criticism

of contemporary media72. From a computer science perspective, since the 1970s, narratives and

storytelling have been a prominent test bed for evaluating human cognition theories and validating

the scientific method in the field of artificial intelligence73;74. Rooted in narratology, computational

narrative bridges humanities and computing fields by analyzing and modeling narratives, narrative

understanding in terms of human cognition, and computer-readable representations of narrative

spaces that enable computers to become storytellers 75;76.

2.2.1 Narratology

Narratology is a discipline dedicated to the study of the logic, principles, and practices of narrative

representation and storytelling, including common themes, conventions and symbols. Core elements

and ideas for narratological modeling of narrative were introduced by Greek philosophers. Narra-

tology has been dominated by structuralist approaches since the 1900s, and has developed into a

variety of theories, concepts, and analytic procedures26. There are several branches and theories

but for the scope of this dissertation we will focus on thematic narratology, tightly coupled with the
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study of the plot of a narrative; and cognitive narratology that focuses on the reader’s interpretation

of a story.

Thematic narratology focuses on the semiotic formalization of the sequences of the actions told

in the narrative. One of the main influences was the structuralist work of Propp25. Propp focused

on an empirical analysis of Russian folk tales and presented a model of the elementary components

of narratives and the way they are combined. Propp describes Russian and Slavic fairy tales in

terms of a sequence of abstract “functions” that are fulfilled by characters with specific narrative

“roles”. Lakoff71 operationalized Propp’s theory and presented a story grammar based on Propp’s

functions providing ground work to structuralist approaches to narratology that in turn influenced

some of the computational approaches described in the next section. Similar to Propp’s work but

with a broader scope, Joseph Campbell’s monomyth, or the hero’s journey77 has been used widely

in the study of narratives from around the world and the criticism of contemporary media.

In contrast to thematic narratology that focuses on the plot of a story (i.e., what is being told),

modal narratology78 focuses on the discourse, that is, the way a story is told during a storytelling

session, stressing voice, point of view, transformation of the chronological order, rhythm and fre-

quency. Chatman72 presented a unified study of narrative that defines a dual model that separates

but relates the plot and the discourse of a narrative. Furthermore, Chatman provides a taxonomy

of characteristic elements from the plot of a narrative and the means in which the narrative is

communicated (Figure 2.5) that we will reference later in this thesis.

Cognitive narratology79 focuses on the human intellectual and emotional processing of narratives

and looks at the interpretation of the character’s purposes and motivations in order to infer specific

narratology primitives like volitional cause and logical sequences of actions. Related to cognitive

narratology, we will later make reference to the concept of the hermeneutic circle, developed in the

age-old field of hermeneutics as the study of human interpretation of complex text. When making

sense of the text, scholars argue that we move back and forth between its individual parts and the

larger whole — our understanding of the text as a whole is hinged on our understanding of the

individual parts, which in turn is shaped by how we understand the larger whole. This circular
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Figure 2.5: Chatman’s taxonomy of narrative elements. In Chatman’s work, plot is also
referred as story or content ; discourse is also referred as expression.

process of understanding text is the most basic form of the hermeneutic circle80. Work in the area

of story understanding is grounded in the early work of Roger Schank81, focused on the higher

level constructs humans use to understand, memorize and reason about stories. In their work they

introduce the concept of scripts as a method of representing chains of events or episodic knowledge,

such as the sequence of events in the plot of a story.

2.2.2 Computational Narrative

Computational narrative is an emergent field at the intersection of traditional narratology, artificial

intelligence and natural language processing. Computational narrative studies how to algorithmically

represent, understand, and generate stories. Computational narrative has applications in areas of

digital entertainment such as digital storytelling4;20;21 or experience management22–24;82 and can

provide insights into computational creativity83 and the analysis and understanding of literature8;84.

The field of computational narrative itself is coarsely divided in two groups: research focused on

modeling existing narratives in order to study literature or validate narrative theories8;26;84;85; and

research focused on representing narrative spaces and algorithms to generate stories or interactive

experiences and study computational creativity12;21;86.
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2.3 Computational Models of Narrative

Generative storytelling applications such as story generation systems and interactive fiction require

computational models abstracted from a specific story and that instead define a story space. On the

other hand, other applications rely on machine readable versions of a story, often annotated over

an existing text. Regardless of the application, different computational models of narrative usually

focus on specific elements of a narrative depending on the domain and application and although

there are some efforts toward holistic models of narrative26, usually there is a separation between

modeling plot (i.e. what happens in the story) and the discourse (i.e. how the story is told).

Discourse models deal with high-level narrative primitives, sequence, point-of-view (i.e., focal-

ization), the audience mental model and embedded narratives.

When looking at computational models for plot, several different elements such as the elements in

Chatman’s taxonomy, have also been modeled separately. Considering a minimal model of the plot

of a story as a chronologically ordered set of plot points, ideas from the field of automated planning,

have been used to model events in the plot of a story with preconditions and postconditions for

defining temporal and causal link relationships between events. Tale-Spin 5 is an early example that

used a planning approach. More recently, planning approaches have been used to encode authorial

intent87 and encode a story space around an event10.

Annotated narratives and plot sequences have also been used in case-based reasoning approaches

to drive the plot of story generation systems and storytelling in interactive systems6;88;89. Models of

the existents or the space of a narrative have also been used in planning, simulation and multi-agent

systems to generate virtual environment76;89;90. Also related is the use of a model of characters and

a social model of interaction to drive an interactive storytelling system91.

2.3.1 Annotating Narratives

A common step to model a narrative is to author a computational model or machine readable ver-

sion of a story from an existing text. Several annotation schemes and annotation environments have

been proposed that combine layers of discourse and plot annotations on top of natural language
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Figure 2.6: Screenshot of the Story Workbench annotation tool by Finlayson1.

text. These annotation schemes add different layers of computer readable information representing

different parts of the narrative. The annotations can then be used to extract different models of

the plot or discourse of the narrative for further processing. For example a model of a sequence of

states from a story can be extracted in the form of a script-like representation for plot points92.

The Story Workbench project8 by Finlayson1 provides an integrated framework supporting several

annotation layers. It provides a number of common text annotation operations, including represen-

tations (e.g., tokens, sentences, parts of speech), functions (e.g., generation of initial annotations

by algorithm, checking annotation validity by rule, fully manual manipulation of annotations) and

tools (e.g., distributing texts to annotators via version control, merging doubly-annotated texts into

a single file). It was designed to support multiple annotation workflows and it integrates with ver-

sion control systems. Figure 2.6 shows a screenshot of the Story Workbench. A related approach is

the Scheherazade system9 by Elson2. The Scheherazade system is a platform for symbolic narrative

encoding. It provides tools to define common sense knowledge regarding a story and then a graphical

interface for manually encoding narrative semantics such as timelines, states, events, characters and

goals. Although narrative primitives can be mapped to text, the system can be used for generating

symbolic representations of a story independent from the text. Figure 2.7 shows a screenshot of
8Available: http://projects.csail.mit.edu/workbench/
9Available: http://www.cs.columbia.edu/~delson/software.shtml
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Figure 2.7: Screenshot of the Scheherazade annotation tool by Elson2.

the Scheherazade. Despite both Story Workbench and Scheherazade aiming to be general purpose

tools, with no consensus on computational models to represent narrative, researchers tend to de-

velop ad-hoc approaches to suit their particular implementation needs that are time-consuming and

expensive to generate. For example the Riu system (described in the next section) uses a complex

encoding format to represent the story space and annotate the text of the story. Figure 2.8 repro-

duces an excerpt of Riu’s story format showing the story space structure (under :structure) and text

annotations (under :templates).

2.4 Applications of Computational Narrative

Computational models of narrative have many applications. In this section we summarize some

applications from the digital entertainment research community.

Narrative Generation and Storytelling

Narratives are complex intellectual products. Additionally, storytelling is an activity that requires a

wide range of skills and cognitive abilities intrinsic to humans. Despite that, there have been research

efforts aiming at achieving computers inventing and telling stories. In the context of storytelling,

creativity implies inventing a satisfactory story in terms of believable characters, their personalities,

goals, feelings and emotions; interesting situations and events; and a discourse that facilitates the
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\resizebox{\textwidth}{!}{
(setf *riu-STORY-DAG*
’(
(STORY-6-FACTORY-JOB
(:discourse
(:clauses
(c0 (:s phase1 phase2))
(phase1 (:s t1a t2a t3a t4a (:m phase1)))

[...]
(:templates
(t1a "After counting street numbers and puzzling over the scrawl of a 4,
which turned out to be a 9,")

(t2a (s6-notice (ales "Ales") " found a " (s6-in-door (s6-small-door
"small " (door "door")) " in the side of an " (s6-big-factory "immense "
(factory "factory"))) " that matched the Aristobots description."))

(t3a "Soon after knocking, " (s6-open "a solid, " (workbot "grubby
workbot") " opened up") " and greeted " (ales "Ales") " with a scowl of
pure skepticism.")

(t4a (s6-explain (ales "Ales") " stammered out his situation, describing in
too great of detail the recent " (theft "theft incident,")))

[...]
(:structure
(common
(:entities (ales :type robot) (robot :type animate) (workbot :type robot)
(factory :type inanimate))

(:expressions
((big factory) :name s6-big-factory)

)
)
(phase1
(:entities (door :type inanimate) (theft :type inanimate))
(:expressions
((small door) :name s6-small-door)
((big factory) :name s6-big-factory)
((notice ales door) :name s6-notice)
((tell ales workbot theft) :name s6-explain)
((in door factory) :name s6-in-door)
((open workbot door) :name s6-open)
((fd-agonist ales phase1) :name s6-p1-agonist)
((fd-antagonist workbot phase1) :name s6-p1-antagonist)
((fd-stronger s6-p1-agonist phase1) :name s6-p1-strong-agonist)

[...]
}

Figure 2.8: An excerpt of the story format used by Riu 3;4.
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Joe Bear was hungry. He asked Irving Bird where some honey was. Irving refused to tell him
so Joe offered to bring him a worm if he’d tell him where some honey was. Irving agreed. But

Joe didn’t know where any worms were, so he asked Irving, who refused to say.

Figure 2.9: An excerpt of an example story generated by Tale-spin5.

reader to understand the characters’ motivations, associate characters intentions with feelings, and

develop empathy towards the characters and situations12.

Tale-spin 5 is a story generation system that generates stories of woodland creatures using back-

ward chaining for resolving goals and subgoals and forward chaining to compute consequences of

narrative events. Tale-spin simulates a small world populated with characters, each with their own

problems and motivations. Each character uses planning in order to satisfy their own goals given

the current world state. Complex relations between characters are modeled using simulation over

the events and the outcome is used to select plot points with satisfied preconditions. After the sim-

ulation and problem-solving phase, a separate component is used to generate a textual description

of the generated narrative. Figure 2.9 shows an excerpt of an example story generated by Tale-spin.

Minstrel 83 tells stories about the Knights of the Round Table. Minstrel uses case-based rea-

soning instead of planning, and introduces concepts such as author goals in order to guide the

plot generation. Minstrel implemented a general theory of creativity based around the concept of

Transform Recall Adapt Methods (TRAMs). TRAMs are used to query an episodic memory and

retrieve schemas or scripts that define the story. In the case that a query fails, the query process

allows TRAMs to be modified and additional queries issued recursively, the output of which can

be combined and adapted to match the initial query constraints. ProtoPropp 93 generates stories

step by step by using a simplified Case-Based Reasoning approach with a Proppian ontology that

transforms annotated stories using a simulator and explicit domain knowledge. Riu 3;4 is a text-

based interactive storytelling system. Riu uses computational analogy with a force-dynamics based

story representation to create stories. The narrative oscillates between two worlds: the main story

world and the memory world that share parts of the structure and influence each other. Riu uses
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Figure 2.10: Screenshot from an interactive storytelling session in OPIATE by Fairclough6

(reproduced with permission).

two repositories of authored data encoding the story world and the protagonist’s memories and an

analogy module based on the structure-mapping engine 94 finds mappings between scenes.

Storytelling not only happens in written stories but also in other media and realizations such

as computer games. Computational models of narrative have been used to achieve systems that

automatically adapt the plot of a game to maximize engagement of the player and maintain a

dramatic arc defined by the author. For example, OPIATE 6;89 is an interactive storytelling engine

that generates new stories using multiagent system similar to Tale-spin. Opiate incorporates a drama

manager agent that uses a Case-Based Reasoning (CBR) approach with a case base of tales analyzed

in terms of Proppian functions in order to guide plot generation. Figure 2.10 shows a screenshot

from an interactive storytelling session generated by OPIATE. The Automated Story Director 95 uses

a planning approach to model a narrative space. It automatically considers all possible breaks in the

original story that can be caused by the actions of the player and proposes contingency narratives

for each rupture, in order to allow the game narrative to proceed. PAST 96 builds on top of the

Automated Story Director and uses it in combination with player modeling to generate player-specific

game narratives while still maintaining authorial intent on the original narrative space.

Computational narrative may play other support roles within digital entertainment applications

such as a part of a procedural content generation system. Procedural content generation (PCG)
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Figure 2.11: Virtual environment generated by Game Forge by Hartsook et al.7.

refers to the creation of content automatically through algorithmic means97. PCG has been applied

to computer games, specially for “map” (i.e., the virtual environment) generation for computer games

in order to increase variability and replayability98.

In addition to generating stories or engaging players, computational models of narrative can be

embedded in other game elements. Game maps are an important storytelling element in computer

games but most procedural map generation techniques typically neglect the role of the story in

the construction of the map. Recent work has started to integrate narrative elements into map

generation. Game Forge7, is a system capable of generating a map given a linear story represented

by a sequence of plot points. It uses a genetic algorithm approach to infer the spatial relationships

between the locations annotated in the given story and generates a map genotype as a space tree.

In a second step, the system maps the genotype to a phenotype where the space tree has been

embedded on a grid. Then, the virtual world is graphically realized as a 2D map by instantiating

predefined image tiles and handed to a game engine so that it can be navigated by the player’s

avatar. Figure 2.11 illustrates the output of this system. Dormans and Bakkes99 introduce the

idea of stories and spatial environments (referred to missions and spaces in their work) as separate

structures; the first holding the logical causal relationship between the sequence of events and the

second one the spatial description of the playable map where the story will unfold (or where the

player will execute their mission). In our own research90, we proposed a framework which, given
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Figure 2.12: A social network automatically extracted from Jane Austen’s Mansfield Park by
Elson8. The size of the nodes represent the relevance of a character and the width of the edges
the relative number of interactions (reproduced with permission).

the specification of a story space, represented as a collection of plot points and their dependencies,

can generate maps that support one or more stories from that story space.

Narrative Analysis and Narrative Information Extraction

Besides uses in story generation and storytelling, computational narrative systems using automatic

and semi-automatic narrative information extraction have been used to study literature and analyze

narrative theories. Finlayson84 uses a semi-automatic annotation procedure and a machine learning

algorithm to extract plot patterns from a set of Russian fairy tales. In his work he reports results that

aim to approximate manual narratology models via automatic analysis of the annotations. Elson8

proposed the use of an automatic system to extract and study character interactions in classic

literary works. Figure 2.12 shows a social network automatically extracted from Jane Austen’s

Mansfield Park by Elson. Bamman et al.57 proposed an unsupervised approach to automatically

extract characters, their attributes and the actions in which they participate in order to identify

latent character archetypes or personas by clustering their stereotypical actions and attributes. In

more recent work, Reagan et al.85 studied emotional arcs in a big corpus of literature and elicited

recurrent structures in books. They perform hedonometric analysis (to quantify sentiment or overall

happiness over time100) and apply unsupervised machine learning techniques related to principal

Chapter 2: Background and Related Work 2.4 Applications



26

component analysis in order to elicit 6 emotional arc patterns predominant in literature10.

2.5 A Taxonomy of Computational Models of Narrative

The wide range of different computational narrative applications, the disparity between the require-

ments of each system implementation, and the fact that narrative is such a broad and complex

subject, makes it difficult to settle on a unified model to represent a narrative. Many approaches

exist, such as scripts, plans or grammars but each of those approaches can only capture certain

parts of the narrative. Large parts of what constitutes the plot and discourse of narratives, such

as authorial intent, conflict, or character subjectivity are not properly captured by existing models.

On the one hand, there are several competing proposed standards on text annotation for narrative,

each focusing on different parts of the narrative and favoring different approaches. On the other

hand, story generation systems require computational narrative models that enable the generation

of multiple stories and provide affordances for interactive narrative. Moreover, given the complexity

of the current approaches, system builders tend to favor developing customized ad-hoc models to

suit their particular implementation needs.

In this section we present our survey on both narrative generation and analysis and the compu-

tational models of narrative used in such work.

2.5.1 Narrative Generation and Storytelling

Storytelling has been an integral part of digital entertainment, especially in interactive fiction and

games in the genres of adventure and role playing6;7. Research in storytelling is tangentially related

to fields such as text summarization, machine translation, or intelligent assistants but in our survey

we focus on areas related to digital entertainment and computer games. Specifically we look at the

following broad lines of work:

Story Generation: Related to computational creativity, research on story generation explores ap-

proaches for the generation of stories by computers12. Story generation ranges from off-line

story generation to interactive storytelling work such as interactive fiction101;102. Most of these
10Visualizations available online: http://hedonometer.org/books/v1/
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systems have text output in the form of a human-readable story whereas some fulfill a support

role in mixed-initiative approaches to help authors write (e.g., by providing plot outlines or

story space elements such as character profiles)103;104. We also find work where the generated

stories are actually told by storyteller agents or characters within a game or other virtual

environment105. In general, work can be classified into plot generation and discourse genera-

tion (i.e., the plot’s realization) with some recent work integrating them106. Usually there are

approaches focusing on the text realization of the stories107–109 whereas other generate output

to be consumed by a second system110–112 or a specialized text realization component113;114.

Another lens with which to look at research in story generation is from the computational

creativity perspective. We refer the reader to an overview by Gervás12 for more information

in this regard.

Drama Management: Relevant to interactive applications and games (and to some extent to

other educational and training tools), drama management focuses on techniques that shape

and modify the plot of a game or interactive experience on-line based on both authorial intent

and the users’ actions. In the context of computational narrative, drama management has been

used in interactive fiction applications and games to either maintain tension or an author’s

desired dramatic arc22;24;82; or maintain story coherence and/or enable/prevent player actions

given some authorial goals115. There several other interesting systems and we refer the reader

to some of the previous overviews on this topic116;117.

Narrative-based Procedural Content Generation: Computational narrative systems have also

been used in a support role to generate other game content such as side quests or maps, levels

and virtual environments7;90. There are also examples that integrate computational narrative

in several game components6.

Other: Out of the scope of our work but relevant to this area of research, the reader may be inter-

ested in an overview on emergent narrative118 and how narratology informs other applications

of computational narrative119.
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When looking at the underlying computational models to encode narratives and narrative spaces

used as input for applications included in the previous enumeration, we often observed hybrid ap-

proaches or applications that use different models to handle different parts of the generation and

storytelling, still there are a few key approaches when it comes to computational models for narrative

generation and storytelling. These are described below:

Planning-based: These models include logic and plan-like models representing a story space or

the rules defining a simulation, narrative theory, agent behavior or author’s goals82;101;115;120.

Despite some existing popular representations (such as extensions to PDDL), because of the

specialization of the different systems, these tend to be ad-hoc, manually authored, and not

reusable.

Frame-based: These models include a wide variety of frame-based representations of a story such

as description logics or semantic networks to represent events in a story. These are used often

in analogy-based and modification approaches83;102;121, and also tend to be manually authored

and not reusable.

Plot-points: Plot-points usually represent the different events in a story into a branching or graph-

like structure, where each node represents a plot-point (an important event in the story). These

models are also usually domain-dependent and have been mostly used for drama manage-

ment22;24.

Rewriting Systems: Similar to the previous, these models encode narratives in a series of hier-

archical abstractions. These models implement rules similar to those of a formal grammar,

which have been used to study cognitive and narratology theories73, and can be sampled for

story generation122;123.

Shallow Annotations: These take the form of a templates or involve shallow annotations over an

existing text or story. These are typically used along other models in the final realization of

the narrative. Used mostly for text generation121;122, can be used by instantiating assets in

other mediums (e.g., side-quests124).
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Other Specialized Models: There are many other types of models focusing on modeling specific

features or dimensions of a narrative such as the characters and their social relationships or

the locations and the spatial configuration of the story environment6;90;125. These specialized

models tend to be manually tuned for specific applications and may include rule-based systems

or functions that maximize or minimize some desired target. These can also be used in con-

junction with other models, usually through annotations and extensions that bind the models

together22;121.

2.5.2 Narrative Analysis and Narrative Information Extraction

Automated narrative analysis and narrative information extraction has been used to study folklore

and sociocultural phenomena. This area of research, related to the digital humanities focuses on

modeling narratives in order to study literature or validate narrative theories. We identified several

distinctive areas of research and application:

Annotation and Markup Languages: From plot to discourse, there are several components of

interest in a narrative. Moreover, natural language is ambiguous and may encode several over-

lapping features such as focalization, reader’s mental model, embedded narratives, character

affect states, beliefs, desires and goals. There have been efforts to standardize the process of

adding computer-readable annotations to natural language to allow computational narrative

systems to process narratives26;126. There have been also work on annotation tools127;128.

Despite these aiming to be general purpose, there is no consensus on annotation formalisms,

and researchers develop ad-hoc solutions to suit their particular needs that are time-consuming

and expensive to generate.

Narrative Information Extraction: A second body of work focuses on automatically extracting

narrative information from text using natural language processing techniques. Most of this

work focuses on extracting particular components of a narrative from a previously defined on-

tology. These include automatically identifying characters, narrative and plot structure, and

character relationships15;18;129. Related work also used crowdsourcing approaches10 and/or
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commonsense databases and domain-specific knowledge to extract specific information130–132.

Applications range from those tangentially related to computational narrative (such as doc-

ument indexing and retrieval) or study, summarization and visualization of stories (using

graphical and animated content)9;58.

Note that the work reported in chapters 4, 5 and 6 falls within this area of research.

Story Understanding: Story understanding (a.k.a. machine reading or story comprehension)

extends the idea of narrative information extraction but goes beyond extracting information

from stories and strives to understand the entire story in order to reason and answer questions

about it133;134. These efforts usually involve linking the extracted information to ontologies

and common-sense databases135. To the best of our knowledge, despite some early interest in

this area136;137, recent work has focused on either story reasoning (ignoring natural language

processing138), question answering from text (with limited inference and without a focus on

broad understanding139) or knowledge representations for extracted story information134;135.

Automated Literature Analysis: This work builds upon narrative information extraction but is

intended to visualize, summarize or capture, often not a single story but a specific set of stories

or texts. For example, comparing the works of different authors128, validating narrative theo-

ries84 or analyzing trends and recurring patterns (such as dramatic arcs in popular fiction85,

story structure140 or character interactions18;128).

Let us now describe the computational models of narrative used in narrative information extrac-

tion and analysis work:

Shallow Annotations: Equivalent to the shallow annotation models described in Section 2.5.1,

these are close to the text representation of the story, dependent on the discourse of the story

but relatively straightforward to acquire automatically. These are the representation that

narrative information extraction pipelines similar to Voz can extract and/or annotate and

those can be used either as some intermediate/hidden model (for example, for indexing and

retrieval13) or to provide a summary or visual representation of a story85;141.
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Symbolic Semantic Models: These are rich models that often include semantic information that

has been extracted and/or inferred from the text, such as those described when discussing

annotation and markup languages. The main difference from shallow models is that semantic

models usually employ comprehensive ontologies that tie the different annotations together.

Despite some limited work9;15;58, these are challenging to automatically extract from text and

the most feasible alternative is to use manual or semi-automatic annotation tools127;128.

Catalogs and Other Specialized Models: These focus on modeling specific features or dimen-

sions of a narrative (e.g., it is characters and social networks8;13) and are acquired by narrative

information extraction pipelines that exploit off-the-shelf NLP. Despite being difficult to ex-

tract mostly because of open problems in NLP these are used in a breadth of applications

related to narrative information extraction and automated literature analysis. These models

can take the form of catalogs (a list of locations7;142) or graph-like structures (a social network

based on character interactions8;19;128). The biggest difference between these and semantic

models is that these do not intend to be comprehensive and unlike shallow annotations, these

are disconnected from the discourse (i.e., text of the narrative).

2.5.3 Statistical Models for Computational Narrative

As in many other areas of research within computer science, there is an emergent trend within com-

putational narrative that involves applying statistical methods in different computational narrative

tasks. For the specific task of story generation, Markov-models have been used to learn the prob-

ability distribution of a specific corpus and have then been used to replicate the style of a specific

genre or author70. Similarly, some examples in recent research explore the use of recurrent neural

networks to both encode narrative events in a similar fashion as word embeddings encode text con-

tent and then use long short-term memory (LSTM) recurrent neural networks for learning the event

structure of stories from a corpus and generating new stories by sampling the learned model69. More

recent work combine word embeddings, Markov models and recurrent neural networks to explore

additional training and sampling methods for learning from a corpus and automatically generating
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stories70;143.

The key difference between the approaches in this class and the approaches described in the

previous sections is that the models described previously are interpretable and explicit, that is,

human authors and system designers specifically choose which features of the narrative to model

and how to populate the models’ contents (e.g., if we want to model the social network between

characters, we have an explicit representation that we can look at that includes the characters in the

story and a set of edges to define their social interactions). For the systems in this class of black-box

approaches, however, the models that are used are not easily inspectable, it is hard to know what

is being modeled, the author does not explicitly decide what will be modeled (besides defining the

network structure) and it is up to the algorithms to find an internal representation of what needs to

be modeled based on training data.

With the increase of computational power and the access to huge corpus of information, neu-

ral networks have seen a drastic increase in their applications with successfully to many areas of

research. Related to computational narrative, natural language processing and natural language

generation, recurrent neural networks trained from text are being used in for tasks such as sum-

marization, machine translation and conversational agents.67;67;68;144. The use in computational

narrative systems in the context of digital entertainment is limited but there are some examples in

recent research that explore the use of recurrent neural networks (e.g., LSTMs and word embedding

representations)69;70.

2.6 Information Extraction

In the previous sections we first enumerated common tasks involved in natural language processing

applications and then we discussed computational narrative, its applications and the different models

used. In this section we delve in the intersection of these efforts and present the state-of-the-art

in information extraction from narrative and discuss the most common architecture used in related

implementations.
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2.6.1 Automatically Extracting Narrative Information

Automatically extracting narrative information can be seen as a specialized case of information

extraction. Except for a few recent exceptions, automatically extracting narrative information from

unannotated text has not received a lot of attention. Character identification, related to named

entity recognition is a crucial step in extracting and identifying narrative information. Goyal et al.’s

AESOP system16 explored how to extract characters and their affect states from textual narrative

in order to produce plot units145 for a subset of Aesop fables. The system uses both domain-

specific assumptions (e.g., only two characters per fable) and external knowledge (word lists and

hypernym relations in WordNet) in its character identification stage. Chambers and Jurafsky15

proposed using unsupervised induction to learn what they called “narrative event chains” from raw

newswire text. In order to learn Schankian script-like information about the narrative world, they

use unsupervised learning to detect the event structures as well as the roles of their participants

without pre-defined frames, roles, or tagged corpora. Regneri et al.146 worked on the specific task of

identifying matching participants in given scripts in natural language text using semantic (WordNet)

and structural similarities. Schank and Abelson147 use scripts as a formalism drawing from cognitive

science as an attempt to natural language understanding. Calix et al.13 proposed an approach

for detecting characters in spoken stories. Based on features in the transcribed textual content

using common sense information and speech patterns (e.g., pitch), their system detects characters

through supervised learning techniques. Bamman et al.56 extract characters, their attributes and the

actions in which they participate and propose an unsupervised approach to identify latent character

archetypes or personas by clustering their stereotypical actions and attributes. More recently, Li

et al.10;148 proposed a combination of NLP techniques and crowdsourcing to acquire narrative and

procedural information about a specific situation.

Some of the aforementioned work focuses on capturing and identifying interactions and character

relationships in the narratives using formalisms such as verb frames and logic clauses based on

verbs tuples8;15;17–19. A specific case of narrative information extraction is the information about

interactions encoded or implicit in dialogue. In this context, Elson and McKeown worked on the
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Figure 2.13: Typical NLP pipeline, specially prevalent in applications related to information
extraction and text understanding.

problem of quoted speech attribution149 from text8. In their work, they defined syntactic categories

for quoted speech instances and then derived rules to assign the speaker for each of them. O’Keefe et

al. 150 treated the problem of quoted speech attribution as a sequence labeling task. They were able

to remove the use of gold-standard information and achieve similar performance on newswire text.

More recently, Muzny et al.151 also tackled the problem and proposed supervised method using a

sieve approach. Their method greatly improved the performance of previous state-of-the-art. In our

work, we extend their approach by automatically learning the syntactic categories and the rules to

identify the speaker and intended listener for each single instance of quoted speech. Other work on

extracting information from text include the use of regular expressions and specialized structures such

as Tregex44 which use a set of hand-authored extraction patterns. Riloff and Philipp45 developed

an IE system that was able to learn extraction patterns from examples.

NLP pipelines are typically embedded in larger systems used for information extraction and

text understanding applications. In such applications, usually the linguistic tasks are complemented

with augmentation steps that combine and augment the extracted information with common sense

or domain specific knowledge in order to enable further processing and inference. For example, the

WordsEye system11 by Coyne et al.58;130 is a text-to-scene system that creates 3D scenes from natural

language descriptions. The system implements an NLP pipeline similar to the one presented in Figure

2.13 which is combined with a lexical database of common sense knowledge (WordNet, FrameNet

and a custom scenario-based lexical knowledge resource) to extract a symbolic representation of the

scene. The system converts dependency structures into semantic nodes and roles representing spatial

relationships and visual attributes. The system relies on a large database of 3D models and poses
11More info: http://www.wordseye.com

Chapter 2: Background and Related Work 2.6 Information Extraction

http://www.wordseye.com


35

Figure 2.14: Frames from an animated sequence generated from a text report in natural
language by CarSim9.

for entities and actions. The extracted structure is mapped to the database and finally rendered into

an image. Similarly, CarSim by Johansson et al.9 is a system that automatically converts narratives

in the traffic domain into animated 3D scenes. It is intended to be a tool for visualizing traffic

situations from text reports in natural language. It also implements an NLP pipeline similar to

the one presented in Figure 2.13 and extracts entities, events, relations and environment attributes

separately. Then infers implicit information using a spatio-temporal planning and inference module

that produces a full geometric description of the extracted symbolic representation from the text.

Time descriptions and the output of the planning module are used to compute trajectories and

generate an animation. Figure 2.14 shows four frames from an animated sequence generated from a

text report in natural language by CarSim.

2.6.2 Evaluation of NLP Pipelines

The pipelined architectures described so far have been used extensively in NLP and information

extraction applications. These systems usually integrate several natural language preprocessing

modules (e.g., the Stanford CoreNLP35). Basic modules used in NLP pipelines have been stud-

ied extensively, often within the context of shared task competitions (e.g., Stanford’s coreference

resolution system at the CoNLL coreference resolution shared task29). These studies are typically

conducted on a single module isolated from a pipeline since no standard methodology exists to

evaluate how error propagates in pipelined architectures. Margaretha & DeVault152 tackle the is-

sue of automated evaluation of pipeline architectures in natural language dialogue systems using a

Wizard-of-Oz approach and simulations of the pipeline process. In related work, Punyakanok el al.50

combine different systems as modules of a single pipeline and study the quality of the information
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contributed by two different NLP systems for the task of semantic role labeling. When evaluating

the performance of specific tasks or modules, most approaches agree on using a ground truth dataset

and common counting metrics such as precision and recall153. In some tasks, such as coreference

resolution, evaluating the accuracy is still contentious. Various alternative metrics have been pro-

posed which weight different features of the coreference problem48. Punyakanok el al.50 also discuss

using alternative task-specific evaluation instruments on top of counting metrics.
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Chapter 3: Proppian Stories

In this chapter we describe the corpus and datasets used thorough our experimental evaluation

throughout this dissertation. In order to evaluate the different techniques and algorithms we will

present in the next chapter, we first needed stories in our domain of application. Specifically, we

collected a corpus of Russian and Slavic folk tales. This chapter presents an overview of this corpus

and the datasets derived from these stories.

In the introduction and background chapters we mentioned the established and well known work

of Vladimir Propp (1895-1970). Vladimir Propp was a Soviet folklorist and scholar who studied

Russian and Slavic folk tales in the 20th century. His seminal work, Morphology of the folktale was

originally published in Russian in 1928 and later translated to English25. In his work, Propp used

folk tales collected by Alexander Afanasyev (1826-1871). Afanasyev published one of the largest

folk tale collections in the world and is considered the Russian counterpart to the brothers Grimm.

Propp analyzed the basic plot components of folk tales and presented a model of narratives based on

narrative functions and character roles. His work influenced early western thematic narratology71;72

and recent research in the fields of narratology and artificial intelligence84;92.

In the context of narratology, a narrative function is a fundamental building block of storytelling:

“an act defined in terms of its significance for the course of the action in which it appears; an act

considered in terms of the role it plays at the action level” 154. Propp described a series of narrative

functions which he claimed represent canonical and invariant acts that constitute the underlying

structure of Slavic and Russian fairy tales. Propp’s work ultimately reduces a fairy tale to a sequence

of variations of his functions (which he called subfunctions and are grouped in functions). We will

be revisiting Propp’s work on narrative function in Section 4.6 where we will try to predict them

automatically. Propp also identified a set of broad roles for characters recurrent across stories. These

are also explored further in Section 4.4.

When we incorporate narrative domain knowledge into our approaches, we use Propp’s work. In
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order be able to use his narrative theory, we work with a corpus of Russian and Slavic folk tales that

is related to the collection of stories Propp used to derive his work. In the next section we describe

the corpus of English translations we used as a basis for our work. We also describe the annotations

present in the dataset that accompanies the stories and a synthetic dataset derived from the original

corpus.

3.1 A Corpus of Annotated Russian Stories

Throughout our work we compiled a corpus of 28 Russian and Slavic folk tales translated to English

text. We selected stories from the Afanasyev collection studied by Propp. 6 of the digitalized

versions of the English text were collected by Malec155, 21 by Finlayson84 and 1 is included in the

translated version of Propp’s work. Table 3.2 lists the stories in the corpus with their English titles

and their numeric identifier in the Afanasyev collections. We provide additional information from

Propp’s own work on these tales in Appendix C and a list of sources for these stories in Appendix

D.

Below is an example of one of the variations of the story Morozko, Afanasyev’s story number 95

and 96 collected by Scott Malec1.
1Available online: http://www.cedargallery.nl/engrussia_stories.htm
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Once there lived an old widower and his daughter. In due time, the man remarried to an older

woman who had a daughter herself from a previous marriage. The woman doted on her own

daughter, praising her at every opportunity, but she despised her stepdaughter.

She found fault with everything the girl did and made her work long and hard all day long.

One day the old woman made up her mind to get rid of the stepdaughter once and for all. She

ordered her husband: "Take her somewhere so that my eyes no longer have to see her, so that

my ears no longer have to hear her. And do not take her to some relative’s house. Take her into

the biting cold of the forest and leave her there."

The old man grieved and wept but he knew that he could do nothing else; his wife always had

her way. So he took the girl into the forest and left her there. He turned back quickly so that he

wouldn’t have to see his girl freeze.

Oh, the poor thing, sitting there in the snow, with her body shivering and her teeth

chattering! Then Morozko, leaping from tree to tree, came upon her. "Are you warm, my lass?"

he asked.

"Welcome, my dear Morozko. Yes, I am quite warm," she said, even though she was cold through

and through.

At first, Morozko had wanted to freeze the life out of her with his icy grip. But he admired the

young girl’s stoicism and showed mercy. He gave her a warm fur coat and downy quilts before

he left.

In a short while, Morozko returned to check on the girl. "Are you warm, my lass?" he asked.

"Welcome again, my dear Morozko. Yes, I am very warm," she said.

And indeed she was warmer. So this time Morozko brought a large box for her to sit on.

A little later, Morozko returned once more to ask how she was doing.

She was doing quite well now, and this time Morozko gave her silver and gold jewelry to wear,

with enough extra jewels to fill the box on which she was sitting!

Chapter 3: Proppian Stories 3.1 Corpus of Russian Stories



40

Meanwhile, back at her father’s hut, the old woman told her husband to go back into the forest

to bring back the body of his daughter. He did as he was ordered. He arrived at the spot where

had left her, and was overjoyed when he saw his daughter alive, wrapped in a sable coat and

adorned with silver and gold. When he arrived home with his daughter and the box of jewels,

his wife looked on in amazement. "Harness the horse, you old goat, and take my own daughter

to that same spot in the forest and leave her there," she said.

The old man did as he was told.

Like the other girl at first, the old woman’s daughter began to shake and shiver. In a short while,

Morozko came by and asked her how she was doing.

"Are you blind?" she replied. "cannot you see that my hands and feet are quite numb? Curse

you, you miserable old man!"

Dawn had hardly broken the next day when, back at the old man’s hut, the old woman

woke her husband and told him to bring back her daughter, adding: "Be careful with the box of

jewels." The old man obeyed and went to fetch the girl.

A short while later, the gate to the yard creaked. The old woman went outside and saw her

husband standing next to the sleigh. She rushed forward and pulled aside the sleigh’s cover.

To her horror, she saw the body of her daughter, frozen by an angry Morozko. She began to

scream and berate her husband, but it was all in vein.

Later, the old man’s daughter married a neighbor, had children, and lived happily. Her father

would visit his grandchildren every now and then, and remind them always to respect Old Man

Winter.

Although the stories are relatively short, fully understanding them often requires significant

inference based on commonsense knowledge and contextual information. For example, in one of our

stories, a magical being called Morozko (also known as Jack Frost in some western translations) gave

a young girl “a warm fur coat and downy quilts.” In order to understand Morozko is helping her,

the context of the forest in the winter is important. Furthermore, some actions need to be inferred.

In the same story, the text only describes how the step-sister of the hero (the anti-hero) answered
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Morozko’s question rudely. In the next scene, her mother “saw the body of her daughter, frozen by

an angry Morozko,” leaving out Morozko’s direct actions (killing the step-sister) to inference.

This corpus poses challenges to several NLP tasks. For example, specific to character iden-

tification and related to named entity recognition, the text includes a range of different types of

characters: humans, anthropomorphic animals (e.g., a talking mouse) and anthropomorphic objects

(e.g., a magical oven, a talking river). There are also fantastical creatures (e.g., goblins) and charac-

ters specific to the Slavic folklore (e.g., Morozko and Baba Yaga). In the work described in the next

chapter, among other tasks, we seek to identify these characters from the text without hand-coding

specific knowledge such as knowing that “Morozko” is a traditional Slavic character. Coreference

is also difficult as it is very common that a character’s referring expression change from “daugh-

ter” to “sister” or “girl” throughout the story. Moreover, in one of the stories, there are two young

female characters. Besides the obvious pronominal coreference problems that may arise, they are

both referred as “daughter” and “maiden” in different parts of the story. Besides the aforementioned

coreference resolution challenges, the particular translations in the stories pose additional challenges

to most NLP tasks. For example, we noticed long sentences with several subordinate phrases that

cause failures in tasks such as syntactic parsing, a task on top of which other tasks depend. For

example, consider the following excerpt:

When she opened her coffer and hung out her things on a rope that stretched from the house to

the gate, the old woman, who had opened her mouth to greet her in her customary abusive way,

pursed up her lips, seated the welcome guest under the icon, and said to her civilly: “What is

your pleasure, madam?”

That single sentence is found at the conclusion of one of the stories. Besides the multiple

instances of the word “her” used as either possessive or a personal pronoun for either of the two

female characters in the story, that is a single sentence. At the same time, notice how there is a lof

of subtext encoded in the adjectives and adverbs used.

The stories also exhibit a wide range of rhetoric figures. A particular rhetoric figure is quoted
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Table 3.1: Annotation present in Finlayson’s 15 story dataset that we use in our work and
the number of annotations for each.

Annotation Layer µ σ Total
Sentences 176.60 60.31 2649
Tokens and Parts of Speech 3108.47 1004.65 46627
Referring Expressions 857.93 277.40 12869
Coreference 219.27 78.96 3289
Syntactic Parse 176.60 60.31 2649
Semantic Roles 489.53 170.52 7343
Narrative Functions 28.33 7.16 425

speech (i.e., phrases and sentences surrounded by quotation marks) that contain direct speech as

spoken by a character of the story. These quotes are often arranged in succession representing a

conversation or dialogue. Processing this embedded direct speech surrounded by text in third person

(i.e. reported speech) introduced errors in several natural language processing tasks. In order to

mitigate these, we annotated the spans of text where direct speech or dialogue was present (that is,

the quotes themselves and the surrounding speech attribution cues) in order to filter it out. Most

of the work reported next chapter between Sections 4.2 and 4.6 ignores this text. Then in Section

4.7 we will focus specifically on processing it separately in order to extract the information about

character interactions encoded or implicit in dialogue.

Besides the dialogue, 15 of the stories in the corpus had been previously deeply annotated with

syntactic, semantic and narrative information by Finlayson84, who kindly shared his dataset with

us. Table 3.1 lists the features annotated (i.e. annotation layers) in Finlayson’s dataset that we use

in our work and the number of annotations for each. Finlayson also shared with us some translations

from his corpus, 6 of which we annotated ourselves with a subset of the information layers in his

original dataset.

Throughout our work we have used datasets including different subsets of the corpus with dif-

ferent annotations. In each subsection in the next chapter we describe the relevant subset and

annotations used. Also note that both Malec and Finlayson provided different levels of annotations

with their original collection of stories. Part of our work consisted on interpreting, converting and

complementing their annotations. We also developed some of our own annotation schemes on the
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text.

At the end of our work, we have a dataset of 20 fully annotated stories. We added our own

annotations for specific tasks, specifically:

• We annotated 15 entity types over the existing referring expressions and coreference groups.

The class labels we used were inspired by Chatman’s taxonomy of existents72 and include:

happening (e.g., rain), male character, female character, anthropomorphic animal character,

anthropomorphic object character, group or abstract set of characters (e.g., people, pirates, all

the devils), magical being character (e.g., Morozko, the devil), part of a character (e.g., her soul,

her fingers), animal (non-character), object or prop, locations that the characters visit (e.g.,

the hill), scenery that is mentioned (e.g., the mountains in the distance, the fields surrounding

the hill), temporal references (e.g., the day after, Winter), part of a non-character (e.g., the

bed’s blankets, the horse’s back), and an additional “N/A” class label used for labeling parsing

errors. These annotations and their use are described in Section 4.3.4.

• We annotated 7 character role labels over the existing characters (a subset of the entities).

Propp’s defined 7 broad roles for characters: Hero, Villain, Dispatcher, Donor, (Magical)

Helper, Sought-for-person, and False hero. When annotating our class labels we merged the

roles of Donor and (Magical) Helper since they mostly correspond to the same character,

specially in our dataset. Additionally, we introduce a role Other that includes the Dispatcher

and includes other recurring roles such as family members. As in the previous case, we use an

additional “N/A” class label for classification parsing errors. These annotations and their use

are described in Section 4.4.

• We annotated verb argument triplets (verb, subject, object) describing interactions between

characters. These were initially annotated over the stories without associating them to specific

spans of text and we used symbols to refer to the characters in order to manually resolve

coreference. These annotations and their use are described in Section 4.4.

• We annotated quoted speech, direct speech and dialogue over the existing sentences. These
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annotations include 4 components: First we annotate the span of text for instances of quoted

speech or direct speech. Most of the dialogue is realized in quotes but we found instances of

direct speech outside of quotes when the narrator was addressing the audience directly, these

instances are annotated with a different class label. For each of the quotes we also annotate

which (if any) speech attribution cue relates to the quote (such as “said” in “he said to her”) and

the referring expressions (if any) that refer to the speaker and intended listener for the quote

(such as “he” and “her” in “he said to her”). These annotations and their use are described in

Section 4.7.

This 20 story dataset contains 1931 reported speech sentences plus 718 sentences in quoted speech

(29.5% of the text). Within the reported speech sentences considered on most of our experiments,

there are 3029 mentions to 236 unique characters (46% common nouns, 43% proper nouns, 11%

pronouns) and 5131 annotated verbs.

Working with this dataset and given the considerations outlined earlier, we quickly realized that

it posed difficult challenges that made it difficult to process with off-the-shelf natural language

processing tools. In our work we tried to address some of these challenges but we also worked on

authoring a simpler dataset derived from these stories which is described in the next section.

3.2 A Synthetic Dataset of Annotated Russian-inspired Short Stories

We authored a dataset of 100 Russian-like short stories. We wanted to be able to experiment with

larger number of stories and we wanted the stories to be in the same application domain in order

to continue our current line of work. Moreover, given the issues encountered when processing the

original text of the stories, we also wanted the new stories to use simpler text and avoid some

rhetoric figures like dialogue. In order to satisfy all of those requirements we decided to hand-craft

a synthetic dataset of short stories inspired by the stories in the original corpus and Propp’s work.

In order to author these stories we followed three approaches; first, we looked at the 20 stories in

the previous dataset and we rewrote each of them in a simpler form, without dialogue, and ignoring

certain characters and events when necessary. We carefully analyzed the Proppian functions in the
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Table 3.2: Stories in our dataset. The second column lists the numerical identifier of the
stories in the new Afanasyev collections.

Translated Title Afanasyev #
Witch and Solntseva Sister 93
Morozko/Jack Frost 95, 96
The old woman Govorukha 97
Daughter and Daughter in law 98
Kroshechka-Havroshechka 100
Burenushka 101
Baba Yaga 102, 103
Vasilisa the Beautiful 104
The Witch 108
The Magic Swan Geese 113
Prince Danila Govorila 114
The Merchant’s Daughter and the Maidservant 127
Frolka Stay-at-Home 131
Ivan Popyalov 135
Dawn, Evening and Midnight 140
The Seven Simeons 145
Nikita the Tanner 148
The Serpent and the Gypsy 149
Shabarsha the Laborer 151
Ivanko the Bear’s Son 152
The Runaway Soldier and the Devil 154
The Crystal Mountain 162
Bukhtan Bukhtanovich 163
The language of the Birds 247
The princess who wouldn’t smile 297
Girl and Bear 557

annotations and ensured that all the characters required to realize the functions were present. Unlike

the original stories where some functions are implicit or out of order according to Propp’s rules (refer

to Section 4.6 for more details), in the reimagined story we made sure that every Proppian function

was explicitly realized and when possible, in the order specified in Propp’s rules.

This is an example of one of the stories in our synthetic dataset that reimagines the story of

Morozko reproduced in the previous section.
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An old widower lived with his daughter in a farm. The widower eventually married another

woman who had a daughter of her own. The stepmother and stepdaughter despised the girl.

They asked her father to get rid of her. The father took the girl to the forest and left her there

to die. A goblin saw the girl and asked her how she was doing. The girl was kind to the goblin

and they talked all night long. The goblin thanked the girl for their conversation. As a token of

appreciation, he gave her new clothes and jewelry. The next morning, the father went back to the

forest to retrieve the girl’s corpse. He was very happy to see his daughter still alive and they went

back to the farm. When the stepmother saw the clothes and jewelry she got very excited. She

asked her husband to take her own daughter to the forest. The husband took his stepdaughter

to the forest and left her in the same spot. The goblin saw the girl and approached her. The girl

was repulsed by the goblin and was mean to him. The goblin killed the girl as punishment. The

next morning, the father went back to the forest to retrieve the girl. He went back home with her

corpse. When the mother saw her dead daughter she died of sadness herself. The girl and her

father lived happily and she eventually married a good lad from a nearby farm.

For the remaining stories, we selected 30 sequences of Proppian functions described in Propp’s

work and for each of the sequences we authored stories from scratch that included the target sequence

of functions. The functions are defined in two levels, the top level including 31 functions that group

215 more specific subfunctions (which include some negations). To author these stories we tried

to avoid biases and followed a systematic procedure: First, we selected one of the stories listed in

Propp’s work25; these stories are described using a table that includes the identified functions. With

a selected story, we would then try to read the original story when possible, to familiarize ourselves

with the specific elements of such a story. Finally, for each story we went back to the sequence of

functions and wrote it from scratch using for reference Propp’s function definitions. We also omitted

some functions, avoided duplicates or alternated subfunctions within the same group as the parent

function when necessary to suit creative decisions of the story. We repeated this process to author at

least two stories from each initial sequence until we had a total of 100 stories in the dataset (including

the previous 20); for the second story written for each initial sequence we tried alternating as many

subfunctions from each group as possible and we interleaved additional functions. In Appendix C

Chapter 3: Proppian Stories 3.2 Synthetic Dataset



47

Table 3.3: Annotation present in Finlayson’s 15 story dataset that we use in our work and
the number of annotations for each.

Metric µ σ Total
Sentences 14.54 4.38 1454
Tokens 131.01 60.58 13101
Narrative Functions 9.97 3.12 997

we reproduce Propp’s work on function identification that we used as reference for this task.

When crafting these stories we tried to refer to the original sources to replicate Russian and

Slavic themes from these traditional stories. In order to be faithful to these original stories, we

searched for freely available sources of English translations of traditional Russian and Slavic folk

tales. We compiled, read and manually analyzed these in order to familiarize ourselves with them

and gain a better understanding of the themes and recurring elements. While doing this work we

also used for reference an English translation of one of the collections by Alexander Afanasyev. We

provide a reference of these sources in Appendix D.

The final dataset2 is significantly larger in terms of stories compared to the corpus described in

the previous section but the stories are significantly shorter. Table 3.3 provides some statistics for

this dataset.

3.3 Discussion

In this chapter we described the corpus and datasets we collected and annotated. This work was

necessary since we needed a corpus of Russian and Slavic folk tales to match the application domain

of the work of Vladimir Propp. We use these stories and Propp’s work thorough our experimental

evaluation described in the upcoming chapters.

We want to thank Mark Finlayson84, who kindly shared his corpus and annotations with us.

We first presented a corpus of English translations of Russian and Slavic folk tales which we

annotated and used to derive several datasets for our work. This corpus poses challenges to several

NLP tasks. We decided to manually author a second synthetic dataset, inspired by the same stories,

but using shorter and simpler language, and a larger number of stories.

2Available: https://sites.google.com/site/josepvalls/home/voz
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Chapter 4: Automated Narrative Information Extraction

The authorial bottleneck problem (see Section 1.1) is an important open problem in the field of

computational narrative. Although there has been some work towards easing this problem using

techniques such as computer assisted annotation (see Section 2.3.1) and automatic information

extraction (see Section 2.6.1), this is a relatively under explored area of work, with a significant

number of open research questions.

Let us start with an example. Let us consider the OPIATE system by Fairclough6;89 described

in Section ?? and shown in Figure 2.10. In order to operate, OPIATE requires several models of the

narrative which need to be authored manually. First, it requires a list of characters present in the

story world, each annotated with initial attitudes towards one another and some initial inventory, as

shown in Figure 4.1 left. Second, it requires a description of the spatial relations between different

environments in the story world, each annotated with the initial locations of characters and objects,

as shown in Figure 4.1 right. Third, it requires an annotated case base of sequences of Proppian story

functions, as shown in Figure 4.2. Moreover, it also requires additional knowledge about common

sense and social practice in order to simulate the story world.

Creating these knowledge representations is a tedious and expensive process. Our goal is to

automatically generate that structured knowledge. For example, instead of providing the system

with the hand-crafted knowledge structure shown in Figure 4.1, our goal is to allow the user to

provide information about the story world in natural language, such as the fragment shown in Figure

4.3. Being able to describe a story world in such a way would allow non-technical people to author

content for computational narrative systems. Moreover, one could use existing stories to create

virtual story worlds. In order to do so, one would need a narrative information extraction system

capable of building computational models such as the ones used by OPIATE, or other computational

narrative systems, from text.

Extracting narrative information from natural language text poses several challenges to state-
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(a) List of annotated characters (b) Spatial description

Figure 4.1: Example story world information used in OPIATE by Fairclough6 (reproduced
with permission).

villainy capture (family); donor request; reaction; provision; pursuit; rescue hide; departure;
donor; reaction; provision take; return; pursuit; rescue (object); unrecognized; recognition;

wedding;

Figure 4.2: Example of one Proppian narrative sequence used by OPIATE6 to guide the
interactive storytelling session (reproduced with permission).

Once upon a time, Bonji ran into Lili, Mimo and Bibi, 3 friends who lived in a hut. In a field
nearby lived Snomm who had a Magic Mirror. Past the field and further into the woods lived

Blobar. In the other side of the woods there was a little town where Sergeant Lip and
Corporal Foot had lived. Both had a resentment towards Bonji. [...]

Figure 4.3: Fragment of a possible natural language description of part of the story world
represented in Figure 4.1.

of-the-art NLP techniques. These challenges are even more prominent when dealing with fictional

stories that exhibit non-standard patterns and features. In order to improve the accuracy in several

NLP tasks for our application domain, in this chapter we explore one key idea: incorporating

narrative information into core NLP and information extraction tasks.

In this chapter we present our work towards automatically extracting narrative information from

natural language text. In the next section we describe our experimental infrastructure, that is,

Chapter 4: Automated Narrative Inf. Extraction
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Figure 4.4: Overview of the architecture of Voz.

the narrative information extraction system we built in order to test our ideas and in sections 4.2

through 4.7 we describe our individual contributions in detail.

4.1 Experimental Evaluation Infrastructure: Voz

In order experiment with the different ideas and test the different hypothesis we present in this

dissertation we developed a narrative information extraction system which we called Voz 1. We will

first describe the overall architecture of this system which we will build upon later in this chapter.

Voz is a narrative information extraction system that, given a story in natural language, can

automatically extract narrative information such as the characters and their roles in the story, the

actions those characters perform to one another, and additional information about the structure of

the story. Voz implements a modular NLP architecture that combines off-the-shelf natural language

processing tools, common sense knowledge and domain knowledge. Figure 4.4 illustrates the archi-

tecture of Voz. The rounded boxes represent the modules of the system, solid arrows the information

flow and dashed arrows represent information feedback. The overall workflow is as follows:

1. Natural Language Preprocessing: This first step performs sentence segmentation, lemma-

tization, part-of-speech tagging, coreference resolution, and grammatical and dependency pars-

ing. The Natural Language Preprocessing module wraps several off-the-shelf NLP toolkits in a

common interface2. This module is self-contained and can be used independently from Voz. It

includes the Stanford Parser, the Stanford CoreNLP System (which includes a version of the

Stanford Parser itself), the syntactic parser from the Apache OpenNLP toolkit, the MALT
1Available: https://sites.google.com/site/josepvalls/home/voz
2Available: https://github.com/josepvalls/parserservices/tree/stable
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Parser and the syntactic parser from the ClearNLP toolkit. In our work we have experimented

with other systems (i.e., NLPNET and the Charniak Parser) and other components (i.e. the

coreference resolution system in the Apache OpenNLP toolkit) but we focus mostly on the

output from the Stanford CoreNLP System for the aforementioned tasks.

2. Mention Extraction: In this step, we use syntactic information to identify entities via

their mentions in the text. The algorithm used by the Mention Extraction module relies

on the part-of-speech tags and syntactic parse from the previous module and is described in

Section 4.2.

3. Coreference Resolution: This step compiles and enhances the coreference information from

the Natural Language Preprocessing module. We first describe how we use the information

from the Coreference Resolution module in Section 4.3.5. We identified coreference resolution

as one of the bottlenecks in the process of extracting narrative information from stories, and

thus part of our work focuses on approaches to improve this step for the particular case of

narrative text. In our work we introduce a feedback loop on our pipeline architecture (shown

as dashed arrows in Figure 4.4) This is described in Section 4.5 and revisited in Chapter 6.

4. Verb Extraction: This step is in charge of identifying verbs and their arguments form text.

For the extraction step, we use syntactic and dependency parse information. This module

is described in Section 4.3.1 and later we describe how we use the extracted information in

Sections 4.3.2 and 4.4.

5. Feature-Vector Assembly: This step encodes previously extracted information from men-

tions and verbs into numerical vectors that combine it with commonsense information and

make it suitable for processing downstream. The module responsible for this step is described

in Section 4.3.2.

6. Character Identification: Using the feature vectors described in the previous step, this

step uses a case-based reasoning inspired approach to identify animacy, that is, which of the

extracted mentions refer to characters. This module is described in Section 4.3.

Chapter 4: Automated Narrative Inf. Extraction 4.1 Infrastructure: Voz
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7. Role Identification: Similar to the previous step, now focusing on the characters, this step

identifies which narrative role the previously identified characters fulfill in the narrative. This

module is described in Section 4.4.

8. Function Identification: This last module identifies higher-level narrative information from

stories, specifically, Proppian narrative functions from segments of text using local features and

global narrative information. We describe this module is described in Section 4.6.

9. Dialogue Processing: A parallel module currently not incorporated in Voz is tasked with

processing quoted text (i.e., direct speech in quotes) in order to extract specific character

interactions encoded in the dialogue. This module uses Voz ’s infrastructure and could be

incorporated as part of the pipeline. It is described in Section 4.7.

The remainder of this chapter details the work on the modules outlined above and describes our

main contributions in several automated narrative information extraction tasks using this infras-

tructure.

4.2 Extracting Mentions from Unannotated Text

This module focuses on identifying the entities by extracting their mentions in the text. An entity

(or existent in Chatman’s taxonomy72) is something, physical or abstract, that exists as a particular

unit. Entities in a narrative include physical existents such as characters, locations or props, and

abstract existents such as events or time expressions. Each entity may be realized in a text using

different referring expressions. Each instance of these referring expressions is commonly known as a

mention. For example, in Figure 4.5 “the boy” is a mention or referring expression to Vasili. Vasili

is the canonical referring expression of an entity that has been previously introduced and happens

to be a character and the hero of that story. Throughout this chapter we will use the term mention

to refer to each of the specific mentions of an entity. When we later talk about characters, we will

be referring as the entities

In order to extract mentions, we developed an algorithm that uses syntactic parse trees (as

generated by the Stanford CoreNLP). Our algorithm traverses each of the sentence parse trees
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Figure 4.5: Syntactic parse of a sentence annotated by Voz after the mention extraction
process. Mentions or referring expressions are colored. Note how there is a compound mention
(shaded in blue) that is recursed and mentions to 3 entities are found (shaded in purple, pink
and orange).

Figure 4.6: Syntactic parse of a sentence annotated by Voz after the mention extraction
process. Lists are identified (shaded in purple and light orange) and references to individual
mentions extracted.

looking for a “noun phrase” (NP) node. For each NP node, Our algorithm does the following: If the

subtree rooted at the current NP node contains nested clauses (such as verb phrases or prepositional

phrases) or the leaves of the subtree contain an enumeration (a conjunction or a list separator token)

then our algorithm traverses its associated subtree recursively. Otherwise, if any leaf in the subtree

is a noun, personal pronoun or possessive pronoun, the node is marked as a mention, and its subtree

is not explored any further. Using this process with the input sentence “The captain of the ship

saw the boy” (illustrated in Figure 4.6), our algorithm detects three individual mentions (shaded

in purple, pink and orange). After finding the compound “The captain of the ship,” the algorithm

recursively detects two nested mentions, “the captain” and “the ship”.

A special case is considered for enumerations: the deepest node containing an enumeration token

(indicated by a comma or the and or or conjunctions) is marked as a list. Lists can be used later to

match plural pronouns with the mentions in the list. Figure 4.6 shows the list “a man and a woman”

shaded in purple. In a later stage, the coreferenced pronoun “their” in the following phrase (also

shaded in purple for illustrative purposes) can be used to obtain the individual “man” and “woman”

mentions.

Chapter 4: Automated Narrative Inf. Extraction 4.2 Extracting Mentions
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Experimental Results

In order to evaluate this module, we used a dataset of 21 stories from our corpus of Russian and Slavic

folk tales. Please refer to Chapter 3 for more information on our dataset. To reduce preprocessing

issues at the discourse level, we manually removed quoted and direct speech (i.e., dialogues and

passages where the narrator addressed the reader directly). The edited input dataset contains 914

sentences. The stories range from 14 to 69 sentences (µ = 43.52 sentences, σ = 14.47). There

is a total of 18126 tokens (words and punctuation; µ = 19.83 words per sentence, σ = 15.40). To

evaluate the task of mention extraction, we annotated 4280 noun phrases (NP) representing referring

expressions.

Our algorithm identifies 4791 individual mentions, including all of the annotated noun phrases

and 511 of which are not actual referring expressions but parsing errors, mostly adjectival phrases

identified as nominal phrases by the off-the-shelf NLP tools used. For example, in the sentence “And

indeed she was warmer.”, warmer was wrongly identified as a noun phrase. Our method has a recall

of 100% (all of the annotated mentions were found) but a precision of 89.3% (f = 0.944).

4.3 A Machine Learning Approach to Identifying Characters from Ex-
tracted Mentions

Once we have identified the mentions to entities in the text, an important task for our approach

to modeling a narrative is to identify the characters that participate in a story. This is task is

counterintuitively difficult in the domain of fictional stories because of a number of reasons, mainly:

1) the use of specific proper names for characters specific to the Slavic folklore (e.g., Morozko or

Baba Yaga), 2) the presence of other fantastical creatures not commonly found in other domains

(e.g., dragons or goblins), and 3) the presence of animals and even anthropomorphic objects that

play a character and fulfill a narrative role (e.g., a talking mouse or a magic oven). In the second

and third case, the problem is magnified by the fact that these may use the pronoun “it” which may

confuse them with other animals or props. Related work in this area has acknowledged the difficulty

of this task for domains like literary fiction13 and movie plot summaries56.

In order to address this task we frame it as a binary classification problem over the previously
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extracted mentions. We solve this classification problem using a machine learning approach inspired

by case-based reasoning. Specifically, we try to classify the extracted mentions as characters (ani-

mated sentient beings in the story) and non-characters (remaining existents and happenings defined

in Chatman’s taxonomy72 such as locations, animals, props or happenings).

Our character identification method uses case-based reasoning (CBR)156, a family of algorithms

that reuse past solutions to solve new problems. The previously solved problems, called cases, are

stored in a case-base. In our approach, each case is an extracted mention, represented as a feature-

vector, annotated as either character or non-character by a human. Given a problem or a query,

case-based reasoning uses a retrieval step similar to k-nn 157 where instances from the case base are

selected based on a similarity metric. Then a solution to the problem or query at hand is adapted

from the retrieved cases. In terms of a classification problem, the case base contains labeled examples

and when retrieved, the labels in the examples are used to predict the label of the query. We address

the following problem: given a mention, extracted from an unannotated story in natural language

determine wether it is a character or not.

In this work we present two contributions: 1) a set of features used to compute a feature vector

describing each mention, and 2) a novel similarity measure used to determining the most similar

cases for retrieval that we called the weighted continuous Jaccard distance14.

4.3.1 Verb Extraction

This module runs in parallel to the previous modules and is tasked with extracting verbs and their

arguments from the text. These verbs will be used to identify interactions and relationships between

the previously extracted mentions.

To identify the verbs in a sentence, Voz uses the typed dependencies from the Stanford CoreNLP

output. Specifically Voz looks at dependencies of type “nominal subject” or “passive nominal subject”

where the head word is POS-tagged as a verb (this excludes linking verbs). In the case of “nominal

subject”, the dependent of the typed dependency is considered the subject of the verb. All of the

remaining dependencies of the verb are explored and if a mention is found in any of the dependencies

(i.e., direct object, indirect object and prepositional objects) it is extracted and tagged as one of
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the verb arguments and a new triplet extracted. For “passive nominal subject”, subject and direct

object are reversed. The spans of text where arguments have been identified will be used later with

the extracted mentions from the Mention Extraction module.

4.3.2 Computing Features from Extracted Mentions

After extracting the mentions from the text (described in the previous section) and collecting infor-

mation about coreference information (initially from the output of the Stanford Coreference resolu-

tion system and further described in Section 4.5), i

In this step, Voz converts each extracted mention (from the Mention Extraction module) to

a feature vector. These feature vectors are used downstream to represent these mentions and in-

clude additional information from the output of the Stanford CoreNLP (in the Natural Language

Preprocessing module) and the Verb Extraction module. When using the output of the Stanford

CoreNLP, we use the parse tree of the sentence where the mention is found, the subtree representing

the mention, the leaves of the subtree (e.g., word-level tokens with POS tags) and the dependency

lists that contain a reference to any node in the mention’s subtree, including verb arguments from

the Verb Extraction module). We also query readily available knowledge bases such as WordNet158,

ConceptNet159 and word lists (also known as dictionaries or gazetteers in the literature).

Building upon the features proposed by Calix et al.13 we use an extended set of features that

improve the overall performance of the system14. We use 194 features which can be grouped in 7

categories. These are described below:

• Sentence Parse Tree Features. Voz looks at the parse tree of the sentence where a mention

is found and extracts features related to the nodes containing the mention, such as its depth

and the presence of adverbial, adjectival or prepositional phrases. These features may indicate

how relevant a mention is in a sentence or the semantic role it plays. There are 11 features

in this category. For example, the fromNodeS feature captures whether the mention is found

directly under a sentence node (S). fromNodePP describes whether the mention is found in a

nested prepositional phrase node (PP).
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• Mention Parse Subtree Features. Voz traverses the subtree representing the mention

and extracts features related to the types (i.e., syntactic labels) and number of nodes found

indicating nested noun phrases. These features may indicate the presence of nested noun

phrases, typically found in proper nouns and proper names composed of common nouns. There

are 43 features in this category. For example, hasNodeNP captures that the referring expression

has a nested noun phrase node (NP) or fromNodePP indicates that the subtree is found within

a prepositional phrase (PP).

• POS Tag Features. Voz enumerates the leaves of the mention’s subtree and extracts features

related to the POS tags assigned to the word-level tokens. The features account for the

presence of common nouns, proper nouns, pronouns, adjectives or existentials (e.g., “there”)

that may indicate specific types of entities. There are 26 features in this category. For example,

hasTokenJJ captures that there is an adjective in the mention and hasTokenPRP$ captures

that there is a possessive pronoun in the mention.

• Dependency List Features. Voz enumerates the lists of dependencies and extracts several

types of dependencies. A dependency, in this context, is a relation between two elements in a

sentence (the dependent and the governor). For example, it can be the relation between a verb

with its subject, direct object or indirect object, or, the relation between a determiner and the

noun it is referring to. For verb dependencies, we look at both active and passive voices for

each identified verb in a sentence. Overall, Voz records if 1) an mention appears as a subject

or object of any verb, 2) if it appears as subject or object of specific verbs (e.g., “have” or “tell”)

and 3) the similarity of the verb where a mention appears to predefined clouds of concepts

(e.g., one such cloud is “reward,” “pay,” “give”) or pertains to predefined verb clusters. The fea-

tures computed from these account for typological semantic roles for the verb cloud arguments.

Typically for verbs like “talk” or “tell”, the subject and direct object arguments are likely to be

characters. For the verbs like “have” or “give”, the object is less likely to be a character than

the subject. There are 90 features in this category. For example, the isVerbSubject feature

captures whether the mention appears as the subject of one (any) verb. isVerbSubjectCloud-
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Move captures that the mention appears as the subject of a verb, this feature accounts for the

similarity to a cloud of verbs like “move”, “go” or “arrive.” depHeadPrepOf captures that the

mention is used as the head of a dependency with the preposition “of.” depHeadPoss captures

that the mention is the governor of a possessive dependency indicating that it is possessed

by some other mention. Voz also looks at other dependencies, specifically the relationships

of nouns with prepositions, possessives and determiners. Voz computes features to identify

when a mention has a determiner or wether a mention possesses something or is possessed by

something else. These features indicate relationships between entities and a mention possess-

ing something is more likely to be a character than a mention that is possessed by some other

mention.

• WordNet-based Features. We defined several clouds of concepts, where each “concept” is a

set of WordNet synsets, which are in turn a set of synonyms. For example, one of these clouds

is formed by synsets related to the concept of “youth” while another is related to the concept

of “villainy”. The similarity between the cloud and each noun (word with a noun POS tag) in

the mention is computed and the average value is the final value of the feature (if there are no

nouns in the mention, then the feature takes value 0). To assess the similarity of a noun with

a cloud of synsets, we use the measure proposed by Wu & Palmer160;161 to compute similarity

between the noun and each of the synsets in the clouds. This measure returns a value between

0 and 1. Among the similarity values for each sysnet, the maximum value is used. There

are 8 features in this category. An example feature is hasWordnetAgeYoung. This feature

is based on the similarity of words in the mention to synsets related to “youth.” The cloud

contains adjectives like “young” and nouns like “baby”, “child”, “boy” and “girl”. These features

may indicate similarities with certain character archetypes and when building our clouds we

used Propp’s work as a reference. We defined 8 clouds with each containing between 3 and 17

synsets.

• ConceptNet-based Features. Following the work of Calix et al.13, we query ConceptNet

and look for properties in the relationships of the returned concepts. We look at edges of
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certain types (e.g., “IsA” and “RelatedTo”) connecting to specific nodes (e.g., magic, wizard)

to compute the 9 features in this category. For example, the feature hasConceptnetHuman-

Capabilities captures whether any nouns in the mention have ConceptNet relationships of the

type “CapableOf” to concepts such as “laugh”, “feel” or “love”. There are 9 features and each

checks between 3 and 9 edges.

• Word List Features. Our word lists are equivalent to dictionaries or gazetters. The main

difference between clouds and word lists is that Voz uses a similarity measure for clouds (with

a continuous value in [0; 1]) and exact matching for word lists (i.e., if Voz finds a word from

the mention inside of the given word list, the feature will have value 1, otherwise it will

have value 0). There are 6 features from lists of nouns and 11 features from lists of other

types words, with each feature defining its own word list and also the set of POS tags to

filter the words that can be matched. We have a list of names including 2943 male and 5001

female names (an external list without modification based on birth records) and another with

306 common nouns including titles and professions. We have lists of words for identifying

number (e.g., they, them), gender (e.g., he, she) and gender neutrality (e.g., another, other,

this, that...). For example, the hasWordInCommonNamesFemale feature checks a word list

of common nouns conceptually related to female gender or with female inflection like “witch”,

“nun”, “lady” or “actress”. The hasWordInSingularThirdPersonGeneric feature captures words

identifying singular, third person objects such as “one”, “another”, “this” or “which.” There are

7 additional lists and each has between 3 and 27 words.

At this point, the mentions extracted previously by the Mention Extraction module are encoded

into a numeric vector representation that can be used by the rest of the modules of the pipeline (see

Figure 4.4). Additionally, this representation allowed us to easily experiment with different machine

learning techniques from off-the-shelf packages such as Weka and scikit-learn.
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4.3.3 Case-Based Reasoning for Classification

The Character Identification module performs a classification task using Case-Based Reasoning

(CBR)156. In our approach, each case in the CBR case base is another mention, represented as a

feature-vector, already annotated as either character or non-character. In a nutshell, for each new

target mention to be classified, its feature-vector representation is compared with the annotated

mentions in the case-base. The most similar entity in the case-base is retrieved and used to predict

whether the target given mention is a character or not. As in many related k-nn approaches, we

need a similarity or distance function to retrieve (i.e. compare) the mentions in the case-base.

Many similarity or distance functions exist in the machine learning and CBR literature. However,

after initial experimentation, none of them performed adequately in our domain because of the

particulars of our features, namely, our features represent wether a mention satisfies a property or

not but take real values between 0 and 1 to indicate to which degree a property is satisfied. For that

reason, we defined a novel distance measure for case retrieval that can properly handle our feature

vectors. We use a variant of the Jaccard index162 that we call the Weighted Continuous Jaccard

distance, described in the next section.

Weighted Continuous Jaccard Distance

The Jaccard index162 is a very well-known similarity function between two sets (A, B) defined as

the “size of their intersection, divided by the size of their union”:

J(A,B) =
|A ∩B|
|A ∪B|

Most of the features computed by Voz represent whether a mention satisfies a given property or

not (e.g., whether the entity if the subject of a verb or not). If the entity satisfies the property, then

the feature has value 1, and if it does not, then the feature has value 0. Thus, we could see an entity

e as a set of properties (that contains each property for which its corresponding attribute has value

1), and thus, we should be able to apply the Jaccard index for assessing similarity between entities.

However, some of the features are actually continuous (e.g., how similar is an entity to a given
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concept) and thus can take intermediate values like 0.5. Therefore, the standard formulation of the

Jaccard index cannot be used directly. We hence generalized the notion of the Jaccard similarity by

borrowing the notion of a t-norm form the field of Fuzzy Logic163. Intuitively, a t-norm (triangular

norm) is a function that generalizes the concepts of intersection in set theory and conjunction in

logic. By interpreting the “intersection” and “union” in the Jaccard index as a t-norm and a t-

conorm (the equivalent of the “union”), we replaced them by appropriate t-norms and t-conorms

for numerical values: the min and max operators, resulting in the following measure, that we call

Continuous Jaccard:

DJ(e1, e2) = 1−
∑m

i=1 min(fi(e1), fi(e2))∑m
i=1 max (fi(e1), fi(e2))

where we write fi(e) to represent the value of the ith feature of the entity e. When the two entities

are identical, DJ is 0. If they are completely disjoint, DJ is 1.

In our work14, we reported an experimental evaluation where we compared this metric with two

other standard distance measures:

• Euclidean distance: a standard euclidean distance between the feature vectors representing

each mention:

DE(e1, e2) =

√ ∑
i=1...m

(fi(e1)− fi(e2))2

• Cosine distance164: a standard distance measure used in text retrieval:

DC(e1, e2) = 1−
∑m

i=1 fi(e1)fi(e2)√∑m
i=1 fi(e1)

2
√∑m

i=1 fi(e2)
2

Additionally, given that different features might contribute more or less to the classification of

each entity, we experimented with two variants of each of the previous distance metrics: standard

(as presented above) and weighted.

In the weighted versions of the similarity measures, we computed a numerical weight for each

feature by using Quinlan’s Gain165. In our previous work166 in the context of distance measures, we
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observed that it achieved good results in computing feature weights. Weights are computed based

on the cases in the case-base. For each feature f , the case-base is divided in two sets: C1, with those

cases where f ≤ 0.5 and C2, with those where f > 0.5. Then, Quinlan’s Gain is computed as:

Q(f) = H(C)− H(C1)× |C1|+H(C2)× |C2|
|C|

where H(C) represents the entropy of the set of cases C (with respect to the distribution of class

labels).

The weighted versions of the three distance measures above result from multiplying the contribu-

tion of each feature to the similarity by the corresponding weight. Specifically, in each distance, each

term in each of the summations (the sum in the Euclidean distance, the three sums in the Cosine

distance, and the two sums in the Jaccard distance) is multiplied by the weights of the corresponding

feature. The weighted continuous Jaccard measure is thus defined as:

DwJ(e1, e2) = 1−
∑m

i=1Q(fi)min(fi(e1), fi(e2))∑m
i=1Q(fi)max (fi(e1), fi(e2))

Experimental Results

For our experimental evaluation in this work we used an annotated dataset derived from 8 stories

containing 1122 mentions, 615 labelled as character and 507 as non-character. We also performed

feature selection (by groups of features) and the results reported use a set of 193 features described

in the previous section. We evaluated the performance of the above described six distance measures:

Euclidean, Cosine and Continuous Jaccard (SE , SC , SJ), and their corresponding weighted versions

(SwE , SwC , and SwJ). For the evaluation, we follow a leave-one-story-out protocol: the 1122

instances in the dataset come from 8 differentrent stories, we split the 1122 instances into 8 different

sets according to the story they come from, then, we predict the labels for each story using the

annotations on the remaining 7 stories in the case-base. Notice that this procedure is needed, since

a standard leave-one-out procedure over the individual instances would yield deceivingly high results,

since some mentions are similar inside a given story.
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Table 4.1: Performance of the different distance measures over the complete dataset (1122
instances) measured as classification accuracy (Acc.), Precision (Prec.) and Recall (Rec.).

Distance Acc. Prec. Rec.
SE 86.45% 0.91 0.83
SwE 88.41% 0.92 0.86
SC 87.08% 0.91 0.85
SwC 89.22% 0.93 0.87
SJ 86.45% 0.91 0.84
SwJ 91.27% 0.93 0.91

Table 4.1 shows the performance of the 6 distance measures on our complete dataset. Per-

formance is reported as accuracy, precision and recall. The first thing we can observe is that all

the weighted variants of the distance measures outperform their non-weighted versions. For ex-

ample, the weighted Euclidean distance (SwE) can classify 88.41% of the instances correctly into

characters/non-characters, whereas the non-weighted Euclidean distance (SE) only classifies cor-

rectly 86.45%. Moreover, we can see that the best performance is achieved with our weighted-

Continuous Jaccard distance measure (SwJ), which correctly classifies 91.27% of the instances. This

is also reflected in the precision and recall values.

We compared our results against Stanford’s Named Entity Recognition (NER), which achieved a

precision of 0.98, but an extremely low recall, of 0.09, since it only recognizes, as PERSON, entities

that have capitalized names. We also compared our results against standard machine learning

classifiers, using the WEKA software. AdaBoost obtained precision and recall of 0.79/0.92. This

unexpected low performance is due to the sensitivity of boosting classifiers to noise. Surprisingly,

from the classifiers available in WEKA, J48 achieved the best performance with P/R scores of

0.92/0.91, slightly below that of SwJ .

Moreover, we noticed that in our dataset, many characters are often referred to with personal

pronouns (i.e., “he” or “she”), clearly indicating that they are characters (non-character entities, such

as props or scenario elements are never referred to using these personal pronouns). In order to per-

form a rigorous evaluation, we repeated our experiments removing all the instances that consisted of

personal pronouns, excluding the pronoun “it” since it is used for both characters (anthropomorphic

objects and animals) and non-characters (objects or settings). In this scenario, we use a dataset with
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Table 4.2: Performance of the different distance measures over the filtered dataset removing the
instances that contain personal pronouns measured as classification accuracy (Acc.), Precision
(Prec.) and Recall (Rec.)..

Distance Acc. Prec. Rec.
SE 83.18% 0.86 0.72
SwE 88.26% 0.90 0.82
SC 83.74% 0.85 0.76
SwC 88.71% 0.89 0.84
SJ 83.41% 0.86 0.74
SwJ 90.18% 0.91 0.86

886 instances. Results are reported in Table 4.2. As expected, performance decreased (specially for

the non-weighted distance measures). However, our SwJ distance measure maintains classification

accuracy over 90%.

We performed additional experiments related to feature selection to determine the relevance of

the different types or groups of features described in the previous section. These experiments use

the complete dataset (1122 instances) where we removed different sets of features. Table 4.3 reports

the performance of the SwJ measure in the following scenarios: each row in Table 4.3 represents a

different set of features (from the types of features described before); each row reports how many

features are in each set, the performance of SwJ when only using features of in the given set, and

also when using all the features except the ones of in the given set. For example, the first row of

Table 4.3 (WordNet) reports the classification accuracy that SwJ obtains when only using the 8

features coming from the parse tree containing the mention (81.11%) and also when using all the

features except those 11 (87.88%). Our results indicate that the features that contribute the most

to the performance of our approach are those coming from WordNet: using only the 8 features

coming from WordNet, SwJ achieves a classification accuracy of 81.55%. Other types of features

that are very important are the Lists of Words, those coming from Entity Parse Subtree, and from

the Sentence Parse Tree. Also, notice that there are some features that when removed performance

actually increases (e.g., Determiners). Surprisingly, a feature that we hypothesized would be very

helpful (whether an entity is the subject of a verb or not) does not actually help in this classification

task but are kept for other tasks described further in this dissertation. Finally, notice that the most
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Table 4.3: Performance of the SwJ distance measure with different feature subsets: Acc. only
reports the accuracy only using features of a given type, and Acc. all except reports the accuracy
using all the features except the ones of the given type. N reports the number of features of
each type.

Feature Subset N Acc. only Acc. all except
WordNet 8 81.11% 87.88%
Entity Parse Subtree 9 70.59% 90.81%
POS Tags 26 68.27% 91.09%
Sentence Parse Tree 11 66.84% 90.55%
Lists of Nouns 6 66.04% 88.15%
Verb Clouds 20 56.33% 91.00%
Lists of Words 11 54.72% 91.44%
Verb List 62 54.37% 91.18%
Prepositions 14 54.01% 91.09%
ConceptNet (Calix) 9 52.85% 90.46%
Verb Subject/Object 3 51.43% 91.89%
Other Dependencies 4 50.89% 90.91%
Verb Argument 6 50.45% 91.18%
Determiners 4 48.13% 91.53%

important set of features (WordNet) are continuous, justifying the need for our new Continuous

Jaccard measure.

If we compare these results with work reported in the literature, Calix et al.13 report 84.3%

accuracy using an Euclidean Distance, and 86.1% using Support Vector Machines. Performance is

not strictly comparable, since they used a different dataset (with almost 5000 instances), but the

numbers seem to indicate that our Continuous Jaccard measure, combined with the set of features

we determined above, outperforms these results.

4.3.4 Extending Mention Classification

The previous module performs a binary classification task over two classes: character and non-

character. For the purpose of extracting additional narrative information and enrich the extracted

information for mentions, we then proceeded to extend the previous approach to classify each mention

into a set of classes inspired by Chatman’s taxonomy72: happening (e.g., rain), male character,

female character, anthropomorphic animal character, anthropomorphic object character, group or

abstract set of characters (e.g., people, pirates, all the devils), magical being character (e.g., Morozko,

the devil), part of a character (e.g., her soul, her fingers), animal (non-character), object or prop,
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locations that the characters visit (e.g., the hill), scenery that is mentioned (e.g., the mountains in

the distance, the fields surrounding the hill), temporal references (e.g., the day after, Winter), part

of a non-character (e.g., the bed’s blankets, the horse’s back), and an additional “N/A” class label

used mostly for parsing errors.

Experimental Results

A 21 story dataset was used and the 4791 mentions were annotated with the additional fine-grained

labels. We developed visualization tool for assisting the annotation and evaluation of the extended

classification task. This tool embeds the high-dimensional vectors representing mentions into a

2D visualization using a force-directed layout. The weighted continuos Jaccard distance is used to

control the attraction between vectors therefore clustering similar mentions which help visualize the

dataset and debug outliers.

For the experimental evaluation we followed the same leave-one-story-out protocol. Voz achieves

a micro-averaged (i.e. weighted average by the number of instances in each of the 15 class labels)

precision of 0.567, recall of 0.507 and an overall classification accuracy of 0.462. The confusion matrix

for this classification is shown in Table 4.4. In the results table we can see how there are a few class

labels such as male (MA), female (FE) and locations (SS) that have a much higher accuracy. When

considering only whether the entity is correctly classified as a character or non-character (that is,

AA, AO, MA, FE, GR, MB), the micro-averaged precision is 0.929 and recall is 0.934. Our approach

is successful at identifying which mentions are characters and which are not.

4.3.5 Improving Mention Classification using Coreference Information

In the work reported so far, the instance class labels predicted from the case-base of examples use

a nearest neighbor approach with a variant of the Jaccard distance to retrieve cases and classify

new instances. This approach achieves relatively high classification accuracy but we experimented

with potential refinements. In this work we improve the classification results by using the previously

identified coreference resolution information (see Figure 4.4).

Coreference information can be seen as a graph where the nodes are referring expressions or

Chapter 4: Automated Narrative Inf. Extraction 4.3 Identifying Characters



67

Table 4.4: Confusion matrix for predictions in the 15 class labels in our classification process
with counts for all the 21 stories using the leave-one-story-out protocol. The two letter labels
stand for (from top to bottom): “N/A” for parsing errors, AA: anthropomorphic animal charac-
ter, AN: animal (non-character), AO: anthropomorphic object character, FE: female character,
GR: group of characters, HA: happening, MA: male character, MB: magical being character,
OB: object or prop, PA: part of characters, PO: part of non-characters, SC: scenery that is
mentioned, SS: locations that the characters visit, and ST: temporal references. Bold face indi-
cates correct predictions (diagonal) and the color gradient illustrates the normalized value over
the total count of instances for each class.

N/A AA AN AO FE GR HA MA MB OB PA PO SC SS ST Recall Prec.
N/A 0 24 1 7 8 17 30 37 4 166 11 0 9 150 47 0 0
AA 0 39 1 2 31 10 1 29 13 22 2 0 0 3 5 0.247 0.151
AN 0 4 2 6 0 2 2 8 2 49 0 0 1 3 7 0.023 0.133
AO 0 1 0 0 0 22 1 7 2 20 1 0 0 7 0 0 0
FE 0 14 0 0 510 3 8 9 0 24 0 0 0 17 4 0.866 0.765
GR 0 10 3 34 62 56 9 55 0 120 2 0 0 5 0 0.157 0.308
HA 0 3 2 1 2 2 4 7 1 60 4 0 6 21 10 0.033 0.033
MA 0 72 1 1 30 37 17 799 17 71 3 0 0 69 11 0.708 0.76
MB 0 34 1 9 1 5 0 57 52 58 0 0 21 1 2 0.216 0.433
OB 0 36 3 11 13 13 30 14 26 375 48 0 16 119 50 0.497 0.318
PA 0 5 1 8 7 5 5 4 0 56 33 0 1 16 0 0.234 0.308
PO 0 0 0 0 0 0 0 0 1 2 1 0 1 1 0 0 0
SC 0 8 0 0 0 2 2 1 1 19 0 0 2 21 6 0.032 0.032
SS 0 4 0 4 1 6 9 13 1 94 1 0 4 283 14 0.652 0.387
ST 0 5 0 0 2 2 2 12 0 42 1 0 2 16 57 0.404 0.268

mentions and there exist edged between nodes when two mentions refer to the same entity. It is

therefore intuitive to assume that given that there is an assignment of one class label per entity, all

the mentions of the same entity should have the same class label. Therefore, we use a majority voting

approach among the predictions for each coreference group, that is, given a mention e, Voz identifies

its coreference group coref (e), i.e., all the other mentions that are linked to e in the coreference graph

G. Then, a final classification is generated by assigning to each mention e the majority class in the

coreference group coref (e). For example, if three mentions in coref (e) were labeled as character and

only one as non-character , then all the mentions in coref (e) will be labeled as character . In the

(unusual) case of tie, the class of the earliest occurring mention in the text is chosen.

Once all the mentions have been classified, the output of the coreference resolution is used to

refine the results. Given a mention e ∈ E, we identify its coreference group coref (e), i.e., all the

other mentions that are linked to e in the coreference graph G. Then, the class assigned to e is

replaced by the majority among all the classes of all the mentions in the coreference group coref (e).

For example, given a mention e labeled as non-character , if two mentions in coref (e) were labeled as
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Table 4.5: Effect of coreference information on the majority voting processes. Rows report
results without coreference information, using the automatically computed coreference graph
and using the coreference from the ground truth. The columns report the accuracy, precision
and recall on the binary classification task. Note that the dataset used for this experimental
evaluation is larger than the one used in the results reported in Tables 4.1 and 4.2.

Approach Acc. Prec. Rec.
Without Voting 0.86 0.844 0.876
Auto Coref. 0.868 0.859 0.878
GT. Coref. 0.868 0.896 0.839

character and only one as non-character , then the label assigned to e will be replaced by character .

Experimental Results

For the experimental evaluation we used both a ground truth coreference graph and an automatically

extracted coreference graph (from the Stanford CoreNLP). With either approach we observed an

improvement on accuracy and f-measure from 0.860 to 0.868. Table 4.5 reports detailed accuracy,

precision and recall comparison between these approaches. Note that the dataset used for this

experimental evaluation is larger than the one used earlier in Section 4.3.3.

4.4 A Machine Learning Approach to Identifying Narrative Roles from
Characters

In this section we focus on a method for identifying a particular high-level feature of narrative theory,

namely, narrative roles for characters. Narrative roles for characters are a recurrent feature present

in several narrative theories (e.g. Propp’s25 or the Monomyth77). These roles identify prototypical

character actions for specific narrative roles. Typically, the protagonist of the story takes the role of

the hero. Another character roles is that of the villain that triggers or motivates the heroe’s actions.

Let us consider the except shown in Figure 4.7. In Propp’s theory, the dragon (character) fulfills

the specific function of villain (role). This structure-level narrative information of roles is important

to understand the story as well as its relation to others in its domain. However, as the word “villain”

or “hero” rarely appears explicitly in the text, extracting the role information requires combining

NLP and narrative theory. A key Proppian insight that we use is that each role has a “sphere of

action.” It defines the core actions of whatever characters fulfilling that role. For example, no matter
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One day, somewhere near Kiev, a dragon appeared, who demanded heavy tribute from the people.
He demanded every time to eat a fair maiden: and at last the turn came to the Tsarevna, the
princess. But the dragon would not eat her, she was too beautiful. He dragged her into his den
and made her his wife. [...]
When she wrote a letter to her father and mother she used to tie it to the neck of her little dog.
[...]
The Tsarevna got every day on more intimate terms with her dragon in order to discover who
was stronger. At last he owned that Nikita, the tanner at Kiev, was the stronger. [...]
The Tsarevna at once wrote to her father [...] So the Tsar looked for Nikita, and went to him
himself to beg him to release the land from the cruelty of the dragon and redeem the princess.
[...]

Figure 4.7: An excerpt of a story from our dataset.

whether the villain is a dragon or a wizard, its sphere of action centers on villainy, struggle, and

pursuit.

In order to automatically identify a character’s narrative role we rely precisely on the recurring

actions and interactions with other characters as described in the narrative theory; Propp’s in

our case. In the work described in this section we introduce the idea of representing the “sphere

of action” of a character role (their prototypical actions in Propp’s narrative theory) as a matrix

encoding interactions indicated by verbs linking characters with different roles167. Initially we used

an annotated dataset to compute a matrix from a story and compare it against a reference matrix

using Wordnet to find similarities. Then we folded this approach into the automated mention and

feature extraction process described earlier and we integrated it with the machine learning approach

used to classify characters described in the previous section129.

In our initial work on modeling narrative character interactions using “spheres of action”, we

hypothesize that, given a particular narrative convention, information about how characters behave

towards one another can help identify their roles. This is based on our observation of recurring

patterns in the relationship between different roles. To test our hypothesis, in this work we used

function definitions from Propp’s narrative theory and an annotated dataset of 8 Russian and Slavic

folktales to build a knowledge base of common actions and interactions between different character

roles.
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Table 4.6: One of the role-action matrices used in our experiments. The largest one is 7× 7,
with 506 verbs.

Hero Villain Other N/A
Hero talk fight rescue, marry depart
Villain fight kidnap, lock plot
Other marry cry

N/A summon,
reward

Propp categorized 7 broad roles for characters: Hero, Villain, Dispatcher, Donor, (Magical)

Helper, Sought-for-person, and False hero. From the example in Figure 4.7, a dragon (villain)

kidnaps the princess (the Sought-for-person), then Nikita the Tanner (hero) is summoned by the

king (the dispatcher) and sent to fight the dragon and rescue the princess. Such interactions or

“spheres of action” can be encoded into what we call the reference role-action matrix R (Table 4.6).

This matrix is provided as part of the narrative domain knowledge. Each cell Ri,j contains the set

of actions that a character (subject) with a role ri executes over a receiver (object or patient) of

the role rj . The additional row and column are for actions performed without a known subject or

object. Also, note the diagonal of the matrix need not be empty since there may be more than one

character playing a certain role and some actions performed upon oneself may also be encoded in

the diagonal (e.g., the hero talks to himself or herself). Each cell contains a set of verbs that have

been manually authored. Table 4.6 reproduces one of our matrices. In our experiments we used

three ways to construct this matrix which we describe below under the experimental results section.

Narrative role identification for each character is performed by 1) assigning one of the m roles to

each of the n characters (including an additional no-role role for those characters that play no clear

role in the story), 2) comparing the assignment with the reference role-action matrix and selecting

the assignment that better matches with the reference matrix. These processes are described below.

• Role Assignment. Given n characters and m roles, there are mn possible assignments of

roles to characters. The number of characters in a given story may range from a handful up to

several dozen. Thus, systematically evaluating all the possible assignments has a prohibitive

cost. We use a genetic algorithm with an initial random population of 80 individuals (role
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assignments encoded as lists of integers), and we perform 1000 iterations of a simple ranked

selection with a mutation rate of 2%, and a crossover rate of 90%. We use a swap mutator

and a single point crossover as recombination operator. In order to speed-up the assignment

process, we incorporated some constraints. Specifically, we force exactly one character to be

assigned the role of the hero. Each assignment during the search process is matched with the

reference role-action matrix to obtain a fitness score, as detailed below.

• Matching. In order to compare character/role assignments with the reference matrix, Voz

proceeds by constructing a new character role-action matrix A computed from the character

action matrix C, by replacing the character labels by the roles from a character role assignment.

Then, A is compared to the reference matrix R by comparing each cell in A with the cell in R

with the matching role labels. Each cell in the matrices contains a list of verbs c1 = {v1, ..., vr}

and c2 = {w1, ..., ws}. We use the measure proposed by Wu & Palmer160;161 to calculate the

similarity between each pair of verbs vi ∈ c1 and wj ∈ c2, which we note by S(vi, wj). This

measure calculates the similarity between two verbs by determining the least common subsumer

(LCS) verb in the verb taxonomy in WordNet, and then using its depth in the taxonomy to

determine the similarity between the two input verbs:

S(vi, wj) =
2× depth(LCS(vi, wi))

depth(vi) + depth(wj)

Then, assuming r ≤ s, we aggregate the values as follows:

S(c1, c2) =


∑

vi∈c1

max
wj∈c2

S(vi,wj)

s if c1, c2 6= ∅

0 if c1 = ∅ ∨ c2 = ∅

Intuitively, this measure matches each verb in c1 with the most similar verb in c2 according to

Wu & Palmer’s measure, and then normalizes by the size of the largest set of verbs, s. Finally,

the values for each cell comparison are added together to obtain a numeric similarity measure

for the current character role assignment A and the assignment that maximizes similarity is
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selected.

This process allows us to use a general search-based method to explore the space of possible

assignments and evaluate them.

Experimental Results

In order to test our hypothesis we conducted experiments with an annotated dataset that represented

character interactions in terms of verb triplets and we manually crafted 3 versions of the reference

role-action matrix.

• R1: This reference matrix was developed by reading the English translation of the role de-

scriptions written by Propp 25 and extracting all the actions (i.e. verbs) described in the 31

functions and subfunctions. Moreover, we merged the roles of Donor and Helper since, in our

dataset, they mostly correspond to the same character. Additionally, the roles of Dispatcher

and Prize (and others, such as “victim” or “family member”) are unclear, and thus we grouped

them into an “other” role. This resulted in a 7× 7 matrix with 506 verbs.

• R2: This reference matrix was manually created and captures our own common sense of the

actions that the different roles perform upon each other. This is a 7× 7 matrix with 32 verbs.

• R3: Finally, we created a simpler matrix, with only three roles (Hero, Villain and Other)

manually designed to capture only the relation of these three roles. This is the matrix shown

in Table 4.6.

Table 4.7 shows the classification accuracy (average percentage of actors with the correct role

assigned) obtained using each of the role/action reference matrices. The first column (Top), shows

the results obtained by selecting the best role assignment found by the genetic algorithm. As

we can see, the performance is very low (accuracy around 30%). As an alternative approach, we

experimented with a method that estimates, for each character, the probability of each role. For

estimating this probability, we used the entire population in the last iteration, and weighted each one

by the fitness score. The role with the highest probability is selected for each character. The second
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Table 4.7: Averaged performance results of our role assignment using the topmost assignment
versus weighting all the assignments in the last iteration.

Top Weighted
R1 15.10% 48.75%
R2 31.03% 64.58%
R3 46.35% 78.99%
Avg. 30.83% 64.11%

column (weighted) shows the results obtained with this method. Results improved significantly,

reaching classification accuracies of up to 78.99% for reference matrix R3.

Our results indicate that the fitness function used in the genetic algorithm (matching against a

reference matrix that captures the narrative domain knowledge) is effective in determining character

roles. However, we observed that, in some situations, the actual ground truth had lower fitness than

some of the solutions being found. This indicates that while useful, either the reference matrices, or

the matching procedure being used introduce some noise in the results. Another source of noise are

very common verbs, that can be performed by all the different character roles.

Additionally, the role definitions are ambiguous in some aspects and sometimes open to inter-

pretation. For example, Finlayson, from whom we borrowed some of the annotations used for our

work, reports an inter-annotator agreement between a team of 12 annotators of F1 = 0.7 for the role

annotations (or Proppian Dramatis Personae in his work84).

4.5 Improving Coreference Resolution Using a Narrative Information
Feedback Loop

The goal of coreference resolution is to group extracted mentions into coreference groups, where

each coreference group is a set of mentions that refers to the same character or entity in the story.

Our dataset and application domain poses two challenges to the task of coreference resolution.

First, pronominal coreference resolution (resolving that a pronoun refers to a specific named entity

mentioned earlier) requires commonsense and inference in some scenarios. Second, full coreference

resolution needs to associate mentions using different referring expressions for a single entity. For

example, in one of the stories, there are two young female characters. Besides the obvious pronominal

coreference problems that may arise when we encounter a single female pronoun “she”, they are both
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referred as “daughter” and “maiden” in different parts of the story.

There are two key ideas we explore in order to improve coreference information. First, we want

to use narrative information to inform the coreference resolution process, specifically, information

about the narrative roles of different mentions. Since this information is not available yet when the

coreference resolution step is computed, the second idea we explore is introducing a feedback loop

that feeds the character and narrative role information extracted later in the pipeline back into this

module. This is illustrated by the dashed arrows in Figure 4.4.

Sourcing Coreference Information

We identified some issues with the output of the output of the Stanford Coreference Resolution

system we were using, namely, there were some split coreference groups, that is, there were edges

missing in the coreference graph. In order to address this, we explored alternative sources of coref-

erence information that could complement the initial coreference assignment and then we devised a

method to aggregate different sources of coreference information. In order to be able to aggregate

the matrices we defined a common representation with we call a coreference preference matrix (CP

matrix). Note that the coreference can be understood as a graph G = 〈A,L〉 where the A is the

set of mentions, and L ∈ A × A contains those pairs of mentions that refer to the same character

or entity. In this graph, cliques (fully connected sets of nodes) represent coreference groups. A CP

matrix m is an l × l matrix. m(i, j) = 1 means that the corresponding method believes that ei

and ej are expressions for the same referent; m(i, j) = −1 means the method believes they are not;

and m(i, j) = 0 means the method is unsure (intermediate values are allowed, to indicate degrees of

confidence).

For this work, we used six coreference resolution methods, represented as six CP matrices:

• m1 is derived directly from the output of the Stanford Coreference Resolution system. Only

yields -1s and 1s.

• m2 computes coreference by assigning a 1 between two mentions when there are matching

common nouns and proper nouns in the leaves of the extracted parse trees for each mention.
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Yields 0s and 1s. m2 intends to consolidate mentions that use similar referring expressions

(e.g., “a girl” and “the girl”).

• m3 computes coreference based on 15 lexical and syntactic features, separating mentions that

do not have gender or number agreement between noun-noun, noun-pronoun and pronoun-

pronoun pairs (e.g., “girl” and “him”). This matrix only contains 0s or -1s

• m4 computes coreference by considering 8 lexical and syntactic features and computing the

similarity between these features in the two mentions. This captures semantic similarities

between mentions (e.g., “girl” and “sister”), and yields preferences in the interval [0, 1].

• m5 computes coreference based on the narrative roles for the mentions, fed back via a feedback

loop described below. It assigns a 1 between two mentions when they have the same predicted

role (except for the other or non-character roles). Yields 0s and 1s. m5 intends to consolidate

mentions to the same character, assuming not too many characters share the same role.

• m6 computes coreference based on the roles and character/non-character labels fed back via

the feedback loop. It assigns a -1 between two mentions when they have different labels (either

different roles, or if one is a character and the other is not). Yields 0s and -1s. m6 intends to

prevent coreferencing mentions that clearly do not refer to the same character or entity, based

on the character and role predictions.

Notice that the last two of the sources m5 and m6 depend on information that is not available yet

at this stage of the pipeline. In order to incorporate this information into the coreference resolution

process what we will do is run several iterations of the pipeline and after the first one, we use a

feedback loop to feed the extracted information into these modules. The first iteration over the

pipeline is illustrated by the solid arrows in Figure 4.4.

Feedback Loop

Voz implements an architecture inspired by the idea of hermeneutic circle80 by incorporating a

feedback loop from the output of the system to the input of the coreference resolution process.
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Figure 4.8: Example pair-wise coreference restrictions and preferences adjacency matrix. In-
dependent weights are assigned to each, aggregated, and a threshold used to determine pair-wise
coreference grouping between mentions.

After the first iteration is complete and for every subsequent iteration, the output of the Character

Identification and Role Identification modules are feed back and encoded into m5 and m6 within

the Coreference Resolution module. This is illustrated by the dashed arrows in Figure 4.4.

Aggregating Coreference Information

Once we have identified potential methods to obtain coreference information, we have to aggregate

the output of these methods. The output from the modules described in the previous section is in

the form of an adjacency matrix. These matrices are aggregated cell by cell into a joint coreference

assignment using the method described below. Figure 4.8 illustrates the entire process.

Once the available CP matrices are computed for an iteration, they are aggregated in the following

way. First, a new matrix mmerged is generated as:

mmerged(i, j) =


1 if 0 ≤∑

k wi ×mk(i, j)

0 otherwise

This new mmerged matrix represents a new CP matrix encoding a coreference assignment. How-

ever, this matrix might not be fully consistent (e.g., if mmerged(1, 2) = 1 and mmerged(2, 3) = 1,

then mmerged(1, 3) must be also 1). This matrix is thus made consistent by adding the missing 1s,

and turned into a graph G, where each clique represents a coreference group. This new coreference

graph G is then used downstream in the pipeline in place of the original output from the Stanford

Coreference Resolution system.
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Experimental Results

For our experimental evaluation we analyzed the effect of the feedback loop in the performance of

the different modules of the system, and the effect of varying the weight applied to the CP matrices

that come form the feedback loop during coreference resolution. In this work, our dataset contains

21 stories and we manually edited the text to remove quoted and direct speech (i.e., dialogues

and passages where the narrator addressed the reader directly). Our edited dataset contains 914

sentences. The stories range from 14 to 69 sentences (µ = 43.52 sentences, σ = 14.47). Despite their

relatively short lengths, understanding these stories requires significant commonsense knowledge and

contextual inference. For example in one of the stories, there are two young female characters, who

are both referred as “she”, “daughter” and “maiden” throughout the story while they fulfill different

narrative roles.

Our experimental evaluation uses annotations for all noun phrases (NP) representing referring

expressions (4791 mentions) and coreference information for the characters (2781 mentions). The

characters were also annotated with the 6 character role labels described in the previous section.

Additionally, we created an even coarser classification including only Hero, Villain and everything

else as Other.

The experimental results below are reported using both the set of six, and the set of three

roles. The weights used for the different CP matrices during coreference resolution were w1 = 1.0,

w2 = 1.1, w3 = 10 and w4 = 0.9 (specific values are not important, and the only important aspect

is that w2 > w1, and that w3 is sufficiently large as for canceling all other weights out). Our dataset

only contains coreference annotations for characters, and thus we only evaluate the performance

of coreference resolution on the 2781 mentions that are annotated as characters. Our coreference

process groups those 2781 mentions into to 1359 coreference groups. To evaluate the accuracy of

the process, based on our ground truth annotations, we compute the average number of different

characters found per coreference group (C/Gr), and the average number of different groups a single

character is spread across (Gr/C). Perfect coreference would score C/Gr = 1.00, and Gr/C = 1.00

meaning that each group only contains mentions to one character and a character is mentioned in
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Table 4.8: Performance of the first three iterations of Voz using 6 role classes. Last two rows
display the theoretical upper bound using the ground truth and a random baseline.

Coref. Resolution Char. Role
|Gr| C/Gr Gr/C Acc Acc Acc (F)

It 1 1359 1.07 6.00 0.87 0.64 0.44
It 2 888 1.21 4.36 0.87 0.64 0.44
It 3 888 1.21 4.36 0.87 0.64 0.44
GT 6 642 1.24 2.90 0.88 0.73 0.46
Rnd. 642 1.93 3.11 - - -

Table 4.9: Performance of the first three iterations of Voz using 3 role classes. Last two rows
display the theoretical upper bound using the ground truth and a random baseline.

Coref. Resolution Char. Role
|Gr| C/Gr Gr/C Acc Acc Acc (F)

It 1 1359 1.07 6.00 0.87 0.67 0.48
It 2 952 1.18 4.56 0.87 0.67 0.48
It 3 952 1.18 4.56 0.87 0.67 0.48
GT 3 788 1.18 3.44 0.88 0.73 0.47
Rnd 788 1.75 3.21 - - -

only one group respectively. Errors in coreference resolution will make these values higher. Our

method achieves a C/Gr = 1.07, and Gr/C = 6.00. This means that while Voz is relatively good

at separating mentions from different characters, it does not work so well at merging different

mentions of the same character. The mentions each character are grouped, on average, in 6 different

coreference groups.

We then assess the efficiency of the feedback loop where the coreference resolution process has

access to all six CP matrices. This results in a different coreference assignment that will be used

in the next iteration, yielding a different set of characters and potentially different roles for each.

Weights for the first four matrices are the same as in the previous experiments, w5 = 0.9, and

w6 = 10.0. The rationale for these weights is that w4 + w5 > w1, thus when both m4 and m5

predict that two mentions should be grouped, that can overrule the decision made by the Stanford

parser (m1). w6 is just set to a very large weight, since mentions with different roles cannot refer

to the same character. Specific values for the weights do not have a strong impact as long as these

relationships are kept.

Tables 4.8 and 4.9 show the obtained results when trying to predict the six-role annotations
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and the three-role annotations respectively. Each of the first three rows of the tables shows the

performance of the system during the first three iterations: “It 1” just runs Voz as a pipeline, “It 2”

runs the feedback loop once, and “It 3” runs it twice. Accuracy for character and role identification

is reported after voting, and “Acc (F)” is the accuracy when measured only for those mentions

classified as characters. We observed how the number of coreference groups decreases over the first

iterations and remains stable afterwards. From the initial 2781 mentions, the Stanford deterministic

coreference system yields 1359 groups. Considering results in Table 4.8, a second iteration, using the

six CP matrices further reduces the number of coreference groups to 888 while improving coreference

performance. The average groups per character is greatly reduced to Gr/C = 4.36, while the average

characters per group only grows slightly to C/Gr = 1.21. Moreover, in order to calculate the upper-

bound for the improvement in performance achieved by the feedback loop, we experimented by

feeding back the ground truth for role labels. This is shown in the row labeled “GT 6” in Table

4.8, showing an even better coreference resolution performance: reducing Gr/C further to 2.90 while

C/Gr increased only slightly to 1.24, and reducing the number of groups from 1359 to 642, which

is a significant improvement. Character and role predictions also improved (from 0.87 to 0.88 for

characters and from 0.67 to 0.73 for roles), showing further potential of our feedback loop approach.

Finally, in order to validate that the role information is useful, we tried joining coreference groups

randomly (starting with the coreference groups obtained in iteration 1) until the same number of

groups (642) were reached. This resulted in really worsening results, further indicating that role

information is indeed useful in improving coreference resolution. Table 4.9 shows similar trends

in the three-role prediction setting. Although still far from the ideal 173 coreference groups in

the ground truth, the feedback loop clearly increases the performance of coreference resolution.

Moreover, we observed no significant impact of the feedback loop on character and role predictions,

which improved only marginally (an improvement smaller than the precision shown in the tables).

The output of the system stabilized in the third iteration which obtained the same exact results as

the second.

Finally, we experimented with different values for weight w5, which is the weight given to the
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Table 4.10: Performance comparison with different weights for m5, built form the feed back
role information.

Coref. Resolution Char. Role
|Gr| C/Gr Gr/C Acc. Acc.

w5 = 0.1 933 1.17 4.46 0.87 0.65
w5 = 0.25 894 1.20 4.36 0.87 0.65
w5 = 0.5 890 1.21 4.36 0.87 0.65
w5 = 0.9 888 1.21 4.36 0.87 0.65
w5 = 1.5 879 1.22 4.34 0.87 0.65

CP matrix generated from the fed-back roles. This has the expected effect: higher w5 results in

role predictions having a stronger effect, and thus result in a lower coreference group count. Table

4.10 shows the results of different values for w5 after the second iteration using the 6 roles. As the

table shows, the main effect of increasing w5 is reducing the number of coreference groups. From

1359 (with w5 = 0.1) to 879 (with w5 = 1.5) while only increasing the ratio of characters per group

(C/Gr) slightly (from 1.17 to 1.22). Effects on character and role prediction are smaller than the

accuracy precision shown in the table (<0.01).

Our experiments confirm that the idea of feedback loops can increase the performance of some

of the modules of the system, specifically coreference resolution, but not others, such as character

or role identification. The feedback loop introduced in the NLP pipeline of our system has been

demonstrated to be particularly successful in reducing the number of coreference groups in the

output of the system.

4.6 A Machine Learning Approach to Predicting Proppian Narrative
Functions from Stories in Natural Language

In the work described so far we have been using our narrative information extraction pipeline (see

Figure 4.4) to build upon previously extracted information and compute higher-level narrative in-

formation. At the forefront of Propp’s work25 are his narrative functions that he defines as the

building blocks for the structure of a story. In this section we present an approach to identify those

narrative functions automatically from text segments.

In the context of narratology, a narrative function is a fundamental building block of storytelling:
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“an act defined in terms of its significance for the course of the action in which it appears; an act

considered in terms of the role it plays at the action level” 154. Specifically, in this work, we draw

from Vladimir Propp’s theory of narrative functions described in his Morphology of the Folktale25.

Propp described a series of narrative functions which he claimed represent canonical and invari-

ant acts that constitute the underlying structure of Slavic and Russian fairy tales. Furthermore,

Propp’s thesis state that the sequence of functions in a fairy tale is constant and there are explicit

interdependencies between the functions that appear in a particular fairy tale. Propp’s work ulti-

mately reduces a fairy tale to a sequence of variations of his functions (which he called subfunctions)

represented using a formal language.

Given a story S written in natural language and a finite set of narrative functions F, the problem

we address in this work is to predict the sequence of narrative functions [f1, ..., fn] (∀i=1...nfi ∈ F)

that describes the story and the sequence of contiguous, non-overlapping, potentially empty segments

of text [si, ..., sn] where the narrative functions are realized.

Moreover, in this work we make one simplification assumption, and start with a story S that has

been manually divided into text segments where narrative functions are realized. Then, our goal is

to identify the narrative function present in each of the text segments. Therefore, given a story S

divided into a sequence of unannotated text segments [s1, ..., sn] in natural language, associate each

segment si with a function fi ∈ F.

In order to address this problem, we present an approach that integrates supervised learning,

narrative domain knowledge and probabilistic inference, described below. In this work, we use a set

F of 34 narrative functions derived from Propp’s original collection of narrative functions. Table

4.11 enumerates the 34 narrative functions in F and the number of instances in the dataset used in

our experiments.

Our proposed approach requires the existence of a dataset to train the machine learning compo-

nents of the system. Specifically, the dataset contains a set of stories S1, ..., Sn manually annotated

with ground truth. Each story Si in the dataset is manually annotated as follows:

• Si is divided into a sequence of contiguous, non-overlapping, potentially empty text segments
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Table 4.11: Enumeration of the narrative functions for our experimental evaluation (|F| = 34).
The table includes the symbols Propp used to refer to them, and the total number of instances
in our dataset of 15 stories. The third column is the total number of instances annotated, the
fourth column, the number of those that are actually realized in the text (i.e., explicit) and the
fifth column the number of instances once the direct speech (e.g., dialog) is filtered out.

Function Symbol # Instances
Initial Situation α 13 13 12
Absentation β 4 2 2
Interdiction γ 3 3 1
Violation δ 2 2 2
Reconnaissance ε 0 0 0
Delivery ζ 1 1 1
Trickery η 2 2 2
Complicity θ 1 1 1
Deceit (merged with θ) λ 0 0 0
Villainy A 13 11 11
Lack a 3 1 1
Mediation,
Connective Incident

B 7 6 3

Beginning Counterac-
tion

C 11 6 2

Departure ↑ 14 14 14
First Function of Donor D/d 8 8 3
Protagonist’s Reaction E 8 8 7
Acquisition of
Magical Agent

F/f 12 11 6

Transference, Guidance G 5 5 3
Struggle H 9 7 6
Branding J 0 0 0
Victory I 12 11 10
Liquidation K 13 11 9
Return ↓ 14 11 9
Pursuit Pr 8 7 5
Rescue (from Pursuit) Rs 8 8 8
Unrecognized Arrival o 2 2 1
Unfounded Claims L 0 0 0
Difficult Task M 0 0 0
Solution N 0 0 0
Recognition Q 2 2 1
Exposure Ex 1 1 1
Transfiguration T 3 2 1
Punishment U 1 1 1
Wedding W/w 10 10 7
Total 190 167 130

[si1, ..., s
i
mi

] where narrative functions are realized (i.e., if a part of a story does not realize any

function, then that part might not be present in any of the text segments).
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• Each text segment sij is automatically converted to a feature vector xij , and manually associated

to a narrative function f ij ∈ F (a description of the annotations and features in the feature

vector is provided in the experimental evaluation section).

This results in two training datasets:

• A text segment to narrative function mapping dataset:

Df = {〈x1, f1〉, ..., 〈xN , fN 〉}

• A function sequences dataset:

Ds = {[f11 , ..., f1m1
], ..., [fn1 , ..., f

n
mn

]}

This second dataset ignores the feature vectors and contains narrative function sequences

representing each of the stories in the original dataset.

Df and Ds are used to train our system. At run time, in order to predict the functions associated

with a given sequence of text segments [s1, ..., sm], we employ our system Voz 3 to automatically

extract the necessary narrative information (characters, narrative roles, and actions) from the natural

language text and translate each text segment si into a feature vector xi which is then used for

prediction.

Our approach is based on a search process over the space of possible function sequences, returning

the sequence with highest probability as predicted by a set of predictors and aggregated by a module

we call joint inference. In the following itemization we describe our proposed probabilistic predictors.

Then we will describe the search process in the joint inference module. Figure 4.9 illustrates the

overall workflow of the system.

• Local Predictor (k-nn). Our first predictor is a supervised machine learning predictor

that uses the Df training dataset mapping feature vectors to narrative functions. Given a
3For source code and datasets, visit: https://sites.google.com/site/josepvalls/home/voz
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Figure 4.9: Overall system diagram. Both databases indicate automatically learned training
sets from our annotated dataset. Voz is our previous narrative information extraction system
which we use to automatically compute feature vectors from text segments in a given story. The
output is a sequence of narrative function predictions such as: 〈α, β, δ, A,B,C, ↑, H, I,K, ↓,W 〉

feature vector x representing a text segment, it uses the euclidean distance in the feature

vector space to retrieve the k nearest neighbors (k = 5 in our experiments) from the Df

training dataset. Then, using the subset of retrieved pairs Rx = {〈x1, f1〉, ..., 〈x5, f5〉} ⊆ Df ,

it computes a probability distribution of the likelihoods of each narrative function class f ∈ F

to be the function appearing in the text segment represented by x. A Laplacian smoothing

(with a pseudocount a = 0.1 in our experiments) is applied to the probability distribution. So,

specifically, the probability that the local predictor assigns to a function f is:

Pk-nn(f |x) =
|{〈xi, fi〉 ∈ Rx|fi = f}|+ a

|Rx|+ a|F|

Using these probabilities, the joint inference module can compute the likelihood of a sequence

of functions [f1, ..., fm] given the sequence of feature vectors [x1, ..., xm] as:

Pk-nn([f1, ..., fm]|[x1, ..., xm]) =
∏

i=1...m

Pk-nn(fi|xi)

• Sequential Predictor (Markov Chain). Our second predictor uses sequential information
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and the Ds training dataset containing function sequences. First, the Ds training dataset is

used to automatically learn a Markov Chain model of narrative function transition probabilities

P (fi|fi−1). An extra sentinel f0 with a special narrative function class ⊥ is prepended to the

function sequences in Ds to mark the beginning of the sequences. This predictor assesses the

likelihood of a sequence of functions [f1, ..., fm] as:

PMC ([f1, ..., fm]) =
∏

i=1...m

P (fi|fi−1)

A Laplacian smoothing (with a pseudocount a = 0.1 in our experiments) is used to estimate

the conditional probability distribution P (fi|fi−1) from the training set Ds.

• Contextual Predictor (Cardinality). Our third predictor uses the Ds training dataset

containing function sequences to estimate the likelihood of a sequence of functions by consid-

ering the frequency with which each function appears in the sequence. First, the Ds training

dataset is used to count the number of sequences in the dataset in which a given function class

f appears exactly n times. From the counts Cf,n, it estimates, using Laplacian smoothing

(with a pseudocount a = 0.1 in our experiments), the probability PC(f, n) of a given function

to appear a certain number of times in a story. Given a function sequence F = [f1, ..., fn], its

likelihood is then assessed as:

PC(F ) =
∏
f∈F

PC(f, count(f, F ))

where count(f, F ) is the number of times f appears in F .

• Domain Knowledge Predictor (FSA). This last predictor uses domain knowledge and

encodes our interpretation of the rules in Propp’s narrative theory.A subset of the rules in

Propp’s theory was manually encoded in a probabilistic finite state machine, namely:

– The precedence relationships defined by Propp’s ordering may not be violated.

– Each function may only appear once (our dataset only includes stories with a single move,
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as described below).

– The first function must be one of the introductory functions (α, β, γ, δ, ε, ζ, η, θ, λ), villainy

(A) or lack (a).

– Return (↓) should not appear without prior departure (↑).

– Rescue (Rs) should not appear without prior pursuit (Pr).

At run time, given a sequence of functions [f1, ..., fn], this predictor works as a finite state

recognizer. Starting at a sentinel start state, the predictor tries to consume each function

the sequence. If the consumed prediction matches a valid function transition, it updates

the internal state of the finite state machine, otherwise each state has a special unrecognized

function transition that goes back to itself for functions that do not match any valid transition.

Each transition is labeled with a probability, and the probability of a sequence is computed

as the product of the probabilities of all the transitions that were fired when consuming the

sequence. The probability associated with a transition t coming out of a state i is defined as:

P (t, i) =


1+a

ni+a|F| if t is a valid transition at state i

0+a
ni+a|F| for unrecognized function transitions

where ni is the number of valid function transitions coming out of state i. These probabilities

correspond to a Laplacian smoothing (with a = 0.1) assuming we observe each of the valid

transitions identified in Propp’s theory once, and zero times all the unrecognized ones.

Search

In order to explore the space of sequences of narrative functions for an input sequence [x1, ..., xm],

systematic search is unfeasible given the size of the search space (|F|m). In our experiments, we

report our results using beam search. The beam search algorithm searches the space of possible

sequences, searching for the sequence with the highest probability given the predictions provided by

the four predictors. The likelihoods returned by each predictor are multiplied together to obtain the

joint likelihood for a given sequence.
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Beam search evaluates the nodes at depth i using the four predictors (except the contextual

predictor that can only be used for complete sequences, i.e., only for the leaf nodes of the search

tree), and discards all but the top N candidates (where N is the size of the beam, set to 10000

in our experiments) before expanding the next level of depth i + 1. The assignment with highest

likelihood at the end is returned as the sequence of narrative functions for the input sequence of

feature vectors [x1, ..., xm] representing a story S.

Notice that each of the four predictors was designed to capture a different aspect of the prediction

task: the local predictor predicts functions based on the content of the text segments, the sequential

and contextual predictors make predictions based on function sequences alone (without taking into

account the input), and the final domain knowledge predictor exploits narrative domain knowledge.

Experimental Results

For our experimental evaluation, in this work, we use a dataset of 15 stories. The dataset contains

23291 tokens (words and punctuation) and includes annotations for referring expressions, coreference,

verbs, semantic roles, narrative roles and narrative functions. There is a total of 190 annotated

narrative functions. In this work we ignore narrative functions that are implicit or do not have an

explicit text realization. The dataset was manually filtered to include text segments where narrative

functions are realized. The experiments reported in this work use 167 text segments corresponding

to the explicit functions covering a total of 3915 tokens. The sequence of segments is not altered

in any other manner and it is processed in the order it is mentioned in the text of the story. All

the stories in our dataset were identified by Propp as single move (a higher-level narrative structure

defined by Propp that contains narrative functions). We report results with 3 different scenarios:

• Automatic: In this scenario, the input to the system are the sequences of text segments in

natural language without any further annotation. Our system uses Voz to automatically

process the text and build the feature vectors. Voz is not currently able to process direct

speech (e.g., dialog) and thus narrative functions that appear solely in it are removed from the

dataset before the experiments. The dataset used to run experiments in this scenario contains

130 text segments which span over 2342 tokens.
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• Annotated: This scenario, instead of using Voz to generate the feature vectors, they are com-

puted directly from the dataset annotations contained within each text segment and includes

the 167 text segments. This scenario provides an upper bound that ignores any error introduced

by Voz due to inaccuracies in the natural language processing and information extraction.

• Filtered Annotated: This scenario replicates the Annotated scenario, except that removes text

segments contained within direct speech (e.g., dialog) in order to provide results comparable

to the Automatic scenario (i.e., using the annotations from the filtered 130 text segments).

In the reported experiments, we followed the leave-one-story-out protocol. For each story in the

dataset, we construct the training sets Df and Ds with the remaining 14 stories in order to train

the system. Then we apply the joint inference methodology described to compute a sequence of

predictions [f1, ..., fm] for the story at hand. We compare the sequence of predictions element-wise

with the annotations in the dataset and we report the average accuracy weighted by the length m

(in functions) of each story.

We performed an exhaustive analysis of the different combinations of the predictors described

earlier. For simplicity we report a representative subset of the experimental results. Moreover, we

tested using the FSA domain knowledge predictor in two different ways: 1) using it during the

search process as all other predictors, and 2) only using it once we reach the leaves of the search

process. We call these two scenarios “FSA Search” and “FSA Leaves” respectively. This is done since

the FSA predictor used slightly more computational resources than the others, and using it during

the search increases execution time significantly. The number of neighbors k in k-nn, the neighbor

distance metric, the value a of the Laplacian smoothing pseudocount, the number of features to

include during selection, the size of the beam and the verb grouping were set experimentally.

To validate our hypothesis and evaluate the usefulness of the individual predictors and their

combination we repeated the application of our methodology to several combinations of predictors

in the three different scenarios described above. Table 4.12 reports the accuracies of the different

combinations.

To provide a reference to our results, the bottom row of Table 4.12 shows the accuracy obtained
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Table 4.12: Classification accuracy obtained in different scenarios. The first five columns
describe which predictors were used. The remaining three columns report the classification
accuracies for narrative function predictions in three different scenarios. The last row shows the
accuracy obtained by predicting the most common function in the dataset.
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X 0.202 0.21 0.217
X 0.194 0.12 0.194

X 0.155 0.114 0.155
X 0.054 0.036 0.054

X 0.047 0.036 0.047
X X 0.194 0.257 0.225
X X 0.194 0.275 0.209
X X 0.178 0.234 0.186
X X X 0.24 0.216 0.287
X X X 0.171 0.275 0.24
X X X 0.209 0.281 0.248
X X X 0.225 0.281 0.202
X X X X 0.271 0.246 0.233
Informed Baseline 0.109 0.084 0.109

with an informed baseline that always predicts the most common function in our dataset (e.g., ↑

or ↓ in the Annotated scenario), which is 0.084 in the Annotated scenario and 0.109 in the other

two scenarios. Accuracy is low since this is a prediction over a large set of labels (|F| = 34, random

baseline is 0.029).

The first five rows of Table 4.12 show the performance obtained by each of the four predictors in

isolation (and also when we used the FSA during the search or only at the leaves). As we can see,

when used in isolation, the k-nn local predictor achieves the best performance (unsurprising, since

it is the only one that considers the actual text features to make predictions). The Markov Chain

predictor achieves the second best accuracy, since it is accurately able to predict the first functions

of a story (stories regularly start with the α function and are often followed by A). Even with low

performance, notice the local predictor by itself doubles the performance of the informed baseline in

all three scenarios.

The rest of the rows in Table 4.12 show the performance of our approach with an increasing
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number of predictors (all the way to using all four predictors, in the bottom rows). As we can

see, the highest performance in all scenarios is achieved when combining at least three predictors.

We do not include rows when the k-nn predictor was not used, since none of those produced good

results. This indicates that integrating information from multiple sources (including Propp domain

knowledge) significantly improves performance. The highest performance achieved by our system

is between 0.271 and 0.287 depending on the scenario, which is close to three times that of the

informed baseline.

In our experimental evaluation we can compare the performance of the local supervised machine

learning predictor (k-nn) and the different combinations with sequential (Markov), contextual (Car-

dinality) and domain knowledge (FSA) predictors. Starting from an informed baseline, a predictor

predicting one of ↑ or ↓ would have an accuracy of 0.084 in the first scenario (Annotated) and up to

0.109 in the other two filtered scenarios (Automatic and Filtered Annotated). After a close inspec-

tion of the automatic feature selection process, we can identify a single feature, the position of the

function, that contributes 0.149 in the Annotated and 0.159 in the filtered scenarios. Adding the

remaining features to the local supervised machine learning predictor the accuracy increases to 0.210

in the Automated scenario and 0.202 in the Automatic scenario. These numbers indicate that our

choice of features, although potentially incomplete, has a significant contribution to the prediction

of the local predictor. Although there may be other annotations in the annotated dataset that could

be better indicators, our choice of features can be computed automatically and we observe how the

accuracy in the Automatic scenario also increases. Since this second scenario comprises a separate

set of function annotations, the third scenario of the Filtered Annotated dataset gives us an upper

bound of the performance of the narrative function identification should we be able to extract perfect

information using Voz, our narrative information extraction system.

Concerning differences across the three scenarios, if we average the performance of the bottom 8

rows in the table (corresponding to configurations with 2, 3 and 4 modules), the performance in the

Automatic it is 0.210, in the Annotated scenario is 0.258, and in the Filtered Annotated it is 0.229.

This shows that, as expected, making predictions from annotated text is more accurate. However,
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looking at the configurations with the highest performance (0.281 for Filtered annotated and 0.271

for Automatic), we can see that the difference is not too large, and that the performance of Voz is

not the main bottleneck in this prediction task.

Focusing on the Annotated scenario, we can observe how every combination of predictors improves

the performance of the predictions with respect of the local predictor (k-nn). Including the contextual

(Cardinality) and domain knowledge either during search (FSA Search) or at the end of the search

(FSA Leaves) our approach achieves 0.281 accuracy.

One interesting observation is that the domain knowledge predictor seems to actually hinder the

performance of k-nn when only those two predictors are used together. We attribute this phenomena

to the fact that many properties of the theory are violated in actual stories (specially in the Automatic

and Filtered Annotated datasets where many functions are removed since they appear in dialog).

However, when used in combination with the other predictors trained from Df and Ds, this seems

to be alleviated.

Looking at the Automatic scenario, we can see how our automatically extracted features encode

some relevant information but the results are unstable and some combinations seem to actually

hinder the performance. The best combination includes all four predictors and achieves an accuracy

of 0.271. A close inspection of the results pointed out that overlooking relevant information in the

dialogue (we found an instance where 2 consecutive lines of dialogue included 3 narrative functions)

and the limited size of the dataset (130 segments) are the main causes for the reduced performance

with respect to the Annotated scenario (167 segments).

In conclusion, these results show that our approach significantly outperforms an informed base-

line. Our experimental results confirm our initial hypotheses that combining top-down narrative

theory and bottom-up statistical models inferred from an annotated dataset increases prediction

accuracy with respect to using them in isolation.

4.7 Identifying Dialogue Participants

Storytellers use a wide variety of rhetoric figures when telling a story. A common element in written

stories told in third person is the use of quotes (i.e., phrases and sentences surrounded by quotation
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marks) that contain direct speech as spoken by a character of the story. These quotes are often

arranged in succession representing a conversation or dialogue. Also, they are usually accompanied

by speech attribution cues (such as “he said to her”) in order to help the reader identify the speaker

and the intended listener for the quote. Although common, these cues are some times missing

(such as in dialogue sequences) or partial (“he said” only) and the information about speaker and

listener is left implicit for the reader to infer. In this work, we focused on the problem of identifying

the speaker and the intended listener of the different quotes in a given story in order to use this

information for tasks within our narrative information extraction pipeline (see Figure 4.4). Please

note that the dialogue or quoted speech in our corpus was annotated and removed from the datasets

used for all the work reported so far in Section 4.2 through Section 4.6. There are interactions that

appear solely within dialogue and those were lost. This was specially problematic for the work on

identifying narrative functions described in Section 4.6 where some functions would exist only within

dialogue. Additionally, the speech act information encodes interesting interactions that were missing

in the output of Voz. Let us illustrate these interactions with an example. Given the following text

snippet:

Then the dragon began to implore Nikita: “Do not put me to death [...]. Let us divide all the

earth [...]” “Very well,” said the tanner, “let us draw a boundary line.”

From the previous example, after processing the story we were able to extract three mentions

to two characters: The dragon and Nikita the tanner (Nikita and the tanner are both mentions to

the same character). Additionally, we are interested in extracting the interaction between the two,

specifically, The dragon asking Nikita and Nikita replying to The dragon. Specifically, we would like

to identify that the speaker of the quote “let us draw a boundary line.” is the tanner and the dragon

is the listener. Moreover, we aim at extracting information about character interactions in terms of

speech acts (e.g., asking or answering) and use the coreference information extracted previously to

identify the canonicak participants (e.g., resolve Nikita and the tanner as the same character). We

finally encode this interaction as a list of triplets such as [〈ask, dragon,Nikita〉, 〈reply,Nikita, dragon〉]
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We use these triplets as a basis for representing character interactions and we use them for further

processing downstream, for example, for compiling the character interaction matrices described

earlier in Section 4.4.

In the rest of this section we describe a module that pre-processes natural language stories

that include quoted text using off-the-shelf NLP tools and uses machine-learning and narrative

domain knowledge to extract the aforementioned pieces of information. Specifically, we focus on

interactions between characters in quoted speech and dialogue which we previously ignored in our

work. We propose a method to identify participants in dialogue in stories using pattern induction.

We evaluate the extracted patterns using both our annotated corpus of 20 Russian stories translated

to English and the Quoted Speech Attribution Corpus4. We also assess the accuracy with which we

can use the extracted patterns to predict speaker and listener and how much this extra information

helps improve the accuracy of other narrative information extraction tasks such as narrative role

prediction.

The core of our approach is to translate the input text into a sequence of items or specialized

tokens (where the items represent parts of the text such as a quoted utterance or a mention to an

entity) and then use an induction algorithm to extract patterns that can predict the participants in

each quote given the corresponding sequences of items.

Therefore, the problem statement that we are addressing in this work can be described as:

Given a story written in natural language which contains a set of quotes Q and a set of mentions

representing characters P , the goal is to identify, for each quote qi ∈ Q its most likely speaker (i.e.,

the mention speaking the quote) qsi ∈ P and it is most likely listener (i.e., the mention the quote is

intended for or is being spoken to) qli ∈ P . The output is a set of tuples Q′ = {〈qi, qsi , qli〉, ...}, where

each qi ∈ Q, and qsi and qli and the predicted speaker and listener.

In the remainder of this section we assume that the set of quotes Q and the set of mentions

representing characters P have already been identified in the text. Note that for our experimental

evaluation we first use annotated sets for Q and P in our dataset and then we report our results
4Available: http://www.cs.columbia.edu/nlp/tools.cgi#Quoted%20Speech%20Attribution%20Corpus
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Figure 4.10: Overview of our narrative information extraction system, the shaded boxes
represents the dialogue participant identification modules introduced in this work. The new
modules are highlighted in grey. The feedback loop is still present but has been removed from
the figure for clarity.

using sets automatically identified by Voz (which may include errors in e.g., coreference resolution).

Additionally we also report results on the Quoted Speech Attribution Corpus used by Elson and

McKeown149. This last dataset only contains annotations for the speaker of the quote therefore in

the training and evaluation we ignore the listener.

In order to identify the speaker and listener mentions for each of the quotes in Q, we build

upon the work by Elson and McKeown149 on quoted speech attribution (speaker identification).

Specifically, we base our work on identifying syntactic categories for quotes by using a specialized

pattern matching procedure. We extend their work in two ways: First, we attempt to identify

both the speaker and listener, and extract a limited amount of speech act information to enrich our

downstream narrative information extraction. Second, we introduce a pattern definition language

and propose an automatic induction process from example data that extracts patterns that can be

examined and tweaked. Finally, we apply our approach to a new dataset that features a substantial

use of different rhetoric figures compared to their dataset (e.g., we observed a much higher frequency

of mentions using common nouns instead of proper nouns compared to their dataset).

Pre-Processing and Tokenization

Before proceeding to dialogue participant identification, Voz extracts a set of verbs V using part-

of-speech information and a set of character mentions P . Figure 4.10 shows an overview of the new

dialogue participant identification modules (shaded boxes) in the context of Voz.
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The information extracted by the Natural Language Preprocessing module is used to convert the

story into a sequence of items or specialized tokens. This process is similar to first step in the work

by Elson and McKeown. Specifically, we take a sequence of tokens (such as words and punctuation)

generated by an off-the-shelf NLP tool (the Stanford CoreNLP in our case), and then perform a

series of replacements using previously extracted information and discarding irrelevant tokens. Note

that these tokens are contain additional information such as part-of-speech tags, lemmatized words

and offset information from the original text.

The input to this process is a sequence of tokens T = [t0, . . . , tn] representing a story, a set

of verbs V , and a set of mentions P , where each verb vi ∈ V and each pi ∈ P corresponds to a

subsequence of tokens from T .

Given this input, T is scanned for quotation marks, and a set of quotes Q is extracted where

each qi ∈ Q is a subsequence of tokens ta, . . . , tb that starts and ends with a quotation mark, and

where there are no quotations marks in between. Finally we extract a set of punctuation tokens K

where each k ∈ K is a token t that matches either a dot (.) or a colon (:) outside of quotation

marks. All the verbs and character mentions that appear within any of the quotes in Q are ignored

(they are removed from V and P ). Therefore the union of V , P , Q and K is a set of non-overlapping

subsequences of tokens in T .

A string of items T ′ is then generated by replacing each of the subsequences of tokens representing

verbs in V , mentions in P , quotes in Q and punctuations tokens in K by items or specialized tokens

representing them, all the other tokens in T are ignored, and are not included in T ′; therefore the

output is a sequence of items, each of which wraps a subsequence of the tokens in T and maintains

the order in which these appear in T . We consider the following types of items:

v: A verb and the lemma of the verb.

p: A mention and the annotated character or the automatically extracted coreference group (i.e.,

the character(s) this mention refers to, such as Nikita and the tanner in the example fragment

from the introduction).

k: Either a dot (.) or a colon (:).
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q: A quote and the text inside the quotation marks, including punctuation, such as exclamation

marks, question marks, commas, etc. If the speaker or listener of this quote has already been

identified, this information is also stored here. Which is referred to in the patterns below as

speaker(q) and listener(q).

Using the same example fragment from the beginning of this section, this process outputs the

following sequence of items; in parenthesis we illustrate relevant information contained within the

items that will be used later, specifically: the lemma of the verbs, the coreference group of the

characters, the text in punctuation or the text of the last token before the closing quotation mark

(mostly punctuation), we use subscripts to differentiate items in the sequence:

p1(Dragon) v2(begin) v3(implore) p4(Nikita) k5(:) q6(.) q7(,) v8(say) p9(Nikita) q10(.)

Pattern Definition Language

In order to predict the speaker and listener of each quote in the sequence of items, we use a pattern

matching procedure. Let us now describe the proposed pattern definition language. Each pattern

r = 〈m, fs, fl〉 is composed by a matching pattern m = [s1, ..., sn] defined as a sequence of symbols in

a symbol alphabet S, a mapping function fs which maps each quote in m to its speaker (which could

be a character mention in m, of the speaker or listener already identified in a previous quote), and a

mapping function fl, which maps the quotes to their listeners. These patterns represent the different

syntactic categories, such as those identified by Elson and McKeown. The matching pattern M is

a sequence of symbols m that match items in the sequence of items T ′. We consider the following

symbol alphabet for the matching patterns:

V: matches any verb v.

T: verbs v with the lemma think.

A: verbs v with the lemmas ask, question.

R: verbs v with the lemmas answer, reply.
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S: verbs v with the lemmas say, tell.

E: verbs v with any of the lemmas matched by T, A R S or call, beg, cry, yell.

Q: matches any quote q.

Q!: a quote q where the second-to-last token is either a dot (.), an exclamation mark (!) or a

question mark (?).

Q,: all other quotes (in our dataset, these mostly end with a comma).

P: matches any character mention p.

K: matches any punctuation mark k.

K.: matches dots (.).

K:: matches colons (:).

Moreover, by prepending a question mark (?) to any symbol we can make it optional.

The verbs in the previous enumeration items (T, A, R, S, E) were selected by analyzing the

speech acts defined in Propp’s narrative functions25.

Pattern Application

With a given set of patterns, either manually crafted or automatically extracted (as described in the

next section), pattern application works as a two step process. In the first step, a set of patterns R1

is used to identify candidates for speakers and listeners for each quote. In the second step, a set of

patterns R2 uses the candidates identified by the patterns in R1 to propagate them to other quotes.

For example, a pattern in R1 might identify a certain mention to be the speaker of a quote, and a

second pattern in R2 might use that prediction to identify the speaker of follow-up quote (i.e., R1

does a first pass of identification, and R2 expands it).

Given a set of patterns R (either R1 or R2), the pattern application process iterates the items

in the sequence T ′ and tries to find matching patterns for each quote qi in the sequence. When a

matching pattern is found, the speaker or listener indicated in the pattern is stored as a candidate

for the quote. Conflicts (different patterns making different predictions for the same quote) are
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resolved by assigning weights to patterns (the pattern with highest weight has preference). Weight

calculation is described later in the next section. In our implementation, for each pattern in R, we

initialize a non-deterministic finite state machine to ingest the items in the sequence T ′ one at a

time and store the candidates for the quote’s matched by a given pattern.

Given the following sets of patterns:

R1 : {〈[Q1 S2 P3], fs = {Q1 →P3}, fl = {}〉}

R2 : {〈[Q,1 ?V2 ?P3 Q!4], fs = {Q!4 → speaker(Q,1)}, fl = {}〉}

And the example sequence from the previous section (again, we use subscripts to differentiate

each symbol when they appear more than once in a sequence):

p1(Dragon) v2(begin) v3(implore) p4(Nikita) k5(:) q6(.) q7(,) v8(say) p9(Nikita) q10(.)

the application of the pattern in R1 yields the following:

Q′ = {〈q7,p9,−〉

then, applying the pattern in R2 would expand the predictions to the following output:

Q′ = {〈q7,p9,−〉, 〈q10,p9,−〉}

which means the system has identified p9 (Nikita) to be the speaker of both quotes, but it has

not identified which is the listener of either of them yet. Furthermore, since P has been already

preprocessed, there should be coreference information available linking p9 and p4, therefore patterns

in R2 should be able to exploit this information.

We considered creating these patterns manually, which proved impractical. For example, those

defined by Elson and McKeown only covered a small percentage of our dataset, given the variety of
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ways in which quotes appear in folktale text. We report results with the manually authored patterns

in the experiments below for comparison.

Automatically Learning Patterns for Dialogue Participant Identification

In order to extract the patterns, our approach requires a training set containing sequences of items

T ′ where each quote q contains annotations for the speaker and listener. Then, the overall idea is

to first select a subsequence around a quote and for each mention p ∈ P that matches either the

annotated speaker or listener, we generate a pattern. Next, we generalize each pattern iteratively

using a series of pattern generalization operations storing each of the generated generalizations.

Finally, weights are assigned to each pattern based on their performance on the training set. This

process is described in detail below.

1. Pattern Extraction. Given a window of items [ta, ..., tb] of T ′, of length between 1 and W

(a predefined maximum window size), if a window contains any quote q ∈ w for which the

speaker or listener of q appears in any of the other items in the sequence (either a mention or

another quote with the same speaker or listener), then a pattern is extracted. This process is

shown in Algorithm 1 (where we use subindexes to indicate the position of each item in the

input sequence T ′). The toSymbols function turns a sequence of items into a sequence of the

most specific symbols that match those items, as defined in the previous section. For example,

for the first sentence in the example used in the previous section, one of the extracted patterns

would be as follows:

r1 : 〈[P1 V2 V3 P4 K:5 Q!6], fs = {Q!6 →P1}, fl = {}〉

2. Pattern Generalization. We define a list of possible generalizations for each symbol in a

given pattern. Then, a systematic process generates all the possible generalizations of a given

pattern by application of one or more generalizations. For example, we define the possible

generalizations of the symbol K:i to be the set {Ki, ?K:i, ?Ki, ∅ } (where ∅ means removing

Chapter 4: Automated Narrative Inf. Extraction 4.7 Dialogue Participants



100

Algorithm 1 Pattern Extraction Algorithm
1: procedure ExtractPatterns(T ′,W )
2: R1 ← ∅ . these patterns will be used in the first step of pattern application
3: R2 ← ∅ . these will be used in the second step to propagate predictions from the first set of patterns
4: for qi ∈ Q do . for each quote qi in the set of quotes
5: for w ∈ [1, . . . ,W ] do
6: for s ∈ [s− w, i] do
7: window← subsequence(T ′, s, s+ w) . window is a sequence of symbols around qi
8: for p ∈ {t ∈ window|t ∈ P} do . for each mention p in the current window
9: if speaker(qi) = p then . if the mention p is the speaker of the current quote qi

10: R1 = R1+ 〈toSymbols(window), fs = {qi → p}, fl = {}〉
11: if listener(qi) = p then
12: R1 = R1+ 〈toSymbols(window), fs = {}, fl = {qi → p}〉
13: for qj ∈ {tj ∈ window|j < i ∧ t ∈ Q} do . now, iterate other quotes within the window
14: if speaker(qi) = speaker(qj) then . if there is a match between speakers or listeners
15: R2 = R2+ 〈toSymbols(window), fs = {qi → speaker(qj)}, fl = {}〉 . add pattern

for propagating predictions
16: if listener(qi) = listener(qj) then
17: R2 = R2+ 〈toSymbols(window), fs = {}, fl = {qi → listener(qj)}〉 . idem

18: if speaker(qi) = listener(qj) then
19: R2 = R2+ 〈toSymbols(window), fs = {qi → listener(qj)}, fl = {}〉 . idem

20: if listener(qi) = speaker(qj) then
21: R2 = R2+ 〈toSymbols(window), fs = {}, fl = {qi → speaker(qj)}〉 . idem

22: return 〈R1, R2〉

the symbol from the pattern). Considering only the generalizations of K:i, the following

patterns would be generalized from the extracted pattern shown above:

r2 : 〈[P1 V2 V3 P4 K5 Q!6], fs = {Q!6 →P1}, fl = {}〉

r3 : 〈[P1 V2 V3 P4 ?K:5 Q!6], fs = {Q!6 →P1}, fl = {}〉

r4 : 〈[P1 V2 V3 P4 ?K5 Q!6], fs = {Q!6 →P1}, fl = {}〉

r5 : 〈[P1 V2 V3 P4 Q!5], fs = {Q!5 →P1}, fl = {}〉

We report experiments with two different generalization procedures; the first only considers one

type of generalization: making symbols optional by prepending a question mark, which we call

limited generalization (as in r3); and the second that produces all the possible generalizations

described above which we call full generalization.

3. Weighting and Pruning. The extraction and generalization processes may produce thou-
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sands of patterns, making prediction inefficient, and introducing potential conflicts, where

different patterns make different predictions. Thus, we assign each pattern a weight to resolve

conflicting predictions by assessing its performance in the training set. The weight w(r) of a

pattern r is set as the classification accuracy of the pattern in the training set, corrected using

Laplacian smoothing: w(r) = correct+1
total+2 (where total is the number of times r matched in the

training set, and correct is, out of those, how many times the prediction was correct). Any

pattern with weight below 0.5 is pruned.

The final output of the dialogue participant identification module is a set of quotes Q′ that, for

each quote qi ∈ Q, includes a prediction for the quote’s speaker qsi ∈ P , the quote’s listener qli ∈ P ,

and which pattern matched qri .

We then convert this information into the formalism used downstream in our narrative informa-

tion extraction pipeline (as seen in Figure 4.4). Specifically, we use triplets that represent interactions

between entities (i.e., characters and other characters or props). These are extracted from the verb

and the verb’s arguments in the form: 〈 verb, subject, object 〉. We use the information of the

matched pattern to identify the actual verb (e.g., beg in the example in the previous section) or a

representative verb for each speech act (e.g., ask for the pattern symbol A) and the speaker and

listener as the subject and object respectively. The output of this triplet extraction module is a

set of triplets containing one triplet for each q ∈ Q′ of the form 〈vq, qs, ql〉, where vq is the verb

identified by the speech act of the pattern or say if no speech act information is available.

4.7.1 Experimental Results

For our experimental evaluation we studied three scenarios using two corpora:

• Russian Stories: The first set of experiments use a corpus of 20 Russian stories translated to

English. We use a dataset consisting of annotations for verb and semantic role labels, mentions,

coreference, Proppian narrative roles for characters, Proppian narrative functions, speaker and

listener for quoted speech and other quoted speech. The dataset contains 1931 reported speech

sentences plus 718 sentences in quoted speech (29.5% of the text). Within the reported speech
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sentences, there are 3029 mentions to 236 unique characters (46% common nouns, 43% proper

nouns, 11% pronouns) and 5131 annotated verbs. In the next section we report experiments

on this corpus using Voz to automatically extract this information.

• Quoted Speech Attribution Corpus: The second dataset is the quoted speech attribution corpus

used by Elson and McKeown149. This dataset only contains annotations for the speaker of

the quote, therefore in the training and evaluation we exclude the listeners. Regarding the

syntactic categories we observed a very different distribution compared to the ones identified

by Elson and McKeown149. The 〈[Q E P], fs = {Q → P}, fl = {}〉 pattern covers only 9%

of our dataset and has an accuracy of 97% (compared to 19% and 99% respectively for Elson

and KcKeown) and the analogous Q P E pattern covers 4% with accuracy of 80% (compared

to 2% and 92%). For the evaluation of the dialog participants we evaluate independently the

speaker and the listener. For evaluation, we skip 2.8% of the quote’s speakers and 8.2% of

the quote’s listeners in cases where there isn’t a single obvious speaker or listener such as in:

“Well, brothers,” said one of the three [to the other two brothers].

Unless stated otherwise, all the experiments reported in this section use a leave-one-story-out

protocol where we perform cross-validation using 19 stories in the training set and the other one in

the test set. All results are microaveraged by the number of instances in each story.

• Russian Stories. We first evaluated several baselines on the annotated Russian Stories

dataset:

– baseline: assigning the speaker to the most common character and the listener to the

second most common character (reported in row 1 of Table 4.13);

– manual: using a set of 44 manual patterns derived from Elson and McKeown’s work and

including additional patterns for listeners (row 2 of Table 4.13);

– the rules in manual with fallback to baseline when none matched (row 3 of Table 4.13);

– permutations: permutations of the 44 manual patterns (row 4 of Table 4.13); and;

– permutations with fallback to baseline (row 5 of Table 4.13).
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Table 4.13: Results on the Manual Russian Stories dataset for several approaches concerning:
number of patterns generated, the number of patterns after pruning, the accuracy in predicting
the speaker, listener and their weighted average for each quote and the coverage for the same
slots.

# Patterns Accuracy Coverage
Bef. Aft. Spk. List. Both. Spk. List. Both.

1 Baseline 1 0.403 0.246 0.325 1.000 1.000 1.000
2 Manual 44 0.822 0.897 0.838 0.414 0.115 0.265
3 Manual+Baseline 45 0.573 0.326 0.450 1.000 1.000 1.000
4 Permutations 30K 947 0.703 0.604 0.670 0.756 0.372 0.564
5 Permutations+Baseline 30K 948 0.663 0.431 0.547 1.000 1.000 1.000
6 Induction 3.8K 1.2K 0.773 0.487 0.585 0.319 0.609 0.464
7 Ind.+Generalization 8.5K 3.5K 0.773 0.546 0.648 0.782 0.962 0.872
8 Ind.+Full Generalization 60K 38K 0.717 0.581 0.645 0.871 0.982 0.927
9 Ind.+Full Gener. (0.4) 60K 55K 0.708 0.576 0.642 0.976 0.983 0.980
10 Ind.+Full Gener. (0.6) 8.5K 2.9K 0.933 0.533 0.578 0.107 0.842 0.475

Table 4.13 summarizes the results. In the case of the manual patterns, we achieve an overall

accuracy of 83.9% with a coverage of 26.5% on the whole data set. By using the informed

baseline for fallback we achieve a coverage of 100% with an accuracy of about 44.9%. Auto-

matically generating permutations of these 44 patterns we generate 30805 patterns and after

pruning patterns with an accuracy below 50% we are left with 947 patterns that cover 56.4%

of the test set with an overall accuracy of 67.0%.

We then ran a first experiment training on the whole data set and observed that our pat-

tern induction process, without generalization, extracts about 1400 useful patterns and covers

96.4% of our data set. it is worth noting that we ran our procedure without generalization on

a cross-validated scenario and the coverage fell to 45.9%. We report results of our experiments

using our automatic induction method in 4 scenarios: using induction without any generaliza-

tion (row 6 of Table 4.13); using the limited generalization (row 7 of Table 4.13); using the

full generalization (row 8 of Table 4.13); and; using the full generalization and lowering the

threshold for pruning patterns to 0.4 (row 9 of Table 4.13). Intuitively, in the cross-validation

evaluation, using induction without generalization lowers the coverage to 46.4% with an ac-

curacy of 58.5%. Using generalization increases the coverage to 87.1% of the dataset with

an accuracy of 64.8% (77.3% for speakers). Using full generalization and lower threshold, we
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observed greater number of patterns and increased coverage at the expense of accuracy con-

firming our hypothesis that 0.5 is a good threshold for our desired output. In these scenarios,

we attribute the ceiling in the coverage of our approach at around 98% to the fact that in

our experiments we used a window with a maximum size of 8 around the quotes. Increasing

the window size without a bigger dataset, however, would lead to overfitting. We performed a

final experiment increasing the threshold to 0.6 (row 10 of Table 4.13) and we observed how

pruning additional rules increases the accuracy for identifying speakers to 93.3% but coverage

for speakers is reduced to 10.7% and the overall coverage drops to 47.5%.

• Quoted Speech Attribution Corpus. We applied our approach to the dataset used by Elson

and McKeown149. This dataset only contains annotations for the speaker of the quote therefore

in the training and evaluation we ignore the listener. We first applied the 44 manually defined

patterns targeting their syntactic categories: Quote-Said-Person trigram, Quote-Person-Said

trigram and Anaphora trigram; and including the same permutations described in their work.

Our results (on speaker only) match their reported values (accuracy 95%, coverage 29%). We

applied our proposed pattern induction method using their original files to perform 16-fold

cross validation. Our results in this dataset are an accuracy 65.6% and coverage 67.2% (on

speaker only).

In conclusion, after this work we can observe how our approach performs similarly than state-

of-the-art work for speaker identification but can also identify the listener and does not require

manually defined syntactic categories.

4.7.2 Evaluating Automatic Narrative Information Extraction with Dia-
logue Participant Interactions

Now we present results where we compare the performance of the Narrative Function Identification

module described in Section 4.6 with and without the dialogue interaction information extracted in

this section.

We performed experiments using the pipeline described in Figure 4.10. Notice that the new

modules introduced for this section are bolded. We focused the evaluation the performance of the
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Narrative Function Identification module, which attempts to identify Proppian narrative functions

in the stories. In this setting, the input of the Dialogue Participant Identification module (the

sets P and Q) is generated automatically from the natural language text by running the Mention

Extraction, Coreference Resolution and Character Identification modules. The character interactions

are described using triplets of the form: 〈say,Nikita, dragon〉. Voz extracts these triplets from the

text outside quoted speech.

When running without Dialogue Participant Identification, out of the 5131 verbs annotated

in the dataset, our system is capable of identifying 1240 interaction triplets (with subject and

object). Using this information the system is capable of identifying narrative functions with an

accuracy of 23.4%. The information from the Dialogue Participant Identification contributes 560

additional triplets (with some duplicates). Using these additional triplets, the overall performance

for identifying narrative functions improves to 31.3%. Note that narrative functions identification is

a notoriously difficult task, since there are 34 different narrative functions, some of which have some

degree of ambiguity and where an informed baseline only identifies 10.9% of the functions. We refer

the reader to the previous section in this chapter for more information.

In addition to an improvement in function identification accuracy, an added benefit of processing

dialogue is that a 28% of the functions in our dataset appear in dialogue (67 out of 239 functions),

which are not identifiable without extracting triplets from dialogue (23.8% of the narrative functions

in dialogue were identified correctly). Table 4.14 provides a comparison of the results of the Nar-

rative Function Identification module with and without using the dialogue participant information

extracted by the work described in this section.

4.8 Discussion

In this chapter we presented a collection of techniques to extract different narrative elements from

text. In order to evaluate our ideas, we incorporated them into an automated narrative information

extraction pipeline called Voz. We use Voz for experimental evaluation throughout this dissertation.

In Section 4.1 we described the overall architecture of Voz. Then in sections 4.2 through 4.7 we

describe our individual contributions that we incorporated into Voz.

Chapter 4: Automated Narrative Inf. Extraction 4.8 Discussion



106

Table 4.14: Comparative between the scenarios without using and using the dialogue partici-
pant information extracted by the work described in this section. The triplets column reports
the number of triplets available for the Narrative Function Identification module to use. The re-
maining two columns are the accuracy and number of functions identified. The last row reports
the total annotations present in the dataset.

Scenario Triplets N.F. Acc. N.F. #
w/o Dialogue 1240 23.4% 56
w/ Dialogue 1800 31.3% 75
Annotated 5131 239

Through our work, we realized that our corpus poses specific challenges to several NLP tasks even

when using state-of-the-art NLP techniques. These challenges are more prominent in our application

domain of fictional stories that exhibit non-standard patterns and features. For example, specific to

character identification and related to named entity recognition, the text includes a range of different

types of characters: humans, anthropomorphic animals (e.g., a talking mouse) and anthropomorphic

objects (e.g., a magical oven, a talking river). There are also fantastical creatures (e.g., goblins) and

characters specific to the Slavic folklore (e.g., Morozko and Baba Yaga).

We worked on improving these tasks and we realized that in order to improve the overall accuracy

of the system, we could incorporate narrative domain information into core NLP and information

extraction tasks. In the next two chapters we will focus on how we evaluated our narrative informa-

tion extraction pipeline in order to identify areas of improvement and how we worked to improve it

by incorporating narrative domain knowledge by incorporating non-linear features to our pipelined

architecture.
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Chapter 5: Evaluation of Information Extraction Pipelines

Information extraction pipelines (such as Voz ) are usually composed of a number of modules, each of

which is in charge of extracting a certain type of information. Evaluating each module in the pipeline

in isolation provides useful information but it is often the case that while some modules generated

inaccurate predictions, those inaccuracies had little effect on the predictions of other dependent

modules downstream. At the same time, modules could have yield very accurate predictions, but

the small number of errors they incur may have a large impact on other modules downstream and on

the overall performance of the system. This was also observed when evaluating the work presented in

the previous chapter. Since coreference information is used in several voting processes, small errors

in the coreference graph had a bigger impact on multiple modules downstream. We observed the

opposite case with the error in the verb extraction module. Despite it having a large error, intrinsic

noise in the data and the inner workings of the role and function identification tasks meant that the

misidentified verb arguments had a smaller impact than anticipated on those modules’ output. In

general, we observed that it was difficult to assess the contribution of each of the modules in the

pipeline to the final error in the output of the system.

In our attempts to analyze our system, we realized that, despite a large body of work on empirical

methods for AI168 including the design of factorial experiments, there were limited known methods to

evaluate how errors propagate in a pipeline. For example, there are no established methodologies on

how to assess the contribution of each module, or how the error introduced by one module impacts the

performance of later modules in the pipeline. Thus, in this section we present a methodology designed

to assess how error is introduced and propagated in information extraction pipelines. Specifically,

the proposed methodology aims at answering the following questions:

Q1: What is the error introduced by each module?

Q2: How much does the error introduced by one module affect a later module in the pipeline?
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Q3: How much does the error introduced by one module affect the final output of the pipeline?

In order to address these questions, we propose a systematic methodology which we evaluated

by applying it to Voz, our narrative information extraction pipeline.

5.1 Systematic Methodology for Evaluating Information Extraction Pipelines

Our methodology is based on 4 steps. The first step encodes a pipeline as a graph and is designed

to abstract the underlying system in order to apply our methodology to arbitrary pipelines. The

second step helps system builders generate an annotated dataset to use for the rest of the evaluation.

In the third step we use the annotated dataset to evaluate individual modules and finally, in the

fourth step we use the annotated dataset to study error propagation.

The four steps of our methodology are detailed below:

1. DAG and Topological Ordering. First, formalize the information extraction pipeline as a di-

rected acyclic graph (DAG). The modules of the pipeline are represented as graph nodes and

the edges represent dependencies between the modules. Then, compute one topological order-

ing1 of the nodes in the DAG. A module mi is the ith node in the topological ordering of the

DAG. Figure 5.1 illustrates the representation of Voz (described in Chapter 4 Section 4.1) as

a DAG.

2. Incremental Dataset. Then, annotate an incremental ground truth dataset that contains an-

notations for each of the modules mi at each intermediate step of the pipeline. We use GTi

to denote the ground truth for the output of the module mi. In order to alleviate the burden

of annotation, it is often possible to run the automated pipeline and extract an automatically

generated dataset from the output of each module mi which then is manually corrected and

stored as GTi.

3. Individual Module Evaluation. Next, evaluate each module mi using as input GTi−1 and

comparing the output against GTi. We use m1 to refer to the first module of the system and
1 The topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge

uv from node u to node v, u comes before v in the ordering. Any DAG has at least one topological ordering, which
can be computed in linear time169.
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Figure 5.1: Directed acyclic graph encoding a representation of the dependencies in Voz,
our narrative information extraction pipeline. Note that the DAG includes two Majority Vote
modules not included in Figure 4.4 but described in Chapter 4 Section 4.3.5. Also, the Function
Identification module was not considered in this work.

GT0 as the original input to the system, which, for example, in our case is just one Russian

folktale in natural language without any additional annotation. Note that the individual

modules may have module-specific parameters that can be fine-tuned during this step to study

the effect of those parameters on the module’s error contribution.

4. Error Propagation. Finally, given a pair of modules of interest ma and mb where ma ≺ mb, we

compare the performance of mb in two settings: first, by feeding GTa−1 to ma then running

the pipeline from ma to mb, and second, by feeding GTa to ma+1 then running the pipeline

from ma+1 to mb. In this way, we can measure the change of error in mb, as a result of the

error introduced by ma.

In order to study the error, our methodology uses the standard metrics of precision, recall and

f -measure (P/R/F), and defines error as 1 minus f -measure. The reported P/R/F values in the

remainder of this section are the weighted averages of the P/R/F for each different solution classes

a module can predict. For example, when reporting P/R/F for role prediction, we compute P/R/F

for each individual role, and then report the average weighted by the number of times each role

appears in the ground truth. However, we make an exception for the coreference resolution module

where the f -measure was not very informative, and we use a different measure, characterizing the

spread of a single character: the average number of coreference groups with a reference to a given

character; and the misgrouping of different characters: the average number of distinct characters

referred to in a single coreference group. These two metrics will help us explain the impact of the
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error of coreference resolution. In this work we discuss how error propagates down the pipeline, and

compare the modules’ error to two baselines:

• Random: which generates predictions randomly.

• Informed Baseline: which always predicts the most common solution in the training set.

Besides the metrics described above, we also apply the bias and variance decomposition framework

described in Kohavi and Wolpert170 to further identify the error introduced by the training data

in the character and role identification modules. We only report the bias and variance estimators,

since, as reported by Kohavi andWolpert, intrinsic error is always zero when estimated from standard

training sets where all instances are unique. To perform the bias and variance decomposition, for

each of the stories in the dataset we perform 50 iterations learning a classifier and using it to classify

the mentions of the selected story. The classifier is trained on a randomly sampled subset from the

rest of the stories with a size equal to half the total size of the dataset available.

5.2 Evaluating Voz

In this section we move on the application of the proposed methodology to evaluate the performance

of Voz using our corpus of Russian folk tales. We will first describe how we built the incremental

dataset used for the evaluation, how the modules described in the previous chapter were evaluated

individually, and finally, the evaluation of the pipeline itself focusing on the interactions between

select modules.

5.2.1 Incremental Dataset

Our input dataset (GT0) contains 21 unannotated Russian folk tales translated to English text, a

subset of the 28 stories described in the previous chapter in Section 3.1. To reduce preprocessing

issues at the discourse level, we manually removed quoted and direct speech (i.e., dialogues and

passages where the narrator addressed the reader directly). The edited input dataset (GT0) contains

914 sentences. The stories range from 14 to 69 sentences (µ = 43.52 sentences, σ = 14.47). There is

a total of 18,126 tokens (words and punctuation; µ = 19.83 words per sentence, σ = 15.40).
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To quantify the performance of the different modules in Voz, we added a series of annotations on

the dataset as our ground truth GT1 . . . GT8. Following our proposed methodology, we used GT0 as

the input to our pipeline and proceeded to extract and correct the output for each module following

the topological order enumerated in the previous subsection. We started running the Mention

Extraction (m1) module and from the output, we annotated 4,280 noun phrases (NP) representing

referring expressions (GT1). These were used as a basis for annotating the coreference (GT2),

character labels (GT5, GT6) and role labels (GT7, GT8). The coreference groups are annotated for

characters and mentions to groups of characters (e.g., “her parents” 7→ {“father”, “mother”}, “they” 7→

{“king”, “queen”}). Coreference annotations for non-characters were not included. The characters

have been annotated with the character role labels described by the Proppian functions25. We

merged the roles of Donor and Helper since, in our dataset, they mostly correspond to the same

character and Dispatcher into an Other along with several other minor roles. This resulted in the 6

role labels: Hero, False Hero, Villain, Sought-for-person, Tester (which includes Donor and Helper

exhibited by the same character in our dataset) and Other (which includes Dispatcher and other

minor roles). The annotations were performed by two researchers independently and disagreement

resolved manually by consensus.

For the Verb Extraction module (m3) we annotated verbs and the character’s actions as triplets

of the form v = 〈verb, subject, object〉, where subject (i.e., executor) and object (i.e., receiver) may

be empty. In the ground truth (GT3) there are a total of 1,586 annotated verbs that correspond

to 3,029 triplets across the 21 stories. There are more triplets than verbs because when a verb had

multiple arguments that could be considered receivers, multiple triplets were annotated. The triplets

may also refer to a list of characters (i.e., they) which are expanded with its individual mentions.

For example, the sentence “they went to work” where they refers to “the father and the mother”,

involves one verb annotation that yields two triplets: 〈go,father,work〉 and 〈go,mother,work〉).

5.2.2 Individual Module Evaluation

To evaluate the error introduced by each of the modules we used the dataset presented above. Each

of the following experiments evaluates the performance of module mi by feeding the ground truth
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Figure 5.2: Architecture of the Voz system and a summary of the error for each module. The
first two rows report performance baselines for each module. Rand. reports a random baseline
and Inf. B. an informed baseline using the most common class in the training set to cast predic-
tions. Then, we report the performance of each module running the fully automated narrative
extraction pipeline (Auto) and applying our methodology to isolate the error introduced by
each module using our incremental dataset (w/GT ). In this scenario, module mi is given as
input the annotated output of the previous module (GTi−1).

GTi−1 as input, and evaluating against GTi.

The experiments follow the topological order presented before. In the experiments we skip the

Feature Vector Assembly as it involves aggregating the output from other modules and external

knowledge (e.g., Conceptnet, Wordnet) which we do not target in our current work.

Mention Extraction

There are a total of 4,791 individual mentions identified by our algorithm, 4,280 correspond to noun

phrases and 511 of which are not actual referring expressions but parsing errors, mostly adjectival

phrases identified as nominal phrases. Our method has a recall of 100% (all of the annotated

mentions were found) but a precision of 89.3% (f = 0.944) matching the informed baseline. The full

4,791 mentions were included in the annotated dataset with specific labels for the 511 non-referring

expressions in order to use the annotations for the remaining of the experiments. The results of this

module are summarized in Figure 5.2.

Coreference Resolution

Our GT2 only contains coreference annotations for characters, and consequently we can only evaluate

the performance of coreference resolution on the 2,781 mentions that are annotated as characters.
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Our coreference process groups those 2,781 mentions into to 1,359 coreference groups. We found

that the overall precision, recall and f -measure metrics for this process are not representative of

the module’s performance due to class unbalance (it is much more common for a pair of mentions

not to refer to the same character, than the other way around). To compute the f -measure for

coreference resolution, we represent the coreference graph as a binary adjacency matrix (where a

1 in column i and row j represents that mentions i and j belong to the same coreference group,

and a 0 means otherwise). The f -measure of the coreference resolution module is 0.757, which is

artificially high, since the adjacency matrix consists mostly of zeroes (precision/recall for zeroes in

this matrix are 0.839 are 0.962 respectively), masking the precision and recall for ones (which are

0.752 and 0.342 respectively). Thus, we used two additional metrics: the average number of distinct

characters referred to in a single coreference group (C/Gr) and the average number of coreference

groups with a reference to a single character (Gr/C). Perfect coreference would score C/Gr = 1.00

and Gr/C = 1.00 meaning that each group only contains mentions to one character and a character

is mentioned in only one group respectively. Errors in coreference resolution will make these values

higher. Voz obtains C/Gr = 1.07 and Gr/C = 6.00. This means that while Voz is relatively good at

separating mentions from different characters, it does not work so well at merging different mentions

of the same character. The results are summarized in Figure 5.2. The random baseline reported

in the first row joins mentions at random and to maintain consistency ends up grouping all the

mentions together (10.7 is the average number of characters per story). On the other hand, the

informed baseline will not join mentions and create singleton coreference groups (11.9 is the average

number of mentions for each character). The third row (w/GT ) reports performance of m2 when

the ground truth (GT1) is used as input. The fourth row (Auto) reports the performance of Voz

feeding GT0 to m1 and its output to m2. Since Mention Extraction (m1) has perfect recall and

no mentions of non-characters are merged with mentions of characters, there was no difference in

performance between w/GT and Auto.
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Table 5.1: Character’s actions: Performance of the verb extraction when checking the verb,
the verb and its subject, and the verb, subject and object arguments. # in GT is the number
of expanded triplets in the ground truth.

# in GT P R f
Verb 1,586 0.802 0.666 0.728
V+Subject 2,627 0.534 0.383 0.446
V+S+Object 3,029 0.260 0.204 0.228

Verb Extraction

Our method identifies 1,335 verbs out of the 1,586 annotated ones in the ground truth across the 21

stories. Considering only the verb part of the triplet, our current method has an average precision

of 0.802, recall of 0.666 and f = 0.727. The missing verbs are not extracted mainly due to parsing

issues (e.g., a verb phrase parsed as a noun phrase) and a few action nouns that cannot be identified

as verbal nouns (e.g., “the arrival”). When comparing the full triplet, our current method has an

average precision of 0.260, recall of 0.204 and f = 0.228, as shown in Table 5.1. This is a difficult

task given the big space of possible combinations as highlighted by the random (randomly assigning

mentions to the subject and object slots for each verb) and informed baselines (randomly assigning

a subject but no object). Although the overall performance of verb argument extraction is very low

we will later see that this does not affect much the global performance of Voz. The results of this

module are summarized in Figure 5.2.

Character Identification

There are 2,781 characters annotated in GT5. Figure 5.2 contains the performance of the predic-

tions for the character identification process before voting. The random baseline reflects a binary

classification and the informed baseline predicts the majority class of non-character. The third row

(w/GT ) reports performance of m5 when feeding the ground truth (GT4) as input. The fourth

row (Auto) reports the performance of this module when Voz is run completely automated from

the beginning up to this point. When feeding ground truth the module yields a precision of 0.850,

recall of 0.852 and f = 0.851, which is slightly worse than the performance achieved when Voz runs

automatically because an additional set of mentions are identified by the Mention Extraction module
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which are easily classified as non-characters, thus improving the resulting f measure.

Analyzing the error of this module using the bias and variance decomposition (error = bias2 +

variance) indicates that the error is decomposed as 0.145 = 0.109 + 0.035. Note that to compute

the bias and variance decomposition, we generate subsamples of the training data, and thus error

might be slightly different than reported in Figure 5.2. While bias represents intrinsic error, it is

well known that the error caused by variance can be reduced by ensemble learning techniques and

by increasing the size of the dataset, pointing out some direction for future work.

Character Identification Majority Voting

Figure 5.2 shows the precision, recall and f -measure after the voting process. Again, the first row

(w/GT ) uses GT5 as input to this module, and the second row (Auto) reports the results of the

output of Voz running completely automated up to this point. As Figure 5.2 shows, the majority

voting process in module m6 does not contribute to any error in the pipeline (it has perfect precision

and recall when fed the ground truth GT5).

Role Identification

Figure 5.2 shows the performance of the predictions for the role identification process. The reported

precision, recall and f -measure values are averages weighted by the total number of annotated

mentions in each class in the ground truth (GT7). As the results show, considering the difficulty

of this task, character role identification is very accurate with a precision of 0.689, recall of 0.672

and f = 0.689 compared to random and informed the baselines (recall there are 7 roles with Hero

being the most common and used for the informed baseline). Also, notice that performance of this

module when fed with ground truth is only slightly higher than when fed with the automatic output

computed by Voz. This means that most of the final error of this task comes from the module itself

(or from noise in the data), and not from error introduced by previous modules.

For this module we also study the source of error using the bias and variance decomposition

analysis replicating the process used in the Character identification module. The error is decomposed

as 0.533 = 0.342 + 0.097 (bias2 + variance). Upon closer inspection of our results, we noticed that

the high intrinsic error of this module (bias) is due to the fact that our approach is biased towards
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the most recurrent roles (Hero or Other) and is neglecting smaller but still important roles (Villain

or Sought-for-person).

Role Identification Majority Voting

Figure 5.2 shows the precision, recall and f -measure after the voting process, where w/GT and

Auto have the same meaning as before. As reported for m6, the majority voting process does not

contribute to any error in the pipeline (as we can see from the perfect f -measure score when fed

with ground truth values).

Individual Module Evaluation Summary

Figure 5.2 summarizes the performance of our narrative information extraction pipeline. With

the exception m1 and m3 that receive as input the output of the Stanford CoreNLP, we report

performance for the rest of the modules using our methodology and feeding the ground truth GTi−1

to each module (w/GT ). For comparison, we also report the performance for each module when Voz

runs completely automated using GT0 (Auto). Looking at the performance results for each module

we can quickly identify a significant error introduced by m3.

5.2.3 Error Propagation

In this section we present our study on how the error propagates through the narrative information

pipeline by pairing different modules as described in the last step in our methodology. In this step,

we select pairs of modules ma and mb, where ma ≺ mb, and we assess how the error introduced by

ma affects the performance of mb. We report the results of the pairs of modules that yield most

insight regarding the introduction and propagation of error.

m1 → m5 (effect of the error introduced by Mention Extraction on Character Identifi-
cation)

The Mention Extraction module (m1) has a recall of 100% and a very high precision. Still there

are some parsing errors and misidentified mentions that may introduce error further down the

pipeline. Table 5.2 reports the performance of the character identification process when module m1

is bypassed by substituting its output directly by the ground truth (GT1) , and when m1 is actually
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Table 5.2: Results of the character identification process (m5) using the ground truth GT1 and
the automatic process of processing the input with the mention extraction module (GT0 +m1).

# Mentions P R f
GT1 4,280 0.858 0.884 0.871
GT0 +m1 4,791 0.844 0.876 0.860

used (GT0 +m1). Since the recall of m1 is 1.00, and the additional set of mentions extracted by m1

that should not be extracted are easily identified by m5 as not characters, the error introduced by

m1 is actually significantly reduced by m5. The 5% of error introduced by m1 contributes to less

than 0.2% of the error of m5, and thus the error of m1 is reduced by a factor of 36 by the time it

reaches m5.

m3 → m5 (effect of the error introduced by Verb Extraction on Character Identification)

To evaluate how the error of m3 propagates down the pipeline to m5, we report experiments under

three conditions: 1) measuring the performance of m5 when fed with the output of m3 2) measuring

the performance of m5 when fed directly with GT3, and 3) measuring the performance of m5 if we

completely remove m3 from the pipeline. Table 5.3 (Module: m5) summarizes these results. Our

results indicate that having verb information improves the performance of the character identification

module. Even when using the underperforming automated verb extraction, error is reduced by 7%

with the precision, recall and f -measure improving from 0.832, 0.851 and 0.841 to 0.844, 0.876 and

0.860 respectively. Counterintuitively, performance when using ground truth (GT3) is slightly lower

than using the automatically extracted verb information but still with an overall error less than 15%.

This artifact is due to the fact that one of the features in our data (whether a mention appears as

the subject of a verb or not) is a significant contributor toward character classification. When using

the ground truth, many entities that are not characters, and that are not recognized by the verb

argument extaction module, are annotated as the subject of verbs (e.g., “the door creaked”), which

is having a negative impact in character classification performance.
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Table 5.3: Effect of the verb features (from m3) on the character and role identification
processes (m5 and m7). Rows report results using the automatically extracted verb features
(m3), using the verb features from the ground truth GT3, and completely removing the verb
features (GT4 w/o Verbs).

Input Module P R f
m3 m5 0.844 0.876 0.860
GT3 m5 0.850 0.852 0.851
GT4 w/o Verbs m5 0.832 0.851 0.841
m3 m7 0.685 0.671 0.675
GT3 m7 0.689 0.672 0.689
GT4 w/o Verbs m7 0.618 0.595 0.602

Table 5.4: Effect of coreference information (from m2) on the majority voting processes (m6
and m8). Rows report results without coreference information, using the automatic coreference
(m2) and using the coreference from the ground truth GT2.

Voting Module P R f
Without Voting m6 0.844 0.876 0.860
m2 m6 0.859 0.878 0.868
GT2 m6 0.896 0.839 0.868
Without Voting m8 0.685 0.671 0.675
m2 m8 0.644 0.624 0.629
GT2 m8 0.728 0.713 0.714

m3 → m7 (effect of the error introduced by Verb Extraction on Role Identification)

To evaluate this effect, we used the same three conditions as with the previous experiment. Table

5.3 (Module: m7) summarizes the results. What we observed is that the Verb Extraction module

error has a significant impact on the output of the Role Identification module, yet much smaller than

the impact on the previous Character Identification module. We also observed is that not using the

verb features at all (last row in Table 5.3) shows a large impact on the output of about 10% in

precision, recall and f -measure. Our hypothesis for this is that verb information play a large role

in identifying the roles of characters since they capture the actions that characters exert upon each

other. Not having this information at all hinders the performance of the Role Identification module

but the difference between having some partially incorrect information or the ground truth has a

small effect because of intrinsic noise in the data and the inner workings of the role identification

task.
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m2 → m6 (effect of the error introduced by Coreference Resolution on Character Ma-
jority Voting)

We compare the automated pipeline feeding GT1 to module m2 and then we repeat the process,

but bypassing m2 and directly using the ground truth GT2. Table 5.4 (Module: m6) summarizes

these results. We observe how the voting process in m6 reduces the error from m5 from 14% to

13.2% to regardless of wether we use m2 or GT2. This results indicates that the current character

predictions are correlated with the groups already found in the coreference resolution information

and therefore, the error in m2 does not affect the error in m6. Notice that this is expected, since

coreference resolution tends to be conservative when making coreference groups, and creates small

groups that contain mostly mentions to the same character (C/Gr = 1.07 and Gr/C = 6.00), and

thus error does not affect the voting process as much as if errors were made in the other direction

(few groups with mentions to different characters).

m2 → m8 (effect of the error introduced by Coreference Resolution on Role Majority
Voting)

Table 5.4 (Module: m8) summarizes these results. In this case, the voting process using the au-

tomatically computed coreference hinders the overall performance of the module (with respect to

not using coreference resolution at all) whereas the ground truth improves the performance for the

module significantly. In this case, the 32.5% of error (f -measure of 0.675) at the output of m8 could

be reduced to 28.6% (f -measure of 0.714) with perfect coreference. Upon close inspection of our

results, we saw that the few times coreference resolution grouped mentions that did not refer to the

same entity together, they were always characters (and that’s why the performance of m6 is not

affected), but it would sometimes group mentions to different characters in the same coreference

group, thus affecting m8.

Experimental Results

In our experimental evaluation we used the proposed methodology to produce an incremental dataset

using and updated version of Voz. Our methodology elicited three phenomena: the error between

some modules is mitigated (i.e., Verb Extraction to Character Identification), the error introduced
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by certain modules has a considerable impact in later modules (i.e., Coreference Resolution to Role

Identification), and the error between some modules is independent (Character Identification and

Role Identification). Figure 5.3 provides a visual representation of the error distribution through

the pipeline, showing how the error introduced by each module propagates down the pipeline.

The main implication of the results presented in Figure 5.3 is that working toward improving

modules such as verb extraction will have no immediate impact on the performance of the character

and role identification tasks. The only module that if improved would significantly improve role

identification is coreference resolution. Notice that this does not mean that verb extraction does

not contribute toward character and role identification, but that the current performance of verb

extraction is enough to improve results of character and role identification to the same extent as if

verb extraction produced perfect predictions.

Overall, our automatic role identification results exhibit a 32.5% of error (f -measure of 0.675),

8.5% of which can be directly attributed to coreference resolution since the majority voting process

could be improving the results of m7 (f -measure of 0.675) by 13.5% (to have an f -measure of 0.714)

but is actually hindering the results by 4.6% (obtaining an f -measure of 0.629). Of the remaining

error introduced by the role identification module, less than 0.1% can be attributed to the verb

extraction error and the rest comes from external knowledge error in the feature-vector assembly

(m4) and other biases in our processes and the training data.

On the one hand, using the Verb Extraction information (with a 55.4% of error when identifying

the subject of the verb) is enough to correctly predict role labels for a few mentions referring to

magical beings (such as a talking oven) and decrease the error for the role identification task by

7.3%. On the other hand, our methodology indicates that reducing the error of the Verb Extraction

module would not decrease the error of the character and role identification tasks.

5.3 Discussion

The Coreference Resolution module had been already identified as a bottleneck in our previous re-

search167, but thanks to the methodology presented in this work, we can now assess exactly its

contribution to overall error: when used for majority voting, the automatic coreference information
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Figure 5.3: Summary of error distribution through the pipeline when running Voz using GT0
as input. The error of a module goes to 0 when a subsequent module does not use the output of
the module. m4 is not included since we did not evaluate the error introduced by the external
knowledge sources.

worsens the performance of the role identification process by 8.5%. Our methodology elicits the

greater benefits of improving this module instead of the Verb Extraction module. The Verb Ex-

traction module will be more prominent for other tasks such as identifying affective relationships

between characters. If we pursue this task we can apply our methodology again.

Moreover, in order to properly understand the phenomena behind the low impact of coreference

resolution in the voting process it was necessary to find the proper metrics to assess the performance

and error. The two metrics we introduced (Gr/C and C/Gr) proved more informative through the

process, specially as our system achieves a low misgrouping (C/Gr) which would otherwise have a

much greater effect in voting.

Finally, when assessing the performance of the individual modules of our pipeline, we observed

considerably higher error rates than in previously reported results of the NLP tool we currently use

(specially for the coreference resolution task29). The discourse and rhetoric figures used in the stories

in our dataset, the variability of the referring expressions and some of the scenarios described make

it challenging to identify all the mentions of a single character. This leads to identifying multiple

characters that are in fact the same one. This contrasts with the corpora typically used in NLP
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work such as the CoNLL shared tasks 28;29 or the Penn Treebank Project171 which contain a much

more regular language (i.e., Wall Street Journal text) used for training the models provided by the

off-the-shelf systems and the test sets in the NLP shared tasks.

Through the application of our methodology, we learned that part of the error of certain NLP

tasks may be mitigated by later modules in the pipeline. In our study we found that even though

verb extraction has a low performance when studied in isolation, its output is sufficient to reduce the

overall error of our system. This novel methodology can be applied to a wide variety of information

extraction pipelines in order to elicit error contribution information that may not be obvious. It

can inform decisions related to determining what modules may be preferred to invest improving and

which may not yield major performance gains.
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Chapter 6: A Probabilistic Framework for Non-linear Information
Extraction Pipelines

The problem we address in this work is how to define a framework that allows for integrating results

computed in different stages of an information extraction pipeline into a decision processes within

the same pipeline, ideally without requiring modification of the internal function of these modules.

The motivation for this problem is that in pipelined architectures, the data flow goes through a

sequence of modules implementing different tasks. In a linear pipeline, the output of one module

mk is the input of the next one mk+1. However, it might be the case that for two modules ma and

mb, knowing the output of one can improve the performance of the other and the other way around.

Since we need to choose an order in the pipeline, if ma will be executed first, the output of mb will

not be known at the time ma runs.

In Chapter 4, specifically, Section 4.5, we outlined work that exploits a feedback loop on an

information extraction pipeline in order to improve the task of coreference resolution using narrative

information. Incorporating narrative information for different tasks and in different stages of our

narrative information pipeline is one of our key contributions. In this chapter we expand on that

work by generalizing our approach and expanding it to a second task: verb argument identification.

In order to do so we propose a probabilistic framework that relies on two key ideas: 1) representing

the output of each module in the pipeline as a probability distribution, and 2) defining a new type

of module we call a decision maker that can aggregate the outputs of multiple modules.

6.1 Probabilistic Inference in Natural Language Processing and Informa-
tion Extraction Pipelines

The goal of the work described in this section is to incorporate predictions generated by a later

module mb in the pipeline into the decision processes of an earlier module ma without having to

modify the internals of those modules.

We achieve this by introducing two key components in the pipeline:
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Figure 6.1: a) Illustrates a non-linear scenario where the output of module mb is expected to
inform the task of module ma. b) Illustrates our proposed solution which solves this scenario
by introducing a new auxiliary module ma′ and a decision maker, without modifying modules
ma nor mb.

• First, we introduce a new module ma′ , tasked with mapping the prediction of mb into a

probability distribution for the task addressed by ma. Note that mb can be a module that

already operates in parallel with ma or a module later in the pipeline.

• Second, we introduce a new decision maker module to aggregate the predictions of ma and

ma′ and forward the aggregated output downstream.

The aggregation scheme described above is shown in Figure 6.1. In the figure mb comes after

ma but that is not strictly necessary as we will demonstrate later.

6.1.1 Module Outputs to Probability Distributions

Our approach requires different modules in the pipeline to yield a probability distribution as their

output, that is, consider a prediction task T , where the goal is to predict the value of certain variable

Y , given some situation X, which takes a fixed set of values Y = {y1, ..., yn}. In our framework,

a predictor is a function fk(X) which generates a probability distribution pk over the values Y can

take. Since we do not want to modify the internals of existing modules, we instead propose adding

an intermediate module (ma′ in Figure 6.1) that will transform the original module’s output into a

probability distribution.

Given a predictor fk for a variable X, which can take n values, and a training set T =

{(x1, y1), ..., (xm, ym)} (a collection of labeled instances), intuitively, we should be able to trans-
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late the prediction of fk into a probability distribution pk in the following way:

pk(Y = yi|fk(X) = yi) =

=
|{(x, y) ∈ T |y = yi ∧ fk(x) = y}|
|{(x, y) ∈ T |fk(x) = y}|

The intuition on that formula is that, given a predictor, we only know the value of the current

prediction but since we know the set of values X and we have access to a training dataset, we can

use the distribution in the dataset for the context we are interested in to draw a probability of the

current prediction.

However, we found that this estimation method biases the probability distributions toward the

raw distribution of labels in the training set, which in our case are very unbalanced. Thus, in order

to correct for the unbalance, we applied a correction factor, |T |
|{(x,y)∈T |y=yi}| , and then renormalized.

This results in probability distributions that are more resilient to biased training sets. For example,

when a module just predicts outputs at random, the correction results on probability distributions

that approximate uniform distributions, rather than approximating the raw distribution of the data,

which is preferable in our framework. We may need to calculate a probability distribution for a

predictor of a certain variable X which takes a fixed set of values X = {x1, ..., xn}. To do so, we

can use the training set to compute a probability distribution p′k of the values in the training set for

each of the predictions in X by defining a mapping function where pkxi
= p′kxi

.

For example, let us consider the task of coreference resolution where we have a boolean variable

that determines wether two mentions refer to the same entity or not. In this case we have two values

in our training set (yes/no) and since most mentions will not be to the same entity we will have a

skewed probability distribution like {0.2, 0.8}.

6.1.2 Aggregating Probability Distributions

Intuitively, we will model each module in the pipeline as a predictor for a given task. Now, consider

we have a set F = {f1, ..., fn} of predictors for the same task. Each prediction fk generates a

probability distribution pk over the possible values of X. For example, in the task of coreference
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resolution we may have two predictors f1 and f2 using different approaches (e.g., matching nouns or

narrative roles) that are trying to predict the value of a boolean variable X. Each of the predictors

yields a probability distribution over the two values (yes/no) of the prediction task such as {f1 7→

k1 = {0.5, 0.5}, f2 7→ k2 = {0.9, 0.1}} where we can see that the first predictor is not confident in it’s

prediction and the second one is very certain that the two mentions refer to the same entity. The

first problem we need to solve is how to aggregate such probability distributions in order to obtain a

single probability distribution over the possible values of X taking into account all the predictions.

In order to solve this problems, we make the following assumptions:

1. For a variable X in the pipeline, we assume the existence of a set of modules implementing k

predictors F = {f1, ..., fn}. The prediction of each predictor fk, is encoded as a probability

distribution pk over the set of values X the variable X can take.

2. Assume the predictors in F are independent.

3. Any prior information on the predictors’ reliability, is represented as a set of weights w1, ..., wn,

where wk ≥ 0 for any k between 1 and n. These weights do not have a probabilistic inter-

pretation, and it can be the case that
∑n

k=1 wk 6= 1. If no information is available, uniform

weights can be used.

4. Any prior information on the value of X is encoded as a prior distribution P0 over the possible

values the variable X can take. If no information is available, a uniform distribution can be

used.

Given the previous assumptions, the predictions p1, ...pn can be aggregated into a single proba-

bility distribution PF by the Bordley’s aggregation method172:

PF =

n∏
k=1

( pk

P0
)wkP0

n∏
k=1

( pk

P0
)wkP0 +

n∏
k=1

( 1−pk

1−P0
)wk(1− P0)

The final value for X is determined by the aggregated probability distribution PF as follows:
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Figure 6.2: Architecture of Voz. Arrows describe information workflow and dashed arrows
highlight the feedback loops.

x∗ = argmaxxk∈XPF (X = xk)

In case of a tie, an ad-hoc tie breaker is used (the tie breakers used in our work are described

below). With the aggregation scheme defined, predictions from any number of parallel modules

working on the same task can be aggregated trivially. In the remaining of this section, we will use

the term decision maker to refer to the additional modules we add to the pipeline to implement this

probability distribution aggregation scheme.

6.2 Applying the Methodology to Introduce Feedback Loops in Voz

Let us now we discuss how to use this aggregation scheme in order to define non-linear pipelines. We

show two use cases where we apply it to two tasks within Voz, our information extraction pipeline,

specifically, we feed the output of the Character Identification and Role Identification tasks back to

the Coreference Resolution and Verb Identification tasks. Let us now describe the modules used in

this instance of our pipeline.

Coreference Resolution. As described earlier in this dissertation, the coreference resolution

task consists of the grouping of mentions in E into a set of non-overlapping coreference groups where

each coreference group is a subset of mentions that refers to the same referent (e.g., to the same

character in the story). This is a generalization and extension of the work described in the previous

section; specifically, Voz exploits two non-linear pipeline features:
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• In the first run through the pipeline, Voz includes four parallel modules m1, . . . ,m4 that

predict coreference. Their predictions are represented as a probability distributions and ag-

gregated using a decision maker. The four parallel modules provide different information for

the coreference resolution task: m1 encodes the output of the Stanford coreference resolution

system. m2 links mentions with matching common and proper nouns. m3 uses lexical and

syntactic features to break groups with no gender or number agreement. m4 links mentions

with similar syntactic and semantic features. These first 4 modules were used in our previous

work and are described in further detail in Section 4.5.

• In subsequent iterations, Voz incorporates a feedback loop. As shown in Figure 6.2, once

the last two modules of the pipeline has been executed, their predictions are fed back and

incorporated into the coreference resolution prediction as two additional auxiliary modules

(providing a total of 6 modules aggregated for coreference resolution). After the first run of

the pipeline, the final predictions are fed back and incorporated into the coreference resolution

task as two additional auxiliary modules (providing a total of 6 modules to aggregate). These

modules provide additional information to the decision maker: m5 joins mentions with the

same predicted roles, and m6 joins mentions with the same predicted character types. These

last 2 modules are also analogous to m5 and m6 described in further detail in Section 4.5.

The box Coreference Resolution in Figure 6.2 illustrates this setup. m1, . . . ,m4 are available before

the feedback loop and m5 and m6 are available for subsequent iterations.

Each module mk implements a predictor and encodes its output as an |E| × |E| matrix pk of

probability distributions, where pk(i, j) is a distribution representing the probability with which mk

considers mention ei and ej belong to the same coreference group or not.

The outputs of each module mk are translated into probability distributions using the estimation

described in the beginning of this section. Then, the matrices are aggregated cell by cell into a single

|E| × |E| matrix PF using a decision maker. The prior P0, the set of weights, and the tie breaking

mechanism are set in the following way:

• An uniform distribution is used for P0.
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• The reliability wk of each module is computed from the module’s performance on training data

(F-score for identifying mentions that belong to the same group)

• If there is a tie in any of the cells in PF (same probability for the two mentions to belong and

not belong to the same group), then the mentions are considered not to belong to the same

coreference group.

Matrix PF is then translated to a |E| × |E| adjacency matrix G where G(i, j) = 1 indicates

mentions ei and ej belong to the same coreference group when PF (i, j) is higher than the probability

that they do not belong to the same group. G(i, j) = 0 otherwise. This matrix G is then made

consistent by setting any cell G(i, j) = 1 if G(j, i) = 1 or if there is a mention ek such that G(i, k) = 1

and G(k, j) = 1.

Verb Extraction. Specifically, we focus on a subset of the standard semantic role labeling28

task, since we are only interested on identifying which are the mentions that are the subject and

object of each verb.

This task uses a single module m7 in the first run. The output of role prediction is fed as a

second parallel module m8 for subsequent iterations creating a feedback loop.

• m7 first identifies a set of verbs V = {v1, ..., vn} by their part-of-speech tags and uses the typed

dependencies from the Stanford CoreNLP to extract their arguments. The dependency tree is

explored and for each mention and verb in a given sentence, this module predicts whether the

given mention is the subject, the object, both subject and object of the verb, or neither. The

output is translated to a probability distribution over the four possible predictions (subject,

object, subject and object, or none) using the training set with the same procedure described

before.

• In subsequent iterations, Voz incorporates a feedback loop using an additional module m8

that attempts to predict relations between mentions and verbs given the narrative roles of the

mentions. For example, characters with the role “villain” are more likely to be the subject of

verbs expressing violence. We use this methodology:
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– Verbs are classified into a set of classes A (after exploring several alternatives, we used

the set of verb frames in FrameNet173 as our set of verb classes).

– Then, for each possible role (villain, protagonist, etc.), we compute which relation among

subject, object, both or none is the most common for each verb class. For each men-

tion/verb pair in a sentence, this module predicts this most likely relation.

– Finally, the predictions are translated to a probability distribution using the described

procedure.

The box Verb Extraction in Figure 6.2 illustrates this setup. m7 available before the feedback

loop is shaded in white whereas m8 available for subsequent iterations is shaded in gray.

Both modules in this task encode their output as a |E|×|V | matrix pk of probability distributions

where pk(i, j) is a probability distribution representing the prediction of module mk for the relation

between mention ei and verb vj . Moreover, notice that only those cells where the corresponding

mention and verb appear in the same sentence have a value. In the first run there is no decision

making process involved since there is only one module m7 implementing the predictor for the task.

In subsequent iterations, matrices are aggregated cell by cell to produce a single matrix PF , and

then predictions cast by selecting the value with highest probability in each cell.

The prior P0, the set of weights, and the tie breaking mechanism are set in the following way:

• An uniform distribution is used for P0.

• The reliability wk is computed from the module’s performance on the training dataset; specif-

ically, we use the F-score for identifying verb arguments (subject and object).

• Should there be a tie in any of the cells of matrix PF , preference is given to “subject and

object”.

The result of the aggregation process is an |E| × |V | matrix of mention/verb relations, this

information is then encoded into the set of features representing each mention that are passed on to

the next module of the pipeline.
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Table 6.1: The first three rows report the performance of the coreference resolution task on
three aggregation scenarios: 1) the first run through the pipeline (m1, . . . ,m4), the aggregation
used in the iterative feedback loop (using m1, . . . ,m6), and 3) an aggregation where we replace
m5 and m6 with the ground truth variants m5GT

and m6GT
. The next eight rows report the

individual performance of the parallel modules. The goal is to achieve |Gr| = 258 with C/Gr = 1
and Gr/C = 1.

|Gr| C/Gr Gr/C P R F MUC B3 CEAFe

First run before iteration 280 1.116 4.742 0.293 0.261 0.276 80.11% 57.34% 16.37%
Feedback loop 253 1.197 3.862 0.311 0.272 0.282 92.92% 38.63% 14.32%
Feeding ground truth 262 1.139 4.186 0.302 0.278 0.290 93.18% 53.84% 20.79%
m1 Stanford coreferences 1091 1.061 5.433 0.758 0.103 0.181 79.9% 56.65% 39.7%
m2 Matching nouns 1198 1.058 4.914 0.944 0.099 0.179 51.97% 42.02% 21.5%
m3 Agreement breaker 1981 N/A N/A N/A N/A N/A N/A N/A N/A
m4 Similarity joiner 291 1.938 2.186 0.187 0.937 0.312 0% 22.61% 12.48%
m5 Role joiner 188 2.25 1.63 0.261 0.399 0.316 93.5% 36.86% 9.27%
m6 Type joiner 94 2.745 1.357 0.112 0.598 0.189 0% 22.61% 12.48%
m5GT

Ground truth for m5 191 2.022 1.638 0.255 0.454 0.327 95.36% 82.94% 44.49%
m6GT

Ground truth for m6 94 2.745 1.357 0.112 0.598 0.189 0% 22.61% 12.48%

The rest of the modules used in this work, specifically Character Identification and Role

Identification exploit the work described in Sections 4.3 and 4.4 respectively.

We performed an empiric analysis of our approach with the purposes of determining 1) whether

feedback-loops can improve performance with respect to linear pipelines, and 2) whether our aggre-

gation approach is robust to feeding back noisy or irrelevant information.

The dataset used in the experiments in this section is described in Section 3.1. It was generated

from 20 Russian folktales from which we removed quoted and direct speech (i.e., dialogues and pas-

sages where the narrator addressed the reader directly). The edited dataset contains 14879 words

and annotations for 5131 verbs with 11321 argument relations (4105 of which involve individual

characters), 7410 mentions (4356 of which are mentions to individual characters) and 1350 coref-

erence groups (258 of them representing characters). Extracting information such as coreference

from the stories in either dataset requires significant inference based on commonsense knowledge

and contextual information.

All the reported results employ a leave-one-story-out methodology, where when testing on one

story, the remaining stories are used as the training set.
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6.2.1 Evaluation of the Coreference Resolution Feedback Loop

These experiments evaluate the performance of the feedback loop in the coreference resolution task.

We compare the performance of three different scenarios: 1) First run before iteration: The first

run through the pipeline (where only predictors m1, . . . ,m4 are available), without feeding back any

information, 2) Feedback loop: feeding back the character and role predictions after one execution of

the pipeline, and then executing two iterations of the feedback loop (where m1, . . . ,m6 are used),

and finally 3) Feeding ground truth: we replace m5 and m6 with the ground truth m5GT
and m6GT

(this last scenario is for evaluation purposes only and represents the upper-bound on the performance

that can be gained with the feedback loop). The first three rows in Table 6.1 report coreference

resolution performance in these scenarios; role prediction accuracy is reported in the text.

To evaluate each scenario we report the number of character coreference groups |Gr| (the closer

to the actual number of characters in the ground truth, 258, the better), the average number of

different characters in each group, C/Gr (the closer to 1 the better), and the number of groups

the mentions of a character are spread across, Gr/C (the closer to 1 the better). In the table we

report precision (P), recall (R) and F-value of the links identified between mentions in our adjacency

matrix. For comparison, we also include the standard MUC, B3 and CEAFe metrics computed using

a reference implementation174.

We can see how m1 and m2 alone fail to group all the characters leaving 1091 and 1198 groups

respectively. On the other hand, we can see how m4, m5 and m6 group too many characters in each

group (C/Gr). m3 does not represent a coreference graph as it is intended to break groups instead

during the decision making process. It is an adjacency matrix where a 0 represent edges that needs

to be explicitly removed (a coreference group broken) and 1 otherwise.

Concerning role prediction for characters, classification accuracy is 0.342, 0.394 and 0.354 for

each of the three scenarios respectively, showing that the feedback loop does indeed improve the

system performance. In the third scenario we expected the ground truth of roles and characters to

give us an upper bound for the role identification task. Contrary to our expectations, we observe

how the high recall of m5GT
creates bigger groups which in turn impact the performance of the
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system slightly lowering the role prediction accuracy.

Concerning the performance of coreference resolution, in the first scenario, the number of groups

improves from 1091 when using only m1 (Stanford) to 280. This is because the Stanford coreference

resolution system has a very high precision, but low recall. By aggregating more information,

precision lowered, but recall increased slightly. In the second scenario, the number of coreference

groups improve even more, to 253, thanks to an even higher recall. In the third scenario, the number

of coreference groups was 262, where we see some of the mis-groupings have been fixed but there are

still not aligned with the 258 annotated characters. We conclude that feeding back role prediction

information helps coreference resolution, thus confirming that the use of feedback loops can improve

the performance of some NLP tasks.

6.2.2 Evaluation of the Verb Argument Extraction Feedback Loop

In this second set of experiments we evaluate the performance of the feedback loop in the verb

argument extraction task. We experiment with three scenarios: 1) the first run through the pipeline

(which is equivalent to running m7 alone). 2) Feedb. loop: iterating two times using the feedback

loop and 3) Feeding GT.: feeding back the ground truth for the roles (again, this scenario is for

testing purposes only, to evaluate the potential gains that can be achieved by feeding back role

information). The first three rows in Table 6.2 correspond to these scenarios. To evaluate each

scenario and module we report the number of verb-argument relations identified and the precision

(P), recall (R) and F-value of the relationships in the verb-argument matrix.

In this case, we can see no significant change in performance between feeding back role information

and not feeding back information. This indicates that narrative role information is not very useful

in identifying verb arguments. This can be seen by the low performance achieved when using m8 (F

measure of just 0.107 and only 483 relations found) as it only finds new relationships with mentions to

characters. As a result, we observed that the probability distributions that our approach translates

the output of m8 to are very close to uniform distributions, and thus, they barely affect the decision

making process when aggregated with m7. This indicates that our approach is robust enough to

handle irrelevant information fed back and not hinder the performance of tasks where other modules
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Table 6.2: The first three rows report the performance of the verb extraction task on three
aggregation scenarios: 1) the first run through the pipeline (m7), 2) the aggregation used in the
iterative feedback loop (m7 +m8) and 3) an aggregation where we replace m8 with the ground
truth variant m8GT

. The next three rows report the individual performance of the modules.
|Rel| = 11321 is the target.

|Rel| P R F
First run bef. 2737 0.353 0.506 0.416
Feedb. loop 2689 0.357 0.498 0.416
Feeding GT. 2548 0.359 0.490 0.414
m7 Deps. 2737 0.353 0.506 0.416
m8 Role act. 483 0.300 0.096 0.145
m8GT

505 0.301 0.102 0.152

provide accurate predictions.

6.3 Discussion

In this chapter we presented a probabilistic framework that allows the addition of non-linear work-

flows on top of traditional pipeline architectures typically used in information extraction tasks. Our

framework is based on representing the output of each module of the pipeline as a probability dis-

tribution and then a decision maker module capable of aggregating such distributions. Our results

confirm that some feedback loops can improve the performance of certain tasks, such as corefer-

ence resolution. Additionally, our results for verb argument extraction show that the aggregation

mechanism is robust enough to handle situations where the information that is fed back does not

contain relevant information for the task at hand (e.g., narrative roles, which do not contribute to

verb argument extraction) and not hinder the performance of the task. One practical aspect of the

proposed approach is that it does not require internal changes on existing modules, even for those

which do not naturally represent their output as probability distributions.

As part of our future work we would like to explore adding additional feedback loops, both

reusing the same narrative information described in this chapter (e.g., characters and their roles)

for other NLP and IE tasks (e.g., word sense disambiguation for verbs involving character’s actions)

and other high-level narrative information (e.g., narrative functions) for the current tasks in our

pipeline (e.g., using narrative function information for verb argument identification).
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Chapter 7: Bridging the Gap between Narrative Information Extraction
and Story Generation

The long term goal of our work is to enable the automatic extraction of narrative information from

natural language text and use the extracted information for storytelling and story generation appli-

cations. Traditionally, the body of research around storytelling and story generation applications has

relied on handcrafted models in some knowledge representation formalism and/or hand annotated

text templates. These models and annotations tend to use complex specifications and need to be

authored by knowledgeable technical people making their development tedious and expensive. We

want to bridge work from narrative information extraction with that in story generation so that the

structured narrative information extracted by the first can be used as input to the other.

In this chapter we present our approach for bridging the gap between work on narrative infor-

mation extraction and work on story generation in order to implement end-to-end computational

narrative systems. Then we present our work on using the narrative information extracted by Voz,

our automated narrative information extraction pipeline for an existing story generation system:

Riu 3;4. In order to do that we describe the steps necessary to map the structured narrative infor-

mation output from Voz into the input required by Riu. This enables us to implement a full-fledged

end-to-end, text-based, story generation system. Finally we report our analytical findings and the

results of a user study in which we intended to evaluate the human perceived quality of the generated

stories given the system’s shortcomings described in the previous chapter.

7.1 End-to-end Computational Narrative Systems

Earlier in this dissertation, in Sections 2.4 and 2.6, we outlined two of the main lines of research within

computational narrative: 1) storytelling and story generation applications; and 2) analyzing or

model existing narratives in order to study existing literature or validate narrative theories. Despite

both being actively developed, there are very few instances of work across both areas of research. In

Section 2.5 we surveyed the different computational models used within different approaches. Figure
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Figure 7.1: Overview of input and output in computational narrative applications in the
main two areas of research within computational narrative. Black arrows indicate existing
approaches (solid arrows indicate automated approaches, dashed arrows indicate manual and
semi-automatic approaches). The pink arrow shows the related work by Li et al.10, and the blue
arrow indicate our work for text-based end-to-end computational narrative systems as described
in Section 7.2; these are highlighted since they are end-to-end approaches combining both areas
of work.

7.1 provides a brief visual summary of this work. The left-hand side of the figure represents work

on narrative analysis and the right-hand side represents work on narrative generation. The four

vertical axes represent the complexity of the input and output of these systems. The center of the

figure contains a set of computational models of narrative employed by the different pieces of work

shown in the figure and the existing or potential mappings between them that we discuss in the next

section.

7.1.1 Mapping Computational Narrative Models

Despite the lack of consensus on the most appropriate models to encode narratives or represent

different features (or even human narrative mental models)75, we observed some commonalities

between the underlying models used in these different areas of computational narrative (those used

in narrative generation and those used in narrative analysis described in the previous section),

which could lead to the construction of end-to-end systems (where by “end-to-end” systems, we

mean computational narrative systems that extract narrative models directly from text and use

those to generate new narratives) that use narrative analysis techniques to generate the models

required by narrative generation techniques.
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For example, mappings between models based on shallow annotations has been explored in

specific support modules within computational narrative applications (such as text generation using

text modification3;4;175) but do not truly enable the creation of end-to-end systems. We can propose

a few other unexplored intuitive mappings, that is, we can establish a mapping between the output

models acquired by information extraction systems (shown on the left in Figure 7.1) and the models

required as input by story generation and storytelling systems (shown the second from the left in

Figure 7.1), instead of having to hand-author them. For example, we could use other algorithms

to extract specialized models such as: social networks and character relationship information19;128

for a social simulation125 or character-centric multi-agent story generation system104;176; or use a

sequence of events and extracted location information to generate virtual environments for a story

to happen7;90; or; use automatically annotated text as templates for natural language generation

systems.

The most coveted mapping would be between automatically extracted rich semantic annotations

or even symbolic models of a narrative to planning/frame-based models. Since these planning

and frame-based models are often manually crafted, the required features for storytelling or story

generation applications are manually crafted as well. There are, however, a few examples of work

that attempt to build end-to-end systems. An example is the work of McIntyre et al.114. They

attempt to automatically extract semantic frame knowledge from a corpus of stories, sample their

knowledge base, assemble a frame-based story representation and use a text realization component

to generate text. They then use a generate-and-and-rank iterative process with an interest and a

coherence model to refine the generated output. More recent work by Li et al.10 relies on a set of

crowd-sourced short reports describing a given theme (e.g., bank robbery). They extract Shankian

script-like structures15 from each and assemble them into a plot graph that joins common events.

These graph-like structures are related to a set of plot points or planning operators used to describe

a story space. Despite not being full-fledged symbolic representation nor completely eliminating

human intervention, this approach could exploit existing text reports.

Other examples include text-to-image systems that extract a semantic representation from short,
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simple and limited domain text. Similar than the previous work, there is a mapping step that

compiles and links the different extracted representation components (e.g., the catalog of participants

and the sequence of events) with commonsense and domain-specific databases. Then, instead of

handing this internal model to a storytelling system, it is used to generate images and/or animations

for the final user9;58. We identified some limited work related to interactive learning systems and

digital entertainment with similar characteristics104;176.

In our survey, we have seen some research efforts in the direction towards end-to-end systems.

Currently, these seem to be limited in terms of the kind of text they can process (i.e. only short

simple text), their scope (i.e. only domain-specific applications) and/or their output (can only

render a limited inventory of objects or generate a small specific set of stories)9;10;58. Another

prominent class of examples implementing end-to-end computational narrative systems includes de

statistical approaches described in Section 2.5.3 which include Markov models and neural networks.

These approaches and models can be used to implement end-to-end systems that connect narrative

analysis and generation tasks, specially in text-based systems. Some common downsides of these

methods are the often large training data requirements68 and the fact that there are still open

research challenges in keeping character, word, and sentence level neural networks coherent for story

generation69. Moreover, the lack of explainability and the fact that the learned models are often

difficult (if possible at all) to tweak by human authors is in conflict with the often desired property

of authorial control over the output177.

7.2 Connecting Voz and Riu

Towards our goal of developing a prototype of an end-to-end story generation system that can take

their input in natural language with minimal human intervention; given the findings presented in the

previous section, in this section we present our work on mapping models that can be automatically

extracted using narrative analysis work to those models used in narrative generation work.

Specifically, we worked on an end-to-end system that combines Voz, our automated narrative

information extraction pipeline focused on identifying narrative elements from a set of Russian folk

tales, with Riu, an analogy-based story generation system102. The end goal is to create an analogy-
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based narrative generation system that works directly from natural language, without requiring

the human user/author to craft any specialized narrative model. Thus, the human user should be

able to provide a partially written story in natural language, and the system would automatically

complete it. The background knowledge required by the system is provided in the form of narrative

domain-knowledge, specifically, a formal representation of a subset of Proppian narrative theory that

describes the structure of character roles and narrative functions, and a case of annotated examples

for classification. Additionally, the system takes as input a corpus of natural language stories, which

are automatically analyzed in order to populate the content for the internal computational models

of narrative used.

We selected these two systems because compatibility between the knowledge structures that Riu

requires and the structures that Voz can extract from text. Specifically, Voz extracts a catalog of

entities and uses verb argument information to extract a graph-like structure. Voz also identifies

high-level narrative information from the text such as the narrative roles different characters fulfill

and narrative structure information, specifically Propp’s narrative functions25. All this information

is used in the analogy and mapping modules within Riu. The final system uses the extracted

information for then generating natural language and implements a fully realized story generation

system that utilizes a given corpus of stories for story analogy and natural language generation.

7.2.1 Riu

Riu is an interactive story generation system that uses the Story Analogies through Mapping (SAM)

algorithm102. Analogy-based story generation emulates the human cognitive process of analogy-

making by identifying similarities and a mapping between two domains. This general idea is that if

two domains are similar in a certain way, they are likely to be similar in another and we should be

able to find a mapping which we can exploit to transfer knowledge from one another.

Specifically, Riu operates over a repository of complete stories. The story generation process

starts with a given story fragment as input target story. Riu then identifies which of the complete

stories in the repository has a stronger analogy with the provided story fragment (the source story).

Riu then calculates an analogical mapping between the target and the source stories, and completes
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Figure 7.2: Overview of our end-to-end story generation system. The knowledge structures
required by Riu are generated automatically by Voz from natural language.

the target story by analogy with the source. Riu requires all the input stories to be encoded using

a frame-based symbolic knowledge representation formalism. In all the existing literature on the

Riu system, each of the stories in the repository and the given story fragment have been manually

authored. In this work, we will study the performance of Riu when the representation of such stories

is automatically generated using the Voz system, as illustrated in Figure 7.2.

Riu’s Story Representation

Riu uses the Story Analogies through Mapping (SAM) algorithm which internally uses the Structure

Mapping Engine (SME) algorithm described by Falkenhainer et al.94. Thus, given SEM is a symbolic

analogical mapping algorithm, it requires a symbolic representation of the stories.

Riu represents stories as scenes and phases. A scene is a small encapsulated segment of a story

involving a limited set of characters, actions and locations. Furthermore, each scene is broken

into several phases (which represent specific story states the relations between the characters and

props in the story at that particular state, and the actions the characters are performing). For the

purposes of this paper, we will see a story as a scene which is in turn represented as a sequence of

phases (more complex stories are represented in Riu as collections of scenes, but we will focus on

single-scene stories in this paper). Each of these phases contains two representations: a Computer-

Understandable Description (CUD) and a Human-Understandable Description (HUD). The CUD is

a symbolic, frame-based representation of the phase that includes the different entities present in

the phase and a graph-like structure that defines links between them using expressions. The original

authors of Riu reported experiments using different representations in the CUD and have shown

that the representation formalism has a substantial impact on computational analogy4.
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On the other hand, the HUD is a collection of annotated natural language phrases and sentences.

The CUD and HUD are linked, so that during the analogical reasoning process, SAM can manipulate

the CUD and use the HUD to realize the final text of the story. An example of such representation is

shown in Figure 7.3. For more detail on these representations, we refer the reader to the previously

published work on Riu 102.

Analogy-based Story Generation

Given an incomplete input target story, Riu compares it with the stories in its repository and

selects the most similar story (the source story). In order to evaluate similarity, Riu uses both the

Computer-Understandable Description (CUD) and the Human-Understandable Description (HUD)

to compute structural and surface similarities4. Then Riu invokes the SAM algorithm for finding an

analogical mapping between source and target stories and generating the output story by completing

the partial target story1.

SAM takes two input parameters: a source story S from the story repository and a target T

in place from the given story segment. Note that both S and T are story representations encoded

as a sequence of phases, each with a CUD and HUD. It generates a set of all possible consistent

injective mappings M between S and T . Then, SAM finds a mapping m∗ ∈ M that maximizes

a numerical similarity between the entities and relationships defined in the CUD for the phases in

S and T using the mapping m∗. With this mapping m∗, SAM can construct a new story R by

applying the mapping m∗ to the phases of the source S, and then bringing them to T . For each

element in the CUD that is brought from S to T , the corresponding elements from the HUD are

also brought to T (applying the appropriate transformations given the analogical mapping) in order

to realize the output in natural language.

Mapping the Output of Voz to Riu’s Input

In this section we describe how we mapped the output of Voz to the dual representations used by

Riu.

There are three distinctive parts to consider: segmentation (breaking a story in phases), entities
1Available online: https://sites.google.com/site/santiagoontanonvillar/software
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  )
  (:templates
    (t1 (v1 (dragon "A dragon") " appeared
     near" (kiev "Kiev")) " ; " (v2 (dragon 
     "he") " took " (tributes "heavy tribute 
     from the people - a lovely maiden from 
     every house, whom he then devoured")) ". 
     Finally, it was the fate of " (v3 
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     to " (dragon "the dragon")) ".")
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     (princess "her") " to " (lair "his 
     lair")) " but did not devour " (princess 
     "her") ", because " (princess "she") " 
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    (xt1 (x1  (dragon "the dragon") " is the " 
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  (phase1
    (:entities
      (anthropomorphized :type animate)
      (magical-being :type anthropomorphized)
      (dragon :type magical-being)
      (setting :type entity)
      (location :type setting)
      (kiev :type location)

...
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      ((appear dragon kiev) :name v1)
      ((take dragon tributes) :name v2)
      ((role-Villain dragon) :name x1)
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Figure 7.3: Example input used by Riu. Bold labels identify information from Voz. Different
colors illustrate linked parts.

(from the text’s mentions) and expressions (that link entities and provide structure for the SME

algorithm to use). We generate these by automatically transforming and annotating the output of

Voz described in the previous chapters.

Segmentation. Riu uses two levels of segmentation; a story is divided in scenes and each scene

is divided in phases. Given the significant amount of subjectivity involved in determining

the scenes and phases of a story, we used the notion of narrative functions as defined by

Propp25 for this purpose. Thus, we use these functions to segment each story in 5 phases:

phase 1) the introductory and setup functions (alpha – lambda in Propp’s work); phase 2)

villainy/misfortune, mediation, counteraction and departure (A/a, B, C, ↑ in Propp’s work);
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phase 3) the main development of the story (including functions D – K); phase 4) return

(including ↓, Pr, Rs, o, L – T, Ex); and phase 5) conclusions (including U, W and any

narrator’s remarks after that). This segmentation will be used for both the CUD and the HUD

representations. The first two phases make up the introductory scene and in the experiments

reported in this paper we use only these first two phases mainly because of performance

concerns. Note that currently, Voz can only identify narrative functions in stories that have

been previously segmented into chunks of text by hand (since it basically predicts which

function is expressed in each chunk of text). In our experimental evaluation we report results

with the functions automatically identified by Voz and with manual annotations but both use

the previous manual segmentation of the text in chunks. The overall accuracy for predicting

narrative function in Voz is 0.287 but the accuracy for the first and second phases used to

segment our experiments is 0.534 and 0.487 respectively.

Entities. One of the tasks Voz ’s development has focused on is the extraction of referring ex-

pressions or mentions from the text and their coreference information (a.k.a. coreference

resolution) which groups mentions into unique entities132. Furthermore, the SME algorithm

uses a taxonomy for the entities in the CUD for which we use the entity classification la-

bels Voz provides. Voz classifies each entity into different classes using a taxonomy inspired

on Chatman’s existents72 in order to provide a deeper structure for the SME. These include

existents (e.g., characters: male, magical being, etc.; settings: locations and time anchors)

and happenings (e.g., events such as rain). This information is linked in the HUD where the

original text for each mention is used and annotated with their coreference group information.

Voz has perfect recall of mentions but some false positives yield an accuracy of 0.954. The

accuracy for classifying into the 15 classes of our taxonomy is 0.535. In terms of coreference,

on our corpus of Russian fairytales, Voz achieves the following performance measured using 3

common metrics; F1 score for MUC: 0.932; CEAFe: 0.208; B3: 0.538.

Expressions. The SME algorithm within Riu favors deep, structural similarity during the analogy

process. Besides the aforementioned taxonomy, this structure is represented in the CUD using
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logical predicates. Specifically, we use:

1) Verb and verb argument information encoded as triplets representing an interaction between

two entities, the subject or actor and the object or receiver. This results in an expression for

each verb in the CUD and an annotation over the span of text where the verb and men-

tions appear in the HUD. Note that we define a null entity placeholder for intransitive verbs

where there is no object. Additionally, to provide a closed language for the SME, we auto-

matically abstract the verbs and group them in 191 semantic classes based on the Levin verb

classification178 used for the expression’s predicates. Voz has an accuracy of 0.807 for verb

identification, 0.229 when considering the verb and arguments.

2) Narrative role information identified for the extracted characters is used to add additional

expressions in the CUD for characters (a subset of the entities). For the HUD we add the

template “{character} is the {narrative role}” so it can be used by SAM if necessary during

text realization. The accuracy of Voz for identifying characters is 0.931 and then 0.394 for

identifying their narrative roles; but that accuracy is 0.540 and 0.622 for the first two phases.

3) Narrative function information is used to add a layer of structure on top of verb expressions

that span complete sentences within a phase. For each narrative function within a phase;

and for each sentence within the span of the function from which a verb expression has been

extracted; an expression is added in the CUD linking the narrative function and the expression

of the root verb of the sentence. The narrative function is also annotated in the HUD for each

sentence.

Ontology. When creating the expressions for the CUD, symbols from a closed, known ontology are

used for the classes of the entities, the narrative roles and the narrative functions. The verbs,

on the other hand, are treated as an open domain. In order to provide a language that the

SME can handle, we abstract the verbs and group them in 191 semantic classes based on the

Levin verb classification178. This is used in the CUD and the original text representation for

the verbs is used in the HUD.
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Figure 7.3 shows an example story representation that highlights the aforementioned parts, the

links between the CUD and the HUD, and illustrates how these map to the output from Voz. Note

that for clarity, this example uses human-readable symbols such as dragon and take whereas Voz

uses equivalent symbols such as E1 or Levin-02-1.

7.3 Evaluation of Riu’s Output

In this section we evaluate the feasibility and output of the end-to-end, text-based, story generation

system implemented by connecting Voz to Riu. Through this experimental evaluation we seek to

answer the following questions:

1. What is the quality of the generated stories?

2. How is the quality of the generated stories affected by the knowledge structures automatically

generated by Voz with respect to using the ground truth annotations on the stories to generate

these structures?

In the next section we address these questions by running the system and using an analytical

evaluation on the output. Then we present the results of a user study to provide further insights on

the aforementioned questions.

7.3.1 Analytical Evaluation

For this experimental evaluation we use 20 Russian folk tales translated to English (from the corpus

described in 3.1). We have annotations for each of the 20 stories and each of the tasks in the in-

formation extraction pipeline141. In the following experimental section we report the results in two

scenarios: 1) generating Riu’s story representation formalism using our complete automated narra-

tive information extraction pipeline (Voz ), and 2) instead of using Voz, generating Riu’s knowledge

structures directly from the ground truth annotations on the text (GT ).

In order to answer the first question, using the output of Voz, we are specially interested in

whether the current performance of Voz suffices to generate Riu’s required input. We are aware

that whereas for some tasks performed by Voz have a high degree of accuracy (e.g., the binary
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classification task between character and non-character mentions), some other tasks have a much

lower accuracy (e.g., verb argument identification) but in our previous work described in Chapter 5,

we observed some error in narrative information extraction pipelines can be mitigated downstream.

We used a leave-one-story-out evaluation procedure, where we provided the first phase of one

story to Riu as the target story, and the remaining 19 stories as the repository of stories to use as

source stories. The expected output of Riu is to complete the target story with a second phase that

continues the given input story.

Considering the two scenarios described in the previous section (Voz and GT ), we launched

a total of 40 experiments (one per story and scenario). Out of the 40, 22 completed successfully

within a few minutes, 7 exhibited errors that prevented Riu from being executed and 11 timed out

within the time allocated (48 hours). Inspecting the experiments with errors, we observed that 2

stories had segmentation issues that yield a phase without contents and therefore, 4 experiments

cannot be completed in either the fully automated (Voz ) scenario or the annotated (GT ) scenario.

Additionally, there are 3 experiments that cannot be completed because the automated scenario is

unable to extract any expressions for the initial phase (that is, there are no roles identified nor verbs

with arguments). Inspecting the input files (including both the human and the computer readable

definition for the storie) for the experiments that didn’t finish, we found that in the GT scenario,

the segmentation was causing some stories to have unexpectedly longer phases with a great number

of entities and expressions. Since SME uses a systematic search approach for computing the analogy

mappings, these phases cause a combinatorial explosion that cannot be properly handled. In the

Voz scenario we observed a similar problem but additionally, because of some coreference errors, a

large number of different entities are present in the output. As part of our future work we plan to

modify Riu to use a more efficient computational analogy algorithm.

We manually inspected the output stories of the 22 experiments that completed successfully.

In this section we report the major trends we observed. Note, minor spacing and punctuation

corrections were made to the output reproduced in this section and square brackets and ellipsis are

used to provide interpretation remarks and shorten some story fragments. In the following examples,
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the span in italics corresponds to Riu’s generated continuation of the given introduction.

Successful Output. We found several of the experimental runs where Riu found a plausible map-

ping and generated output that could be considered successful. With some considerations

mentioned in the following sections, we consider 6 out of 10 stories in the Voz scenario and 6

out of 12 stories in the GT scenario to have a plausible output using the top ranked mapping

or any of the 3 top ranked mappings when tied. 5 out of these 6 stories are the same and share

characteristics that make them suitable for being combined with other stories (i.e., they have

a generic introduction). This is one example (from the Voz scenario):

A dragon appeared near Kiev; he took heavy tribute from the people - a lovely maiden from every

house, whom he then devoured. Finally, it was the fate of the tsar’s daughter to go to the dragon.

He [the king] just didn’t know; there was no one suitable for the job the job. Then he remembered

the seven Simeons [seven brothers who offered their services to the king]. Summoning them, he

commissioned them as soldiers, with the assignment to bring him that princess.

Natural Language Generation Issues. Currently, the natural language generation (NLG) com-

ponent of Riu relies on SAM’s mapping and performs the identified replacements directly on

the Human-Understandable Description (HUD). These replacements lack the variety and use

of pronouns found in the original text (e.g., Ivan, he, me). Consider this original text fragment:

Well, Ivan undertook to kill that Snake, so he said to his father, “Father make me a mace five

poods in weight.”

The following fragment from the Voz scenario illustrates the aforementioned problem:

Well, A fox undertook to kill that Snake, so A fox said to his his father, “Father make A fox a

mace five poods in weight.”
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Notice a repeated “his his”. This is an error caused by the mention identification not properly

capturing the full span of the mention and replacing “father” with “his father”.

Nonsensical Output. Some of the original stories use strange rhetoric figures and constructs that

may be surprising for a western audience not familiar with Russian and Slavic folktales. Still,

in the output of the system we found several instances that do not have continuity and with

nonsensical mappings, despite these mappings exhibiting a high score by the SME. Inspecting

these mappings we found that besides errors in the narrative information extraction the lack of

depth of our Computer-Understandable Description (CUD) structure was assigning analogies

between stories that a human would not consider.

An old man lived with his old wife; they had a daughter and a little son. “Daughter, daughter,”

said the mother, “we are going to work. [...] Be careful , watch over your your little brother, do

not leave the house.” The parents went away and the daughter forgot what they had told her; she

put her brother on the grass beneath the window, ran out into the street, and became absorbed

in games. The prince flew straight into the royal palace, turned into a goodly youth, and asked the

palace guards: “Will your king take me into his service?” “Why should he not take such a goodly

youth?” they answered. Thus he entered the service of that king and lived in his palace for one

week, then a second, then a third . [...]

Scoring, Ranking and Bias Issues. Sometimes the input given to Riu, that is, the first phase in

some stories, is either too short or Voz is not able to extract sufficient information to compile a

rich CUD. This situation cascades into problems retrieving candidate sources for analogy and

the analogical reasoning itself. For example, consider the following two continuations from the

GT scenario that got tied scores for one target partial story.

This soldier got permission to go on leave. The tsar’s word was law. This soldier was banished

and This soldier left home not knowing where to go. This soldier walked for a long time; at last

This soldier arrived in another kingdom, presented This soldier to the king, and asked to be taken

into his service.
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This soldier got permission to go on leave. Well, This soldier undertook to kill that Snake, so

This soldier said to his his father, “Father make This soldier a mace five poods in weight”.

We observe this problem in the same 5 stories in both the Voz and GT scenarios. On the other

hand, some stories in the database feature longer/richer structures which bias the algorithm

towards using them more often and scoring them higher. For example, in the following case,

the dragon (the villain) is intended to be “punished”, so Riu identifies the act of trying to cook

the dragon on the stove as a punishment:

A dragon appeared near Kiev; he took heavy tribute from the people - a lovely maiden from every

house, whom he then devoured. Finally, it was the fate of the tsar’s daughter to go to the dragon.

So Alenka heated the stove hot, ever so hot, and said to A dragon, “Come here and sit on this

shovel!”

In this second case, Prince Ivan or Ivanshko, in the original story, is being (unfairly) punished

for his action and again, the same continuation is used despite there being more plausible

punishments available:

For many years a certain tsar had kept under lock and key a little peasant [ who was a cunning

wizard ...] Prince Ivan, the tsar’s son who was still a little boy [... set the prisoner free by accident

...] So Alenka heated the stove hot, ever so hot, and said to Ivashko, “Come here and sit on this

shovel!”.

This Alenka continuation is used (in some instances tied) in 6 stories in the GT scenario and

4 in the Voz scenario.

So far, we showed examples from the two scenarios evaluated in our experiments: executing

Riu with input automatically generated with Voz, and executing Riu with input generated from

the ground truth annotations in the stories. When generating short story snippets (as done in our

experiments), we do not observe relevant differences between these two scenarios. We attribute this
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to the fact that the structures in the CUD are quite similar in terms of depth (and contain the

same kinds of expressions). However, with longer examples or trying to generate full stories (not

reported in this section), several shortcomings arise, specially when coreference errors accumulate

and the size of the CUD increase making the analogy process take longer and fail to find mappings.

Additionally, we identified several issues, specifically:

Coreference. In the results reported in this section, the continuation or second phase is usually

short enough that the coreference graph is relatively small and the substitutions made by Riu

make sense. In some longer instances, although none selected in the final output, we noticed

that missing links in the coreference graph cause Riu to miss replacements. This was more

evident if we try completing introductory segments using full stories (all 5 phases).

Segmentation. Errors in the function identification task used for segmentation cause phases to lack

key information or include out-of-place information that belongs in other phases. Moreover, 2

of the stories in the dataset used for these experiments do not seem to conform to the expected

Proppian structure (and hence they have some empty phases).

Shallow Structure. A recurrent problem we observe is due to the lack of structure in the CUD.

Despite often due to errors in Voz, the choice of the mapping yields shallow structures in

the CUD even when using the annotated stories. As mentioned earlier, the representation

formalism has a substantial impact on computational analogy4. Adding additional layers of

annotation (e.g., force dynamics) that could be extracted by a narrative information extraction

system should have a positive effect on the analogical reasoning process.

In the next section we present the results of a user study to evaluate the Voz+Riu pipeline.

7.3.2 Empirical Evaluation on Perceived Quality

The evaluation described in the previous section motivated us to further inquire into the quality of

the generated stories. In this followup we first want to isolate our biases due to our knowledge of

the stories and our subjective interpretation of the results. Additionally, we are interested in the

perceived quality of the generated stories by humans. This dataset is larger than the annotated
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corpus used in our previous experiments which may alleviate some of the issues identified in the

previous experiments as there are more candidates for retrieval and the structures between stories

are more uniform in terms of narrative functions and size. Additionally, the stories in this dataset

are simpler in terms of natural language features which simplifies some of the core NLP tasks. To

evaluate the current results, we decided to conduct a user study where we asked human subjects to

score the stories and get a grasp of the overall perceived quality of the stories beyond the individual

issues that we identified analytically. Specifically, we designed a study to address the following two

questions: 1) How does the perceived quality of automatically generated stories compare against

human authored stories? 2) Can we quantify the impact and identify the relationship between

errors introduced by automatic narrative information extraction tasks and the perceived quality of

the generated stories?

For the study we used the synthetic dataset described in Section 3.2. Besides the different

dataset, there are no changes on how Voz and Riu are executed and the ontology used within Riu

to guide the analogy mapping process is the same.

The stories are in this dataset are annotated with segmentation information and in the experi-

ments reported in this section we also use the first two segments in the same manner as we did in the

previous section. For each of the 100 short stories, the first two segments are processed automatically

by Voz, then, each one story is held out of the sources set which will contain the first and second

segments for the remaining 99 stories. The first segment of the held out story is therefore a partial

story and is used as the target or query for Riu’s analogy mapping. After holding out each one of

the 100 stories, the output is a set of 100 story continuations from each of the initial segments used

as a query. Each of these continuations follows the initial segment or partial story used for the query

and the pair is presented to the participants as a complete story.

In order to better isolate the potential sources of error and provide a more thorough evaluation

of the generated stories by our pipeline, we considered 4 scenarios:

Voz+Riu: In this scenario, the data structures required by Riu are directly generated from the

annotations in the dataset (i.e., instead of running Voz, we use the ground truth). The goal
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of this scenario is to measure the difference in quality in the generated stories due to potential

errors introduced by Voz when extracting the narrative information.

LSTM: In order to have a baseline to compare our method against, we used an off-the-shelf

implementation of a long short-term memory (LSTM) recurrent neural network to generate

text for story continuations in a similar fashion as the previous two scenarios. We decided to use

a neural-network method as our baseline given their recent rise in computational narrative70;143

and their success in other areas of NLP and text generation62;68. In this scenario, we use the

99 stories in the source set to train the LSTM and then we use the held out story initial segment

as a seed for the LSTM and we generate a continuation. The cutoff for the continuations is two

sentences or 150 words (whatever comes first). For our LSTM we use the implementation from

Tensorflow. In our experimentation the LSTM has 2 layers and 650 units per layer. Before

processing, the text is normalized and we use word-level tokens. Despite this preprocessing,

the dataset is still small for this approach and the sentences generated are often grammatical

but difficult to parse and mostly non-sensical. See Appendix B for examples.

Original: Also included in the questionnaire are the original continuations for the stories in order to

provide an upper-bound for the evaluation. This scenario also provides the study participants

some contextual information about the particularities of the Russian-like stories used in the

dataset.

The user study was conducted through an online questionnaire publicly posted on the Internet.

The study was expected to be completed in 30 minutes. We recruited individuals using online

messaging and social media to participate in the study. There was no compensation nor penalty

for choosing to participate or not in the study. Participants were required to be 18 years of age or

older, be able to read and understand English, and provide consent.

For our questionnaire, we first included a few demographic questions, a statement of consent

and a reading comprehension test. This was intended to discriminate automated submissions and

ineligible participants. Specifically we include the following questions:
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• What is your age? (Numerical field).

• What is your highest level of education? (Categorical with 5 options)

• Are you currently a student at Drexel University? (Yes/No).

• Are you a native English speaker? (Yes/No).

• Are you fully competent in written English? (Yes/No).

The questionnaire then displays 24 sections corresponding to 6 partial stories and 4 continuations

for each, corresponding to the 4 scenarios described above. We manually inspected both the input

files used by Riu (including both the human and the computer readable definition) and the output

text and selected a subset of 9 of the 100 generated stories that exhibit interesting properties related

to the specific questions we are investigating in terms of errors from Voz, including at least 2 relevant

examples for each of the 4 (described below). These 9 stories and continuations are included in

Appendix B. Of the 9 selected stories, one was used for control. This control story was displayed in

the first place to each participant and always showed the same continuations displayed in the same

order (Original, Annotations+Riu, Voz+Riu, LSTM ). We do not consider the data for this first

story in the reported results. After this control story, each subject saw 5 complete stories drawn at

random from the pool of 8 stories we selected and the continuations for those were presented in a

random order. In our questionnaire we asked the following questions regarding each pair of partial

story used as the query and the generated continuation:

• How do you rate this story considering both the story setup2 and the continuation? (A 6-point

scale with the options: Awful/Bad/Mediocre/Fair/Good/Great).

• Did the continuation follow a reasonable plot after the given initial story setup? (A 3-point

scale with the options: Yes/Almost/No).

• Did the characters mentioned in the continuation match the ones in the initial story setup?

(A 3-point scale with the options: Yes/Almost/No).
2We used the term “story setup” in the form to refer to the partial story used as a query for Riu.
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• Looking only at the continuation, was there any mismatch between the characters mentioned?

(A 3-point scale with the options: Yes/Almost/No).

• Did you notice any grammar issues in the text of the continuation? (A 3-point scale with the

options: Yes/Almost/No).

• Did you have any other issues or have any other comments you would like to share with us

about this story? (Optional open text answer)

The first question is intended to compare the overall user perception of the stories and compare

the results with and without using Voz, and calibrate these against the LSTM baseline and the

original as an upper bound. The next 4 questions aim to isolate the potential sources of error,

specifically, errors in the plot caused by mismatches during the retrieval and analogy mapping

evaluation output in Riu, errors in the character mappings found during the analogy mapping

potentially due to issues in the character classification or the taxonomy used; errors in coreference

where a continuation has inconsistent replacements; and other errors in the grammatical structure

of the continuation, potentially due to problematic mappings, misidentified verb arguments or other

replacement issues after a mapping is applied. We will discuss these questions and the corresponding

issues below; these 4 questions correspond to the 4 labels in Figure 7.6. Finally there is an open

ended optional text field for the participants to provide any other comment they feel like sharing.

Figure 7.4 shows an excerpt of the form used in our questionnaire showing an initial story setup

(highlighted with a blue background), the continuation for one of the scenarios considered in the

study (highlighted in purple), and the questions described above.

Over the course of 5 weeks, 179 participants started the study (that is, submitted the consent

and demographic information form). For the results reported below we use the answers from 90

participants who completed the study (that is, submitted the second questionnaire form), which are

eligible (are 18 or older, fully competent in written english and scored at least 5/6 in the reading

comprehension test) and spent at least 5 minutes answering the questionnaire (average is 22 minutes

when discarding 6 outliers: 4 participants spending more than 3 hours and 2 participants spending
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Figure 7.4: Example section from the questionnaire showing one variation for a story consisting
on a story setup, that is, the first segment of a story used to query Riu, and one of the
continuations, in this case from the Voz+Riu scenario.

more than 12 hours). The participant’s average age is 31.3 (σ = ±10.8) with 93% of the participants

having at least started higher education and 27% pursuing or having completed a PhD. Notice that

the results below consider only 1678 data points out of the 90 × 5 × 4 = 1800 possible due to the

responses being optional and some participants skipping some sections. Additionally, we received

and coded 220 open text responses.

When looking at the overall rating of the 4 scenarios for the continuations, using the 1678 data

points, we can clearly see how the original story continuation dominates the scores with a mean

score rating of 4.7 (σ = ±1.25) on a scale of 1 (Awful) to 6 (Great). As expected, the LSTM

scenario provides a lower bound with mean score rating of 1.35 (σ = ±0.69). When considering the

two scenarios involving Riu, using Voz, has a slightly lower mean score rating of 2.48 (σ = ±1.35)

than using Riu with the input derived from the annotations, which gets a mean score rating of

2.85 (σ = ±1.24). The difference between the distributions for the two scenarios using Riu is close

but statistically significant (p = 0.00004). The original score distribution difference when compared

to the Annotations+Riu scenario is statistically significant (p = 8.107 × 10−102) and the so is the

difference between the Voz+Riu and LSTM scenarios (p = 2.309 × 10−78). Table 7.1 reports the
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Table 7.1: Number of responses, average and spread of the overall scores for each of the sce-
narios included in the questionnaire. N=90 participants, 1678 data points. Figure 7.5 provides
a visual representation of this data.

Scenario Original Anno.+Riu Voz+Riu LSTM
Responses 422 417 420 419
µ 4.70 2.85 2.48 1.35
σ ±1.25 ±1.24 ±1.35 ±0.69

Table 7.2: Average score and spread for each scenario (columns) and the 4 follow-up questions
(rows) included in the questionnaire. Scores have been normalized and inverted for the third
and fourth question (higher is better). N=90 participants, 1678 data points. Figure 7.6 provides
a visual representation of this data.

Original Anno.+Riu Voz+Riu LSTM
Char. 0.77(±0.52) −0.22(±0.77) −0.49(±0.74) −0.96(±0.24)
Coref. 0.88(±0.37) 0.07(±0.77) −0.41(±0.77) −0.74(±0.55)
Gramm. 0.93(±0.32) 0.34(±0.88) −0.02(±0.94) −0.46(±0.85)
Plot 0.85(±0.48) 0.41(±0.85) 0.06(±0.97) −0.79(±0.59)

Original Anno.+Riu Voz+Riu LSTM
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Figure 7.5: Plot comparing the 4 overall score ratings given by the users for each of the 4
continuation scenarios included in the questionnaire. N=90.

average and spread scores for each of the scenarios. Figure 7.5 shows a visual representation of the

distributions for Table 7.1. Inside each of the violin plot we include a box plot with the quartiles

for each scoring distribution.

Then we analyzed the 4 follow-up questions for each of the continuation scenarios. As mentioned

above, these intend to elicit the specific sources of error as perceived by the study participants.
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Anno.+Riu

Plot Char. Coref. Gramm.

Voz+Riu

Plot Char. Coref. Gramm.

LSTM

Figure 7.6: Plot comparing the 4 continuation scenarios and the scores for the 4 follow-up
questions included in the questionnaire. Scores have been normalized and inverted for the third
and fourth question (higher is better). N=90.

These questions were asked in a 3-point scale; note that for the first two questions, higher is better

and for the third and fourth question, lower is better. We normalized the scores by inverting the

last two and put them in a [-1,1] scale. When looking at the aggregated sore, we observe a high

correlation between these and the overall scores discussed above where the original stories are highly

rated (µ = 0.857) and the LSTM exhibit the worst ratings (µ = −0.740). When looking specifically

at the results for the two scenarios involving Voz, using annotations has a higher average rating

(µ = 0.261) compared to using the fully automated pipeline (µ = 0.246). We anticipated that there

would be more coreference and grammar errors because of the replacements in the fully automated

pipeline scenario as we can clearly see the participants noticed character mismatches (µ = −0.0217

and µ = 0.0629 for automated versus µ = 0.345 and µ = 0.411 for the annotated scenario), yet it

was interesting to see that the perceived error related to plot mismatches and character mismatches

for the annotated scenario has such large discrepancies (µ = −0.218, σ = ±0.770 and µ = 0.068,

σ = ±0.767). Table 7.2 reports the average and spread scores for follow-up questions for each of the

scenarios. Figure 7.6 provides a visual representation of the 4 data in Table 7.2. Note that Table

7.2 has been transposed to fit in the page.

Finally, we analyzed the open text questions. We performed thematic analysis by coding labels

for recurring topics which then we grouped and mapped to them to the sources of error targeted

by the 4 questions used previously and compiled the most relevant below. Notice that we coded
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multiple labels in each comment. In parenthesis we indicate the label and the count of the thematic

labels found across the set of textual responses.

• The most widely reported thematic label found in the comments was regarding characters, that

is, when there was a character mismatch between the story setup and the given continuation,

or when there had been a coreference error that caused mismatch in the characters within

the continuation. This is mentioned in 27 of the 220 comments (27 instances of character-

issues) and is specially prevalent in the Voz+Riu scenario (20 instances of character-issues).

Of special interest comments where participants notice that due to missing matches, there

are new characters in the continuations that have not been introduced before (7 instances of

new-characters).

• In terms of pronominal errors, there are several codes. First, there are pronominal errors due

to coreference errors (13 instances of pronominal). Closely related, there are a couple stories

where the initial segment introduces two girls. These were chosen purposefully when selecting

the stories for the questionnaire. In the continuations, there are a few instances where there

are two girls as well but in some from the Voz+Riu scenario there is only one. Either way,

the continuation uses pronouns to refer to them (she) and it is then unclear to which girl

the pronoun is referring. There are 8 instances (ambiguous-pronoun-she) of this specific case

coded in the comments, included within other ambiguous pronouns issues (19 instances of

ambiguous-pronoun).

• A very common comment for the LSTM scenario is that the output is either incomprehensible

(18 instances of incomprehensible) or ungrammatical (15 instances of ungrammatical). Unfor-

tunately, some users reported ungrammatical for Anno.+Riu continuations (2 instances) and

ungrammatical for several Voz+Riu scenarios (5 instances).

• We also see comments referring to particularities of the Russian folk tales, which appear

even for the original story continuations (18 instances of weird). Related to the previous

there are several instances of comments about particular common sense issues (15 instances
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of commonsense), but again, these appear distributed across all the scenarios. Some recurring

comments on the originals involve a story where a girl cut another’s eyes out which participant

found odd (7 instances of weird-eyes) and wonder why snakes are referred with female pronouns

(4 instances of pronominal-she-snake).

• Another common comment, prevalent across the different scenarios but specially for the

Voz+Riu andAnno.+Riu scenarios is the lack of explanations (11 instances of lack-explanation)

or motivation (13 instances of lack-motivation) for the actions in the continuation. Also, sev-

eral participants complain about a missing resolution (10 instances of missing-ending) or other

missing part of the story (10 instances of missing-other) for most of the continuation scenarios

except the LSTM.

• Overall the participants in the study provided thoughtful and useful comments, with some

trying to guess the sources of the continuations (5 instances of guess), curious about the stories

(4 instances of continuation) and providing suggestions on how to fix errors in the continuations

(11 instances of suggestion). Unfortunately, as this study was conducted anonymously over

the Internet, there were a few instances of nonsense and profanity (13 instances of profanity).

Table 7.3 reports the codes used, their counts and an example of the instantiation within the

comments.

7.4 Discussion

In this chapter we presented our approach for bridging the gap between work on narrative information

extraction and work on story generation in order to implement end-to-end computational narrative

systems. Then presented our work on using the narrative information automatically extracted by Voz

in Riu and developing a prototype of a text-based, end-to-end computational narrative system that

can automatically process a corpus of natural language stories with minimal human intervention.

We first manually analyzed the structures extracted by Voz and the final stories generated by Riu.

We observed issues with the performance of narrative information extraction and some limitations

of the shallow representation formalism produced by our mapping. On the other hand, we also
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Table 7.3: Counts for codes and example instances for comments where they are instanciated.
The numeric columns stand for Original, Annotations+Riu, Voz+Riu, LSTM, and Total.

Code Or. AR VR NN T. Example
character-issues 1 5 20 1 27 "Boy" should be replaced with

"prince".
ambiguous-pronoun 0 19 0 0 19 "She" is far too ambiguous in this

context.
incomprehensible 0 0 0 18 18 This is a mess.
weird 9 1 8 0 18 Stories that hint at incest do not

usually begin with "once upon a
time."

ungrammatical 4 2 5 4 15 Just a mess.
commonsense 4 4 4 3 15 Snakes, hungry or otherwise, cannot

walk.
lack-explanation 10 3 0 0 13 Revenge doesn’t make sense.
pronominal 0 6 6 1 13 Who is who?
missing-other 3 5 5 0 13 An extra sentence or two could

cause it to make sense.
bad 5 4 3 0 12 Macabre.
good 6 1 4 0 11 Beautiful.
lack-explanation 1 3 7 0 11 How did the witch curse the girl

when she wasn’t found?
suggestion 7 3 1 0 11 the second sentence in the continua-

tion should read "the jealous neigh-
bor" no "a jealous neighbor"

missing-ending 7 3 0 0 10 No climax or resolution just inciting
incident and rising action.

ambiguous-she 7 1 0 0 8 We are not told who "she" is untill
we get to know that she stole her
older sister’s clothes.

weird-eyes 7 0 0 0 7 Cut her eyes is a strange attack and
would not be fatal.

guess 2 0 2 1 5 Ok, this one was not written by a
human.

continuation 0 4 0 0 4 Open ending. Will the bearlet be
allowed to stay?

pronominal-snake 3 0 1 0 4 Is the snake characterized as a
"her"?

observed that some errors in Voz have a smaller or negligible effect in the generated stories showing

that the analogy-based story generation approach is resilient to some errors, for example related to

the story structure.

We followed up on this analysis by conducting a user study using a larger dataset. We collected

data from 90 participants whom were asked to score automatically generated stories in several

comparison scenarios. The numerical results on the story ratings and follow-up questions for the
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scenario where Riu uses the annotations as input are statistically higher than those using Voz. The

larger difference between human-authored originals indicate that there is potentially a problem in

either the intermediate model representation we decided to use and/or within Riu. The detailed

analysis of the open-ended responses reinforces this statement. Additionally, the results on the LSTM

baseline elicit some of the current limitations of neural network approaches, specially in terms of

generating coherent output when sampling and their underperformance when used with small data

sets. This supports our efforts towards developing approaches and techniques that incorporate

additional information and can work on smaller datasets.

We have shown that Voz can extract high-level narrative information in the specific domain

of Russian-like folk tales and we have used this information to develop an end-to-end text-based

story generation system. Currently, this end-to-end system has some limitations and underperforms

compared to our expectations. We need to better isolate the sources of error, but, we believe we

could improve the output with further work on enriching the extracted model so Riu has more

information for the retrieval and analogy mapping processes. We would also like to isolate the

shortcomings of Riu by connecting Voz to another story generation system. As part of our future

work, we would like to do a follow up study connecting Voz to another story generation system to

get further insights into which part of the difference in performance observed was due to Riu and

which was due to errors introduced by Voz.
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Chapter 8: Conclusions and Future Work

In this final chapter of this dissertation we will give a brief summary of the work presented so far,

highlighting our contributions and discussing how they relate to the open problems enumerated in

the introduction. Finally we provide a brief discussion and list potential lines for future research.

Computational narrative is an emergent field of research at the intersection of traditional nar-

ratology, artificial intelligence, natural language processing and cognitive science with applications

that range from the study of literature to content generation for computer games. Given its novelty,

there are several open problems in the field. The main problems we addressed in this dissertation

are related to the disconnect between the areas of research of narrative information extraction and

story generation. Specifically, we are concerned with automatically extracting structured narrative

information from text and the usefulness of the extracted information for computational narrative

applications. Moreover, our hypothesis is that incorporating narrative domain knowledge into the

extraction process will improve the performance of certain tasks within the extraction process and

the final output of the process.

With this research statement to frame our work, we addressed the following questions:

How do we automatically extract structured narrative information from text? There is

information that is trivial to automatically extract from text (e.g., letter counts) but in order to

extract narrative information useful for other computational narrative systems we need to focus

on richer, higher-level narrative information. This question involves addressing open problems

in the fields of natural language processing, information extraction, knowledge representation

and computational narrative. In order to answer this question, we studied automatic narrative

information extraction. Specifically, we explored what structured narrative information we

can extract from natural language text and how to map this information to intermediate

computational narrative models. We worked on improving the performance of off-the-shelf

general-purpose natural language processing (NLP) tools in the particular domain of fictional
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stories by incorporating narrative domain knowledge to core NLP and information extraction

tasks. In order to incorporate this information we consider alternatives to linear pipelined

architectures for information extraction, specifically the idea of feedback loops that allow

feeding information produced by later modules of the pipeline back to earlier modules.

How do we evaluate narrative information extraction pipelines? When studying our nar-

rative information extraction system, there is a visibility problem related to eliciting how the

error was introduced and propagated between modules of the pipeline. Most of the existing

work evaluated either single modules in isolation or treated the pipeline as a black-box and

only evaluated the final output. This question goes deeper into pipelined architectures and

tries to identify the interactions between modules and their contributions to the final output.

We worked on a methodology to evaluate information extraction pipelines and to identify and

quantify sources of error different sources of error.

How do we use the extracted information in story generation applications? There is no

consensus on a representation formalism for narrative or the annotation to capture the sub-

tleties of text. We surveyed computational models of narrative and devised an intermediate

representation of a narrative that allowed us to connect our narrative information extraction

pipeline to an existing story generation system. We then studied the feasibility of text-based

end-to-end story generation systems using this approach.

The rest of this chapter summarizes the research presented in this dissertation, our contributions

and a short discussion on how our contributions address the research questions posed above and how

these relate to the open problems listed in the introduction.

8.1 Dissertation Summary

Throughout our related work and literature survey, we identified a clear distinction between different

areas of research within the field of computational narrative. On the one hand, we identified work

related to literature analysis involving natural language processing, information extraction and story

understanding, and on the other hand, work related to story generation in approaches exploring
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computational creativity or applications in digital entertainment. Our most notable takeaway from

our survey is the disconnect between these two areas of work. This situation may be justified by the

lack of consensus on how to model a narrative or represent a narrative space. On top of that, there

is little holistic work and most researchers use ad-hoc approaches to suit the needs of the particular

task at hand. This is the main cause of the authorial bottleneck problem where different models are

hand-crafted and their content populated in an often expensive and time-consuming process.

In our work we explore how to leverage previously existing work in the fields of natural language

processing, information extraction and machine learning to address and improve tasks related to

automatically extracting structured narrative information from text. Then, we studied different

computational models of narrative used, their advantages and disadvantages, their similarities and

how they relate to other tasks within computational narrative. Our search was focused on finding

ways to map between tasks addressed in previously existing work and the specifics of these compu-

tational models of narrative. In this process we looked at how to improve our the performance of

our own narrative information extraction system by leveraging narrative domain-specific knowledge

resulting in an improvement over the original tasks. Because of the limitations of the current tech-

nology and the intrinsic properties of our application domain, such as ambiguity in natural language,

the use of specific rhetorical figures or contextual/cultural phenomena in the sources, we do not an-

ticipate automatic approaches to achieve perfect performance, specially when considering that even

humans encounter problems when dealing with these tasks. This is even more relevant if we would

consider automatically acquiring even higher-level computational models of narratives. These would

need to incorporate extra tasks (e.g., extract appropriate time relations and embedded narratives)

where the accuracy of existing technology currently fails. And even if the technology were able to

achieve human-level results, there may still be shortcomings in the selected computational models

in use. Yet, through our research and engineering efforts we learned that some error may not have

the anticipated effect downstream in a pipeline, that some error may actually be negligible or miti-

gated later and that non-perfect performance may be enough in some applications and approaches

to obtain results that we as human cannot really perceive.
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Focusing on our work, we implemented our ideas into Voz, a narrative information extraction

pipeline which we used in our work in conjunction with a corpus of annotated Russian and Slavic

folktales and a synthetic dataset of Russian-like stories. The choice of such dataset and application

domain is manifold. First, it is a well known domain within literature and computational narrative

that has been extensively studied in or influenced many existing work; including work we can compare

with and borrow from (e.g., Finlayson’s dataset84). Then, it is a relatively constrained domain that

allowed us to focus our research and delimit our engineering efforts. And last but not least, it is a

domain that exhibits a plethora of specific phenomena uncommon in other text domains that brings

interesting challenges to the table. For example, we worked on character identification in order to

identify anthropomorphic animals and magical beings, and we worked on a framework for non-linear

information extraction pipelines in order to incorporate and leverage narrative information about

recurring elements in this specific domain.

These efforts added capabilities for Voz to extract structured narrative information from the

stories in our corpus. We proposed a novel framework to evaluate information extraction pipelines

and we used it to identify sources of error quantify their impact in the final output of the information

extraction pipeline. We were able to use this information to guide our efforts and work on incremental

improvements. Currently, Voz can process stories in a corpus and automatically extract limited and

imperfect structured narrative information from the stories. This information may already be useful

for applications that generate summarized representations or visualizations of individual stories or

a corpus.

Our goal is to use this extracted information in computational models for other applications

in computational narrative, specifically, automatic story generation. We shifted our work towards

the study of suitable computational narrative models that could be used to bridge these areas of

work and we settled with a dual-model approach used for analogy-based story generation. This

dual-model best suits our efforts since it uses a computer-readable structured representation of a

story, which we were able to generate from the extracted information by mapping it into an arbitrary

structure; and also uses annotated text templates, which again, we can generate from the original

Chapter 8: Conclusions and Future Work 8.1 Dissertation Summary



166

stories and using Voz to annotate the different identified components in the extracted structure.

The final product of our work has been a study of the output of Riu an existing story generation

system that uses the dual-model described before for automatic story generation. Specifically, we

relate this work to our previous work on pipelines and the effect of the error introduced in the

pipeline, by Voz in this case, in the final output. This work uses a user study where we evaluated the

perceived quality by human subjects given the known errors in the extracted narrative information.

In this user study we gained insights into some of the current issues with the prototype. Analyzing

the results we developed ideas on how to improve the prototype (e.g., enhance the structure used for

analogy mapping by including additional elements) and extend the study to other story generation

systems and towards a broader use for other computational narrative applications.

8.2 Contributions

Let us now provide a detailed list of our specific contributions derived from our work and described

in this dissertation.

The Idea of Incorporating Narrative Information in Information Extraction Pipelines:

Transversal to the rest of the contributions in this list is the idea of exploiting narrative domain

information for different tasks related to narrative information extraction. For example, we

use prototypical interactions described in narrative theory in our work on “sphere of action”

encodings and to improve coreference information. Ultimately our individual contributions are

tied in together in our narrative information extraction pipeline where we introduce feedback

loops that feed the extracted narrative information back to previous modules. The idea of

incorporating domain specific knowledge and feeding back this knowledge into other tasks is

a critical contribution from our work that has not received enough attention in the fields of

computational narrative, information extraction or natural language processing.

A Framework for Non-linear IE Pipelines: Related to the previous, we propose a general frame-

work for introducing non-linear features, such as feedback loops or the aggregation of multiple

parallel modules, in existing information extraction pipelines. We use this framework to intro-
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duce two feedback loops for two separate tasks in our information extraction pipeline which

utilize extracted narrative information.

A Framework for Studying Error Propagation in IE Pipelines: We proposed a general method

for studying how error is introduced and propagated though different modules in information

extraction pipelines. This method can be used to find performance bottlenecks in existing

information extraction pipelines and modules where the error has little effect to the final

performance of the system or it may even be mitigated by later modules downstream.

A Method for Mention Extraction: We introduced a mention extraction algorithm that can

handle mentions to individual entities and lists. This makes the extracted mentions able to

handle split antecedents (e.g., a plural pronoun referring to multiple entities that have been

mentioned in a list.

A Method for Mention and Entity Classification: We proposed a machine learning method-

ology for mutli-class classification which we used to classify mentions and entities (represented

by a group of mentions) in terms of animacy, type and narrative role. Our methodology is

inspired by case-based reasoning and uses coreference information to improve classification

accuracy by performing a voting process over the coreference group including the mentions

representing an entity.

A Novel Similarity Metric: We proposed a novel variant to the Jaccard index or Jaccard simi-

larity coeficient that we call Weighted Continuous Jaccard Distance. This metric can be used

for computing similarities between vectors of rational numbers. We showed that in our par-

ticular case this distance measure outperformed other commonly used measures like cosine or

Euclidean distance.

An Encoding for Sphere-of-Action Information: We introduced a matrix-based representa-

tion to encode the “sphere of action” of a set of characters. This representation uses verbs

to define interactions between characters. We showed how this matrix can be used to both

represent prototypical interactions in a narrative theory, can be extracted from text, and both
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can be compared to one another to find assignments.

A Method for Identifying Narrative Functions from Natural Language: We propose a method

for predicting Proppian functions in text segments based on aggregating often conflicting lo-

cal information from features present in the segments and global information from Propp’s

narrative theory.

A Method for Identifying Character Interactions in Dialogue: We extended an existing method

for processing dialogue in stories. Our new method allows the identification of both speaker

and intended listener for quoted text or dialogue in stories. Moreover, our method can work

with user-defined patterns for speaker and listener identification or can learn patterns auto-

matically.

Voz: We implemented a narrative information extraction pipeline which we made available for

researchers interested in using it for their projects. The source code for Voz is currently freely

available online1.

A Compilation of Sources for Russian and Slavic Folk Tales: We compiled a list of freely

available sources for Russian and Slavic folk tales and mapped the numbers used by Propp

to the English titles from a collection of translated folk tales by Alexander Afanasyev. This

information is available in Appendix D.

A Synthetic Dataset of Russian-like Short Stories: Wemanually authored a collection of 100

Russian-like short stories which we annotated and made available for researchers interested in

a dataset that poses less natural language complexities but still exhibits features from Russian

stories like the ones analyzed by Propp.

A Prototype for End-to-end Computational Narrative Systems: Finally, in this disserta-

tion we present a survey on the underlying models used in different computational narrative

applications and show a proof-of-concept in which we map the output of Voz to the input of

Riu, an existing computational narrative system. We implemented an end-to-end text-based
1Voz and some related components are available online: https://sites.google.com/site/josepvalls/home/voz
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computational narrative system that can work directly from a corpus of natural language

stories.

Our contributions extend previous work on different levels. At the lowest level, we have specific

contributions for methods to identify mentions in text and identify or classify them into different

classes. Our approach differs from other work, such as the named entity recognizer in the Stanford

CoreNLP35 that uses a statistical approach (conditional random fields) trained on a large corpus of

annotated data. In contrast, our work relies on a hybrid approach that encodes domain knowledge

(e.g., the concept that an entity or referring expression is realized in a noun phrase) and a limited

amount of narrative domain knowledge (e.g., the labeled examples provided). For some tasks,

such as character/non-character classification, our approach extends previous state-of-the art13 and

improves their results in terms of classification performance for our dataset. Another example, in

the task of dialog participant identification; our method is built upon previous work149 and achieves

similar performance in our dataset but we argue our approach is more flexible as it allows easily

defining patterns and rules or learn these patterns and rules automatically. Some other tasks, such

as character role identification or narrative function identification, are less common and it’s difficult

to compare to other approaches because of the particularities of the different domains used in the

literature or differences in the datasets, annotations or goals.

From a higher level perspective, most of our contributions are focused around the same idea where

we encode a limited amount of domain knowledge to avoid the large training data requirements of

other approaches62. For example, in our narrative function identification work, we rely on learning a

model of the narrative function sequence from a small annotated dataset which is complemented by

a model that encodes the rules defined in Proppian narrative theory. Additionally, our contributions

relate to previous work in computing and NLP related to combining local and contextual information.

Some previous work used global inference and contextual awareness17;179. Our work differs from

these methods in two key areas: First, we extend the very common pipelined architecture used in

many NLP and IE applications. Second, we extend this work on pipelined architectures55 by adding

non-linear features which we relate to the field of hermeneutics and specifically, the hermeneutic circle
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that suggests that for better interpretation of complex texts, one must alternate between acquiring

local information from individual parts of the text and the context of the text as a whole180.

8.3 Discussion

In this dissertation we made specific contributions to computational narrative and information ex-

traction. Additionally, we showcased an end-to-end computational narrative system that bridges the

gap in computational narrative between automated literature analysis and story generation by auto-

matically extracting structured narrative information from text, mapping the extracted information

into an intermediate model and using it with an existing application.

We describe the success of our approach in two ways: first and foremost, our proof-of-concept

implementation shows that we can connect our approach with existing work and continue working to

alleviate the authorial bottleneck problem in story generation applications. On the other hand, the

results of our user study show that despite the known error in Voz, the generated stories are rated

similarly to stories generated from an annotated dataset. As mentioned in the previous chapter,

this points at evident limitations in the model used but at the same time, we believe that both the

narrative information tasks and the model could be expanded in order to improve the generated story

ratings. Richer narrative models could be suitable for other domains and applications which leads

us to ask: What could be accomplished in the near future by extending our work and incorporating

upcoming developments in NLP? We believe the answer to this question is to review the work

discussed earlier in this dissertation related to automated literature analysis8;18;26;84;85;140 and any

of the work in storytelling10;12;95. There has already been scattered work addressing several tasks

(e.g., identifying embedded narratives, parsing time cues to encode storylines using time relations,

etc.) independently. And these tasks are the stepping stones required to assemble more complex

narrative models already proposed in the literature26. What is needed is to homogenize and bring

all these efforts together. Towards this goal, our core contributions lie in the proposed frameworks

for integrating different modules into information extraction pipelines, improving the performance

of individual modules within these pipelines (exploiting domain-specific information and/or feeding

back extracted information to earlier modules) and evaluating the error propagation within pipelines
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in order to guide further work. Additionally, as we already mentioned, we expect the performance

of the individual modules to continue improving which will cascade into the final results, still, we do

not anticipate that the performance will ever be perfect, specially when we consider that some tasks

in narrative are ambiguous even for human readers and in some circumstances, narratives are even

purposefully open to interpretation. In the final stages of our work we briefly explored approaches

that can potentially hide imprecision or even uncertainty of certain tasks along the pipeline from

the final output of a system. For example, the analogy-based story generation approach of Riu can

work even when there are errors in the coreference information graph.

Related to this, we would like to reiterate on some of the strengths of our approach: we have

been working on extracting structured and rich high-level narrative information automatically from

text. We propose that these models be augmented with additional information and transformed

into intermediate models that could be fed into other system. We expect this last step to be done

automatically but nothing prevents researchers from looking into the models in order to examine

what has been extracted or manually tweak the extracted information into an intermediate model.

We believe that the explainability property is very desirable for certain applications were being able

to interpret and manually tweak the models is useful.

This can be seen as a desirable property from the user-interface perspective in which NLP tools

and information extraction pipelines may be used to both automatically ingest a sizable corpus

but at the same time, allow for a simpler, natural-language based input into complex systems. In

either case, the pipeline can be paired with existing user-interfaces into mixed-initiative approaches

to model creation and population that allow examining and modifying an extracted model. Since

our framework feeds information back into the pipeline, the pipeline itself could benefit from this

user-interface elements and enable an iterative/incremental cycle between automatically extracting

information, presenting it to the user for tweaking and feeding it back for refining the extraction.

Also related to this UI or model-tweaking scenario, as we already mentioned, our proposed

framework relies heavily on the ability of incorporating domain-specific knowledge into the pipeline

in order to improve the performance of specific tasks. This is specially relevant when dealing with
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limited datasets, sparse annotations or low-resource domains; all situations in which other approaches

that rely on large datasets (e.g., neural networks) may not handle gracefully.

8.4 Future Work

In this thesis dissertation we have looked at different areas of research related to computational

narrative and natural language processing. In our research we have worked on several of the open

problems in the area yet these are still far from solved and there are many related problems that

could be addressed by continuing our line of work. One topic that may warrant additional research

is related to modeling stories and computational models of narrative. Fortunately, this seems an

active area of research that draws sufficient interest from the community with workshops such

as the 10th Workshop on Intelligent Narrative Technologies in 2017 and the 7th Workshop on

Computational Models of Narrative in 2016. Progress in this area will further motivate further cross-

pollination between NLP, information extraction and research in areas of computational narrative

such as literature analysis and story generation. We believe that this will then lead to additional

research on approaches to alleviate or eliminate the authorial bottleneck problem.

When looking at the current state of the field of computational narrative and our specific con-

tributions, there are several lines of work we would be interested in exploring further.

In this work we have described NLP and information extraction pipelines and the benefits of

non-linear architectures that incorporate feedback loops. To the best of our knowledge, the idea

has not been widely explored. We believe this warrants further exploration, in terms of what tasks

can benefit from feedback loops and what information can be used. We believe the use of feedback

loops may be beneficial beyond computational narrative applications and a framework for adapting

general purpose tools for domain-specific tasks may be of interest of several communities.

Our current research is focused on narrative information extraction, more specifically, information

components from Proppian narrative theory. The non-linear framework for information extraction

pipelines is not constrained to specific components or a specific narrative theory. We believe that

different domain-specific information can be extracted that can be then related to the narrative

models that are being targeted. At the same time, other narrative domain knowledge (or not even
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narrative-related) may be useful for other core NLP tasks. As part of our future work, we would

like to explore the Monomyth or Hero’s journey 77 in place of Propp’s work. As mentioned in the

previous item, we believe similar approaches can be explored for other domain-specific tasks beyond

narratology.

In the work presented in this dissertation we used different corpora and datasets with different

layers of annotation. We focused on different tasks where we used subsets or partially annotated

datasets for the experimental evaluation. Moreover, we have identified and discussed several nar-

rative and non-narrative elements that we cannot extract at the moment and may be required or

useful for other computational narrative systems. For example information about narrative tension

or moral of a story may be interesting for story generation and storytelling systems. Additionally,

non-narrative information such as characters’ mental models (or embedded narratives) and temporal

models of a story may be useful to other text processing systems beyond computational narrative

applications.

One task that we plan on working on the short term is the task of automatic scene segmentation.

This task will segment stories into a sequence of spans of text containing coherent functional units of

the narrative. We believe this task can use extracted spatial information, temporal cues and patterns

of verb usage to delimit transitions between scenes. This automatic segmentation will be a required

step towards a goal of full automatic processing for identifying functional parts of the dramatic

structure of a story based on Proppian theory and will replace the manual segmentation used for

our current work on narrative function identification. Moreover, this information is required by some

computational narrative systems and will enable the rendering of visual representations of a story

as a sequence of scenes as in a story board. Once we address the task of scene segmentation, we will

be able to replace the manual segmentation used for our current narrative function identification

work. We will still need to work to map the new segments (i.e. scenes) to the locations where

narrative functions are being realized (i.e. the span of text where they happen). We may also need

to tweak the current module to be able to identify multiple functions per scene or scenes without

functions. We believe work in this area will elicit relationships between narrative theories and
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data driven approaches to reproduce or validate these theories. Moreover, these narrative elements

encode information about the character and segmentation. Therefore, we expect to be able to use

the proposed non-linear framework to feed back this information in order to inform some of the tasks

of the pipeline and further improve the overall performance of the system.

As mentioned earlier in this dissertation, as part of our future work will be on using Voz for

different computational narrative applications. In Section 7.2 we described our work connecting Voz

to Riu, an existing story generation system. We would like to expand on this work by addressing

some of the issues described in Section 7.3 and incorporate additional elements to the structure

used for analogy mapping in order to improve the generated stories. In order to better isolate the

error contributed by Voz ’s performance and Riu’s particularities we are considering connecting Voz

to another story generation system. We would like conduct a second user study featuring another

system and additional options such as baselines derived from randomly selected sentences (guaran-

teed to be grammatical and sensical but not necessarily consistent with the plot) and other story

continuations generated using additional manual annotations (which should enhance the analogy

mapping process). Along with this user study, we would like to enlist participants to manually

author the required annotations. This would give us insights on the actual effort required to author

the input required by Riu, the examples required by Voz and quantify the difference between the

effort required by the different scenarios therefore giving us a way to evaluating actual contributions

towards alleviating the authorial bottleneck problem.

Additionally, related to future work with Voz, in our previous work described in Appendix E,

we used an annotated plan-like representation of a story space to generate spatial environment

configurations that could support the encoded story. We would like to further explore the work

by Li et al. on plot graphs 10 and use Voz to extract location information from stories and use

the extracted information to generate spatial environment configurations and visualizations of the

environment of a story.

Another example of our planned future work would be to use Voz to visually represent stories

and corpora, yet, several questions remain open; for example: how to compare or aggregate the
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graph representations of a corpus of stories and how to improve our story graphs for processing in

other computational narrative tasks. Specifically we would like to explore how to use the output of

Voz for visualizations such as the ones used by Reagan et al.85 or the plot graph used by Li et al.10.

Related to the use of Voz in other applications, we would like to see how to incorporate Voz as a

tool to enable natural language user interfaces in mixed-initiative approaches similar to the work of

Finlayson et al.1 where a user can provide their input as text and use Voz to automatically annotate

specific narrative information and ease the overall annotation process.
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Appendix B: User Study on Connecting Voz+Riu

In this appendix we provide examples of the stories shown to the user participants in our user study

on connecting Voz and Riu. For our user study on analyzing the perceived quality of automat-

ically generated stories we showed the participants small excerpts of a setup or beginning and a

continuation for some stories. For each of the setups or beginnings we showed the participants four

continuations: first, the original continuation, a continuation generated by Riu using Voz to auto-

matically extract Riu’s input (using the setup or beginning as the query or target), a continuation

using hand annotated data to generate Riu’s input, and a continuation an LSTM trained on the

corpus of stories and samples using the setup or beginning as a seed. Note that the order for these

scenarios was randomized in the user study.

Story 1 Setup

Once there lived a rich merchant with two beautiful daughters. The merchant sent them

to marry the kingdom’s prince.

Original

The younger sister was jealous of her older sister. When her older sister was sleeping, she

cut her eyes. She then left her sister to die.

Voz+Riu

The maidservant was jealous. The maidservant stole the merchant’s daughter clothes and

left her to be eaten by the wolves.

Anno.+Riu

She was jealous. She stole her older sister’s clothes and left her older sister to be eaten

by the wolves.

LSTM

The father kept his daughter had to the forest. The girl became a bull ate the father
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didn’t take it into a bear.

Story 2 Setup

A woman was once kidnapped by a bear. The woman gave birth to a bearlet who was

half-boy and half-bear. Eventually, the woman was able to escape and took the boy with

her.

Original

When they got back home, the woman’s husband could not accept the bearlet. He had

a plan to get rid of the bearlet. He told the bearlet that he would only let him stay if he

got rid of the water spirits in the lake. The bearlet left not knowing what to do.

Voz+Riu

The maidservant stole the merchant’s daughter clothes and left her to be eaten by the

wolves. A beautiful daughter challenged a maidservant to see who could scream the

loudest. A maidservant and a beautiful daughter took turns yelling and screaming. A

maidservant asked a beautiful daughter to close his eyes. Then, a maidservant smacked

a beautiful daughter with a stick.

Anno.+Riu

He had a plan to get rid of the bearlet. He told the bearlet that he would only let him

stay if he got rid of the water spirits in the lake. The bearlet left not knowing what to

do. A bear ambushed a bearlet but a bearlet was faster than him. A bear saw he could

not win and asked a bearlet for forgiveness.

LSTM

From home, the devil started tormenting the princess of a dragon set their house on. A

nearby witch smelled the milk of bread and buried him.

Story 3 Setup

A soldier was given leave from his company. He had only a piece of bread, a knapsack

and a fiddle. He was happy and left playing the fiddle. A nearby devil heard the fiddle.
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The devil approached the soldier and asked him to teach him how to play in exchange

for a favor. The soldier taught the devil how to play but did not ask the devil for any

favors. They parted ways.

Original

After some time, the devil was tormenting the princess of the kingdom. The king issued

a call asking for help. The soldier answered the call and interviewed with the king. He

assured the king he would be able to free the princess from her torments.

Voz+Riu

A soldier came the next day but could not find A soldier. A soldier cursed A soldier

and transformed him into a cat. Years passed and everyday the mother would sing to A

soldier and tell him about his story.

Anno.+Riu

A soldier came the next day but could not find the boy. A soldier cursed the boy and

transformed him into a cat. Years passed and A nearby devil would sing to the cat and

tell him about his story.

LSTM

Baba Yaga saw them and tried it on fire but then the baby brother and the crops and

when he devised a bad winter. The father did not accept the kid to meet with three heads

saw them and buried him.

Story 4 Setup

Once upon a time there was a happy queen with a son and a daughter. In the kingdom

lived a witch that was jealous of their happiness. The witch devised a plan to ruin their

family. The witch visited them. She gave the prince a ring and told him that he would

be happy as long as he married a girl who the ring would fit.

Original

Years passed but the boy could not find a girl who the ring would fit. One day, his
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sister saw the ring and tried it on. The ring fit perfectly and she couldn’t take it off. He

immediately asked her to marry him. The girl panicked and escaped the palace.

Voz+Riu

The soldier accepted the king’s orders and prepared to leave. The king issued a call for

help. The king responded to the call. The king told The king he would make The king a

nobleman is The king could rescue a bride.

Anno.+Riu

Their father threatened to marry them if he would not find a bride. The girl was terrified.

She decided to try to find a bride for her brother.

LSTM

Once kidnapped princess had to get rid of her stepsister despised Alenka was no food.

The stepmother.

Story 5 Setup

A poor mother lived in a little house with her two sons. There was famine and she could

barely feed her sons. One day a hungry snake walked nearby. The snake looked through

the window and saw the younger son unattended.

Original

The snake crawled in and took the younger son with her.

Voz+Riu

Her brother could not find a bride. Their father threatened to marry them if he would

not find a bride. The girl was terrified.

Anno.+Riu

The mother saw her younger son missing. She asked her older son to go look for his

younger brother. The older brother was very responsible and agreed. He left the house

and went into the woods.

LSTM
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A dragon kidnapped by the cow grew up he immediately asked her father and threw

him. The girl once kidnapped the father and stepmother and escaped the baby brother

unattended and threw him into the bull came to eat Vasili.

Story 6 Setup

An old couple lived in a hut with their adopted son. The boy had a magical bird that

could control the weather. They used the bird’s predictions to make it rain on their crops

and were always prosperous. A jealous neighbor learned about the bird. The neighbor

told the boy he needed to borrow the bird. But the boy wouldn’t let him take it.

Original

The neighbor took the bird and locked it into a cage. A mouse nearby saw everything.

Voz+Riu

The mouse came the next day but could not find the mouse. The mouse cursed the mouse

and transformed him into a cat.

Anno.+Riu

A jealous neighbor came the next day but could not find the mouse. A jealous neighbor

cursed the mouse and transformed him into a cat.

LSTM

The witch grabbed the family’s house and their fields. A wicked neighbor took over the

bull came to eat every single child if his town.

Story 7 Setup

Once upon a time, in a land, far, far away. There lived a girl with her baby brother and

her mother. One day, the mother went to the market. The mother told the girl to watch

her brother. The girl started playing and soon forgot what her mother had asked her.

Original

A nearby witch smelled the baby brother and took him away.

Voz+Riu After a while, the girl came back and realized her baby brother was missing. The
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girl suspected the witch may be behind.

Anno.+Riu

The witch came the next day but could not find the girl. The witch cursed the girl and

transformed him into a cat.

LSTM

From home, the old mother hid the merchant’s daughter had been ruined and her father

kept his daughter Alenka.

Story 8 Setup

There once lived a poor and unlucky peasant.

Original

He never married and was very lonely.

Voz+Riu He wanted revenge and ran after the dragon but got lost.

Anno.+Riu A poor and unlucky peasant wanted revenge and ran after the dragon but got

lost.

LSTM

Time passed but could not find a suitable husband could not find her room. The family

and ran away.

Story 9 Setup

An old couple lived with their daughter in a farm. The mother died of illness. The

widower eventually married a widow that had a daughter of her own. The stepmother

was always cruel to the poor girl. One night a group of pirates came to the farm. They

spied the family through the windows.

Original

Once the family was asleep the pirates kidnapped the father and stepmother. The next

morning, the girl and her stepsister couldn’t find their parents. They decided to go look

for them. They took separate ways.
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Voz+Riu

The woman’s daughter was jealous of her stepsister’s beauty. She wanted to learn her

secret. The woman’s daughter followed the girl everyday. She learned that she drank the

milk of a magic cow to keep beautiful. She plotted to steal the cow’s milk all for herself.

Anno.+Riu

The king kidnapped the father and threw him in jail.

LSTM

The king’s second birthday, she cut her in jail. The man forgot about his lover.
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Appendix C: Narrative Functions Identified by Propp

In this appendix we include some of the tables published in the English translation of Morphology

of the Folktale25. These tables show the narrative functions identified by Propp for several of the

stories he studied. The stories are identified using the number found in the collections published by

Alexander Afanasyev. Please refer to Chapter 3 for the titles of the stories used in our experimental

evaluation.

C.1 Table of Narrative Functions Identified by Propp

Below we include the narrative functions identified by Propp in the stories he analyzed. We include

this information for reference. These tables are scanned from the appendix in the English translation

of Morphology of the Folktale25.

The 1961 Report of the Register of Copyrights on the General Revision of the U.S. Copyright

Law specifically states that the fair use of a copyrighted work, including such use by reproduction for

purposes such as scholarship or research, is covered by fair use and not an infringement of copyright.

XX UNCOMMENT THESE FIGURES
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Appendix D: Alexander Afanasyev’s Stories

During our research we compiled several sources of Russian and Slavic folk tales, matching available

English translations with the original stories referred to by Propp required some work that we are

glad to be able to share with the community.

D.1 Relationship of Alexander Afanasyev’s Story Titles

The following table reports a relationship of the numbered stories used in Propp’s work and the

English titles of the stories used in Jack V. Haney translation The Complete Folktales of A. N.

Afanas?ev., Univ. Press of Mississippi, 20141. The ranges in the first column indicate several versions

or variations of the same story. Additionally, we include other titles used in previous translations

and collections. For those we look at publications freely available on Project Gutenberg. In the

table the numbers in the Sources column refer to the following titles:

1. Folk Tales from the Russian by various authors2

2. Russian Fairy Tales From the Skazki of Polevoi by R. Nisbet Bain3

3. Russian Fairy Tales A Choice Collection of Muscovite Folk-lore by W. R. S. Ralsto4

4. Old Peter’s Russian Tales by Arthur Ransome5

Table D.1: Relationship of numbered Alexander Afanasyev’s stories used in Propp’s work
and their titles. The last column provides correspond to freely available sources from Project
Gutenberg.

# Title Alternative Titles Sources

1-7 Little Sister Fox and the Wolf

1Preview available: https://books.google.com/books?id=IQQbBwAAQBAJ
2Available: http://www.gutenberg.org/files/12851/12851-h/12851-h.htm
3Available: http://www.gutenberg.org/files/34705/34705-h/34705-h.htm
4Available: https://www.gutenberg.org/files/22373/22373-h/22373-h.htm
5Available: http://www.gutenberg.org/files/16981/16981-h/16981-h.htm

https://books.google.com/books?id=IQQbBwAAQBAJ
http://www.gutenberg.org/files/12851/12851-h/12851-h.htm
http://www.gutenberg.org/files/34705/34705-h/34705-h.htm
https://www.gutenberg.org/files/22373/22373-h/22373-h.htm
http://www.gutenberg.org/files/16981/16981-h/16981-h.htm
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8 For a Bast Boot a Hen-For the Hen, a Goose

9-13 The Fox Midwife

14 The Fox, the Hare, and the Cock

15-17 The Fox Confessor

18 The Fox Healer 3

19 An Old Man Climbs Up to the Sky

20 The Old Man in Heaven

21-22 The Fox as Keener

23-26 The Peasant, the Bear, and the Fox

27 Old Hospitality is Soon Forgotten

28 The Sheep the Fox and the Wolf

29-30 The Beasts in the Pit

31 The Fox and the Grouse

32 The Fox and the Woodpecker

33 The Fox and the Crane

34 Snow Maiden and the Fox

35 The Fox and the Crayfish

36 The Bun

37-39 The Tomcat, the Cock, and the Fox

40-43 The Tomcat and the Fox

44-47 The Frightened Bear and Wolves

48 The Bear, the Fox, the Gadfly, and the Peas-

ant

49-50 The Wolf

51-52 The Sow and the Wolf

53-54 The Wolf and the Goat
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55-56 The Wolf is a Fool

57-58 The Bear

59 The Bear, the Dog, and the Cat

60-61 The Goat

62 A Tale about a Shedding Goat

63 A Tale about a Certain One-Sided Ram

64 The Beasts’ Winter Quarters

65 The Bear and the Cock

66-67 The Doc and the Woodpecker

68 The Cock and the Hen

69 The Death of the Cock

70-71 The Hen

72 The Crane and the Heron

73 The Crow and the Lobster

74 The Eagle and the Crow

75 The Gold Fish 4

76 The Greedy Old Woman

77-80 The Tale of Ersh Ershovich, Bristleback’s Son

81 A Story about a Toothsome Pike

82-84 The Tower of the Fly

85-86 The Spider

87-88 The Bubble, the Straw, and the Bast Boot

89 The Turnip

90 Mushrooms

91 Frost, Sun, and Wind

92 Sun, Moon, and Raven Ravenson
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93 The Witch and the Sun’s Sister Witch and Solnt-

seva Sister, Prince

Ivan, the Witch

Baby, and the

Little Sister of the

Sun

3, 4

94 The Vazuza and the Volga 4

95-96 Frost Jack Frost, Mo-

rozko

1, 2, 3, 4

97 The Old Woman Who Griped The old woman

Govorukha

98 Daughter and Stepdaughter Daughter and

Daughter in law

99 The Mare’s Head

100 Little Bitty Khavroshechka Kroshechka-

Havroshechka

101 The Little Red Cow Burenushka

102-103 Baba Yaga 1, 3, 4

104 Vasilisa the Beautiful 3

105 Baba Yaga and the Midget

106-107 Baba Yaga and the Nimble Youth

108-101 Ivashko and the Witch The Witch

112 Tereshechka

113 The Swan-Geese The Magic Swan

Geese

114 Prince Danila Govorila
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115-122 The Truth and the Lie

123-124 The Prince and His Uncle

125 Ivan Tsarevich and Marfa Tsarevna

126 The Little Copper Man

127 The Merchant’s Daughter and Her Maid The Merchant’s

Daughter and the

Maidservant

128-130 The Three Tsardoms-Copper, Silver, and Gold

131 Frolka the Dropout Frolka Stay-at-

Home

132 The Norka Beast

133-134 Rollingpea

135 Ivan Popialov Ivan Popyalov 3

136 Stonn-Bogatyr, Ivan the Cow’s Son

137 Ivan the Bull’s Son

138 Ivan the Peasant’s Son and the Little Man the

Size of a Finger with Moustaches Seven Versts

Long

2

139 Ivan Suchenko and the Belyi Polianin

140 Dawn, Evening, and Midnight Dawn, Evening and

Midnight

4

141-142 The Bear, Moustaches, Mountain Man, and

Oakman Bogatyrs

143 Nodei, the Priest’s Grandson

144 The Flying Ship 4

145-147 The Seven Simeons 1
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148 Nikita the Tanner

149 The Serpent and the Gypsy

150 The Hired Hand

151 Shabarsha Shabarsha the La-

borer

152 Ivan the Bear’s Son Ivanko the Bear’s

Son

153 A Soldier Rescues a Tsarevna

154 A Fugitive Soldier and the Devil The Runaway Sol-

dier and the Devil

155 The Two Ivans, a Soldier’s Sons 2

156-158 Koshchei the Deathless 3

159 Mar’ia Morevna

160 Fedor Tugarin and Anastasia the Beautiful

161 Ivan Tsarevich and the Belyi Polianin

162 The Crystal Mountain

163 Bukhtan Bukhtanovich

164 Kozma Quickrich

165-166 Emelia the Fool 3

167 At the Pike’s Command

168 The Tale about Ivan Tsarevich, the Firebird,

and the Gray Wolf

169-170 The Firebird and Vasilisa Tsarevna 4

171-178 A Tale about the Brave Lad, the Rejuvenating

Apples, and the Living Water

247 The language of the Birds 1
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297 The princess who wouldn’t smile

557 Girl and Bear
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Appendix E: Story-based Procedural Content Generation

This Appendix describes some related work performed during my dissertation, which was not directly

connected to my core contributions

E.1 Story-based Procedural Content Generation

Procedural content generation (PCG) refers to the creation of content automatically through algo-

rithmic means97. Some computer game genres require meaningful stories and complex worlds in

order to successfully engage players. However, most procedural map generation techniques typically

neglect the role of the story in the construction of the map. In this work, we present a novel PCG

approach for generating maps intended to be played in a computer game context that uses stories

to guide the generation process.

Our approach is motivated by the following observations: First, procedural content generation

has the potential to increase the variability and replayability of games. This in turn can lead to an

increase in player interest in these games, as it will take longer for the player to see or complete

everything in the game98. Second, game maps impose constraints to the set of possible stories that

may happen in a game. For example, the order of narrative events should not be at odds with the

spatial configuration of the map. For example, we may not want a player of a murder mystery game

to leave the current room before the next critical narrative event can be triggered.

In this work, we intended to explore the correlation between stories, represented as sequences

of plot points, and the spatial configuration of the environment where these stories unfold. Our

goal is to procedurally generate story-based game maps. We propose a framework which, given the

specification of a story space, represented as a collection of plot points and their dependencies, can

generate maps that support one or more stories from that story space. Our system searches in the

space of possible spatial configurations of the map, determining the set of stories that can unfold in

each of those configurations. Then, using automatic story evaluation techniques, it determines the
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narrative quality of each possible story, the combination of which determines the overall quality of

the map. Finally, the map is realized into a graphical representation.

The key technical challenges that we address here are: 1) how to automatically generate game

maps from a collection of plot points, 2) how to evaluate the quality of a given map based on the

different stories that it supports, and 3) how to generate a graphical realization of the map.

Story-Based Map Generation

In this work, we focus on the problem of story-based map generation. In order to address this

problem, we present a system that combines story-telling and procedural map generation techniques.

Specifically, our system takes as input a collection of plot points, which are events that are key to

the game story (for example: “the player discovers the existence of a hidden door”). This collection

of plot points defines the story space (e.g., the space of all the potential stories we could generate).

The goal of our map generation system is to generate game maps that support a subset of stories

from the story space which are of high-quality based on our given storytelling criteria.

Our plot point representation is based on those used in planning-based story generation systems,

such as ASD 87. It is extended in order to allow the use of story quality evaluation functions, such as

those developed by Weyhrauch for MOE 22. Additionally, we take as input a set of author goals that

stories need to accomplish87. Specifically, the input of our system is a tuple 〈S,L, player, I,G, P 〉,

where:

• S is a list of symbols (e.g., tree, sword, cave, warrior, use, path, etc.).

• L ⊆ S is the subset of those symbols that represent location names (e.g., cave).

• player ∈ S is the symbol that identifies the player.

• I is the initial state, consisting of a list of positive literals of the form o(s1, ..., sn), where o ∈ S,

and ∀i=1...nsi ∈ S. The initial state can include information about NPCs, objects, and loca-

tions that are referenced by the plot points (e.g., at(path, warrior), has(warrior, sword)...).

• G is the set of goals that need to be achieved to complete the game, represented as a list of

literals.
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• P is a set of plot points. A plot point is defined as a tuple p = 〈κ, α, δ, A〉 (in a very similar

way to how planning operators are defined), where:

– κ represents the preconditions of the plot point, as a list of (potentially negated) literals.

– α (or the add list) are the literals that will become true after this plot point occurs.

– δ (or the delete list) are the literals that will become false after this plot point occurs.

– A is a list of additional annotations we might need for this plot point. In our particular

implementation, we annotated each plot point with the set of features required to use a

story evaluation function inspired by the work of Weyhrauch22 (which we elaborate later

in Section E.1).

Given the input, our system generates, as output, a graphically realized map based on a rectan-

gular grid. Each cell of the grid is annotated with a location symbol in L, the objects or characters

that should initially be in that location, and which of the four neighboring cells the current cell is

connected to.

Internally, our system uses an abstract intermediate representation of maps before they are

graphically realized. We call this representation a spatial configuration graph. Formally, a spatial

configuration is defined as a graph E = 〈L,K〉, where the nodes are the locations L and K ⊆ L×L

are the edges between those nodes. An edge connecting two nodes represents that the locations are

accessible from each other. Later, we transform the spatial configuration into a planar, grid-based,

orthogonal graph (we call this the graph embedding step). Once embedded, the graph can be realized

as a playable game map (we call this the graphical realization step).

The main steps of the process can be summarized as follows: First, our system generates spatial

configurations. Then, the system generates all the possible stories that can unfold in a given spatial

configuration, based on the set of input plot points. After that, each spatial configuration is evaluated

by assessing the narrative quality of all possible stories that could unfold in it, and finally the system

graphically realizes one of the spatial configurations.

The entire process takes into account three different spaces: 1) the spatial configuration space
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(which locations are connected to each other), 2) the story space (sequences of plot points), and 3)

the graph embedding space (planar graph embeddings which will become graphically realized game

maps, into rectangular grids in our experiments).

The input of the system defines a set of symbols L that represent locations. However, their

spatial relationships (from which ones characters can reach others) are not specified in the input

of our system. The first step described in Section E.1 assumes as input a spatial configuration

graph E = 〈L,K〉, describing which locations are accessible from one another. The graph may be

initialized randomly. Section E.1 describes the ε-greedy algorithm that uses the evaluation of the

graph E from Section E.1 to refine the construction of E for the next iteration.

Planning and Story Generation

From a given spatial configuration graph E and a given input 〈S,L, player, I,G, P 〉, we want to

know what stories can unfold in E. We perform an exhaustive search to generate all possible stories.

We are interested in identifying spatial configurations that feature low quality stories (e.g., short

circuited or without any challenges) or no stories at all (e.g., no way to reach any goal) so that can

be discarded.

Our system uses a forward chaining planner in order to generate stories. The given plot points

are used as the planning operators. A story consists of the list of plot points generated by the

planner for reaching the goals G from the initial state. The initial state used by our planner to

generate stories consists of the initial state I expanded with one literal path(l1, l2), for each edge

(l1, l2) that exists in E.

Moreover, we are interested in obtaining the set of all possible stories that can unfold in a given

spatial configuration. In order to obtain such set, our planner performs breadth-first-search. When

a state is reached where all the goals in G have been satisfied, the operator history is saved in the

set of solution candidates SE for the current spatial configuration graph. Then the planning process

continues with the next branch. If it is not possible to find operators that add new literals to the state,

the search along a branch will be terminated even if there are goals remaining, therefore preventing

loops that may contribute to solutions of infinite length. Moreover, our planner gives a special
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treatment to movement plot points and adds a literal (been(character, l)) after each movement

action in order to allow different locations to be explored and revisited but preventing duplicated

search states (e.g., visiting a bird before and after having acquired bird food). Also, some of the

literals in the state are dealt with in a special way by some modules in our system:

• at(object, l): Specifies object or character locations in the spatial environment.

• path(l1, l2): Specifies whether a path exists from a location to another.

• locked(character, l1, l2): Specifies whether a path exists but is currently locked for a character.

The output of the planning module is a set of plans SE representing all the stories found in the

current spatial configuration. Each story in SE consists of an ordered list of pairs [〈s1, p1〉, ...〈sm, pm〉]

with the states si and the executed plot points pi ∈ P . More complex planners can be used, but our

current breadth-first forward-checking planner suffices for the purposes of our experiments. Also,

for large story spaces, it might not be feasible to generate the complete set of all stories that can

unfold in a given spatial configuration, and we might need to sample it. Sampling should suffice as

long as we can identify the lowest quality stories, which in our experiments are correlated with the

shorter stories (e.g., when short circuiting the initial plot point with some goal). This idea is part

of our future work.

Figure E.1 shows an example plot point dependency graph. The story is inspired by plots

produced by Tale-Spin101. Some of the preconditions have been removed for display. Figure E.2

shows a specific story for the plot point dependency graph shown in Figure E.1. The main character

in this story is Joe Bear, who starts at the location cave. The numbers in the edges in Figure E.2

represent the order in which the plot points occur.

Story Evaluation

An important component of our system is the story evaluation which has the goal of computing a

numeric value representing the quality of a story according to some predefined criteria to a given

story [〈s1, p1〉, ...〈sm, pm〉].
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Initial state.
Joe bear is hungry.

Discovers a flower.
Follows the bees. Gets some water from the river. Finds a worm and takes it.

Meets Irving.

Finds the beehive and eats the honey.

Gives water to Henry.
Henry reveals location of beehive.

Gives worm to Irving.
Irving reveals location of beehive.

Meets Henry.

Figure E.1: Example story causal link graph inspired by the plots produced by Tale-Spin.
Boxes represent plot points and arrows precondition/postcondition dependencies.

The evaluation function used in our experiments, draws from the fields of experience and drama

management, specifically from the work of Weyhrauch22. Our evaluation function is a weighted sum

of a set of simpler normalized feature values. The selected features try to evaluate certain logical

and aesthetic properties that characterize story quality from a storytelling point of view:

• Thought flow: Measures whether one event in the player’s experience relates logically to

the next. Each plot point may be annotated with a thought tag grouping logically related

events (e.g., visiting the bird and acquiring bird food share one tag whereas seeing a flower

and following some bees may have different tags). We implemented this feature value counting

the total number of distinct thought groups in a given story normalized by the number of

transitions between distinct thought groups.

• Activity flow: Measures boredom of the player caused by moving without unfolding new

events of the story. We measure the activity flow by the total number of distinct visited

locations normalized by the total number of transitions between locations.

• Manipulation: Measures how manipulated the player feels by the limit of meaningful choices
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mud
     Finds a worm and takes it.

cave

4

treeMeets Irving.

1
3

Gives worm to Irving.
Irving reveals location of beehive.

5

2

beehive

Finds the beehive and eats the honey.
6

Figure E.2: Example story planned from the story space described by Figure E.1. Nodes
represent locations, edges represent movement between locations and are annotated with the
ordered plot points describing a story.

available. We measure the manipulation by computing the average of the number of available

operators before executing each plot point in the story normalizing by the total number of

operators.

• Intensity: Measures the player’s excitement built as the story unfolds. Each plot point may

be annotated with a numeric intensity value describing the author’s intended intensity for

an event. We measure the difference between a prototype dramatic arc and the dramatic arc

represented by the sequence of intensities annotated in the current story. Any particular desired

dramatic arc shape could be specified. In our experiments we approximate an Aristotelian arc

by f(x) = sin(πx2) where x is in the interval [0, 1].

• Action consistency: Measures the player perceived logic in a sequence of actions by penal-

izing redundant or complementary occurrences. Each plot point may be annotated with one

or more complementary thought tags describing logically incompatible events to the current

plot point. We measure the number of violations normalized by the total number of distinct

thoughts.

• Length: Measures how much the story length deviates from a desired story length. We

implemented this feature value by comparing the current story length to a predefined value

(part of the input annotations). We return a value interpolated linearly from 1.0 when the
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lengths match exactly to 0.0 when the current story length is ±75% or more.

Finally the individual values are added together using a weighted sum. In our implementation

we defined some arbitrary weights representing our desired aesthetic values. The values used in our

experiments are 0.1, 0.05, 0.05, 0.1, 0.1 and 0.6 respectively, for each of the individual features defined

previously.

Spatial Configuration Evaluation

Given the set of stories SE that can unfold in a spatial configuration E (computed by our planner),

and the evaluation of each of the stories in SE , we are interested in aggregating the evaluations and

compute a numeric value representing the quality of the spatial configuration E.

In order to give a numerical value to the list of individual story evaluations we experimented

with several aggregation operators with different properties and we selected the following:

• Average: We average the list of individual evaluations.

• Minimum: We compute the minimum of the list of individual evaluations (which identifies the

worst story).

Graph Embedding

Once a spatial configuration E has been selected (we describe how the previous processes are com-

bined to select a spatial configuration in Section E.1), we need to turn the graph E into a planar

graph (a graph that can be drawn in a plane without having intersecting edges), so that a final map

can be realized. We call this output a graph embedding YE .

There is an infinite number of drawings or plane embeddings for a graph. When embedding a

spatial configuration E, we would like to take into account a variety of factors. First, allowing two

edges to cross, will result in the creation of additional paths, not in E, when the spatial configuration

is realized, allowing the player to access locations that should not be readily accessible. Even though

those can be tackled with multi-level environments or the use of certain elements, those may not

make sense in some story domains (like teleports in a historical setting) or scales (like multi-level
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continental maps). Thus, in order to provide a story-agnostic graph handling we decided to enforce

planar embeddings.

When embedding E into a planar graph, we consider edges to be undirected since we are assuming

that locations will be accessible from each other when connected.

Several hierarchical and force-driven (e.g., rubber bands) algorithms have been discovered for

finding planar embeddings, but those may not be suitable for our purpose since we impose several

aesthetic and playability constrains. Thus, we decided to use a rectangular grid layout for our

graph embedding step (although our algorithm would work for arbitrary reticules, such as hexagonal

patterns). We employ a technique inspired by Goldschmidt and Takvorian181.

Before embedding the graph, two preprocessing steps are executed in order to improve the chances

of finding a planar embedding:

1. Inspired by the idea of the Steiner points in the Steiner tree problem182, the graph is searched

for cliques of size >= 4. If any is found, the edges between the nodes are removed and replaced

by vertices to a new intermediate node.

2. In order to enable orthogonalization on a rectangular grid, nodes with a vertex degree > 4

(vertices with more than four edges) are split into several nodes with vertex degree of at most

4 following the Giotto approach presented by Tamassia183.

Then, the graph is processed as follows:

1. Select a subpath from the graph, lay down the nodes consecutively on the grid and mark the

nodes as processed. The selected subpath is initially the longest of all the shortest paths in

the graph.

2. Select an unprocessed node (if any) that has only one neighbor already marked processed,

lay it in the grid adjunct to its neighbor and mark it as processed. The neighbor position is

selected from the first available position searching clockwise.

3. Select an unprocessed node (if any) and search for paths between all the neighbors already

marked as processed. Select the shortest path and split the node as many items as necessary
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log
(a)

cave
(c)

meadow
(d)

tree
(g)

mud
(e)

river
(f)

beehive
(b)

Figure E.3: Example environment configuration for an environment inspired by the plots
produced by Tale-Spin (input A in our experiments).

a

u

v_4 v_6v_3 v_5

b dg e f

v_1 v_2

Figure E.4: Example environment configuration embedding for the environment in Figure
E.3. with additional connecting nodes u and v.

to cover all the steps in the path and lay the items in the grid, marking the node as processed.

The paths are searched using A* and Manhattan distance.

4. Iterate until there are no more nodes to process or the remaining nodes cannot be processed.

If any node remains after processing, our embedding algorithm returns a failure token, other-

wise it returns a graph embedding defined as the tuple YE = 〈E, coords〉 where coords are 〈x, y〉

coordinate pairs for each node in E.

Figure E.3 shows an example spatial configuration graph. Figure E.4 shows an example graph

embedding for that spatial configuration graph. We used letters rather than the full names of the

locations for space reasons (e.g., a for log, b for beehive...). It can be observed how a node (cave)

has been split multiple times (first into u and v, and later v has been split again to form a path).

The algorithm described in this section is not guaranteed to find a planar embedding for a
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graph, even with the preprocessing steps defined previously. If no embedding is found, the process

will backtrack to the first step and will select the subsequent longest of all the shortest paths. If no

graph embedding is found a failure token will be returned that will prompt the ε-greedy search to

continue to another spatial configuration graph.

Graphical realization

Given a graph embedding YE , we want to compute a graphical realization for the spatial configura-

tion E. Once a grid layout has been found, we proceed to the graphical realization by instantiating

grid cells at the coordinates given by YE with a bitmap representation for rooms, doors for connected

rooms and areas for split nodes.

Algorithm construction

This section describes the combination of the steps presented so far into an unified algorithm to

generate a fully realized map, given the input to the system, 〈S,L, player, I,G, P 〉.

Our algorithm works by performing two main tasks: first, decide on a spatial configuration graph,

specifying which locations are connected with each other; then, embed and realize the given spatial

configuration. One of the main difficulties on choosing a spatial configuration graph, is that there

exist 2(
|L|
2 ) different spatial configurations for a given story world specification. Thus, we propose

an ε-greedy strategy to search for a good candidate in the spatial configuration space. Spatial

configuration graphs candidates with different features will be built and evaluated. Based on the

features selected and the evaluation obtained, subsequent graphs will be built. Once a satisfactory

candidate is identified, the algorithm will proceed with embedding and realization steps.

Using the processes defined in the previous sections, our system executes the following steps:

1. Initialize two tables, M and N :

(a) M has |L| − 1 rows, one entry for each of the possible number of edges in E. All entries

are initialized to zero.

(b) N has |L|(|L|−1)2 rows, one entry for each possible edge in E. All entries are initialized to

zero.
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2. Create a candidate spatial configuration E by:

(a) Using an ε-greedy sampling strategy, select a number of edges m form the table M (e.g.,

select the maximum entry with probability 1− ε, and one at random with probability ε).

In our experiments ε = 0.3.

(b) Selectm edges by using an ε-greedy sampling strategy in tableN (e.g., we use the ε-greedy

strategy m times, to get m edges, without replication).

3. Using our planner, generate all possible sequences of plot points (e.g., stories) that could unfold

in the given spatial configuration E.

4. Evaluate each individual story using our evaluation function.

5. Aggregate the individual story evaluations to obtain an evaluation for the spatial configuration

E.

6. If the evaluation of E is below a threshold, update the tables M and N with the evaluation

of E (each entry in M stores the average evaluation of the spatial configurations that have a

given number of edges, and each entry in N stores the average evaluation of a particular edge

in the spatial configurations), and go back to step 2. Otherwise, go to step 7.

7. Generate a planar embedding YE . If none found, go to step 2.

8. Realize the planar embedding YE into a graphical representation (a grid in our experiments).

E.1.1 Experimental Evaluation

Our first experiment aims at evaluating the behavior of our story planner for inputs with different

properties. We experimented with three different inputs to our system, which we altered in order

to demonstrate the effects of adding and removing goals, plot points, locations and paths between

locations:

• Input A is based on the plots produced by Tale-Spin, specifically the Joe Bear, Irving Bird

and Henry Ant stories. It is composed of 8 plot points and 7 locations.
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• Input B features a key and lock puzzle that requires revisiting some locations in order to ac-

complish the given goal. It is composed of 8 plot points and 6 locations.

• Input C is a task-based story inspired in the Tolkien universe. The player is presented with a

set of 14 tasks represented as goals that must be satisfied. It is composed of 26 plot points and

11 locations.

As we expected, the spatial configuration parameters have great impact on the number of stories

found. Table E.1 shows the results from this experiment. Each row shows one different experiment

using a specific variation of one of the three inputs described above, paired with a specific spatial

configuration E. The first five columns show the given base input, the number of plot points,

locations, the number of edges in E, and the number of goals in each experiment. The last column

(|SE |), show the total number of stories that our planner could find in each of the experiments.

The first three rows show results for input A when using a spatial configuration with a predefined

number of edges (6), with no edges (0) and with all the possible edges (21). As expected, with no

edges, no stories could be found. Rows 4 and 5 show two variations of input B, where in the second

one, we added an extra location and two additional edges to E. The result is that the number of

stories that can unfold grows significantly (from 2 to 21). Notice that we are not measuring story

quality yet. Finally, the last three rows show three variations of input C, where we varied the number

of goals (from 4 to 14), and also varied the number of locations and edges. As we can see, adding

goals constraints the planner to trying to satisfy each goal and therefore reducing the number of

different stories found. The results also show the exponential relationship between the number of

plot points and the number of stories found.

In order to validate our spatial configuration ε-greedy search process, we compared the config-

uration evaluations obtained against those obtained by some manually authored and some random

generated spatial configurations. In the experiments we use the input A described in the previous

experiment. Results are shown in Table E.2.

The first four rows show the results for input A, using three authored spatial configurations with

6, 8 and 3 edges respectively and the complete K7 (with 21 edges). The spatial configurations were

Appendix E: Story-based PCG E.1 Story-based Procedural Content Generation



220

Table E.1: Planning results for different experiments. |P | is the number of plot points, |L| is
the number of locations, |K| is the number of paths or edges in the spatial configuration E, G
is the number of goals and |SE | is the number of stories found.

|P | |L| |K| |G| |SE |
A 8 7 6 1 10
A 8 7 0 1 0
A 8 7 21 1 100
B 6 5 4 1 2
B 8 6 6 1 21
C 19 4 3 14 8
C 19 4 3 4 192
C 26 11 55 4 384

Table E.2: Number of stories found (|SE |) in a series of spatial configurations, and their
evaluation using both a average and a minimum aggregation operators.

|SE | Avg. Min.
A6 10 0.862 0.771
A8 64 0.851 0.709
A3 1 0.746 0.746
K7 100 0.858 0.709
RAvg 64.2 0.701 0.596
R4 0 0 0
R5 3 0.919 0.915
R11 85 0.865 0.737
R17 96 0.871 0.747
R19 99 0.855 0.711

GAvg
7 3 0.92 0.915

GMin
7 3 0.916 0.914

manually crafted by ourselves using our subjective aesthetic preferences. We can observe how the

number of paths affects positively the number of stories found |SE | but has a negative impact on

the average and a minimum evaluation aggregates. We also tested the input A with 89 randomly

generated spatial configuration graphs with different number of edges. The fifth row shows the

averages for the 89 random graphs followed by 5 samples, Ri, where the subindex i indicates the

number of edges in the randomly generated graph. Finally, rows 11 and 12 show results from our

ε-greedy search after running for 500 iterations. GAvg
7 was obtained trying to optimize the average

evaluation aggregation operator and GMin
7 trying to optimize minimum instead. The subindex 7

indicates that the spatial configuration found contains seven edges.

As Table E.2 shows, randomly generated maps have a low evaluation, and in some instances, do
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not even support any story (e.g., R4). The two spatial configurations generated by our algorithm,

however obtain very high evaluation (always above 0.9), while supporting 3 stories. Comparing the

authored spatial configurations against the algorithm results we can observe how the later obtained

a significantly higher evaluation. However, the human authored spatial configurations take into

account some interesting features, like allowing for a larger variety of stories or a more coherent

distribution of the space. Those features are not taken into account by our evaluation function but

might be desirable in some situations. As part of our future work, we would like to incorporate some

of those features in our evaluation function.

The graph embedding algorithm processes a graph and yields a layout YE to be used by the graph

realization process. We tested the algorithm by hand crafting a set of 25 planar spatial configuration

graphs to test different features. The graphs range from 6 to 16 nodes and from 9 to 27 edges. Our

algorithm yields a satisfying layout for 18 out of the 25 graphs.

We also tested the algorithm against 82 of the randomly generated graphs defined in the previous

experiment. The graphs are not guaranteed to be planar and feature between 2 to 15 nodes and

between 1 to 34 vertices. Our algorithm yields a satisfying layout for 62 out of the 82 graphs.

E.2 Conclusions and Future Work

In this appendix we presented a novel approach to procedurally generating game maps using sto-

rytelling techniques. We have described a system that can generate stories and then design a map

supporting those stories. The system evaluates the stories in order to maximize the quality of the

output. We use an intermediate graph structure to describe the spatial relationships between loca-

tions in the map, which we then use to graphically realize the map. Our experimental evaluation

showed promising results, although there is a lot of room for improvement.

As our experiments show, our system can effectively explore the space of spatial configurations,

searching for those that support high quality stories from the story space. Especially interesting is

the capability of our system to generate game maps that support multiple stories or that contain

cycles.

As part of our future work, we would like to explore the advantages of using more advanced story
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planners. The authored spatial configurations exhibit some properties that have not been encoded

in the numerical interpretation of our evaluation function and are subjectively of higher quality.

We plan on improving our evaluation function to account for additional features. We also would

like to incorporate drama-management concepts and use a player model along with annotations

in our input game world specification to generate maps tailored to specific player preferences or

player archetypes96. We would like to tighten the relationship between the planning and the graph

embedding processes and incorporate elements from partial order planning into the environment

creation process in order create maps more relevant to the story and improve the scalability of the

system. Additionally, the graph embedding process has shown to be one of the most challenging

parts of the system. In order to reduce the running time to a reasonable bound for our experiments

we implemented several heuristics and limited backtracking which may prevent us from finding a

planar embedding for graphs that actually are planar. We would like to improve our preprocessing

steps for better handling subgraphs homeomorphic to K5 and K3,3. Finally, we would like to connect

our map generation system with a game engine in order to have a fully playable game to perform

user studies and validate our results. We would also like to look into on the fly map generation

incorporating player modeling into our evaluation function and drama management techniques for

further improving the player experience.

E.3 Visualizing Story Spatial Information Using Voz

In some exploratory work, we use Voz to automatically extract spatial information from the story

graph and render it a two-dimensional environment. This is a visual representation of and environ-

ment suitable for that particular story to happen. Given a story, we use Voz to generate a graph

where the nodes are characters and locations extracted from a story. The nodes are connected with

edges that indicate a character used a locomotion verb (walk, go, run, etc.) towards a location

therefore indicating that the location is accessible. We then filter the locations from the graph and

connect them with edges where there was a character traversing a pair of locations. Figure E.5

shows the extracted graph and a 2D realization of the graph embedded in a grid.
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Figure E.5: Graph with character and location information automatically extracted from a
story and two-dimensional embedding and realization of the locations in the graph.
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