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Management of intestinal failure remains a clinical challenge and total parenteral nutrition, intestinal
elongation and/or transplantation are partial solutions. In this study, using a detergent-enzymatic
treatment (DET), we optimize in rats a new protocol that creates a natural intestinal scaffold, as
a base for developing functional intestinal tissue. After 1 cycle of DET, histological examination and SEM
and TEM analyses showed removal of cellular elements with preservation of the native architecture and
connective tissue components. Maintenance of biomechanical, adhesion and angiogenic properties were
also demonstrated strengthen the idea that matrices obtained using DET may represent a valid support
for intestinal regeneration.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Intestinal failure (IF), arising from anatomical or functional loss
of intestine, is a condition characterized by the inability of the
intestine to carry out its secretory and absorptive functions,
necessitating macronutrient, water and electrolyte supplementa-
tion, in the form of artificial feeding and parenteral nutrition (PN).
IF reduces quality of life and has major PN-related co-morbidities
such as liver disease, intravenous line sepsis and malnutrition. This
leads to a survival rate of 86% in 1 year, which is reduced to 77% and
73% in 3 and 5 years respectively [1]. Non-transplant surgery such
as the introduction of intestinal valves, reversed intestinal
segments, and colon interposition has been used to wean patients
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off PN, but with debatable improvement [2]. In children, increase of
the mucosal surface using intestinal lengthening techniques or
tapering procedures has also been attempted but results are still
controversial [3]. Small bowel transplantation (SBT) is an alterna-
tive, but limitations are related to the scarcity of donor organs,
rejection, need for immunosuppression and survival rates of 60% in
5 years [4]. The need for age-matched donors in the pediatric
population is an additional problem that affects the long-term
success of SBT. Thus, the development of new treatment strate-
gies for IF is an area requiring further investigation.

In 1999, the term “regenerative medicine” was first used to
describe the use of natural human substances, such as genes,
proteins, cells, and biomaterials to regenerate diseased or damaged
human tissue [5,6] to restore normal function [7]. Within regen-
erative medicine, tissue engineering is concerned with the
manufacturing of tissue by combining appropriate cells with
a scaffold [8] that can be either synthetic such as poly-glycolic acid
(PGA) [9,10], naturally-derived such as collagen or decellularized
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tissue [11,12]. Tissue engineering has been applied successfully in
the clinic for the production of hollow structures that allow storage
such as the bladder [9] and passage such as the urethra [10] and the
trachea [13,14].

Previous attempts in intestinal tissue generation explored the
use of intestinal epithelial organoid units (OUs) from neonatal rat
small intestine seeded on PLGA [14]. When these constructs were
implanted in rat and porcine animal models of short bowel
syndrome there was partial restoration of gut function [15,16].
However, the experimental design does not allow clinical trans-
lation of this approach because of the inability to generate intes-
tinal tissue from adult-derived OUs, practical difficulties in
obtaining neonatal OUs for autologous transplantation and the fact
that none of the previous studies have been able to generate
intestine of equal or greater length to the unit used to generate the
OUs. Major limitations of this approach are the high number of cells
necessary for engineering functional tissue and the lack of a matrix
that will mimic the original intestine, increase cell growth and form
the intestinal stem cell niche.

Decellularization is an attractive technique for intestinal scaffold
generation because of the possibility of retaining the architecture of
the native tissue including the vasculature and biofactors that are
present in the extracellular matrix (ECM) and that are needed for
cell proliferation [17]. We have previously shown that muscle tissue
can be successfully decellularized [18] and used for repair of
a surgically created defect of the abdominal wall [19,20] and the
diaphragm [21]. We and others have also shown that the trachea
can be easily decellularized with the same process in pigs and
humans, maintaining suitable characteristics for regeneration that
have led to its clinical application [11—13]. Recently, various groups
have successfully decellularized an entire heart [22], lung [23], liver
[24,25], kidney [26] and pancreas [27]. Even if the engineering of
such complex modular organs remains distant for any clinical

application, rapid advancement in understanding ECM structure of
these organs in physiological and pathological situations may help
to develop strategies for their repair. Relatively simpler, but defi-
nitely more complex than the trachea, intestinal matrices could
represent the basis for the development of an in vitro environment
that more accurately resembles intestinal physiology [28,29]. This
in vitro tissue-engineered intestine could be used as a low-cost and
high-speed method to quickly explore toxic and non-functional
compounds.

The aim of this work was to generate an acellular natural matrix
from rat intestine able to maintain the intestinal architecture whilst
removing all traces of donor-derived cells.

2. Methods
2.1. Organ harvest from rats

All surgical procedures and animal husbandry were carried out in accordance
with UK Home Office guidelines under the Animals (Scientific Procedures) Act 1986
and the local ethics committee. Twenty-five adult Sprague—Dawley rats, weighing
320—350 g, were sacrificed by CO, inhalation and cervical dislocation. Once sacri-
ficed, a midline incision was made to completely expose the abdominal cavity. The
superior mesenteric artery (SMA) was cannulated and flushed with phosphate
buffered saline (PBS) to wash the vascular tree and prevent coagulation (Fig. 1A). The
small intestine was dissected free and removed en bloc from pylorus to ileocecal
valve and the intestinal lumen cannulated and washed with PBS containing 5%
antibiotic-antimycotic solution (PBS/AA).

2.2. Detergent-enzymatic treatment (DET)

Both the intestinal lumen and the vascular tree were perfused with continuous
fluid delivery using a Masterflex L/S variable speed roller pump at 0.6 ml/h. Each DET
cycle was composed of deionized water (resistivity 18.2 MQ/cm) at 4 °C for 24 h, 4%
sodium deoxycholate (Sigma) at room temperature (RT) for 4 h, and 2000kU DNase-I
(Sigma) in 1 M NaCl (Sigma) at RT for 3 h, as previously described [30]. After each
treatment cycle the constructs were preserved at 4 °C, in PBS/AA.

Fig. 1. Decellularization of rat small intestine with detergent-enzymatic treatment. Macroscopic images prior (A) and following (B) one cycle of decellularization. Perfusion with
Rosso Ponceau (C), Trypan blue (D) and Rhodamine green (E) dyes displays the patency and distribution of the arterial (C) and venous (D) capillary beds in contrast with the lumen

(E) proving absence of leakage.
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2.3. Histological and immunostain analysis

Samples were fixed for 24 h in 10% neutral buffered formalin solution in PBS (pH
7.4) at RT. Subsequently they were washed in distilled water (dH20), dehydrated in
graded alcohol, embedded in paraffin and sectioned at 5 um. Tissue slides were
stained with Hematoxylin and Eosin (H&E) (Leica, Germany), Masson’s trichrome
(MT), (Leica, Raymond A Lamb, BDH Chemicals Ltd), Picrosirius Red (PR) (Hopkin &
Williams), Elastic Van Gieson (EVG) (VWR, Leica, Raymond A Lamb) and Alcian Blue
(AB) (BDH Chemicals Ltd, Cellpath Ltd) stains. For the immunostaining analysis, the
sections were incubated with mouse monoclonal antibody to major histocompati-
bility complex II (MHC-II) (Dako), Smooth Muscle Actin (Leica), Vimentin (Leica),
Cytokeratin MNF 116 (Dako), Perls’ Prussian Blue (PB) (Merck, BDH Chemicals Ltd)
and Cleaved Caspase 3 (Cell Signalling), according to standard immunostaining
protocols using an avidin-biotin based detection system.

24. DNA quantification

To assess total DNA content within the native intestine and acellular matrices,
specimens were disintegrated and homogenized in 1 mL lysis buffer, consisting of
50 mM Tris—HCl (pH 8), 50 mM EDTA, 1% SDS and 10 mM NaCl. Samples were
digested with Proteinase K overnight, followed by phenol/chloroform extraction.
The DNA was precipitated from the aqueous phase with 100% ethanol and washed
with 70% ethanol. The pellet was then dissolved in ribonuclease-free water and
stored at —20 °C. Subsequently, the extracts were characterized spectrophotomet-
rically. Optical densities at 260 nm and 280 nm were used to estimate the purity and
yield of nucleic acids, which were quantified on the basis of 280 nm absorbance.

2.5. Scanning electron microscopy (SEM)

Samples were fixed in 2% glutaraldehyde in 0.1 M phosphate buffer and left for
24 h at 3 °C. Following washing with 0.1 M phosphate buffer, they were cut into
segments of approximately 1 cm length and cryoprotected in 25% sucrose, 10%
glycerol in 0.05 M PBS (pH 7.4) for 2 h, then fast frozen in Nitrogen slush and
fractured at approximately —160 °C. The samples were then placed back into the
cryoprotectant at room temperature and allowed to thaw. After washing in 0.1 M
phosphate buffer (pH 7.4), the material was fixed in 1% 0s04/0.1 M phosphate buffer
(pH 7.3) at 3 °C for 1% hours and washed again in 0.1 M phosphate buffer (pH 7.4).
After rinsing with dH,0, specimens were dehydrated in a graded ethanol-water
series to 100% ethanol, critical point dried using CO, and finally mounted on
aluminum stubs using sticky carbon taps. The fractured material was mounted to
present fractured surfaces across the lumen wall to the beam. The complete samples
were opened and mounted to show the lumen surface, then coated with a thin layer
of Au/Pd (approximately 2 nm thick) using a Gatan ion beam coater. Images were
recorded with a Jeol 7401 FEG scanning electron microscope.

2.6. Transmission electron microscopy (TEM)

Gut samples were cut into segments having a wall of approximately 1 cm in
length. After washing in 0.1 M phosphate buffer (pH 7.4), they were fixed in 1% OsO4/
0.1 M phosphate buffer (pH 7.3) at 3 °C for 1%2 hours then washed in 0.1 M phosphate
buffer (pH 7.4). Specimens were stained en bloc with 0.5% uranyl acetate in dH,0 at
3 °C for 30 min, rinsed with dH,0, dehydrated in a graded ethanol-water series and
infiltrated with Agar 100 resin and then hardened. Sections measuring 1 pm were
cut and stained with 1% toluidine blue in dH,O for light microscopy. A representative
area was selected and sections were cut at 70—80 nm using a diamond knife on
a Reichert ultra-cut E microtome. Sections were collected on 200-mesh copper,
coated slot grid and stained with uranyl acetate and lead citrate. Images were
recorded with a Joel 1010 transition electron microscope.

2.7. Collagen quantification

The collagen content of fresh and decellularized intestine was quantified using
the SIRCOL collagen assay (Biocolor) according to the manufacturer’s instructions.
Briefly, the samples were homogenized, and collagen was solubilized in 0.5 M acetic
acid. Extracts were incubated with Sirius red dye, and absorbance was determined at
555 nm with a microplate reader (Tecan Infinity). Collagen concentrations from
a standard curve were used to calculate the collagen content of the tissue.

2.8. Glycosaminoglycan quantification

The sulfated glycosaminoglycan (GAG) content of fresh and decellularized
intestine was quantified using the Blyscan GAG Assay Kit (Biocolor, UK). In brief,
50 mg of minced wet tissue was weighed and placed in a micro-centrifuge tube
containing 1 ml of Papain digestion buffer and incubated in a water bath at 65 °C for
18 h, with occasional tube removal and vortexing. Aliquots of each sample were
mixed with 1,9-dimethyl-methylene blue dye and reagents from the GAG assay kit.
The absorbance at 595 nm was measured using a microplate reader (Tecan Infinity)
and compared to standards made from bovine tracheal chondroitin-4-sulfate to
determine the absolute GAG content.

2.9. Biomechanical tests

The specimens were subjected to uniaxial tension until failure. This test records
the tensile strength “¢” (Stress) versus strain “e”; the highest point of the
stress—strain curve is the Ultimate Tensile Strength (UTS). The ratio of stress to strain
is the Young's modulus, E, which is a measure of the stiffness of an elastic material.
Mechanical tests were performed with the application of uniaxial tension in an
Instron 5565 at room temperature (20 4+ 1 °C). Specimens in the form of flat
dumbbells with a 20 mm long working part were loaded at a constant tension rate of
100 mm/min. The thickness of the samples was measured using a digital electronic
micrometer (RS components) at three places of the dumbbell and averaged.
Stress—strain relationships, ultimate tensile strength (UTS), defined as maximum
stress that a material could withstand until it breaks, and tensile modulus were
obtained for samples and graphs plotted. Five samples were considered for each
evaluated tissue.

2.10. Magnetic resonance imaging (MRI)

To investigate the distribution of cells on the natural scaffold, we performed an
MRI study of the acellular matrix seeded with amniotic fluid stem cells (AFSC)
labeled with iron oxide particles.

Tubular intestinal scaffolds, with both ends tied up in a “sausage” fashion
and an average length of 2 cm, were soaked overnight in sterile 1% penicillin/
streptomycin (PS) in PBS. AFSC were seeded together with iron oxide particles
(BioMag, 1.6 um diameter, 1 mg/ml) and cultured for 24 h after which particle
uptake was assessed. AFSC labeled with BioMag particles were seeded onto the
scaffold at a concentration of 0.5 x 108 cells/cm, in 2 mls Chang Medium sup-
plemented with 10% fetal bovine serum (FBS) and 1% PS. Seeding was performed
by means of pipetting directly into the scaffold lumen. The seeded scaffolds,
placed in 6 well dishes, were maintained in a humidified atmosphere at 37 °C
and 5% CO; in an incubator. Cells were allowed to adhere to the scaffold for 2 h
during which culture medium was gradually added every 30 min. Subsequently,
the scaffold was cultured under stationary conditions in the incubator and the
culture medium was refreshed every 24 h. To determine whether BioMag
labeling could be used to check cell adherence differences due to cell death, after
24 h of seeding half of the seeded scaffolds were removed from culture medium
and incubated in PBS/PS, to induce cell apoptosis. In addition, acellular intestinal
matrices incubated with BioMag particles but with no cells were used as
a negative control.

All the samples were processed for MRI analysis after 48 h of static seeding.
Scaffolds with or without cells were tied off on one end with a 4-0 suture. The
lumen was filled with 1% low melting point agarose (Fermentas Ltd., Hanover
MD, USA) containing 8 mM Gadolinium-DTPA (Magnevist, Bayer AG, Berlin,
Germany) and the other end was tied off too. After solidification, filled intestine
samples were embedded using the same agarose gadolinium mixture as above
in small glass vials (S Murray & Co Ltd, Surrey, England). Imaging was performed
on a horizontal bore 9.4 T DirectDrive VNMRS system (Agilent Technologies, Palo
Alto CA, USA) using a 26 mm quadrature birdcage volume coil (RAPID
Biomedical GmbH, Wiirzburg Germany). For 3D imaging, a gradient-echo
sequence with the following parameters was used: TE = 4.5 ms, TR 20 ms, flip
angle 60°, 10 averages, field of view 26 x 13 x 13 mm, matrix size
1024 x 512 x 512 leading to an isotropic voxel size of 25 pm. Segmentations and
3D renderings were performed using Amira visualisation software (v5.2.2,
Visage Imaging Inc., Andover MA, USA). The borders between agar and intestine
lumen and agar and Serosa were segmented manually. Mesentery and hypo-
intense regions indicative of high iron content were segmented using thresh-
olds. In addition, to confirm the presence of live or apoptotic cells on the scaf-
fold, samples were processed for H&E, Perls’ Prussian blue and cleaved Caspase
3. The number of cells in H&E sections of samples was counted in a blinded
manner (assessor n = 5).

2.11. Chicken chorioallantoic membrane (CAM) angiogenic assay

To evaluate the angiogenic properties of the decellularized intestinal tissue
in vivo we used the CAM assay as previously described [11]. Fertilized chicken
eggs (Henry Stewart and Co., UK) were incubated at 37 °C and constant
humidity. At 3 days of incubation an oval window of approximately 3 cm in
diameter was cut into the shell with small dissecting scissors to reveal the
embryo and CAM vessels. The window was sealed with tape and the eggs were
returned to the incubator for a further 5 days. At day 8 of incubation, 1T mm
diameter acellular intestinal matrices and polyester as a negative control, were
placed on the CAM between branches of the blood vessels. Samples were
examined daily until 6 days after placement wherein they were photographed
in ovo with a stereomicroscope equipped with a Camera System (Leica) to
quantify the blood vessels surrounding the matrices. The number of blood
vessels less than 10 um in diameter converging towards the placed tissues was
counted blindly by assessors (scaffold n = 3, polyester n = 2), with the mean of
the counts being considered.
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3. Results
3.1. ECM permeability

Intestinal tissue was harvested from 25 adult Sprague—Dawley
rats and treated with DET (Fig. 1A). Complete decellularization of
the rat intestine was obtained after one cycle of DET. Following
perfusion with the detergent-enzymatic solution both through the
SMA and the intestinal lumen, the rat intestinal wall became
macroscopically transparent with good preservation of the
mesentery within 31 h (1 cycle of DET; Fig. 1B). Injection of 3
different dyes, Rosso Ponceau, Trypan blue and Rhodamine green in
the vascular tree (Fig. 1C), venous tree (Fig. 1D) and intestinal lumen
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(Fig. 1E) respectively, showed preservation and patency of all three
structures with no leakage following 1 cycle of DET. In comparison,
further cycles of DET produced frail structures that were increas-
ingly transparent with concomitant loss of the vascular integrity
(data not shown).

3.2. Decellularization efficiency

DNA measurement showed that approximately 99% of DNA was
removed by 1 cycle of the decellularization process when compared
with fresh intestinal tissue (2.9 + 0.3 ng/mg vs. 194.2 + 12.0,
P < 0.0001), with no significant difference between 1 and 4 cycles
(Fig. 2A). Moreover, histological analysis with hematoxylin and

Fresh 1 cycle

4 cycles

10x

10x

40x

4 cycl

10x

Fig. 2. DNA quantification shows complete removal of DNA following 1 cycle of detergent-enzymatic treatment (P < 0.001) with no significant differences in DNA with additional
cycles (A). H&E staining confirms the absence of nuclei and demonstrates preservation of structure following 1 cycle of treatment compared to fresh tissue and the loss of this upon
prolonged decellularization as in cycle 4 (B). The lack of immunogenicity is confirmed with immunostaining for MHC-II (C). Inmunostaining for SMA (D), Vimentin (E) and MNF 116
(F) confirms the absence of both mesoderm-derived and epithelial tissue markers with 1 cycle of treatment. The architecture of mucosa, submucosa and muscularis propria is lost
with further cycles; H&E: hematoxylin and eosin, MHC-II: major histocompatibility complex II, SMA: smooth muscle actin, MNF 116: pan-cytokeratin.
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eosin staining demonstrated absence of cell nuclei after 1 cycle of
treatment whilst maintaining good architecture of the mucosa,
submucosa and muscularis propria (Fig. 2B, 1 cycle). When treated
with a higher number of cycles, the scaffolds lost their architecture
and structural integrity (Fig. 2B, 4 cycles). Immunostaining with
MHC-II was performed to determine whether cell surface markers
were present on the scaffold, exhibiting a lack of immunogenic
material following 1 cycle of treatment (Fig. 2C). To confirm the
absence of both mesoderm-derived and epithelial tissue markers in
the scaffold, the decellularized tissue was evaluated by immuno-
staining for smooth muscle actin (Fig. 2D), vimentin (Fig. 2E) and

pan-cytokeratin (MNF 116; Fig. 2F). Staining was negative for all
three markers after 1 cycle or more of DET, compared with strong
staining of fresh native intestine.

3.3. Electron microscopy analysis

SEM of the intestinal acellular matrix showed preservation of
the micro- and ultra- structural characteristics of the native tissue
and confirmed the absence of cells. In particular, analysis of the
luminal surface of the matrix after 1 cycle of DET revealed the
presence of leaf-shaped villi and crypts at their bases (Fig. 3A—B).

Fig. 3. SEM and TEM of fresh intestine (A) and following 1 (B) and 4 (C) cycles of decellularization. While at 1 cycle the crypt/villus structure was completely preserved (B), this was
completely lost at 4 cycles (C). SEM: scanning electron microscopy, TEM: transmission electron microscopy.
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Interestingly, this aspect was conserved only for 1 treatment cycle
while for further treatment cycles, the native villi structure was
completely lost and there were no discernible signs of villus-crypt
architecture even at higher magnifications (Fig. 3C). Wall section of
the acellular matrix showed a collagen fiber network more tightly
compacted in comparison to fresh samples (Fig. 3D and E). After 1
cycle, the microstructure of the intestinal wall and empty cavities
that resembled vascular structures were clearly preserved (Fig. 3E).
Further cycles of DET generated a further compact mesh of undis-
tinguishable collagen fibers that resembled that previously re-
ported for SIS [20] (Fig. 3F). Transmission electron microscopy
confirmed the absence of cells in the decellularized tissue both
after 1 and 4 cycles of DET (Fig. 3G—I).

3.4. Characterization of extracellular matrix components

In order to further characterize the structure of the scaffold and
assess the effects of the detergent-enzymatic treatment to the ECM
of the intestine, ECM components were evaluated. MT staining
confirmed the almost complete removal of nuclear (purple) and
cytoplasmic (pink) material after 1 cycle, together with preserva-
tion of connective tissue (blue) across the intestinal wall as well as
maintenance of both transverse and longitudinal orientations of
the muscularis propria (Fig. 4A). Similarly, collagen (Fig. 4B) and
elastin (Fig. 4C) staining exhibited their preservation after 1 cycle of
DET, whereas GAG were gradually depleted by the decellularization
treatment (Fig. 4D). Additionally, in line with the histological
findings, the quantitative assay showed that extracellular matrix
collagen was preserved after the decellularization and its content
(collagen/wet tissue weight) was significantly enhanced with an
increasing number of DET cycles (P < 0.0001; Fig. 5A). In contrast,
the amount of GAG declined progressively in the decellularized
intestinal tissue as demonstrated by staining (P < 0.0001; Fig. 5B).
Assessment of the mechanical properties of the natural acellular

A Fresh 1 cycle

4 cycles

1 cycle

4 cycles

matrix showed a progressive rise in tensile strength with increasing
decellularization cycles (Fig. 5C). After 1 cycle, samples (n = 5 for
each cycle) were stiffer when compared with fresh tissue, but the
differences were not significant (P > 0.05; Fig. 5D). However,
sample stiffness increased with further treatment cycles (P < 0.018,
4th cycle vs. native) (Fig. 5D). Consequently, the maximum stress
that the acellular matrix could withstand before rupture was higher
compared to the native intestine.

3.5. Cell survival and angiogenic properties of decellularized
intestine

MRI images of scaffolds following 1 cycle of decellularization
showed a uniform cylindrical structure with the mesentery
attached on the lateral side (Fig. 6A). When scaffolds were seeded
statically with cells labeled with BioMag particles followed by
induction of apoptosis and 48 h of incubation, there was partial
repopulation, as shown by the hypo-intense regions in the lumen
(Fig. 6B). The longitudinal section showed a dissimilar distribution
of the cells as there was a higher amount in the inferior section
compared to the superior section (data not shown). This is probably
a sign of apoptotic cells detaching from the ECM. In the scaffold that
had been seeded with BioMag-labeled live cells that had subse-
quently been allowed to attach and proliferate for 48 h, there was
increased luminal hypo-intensity both in the axial and longitudinal
sections with cells attached to the villous structures of the decel-
lularized intestine (Fig. 6C). Three-dimensional reconstruction of
segmented images showed even cell distributions (gray) within the
scaffold (red) with the mesentery preserved on the side (yellow),
confirming the in vitro biocompatibility of the decellularized tissue
(Fig. 6D—G) (Supplementary Movie 1 online). H&E staining of the
seeded scaffold demonstrated distribution of the live cells on the
villi with strong cellular staining compared to the non-viable cell
seeding (Fig. 6H). Perls’ staining was positive for the cells seeded on

B  Fresh 4 cycles

1 cycle

10)_(

40x

1 cycle 4 cycles

Fig. 4. Characterization of the scaffold demonstrates preservation of structure, components of the ECM and removal of cellular elements. Masson’s Trichrome (A) and Picrosirius Red
(B) staining confirm the maintenance of the connective tissue and collagen component of ECM. EVG staining (C) confirms the preservation of the elastin component around the
blood vessels (black arrow) and Alcian Blue staining (D) the preservation of glycosaminoglycans; ECM: extracellular matrix, EVG: Elastic van Gieson.
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Fig. 5. Collagen and GAG content of native tissue and decellularized samples at different cycles of DET (n > 3 samples for all measures). Collagen content is increased in the acellular
matrix (P < 0.0001; A) whilst GAG amount progressively decreases (P < 0.0001; B). Mechanical characterization of the acellular matrix: stress—strain curves show the tensile
strength increasing with the number of cycles (C). No significant difference is observed in term of stiffness between native tissue and acellular matrix. (n > 5 samples for all

measures) (D); GAG: glycosaminoglycans.

the scaffold, confirming their labeling with the BioMag particles
(Fig. 61) and Cleaved Caspase 3 staining confirmed the apoptotic
nature of the non-viable cells (Fig. 6]). The scaffolds were counted
for the cells present in the lumen and there were a significantly
higher number of cells in the scaffolds seeded with live cells
compared to those seeded with non-viable cells (P = 0.01) (Fig. 6K).
To test the ability of the intestinal acellular matrix to attract
blood vessels we used an established in vivo system [11] where the
matrix was placed on the chicken chorioallantoic membrane
(CAM). Samples of decellularized intestine and polyester
membrane controls placed on the CAM were analyzed daily under
a stereomicroscope. One day after placement on the CAM, intestinal
matrices were adherent to the CAM and had started to be sur-
rounded by allantoic vessels that grew towards the tissues. At day 6
after implantation, intestinal matrices were completely enveloped
by the CAM and the vessels were organized in a network
surrounding the tissue samples (Fig. 7B and C). To evaluate the pro-
angiogenic effect of the intestinal acellular matrices on the CAM,
vessel growth, (i.e. blood vessels converging towards the matrix)
was quantified at day 1 and 6 in a blinded fashion. At day 1 after
implantation no significant difference in the number of vessels
growing towards the implanted tissues was observed. However, 6
days after implantation, the number of allantoic vessels converging
towards the intestinal matrices was increased significantly
compared to the same samples at day 1 (P < 0.01) and to the
polyester membranes at the same time-point (P < 0.05; Fig. 7A).

4. Discussion

Recent advances in the field of regenerative medicine hold
promise for the regeneration of different tissues and organs for
clinical use. Tissue engineering of simple structures such as bladder
[9], urethra [10] and trachea [12,13] has already been translated
into patients. In that line, more complex modular organs such as
the heart [22], lung [23] and liver [24,25] have been the subject of

several studies in the last few years, while less extensive investi-
gations have been applied to the intestine, probably due to the
complexity of its structure and its functions.

In particular, the reproduction of the three-dimensional struc-
ture of the single intestinal functional unit (the crypt with the
respective villus) still represents one of the major challenges for the
development of functional intestine. The enormous surface area of
the intestinal mucosa (approximately 300 m? in an average person)
isinvolved in the absorption of nutrients, secretion of hormones and
enzymes and continuous epithelial regeneration. The latter repre-
sents probably the biggest challenge for the generation of functional
intestine: intestinal epithelium is constantly renewed throughout
life via a small population of stem cells that are able to completely
renew the entire intestinal mucosa every 3—4 days, probably the
fastest rate of turnover of any tissue in the body. It is believed that
their disposition within the crypt helps the maintenance of the niche
and the renewal of the entire epithelium. However, this structure is
very difficult to mimic artificially and decellularized intestine
described previously failed to preserve the original structure, which
was lost together with the removal of the cellular component [31].

This is possibly related both to the detergents previously used
and to the trauma received by the intestine during washing. In the
present study we used continuous peristaltic delivery both via the
intestinal lumen and vascular tree of a detergent-enzymatic solu-
tion to develop a natural acellular matrix after only 31 h. Charac-
terization of this construct showed a complete removal of cellular
elements with the preservation of the macro- and ultrastructural
characteristics of the native tissue. Dye perfusion of both vascular
tree and intestinal lumen showed the preservation of the three-
dimensional vascular network (both arterial and venous) in the
intestinal matrix after 1 cycle of detergent-enzymatic treatment.
Histology and immunostaining analyses, together with quantitative
assays and electron microscopy demonstrated the preservation of
the main ECM component, collagen. Although GAG were signifi-
cantly lost from the scaffold after several DET cycles, their depletion
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Fig. 6. Magnetic resonance imaging as a viability test (A—K). Imaging of the acellular matrix shows its cylindrical structure with mesentery on the side (A). Matrix seeded with
apoptotic AFSC shows partial repopulation and dissimilar distribution of the cells on the luminal surface (B). Scaffold seeded with live cells shows uniform repopulation of the
lumen with cells distributed on the villi (both axial and longitudinal section) (C). Three-dimensional reconstruction demonstrates the matrix (red) overlying the cell layer (gray) and
mesentery on the side (yellow) (D—G).H&E (H), Prussian blue (I), and Cleaved Caspase 3 (J) stains of scaffold seeded with both live and dead cells. Scale bars, 100 pm. Counting of
cells seeded onto the matrix: number of live cells is significantly higher than dead cells (P = 0.01)(n = 5 for each measure) (K); AFSC: amniotic fluid stem cells, H&E: hematoxylin
and eosin. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Video S1.

was not significant after a single cycle. Furthermore, mechanical
tests showed that 1 cycle of detergent-enzymatic treatment does
not significantly compromise mechanical properties of the intes-
tine. The tensile modulus in the decellularized intestine did not
change significantly, suggesting that the decellularization treat-
ment does not affect the elastin component of the native tissue.
However, the tensile strength of the decellularized samples was
significantly higher compared to native tissue, which might reflect
the relative increase of collagen in the acellular matrix and the
reduction of other components (i.e. water) due to the absence of
cellular elements. The preservation of the GAG and collagen is in
line with the histological analyses.

We believe the natural ECM scaffolds produced using this method
may represent an innovative platform for small bowel bioengineering
since the ECM carries out secondary roles beyond mechanical support.
These properties include the mediation of cell adhesion via integrin
receptors [32], as well as positive influence on cell survival and
proliferation by means of growth factors and cytokines [33]. In addi-
tion, preservation of the ECM of the villus-crypt unit may facilitate
establishment of the regenerating unit. Furthermore, the ECM has
been argued to influence differentiation via mechano-chemical
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Fig. 7. Pro-angiogenic properties of intestinal acellular matrix in vivo (A—C). Macroscopic quantification of converging vessels was blindly made for both intestinal decellularized
samples and polyester membrane used as negative control (A). On day 6 after implantation, the number of vessels converging towards the intestinal matrices is significantly
increased in comparison to the same samples at day 1 (P < 0.01) and to the polyester membrane that was used as a negative control (P < 0.05). Example of CAM at 1 day after
implantation of intestinal acellular matrix: the sample of decellularized tissue is adherent to the CAM and starts to be surrounded by allantoic vessels (B). After 6 days of
implantation, intestinal matrices are completely enveloped by the newly formed vessels, organized in a network (C).

transduction, as shown by the differentiation of MSC to neurons,
muscle cells and osteoblasts when seeded on substrate mimicking the
elasticity of each of those host tissues respectively [34]. This supports
the need for tissue-specific scaffolds that can mediate signals to that
effect and promote appropriate differentiation.

The benefits of the decellularization technique we used include
the preservation of the ECM, which favorably influences cell fate, as
well as of the macro- and micro-architecture. Our experience with
intestinal decellularization has suggested that a combination of
deionized water, sodium deoxycholate and DNase is superior to the
use of Triton X-100 in preserving ECM structure whilst removing
cellular material. The favorable angiogenic response in the CAM
experiments argues for the preservation of growth factors and cell
adhesion following seeding, confirming the concept of preservation
of the small peptide sequences that binds to integrins. Sustainment
of the macro-architecture is important in recreating the three-
dimensional structure of the organ to be tissue-engineered as
well as maintaining a vascular tree that will allow for cell and
nutrient delivery and waste removal. The micro-architecture is of
value towards maintaining the mechanical properties and porosity
of the tissue that will be optimal for cell seeding and growth.

5. Conclusions

The present work shows that an acellular natural matrix can be
obtained from rat intestine without disruption of structural and

mechanical characteristics of the native tissue. The integrity of the
vasculature could represent a valid support for the re-
endothelialization and reconstruction of the vascular network.
Moreover, the short time needed to obtain the natural scaffold
could have a positive impact for its clinical application. The scarcity
of tissue, which has thus far limited the application of allogeneic
intestinal transplantation in the PN-dependent population could be
overcome by the generation of functional engineered intestine.
Moreover, the described method may be of interest to engineer
intestine that could be used as a three-dimensional platform for
drug testing and biological assays in vitro as an alternative approach
to experimental animal models. Attempts to create a functional
niche for cell proliferation and differentiation are ongoing in our
laboratory.
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