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氏　　　　名 大比良　和哉 学籍番号 1731031

論 文 題 目 圧縮サブキャリア IQインデックス変調と
その効率的復調法に関する研究

要 旨

圧縮センシングを用いたサブキャリアインデックス変調 (CS-SIM: Compressed-Sensing-
aided Subcarrier Index Modulation)では，サブキャリアインデックス変調 (SIM: Subcarrier
Index Modulation)信号の疎性を用いた効率的な復調を行なっておらず，圧縮信号からSIM
信号を再構成するために多くの演算量を要する．信号の疎性のみならず離散性を考慮し
た低演算量の再構成アルゴリズムとして，離散性を考慮した高速反復縮退アルゴリズム
(DFISTA: Discreteness-aware Fast Iterative Shrinkage-Thresholding Algorithm)が提案
されているが，DFISTAは実数信号に対してのみ有効であるため，実軸・虚軸成分に強
い相関を持つ SIM信号の再構成には適さない．そこで本研究では，実軸・虚軸成分を
それぞれ独立に SIMを施すサブキャリア IQインデックス変調 (SIQIM: Subcarrier In-
phase/Quadrature-phase Index Modulation)に対して CSを適用した圧縮サブキャリア
IQインデックス変調 (CS-SIQIM)を提案する．SIQIM信号は実軸・虚軸成分が独立であ
るため，劣化なしで等価実数表現することが可能であり，DFISTAによる効率的な再構
成を行うことが可能である．さらに，DFISTAの再構成特性を向上させるために，複数の
SIQIM信号を一括して圧縮を行う一括圧縮サブキャリア IQインデックス変調 (AC-SIQIM:
Aggregate-Compression aided SIQIM)を提案する．また，DFISTAのハイパーパラメー
タの最適化のために，差分進化法に基づく最適化手法を提案する．本論文では，従来の
CS-SIMと比較して，CS-SIQIMが低演算量でありながらほぼ同等のビット誤り率 (BER:
Bit-Error Rate)を持ち，一括圧縮 (AC: Aggregate-Compression)によって，CS-SIQIMの
BER特性が改善可能であることを計算機シミュレーションより示す．



Abstract

Compressed-Sensing-aided subcarrier in-phase/quadrature index modulation (CS-
SIQIM) and aggregate-compression aided SIQIM (AC-SIQIM) relying on discreteness-
aware fast iterative shrinkage-thresholding algorithm (DFISTA) are proposed. To signifi-
cantly increase its bandwidth efficiency, we invoke compressed sensing (CS) for conveying
independent information bits via the in-phase and quadrature-phase signals of subcar-
rier index modulation (SIM). The conventional CS-SIM detector imposes an exponential
complexity with the size of SIM symbol. To lower the complexity for the detection, the
abovementioned DFISTA, which exploits both the sparsity and the discrete nature of
the SIQIM signals, is employed. Furthermore, in AC-SIQIM, SIQIM signals are jointly
compressed by a linear matrix, which is so-called aggregate compression to improve the
reconstruction performance of DFISTA. Moreover, in order to apply high-order mod-
ulation to CS-SIQIM and AC-SIQIM, hyperparameters of DFISTA are optimized via
differential evolution. We evaluate the proposed CS-SIQIM in terms of both its bit-
error rate (BER) and computational complexity performance and show that aggregate
compression (AC) improves the BER performance of CS-SIQIM. Finally, we show that
AC-SIQIM employing high-order modulation is capable of outperforming conventional
OFDM.
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Chapter 1

Introduction

1.1 Background

In the operational wireless communication systems, orthogonal frequency division multi-
plexing (OFDM) is employed as a benefit of its high bandwidth efficiency and robustness
against frequency selective fading. Recently, OFDM combined with index modulation
(IM), namely, subcarrier index modulation (SIM) has been proposed in [1], where spe-
cific patterns of activated subcarriers implicitly convey information in addition to classical
modulated symbols. SIM is a frequency-domain variant of the general concept of IM. This
general IM family also includes the popular spatial modulation (SM) [2] and generalized
spatial-frequency index modulation [3]. Since SIM inherits the characteristics of OFDM
and has the flexibility of transmission rate, it is an attractive and promising wireless
transmission scheme. The main limitation of SIM is however that it can only outperform
OFDM at low bandwidth efficiency because the minimum Euclidean distance (MED) of
SIM symbols is reduced upon increasing the number of IM symbols relying on the acti-
vated subcarriers [4]. To improve the bandwidth efficiency, Xiao et al. proposed SIM with
subcarrier interleaver [5], which outperforms the conventional SIM over correlated chan-
nels since the frequency-domain interleaver decorrelates the channels. Also, dual-mode
IM aided OFDM has been proposed in [6]. This scheme employs two different modulation
schemes such as quadrature phase shift keying (QPSK) and π/4-shift QPSK to improve
the bandwidth efficiency and exhibit the superior performance to the conventional SIM.
However, the improvements via both schemes [5, 6] are not significant compared with the
conventional SIM.

Recently, compressed-sensing (CS)-aided SIM (CS-SIM) has been presented, which
significantly improves both the bandwidth and energy efficiency, and a so-called iterative
residual check (IRC) detector has been proposed in [7]. While the performance of CS-
SIM with the IRC detector is superior to that of both conventional SIM and OFDM, the
detector relies on matrix inversions in each iteration and requires potentially excessive
complexity as increasing the number of active subcarriers to raise its transmission rate.
Moreover, it is worth noting that IRC detector does not exploit the inherent sparsity of
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Chapter 1 Introduction

SIM signals to reduce the complexity of the detection where the concept is to accurately
estimate a high-dimensional sparse vector from a small number of measurements [8].
SIM signals have inherent sparsity because only a few subcarriers are activated for data
transmission. Therefore, it is a natural consequence to combine CS-based detector with
SIM for decreasing the computational complexity.

As an efficient CS algorithm, discreteness-aware approximate message pass-
ing (DAMP) algorithm has been proposed [9, 10]. This algorithm invokes the sum-of-
absolute-values (SOAV) optimization [11] besides l1 − l2 optimization so as to efficiently
estimate discrete-valued signals with sparsity. It has been shown that the algorithm
outperforms the conventional approximate message passing (AMP) [12] in terms of mean
square error (MSE) when original signals exhibit discreteness. While the algorithm seems
to be appropriate for detecting SIM signals, it is available only for real-valued signals.
Note that SIM signals should not be transformed into a real-valued representation since
when either in- or quadrature-component takes a non-zero value, the other component
must take the value too. This correlation cannot be taken into account in the original
DAMP algorithm. Moreover, in CS-SIM, a measurement matrix is distorted by channel
coefficient, so that the assumption that variances of all elements in a measurement matrix
are constant is not satisfied. As a result, DAMP algorithm is not applicable for CS-SIM
system with a straightforward manner.

In contrast to DAMP algorithm, fast iterative shrinkage-thresholding algo-
rithm (FISTA) [13] has a good reconstruction performance even over fading channels
since this algorithm has no constraint of a construction of a measurement matrix. As
similar to DAMP algorithm, discreteness-aware FISTA (DFISTA) has been proposed for
faster-than-Nyquist scenario in [14], which simultaneously solves l1 − l2 and SOAV opti-
mization. While DFISTA is applicable even to CS-SIM scenario, DFISTA can also treat
real-valued signals. It therefore cannot be directly applied to CS-SIM scenario.

Against the aforementioned background, we propose CS aided subcarrier in-
phase/quadrature-phase index modulation (CS-SIQIM) relying on DFISTA so as to
improve the bandwidth efficiency and efficiently detect subcarrier in-phase/quadrature-
phase index modulation (SIQIM) signals. SIQIM can be regarded as generalized OFDM
with index modulation since in-phase and quadrature-phase signals in SIQIM are indepen-
dently modulated by the classical SIM. Therefore, complex SIQIM signals can be repre-
sented by real-valued signals with no degradation. This IQ-independent structure allows
the receiver to independently detect the signals in each domain. Moreover, according to
Welch bound which determines the reconstruction performance of CS algorithm [15], the
performance depends on the compression size. Hence, we propose aggregate-compression-
aided SIQIM (AC-SIQIM) in which SIQIM signals are jointly compressed by a linear
matrix to improves the performance, which is referred to as aggregate compression (AC)
throughout the paper. Furthermore, thanks to the IQ-independent structure, the size of
the linear compression can be doubled through real-valued representation. We further
propose an optimization method based on differential evolution (DE)[16] to optimize hy-
perparameters in DFISTA in order to apply high-order modulation to AC-SIQIM. Com-
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Chapter 1 Introduction

puter simulations show that our proposed CS-SIQIM has comparable bit-error rate (BER)
performance to CS-SIM with low complexity. Moreover, our proposed AC-SIQIM out-
performs both conventional OFDM, SIM, and CS-SIM and outperforms OFDM with
high-order modulations.

1.2 Organization

The rest of this paper is organized as follows. The detail and problem of SIM are shown
in Chapter 2. In Chapter 3, the conventional CS-based SIM is introduced. Then, our
proposed CS-based SIQIM system is described in detail in Chapter 4. In Chapter 5 the
computational complexity is evaluated by comparing the conventional detectors, and the
BER performance is evaluated via computer simulation. Chapter 6 concludes the paper.

1.3 Notations

Throughout this paper, we use the following notations. A column vector and a matrix are
represented by w and W, respectively. A vector whose elements are all 1 is represented
by 1. For N -dimensional column vector w, the l1 and l2 norms are defined as ||w||1 =∑N

i=1 |wi| and ||w||2 =
∑N

i=1

√
w2

i , respectively. (·)T and (·)H stand for the transpose and
the conjugate transpose, respectively. The imaginary unit is represented by j. R(w) ∈
RN and I(w) ∈ RN denote real and imaginary parts of a complex column vector w,
respectively. Furthermore, CN (0, 1) denotes a complex Gaussian distribution with zero
mean and unit variance. The binomial coefficient ofN andK is represented by

(
N
K

)
, where

N ≥ K. Floor function is represented by ⌊·⌋. E[·] denotes the expectation operation.
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Chapter 2

Subcarrier Index Modulation

The combination of OFDM and index modulation, named SIM, is inherently attractive
for wireless communications since the modulation is capable of outperforming the con-
ventional OFDM in terms of BER performance. SIM is a family of generalized index
modulation in frequency-domain, so that active subcarrier patterns are regarded as an
index and convey information bits as well as data symbol. Figure 2.1,2.2 show power
spectrum density of OFDM and SIM. As shown in Fig. 2.2, since not all subcarriers are
employed for data symbol transmission in SIM, SIM obtains power gain against OFDM
and has larger MED than OFDM.

2.1 Transmitter

In contrast to OFDM, SIM performs on multiple subcarriers. Let N and K denote the
number of subcarriers and the number of active subcarriers in a SIM signal, respectively,

Figure 2.1: Power spectrum of OFDM sig-
nal

Figure 2.2: Power spectrum of SIM signal
where 2 out of 4 subcarriers are activated.
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Chapter 2 Subcarrier Index Modulation

so that K out of N subcarriers are activated. Therefore, SIM signal is expressed as

x = [0, ..., x1︸︷︷︸
u1−th

, ..., xK︸︷︷︸
uK−th

, ..., 0]T ∈ CN , (2.1)

where xi ∈ X (i = 1, ..., K) and u ∈ I ⊂ {1, ..., N}K are classical data symbol and
subcarrier index, respectively, where X ⊂ C is a set of L-ary constellation symbols and I
is a set of possible subcarrier index patterns. In SIM, information bits can be conveyed via
index pattern as well as classical However, only ⌊log2(∆)⌋ index patterns are employed
for corresponding to information bits. Therefore, the number of information bits per
subblock and its transmission rate are given by

B = ⌊log2(∆)⌋+K log2 L (2.2)

and

R = B/N (2.3)

, respectively.
The SIM signal is converted into a time-domain signal via inverse fast Fourier tran-

form (IFFT), then cyclic prefix (CP) is addded into the time-domain signal. Finally, a
CP-added time-domain signal is transmitted.

2.2 Receiver

Here we consider independent and identically distributed (i.i.d.) frequency-flat Rayleigh
fading channels for the sake of simplicity. Therefore, after removal of CP and fast Fourier
transform (FFT), a frequency-domain received signal can be represented by

y = Hx+ n ∈ CN , (2.4)

where H ∈ CN×N is a diagonal channel matrix whose diagonal elements follow CN (0, 1)
and n ∈ CN is additive white Gaussian noise (AWGN) vector whose elements follow
CN (0, N0) where N0 is the single-side noise spectral density.

SIM signals convey information bits via subcarrier index patterns and data symbols,
so that these patterns and symbols should be jointly estimated for the received signal
y. According to [4], the optimal detector is joint maximum likelihood (JML) detector,
which is given by

x̂ = arg min
x∈XK×I

||y −Hx||22. (2.5)
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Chapter 2 Subcarrier Index Modulation

Figure 2.3: MED v.s. transmission rate of SIM and OFDM where square QAM is em-
ployed in both schemes and the notation “SIM(N,K)” denotes SIM in which K out of N
subcarriers are activated.

2.3 MED comparison between SIM and OFDM

In this section, we evaluate the MED of SIM signals since BER performance significantly
depends on its MED of modulated signals in uncoded scenarios. Naoki et al. [4] have
derived the MED of SIM signals, which can be regarded as a function whose arguments
are the number of subcarriers N and the number of active subcarriers K, and the number
of signal points in a constellation L. Therefore, the MED function for square quadrature-
amplitude-modulation (QAM) is represented by

MED(N,K,L) =
6N

K(L− 1)
. (2.6)

The MED of OFDM signals emploing square QAM coincides (2.6) with N = K.
Figure 2.3 shows the MEDs of SIM and OFDM signals employing square QAM. The

parameters of SIM signals (N,K,L) are designed based on Criterion 1,2 in [4]. As shown
in Fig. 2.3, the MED of SIM signals is greater than that of OFDM with a low transmission
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Chapter 2 Subcarrier Index Modulation

Figure 2.4: BER performances of SIM and OFDM where

rate. However, with a high transmission rate, the difference between the MEDs decreases
since the power gain of SIM signals against OFDM signals decreases by employing most
of the subcarriers for data symbol transmission.

2.4 BER evaluation

Figures 2.4 and 2.5 show the BER performances of OFDM and SIM over frequency-
selective Rayleigh fading channels where the transmission rates are set as 1.0 and 2.0
bits/s/Hz, respectively. Moreover, binary phase shift keying (BPSK) and QPSK is em-
ployed in Figs. 2.4 and 2.5. In addition, maximum likelihood (ML) and JML detection
are employed for OFDM and SIM, respectively. As the aforementioned fact that MED of
SIM is larger than that of OFDM with the aid of the power gain, the BER performance
of SIM is better than that of OFDM at high signal-to-noise power ratio (SNR) region in
both figures. However, comparing the BER performances in two figures, the superiority
of SIM over OFDM in terms of BER performance is degraded when the transmission rate
increases.

8



Chapter 2 Subcarrier Index Modulation

Figure 2.5: BER comparison of OFDM and SIM over frequency-selective Rayleigh fading
channels where the transmission rates are set as 2.0 bits/s/Hz.
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Chapter 2 Subcarrier Index Modulation

2.5 Chapter conclusions

In this chapter, we briefly introduced SIM and show the MED and BER performance.
As shown in this chapter, SIM has superiority over OFDM in terms of BER performance
with low transmission rate since the power gain against OFDM signals can be obtained
by employing a part of OFDM subcarriers for data symbol transmission. However, at a
high transmission rate, the superiority is degraded, which can be predicted by Fig. 2.3.
Therefore, a technique to increase the transmission rate of SIM while keeping the su-
periority over OFDM is required. In the next chapter, CS-SIM, which can increase the
transmission rate and outperforms SIM and OFDM in terms of BER performance, will
be explained.

10



Chapter 3

Conventional CS-based SIM system

In this chapter, we introduce the conventional CS-SIM system and show that CS-SIM
outperforms conventional OFDM in terms of BER performance.

3.1 System model

Figure 3.1 shows the system model of conventional CS-SIM. We assume Mall subcarriers
in every OFDM symbol and these subcarriers are divided into G subblocks, so that
each subblock has M = Mall/G subcarriers. Note that we assume N virtual -domain
subcarriers per subblock, and SIM signals are generated in the virtual domain and K out
of N virtual subcarriers are activated where N > M and N ≫ K. Although the number
of possible index patterns is ∆ =

(
N
K

)
, only ⌊log2∆⌋ index patterns are employed. In every

subblock, the information-bit vector pg ∈ {0, 1}B is used for generating the SIM signal
xg ∈ CN at the g-th subblock where B is the number of transmitted information bits per
subblock, then the SIM signal is compressed into an M -dimensional frequency-domain
signal sg ∈ CM as follows:

sg = Axg (3.1)

where A ∈ CM×N is a measurement matrix. Therefore, the transmission rate of CS-SIM
is given by

R = (⌊log2∆⌋+K log2 L)/M. (3.2)

Note that, compared with (2.3), the transmission rate of CS-SIM is greater than that of
SIM with fixed parameters. All the frequency-domain signals are gathered into a serial
signal, then the serial signal is transformed into a time-domain signal via IFFT and added
CP. Finally, CP-added time-domain signal sT is transmitted.

At the receiver side, CP is removed from the received time-domain signal yT and
the time-domain signal is transformed into a frequency-domain signal via FFT. We as-
sume that wireless channels are frequency-selective Rayleigh fading channels, so that the

11



Chapter 3 Conventional CS-based SIM system

Figure 3.1: System model of conventional CS-SIM employing IRC detector

12



Chapter 3 Conventional CS-based SIM system

frequency-domain received signal at the g-th subblock is expressed as

yg = Hgsg + ng (3.3)

= HgAxg + ng (3.4)

= Φgxg + ng, (3.5)

where Hg is a diagonal channel matrix whose diagonal elements follow CN (0, 1) and ng is
AWGN vector whose elements follow CN (0, N0) where N0 is the single-side noise spectral
density. IRC detector estimates the SIM signal xg from the frequency-domain received
signal yg, which is can be regarded as an estimation of high-dimensional vector from its
low-dimensional measurement vector, i.e., underdetermined problem. The detail of IRC
detector is explained in the next section. Finally, SIM detector converts an estimated
SIM signal x̂g ∈ CN into the corresponding bits vector p̂g ∈ {0, 1}B.

3.2 IRC detector

For the sake of simplicity of notation, we omit the subscript “g” in this section. IRC
detector is characterized by two estimation part: minimum mean-square-error (MMSE)
estimation and JML detection. The first estimation is based on MMSE estimation, which
is expressed as

x̂ = (ΦHΦ+N0IM)−1ΦHy ∈ CN , (3.6)

where IM is a M ×M identity matrix. Then, the resulted MMSE estimates are ordered
by thier power as

|x̂(i1)|2 ≥ |x̂(i2)|2 ≥ · · · ≥ |x̂(iN)|2. (3.7)

The index with the largest power is chosen, and the first index subset I1 =
{ŭ1,1, ..., ŭ1,C1} ⊂ I is generated where all the index patterns ŭ1,c1 contain the first chosen
index i1. For each index pattern in the subset, Moore-Penrose pseudo-inverse matrix is
calculated, which is represented by

Φ†
ŭ1,c1

= (ΦH
ŭ1,c1

Φŭ1,c1
)−1ΦH

ŭ1,c1
∈ CK×M , (3.8)

where Φŭ1,c1
∈ CM×K is a matrix made from the equivalent measurement matrix Φ by

choosing columns corresponding to ŭi,c1 . With the aid of Φ†
ŭ1,c1

, the estimated SIM signal

with ŭ1,c1 can be represented by

x̃d(c1) = Φ†
ŭ1,c1

y ∈ CK . (3.9)

For the estimated SIM signal, the following symbol-to-symbol ML detection for the k-th
data symbol is carried out, which is expressed as

q̃(k, c1) = arg min
q∈XSIM

|x̃d(k, c1)− q|2 (k = 0, ..., K − 1), (3.10)

13



Chapter 3 Conventional CS-based SIM system

Table 3.1: Simulation parameters in Fig. 3.2
Mall 256
N 15
M 8
K 2

Modulation QPSK

where | · |2 denotes a squared absolute value and XSIM ⊂ C is a set of constellation points
in SIM, e.g., QPSK. With the estimated symbols q̃(1), ..., q̃(C1), an estimated symbol set
X1 = {q̃(1), ..., q̃(C1)} ⊂ XK

SIM is generated.
Finally, based on the index subset I1 and estimated symbol set X1, IRC detector

calculates both estimated data symbol vector x̂d and index pattern û by the following
criterion

(x̂d, û) = arg min
q̆(c1)∈X1,ŭ1,c1∈I1

||y −Φŭ1,c1
q̆||22. (3.11)

The above operations in (3.8)-(3.11) are iterated for the next index it until the iteration
time t achieves a pre-defined maximum number T ≤ N . Note that when T is set to N ,
operations in (3.8)-(3.11) included calculcation of Moore-Penrose pseudo-inverse matrix
perform for all candidates of x. Since the complexity order of calculating Moore-Penrose
inverse matrix is cubic, IRC detector requires excessive complexity when more virtual
subcarriers are activated to increase the transmission rate.

3.3 Performance evaluation

Firstly, we evaluate CS-SIM in terms of BER performance via computer simulation. Fig-
ure 3.2 shows the BER performances of CS-SIM and OFDM over frequency-selective
Rayleigh fading channels where all the transmission rates are set as 1.25 bits/s/Hz. Sim-
ulation parameters are shown in Table 3.1. In OFDM, only 160 subcarriers are employed
for data symbol transmission to set the same transmission rate to CS-SIM. As shown
in Fig. 3.2, the BER performance of CS-SIM becomes better as increasing the number
of iteration in IRC detector since the search space of IRC detector is expanded. Com-
pared with the BER performance of OFDM, that of IRC detector is a significantly good
performance.

3.4 Chapter conclusions

In this chapter, we introduced the conventional CS-SIM system employing IRC detector
and showed that the BER performance of CS-SIM outperforms that of OFDM in terms
of BER performance. However, IRC detector requires excessive complexity to obtain a
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Chapter 3 Conventional CS-based SIM system

Figure 3.2: BER performance of CS-SIM and OFDM over frequency-selective Rayleigh
fading channels where all the transmission rates are set as 1.25 bits/s/Hz.

15



Chapter 3 Conventional CS-based SIM system

good performance, so that the alternative of CS-SIM with low complexity and superiority
over SIM and OFDM at higher transmission rate is required.
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Chapter 4

Proposed CS-based SIQIM systems

In this chapter, we propose CS-SIQIM and AC-SIQIM systems. To increase the trans-
mission rate, SIQIM, in which index patterns on in-phase and quadrature-phase can
convey information bits, is employed in our proposal. Moreover, to lower the complexity,
DFISTA, which requires square-order complexity, is employed. The detail of our proposal
is as follows.

4.1 Proposed CS-SIQIM system

4.1.1 Transmitter

Our proposed CS-SIQIM system is shown in Fig. 4.1. We assume Mall subcarriers in
every OFDM symbol and these subcarriers are divided into G subblocks, so that each
subblock hasM =Mall/G subcarriers. Note that we assumeN virtual -domain subcarriers
per subblock, and the SIQIM signal is generated in the virtual domain, where N > M .
In every subblock, the information-bit vector pg ∈ {0, 1}B, where g = 1, 2, ..., G and
B is the number of information bits conveyed by a subblock, is divided into two vectors
p
(I)
g ,p

(Q)
g ∈ {0, 1}B/2. Each vector is used to generate data symbol vectors x

(I)
d,g,x

(Q)
d,g ∈ XK

and index patterns u
(I)
g ,u

(Q)
g ∈ I on in-phase and quadrature-phase in the virtual domain.

To elaborate, X = {±r1, ...,±rD} ⊂ R is supposed to be the pulse amplitude modulation
(PAM) symbol set, and r1, ..., rD are amplitudes of modulated signals where r1 < . . . < rD,
while I is the index set. WhenK out ofN subcarriers are active, the number of subcarrier
index patterns is given by ∆ =

(
N
K

)
. However, for carrying information bits, only 2⌊log2 ∆⌋

patterns are employed. In this paper, all index patterns are constructed according to
the combinatorial method of Basar [17, 18]. Then, only 2⌊log2 ∆⌋ patterns are chosen in

descending order. With the aid of x
(I)
d,g and u

(I)
g , the virtual-domain SIM in-phase signal

17



Chapter 4 Proposed CS-based SIQIM systems

Figure 4.1: System model of CS-SIQIM with DFISTA.

is represented by

x(I)
g = I

u
(I)
g
x
(I)
d,g (4.1)

= [0, ..., x
(I)
d,g,1︸ ︷︷ ︸

u
(I)
g,1th

, ..., x
(I)
d,g,2︸ ︷︷ ︸

u
(I)
g,2th

, ..., x
(I)
d,g,K︸ ︷︷ ︸

u
(I)
g,Kth

, ..., 0]T ∈ RN , (4.2)

where I
u
(I)
g

∈ {0, 1}N×K is a partial identity matrix constructed by choosing column

vectors according to u
(I)
g . Similar to the in-phase signal, the quadrature-phase signal x(Q)

is generated according to x
(Q)
d,g and u

(Q)
g . Upon combining the two signals, the complex

SIQIM signal is formulated as

xg = x(I)
g + jx(Q)

g ∈ CN . (4.3)
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Chapter 4 Proposed CS-based SIQIM systems

Therefore, the number of information bits conveyed by a subblock is represented by

B = 2 (K(1 + log2D) + ⌊log2∆⌋) . (4.4)

Then, the N -dimensional SIQIM signal is compressed into the M -dimensional signal
sg ∈ CM , which is expressed as

sg = Axg, (4.5)

whereA ∈ CM×N denotes a measurement matrix and E[||sg||22] = K holds for g = 1, ..., G.
Figure 4.3 illustrates the compression of the virtual-domain signal xg to the frequency-
domain signal sg. According to [19], the restricted isometry property (RIP) as well as the
null space property (NSP) and the mutual incoherence property (MIP) are influential in
guaranteeing a high reconstruction performance. However, finding a measurement matrix
to satisfy both the RIP and NSP is known to be an NP-hard problem [20]. By contrast, it
is easier to verify that a specific measurement matrix satisfies the MIP than the RIP and
NSP. Hence, we consider designing a measurement matrix which satisfies MIP. A mutual
coherence of a measurement matrix A is defined as the largest absolute values amongst
normalized inner products between different column vectors of A, which is expressed as

µ(A) ≜ max
0≤k<l≤N

|aH
k al|

||ak||2||al||2
(4.6)

= max
0≤k<l≤N

ψ(A, k, l), (4.7)

where ak and al are the k-th and l-th column vectors in A, respectively. For the sake of
simplicity, an inner product between the k-th and l-th column vectors in A is represented
by ψ(A, k, l). To guarantee that there exists at most one signal x ensuring that s = Ax,
the mutual coherence should be less than 1/(2K − 1), while the lower bound of a mutual
coherence is known as Welch-bound [15]. Therefore, the measurement matrix A ∈ CM×N

should satisfy the following inequality:√
N −M

M(N − 1)
≤ µ(A) <

1

2K − 1
. (4.8)

If the mutual coherence of the measurement matrix is within the above inequality, the
measurement matrix satisfies MIP. Here we have opted for designing the measurement
matrix satisfying the MIP, which is constructed from N -point discrete Fourier transform
(DFT) matrix by choosing rows to achieve the lower bound [7].

Compressed signals of all subblocks are gathered and combined into sF =
[sT1 , ..., s

T
g , ..., s

T
G]

T ∈ CMall . The frequency-domain compressed signal sF is converted into
a time-domain signal by inverse fast Fourier transform (IFFT), and then, cyclic prefix
(CP) is added to the resulted signal. CP added time-domain signal sT is transmitted.
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4.1.2 Receiver

For the sake of simplicity, we assume communication over independent and identically
distributed (i.i.d.) frequency-flat Rayleigh fading channels. This assumption is not un-
realistic, because each subcarrier experiences approximately uncorrelated Rayleigh fad-
ing channels upon invoking the interleaved grouping method of [21]. Therefore, after
removing the CP and FFT-based demodulation, the frequency-domain received signal
yF = [yT

1 , ...,y
T
g , ...,y

T
G]

T ∈ CMall is obtained. Then, the frequency-domain received sig-
nal of the g-th subblock is expressed as

yg = Hgsg + ng (4.9)

= Φgxg + ng ∈ CM , (4.10)

where Hg ∈ CM×M is a diagonal channel matrix, whose diagonal elements obey CN (0, 1).
Let ng denote AWGN vector whose elements follow CN (0, N0), where N0 is the single-
sided noise spectral density. Furthermore, Φg = HgA ∈ CM×N is the g-th pseudo
measurement matrix. For ease of later exposition, we also introduce the equivalent real-
valued model of [22], where a real-valued received signal is represented by

yg,r = Φg,rxg,r + ng,r ∈ R2M , (4.11)

where

yg,r = [R{yT
g } I{yT

g }]T ∈ R2M , (4.12)

Φg,r =

[
R{Φg} − I{Φg}
I{Φg} R{Φg}

]
∈ R2M×2N , (4.13)

xg,r = [R{xT
g } I{xT

g }]T ∈ R2N , (4.14)

ng,r = [R{nT
g } I{nT

g }]T ∈ R2M . (4.15)

As seen in (4.11) and Fig. 4.3, the system has to estimate 2N real-valued unknowns from
2M < 2N real-valued observations. This problem is circumvented by DFISTA upon
exploiting both the sparsity and discrete nature of xg,r, as detailed in Section 4.3.

4.2 Proposed AC-SIQIM system

We further propose AC-SIQIM to improve the reconstruction performance of DFISTA,
where all SIQIM signals are jointly compressed via a measurement matrix. Therefore, the
difference between CS-SIQIM and AC-SIQIM is the compression size. However, as pre-
dicted by (4.8), AC-SIQIM can allow Welch bound lowered via enlarging the compression
size.
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Figure 4.2: System model of AC-SIQIM with DFISTA.
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Figure 4.3: The compression of virtual-domain signal x to frequency-domain signal s and
DFISTA-based detection of x from the received signal in AC-SIQIM where NG > Mall

holds, and the active index and the in-active index are represented by the dyed box and
the blank box, respectively. A symbol in a virtual subcarrier consists of in-phase (left)
and quadrature-phase (right) components.
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4.2.1 Transmitter

Figure 4.2 shows the system model of AC-SIQIM with DFISTA. All SIQIM signals xg are
jointly compressed by a measurement matrix AAC ∈ CMall×NG, so that the compressed
signal is expressed as

sF = AACx ∈ CMall , (4.16)

where x = [xT
1 , ...,x

T
g , ...,x

T
G] ∈ CNG. While the measurement matrix A for CS-SIM

and CS-SIQIM is constructed from DFT matrix and designed to achieve Welch bound
via an efficient construction method [23], it is hard to find such measurement matrix for
a large size matrix even via the efficient method. Hence, for AC-SIQIM, we employ a
complex Gaussian random matrix as a measurement matrix since its mutual coherence
is sufficiently small when the matrix size is sufficiently large.

The compressed signal s is transformed into a time-domain signal via IFFT, and CP
is added to the time-domain signal. The resulted signal sT is transmitted.

4.2.2 Receiver

We assume that wireless channels are i.i.d. frequency-flat Rayleigh fading as well, so that
after the removal of CP and FFT, a frequency-domain received signal is expressed as

yF = HAACx+ n (4.17)

= Φx+ n ∈ CMall , (4.18)

whereH ∈ CMall×Mall is a diagonal channel matrix whose diagonal elements obey CN (0, 1)
and n is AWGN vector whose elements follow CN (0, N0). In contrast to CS-SIQIM, in
AC-SIQIM, all SIQIM signals are jointly estimated from the received signal yF through
DFISTA.
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4.3 Proposed detector based on DFISTA

In this section, DFISTA is first introduced and detailed, then the detector based on
DFISTA for the proposed CS-SIQIM and AC-SIQIM is described. To enhance the per-
formance of the proposed detector, the efficient optimization method for hyperparameters
of DFISTA is proposed. Furthermore, the detector complexities are evaluated to show
the advantage of our proposed.

4.3.1 Discreteness-Aware FISTA

Without loss of generality, in the following, we omit the subblock index g. We consider
estimating a higher-dimensional SIQIM signal from a lower-dimensional received signal,
which is known as an underdetermined system. In CS, the specific characteristics of the
estimate, such as its sparsity are exploited for estimation. Classically, the optimization
problem conceived for finding the sparse solution has relied on the l0 norm. However, the
l0 optimization is NP-hard. Therefore, instead of the l0 norm, the l1 norm is used to find
our sparse solution. When the measurements constituted by the received signals in our
scenario are contaminated by noise, l1 − l2 optimization is considered, which is expressed
as

min
xr

(
f(xr) + q0||xr||1

)
, (4.19)

where f(xr) = 0.5||Φrxr − yr||22. FISTA is known as an efficient algorithm of solving the
l1 − l2 optimization problem by exploiting a previous solution. However, FISTA exploits
only the sparsity of the original signals xr. If xr is discrete, this additional constraint can
also be exploited to estimate them more efficiently with the aid of the so-called SOAV
optimization [9, 11]. Bearing this in mind, the above optimization is rewritten as

min
xr

(
f(xr) + q0||xr||1 +

D∑
l=1

ql (||xr − rl1||1 + ||xr + rl1||1)

)
, (4.20)

where ql (l = 0, 1, ..., D) are hyper-parameters, which control the balance amongst terms.
Then, f(xr) is from a closed convex subset C of the 2N dimensional Euclidean space R2N .

For later discussion, we assume that the function f(xr) is differentiable and its gradient
∇f(xr) is Lipshitz, which means that there exists a Lipshitz constant L for any xr,vr ∈ C,

||∇f(xr)−∇f(vr)||2 ≤ L||xr − vr||2. (4.21)

To solve (4.20), we define a quadratic approximation model of f(xr) at given point vr:

qL(xr, vr) := f(vr) +∇f(vr)
T(xr − vr) +

L

2
||xr − vr||22. (4.22)
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Algorithm 1 DFISTA

Require: yr ∈ R2M (observed vector)
Ensure: x̂r ∈ R2N (estimated vector)
1: xr[0] := ΦT

r yr

2: wr[1] := xr[0]
3: β[1] = 1
4: σ2[0] = ||x[0]−R(x[0])||22/2N
5: k = 1
6: repeat
7: xr[k] := η(wr[k]− L−1ΦT

r (yr −Φrwr[k]), σ)

8: β[k + 1] := 1
2
+
√

1
4
+ β[k]2

9: wr[k + 1] := xr[k] +
β[k]−1
β[k+1]

(xr[k]− xr[k − 1])

10: σ2[k] = ||xr[k]−R(xr[k])||22/2N
11: k := k + 1
12: until k = Tmax

13: return x̂r := xr[k − 1]

If (4.21) holds, we obtain the following inequality f(xr) ≤ qL(xr,vr). This technique is
known as the majorization-minimization (MM) approach [24], and qL(xr,vr) is referred
to as a majorizer of the function f(xr). Upon applying the MM approach to f(xr) in
(17), we obtain

QL(xr,vr) =
1

2
||Φrvr − yr||22 + (xr − vr)

TΦT
r (Φrxr − yr)

+
L

2
||xr − vr||22 + q0||xr||1 +

D∑
l=1

ql (||xr − rl1||1 + ||xr + rl1||1)

=
L

2
||xr − (vr − L−1ΦT

r (Φrvr − yr))||22 −
L

2
||ΦT

r (Φrvr − yr)||22 + q0||xr||1

+
D∑
l=1

ql (||xr − rl1||1 + ||xr + rl1||1) +
1

2
||Φrvr − yr||22. (4.23)

Eliminating the constant terms from the above equation, the above equation can be
rewritten as

QL(xr,vr) =
L

2
||xr − (vr − L−1ΦT

r (Φrvr − yr))||22

+ q0||xr||1 +
D∑
l=1

ql (||xr − rl1||1 + ||xr + rl1||1) . (4.24)

According to the basic concept of minimizing the above equation, we define the iterative
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equation:

xr[k + 1]

= arg min
xr

QL(xr,xr[k])

= arg min
xr

(
L

2
||xr − ϕ(xr[k])||22 + q0||xr||1 +

D∑
l=1

ql(||xr − rl1||1 + ||xr + rl1||1)

)
, (4.25)

where ϕ(xr) = xr−L−1ΦT
r (Φrxr − yr). The solution of the optimization problem can be

found by minimizing each element independently. According to [9, 25], the minimizer of
the objective function given by (4.20) is the following soft thresholding function.

[η(v), σ]i =

vi + UDσ (vi < −rD − UDσ)
...

−rl (−rl − Ulσ ≤ vi < −rl − Ul−1σ)

vi + Ul−1σ (−rl − Ul−1σ ≤ vi < −rl−1 − Ul−1σ)
...

0 (−U0σ ≤ vi < U0σ)
...

vi − Ul−1σ (rl−1 + Ul−1σ ≤ vi < rl + Ul−1σ)

rl (rl + Ul−1σ ≤ vj < rl + Ulσ)
...

vj − UDσ (rD + UDσ ≤ vj)

, (4.26)

where Ul (l = 1, ..., D) are positive hyper parameters, and σ2[k] is the residual MSE of the
k-th estimate. An example of soft thresholding function is illustrated in Fig. 4.4. Since
DFISTA is based on original FISTA [13], the DFISTA technique can be summarized as
Algorithm 1, where L is the Lipschitz constant of f(xr) while β[k + 1] and w[k + 1]
are introduced to accelerate the convergence. Furthermore, R(v) is a mapping function,
which maps each element of v to the closest signal point in X .

4.3.2 Detection of the SIQIM signal

Based on the aforementioned DFISTA, our detector for SIQIM signals is described here.
An equivalent real-valued model defined by (4.11) is assumed, since the in-phase and
quadrature-phase components are independent in CS-SIQIM. Instead of directly estimat-
ing the information bits in the received compressed signals yr, the virtual received signals
x̂r are reconstructed firstly from yr through DFISTA. Once x̂r is obtained, we can use
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Figure 4.4: Soft thresholding function with D = 1. Hyperparameters Ul control the range
of linear and constant.

the conventional JML detector for SIM [17, 18]. Specifically, for the in-phase signal, we
have

p̂(I) = Ψ(x̂
(I)
d , û

(I)) = Ψ

(
arg min
v∈XK ,z∈I

||x̂(I) − Izv||22

)
, (4.27)

where Ψ is a mapping function, which jointly maps data symbols and an index to the
corresponding bit vector. Similar to the in-phase signal, the quadrature-phase signal is
detected by JML detection.

4.3.3 Optimization of hyperparameters based on differential
evolution

Hyperparameters Ul play an important role of balancing evaluations of Euclidean dis-
tance, sparseness, and discreteness, so that hyperparameters significantly affect the re-
construction performance of DFISTA. If hyperparameters in DFISTA are optimized in
terms of minimizing the MSE, DFISTA does not necessarily exhibit the lowest BER since
DFISTA-based detector consists of not only DFISTA but also SIQIM detection in (4.27).
Also, there is no optimization method for hyperparameters in an algorithm based on
FISTA. While the hyperparameters are determined with prior probabilities of discrete
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values in [25], these hyperparameters should be optimized for each SNR since the balance
among l1 − l2 norms obviously depends on SNR. Moreover, more hyperparameters have
to be optimized upon increasing the order of modulation. Hence, we further propose an
efficient optimization method based on DE [16]

Hereafter, the vector notation uDFISTA = [U0, ..., UD]
T ∈ RD+1

+ is used where R+

denotes positive real. The vector is optimized to minimize the BER performances of
CS-SIQIM and AC-SIQIM. At first, P vectors are randomly generated as

γi,0 = [γi,0,0, ..., γi,0,D]
T (i = 1, ..., P ), (4.28)

where

γi,0,l = γl,min + rand[0, 1] · (γl,max − γl,min), (4.29)

for l = 0, ..., D, γl,max and γl,min are maximum and minimum values of Ul, respectively.
These generated vectors are candidates of uDFISTA. To obtain the diversity among these
random vectors, three vectors which are randomly chosen are mixed into one vector,
which is expressed as

ζi,o = γc1,o + F · (γc2,o − γc3,o), (4.30)

for the o-th iteration where F is a scaling factor which controls a trade-off between
divergence and convergence, and c1, c2, c3 are indices chosen randomly from {1, ..., P},
respectively.

In the next step, a partial permutations of γi,o and ζi,o is performed to diverge candi-
dates. Let α, β ∈ {0, ..., D} denote the starting index of the permutation and the number
of permuted parameters, respectively. Given α and β, a parameter of a permuted vector
is represented by

ξi,o,l =

{
ζi,o,l for i = α(mod D), ..., α + β(mod D)

γi,o,l otherwise
, (4.31)

for l = 0, ..., D.
Finally, comparing γi,o and ξi,o in terms of BER, new parameter-vectors are generated,

which is expressed as

γi,o+1 =

{
γi,o if BER(γi,o) ≤ BER(ξi,o)

ξi,o otherwise
, (4.32)

where BER(γ) denotes the BER performance fo the CS-SIQIM and AC-SIQIM when γ
is used as hyperparameters. Oprations defined by (4.30)-(4.32) are performed iteratively
until the difference between the o-th and the (o+ 1)-th generations’ BERs is sufficiently
small.
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4.4 Chapter conclusions

In this chapter, we proposed CS-SIQIM and AC-SIQIM system and optimization method
for hyperparameters in DFISTA. By employing SIQIM, the transmission rate is signifi-
cantly increased. Moreover, to improve the reconstruction performance of DFISTA, we
proposed the joint compression of SIQIM signals, named AC. In the next section, our
proposals are evaluated in terms of BER performance and complexity by comparing with
OFDM and SIM, and the conventional CS-SIM.
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Numerical Results

5.1 Complexity comparison of DFISTA-based, IRC,

and JML detectors

The computational complexity of DFISTA is analyzed by comparing it with the conven-
tional detectors: JML detector and IRC detector. For a fair comparison, complexities of
these detectors per subblock are evaluated. In addition, it is known that multiplication is
dominant in computational complexity, so that the number of real-valued multiplications
is investigated, which is summarized in Table 5.1 where M ≜Mall/G.

(1) JML detector

The number of all candidates of SIM is (2D)K ·2⌊log2 (
N
K)⌋. For each candidate, two matrix-

vector multiplications are required, so that the number of real-valued multiplications for
one candidate is 4KNM .

(2) IRC detector

MMSE estimation requires (4N3 + 8N2M) multiplications. To achieve the best perfor-
mance of IRC detector, N iterations are needed. Therefore, IRC detector has to search a

solution from all the index patterns in I whose number is 2⌊log2 (
N
K)⌋. For each candidate,

Moore-Penrose pseudo-inverse matrix and one matrix-vector product are calculated, so
that (12K2M + 4K3 + 8DK) real-valued multiplication are required.

(3) DFISTA-based detector

The algorithm of DFISTA-based detector is divided into two parts: DFISTA and JML
detection. In the DFISTA part, 4MallNG real-valued multiplication is required for the
first estimation x[0]. At each iteration, two matrix-vector products are required, so that
the number of real-valued multiplications is 8MallNG. Therefore, DFISTA part requires
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Table 5.1: The number of multiplications in IRC detector, and DFISTA-based detector.

The number of real-valued multiplications

JML detector 4KNM(2D)K2⌊log2 (
N
K)⌋

IRC detector [7] 4N3 + 8N2M + 2⌊log2 (
N
K)⌋ · (12K2M + 4K3 + 8DK)

DFISTA-based detector 4MN + Tmax · (8MN + 2N + 1)

(4MallNG+8MallNGTmax). Since the reconstructed vector x̂ does not contain any channel
effect, JML detection shown in (4.27) does not require any multiplications. Note that,
for fair comparison, the resulting number of multiplications is divided by the number of
subblocks G.

Figure 5.1 shows the computational complexities per subblock of DFISTA-based,
JML, IRC detectors where N = 31,M = 16, D = 1,m = 5, and Tmax = 100. Obvi-
ously, while the computational complexities of IRC and JML detectors increase with the
number of active subcarriers K, that of DFISTA-based detector is independent of K.
In addition, compared with the complexity of IRC detector, that of our proposal has
lower complexity with K > 2. From the figure, DFISTA-based detector is applicable for
CS-SIQIM system with high transmission rates since the complexity of the detector is
constant even as increasing the number of active subcarriers.

5.2 Effect of aggregate-compression on mutual co-

herence

Figure 5.2 shows Welch bounds and cumulative density functions (CDFs) of several sizes
of complex Gaussian random matrices. In conventional CS-SIM [7], 16 × 31-element
matrix whose mutual coherence achieves Welch bound is employed. If a mutual coherence
of a matrix achieves Welch bound, all coherences ψ(A, k, l) are identical. Hence, the
behavior of the CDF is similar to the step function as shown in Fig. 5.2. On the other
hand, CDFs of complex Gaussian random matrices whose sizes are 256×496 and 512×992
are distributed around corresponding Welch bounds. Comparing 256×496 and 512×992,
the larger matrix has more column vectors whose coherence is smaller than Welch bound.
Thanks to this lower coherence property, the larger random matrix provides better BER
compared with the 16× 31 constructed matrix which achieves Welch bound.

5.3 Comparison of BER performances

The BER performance of CS-SIQIM and AC-SIQIM using DFISTA is evaluated by com-
paring with OFDM and SIM, and CS-SIM using JML, IRC detector. Simulation param-
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Figure 5.1: The numbers real-valued multiplications in DFISTA-based, IRC, JML detec-
tors where N = 15,M = 8, D = 1, T = N (in IRC), Tmax = 50 (in DFISTA).

32



Chapter 5 Numerical Results

Figure 5.2: Welch bounds and cumulative density functions of several sizes of complex
Gaussian random matrices.
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Table 5.2: Simulation parameters in Fig. 5.3-5.5. Parameters used in a result is shown
by notation in the figures, e.g., ‘CS-SIM(15,8,2)’

CS-SIM CS-SIQIM AC-SIQIM
w/ IRC detector w/ DFISTA w/ DFISTA

Mall 256 256, 512
G 16 16,32
M 8 16 -
N 15 31
K 2 2 2,3
D - 1 1,2,4

eters used are shown in Table 5.2. The Lipschitz constant is set to L = 2||ΦTΦ||2 [26].
Complex Gaussian random matrix is employed as the measurement matrix AAC in AC-
SIQIM systems. In CS-SIM and CS-SIQIM, a partial DFT matrix whose mutual coher-
ence achieves Welch bound. Hyperparameters U0, .., UD are optimized to minimize the
BER performance via DE descrived in Section 4.3.3. SNR per symbol and Eb/N0 are
defined as E[||s||22]/E[||n||2] = K/MN0 and K/BMN0, respectively, where Eb denote sig-
nal power per information bit. In this section, we use the notation “CS-SIM(N,M,K),”
which represents every subblock of CS-SIM having a total of N virtual subcarriers, M
OFDM subcarriers, and K active subcarriers. Moreover, for CS-SIQIM and AC-SIQIM,
we also use the notation “CS-SIQIM(N,M,K)” and “AC-SIQIM(NG,Mall, K)”. “CS-
SIQIM(N,M,K)” representsK out ofN virtual subcarriers are activated in each in-phase
and quadrature-phase and the SIQIM signal is compressed into a M -dimensional signal.
“AC-SIQIM(NG,Mall, K)” represents G SIQIM signals, which are N -dimensional vec-
tors and have K nonzero elements on each in-phase and quadrature-phase, are jointly
compressed into a Mall-dimensional OFDM signal.

Figure 5.3 shows the BER performance of CS-SIM using the IRC detector and of
CS/AC-SIQIM relying on DFISTA-based detector for transmission over Rayleigh fading
channels, where the number of IRC iterations is set to T = 1 or N(maximum) while the
numbers of iterations in DFISTA is set to 100. The figure indicates that the BER of CS-
SIM using the IRC detector is improved by increasing the number of iterations T . Our
proposed AC-SIQIM with DFISTA outperforms CS-SIM with IRC detector at high SNR
region and obtains about 2 dB gain against CS-SIM with IRC detector at BER= 10−5.

Since our original motivation is to improve the bandwidth efficiency of SIM, the BER
performance of CS/AC-SIQIM is evaluated at a higher transmission rate. In Fig. 5.4,
our proposed CS/AC-SIQIM using DFISTA is compared with conventional OFDM and
SIM where the transmission rates of CS/AC-SIQIM with DFISTA and OFDM are set to
1.875 bits/s/Hz while that of SIM is set to 1.75 bits/s/Hz. In the conventional OFDM
and SIM, QPSK is employed, while in our scheme 2-PAM is employed on each in-phase
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Figure 5.3: BER performance of CS-SIM with IRC detector and of CS/AC-SIQIM with
DFISTA-based detector where the transmission rates are set as 1.25 bit/s/Hz. The
number of iteration in IRC detector is T = 1, N . The number of iteration in DFISTA is
100.

and quadrature-phase. Moreover, only 240 subcarriers out of Mall = 256 subcarriers are
used for data symbol transmission in OFDM to adjust the transmission rate. This figure
indicates that our CS-SIQIM with DFISTA outperforms conventional OFDM and SIM
at the moderate SNR region. However, CS-SIQIM has an error floor at high SNR region,
as it can be predicted that this compression condition is severe with the parameters
(N,M,K). On the other hand, it can be seen that the error floor is slightly lowered upon
enlarging the compression size. Comparing AC-SIQIM(496,256,3) using DFISTA to the
conventional SIM, about 15 dB gain is observed at BER=10−4. With the aid of AC, the
mutual coherence of the measurement matrix can be lowered upon enlarging the matrix
size, so that the reconstruction performance of DFISTA was improved.

We further evaluate the BER performance of AC-SIQIM with high-order modulation,
such as 16- and 64-ary quadrature amplitude modulation (QAM). To increase a modula-
tion order, we employ 4- and 8-PAM on each in-phase and quadrature-phase in CS-SIQIM
system.
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Figure 5.4: BER comparison of CS/AC-SIQIM with DFISTA and OFDM, where the
transmission rates of CS/AC-SIQIM and OFDM are set as 1.875 bits/s/Hz, and that of
SIM is set as 1.75 bits/s/Hz. The number of iteration in DFISTA is 100. JML detection
is employed in SIM and OFDM.

Figure 5.5 shows the BER performances of OFDM and AC-SIQIM with 4-PAM and
8-PAM with DFISTA where (NG,Mall, K) is set as (496,256,2) in both schemes. This
figure illustrates CS-SIQIM with 4-PAM is superior to OFDM with 16-QAM at high SNR
region. Even though CS-SIQIM with 8-PAM exhibits the lower BER than OFDM, the
waterfall region appears at higher SNR region than the case of 4-PAM due to the lower
MED [4]

36



Chapter 5 Numerical Results

Figure 5.5: BER v.s. Eb/N0 performances of CS-SIQIM relying on DFISTA with 4-
PAM and 8PAM and OFDM with 16-QAM and 64-QAM, where (NG,Mall, K) is set as
(496, 256, 2). Transmission rates of OFDM with 16-QAM, 64-QAM and AC-SIQIM with
4-PAM, and 8-PAM are set as 4.0, 6.0, 1.5, and 1.75 bits/s/Hz, respectively.
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Conclusions

In this paper, we have proposed CS-SIQIM and AC-SIQIM relying on DFISTA and
optimized hyperparameters in DFISTA via DE. It has been shown that our proposed
detector has a constant complexity even as increasing the number of active subcarriers
K, i.e., the transmission rate. In addition, our AC-SIQIM with DFISTA has been shown
to be superior to CS-SIM with IRC detector in terms of its BER. Moreover, our solution
has attained a higher performance than conventional OFDM and SIM. In our future work,
we will consider channel coding and multi-user scenarios of CS-SIQIM.
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