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ux,y,z m/s Velocity in x,y,z direction

uI m/s Velocity in an inertial reference frame

uR m/s Velocity in a relative reference frame

V m3 Volume

VP m3 Current cell volume

WMntoSi - Master facet to shadow facets weighting factor

WSmtoM j - Shadow facet to master facets weighting factor

x m Position vector

xk m kth Lagrangian point position vector
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xe
k m Equilibrium location of the kth Lagrangian point

xP m Current cell position vector

y+ - Dimensionless wall distance
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Greek Characters
α, β - General IBM forcing term coefficients

αP - Pressure equation under-relaxation coefficient

αu - Momentum equation under-relaxation coefficient

γ - Diffusion coefficient

γ f - Face area correction

δ - Dirac delta function

κ kg/s2 Positive spring constant

µ kg/ms Dynamic viscosity

µt kg/ms Eddy viscosity

ν m2/s Kinematic viscosity

νt m2/s Kinematic eddy viscosity

ρ kg/m3 Density

σ kg/ms2 Surface forces in the fluid

τ kg/ms2 Stress tensor

τR kg/ms2 Reynolds stress tensor

φ - Generic transported variable

[φ ] - Solution vector

[φ ]n - Solution vector in iteration n

φi - Components of the solution vector

φ - Generic variable mean component

φ ′ - Generic variable fluctuating component

φG - Generic variable value in a ghost cell center

φP - Current cell φ cell center value

φN - Neighbour cell φ cell center value

φ f - Face center φ value

φ t - Current time-step φ value

φSi - Shadow patch variable on ith shadow patch face

φM j - Master patch variable on jth master patch face

ω 1/s Eddy turnover time

ωr 1/s Angular velocity
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BF - body-fitted

CFD - Computational Fluid Dynamics

DNS - Direct Numerical Simulation

FVM - Finite Volume Method
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GTE - General Transport Equation

IBM - Immersed Boundary Method

LES - Large Eddy Simulation

MRF - Multiple Reference Frame
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Abstract
The aim of this thesis is to describe the Immersed Boundary Method version implemented in

f oam− extend 4.1, both its advantages and shortcomings.

The main goal of the Immersed Boundary Method is to simplify the mesh generation pro-

cess in Computational Fluid Dynamics, which can lead to drastic reductions of human time

needed for setting up simulations, especially for simulations with complex geometries. Addi-

tionally, it can offer certain advantages in simulations with moving meshes, as it can decrease

the computational requirements of such cases.

The main shortcoming of the Immersed Boundary Method is loss of solution accuracy on

immersed boundaries (surfaces of simulated objects).

The f oam− extend 4.1 Immersed Boundary Method is here validated on three cases: in-

ternal 2-D flow over a backward facing step, external flow around the Onera M6 wing, and

the flow in a model Francis turbine, which is an especially interesting case, concerning the

Immersed Boundary Method. The results of the Immersed Boundary Method simulations are

compared to the results of equivalent body-fitted (conventional) simulations.

The simulation results are generally satisfactory, as the loss of accuracy was modest enough

to assess the f oam−extend 4.1 implementation of the Immersed Boundary Method as success-

ful.

Key words: Computational Fluid Dynamics, CFD, OpenFOAM, foam-extend, Immersed Bound-

ary Method, IBM.
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Sažetak
Cilj ovog rada je predstaviti teorijsku i praktičnu pozadinu metode uronjene granice implemen-

tirane u f oam− extend 4.1, odnosno njene prednosti i nedostatke.

Glavni cilj metode uronjene granice je pojednostavljenje izrade mreža u računalnoj dinam-

ici fluida, što može dovesti do značajnog smanjenja količine ljudskog rada koji se mora uložiti

pri pripremanju simulacija u računalnoj dinamici fluida, pogotovo kod simulacija sa složenim

geometrijama. Takoder, metoda uronjene granice može donijeti odredene prednosti kod simu-

lacija s pomičnim mrežama, u vidu smanjenja računalne zahtjevnosti takvih simulacija.

Glavni nedostatak metode uronjene granice je smanjenje točnosti rješenja na uronjenim

granicama (površinama simuliranih objekata).

Metoda uronjene granice implementirana u f oam− extend 4.1 je ovdje validirana na trima

slučajevima: unutarnje strujanje u 2-D slučaju u cijevi sa naglim proširenjem, vanjsko stru-

janje oko Onera M6 krila i strujanje u Francisovoj turbini, što je pogotovo zanimljiv slučaj za

metodu uronjene granice. Rezultati simulacija izvedenih uporabom metodom uronjene granice

su usporedeni sa rezultatima simulacija izvedenim konvencionalnim načinom izrade mreže.

Rezultati simulacija su zadovoljavajući, odnosno, smanjenje točnosti rješenja na uronjenim

granicama je dovoljno maleno da implementaciju metode uronjene granice u f oam−extend 4.1

možemo ocjeniti kao dobru.

Ključne riječi: računalna dinamika fluida, OpenFOAM, foam-extend, metoda uronjene granice.
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Prošireni sažetak
Računalna dinamika fluida je alat od velikog značaja u znanosti i inženjerstvu. Ona nam

omogućava numeričko rješavanje jednadžbi koje opisuju strujanje fluida. U području ener-

getike, turbostrojevi su najočitiji primjer kod čijeg razvoja se može primjeniti računalna dina-

mika fluida. Povećanje efikasnosti turbostrojeva dovodi do značajnih energetskih i financijskih

ušteda. Dakle, razvoj računalne dinamike fluida može dovesti do poboljšanja procesa kons-

truiranja i proizvodnje turbostrojeva. Metoda uronjene granice je metoda čija uporaba poten-

cijalno može pojednostaviti postupak pripreme kompleksnih simulacija u području računalne

dinamike fluida. Cilj ovog rada je validirati metodu uronjene granice koja je implementirana u

f oam− extend 4.1.

Simulacije koje su predstavljene u ovom radu su radene u programskom paketu OpenFOAM

[1], odnosno njegovoj verziji f oam− extend 4.1 [2].

Matematički model
Opća transportna jednadžba može poslužiti kao polazište za sve ostale jednadžbe mehanike

fluida:

∂φ

∂ t
+∇ · (φu)−∇ · (γ∇φ) = qv. (1)

Ako se u nju, umjesto općenite vrijednosti φ , umetnu gustoća ρ i količina gibanja ρu te se

uvede pretpostavka nestlačivog strujanja, što značajno pojednostavljuje simulaciju, dolazimo

do:

• Jednadžbe kontinuiteta:

∇ ·u = 0. (2)

• Jednadžbe količine gibanja:

∂u
∂ t

+∇ · (uu) = g−∇p+∇ · (ν∇u). (3)

Za sve simulacije izvodene u ovom radu je pretpostavljeno nestlačivo strujanje (Machov broj

manji od 0,3) te su stoga jednadžbe 2 i 3 relevantne za rješavanje problema u ovom radu.
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Modeliranje turbulencije
Turbulencija je nestacionarna, trodimenzionalna, nelinearna i stohastična pojava kod struja-

nja fluida pri visokim vrijednostima Reynoldsova broja. Pojava turbulencije značajno otežava

rješavanje jednadžbi strujanja te se radi pojednostavljenja pribjegava modeliranju utjecaja ko-

jeg turbulencija ima na strujanje. Najčešće se koristi Reynoldsovo osrednjavanje, kod kojeg

se pretpostavlja da sve vrijednosti u domeni (polja brzine, tlaka i sl.) variraju oko srednje vri-

jednosti [3]. Budući da je za inženjere releventna srednja vrijednost, koriste se modeli koji

računaju utjecaj varijacija na osrednjene vrijednosti. U ovom radu je odabran k−ω SST model

turbulencije [4]. To je zonski model turbulencije s dvije jednadžbe: jedna za kinetičku energiju

turbulencije k, a druga za specifičnu disipaciju turbulencije ω . Naziva se zonskim modelom jer

se, ovisno o udaljenosti od zida, ponaša kao k−ω model (blizu zida) ili k− ε model (dalje od

zida).

Metoda kontrolnih volumena
Korištenjem metode kontrolnih volumena, jednadžbe strujanja se lineariziraju i numerički dis-

kretiziraju kako bi se dobio sustav algebarskih linearnih jednadžbi [5]. Diskretizacija se vrši za

svaki član opće transportne jednadžbe 1. Nakon diskretizacije jednadžbi, sustav jednadžbi ima

sljedeći oblik [3]:

[A][x] = [b], (4)

koji se rješava direktnim ili, češće, iterativnim metodama.

Za spregu jednadžbi korišten je SIMPLE algoritam [6], koji se koristi za rješavanje stacionar-

nih, nestlačivih strujanja fluida. U ovom radu su korištene i GGI i MRF metode. GGI [7] je

sučelje koje služi za povezivanje regija u domeni, a na čijim granicama, koje su u dodiru, točke

nisu raspodijeljene jednako. MRF [8] je način za kvazistacionarno modleiranje strujanja flu-

ida u turbostrojevima. Simulira se tranzijentna pojava, ali na statičan način, odnosno rotacija

bez promjene mreže, prevodenjem jednadžbi koje opisuju strujanje fluida u rotirajući referentni

koordinatni sustav.

Metoda uronjene granice
Teško je jednoznačno opisati matematičku pozadinu metode uronjene granice jer su, od njenog

prvog spomena do danas, u uporabi brojne verzije, s različitim ciljevima i načinima implemen-
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tacije. Općenito se te metode mogu podijeliti na one s kontinuiranim izvorskim članom i s

diskretnim izvorskim članom [9].

Kod metoda sa kontinuiranim izvorskim članom, definicija uronjene granice se uvrštava u jed-

nadžbu prije diskretizacije. Kod metoda s diskretnim izvorskim članom se definicija uronjene

granice uvrštava poslije diskretizacije. Dodatno se te metode mogu podijeliti na one kod kojih

se rubni uvjeti na uronjenoj granici definiraju indirektno i na one kod kojih se rubni uvjeti na

uronjenoj granici definiraju direktno [9].

U ovom radu koristimo metodu uronjene granice koja je implementirana u f oam− extend 4.1

[10]. Cilj implementacije je uzimanje u obzir prisutnosti uronjene granice što sličnije konven-

cionalnom pristupu s proračunskom mrežom prilagodenom geometriji, što podrazumijeva ope-

raciju na pozadinskoj mreži koja uzima u obzir topologiju uronjenog tijela. Na taj način se

zadržava detaljniji opis uronjene granice. Na slici 1 prikazana je shema umetanja uronjene

granice u pozadinsku mrežu te, na taj način, stvaranja novih ćelija.

Slika 1: f oam− extend 4.1 shema umetanja uronjene granice u pozadinsku mrežu [10]

Na slici 1, crno je pozadinska mreža, plavo je uronjena granica, a crveno je nova, modifici-

rana mreža. Nakon umetanja uronjene granice, računa se presjecište sa pozadinskom mrežom.

Potom se odbacuju neaktivne ćelije (unutar uronjene granice) i modificiraju ćelije i lica koje

uronjena granica presjeca. Modificiranim ćelijama se mijenja volumen i centar, a modificiranim

licima površina i centar.

Validacija i rezultati validacije
Metoda uronjene granice validirana je na trima različitim geometrijama: 2-D strujanje u cijevi s

naglim proširenjem, opstrujavanje Onera M6 krila i strujanje u Francisovoj turbini, uključujući
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rotor i statorske lopatice. Simulacije su izvedene uz pretpostavku stacionarnog, nestlačivog

strujanja algoritmima simpleFoam, odnosno MRFSimpleFoam u slučaju Francisove turbine.

Kod turbulentnih simulacija korišten je k−ω SST model turbulencije. Sve tri grupe simulacija

pokazale su zadovoljavajuće rezultate, od kojih će neki biti prikazani i u ovom proširenom

sažetku, a detaljniji rezultati mogu se naći u poglavlju 5 u glavnom djelu ovog rada.

Cijev s naglim proširenjem
Geometrija cijevi prikazana je na slici 2. Za slučaj cijevi radene su 4 simulacije: laminarna i

turbulentna s mrežom prilagodenom obliku cijevi te laminarna i turbulentna s metodom uro-

njene granice. Simulacije laminarnog strujanja dale su gotovo identične rezultate za oba načina

izrade mreže, a simulacije turbulentnog strujanja daju zadovoljavajuću razinu podudarnosti, što

je vidljivo na slikama 3 - 6.

Slika 2: Geometrija cijevi s naglim proširenjem
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Slika 3: Cijev s naglim proširenjem, usporedba pada tlaka kroz kanal, simulacije turbulentnog

strujanja

Slika 4: Cijev s naglim proširenjem, usporedba smičnih naprezanja na gornjem zidu, simulacije

turbulentnog strujanja
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Slika 5: Cijev s naglim proširenjem, usporedba pada tlaka kroz kanal, simulacije laminarnog

strujanja

Slika 6: Cijev s naglim proširenjem, usporedba smičnih naprezanja na gornjem zidu, simulacije

laminarnog strujanja
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Onera M6 krilo
Geometrija Onera M6 krila prikazana je na slici 7. Za slučaj Onera M6 krila provedeno je 14

simulacija, za različite napadne kuteve krila (0, 1, 3, 5, 8, 12 i 18 stupnjeva), a za svaki napadni

kut po jedna simulacija s mrežom prilagodenom obliku objekta i po jedna s metodom uro-

njene granice. Rezultati dobiveni konvencionalnim načinom izrade mreže i metodom uronjene

granice daju slične rezultate, a pogotovo pri manjim napadnim kutevima.

Slika 7: Geometrija Onera M6 krila
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Slika 8: Onera M6 krilo, usporedba koeficijenata otpora za različite napadne kuteve

Slika 9: Onera M6 krilo, usporedba koeficijenata uzgona za različite napadne kuteve
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Francis-99 turbina
Geometrija modela Francisove turbine prikazana je na slici 10. Provedeno je osam različitih

simulacija: za četiri različite pozicije pomičnih statorskih lopatica, po jedna simulacija s me-

todom uronjene granice i po jedna s mrežom prilagodenom obliku objekta. Rezultati dobiveni

konvencionalnim načinom izrade mreže i metodom uronjene granice se podudaraju, osim kod

simulacija s najmanjim protokom kroz turbinu, gdje je kod simulacije metodom uronjene gra-

nice prisutno značajno odstupanje visine pada energije u turbini.

Slika 10: Geometrija Francisove turbine
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Slika 11: Francisova turbina, usporedba efikasnosti turbine s obzirom na protok

Slika 12: Francisova turbina, usporedba snage turbine s obzirom na protok
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Slika 13: Francisova turbina, usporedba visine pada energije u turbini s obzirom na protok

Zaključak
U ovom radu je predstavljena teorija metode uronjene granice te je njena verzija koja je imple-

mentirana u f oam−extend 4.1 validirana na trima različitim slučajevima. Rezultati provedenih

simulacija pokazuju zadovoljavajuću razinu točnosti.

Kod 2-D cijevi sa naglim proširenjem, simulacije laminarnog strujanja kod kojih je primje-

njen konvencionalan način izrade mreže te simulacije kod kojih je primjenjena metoda uronjene

granice pokazuju gotovo identične rezultate. Turbulentne simulacije pokazuju blago odstupanje

rezultata, npr. razlika u padu tlaka od ulaza do izlaza je 10,4%.

Kod Onera M6 krila, simulacije provedene pomoću metode uronjene granice i konvenci-

onalnim načinom izrade mreže pokazuju vrlo slične rezultate za manje napadne kuteve (do 8

stupnjeva), dok kod većih napadnih kuteva (8 - 18 stupnjeva), razlika rezultirajućih koeficije-

nata otpora je 15 - 20%, a koeficijenata uzgona oko 5%.

Kod Francisove turbine je simuliran rad turbine pri 4 različita protoka, a sve simulacije,

osim za najmanji protok, pokazuju dobru podudarnost medu onima provedenima metodom
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uronjene granice i onima provedenim konvencionalnim načinom izrade mreže. Razlika u do-

bivenim učinkovitostima turbine je oko 1%, a u snagama i visinama pada energije u turbini 5 -

9%.

Simulacije provedene u ovom radu su samo maleni dio onoga što se može simulirati računalnom

dinamikom fluida. Unatoč tome što su rezultati zadovoljavajući, mora se provesti još validacij-

skih studija kako bi se metoda uronjene granice smatrala primjenjivom na slučajevima u kojima

su prisutni kompresibilnost, izmjena topline, višefazno strujanje itd. Jedna od takvih studija je,

takoder na Fakultetu strojarstva i brodogradnje u Zagrebu, radena za simulacije strujanja oko

broda te se ti rezultati, takoder zadovoljavajući, mogu naći u [11].
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Chapter 1

Introduction

1.1 Background

Computational Fluid Dynamics (CFD) is a tool of increasing importance in research and devel-

opment of new products and technologies, which is primarily enabled by rapid development of

computers and derivation of new numerical methods. The aim of CFD is to numerically solve

the equations which describe fluid flow and enable engineers and scientists to obtain various

information with the purpose to develop new and enhance existing engineering solutions. Prod-

ucts and equipment which can be developed using CFD are numerous. In the field of energy

and power engineering, the most obvious example is turbomachinery, where pumps and tur-

bines are the most interesting examples. Even a small increase of efficiency of turbomachines

can bring enormous reductions in the amount of the energy losses in energy transformation

processes and the associated economical and environmental costs. For that reason, CFD is an

extremely appropriate tool to be utilized in equipment design in the energy sector.

Equations which describe fluid flow are generally well understood, but are fairly compli-

cated to solve. The mission of CFD is to solve these equations, using numerical iterative

techniques. The main idea is to discretize these equations in time and space and reduce them

to a set of dicretized equations. Then, iterative solvers are used to solve that set composed of a

finite number of equations. In this thesis, OpenFOAM was used to accomplish that task.

OpenFOAM [1] is a free, open-source CFD software released in 2004. It has a large user

base of users in various fields of science and engineering, both in academia and industry. Its
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development is carried out by dedicated OpenFOAM developers, as well as by user contri-

butions. It offers a variety of options for modeling problems in the field of continuum me-

chanics. Various fluid flow phenomena can be modeled: compressible and incompressible

flows, subsonic, transonic and supersonic flows, heat transfer, combustion etc. In this thesis,

the f oam− extend 4.1 version of OpenFOAM was used. f oam− extend [2] is a fork of the

OpenFOAM open source library. The goal of this project is to integrate community contribu-

tions to the f oam−extend simulation toolbox. It is an open project welcoming and integrating

contributions from all users and developers.

1.2 Previous and Related Studies

The Immersed Boundary Method (IBM) is a fitting example of a method which has the potential

to both decrease the computational effort and the human time needed to set up complex CFD

cases. It is a mesh generation method which uses a background mesh combined with a surface

file which represents the geometry of a solid inside of the flow field, or of a solid at the borders

of the flow field. The meshing process, which is usually the most time consuming part in the

process of setting up CFD simulations, can be substantially simplified using IBM compared to

body-fitted (BF) meshing. The surface geometry of solids in a simulation can sometimes be

very complicated, which also makes the process of body-fitted meshing very complicated. The

expected disadvantage of IBM is loss of solution accuracy on the immersed boundaries.

Another aspect in which IBM shows good potential is moving mesh simulations. For body-

fitted meshes, the mesh is transformed in ever time step to account for the new position of the

solid inside the simulation domain (e.g. simulating flow inside an internal combustion engine).

With IBM, only the surface of the immersed boundary is moving, while the background mesh

remains unchanged, which decreases computational time requirements for dynamic simula-

tions.

The idea of IBM was first introduced by Peskin in [12], where it was used to describe the

interaction between a fluid and an elastic boundary inside the flow field. In later studies, a large

number of different versions of IBM were proposed. All of those versions differ drastically in

terms of simulation goals and mathematical models which are used in deriving them. For this

reason, it is impossible to determine a single mathematical formulation of IBM. A review of
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different versions is presented in [9] and will be summarised in this thesis in Chapter 4.

1.3 Thesis Outline

The rest of the thesis is organised as follows.

First, the underlying theory of basic fluid flow in CFD will be presented: the govern-

ing equations, the process of discretization and solving the dicretized equations. Then, the

f oam− extend 4.1 version of IBM will be described and compared to previous versions. The

final aim is to evaluate and, hopefully, validate the results acquired from simulations in which

the geometries were spatially discretized using the f oam− extend 4.1 IBM, as opposed to

equivalent simulations in which the geometries were meshed using the conventional body-fitted

approach. The first simulation is the simplest one: internal flow over a 2-D backward facing

step, both with laminar and turbulent conditions. The second simulation is an external flow On-

era M6 wing simulation with turbulent conditions. The last and the most complex simulation

is a simulation of a Francis turbine with different operating conditions (varying load, turbine

power, etc.). The final case is very challenging because it involves significant variations of the

geometry.
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Chapter 2

Mathematical Model

In the previous chapter, a brief introduction into the subject of this thesis was given. In the

following chapter, fundamental equations of fluid mechanics will be presented.

2.1 Introduction

The set of equations which will be laid out in the following section is a set of equations which

govern fluid flow. They describe a wide array of fluid flow configurations - for example, flows in

turbomachinery, external flows surrounding structures like aeroplanes, vehicles or submarines,

internal pipe or duct flow, laminar and turbulent flows, single-phase and multi-phase flows, etc.

These equations are essentialy a set of coupled differential equations which are, in practice,

too difficult to solve analytically, except for some very basic fluid flow problems which imple-

ment a lot of simplifications to the equations. For problems of engineering-level complexity,

computers are used to solve approximations of the equations.

2.2 Governing Equations of Fluid Flow

A large number of equations describing fluid flow are actually just versions, more or less com-

plex, of the General Transport Equation (GTE):

∂φ

∂ t
+∇ · (φu)−∇ · (γ∇φ) = qv. (2.2.1)
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In the GTE, φ is a generic transported variable, u is the convective velocity, γ is the diffusion

coefficient and qv is a volume source or sink of the transported variable φ .

The GTE consists of four terms:

• Temporal derivative ∂φ

∂ t , which represents the inertia of the system;

• Convection term ∇ · (φu), which represents the convective transport by the prescribed

velocity field. The term is of hyperbolic nature;

• Diffusion term ∇ · (γ∇φ), which represents gradient transport. The term is of elliptic

nature;

• Sources and sinks qv account for non-transport effects: local volume production and

destruction of the transported variable φ ;

By substituting the transported variable φ in the GTE with an appropriate property (mass,

momentum, energy, etc.), the fundamental governing equations of fluid flow can be derived.

2.2.1 Conservation of Mass

The mass conservation equation can be derived from the GTE and in its general form is:

∂ρ

∂ t
+∇ · (ρu) = 0. (2.2.2)

Here, fluid density ρ substitutes the general variable φ and becomes the transported variable.

As there is no diffusion of mass, no diffusion term exists in the equation. Likewise, there is

also no source or sink term, as mass is assumed to be impossible to vanish or be generated.

2.2.2 Conservation of Linear Momentum

The linear momentum conservation equation can be derived from the GTE and in its general

form is:

∂ (ρu)
∂ t

+∇ · (ρuu) = ρg+∇ ·σ . (2.2.3)

Here, momentum ρu becomes the transported variable. The first term is the inertial term, the

second term is the convective term, the first term on the right hand side (ρg) is a source term
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which describes the effect of gravitational forces on the fluid and the last term (∇ ·σ) describes

the surface forces in the fluid. The surface forces are a sum of forces produced as an effect of

the existence of a pressure gradient and by the viscous stresses in the fluid.

2.2.3 Conservation of Energy

The energy conservation equation can be derived from the GTE and in its general form is:

∂ (ρe)
∂ t

+∇ · (ρeu) = ρg ·u+∇ · (σ ·u)−∇ ·q+ρQ. (2.2.4)

To obtain this equation, energy content in the fluid ρe is input into the GTE as a transported

variable. The first term is the one which describes the temporal variation of energy in the fluid.

The second term is the convective term and it determines the convective flux of energy in the

fluid. The first term on the right-hand hand is the gravitational force term. The second term

describes the rate of work due to the existence of surface forces. The third term on the right-

hand side is the diffusive term and it describes the heat flux due to the existence of a temperature

gradient. The last term is the volume energy source term.

2.2.4 Incompressible Flows

It is possible to implement some simplifications for incompressible flow, in which the density

of the fluid is assumed to be constant, which can substantially ease the process of solving the

governing equations of fluid flow. Compressibility is often a term associated with gases. In

practice, both gas and liquid flows can be either compressible or incompressible. The effect

compressibility has on the flow is actually dependent on the conditions of the flow, as well as

the properties of the fluid. Usually, flow is considered incompressible if the peak Mach number

of the flow is up to 0.3. Mathematically, the Mach number is:

Ma =
|u|
a
, (2.2.5)

where a is the speed of sound in the fluid.

In practice, a variety of flows in the field of engineering are incompressible due to being

limited to Mach numbers of less than 0.3. In all cases in this thesis, Mach numbers are small

and therefore, the flows are assumed to be incompressible.
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By definition, incompressibility implies constant density ( ρ = const. ), which mathemati-

cally manifests in the governing equations in the following way:

• Conservation of mass transforms into the continuity equation:

∇ ·u = 0. (2.2.6)

• Conservation of linear momentum transforms into the following:

∂u
∂ t

+∇ · (uu) = g−∇p+∇ · (ν∇u), (2.2.7)

where ν is the kinematic viscosity.

• Conservation of energy equation becomes decoupled from the rest of the governing equa-

tions and no longer plays a part in determining the flow field.

2.3 Turbulence Modeling

The use of turbulence models is required in simulations involving turbulent flow behaviour,

which includes the majority of engineering applications, and nature in general. Turbulence

occurs at high values of the Reynolds number Re:

Re =
ρl|u|

µ
, (2.3.1)

where l is the characteristic length scale of the flow configuration (e.g. pipe diameter for internal

pipe flow), |u| is the velocity magnitude and µ is the dynamic viscosity of the fluid.

Turbulence is a transient, irregular, three-dimensional, non-linear and stochastic phenomenon.

Turbulent flow is characterised by chaotic behaviour, high diffusivity and high energy dissipa-

tion. As the nature of turbulence makes turbulent flow equations very hard to solve, although

Direct Numerical Simulation (DNS) is possible, utilization of turbulence models is required.

DNS is simply too troublesome for any practical use, as it has a high demand of computational

resources. Two other main approaches, other than DNS, are Large Eddy Simulation (LES) and
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Reynolds-Averaged Navier-Stokes Equations (RANS). The former is generally less computa-

tionaly demanding than DNS, but more so than RANS. RANS is exclusively used in the cases

analyzed in this thesis, and will be described in the following subsection.

2.3.1 Reynolds-Averaged Navier-Stokes Equations

The main presumption of RANS models is that in turbulent flows, although various flow values

(pressure, velocity, etc.) are of stochastic nature, they vary about a mean value.

Mathematicaly, if φ is is the value of a flow variable, at the position x and at time t, φ can

be decomposed into a mean component φ and a fluctuating component φ ′ [3]:

φ(x, t) = φ(x, t)+φ
′(x, t). (2.3.2)

For steady turbulent flows, the mean value φ (which is the value of interest for engineers) is

computed by Reynolds time averaging. Time averaging produces the average of a quantity over

a time interval. If T is the interval over which averaging is performed, then φ (which is only

location-dependent) is computed as:

φ(x) = lim
T→∞

1
T

∫ t+T

t
φ(x, t)dt. (2.3.3)

Velocity and pressure fields are decomposed into:

u = u+u′, (2.3.4)

p = p+ p′, (2.3.5)

u = uxi+uyj+uzk, (2.3.6)

u′ = u′xi+u′yj+u′zk, (2.3.7)

Using equations 2.3.4 - 2.3.7, the Reynolds averaged form of governing equations is:

∇ · (ρu) = 0, (2.3.8)
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∂ (ρu)
∂ t

+∇ · (ρuu) =−∇p+
[
∇ · (τ−ρu′u′)

]
+ fb. (2.3.9)

The above Reynolds averaged equations are quite similar to the original governing equations,

with the exception of the term −ρu′u′, known as the Reynolds stress tensor τR. It is a sym-

metric tensor and it introduces six new unknowns into the governing equations set. Any linear

averaging of the equations, like the Reynolds averaging techniques, cannot reduce the order

of the problem. Also, adding equations to solve for the new unknows produces additional un-

knowns. To overcome this problem, a turbulence model needs to close the system of equations

by expressing the non-linear fluctuating stress components only in terms of mean components.

The modeling of the Reynolds stress tensor is based on the Boussinesq hypothesis:

τ
R =−ρu′u′ = µt

[
∇u+(∇u)T ]− 2

3
ρkI, (2.3.10)

where k is the turbulence kinetic energy:

k =
1
2

u′u′. (2.3.11)

µt is the turbulence eddy viscosity which is, unlike molecular viscosity µ , flow-dependent

and not fluid-dependent. With the Boussinesq hypothesis, the problem of calculating the

Reynolds stress tensor components is transformed into a problem of calculating the turbulence

kinetic energy and turbulent viscosity.

Following the Boussinesq hypothesis, several groups of turbulence models have been de-

veloped:

• Algebraic models

• One-equation models

• Two-equation models

• Second-order closure models

Each group has advantages and shortcomings.

Two-equation turbulence models are the most popular in industrial applications. They re-

quire the solution of two transport equations to model the Reynolds stress tensor. The most
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popular are the k− ε and k−ω groups of models. The k−ω SST model was exclusively used

in this thesis and will be described in the following section. For further details about turbulence

modeling, see [3].

The k−ω SST Model

The Shear Stress Transport k−ω model is a zonal two-equation turbulence model. The two

equations are the turbulence kinetic energy equation (k) and the eddy turnover time equation

(ω). In this model, the k - ω formulation is used in the inner parts of the boundary layer. Away

from the inner parts of the boundary layer, the model switches to the k - ε formulation using

a blending function. In this way, good behaviour in adverse pressure gradients and separating

flow is achieved. Also, the heavy dependency on freestream values, a characteristic of the stan-

dard k−ω model, is reduced. The implementation of k−ω SST which is used in OpenFOAM

is presented in [4], with coefficients updates from [13], and it is mathematically formulated in

the following way:

• Transport equation for the turbulence kinetic energy:

∂ (ρk)
∂ t

+∇ · (ρuk) = P̃k−β
∗
ρωk+∇ · (Γk∇k). (2.3.12)

• Transport equation for the eddy turnover time:

∂ (ρω)

∂ t
+∇ · (ρuω) =

γ

νt
Pk−βρω

2 +∇ · (Γk∇ω)+(1−F1)2ρσω2
1
ω
(∇k)(∇ω).

(2.3.13)

• First set of additional relations:

Γk = µ +
µt

σk
, (2.3.14)

Γω = µ +
µt

σω

, (2.3.15)

Pk = τ∇ ·u, (2.3.16)
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P̃k = min(Pk;c1ε), (2.3.17)

µt = ρ
a1k

max(a1ω;SF2)
. (2.3.18)

• Model coefficients:

σk1 = 0.85, σk2 = 1.0, σω1 = 0.5, σω2 = 0.856, β1 = 0.075, β2 = 0.0828,

β
∗ = 0.09, γ1 = 0.5532, γ2 = 0.44, a1 = 0.31, b1 = 1.0, c1 = 10.0.

Coefficients with index 1 come from the k−ω model, and the ones with index 2 belong

to the k− ε model. The coefficients ϕ used in equations depend on F1 and are obtained

using the following formula:

ϕ = F1ϕ1 +(1−F1)ϕ2, (2.3.19)

where ϕ1 and ϕ2 stand for the coefficients of the k−ω and the k− ε model.

• Second set of additional relations:

F1 = tanh
(
arg4

1
)

; arg1 = min

(
max

( √
k

β ∗ωy
;
500ν

y2ω

)
;
4ρσω2k
CDkωy2

)
, (2.3.20)

CDkω = max
(

2ρσω2
1
ω
(∇k)(∇ω);1.0e−10

)
, (2.3.21)

F2 = tanh
(
arg2

2
)

; arg2 = max

( √
k

β ∗ωy
;
500ν

y2ω

)
, (2.3.22)

τ = µt

(
∂ui

∂x j
+

∂u j

∂xi
− 2

3
∂uk

∂xk

)
− 2

3
ρkδi j. (2.3.23)

Faculty of Mechanical Engineering and Naval Architecture 11



Chapter 3

Finite Volume Method

In the previous chapter, the governing equations were presented. In the following chapter, the

numerical methods used to solve those equations will be presented.

3.1 Discretization of the Governing Equations

The goal of discretization of equations is to obtain a finite number of governing equations,

which describe the spatialy discretized domain in a temporaly discretized simulation time. The

final equation after discretization for a single cell has the following form:

aPφP +∑
N

aNφN = b, (3.1.1)

where aP is the diagonal contribution to the solution matrix, aN is the off-diagonal contribution,

b holds the right-hand side contributions and φP and φN are the field values in the current and

neighbouring cells.

The discretization procedure shown here is taken from [5], where it is described in detail.

The GTE was shown in 2.2.1:

∂φ

∂ t
+∇ · (φu)−∇ · (γ∇φ) = qv.

The GTE is a second-order partial differential equation and if good accuracy is to be preserved,

it is necessary for the order of the discretization to be of equal or higher order than the equation

12
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that is being discretized. The terms of the transport equation will be treated separately (temporal

derivative, convection term, diffusion term and source term).

In order to obtain a second-order accuracy, the assumed variation of the function φ = φ(x, t)

in space and time around the point P (the center of a finite volume) must be linear in space and

time:

φ(x) = φP +(x−xP) · (∇φ)P, (3.1.2)

φ(t +∆t) = φ
t +∆t

(
∂φ

∂ t

)t

, (3.1.3)

where

φP = φ(xP), (3.1.4)

φt = φ(t). (3.1.5)

3.1.1 Discretization of the Spatial Terms

The Gauss’ theorem is often used in the discretization procedure:

∫
V

∇ ·a dV =
∮

∂V
dS ·a, (3.1.6)

where ∂V is the closed surface bounding the volume V and dS is an infinitesimal surface ele-

ment with associated outward pointing normal on ∂V .

It can be shown that:

∫
VP

φ(x)dV = φPVP, (3.1.7)

where VP is the volume of the cell. A second order accurate discretized form of the Gauss’

theorem is:

(∇ ·a)VP = ∑
f

S ·a f , (3.1.8)
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where the subscript f implies the value of the variable in the middle of the face and S is the

outward-pointing face area vector.

Convection Term

The discretisation of the convection term is obtained using equation 3.1.8:

∫
VP

∇ · (ρuφ)dV = ∑
f

S · (ρu) f φ f = ∑
f

Fφ f , (3.1.9)

where F represents the mass flux through the face. For equation 3.1.9, F and the face values

(subscript f ) are required. The calculation of F is given in [5] and the face values are calcu-

lated from the values in the cell centers, which are obtained using the convection differencing

scheme.

The role of the convection differencing scheme is to determine the value of φ on the face

from the values in the cell centers. Some of them are:

• Central Differencing (second-order accurate but oscillatory)

• Upwind Differencing (first-order accurate but bounded, nonoscillatory)

• Blended Differencing (both boundedness and accuracy of the solution is attempted to be

preserved as good as possible using a blending factor)

In choosing the right convection scheme, a compromise between accuracy and boundedness

of the solution is sought.

Diffusion Term

Using the assumption of linear variation of φ and equation 3.1.8 it follows:

∫
VP

∇ · (ργ∇φ)dV = ∑
f
(ργ) f S · (∇φ) f . (3.1.10)

If the mesh is orthogonal, i.e. vectors d and S in 3.1.1 are parallel, it is possible to use the

expression:

S · (∇φ) f = |S|
φN−φP

d
. (3.1.11)
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Figure 3.1.1: Vectors d and S on a non-orthogonal mesh [5]

Using the equation 3.1.11, the face gradient of φ can be calculated from the two values

around the face. Alternativelly, the cell-centered gradient could be calculated using the values

of φ in neighbouring face centers (φ f ) and then interpolate the cell-centered gradient to the

face.

In practice, meshes are rarely orthogonal. For that reason, non-orthogonality correction

is utilized. It can potentially create unboundendness, particulary if the non-orthogonality is

high. If the preservation of boundendness is more important than accuracy, the non-orthogonal

correction has got to be limited or completely discarded. The non-orthogonality correction is

further described in [5].

The final form of the discretised diffusion term is:

S · (∇φ) f = |∆|
φN−φP

d
+k · (∇φ) f , (3.1.12)

where k · (∇φ) f is the non-orthogonal correction.

Source Terms

All terms that cannot be written as convection, diffusion or temporal terms are treated as

sources. The source term, qv(φ) can be a general function of φ . The linearized form of the

source term is:

qv(φ) = qu +qpφ , (3.1.13)
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where qu and qp can also depend on φ . The volume integral is:

∫
VP

qφ (φ)dV = quVP +qpVPφP. (3.1.14)

3.1.2 Temporal Discretization

In the previous section, the dicretization of the spatial terms has been presented. Temporal dis-

cretization is of great importance for transient simulations. Since only steady state simulations

were performed in this thesis, temporal discretization will not be shown, however more details

can be found in [5].

3.2 Solving the Discretized Equations

After discretizing the governing partial differential equations, a system of linear equations of

the form

[A][φ ] = [b], (3.2.1)

is to be solved [3]. Here, [A] is a matrix constituted of the coefficients of the unknown variables.

[φ ] are the unknowns, located at the centroids of the mesh elements and are the values which

are sought after. The vector [b] contains all sources, constants, boundary conditions and non-

linearizable coefficients. In an extended form, the system of equations is:


a11 a12 . . . a1N−1 a1N

a21 a22 . . . a2N−1 a2N
...

... . . .
...

...

aN1 aN2 . . . aNN−1 aNN





φ1

φ2
...
...

φN


=



b1

b2
...
...

bN


, (3.2.2)

where ai j, φi and bi are components of matrix [A] and vectors [φ ] and [b], respectively. Gen-

erally, each row in the above equation represents an equation defined over one element of the

computational domain, and the non-zero coefficients ai j are those which describe the relation

of the element with the neighbouring elements, or to the values present in the element itself.
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The methods for solving linear systems of equations are numerous, and are generally di-

vided into direct and iterative. Direct methods are rarely used in CFD applications. Iterative

techniques are preffered for their lower memory and computational cost requirements.

In a direct method, [A] is inverted and the solution [φ ] is computed as [φ ] = [A]−1[b]. If [A]

is large, finding its inverse is computationally very challenging. Meshes for CFD applications

tend to have large numbers of cells, which leads to a large matrix [A]. Also, [A] is usually a

sparse matrix, which additionally complicates the procedure of computing its inverse.

When using iterative linear solvers the solution algorithm is iteratively applied until a re-

quired level of convergence is reached. The strategy of all iterative linear solvers is similar: a

series of solutions [φ ](n) is computed, which ideally converges to the exact solution [φ ]. To start

the solving process, an initial value is chosen [φ ](0) and an iterative procedure that computes

[φ ](n) in each iteration from the previously calculated solution [φ ](n−1) is performed.

3.3 The SIMPLE algorithm

The SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm is a pressure-

based segregated iterative method used for solving steady state flow problems. It was first

mentioned in [6] and has been widely used since. The SIMPLE algorithm is used in the simu-

lations in this thesis, in the simpleFoam and the MRFSimpleFoam solvers which are available

in OpenFOAM.

The steps for solving the discretized governing equations are:

• Guess the initial conditions for all field variables.

• Solve the momentum equation for velocity (momentum predictor step):

uP = (au
P)
−1 [H(u)−∇p] , (3.3.1)

where

H(u) = r−∑
N

au
NuN , (3.3.2)

where r is the right-hand side contribution in the momentum equation.
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• Using the obtained velocity, solve the incompressible continuity equation for pressure

(pressure correction step):

∇ ·
[
(au

P)
−1

∇p
]
= ∇ ·

[
(au

P)
−1H(u)

]
. (3.3.3)

• Based on the calculated pressure field, assemble the conservative face flux F :

F = S ·H(u)−ap
N(pN− pP). (3.3.4)

• Solve other transport equations, if there are any (turbulence, etc.)

• Repeat until convergence the criterion is met

Under-relaxation is needed in this procedure, with usual under-relaxations factors of αp =

0.2 and αu = 0.8, which can be different depending on the case.

3.4 Additional Features

CFD is a very broad field in a sense that it is used to solve problems which can be of quite dif-

fering nature (by criteria of compressibility, time-dependency, existence of combustion etc.).

Apart from numerous techniques for solving dicretized governing equations, there exist some

case-specific modeling and numerical techniques which can be applied to some problems.

Some of those additional features are used in this thesis and will be described in this section.

General Grid Interface (GGI)

General Grid Interface (GGI) is a coupling interface used for joining multiple non-conformal

regions where the patch nodes on each side of the interface do not match [7]. Examples of

coupling interfaces present in OpenFOAM that are built to join conformal mesh regions are

processor, regionCouple and cyclic. In the case of conformal mesh regions, the patch nodes on

each sides of the interface coincide with each other.

Making multiple non-conformal regions has certain advantages over a completely confor-

mal multi-region mesh. In the case of complicated 3-D geometries, the attention that needs to
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be given in the meshing process in order to preserve the conformity can be substantial. Hy-

droturbines are a good example and one of them, a Francis-type turbine, will be analyzed as

the third validation case in this thesis. In the case of the Francis turbine, the mesh was split

into three regions which were meshed seperately. After the meshing process, the regions are

coupled with GGI patches, allowing the rotor region to rotate relative to the static upstream

and downstream regions. Some specialized versions of GGI exist, which are needed in order

to simplify the mesh complexity of turbomachinery simulations and reduce the computational

time needed to run the simulations, i.e. cyclicGGI, which was also used in the Francis turbine

case.

GGI is using weighted interpolation to evaluate and send a value across a pair of conformal

or non-conformal coupled patches. No re-meshing of the neighbouring cells of the interface

is required. The equations that control the flow values between the GGI master patch and

GGI shadow patch are derived in line with the basic FVM discretization reasoning. They state

that consistent and conservative discretization across the interface is achieved using weighted

interpolation of the following form:

• For the flow values or variables from the master patch to the slave patch

φSi = ∑
n

WMntoSi ·φMn. (3.4.1)

• For the flow values or variables from the slave patch to the master patch

φM j = ∑
m

WSmtoM j ·φSm. (3.4.2)

• In order for the interface discretisation to remain conservative, we have the following

three constraints:

∑
n

WMntoSi = 1.0, (3.4.3)

∑
n

WSmtoM j = 1.0, (3.4.4)
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WMntoSi · |SMn|=WSmtoM j · |SSm|= |S∩MtoS |, (3.4.5)

with the additional symmetry constraint:

if WMntoSi > 0, then WSmtoM j > 0, (3.4.6)

but in general:

WMntoSi 6=WSmtoM j . (3.4.7)

φS is a shadow patch variable, φM is a master patch variable, i is an ith shadow patch face,

j is a jth master patch face, n is the number of master face neighbours for shadow patch i, m is

the number of shadow face neighbours for master patch j, WMtoS is the master facet to shadow

facets weighting factor, WStoM is the shadow facet to master facets weighting factor, |SM| is the

surface area of the master facet, |SM| is the surface area of the shadow facet and |S∩MtoS | is the

intersection area between master and shadow facets.

The value of the GGI weighting factors can be expressed from equation 3.4.5 which is based

on facet area values and polygonal intersection.

For the master-to-shadow patch faces:

WMtoSi =
|S∩MtoSi

|
SMn

, with WMtoSi ∈ [0.0, 1.0]. (3.4.8)

For the shadow-to-master patch faces:

WStoM j =
|S∩StoMj

|
SSm

, with WStoM j ∈ [0.0, 1.0]. (3.4.9)

where |S∩MtoS | and |S∩StoM | are surface intersection areas between a master and shadow patch

faces, SM and SS are surface areas of a master and shadow patch faces, i is the ith shadow patch

face for a given master patch face and j is the jth master patch face for a given shadow patch

face.

The GGI weighting factors are essentially percentages of surface intersections between two

overlapping faces.
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Multiple Reference Frame

Multiple Reference Frame (MRF) [8] is an approach for handling rotation in turbomachinery

simulations. In MRF simulations, the mesh is static and the rotation is accounted for in a

region-wise manner. Momentum equation may be formulated either in terms of absolute or

relative velocity; the latter requires a transformation of the velocity field at the rotor-stator

interface, which complicates the model. This is also called the f rozen rotor technique, where

a section of a stator and a rotor are simulated in a prescribed relative position and in steady

state. For increased fidelity, a frozen rotor simulation may be repeated several times, varying

the relative position of components. In simulations of steady flow in single passages at high

mesh resolution, cyclic boundaries are used. Imposing cyclicity of a mesh structure is both

tedious and limiting in terms of quality. A cyclic GGI interface will be used in this thesis to

establish accurate and implicit handling of non-matching periodic boundaries.

For every rotating cell zone, the incompressible Navier-Stokes equations have to be modifed

to take into account the rotation of the zone.

The following can be expressed [14] for the position vector r and velocity u:

[
dr
dt

]
I
=

[
dr
dt

]
R
+ωr× r, (3.4.10)

u = uR +ωr× r, (3.4.11)

where ωr is the angular velocity vector. The expression for acceleration in an inertial frame of

reference is:

[
duI

dt

]
I
=

[
duR

dt

]
R
+

dωr

dt
× r+2ωr×uR +ωr×ωr× r, (3.4.12)

where the second term on the right-hand side is the tangential acceleration, the third term is

the Coriolis acceleration and the last term is the centrifugal acceleration. When equations 2.2.6

and 2.2.7 (which are in an inertial frame of reference) are adjusted for the relative reference

frame, with relative velocity, the following equations are obtained:

∂uR

∂ t
+

dωr

dt
×r+∇ · (uR×uR)+2ωr×uR +ωr×ωr×r =−∇

(
p
ρ

)
+∇ · (ν∇uR), (3.4.13)
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∇ ·uR = 0. (3.4.14)

In the relative reference frame with absolute velocity:

∂uR

∂ t
+

dωr

dt
× r+∇ · (uR×uI)+ωr×uI =−∇

(
p
ρ

)
+∇ · (ν∇uI), (3.4.15)

∇ ·uI = 0. (3.4.16)

The incompressible governing equations for steady-state flow, for multiple frames of reference,

can be written as:

• Inertial reference frame with absolute velocity

∇ · (uI×uI) =−∇p+ν∇ ·∇(uI), (3.4.17)

∇ ·uI = 0. (3.4.18)

• Rotating reference frame with relative velocity

∇ · (uR×uR)+2ωr×uR +ωr×ωr× r =−∇p+∇ · (ν∇uR), (3.4.19)

∇ ·uI = 0. (3.4.20)

• Rotating reference frame with absolute velocity

∇ · (uR×uI)+ωr×uI =−∇p+∇ · (ν∇uI), (3.4.21)

∇ ·uI = 0. (3.4.22)

Equations 3.4.17 - 3.4.22 are the basic set of equations used in MRF models [14].
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Chapter 4

Immersed Boundary Method

In the previous chapter, basic principles of the Finite Volume Method were described. In the

following chapter, the Immersed Boundary Method (IBM) will be laid out.

4.1 Introduction

IBM is a method of mesh generation used in the field of CFD. The obvious aim of IBM is

to simplify the process of meshing complicated geometries. Another one is to decrease the

computational time in dynamic mesh simulations.

4.2 Previous Studies

A review of various versions of IBM was presented in [9] and will be laid out here.

The idea of IBM was first proposed by Peskin in [12] to simulate cardiac mechanics and

associated blood flow. A novel procedure was formulated for imposing the effect of the im-

mersed boundary on the flow. Later, many new versions were proposed but in this thesis, the

focus is on liquid-solid immersed boundary, whereas applications of IBM to problems with

liquid-liquid and liquid-gas immersed boundaries will not be covered.

We shall use the example uf fluid flow past a solid body, shown in figures 4.2.1 and 4.2.2 to

explain the difference between the conventional body-fitted approach (4.2.1) and the immersed

boundary approach (4.2.2).
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Figure 4.2.1: Body-fitted mesh detail
Figure 4.2.2: IBM mesh detail

In the body-fitted approach, a surface grid which covers the boundaries of the solid, is

generated. Then it is used as a geometrical boundary condition to generate a mesh in the region

occupied by the fluid, either a structured or an unstrucutred one.

When using the IBM, a so-called background mesh is created first. The background mesh

represents the computational domain, i.e. a piece of real space which we intend to simulate,

without any solid objects in it.

Then, surface of the solid object is inserted into the background mesh and the background

mesh is divided into active (fluid) region and non-active (solid) region.

An example is shown in 4.2.2: the red part of the mesh corresponds to the fluid region, the

blue part corresponds to the solid region and the black line corresponds to the surface of the

solid.

Since the mesh does not conform to the solid boundary, incorporating boundary conditions

requires modification of the equations in the vicinity of the boundary. Different versions of the

IBM are distinguished based on the implementation of these modifications.

4.2.1 Continuous Forcing Approach

In this approach, modifications of boundary conditions definition are performed for the origi-

nal governing equations and the modified equations are afterwards dicretized. This approach
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requires a distinction of the ways in which elastic and rigid boundaries are treated.

Elastic Boundaries

In the first IBM version by Peskin [12], cardiac flow was simulated. This is an example of a

flow with elastic bounderies, where a mutual interaction between the fluid and the solid exists.

The immersed boundary is represented by a set of elastic fibers and the location of these

fibers is tracked in a Lagrangian fashion by a collection of massless points that move with the

local fluid velocity. The coordinate xk of the kth Lagrangian point is governed by the equation:

∂xk

∂ t
= u(xk, t) . (4.2.1)

The stress F and deformation of these fibers is related by a constitutive law similar to Hooke’s

law. The effect of the immersed boundary on the surrounding fluid is essentially captured by

transmitting the fiber stress to the fluid through a localized forcing term in the momentum

equations, which is given by:

fm(x, t) = ∑
k

Fk(t)δ (|x−xk|), (4.2.2)

where δ is the Dirac delta function. The location of fibers does not generally coincide with

the nodal points of the Cartesian grid so the forcing is distributed over a band of cells around

each Lagrangian point and this distributed force is imposed on the momentum equation of

the surrounding nodes. Thus, the sharp delta function is replaced by a smoother distribution

function, which is suitable for use on a discrete mesh.

The choice of the distribution function is a key ingredient in this method.

Rigid Boundaries

The previously described method is well suited for elastic boundaries but is problematic for

solids with rigid boundaries. A way a rigid boundary can be incorporated into the described

model is to consider the boundary as an elastic but an extremely stiff one.

A second approach is to consider the structure attached to an equilibrium location by a

spring with a restoring force Fk given by:
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Fk(t) =−κ (xk−xe
k(t)) , (4.2.3)

where κ is a positive spring constant and xe
k is the equilibrium location of the kth Lagrangian

point. Imposing the boundary condition on a rigid immersed boundary requires large values

of κ . However, this results in a stiff system of equations that is subject to severe stability

constraints. On the other hand, lower values of κ can lead to unwanted elastic effects such as

excessive deviation from the equilibrium location.

A general model, of which the approach presented in 4.2.3 is a specific version, is:

F = α

∫ T

0
u(t)dt +βu(T ), (4.2.4)

where α and β are coefficients selected to best enforce the boundary condition at the immersed

solid boundary. This method requires large values of α and β , which can lead to stability

problems.

Another method in this class is one where the entire flow is assumed to occur in a porous

medium. In this formulation, an extra force term is contained of the form

F =
µ

K
u, (4.2.5)

where K is the permeability of the medium and is defined as infinity for the fluid and as 0 for the

solid region. The force therefore activates only in the solid region, driving the velocity to zero.

In practice, K is large in the fluid region and small in the solid region, which, along with the

smoothing of the variation of K at the fluid-solid interface, leads to an error in the imposition

of the correct velocity on the solid surface. This method is also subject to stiffness problems

associted with large variations in the values of K.

4.2.2 Discrete Forcing Approach

In this approach, modifications of boundary conditions definition are performed for the dis-

cretized form of governing equations. In this approach, methods are further categorized into

those that are formulated to impose the boundary conditions on the immersed boundary through

indirect means, and those that directly impose the boundary conditions on the immersed bound-

ary.
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Indirect Boundary Conditions Imposition

For a simple, analytically integrable, one-dimensional model problem, it is possible to formally

derive a forcing term that enforces a specific condition on a boundary inside the computational

domain. The same is usually not feasible for the governing equations because the equations

can not be integrated analytically to determine the forcing function. Consequently, all the ap-

proaches in the previous section employ what are essentially simplified models of the required

forcing. To avoid this issue, a method was developed that extracts the forcing directly from the

numerical solution for which an a priori estimate can be determined.

The major advantage of the discrete forcing concept is the absence of user specified param-

eters in the forcing and the elimination of associated stability constraints. However, the forcing

still extends into the fluid region due to the use of a distribution function and the details of the

implementation depend strongly on the numerical algorithm used to discretize the governing

equations.

Direct Boundary conditions Imposition

Although the application of IBM to low and moderate Reynolds number shows success, its

extension to higher Reynolds numbers is challenging due to the need to accurately resolve the

boundary layers on surfaces not aligned with the grid lines. In such cases the local accuracy

of the solution assumes greater importance, and the spreading of the effect of the immersed

boundary introduced by the smooth force distribution function is less desireable. For this rea-

son, other approaches can be considered where the immersed boundary is retained as a sharp

interface with no spreading and where greater emphasis is put on the local accuracy near the

immersed boundary. This can usually be accomplished by modifying the computational sten-

cil near the immersed boundary to directly impose the boundary condition on the immersed

boundary. Two methods that belong to this category will be described.

Ghost-Cell Finite-Difference Approach

The boundary condition on the immersed boundary is enforced here through the use of ”ghost

cells”. Ghost cells are defined as cells in the solid that have at least one neighbour in the

fluid. For instance cell G in figure 4.2.3 is a ghost cell. For each ghost cell, an interpolation
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scheme that implicitly incorporates the boundary condition on the immersed boundary is then

devised. There is a number of available options for constructing the interpolation scheme. One

simple option is bilinear (trilinear in 3-D) interpolation where a generic flow variable φ can be

expressed as:

Figure 4.2.3: Representation of the points in the vicinity of an immersed boundary used in the

ghost-cell approach. Fi are fluid points, G is the ghost point, and Bi and Pi are locations where

the boundary condition can be enforced [9]

φ =C1x1x2 +C2x1 +C3x2 +C4. (4.2.6)

The coefficients in the above equation can be evaluated in terms of the values of φ at fluid nodes

F1, F2 and F3, and the boundary point B2, which is the normal intercept from the ghost node to

the immersed boundary. Boundary point B1, which is midway between points P1 and P2, can

also be used instead of B2. Note that P1 and P2 are the intercepts with the y and x lines passing

through the ghost node.

Applying a linear reconstruction is acceptable for laminar flows or for high Reynolds num-

ber flows when the first grid point is located in the viscous sublayer. At high Reynolds numbers

when the resolution is marginal, linear reconstruction could lead to erroneous predictions. For

such cases higher-order interpolation can be used. For instance, one could employ an inter-

polant which is linear in the tangential direction and quadratic in the normal direction, such

as:
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φ =C1n2
c +C2nctc +C3nc + c4tc +C5, (4.2.7)

where nc and tc are local coordinates, normal and tangent, respectively, to the immersed bound-

ary. The coefficients can be determined by using the four fluid points values F1 to F4 and the

boundary condition at point B2 where the selection of point F4 depends on the surface normal.

Alternatively, the points F1 to F3 and the two boundary points P1 and P2 could be used without

losing generality.

Irrespective of the particular interpolation scheme used, the value of the variable at the

ghost-cell node, φG, can be expressed as:

∑ωiφ = φG, (4.2.8)

where the summation extends over all points in the stencil, including one or more boundary

points, and ωi are known geometry dependent coefficients.

The ghost-cell implementation is used in f oam− extend 4.0 and is described in [15].

Cut-Cell Finite-Volume Approach

None of the IBM versions described so far are designed to satisfy the underlying conservation

laws for the cells in the vicinity of the immersed boundary. Strict global and local conservation

of mass and momentum can only be guaranteed by resorting to a finite-volume approach and

this is the primary motivation for the cut-cell methodology. Figure 4.2.4 shows a schematic

of a Cartesian grid with an immersed boundary that which separates solid from fluid. In this

method, cells in the Cartesian grid that are cut by the immersed boundary are identified, and

the intersection of the boundary with the sides of these cut cells is determined. Next, cells cut

by the immersed boundary, whose cell centers lie in the fluid, are reshaped by discarding the

portion of these cells that lies in the solid. Pieces of cut cells whose centers lie in the solid are

absorbed by neighbouring cells. This results in the formation of control volumes, which are

trapezoidal in shape.

Finite-volume discretization of the governing equations requires the estimation of mass,

convective and diffusive flux integrals, and pressure gradients on the faces of each cell and the

issue is to evaluate these on the cell faces of the trapezoidal cells. One approach is to express
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a given flow variable φ in terms of a two-dimensional polynomial interpolating function in an

appropriate region and evaluate the fluxes f based on this interpolating function. For instance,

to approximate the flux on the southwest face, fsw, φ (in the trapezoidal region shown in figure

4.2.5) is expressed in terms of a function that is linear in x1 and quadratic in x2:

φ =C1x1x2
2 +C2x2

2 +C3x1x2 +C4x1 +C5x2 +C6, (4.2.9)

where C1 to C6 are six unknown coefficients that can be expressed in terms of values of φ at

the six stencil points shown in 4.2.5 and an expression similar to equation 4.2.8 is developed

for fsw. Equation 4.2.9 represents the most compact function that allows at least a second-

order accurate evaluation of φ or its derivative at the sw location. A similar approach can be

employed to evaluate the flux on the east-face fe as well as the interface flux fi. This approach

results in a discretization scheme that is globally, as well as locally, second-order accurate and

also satisfies conservation of mass and momentum exactly irrespective of the grid resolution.

Figure 4.2.4: Trapezoidal finite volume

formed near the immersed boundary for

which f denotes the face-flux of a generic

variable [9]

Figure 4.2.5: Region of interpolation and

stencil employed for approximating the

flux fsw on the southwest face of the trape-

zoidal finite volume [9]

4.3 foam-extend 4.1 Implementation

A new version of IBM is implemented in f oam− extend 4.1 and was presented in [10]. Usage

guidelines for IBM in f oam− extend 4.1 are presented in the appendix of this thesis. The

version implemented in f oam− extend 4.0 performed satisfactorily in single-phase flows, but
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carried some drawbacks: handling of Neumann boundary conditions and wall functions imple-

mentation. Also, in free surface flows, the solver showed strong instability due to matching of

gradients next to the immersed boundary. Further improvement in robustness and accuracy was

sought regarding the precision of discretization at the immersed boundary.

The previous implementation had problems with losing the information in the cell which is

cut, which leads to loss of precision at the intersection. The objective of the new implemen-

tation was to implement the influence of the presence of the boundary within the mesh as if

the mesh is body-fitted. That includes introducing the ”new” immersed boundary face in the

cut cell, accounting for the partial cell volume, accounting for partial face areas without loss of

accuracy and calculating face and cell centers, all without changing the background geometric

mesh.

Figure 4.3.1: f oam − extend 4.0 IBM

scheme [10]

Figure 4.3.2: f oam − extend 4.1 IBM

scheme [10]

In the new implementation, the immersed boundary patch is included into the mesh via the

distance function: all cells that straddle the immersed boundary remain active. As opposed to

the old implementation, the STL resolution is now not important.
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Figure 4.3.3: f oam− extend 4.1 cell cutting scheme [10]

In figure 4.3.3, the cell cutting scheme of the new implementation is shown. The nearest

distance of the immersed boundary and the vertices of all affected cells is calculated. Inter-

section is calculated for all faces and cells and original data is replaced with new data of the

”active part” (face and cell centers, face areas and cell volumes. Near-wall distance of new cells

is calculated from active cell centers to the immersed faces. Delta coefficients and interpolation

factors are corrected to take into account the new center positions.

Boundary Conditions

The immersed boundary is represented in the mesh by the intersection of the STL file and the

cells. Therefore, conventional boundary conditions implementation suffice on the immersed

patch for a static mesh and immersed boundary. For a moving immersed boundary, change in

intersection is involved, which means that the number of immersed boundary faces changes.

Evaluation of immersed boundary properties is performed without interpolation or simplifica-

tion. Also, the STL surface is automatically refined or coarsened to comply with the back-

ground mesh. Due to finite accuracy, the STL can often coincide with faces or not provide

accurate intersection. In case of a direct face intersection on a existing face, the face becomes

the immersed boundary face. Inaccurate STL intersection may yield a geometrically open cell,

with possible robustness issues. Using the so-called Marooney Maneouvre [10] guarantees a

closed cell after cutting:

∑
C

S f = 0 (4.3.1)
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is valid for a regular cell, while

∑
C

γ f S f +S f IB = 0 (4.3.2)

is valid for an intersected cell, where γ f is the face area correction, obtained by cell cutting.

The corrected immersed boundary face area is:

S f IB =−∑
C

γ f S f . (4.3.3)

4.4 Closure

In this chapter, previous and related studies of IBM have been laid out and the underlying

theory of the f oam−extend 4.1 IBM version has been presented. In the following chapter, the

f oam− extend 4.1 version of IBM will be validated on a series of cases.
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Chapter 5

Validation Cases

In the previous chapter, IBM was laid out. In the following chapter, the results obtained us-

ing IBM will be compared to the results obtained by using body-fitted meshes, on the same

validation cases, with equivalent geometries and boundary conditions.

First, some OpenFOAM syntax which is used while presenting the cases in this thesis

should be described.

blockMesh is a OpenFOAM utility used for creating block-structured meshes in Open-

FOAM. The zeroGradient boundary condition corresponds to the Neumann boundary condition

where the gradient on the boundary patch is set to 0. The fixedValue boundary condition cor-

responds to the Dirichlet boundary condition where the value on the boundary patch has to be

defined (e.g. zero velocity on walls or a fixed velocity on inlet patches). The inletOutlet bound-

ary condition is a combination of zeroGradient and fixedValue, where if the mass flux points

out of the domain on the boundary patch, the zeroGradient condition is active, and if the mass

flux points into the domain, the inletValue is used. The kqRWallFunction is a turbulence ki-

netic energy k boundary condition used on walls. The omegaWallFunction is an eddy turnover

time omega (ω) boundary condition used on walls. The nutkWallFunction is an eddy viscosity

nut (νt) boundary condition used on walls, if wall functions are used. The empty boundary

condition is used on the front and back patches of 2-D cases. Immersed boundary equivalents

of kqRWallFunction, omegaWallFunction and nutkWallFunction are immersedBoundaryKqR-

WallFunction, immersedBoundaryOmegaWallFunction and immersedBoundaryNutWallFunc-

tion. With IBM boundary conditions, the triValue and triGradient key words are used, where

triValue corresponds to a Dirichlet boundary condition and triGradient corresponds to a Neu-
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mann boundary condition. The setDeadValue key word defines if the value of the field in the

”dead” (inactive) cells is set to a specified value or not. gamma is a field variable which de-

scribes the presence of the immersed boundary in the mesh, where gamma=1 coresponds to the

fluid (active) region, gamma=0 corresponds to the solid (inactive) region and 0 <gamma< 1

corresponds to cells which are cut by the immersed boundary.

5.1 Backward Facing Step

The backward facing step case is a geometrically very simple case often used for validation

of new software and methods in CFD. In this thesis, it was used as the most simple validation

case. The setup and results of four variants of the case will be presented; laminar body-fitted,

laminar IBM, turbulent body-fitted and turbulent IBM.

5.1.1 Case Setup

The backward facing step is a geometrically simple 2-D case, whose geometry is shown in

Figure 5.1.1.

Figure 5.1.1: Backward facing step geometry

The length of the domain is 22.5 cm, the height is 5.08 cm, the height of the inlet is 2.54 cm

and the step is 1.9 cm away from the inlet. In figure 5.1.1, the inlet is colored white, the outlet
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red, the upper wall green, and the lower wall blue. Front and back patches are transparent.

The meshes were made using the blockMesh utility, both for the body-fitted and for the

IBM mesh case. The STL used for definining the immersed boundary in the IBM cases was

obtained from OpenFOAM tutorial cases. The body-fitted mesh which was used is shown in

5.1.2, the IBM mesh used is shown in 5.1.3 and the gamma field in the IBM mesh is shown in

5.1.4. The cell count is 3 240 for the body-fitted mesh and 4 032 for the IBM mesh.

Figure 5.1.2: Backward facing step body-fitted mesh
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Figure 5.1.3: Backward facing step IBM background mesh

Figure 5.1.4: Backward facing step IBM mesh, red is the active (fluid) region, blue is the

inactive region, the STL used to ”cut” the background mesh is white
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field

patch p [m2s−2] U [ms−1]

Inlet zeroGradient
fixedValue

uniform (1 0 0)

Outlet
fixedValue

uniform 0

inletOutlet

inletValue uniform (0 0 0)

UpperWall zeroGradient
fixedValue

uniform (0 0 0)

LowerWall zeroGradient
fixedValue

uniform (0 0 0)

FrontAndBack empty empty

Table 5.1.1: Backward facing step BF boundary conditions for the laminar simulation

field

patch p [m2s−2] U [ms−1]

Inlet zeroGradient
fixedValue

uniform (1 0 0)

Outlet
fixedValue

uniform 0

inletOutlet

inletValue uniform (0 0 0)

UpperWall zeroGradient
fixedValue

uniform (0 0 0)

LowerWall zeroGradient
fixedValue

uniform (0 0 0)

FrontAndBack empty empty

pitzDailyIB

mixedIb

triGradient uniform 0

setDeadValue no

mixedIb

triValue uniform (0 0 0)

setDeadValue yes

Table 5.1.2: Backward facing step IBM boundary conditions for the laminar simulation
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field

patch p [m2s−2] U [ms−1] k [m2s−2] omega [s−1] nut [m2s−1]

Inlet zeroGradient
fixedValue

uniform (10 0 0)

fixedValue

uniform 0.375

fixedValue

uniform 375
zeroGradient

Outlet
fixedValue

uniform 0

inletOutlet

inletValue uniform (0 0 0)
zeroGradient zeroGradient zeroGradient

UpperWall zeroGradient
fixedValue

uniform (0 0 0)
kqRWallFunction omegaWallFunction nutkWallFunction

LowerWall zeroGradient
fixedValue

uniform (0 0 0)
kqRWallFunction omegaWallFunction nutkWallFunction

FrontAndBack empty empty empty empty empty

Table 5.1.3: Backward facing step BF boundary conditions for the turbulent simulation
field

patch p [m2s−2] U [ms−1] k [m2s−2] omega [s−1] nut [m2s−1]

Inlet zeroGradient
fixedValue

uniform (10 0 0)

fixedValue

uniform 0.375

fixedValue

uniform 375
zeroGradient

Outlet
fixedValue

uniform 0

inletOutlet

inletValue uniform (0 0 0)
zeroGradient zeroGradient zeroGradient

UpperWall zeroGradient
fixedValue

uniform (0 0 0)
zeroGradient zeroGradient zeroGradient

LowerWall zeroGradient
fixedValue

uniform (0 0 0)
zeroGradient zeroGradient zeroGradient

FrontAndBack empty empty empty empty empty

pitzDailyIB

mixedIb

triGradient uniform 0

setDeadValue no

mixedIb

triValue uniform (0 0 0)

setDeadValue yes

immersedBoundary-

KqRWallFunction

setDeadValue yes

immersedBoundary-

OmegaWallFunction

setDeadValue yes

immersedBoundary-

NutWallFunction

setDeadValue yes

Table 5.1.4: Backward facing step IBM boundary conditions for the turbulent simulation

Simulation Settings

The turbulent simulations were performed using the k−ω SST turbulence model. Fluid prop-

erties which were used in the simulation correspond to air. The potentialFoam solver was used

to initialize the flow field. The simpleFoam solver was used to obtain a steady-state solution,

in 2500 non-linear iterations, which was enough for the simulations to converge.
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Figure 5.1.5: Backward facing step BF

convergence history, turbulent simulation

Figure 5.1.6: Backward facing step IBM

convergence history, turbulent simulation

5.1.2 Results and Validation

The results will be presented qualitatively, using figures which portray the resulting scalar and

vector fields of the simulations (figures 5.1.7 - 5.1.14), and quantitatively, by comparing values

which are the usual sought after values of simulating internal flow: the pressure drop between

the inlet and the outlet and the wall shear stress tensor magnitude on the upper wall of the

domain. The figures which show the obtained results are from turbulent body-fitted and IBM

simulations. The laminar simulations show even better results, in a sense that body-fitted mesh

and IBM mesh simulations produce almost identical results for laminar simulations.

Figure 5.1.7: Backward facing step BF ve-

locity field visualization, turbulent simulation

Figure 5.1.8: Backward facing step IBM ve-

locity field visualization, turbulent simulation
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Figure 5.1.9: Backward facing step BF pres-

sure field visualization, turbulent simulation

Figure 5.1.10: Backward facing step IBM

pressure field visualization, turbulent simula-

tion

Figure 5.1.11: Backward facing step BF tur-

bulence kinetic energy field visualization, tur-

bulent simulation

Figure 5.1.12: Backward facing step IBM

turbulence kinetic energy field visualization,

turbulent simulation
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Figure 5.1.13: Backward facing step BF wall

shear stress visualization, turbulent simula-

tion

Figure 5.1.14: Backward facing step IBM

wall shear stress field visualization, turbulent

simulation

The comparison of the pressure drop for BF and IBM turbulent simulations is shown in

figure 5.1.16 for turbulent simulations and in 5.1.22 for laminar simulations. It was sampled on

a line whose starting point is at the center of the inlet patch and the end point is at the center

of the outlet patch, figure 5.1.15. The comparison of resulting pressure and wall shear stress

fields is shown in figures 5.1.16 and 5.1.17 for turbulent simulations and in figures 5.1.22 and

5.1.23 for laminar simulations.

Figure 5.1.15: Backward facing step BF and IBM pressure drop through the channel compari-

son line visualization
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Figure 5.1.16: Backward facing step BF and

IBM pressure drop through the channel com-

parison, turbulent simulations

Figure 5.1.17: Backward facing step BF and

IBM wall shear stress on the upper wall com-

parison, turbulent simulations

Figure 5.1.18: Backward facing step BF ve-

locity field visualization, laminar simulation

Figure 5.1.19: Backward facing step IBM

velocity field visualization, laminar simula-

tion
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Figure 5.1.20: Backward facing step BF

pressure field visualization, laminar simula-

tion

Figure 5.1.21: Backward facing step IBM

pressure field visualization, laminar simula-

tion

Figure 5.1.22: Backward facing step BF and

IBM drop through the channel comparison

line visualization, laminar simulation

Figure 5.1.23: Backward facing step BF and

IBM wall shear stress on the upper wall com-

parison, laminar simulation

The y+ values of the turbulent simulations on the upper wall and the lower wall are shown

in 5.1.24 and 5.1.25. The red parts are the cells where y+ is larger than 30, which is the minimal

required value when using wall functions. The blue parts are the ones where y+ is smaller than

30. The y+ values are additionally discussed in a following section.
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Figure 5.1.24: Backward facing step BF

y+ values visualization

Figure 5.1.25: Backward facing step IBM

y+ values visualization

5.1.3 Closure

IBM simulations of the backward facing step show good results in comparison to BF simula-

tions with the same input parameters. That is especially true for the laminar simulations, where

the obtained results are almost identical to the BF simulations results.

For turbulent simulations, shown in figures 5.1.16 and 5.1.17, the resulting IBM simulation

pressure and wall shear stress fields are not identical to the ones obtained in the body-fitted

simulations, but show relatively good agreement. The difference of pressure drops between

the inlet and outlet patches between the body-fitted and the IBM simulations is 10.4%. The

agreement of resulting fields can also be observed in figures 5.1.7 - 5.1.14.

For laminar simulations, the results obtained by the IBM and BF simulations are almost

identical, which can be seen in figures 5.1.22 and 5.1.23. The difference of pressure drops

between the inlet and outlet patches between the body-fitted and the IBM simulations is only

1.3%.
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5.2 Onera M6 Wing

Onera M6 wing is a case often used for validation of new software and methods used to sim-

ulate external flows. It has been used since 1979 when a detailed report of flow experiments

was published in [16]. That enabled CFD researchers to compare results obtained with new

simulation software and methods with the results of the experiments. The experiments were

carried out with various Mach numbers (0.7, 0.84, 0.88 and 0.92), angles of attack (up to 6

degrees) and with Reynolds numbers of about 12·106.

In this thesis the experimental results were not used, as the experiments were performed

for flow conditions which would require the usage of compressible solvers (Ma > 0.3). The

aim of thesis is not to validate a certain solver but to validate IBM. For that reason it is not

important to have a set of data of experimental origin to compare it with IBM simulation results.

The IBM results will only be compared to the results of performed incompressible body-fitted

simulations, with a much lower Mach number than in the original experiments, which simplifies

the simulation process.

5.2.1 Case Setup

The geometry of the Onera M6 wing was taken from [17] and is shown in 5.2.1. The mean

aerodynamic cord used for the Reynolds number formula is 0.65 m and the reference area for

aerodynamic coefficients is 1.55 m2. The height of the wing is 1.22 m.
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Figure 5.2.1: Onera M6 wing geometry

The meshes were made in Pointwise [18], which is a commercial mesh generation software.

A section of the body-fitted case mesh geometry is shown in Figure 5.2.2 and the same for the

IBM case is shown in Figure 5.2.3. The inlet is colored red and it is a C-type farfield. The outlet

is colored green, the top patch yellow, bottom is white and the side patches (only one is visible

in Figure 5.2.2 and Figure 5.2.3) are colored blue. In the body-fitted case the wing patch is

colored pink and in the IBM mesh geometry there is no wing patch since only the background

mesh is shown.
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Figure 5.2.2: Onera M6 body-fitted mesh geometry section

Figure 5.2.3: Onera M6 IBM mesh geometry section

Cell distribution in the meshes is shown in Figure 5.2.6 - Figure 5.2.8. Cell count for the

body-fitted and IBM cases are 3 458 906 and 4 622 448, respectively.
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Figure 5.2.4: Onera M6 body-fitted mesh domain cell distribution

Figure 5.2.5: Onera M6 body-fitted mesh domain cell distribution near the wing
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Figure 5.2.6: Onera M6 IBM mesh domain cell distribution

Figure 5.2.7: Onera M6 IBM mesh domain cell distribution near and through the wing
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Figure 5.2.8: Onera M6 IBM mesh gamma field near and through the wing

The boundary conditions for individual patches, both for the body-fitted (Wing patch) and

the IBM (WingIB patch) simulations, are shown in table 5.2.1.

field

patch p [m2s−2] U [ms−1] k p [m2s−2] omega p [s−1] nut p [m2s−1]

Wing zeroGradient
fixedValue

uniform (0 0 0)
kqRWallFunction omegaWallFunction nutkWallFunction

WingIB

mixedIb

triGradient uniform 0

setDeadValue no

mixedIb

triValue uniform (0 0 0)

setDeadValue yes

immersedBoundary-

KqRWallFunction

setDeadValue yes

immersedBoundary-

OmegaWallFunction

setDeadValue yes

immersedBoundary-

NutWallFunction

setDeadValue yes;

Inlet zeroGradient
inletOutlet

inletValue uniform (20 0 0)

inletOutlet

inletValue uniform 0.06

inletOutlet

inletValue uniform 60

calculated

value uniform 0

Outlet
fixedValue

value uniform 0

inletOutlet

inletValue uniform (20 0 0)

inletOutlet

inletValue uniform 0.06

inletOutlet

inletValue uniform 60

calculated

value uniform 0

Top slip slip slip slip
calculated

value uniform 0

Bottom slip slip slip slip
calculated

value uniform 0

Side zeroGradient
inletOutlet

inletValue uniform (20 0 0)

inletOutlet

inletValue uniform 0.06

inletOutlet

inletValue uniform 60

calculated

value uniform 0

Table 5.2.1: Onera M6 wing boundary conditions

The simulations were performed for different angles of attack (0 1, 3, 5, 8, 12 and 18
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degrees). Changes in angles of attack were carried out by changing the inletOutlet boundary

condition inletValue parameters. The velocity vectors in Table 5.2.1, (20 0 0) correspond to

an angle of attack of 0 degrees. E. g. for an angle of attack of 5 degrees, the velocity vectors

would be:

(20cos(5◦) 0 20sin(5◦)) = (19.924 0 1.743) [ms−1]. (5.2.1)

Simulation Settings

The simulations were performed using the k−ω SST turbulence model. Fluid properties which

were used in the simulation correspond to air. The potentialFoam solver was used to initialize

the flow field. The simpleFoam solver was used to obtain a steady-state solution, in 1000

non-linear iterations, which was enough for the simulations to converge.

Figure 5.2.9: Onera M6 BF convergence his-

tory, angle of attack of 5 degrees

Figure 5.2.10: Onera M6 IBM convergence

history, angle of attack of 5 degrees

5.2.2 Results and Validation

The results will be presented qualitatively, using figures which portray the resulting scalar and

vector fields of the simulations, and quantitatively, by comparing values which are the usual

sought after values of simulating flow around a wing: drag and lift coefficients and pressure

coefficient distribution across the wing on a height (Y coordinate) of 0.5 meters. The figures

which show the obtained results are from a simulation which was performed for 5◦ angle of
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attack. The simulations with different angles of attack exhibit comparable results, in a sense

that body-fitted mesh and IBM mesh simulations give similar values.

Figure 5.2.11: Onera M6 BF pressure field

visualization with an angle of attack of 5 de-

grees

Figure 5.2.12: Onera M6 IBM pressure field

visualization with an angle of attack of 5 de-

grees

Figure 5.2.13: Onera M6 BF velocity field

visualization with an angle of attack of 5 de-

grees

Figure 5.2.14: Onera M6 IBM velocity field

visualization with an angle of attack of 5 de-

grees
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Figure 5.2.15: Onera M6 BF turbulence ki-

netic energy field visualization with an angle

of attack of 5 degrees

Figure 5.2.16: Onera M6 IBM turbulence ki-

netic energy field visualization with an angle

of attack of 5 degrees

Figure 5.2.17: Onera M6 pressure = 15 Pa

contour with an angle of attack of 5 degrees,

yellow contour - IBM result, white contour -

BF result

Figure 5.2.18: Onera M6 pressure = 15 Pa

contour with an angle of attack of 5 degrees,

alternate angle, yellow contour - IBM result,

white contour - BF result
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Figure 5.2.19: Onera M6 BF wall shear

stress field visualization with an angle of at-

tack of 5 degrees

Figure 5.2.20: Onera M6 IBM wall shear

stress field visualization with an angle of at-

tack of 5 degrees

The wall shear stress visualization in 5.2.19 and 5.2.20 shows a discrepancy between BF

and IBM results. The resulting wall shear stress field discrepancy is one of the causes of the

force coefficients differences between BF and IBM simulations. Wall shear stress accuracy is

one of the issues associated with IBM, which is confirmed here.

Figure 5.2.21: Onera M6 drag coefficients

for different angles of attack

Figure 5.2.22: Onera M6 lift coefficients for

different angles of attack
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Figure 5.2.23: Onera M6 frontside pressure

coefficients at wing height of 0.5 m

Figure 5.2.24: Onera M6 backside pressure

coefficients at wing height of 0.5 m

The Onera M6 case is the most challenging one concerning the y+ values and will be

discussed in a following section.

5.2.3 Closure

IBM simulations of the Onera M6 wing show good results if compared to body-fitted simula-

tions with the same input parameters. That is especially true for simulations with smaller angles

of attack, where the obtained results are practically identical to the BF simulations results. This

can be seen in figures 5.2.22 and 5.2.21. For even larger angles of attack (over 8 degrees), the

drag and lift coefficients on the wing are relatively satisfactory when compared to BF simula-

tions, with approximately 15 - 20% difference for the drag coefficient and approximately 5%

for the lift coefficient. The agreement of resulting fields can also be observed in figures 5.2.11 -

5.2.18. The agreement of resulting pressure coefficients on the wing can be observed in figures

5.2.23 and 5.2.24.

5.3 Francis-99 Model Turbine

Francis-99 [19] is a project whose aim is to provide an open platform to hydropower researchers

and to give the possibility to explore their capabilities and enhance their skills. Due to confi-

dentiality, almost no modern turbine designs are available in public domains. This makes it
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difficult for academic researchers to evaluate turbine design. Here, an open access to the com-

plete design and operating data of a model Francis turbine is provided. The geometry of the

model turbine has been used for IBM validation in this thesis. The test rig of the model Francis

turbine is shown in 5.3.1 and its cut view is shown in 5.3.2.

Figure 5.3.1: Test rig of the model Francis turbine/pump-turbine [19]
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Figure 5.3.2: Cut view of the Francis 99 turbine model [20]

The model Francis turbine utilized for Francis-99 is a scaled model of the turbines operating

at Tokke power plant in Norway. The Francis turbine has a splitter blade runner, which includes

30 blades. The runner outlet diameter is 0.349 m. The obtained maximum hydraulic efficiency

of the turbine is 93.4% at the best efficiency point and the uncertainty was +/- 0.16% [1]. The

test rig is extensively used for model testing and for specific investigations such as rotor stator

interaction, vortex rope, rotating stall with pump-turbine runner, water hammer, cavitation, etc.

The open loop hydraulic system is used to perform transient measurements such as load varia-

tion, start-stop, and total load rejection. Moreover, strict guidelines are used for the calibration

of each instrument utilized during the measurements. Complete history of the calibrated instru-

ments is maintained for reference study in order to observe any deviation of the characteristics

over time.

As in the Onera M6 validation case, although experimental data exists, it will not be used
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for the validation of IBM simulations results. Only the results obtained using a body-fitted

mesh simulation will be used to validate IBM.

5.3.1 Case Setup

The simulations were performed for several different guide vanes positions. One of the roles of

the guide vanes is to regulate the flow of water through the turbine, and in that way, the power of

the turbine and all the associated parameters (efficiency, hydraulic head etc.). The body-fitted

mesh for a certain guide vane position is shown in figures 5.3.3 - 5.3.5. The white parts of the

mesh represent the mesh surrounding the guiding vanes, the blue parts of the mesh represent

the rotor part and the red-colored parts represent the draft tube. The mesh cell distribution can

be seen in figures 5.3.6 - 5.3.8.

Figure 5.3.3: Full geometry Francis turbine
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Figure 5.3.4: Full geometry Francis turbine close up

Figure 5.3.5: Full geometry Francis turbine close up, alternate angle
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Figure 5.3.6: Full geometry Francis turbine body-fitted mesh close up

Figure 5.3.7: Full geometry Francis turbine IBM mesh close up
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Figure 5.3.8: Full geometry Francis turbine IBM mesh close up, gamma field visualization

Several guide vane positions were simulated. For one of them (the simulation with the

maximum flow of 0.1 m3/s), the full geometry of the turbine was used. For the other three

guide vanes positions (flows of 0.011 m3/s, 0.055 m3/s and 0.091 m3/s), only a part of the

geometry was used, specifically, 1/14 of the mesh, with a cyclicGGI boundary condition. The

part geometry case is shown in figures 5.3.9 - 5.3.11. The white parts represent the mesh

surrounding the guiding vanes, the blue part of the mesh is the rotor part and the red-colored

parts represent the draft tube.
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Figure 5.3.9: Part geometry Francis tur-

bine

Figure 5.3.10: Part geometry Francis tur-

bine, alternate angle

Figure 5.3.11: Part geometry Francis turbine IBM gamma field visualization

The body-fitted meshes were obtained from a previous master’s thesis student’s work [21].

For the IBM mesh simulations, a part of the body-fitted mesh was used (rotor and draft tube),

while a part (guide vanes region) was meshed seperately using Pointwise and additionally

merged to the rest of the mesh with the mergeMeshes utility. The interaction between different
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mesh regions is accomplished using GGI, both in the body-fitted and immersed boundary mesh

simulations.

field

patch p [m2s−2] U [ms−1] k [m2s−2] omega [s−1] nut [m2s−1]

GVinlet zeroGradient

cylindrical-

NormalVelocity

refValue-

uniform (-1.4123 -2.1185 0)

fixedValue

value uniform 0.0521

fixedValue

value uniform 52.1
calculated

GVsupport zeroGradient
fixedValue

value uniform (0 0 0)
kqRWallFunction omegaWallFunction nutkWallFunction

GV zeroGradient
fixedValue

value uniform (0 0 0)
kqRWallFunction omegaWallFunction nutkWallFunction

GVIB

mixedIb

triGradient uniform 0

setDeadValue no

mixedIb

triValue uniform (0 0 0)

setDeadValue yes

immersedBoundary-

KqRWallFunction

setDeadValue yes

immersedBoundary-

OmegaWallFunction

setDeadValue yes

immersedBoundary-

NutWallFunction

setDeadValue yes

GVoutlet ggi ggi ggi ggi ggi

RUinlet ggi ggi ggi ggi ggi

RUhub zeroGradient
fixedValue

value uniform (0 0 0)
kqRWallFunction omegaWallFunction nutkWallFunction

RUsupport zeroGradient
fixedValue

value uniform (0 0 0)
kqRWallFunction omegaWallFunction nutkWallFunction

RU zeroGradient
fixedValue

value uniform (0 0 0)
kqRWallFunction omegaWallFunction nutkWallFunction

RUoutlet ggi ggi ggi ggi ggi

DTinlet ggi ggi ggi ggi ggi

DTwall zeroGradient
fixedValue

value uniform (0 0 0)
kqRWallFunction omegaWallFunction nutkWallFunction

DToutlet
fixedValue

value uniform 0
zeroGradient zeroGradient zeroGradient calculated

Table 5.3.1: Francis full geometry boundary conditions
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field

patch p [m2s−2] U [ms−1] k [m2s−2] omega [s−1] nut [m2s−1]

GVinlet zeroGradient

cylindrical-

NormalVelocity

refValue-

uniform (-1.4123 -2.1185 0)

fixedValue

value uniform 0.0521

fixedValue

value uniform 52.1
calculated

GVsupport zeroGradient
fixedValue

value uniform (0 0 0)
kqRWallFunction omegaWallFunction nutkWallFunction

GV zeroGradient
fixedValue

value uniform (0 0 0)
kqRWallFunction omegaWallFunction nutkWallFunction

GVIB

mixedIb

triGradient uniform 0

setDeadValue no

mixedIb

triValue uniform (0 0 0)

setDeadValue yes

immersedBoundary-

KqRWallFunction

setDeadValue yes

immersedBoundary-

OmegaWallFunction

setDeadValue yes

immersedBoundary-

NutWallFunction

setDeadValue yes

GVperiodic0 cyclicGGI cyclicGGI cyclicGGI cyclicGGI cyclicGGI

GVperiodic1 cyclicGGI cyclicGGI cyclicGGI cyclicGGI cyclicGGI

GVoutlet ggi ggi ggi ggi ggi

RUinlet ggi ggi ggi ggi ggi

RUhub zeroGradient
fixedValue

value uniform (0 0 0)
kqRWallFunction omegaWallFunction nutkWallFunction

RUsupport zeroGradient
fixedValue

value uniform (0 0 0)
kqRWallFunction omegaWallFunction nutkWallFunction

RU zeroGradient
fixedValue

value uniform (0 0 0)
kqRWallFunction omegaWallFunction nutkWallFunction

RUperiodic0 cyclicGGI cyclicGGI cyclicGGI cyclicGGI cyclicGGI

RUperiodic1 cyclicGGI cyclicGGI cyclicGGI cyclicGGI cyclicGGI

RUoutlet ggi ggi ggi ggi ggi

DTinlet ggi ggi ggi ggi ggi

DTwall zeroGradient
fixedValue

value uniform (0 0 0)
kqRWallFunction omegaWallFunction nutkWallFunction

DTperiodic0 cyclicGGI cyclicGGI cyclicGGI cyclicGGI cyclicGGI

DTperiodic1 cyclicGGI cyclicGGI cyclicGGI cyclicGGI cyclicGGI

DToutlet
fixedValue

value uniform 0
zeroGradient zeroGradient zeroGradient calculated

Francis Turbine IBM Specifics

The Francis turbine case is especially interesting for usage of IBM. For the guide vanes position

which corresponds to the smallest turbine flow of 0.011 m3/s, the guide vanes are so close to

each other that they are almost touching one another. This can result in certain problems related

to mesh quality. This is shown in figures 5.3.12 - 5.3.19. If we compare figures 5.3.14 and

5.3.18, we can see that, by bringing the guide vanes closer together, the quality of the cells in

the space between the blades is decreasing in quality (skewness, aspect ratio, etc.). Not only
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that, but in some cases of similar nature, cells could even overlap if the walls were brought too

close to one another.

This problem can be avoided by using IBM, as the IBM background mesh, even for moving

cases, remains unchanged for all positions of the simulated object, as is seen in 5.3.15 and

5.3.19.

In cases like this, the aformentioned problem could even make it impossible to solve cases

with significant geometry variations. E.g., here, the solution to that problem while using BF

meshing could be to set the inlet of the simulation domain between the guide vanes and the rotor

region, as opposed to setting it upstream of the guide vanes (which was done in the simulations

in this thesis). That way, the pressure drop in the guide vanes region would not be simulated,

which has a big effect on the total simulated pressure drop in the turbine. In the simulations

in this thesis, the stay vanes region was also not simulated. However, that has a smaller effect

on the final results than not using the guide vanes region, as the stay vanes are fixed and the

stay vanes pressure drop varies only slightly with change of turbine flow, while the variation of

guide vanes pressure drop is not so small with change of turbine flow.
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Figure 5.3.12: Francis turbine BF partial

geometry guide vanes region mesh, 0.091

m3/s flow simulation

Figure 5.3.13: Francis turbine IBM partial

geometry guide vanes region mesh, 0.091

m3/s flow simulation

Figure 5.3.14: Francis turbine BF partial

geometry guide vanes region mesh, 0.091

m3/s flow simulation, close up of blade tip

Figure 5.3.15: Francis turbine IBM partial

geometry guide vanes region mesh, 0.091

m3/s flow simulation, close up of blade tip
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Figure 5.3.16: Francis turbine BF partial

geometry guide vanes region mesh, 0.011

m3/s flow simulation

Figure 5.3.17: Francis turbine IBM partial

geometry guide vanes region mesh, 0.011

m3/s flow simulation

Figure 5.3.18: Francis turbine BF partial

geometry guide vanes region mesh, 0.011

m3/s flow simulation, close up of blade tip

Figure 5.3.19: Francis turbine IBM partial

geometry guide vanes region mesh, 0.011

m3/s flow simulation, close up of blade tip
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Simulation Settings

The simulations were performed using the k−ω SST turbulence model. Fluid properties which

were used in the simulation correspond to water. potentialFoam solver was used to initialize the

flow field. MRFsimpleFoam solver (with one rotating region, the rotor region) was used to ob-

tain a steady-state solution, in 8000 non-linear iterations, which was enough for the simulations

to converge.

Figure 5.3.20: Francis turbine BF conver-

gence history, 0.055 m3/s flow partial ge-

ometry simulation

Figure 5.3.21: Francis turbine IBM con-

vergence history, 0.055 m3/s flow partial

geometry simulation

5.3.2 Results and Validation

The results will be presented qualitatively, using figures which portray the resulting scalar

and vector fields of the simulations (figures 5.3.22 - 5.3.35), and quantitatively, by compar-

ing values which are the usual sought after values of simulating flow in a turbine: efficiency,

power and hydraulic head of the turbine (figures 5.3.36 - 5.3.38). The efficiencies, powers and

the hydraulic heads in the simulations were calculated using the turboPerformance library for

OpenFOAM. The figures which show the obtained results from the full geometry simulation

were performed with a certain guide vanes position, with an inflow of 0.1 m3/s. The figures

which show the obtained results from a part geometry simulation are from a simulation which

was performed with a certain guide vanes position, with an inflow of 0.055 m3/s. The simula-

tions with different guide vanes positions and inflows show comparable results, in a sense that

body-fitted mesh and IBM mesh simulations give similar values.
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Figure 5.3.22: Full geometry Francis tur-

bine BF velocity field visualization, 0.1

m3/s turbine flow simulation

Figure 5.3.23: Full geometry Francis tur-

bine IBM velocity field visualization, 0.1

m3/s turbine flow simulation

Figure 5.3.24: Full geometry Francis tur-

bine BF pressure field visualization, 0.1

m3/s turbine flow simulation

Figure 5.3.25: Full geometry Francis tur-

bine IBM pressure field visualization, 0.1

m3/s turbine flow simulation
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Figure 5.3.26: Full geometry Francis tur-

bine BF turbulence kinetic energy field vi-

sualization, 0.1 m3/s turbine flow simula-

tion

Figure 5.3.27: Full geometry Francis tur-

bine IBM turbulence kinetic energy field

visualization, 0.1 m3/s turbine flow simu-

lation

Figure 5.3.28: Part geometry Francis tur-

bine BF velocity field visualization, 0.055

m3/s turbine flow simulation

Figure 5.3.29: Part geometry Francis

turbine IBM velocity field visualization,

0.055 m3/s turbine flow simulation
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Figure 5.3.30: Part geometry Francis tur-

bine BF pressure field visualization, 0.055

m3/s turbine flow simulation

Figure 5.3.31: Part geometry Francis

turbine IBM pressure field visualization,

0.055 m3/s turbine flow simulation

Figure 5.3.32: Part geometry Francis tur-

bine BF turbulence kinetic energy field vi-

sualization, 0.055 m3/s turbine flow simu-

lation

Figure 5.3.33: Part geometry Francis tur-

bine IBM turbulence kinetic energy field

visualization, 0.055 m3/s turbine flow sim-

ulation
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Figure 5.3.34: Part geometry Francis tur-

bine BF wall shear stress field visualiza-

tion, 0.055 m3/s turbine flow simulation

Figure 5.3.35: Part geometry Francis tur-

bine IBM wall shear stress field visualiza-

tion, 0.055 m3/s turbine flow simulation

The wall shear stress visualization in 5.3.34 and 5.3.35 shows the same kind of discrepancy

between BF and IBM results as in the Onera M6 wing simulations. The resulting wall shear

stress field discrepancy is one of the causes of the force coefficients differences between BF

and IBM simulations.
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Figure 5.3.36: Francis turbine efficiency - flow curve

Figure 5.3.37: Francis turbine power -

flow curve

Figure 5.3.38: Francis turbine head - flow

curve

The y+ values on the guide vanes area are shown in 5.3.39 and 5.3.40. The red parts are

the cells where y+ is larger than 30, which is the minimal required value when using wall func-

tions. The blue parts are the ones where y+ is smaller than 30. The y+ values are additionally

discussed in a following section.

Faculty of Mechanical Engineering and Naval Architecture 74



Robert Anderluh Master’s Thesis

Figure 5.3.39: Francis turbine BF y+ val-

ues visualization

Figure 5.3.40: Francis turbine IBM y+

values visualization

5.3.3 Closure

IBM simulations of the Francis turbine show good results in comparison to BF simulations with

the same input parameters. That is generally true, except for the hydraulic head comparison of

the 0.011 m3/s flow simulations, where the guide vanes are in the most closed position. The

agreement of the resulting fields can be observed in figures 5.3.22 - 5.3.33. The agreement

of resulting turbine efficiencies, powers and hydraulic heads can be observed in figures 5.3.36

- 5.3.38, where it is shown that body-fitted and IBM simulations produce similar results. The

turbine efficiencies are generally in very good agreement (a difference of about 4% for the 0.011

m3/s simulations and of about 0.5 - 1% for the rest), as well as turbine powers (a difference of

about 30% for the 0.011 m3/s simulations and of about 5-8% for the rest) and hydraulic heads

(a difference of about 32% for the 0.01 m3/s simulation and of about 5-9% for the rest).

5.4 y+ Considerations

During the process of setting up and performing the validation cases, y+ was taken into con-

sideration while creating the meshes. The turbulence boundary conditions which were used

correspond to the wall function boundary layer approach. That means that y+ values in the cell

centers adjacent to the walls are supposed to be in the range of 30 - 300. That potentially repre-

sents a problem with IBM because, compared to body-fitted meshing, it is harder to control the

distance between the walls and the first cell centers. That problem was most accentuated with

the Onera M6 wing case, due to a very thin trailing edge. That problem is shown in figures 5.4.1
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and 5.4.2. In figure 5.4.1, the mesh is finer than in 5.4.2 and because of that can better capture

the surface geometry of the wing, although that mesh results with bad y+ values. Figure 5.4.2

shows a coarser mesh, which results in a better y+ field on the wing, but can not describe the

surface geometry with IBM as good as the first mesh. The y+ field values are shown in 5.4.3 -

5.4.5. Red parts of the wing surface correspond to a y+ in the range of 30 - 300, while the blue

parts correspond to y+ of less than 30. With the wall function approach, there is often a part of

the domain, near a stagnation point, that does not fulfil the y+ > 30 condition, but as long as

most of the wall has a favourable y+ value, the obtained results should be satisfactory. The y+

field in 5.4.4 corresponds to the mesh shown in 5.4.1 and the one in 5.4.5 corresponds to the

mesh shown in 5.4.2.

Figure 5.4.1: Onera bad y+ trailing edge Figure 5.4.2: Onera good y+ trailing edge
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Figure 5.4.3: Body-fitted

Onera M6 y+ field on the

wing

Figure 5.4.4: IBM Onera

M6 y+ field on the wing, bad

y+

Figure 5.4.5: IBM Onera

M6 y+ field on the wing,

good y+

Although the mesh shown in 5.4.2 results in a better y+ on the wing, the results obtained

with that mesh are not as good as the ones obtained with the mesh in 5.4.1. For example,

with the finer mesh, the discrepancy between the body-fitted and IBM results for a 5 degree

simulation, is 3.9% for the drag coefficient CD and 3.8% for the lift coefficient CL. With the

coarser mesh, those discrepancies are 11.9% and 7.0%, respectively. For that reason, the finer

mesh was used for simulations in section 5.2.

For the backward facing step and Francis turbine cases, there were no major problems with

the y+ values on the walls. The backward facing step is a very simple and rectangular geometry,

which makes the task of estimating the correct wall-adjacent cell size simple. The Francis

turbine case is geometrically a very complex case, but has no edges which are as sharp as the

trailing edge of the Onera M6 wing, which also makes it possible to estimate the wall-adjacent

cell size correctly.

It should also be mentioned that, although the wall function approach was used in this thesis,

an alternative exits. The boundary layer can be fully resolved, and then the wall-adjacent cell

centers have to be in the y+ range of less than 5, in the viscous sub-layer. This is a more

expensive approach, as this can result in meshes with large cell counts. However, this could be

beneficial for IBM, as the background meshes could be made very fine, with a large cell count

in the region where the immersed boundary is inserted and that way the y+ values could be

guaranteed to be smaller than a certain value.
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Conclusion

In this thesis, the theory of the IBM version implemented in f oam− extend 4.1 was presented

and it was validated on three different cases. The results are shown in Chapter 5 and are

generally satisfactory.

The backward facing step internal flow simulations show satisfactory agreement of results

of BF and IBM simulations, especially for laminar flow simulations. Due to its’ simple geom-

etry, it is also a case where y+ restrictions are easily enforced when wall functions are used in

turbulent flow simulations.

Simulations of external flow around the Onera M6 wing show very good agreement of BF

and IBM simulation results for simulations with angles of attack of 0 - 8 degrees. For larger

angles of attack (up to 18 degrees), the discrepancy of drag coefficients is in the range of 15

- 20 % and the dicrepancy of lift coefficients is approximately 5 %. This case proved to be

problemating in terms of y+ restrictions enforcement while using wall functions, due to its’

sharp trailing edge.

Simulations of flow inside a Francis-type model turbine also show generally good agree-

ment of BF and IBM simulation results (except in the simulation where the turbine flow was

very small, with almost completely closed guide vanes). The discrepancy between resulting

efficiencies is 1 % or less, while the discrepancies of resulting turbine powers and hydraulic

heads was 5 - 9 %. This case, although geometrically quite complex, was not as problematic

as the Onera M6 case in terms of y+ restrictions enforcement while using wall functions, since

no edges as sharp as the Onera M6’s trailing edge are present.

However, the simulations which were performed are only a fraction of what can be done
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with CFD. For that reason, further studies should be made to validate this IBM implementation

for compressible flow, heat transfer, multiphase flow, etc. Some IBM validation work done at

the Faculty of Mechanical Engineering and Naval Architecture will also be mentioned in the

following section.

6.1 Other IBM Validation Work

There is a strong focus on development of new naval hydrodynamics CFD simulation methods

at the Faculty of Mechanical Engineering and Naval Architecture. The f oam−extend 4.1 IBM

version was also tested on cases of such nature. One of them will be presented here [11].

The mesh and the gamma field are shown in 6.1.1 - 6.1.2.

Figure 6.1.1: IBM mesh of the ship [11] Figure 6.1.2: Ship gamma field [11]

The resulting dynamic pressure field on the ship surface is shown in 6.1.3 and the sur-

rounding water surface elevation comparison is shown in 6.1.4. The difference of resulting

ship resistance forces is 6.1% (the BF simulation results with a force of 98 kN and the IBM

simulation results with a force of 92 kN).
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Figure 6.1.3: Dynamic pressure field on the surface of the ship [11]

Figure 6.1.4: Surrounding water surface elevation comparison [11]

6.2 Closure

The validation work done in this thesis, as well as other work done to validate the f oam−

extend 4.1 IBM version [11] shows promising results, as it is implemented in a way that sub-

stantially simplifies the preprocessing of CFD simulations, while retaining a good enough level
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of accuracy in most cases. Further work should be done to validate the IBM if it is to be

expected for it to find its’ place as a common tool for academic and industrial purposes.
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Appendix

Appendix 1: Usage Guidelines for IBM in f oam− extend 4.1

The basic case structure in OpenFOAM is composed of the following folders:

0 Folder

0 folder contains boundary and initial conditions for all the field variables. E.g. the p file

is composed of inputs which define the initial field values for pressure, as well as boundary

conditions for all of the patches of the mesh.

For IBM, the structure is identical. To properly define the boundary and initial conditions

on an immersed boundary, specific IBM boundary conditions are input here.

• Pressure p:

To define a zero gradient boundary condition on the immersed boundary, the following

syntax is used:

{

type mixedIb;

patchType immersedBoundary;

triValue uniform 0;

triGradient uniform 0;

triValueFraction uniform 0;

setDeadValue no;

}
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• Velocity U :

To define a zero velocity boundary condition on the immersed boundary, the following

syntax is used:

{

type mixedIb;

patchType immersedBoundary;

triValue uniform (0 0 0);

triGradient uniform (0 0 0);

triValueFraction uniform 1;

setDeadValue yes;

deadValue (0 0 0);

}

• Turbulence kinetic energy k:

To define a kqRWallFunction boundary condition on the immersed boundary, the fol-

lowing syntax is used:

{

type immersedBoundaryKqRWallFunction;

patchType immersedBoundary;

setDeadValue yes;

deadValue "...";

}

• Eddy turnover time omega:

To define an omegaWallFunction boundary condition on the immersed boundary, the

following syntax is used:

{

type immersedBoundaryOmegaWallFunction;
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patchType immersedBoundary;

setDeadValue yes;

deadValue "...";

}

• Eddy viscosity rate nut:

To define a nutkWallFunction boundary condition on the immersed boundary, the fol-

lowing syntax is used:

{

type immersedBoundaryNutWallFunction;

patchType immersedBoundary;

setDeadValue yes;

deadValue "...";

}

constant Folder

In this folder, the properties of the simulation which are constant through the simulation are

found: the mesh, definition of the turbulence and transport models, etc.

For IBM, additionally there has to be a triSur f ace folder in which is the f tr file of the

immersed boundary surface. The f tr file is easily obtained from an stl file by using the

sur f aceConvert utility in OpenFOAM. It should be noted that the user should be careful with

the surface normals of the surface file: the surface normals should be pointing into the fluid

region of the mesh.

Also, the immersed boundary has to be defined in the boundary file in constant/polyMesh.

The immersed boundary patch description has to be the first patch in the list of boundaries and

has to be written using the following syntax:

"immersedBoundaryPatchName"

{

type immersedBoundary;

nFaces 0;

Faculty of Mechanical Engineering and Naval Architecture 87



Robert Anderluh Master’s Thesis

startFace "here goes the startFace value of the next patch";

internalFlow "yes or no";

isWall yes;

}

It should also be noted that the field values on the immersed boundary (pressure, velocity,

turbulence kinetic energy, etc.) can be visualized using the automatically generated vtk files

that are located in the time folders of the simulation.

system Folder

In this folder, three mandatory files are found: controlDict, f vSchemes and f vSolution. Their

contents define the general parameters of the simulation: simulation time step size, number of

time steps, discretization schemes, solvers which are used to solve the discretized equations,

etc. For IBM, additional libraries have to be sourced in the controlDict file:

libimmersedBoundary.so and libimmersedBoundaryTurbulence.so.

Appendix 2: Backward Facing Step fvSchemes and fvSolution

fvSchemes Settings

ddtSchemes

{

default steadyState;

}

gradSchemes

{

default cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U) Gauss vanLeerDC;
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div(phi,k) Gauss upwind;

div(phi,omega) Gauss upwind;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 0.5;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 0.5;

}

fvSolution Settings

solvers

{

p

{

solver CG;

preconditioner Cholesky;

minIter 1;

maxIter 1000;

tolerance 1e-06;

relTol 0.01;

}

U

{
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solver BiCGStab;

preconditioner ILU0;

minIter 0;

maxIter 1000;

tolerance 1e-08;

relTol 0;

}

k

{

solver BiCGStab;

preconditioner ILU0;

minIter 1;

maxIter 1000;

tolerance 1e-08;

relTol 0;

}

omega

{

solver BiCGStab;

preconditioner ILU0;

minIter 1;

maxIter 1000;

tolerance 1e-08;

relTol 0;

}

}

SIMPLE

{

nNonOrthogonalCorrectors 2;

}

relaxationFactors
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{

equations

{

U 0.6;

k 0.6;

omega 0.6;

}

fields

{

p 0.3;

}

}

Appendix 3: Onera M6 fvSchemes and fvSolution

fvSchemes Settings

ddtSchemes

{

default steadyState;

}

gradSchemes

{

default cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U) Gauss upwind;

div(phi,k) Gauss upwind;

div(phi,omega) Gauss upwind;

Faculty of Mechanical Engineering and Naval Architecture 91



Robert Anderluh Master’s Thesis

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 0.5;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 0.5;

}

fluxRequired

{

default no;

p ;

}

fvSolution Settings

solvers

{

p

{

solver CG;

preconditioner Cholesky;

minIter 1;

maxIter 1000;

tolerance 1e-06;

relTol 0.01;
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}

"(U|k|omega)"

{

solver BiCGStab;

preconditioner DILU;

minIter 1;

maxIter 1000;

tolerance 1e-8;

relTol 0;

}

}

SIMPLE

{

nNonOrthogonalCorrectors 1;

pRefValue 0;

}

relaxationFactors

{

fields

{

p 0.1;

}

equations

{

U 0.5;

k 0.5;

omega 0.5;

}

}
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Appendix 4: Francis Turbine fvSchemes and fvSolution

fvSchemes Settings

ddtSchemes

{

default steadyState;

}

gradSchemes

{

default cellLimited leastSquares 1;

}

divSchemes

{

default none;

div(phi,U) Gauss upwind;

div(phi,k) Gauss upwind;

div(phi,omega) Gauss upwind;

div(phi,R) Gauss upwind;

div(R) Gauss linear;

div(phi,nuTilda) Gauss upwind;

div((nuEff*dev(grad(U).T()))) Gauss linear;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 0.5;

}

interpolationSchemes

{

default linear;
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interpolate(U) linear;

}

snGradSchemes

{

default limited 0.5;

}

fluxRequired

{

default no;

p;

pcorr;

}

fvSolution Settings

solvers

{

p

{

solver BiCGStab;

preconditioner DILU;

tolerance 1e-06;

relTol 0.01;

minIter 1;

maxIter 300;

};

U

{

solver BiCGStab;

preconditioner DILU;

tolerance 1e-06;

relTol 0;
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minIter 1;

};

k

{

solver BiCGStab;

preconditioner DILU;

tolerance 1e-06;

relTol 0;

minIter 1;

};

"(omega)"

{

solver BiCGStab;

preconditioner DILU;

tolerance 1e-06;

relTol 0;

minIter 1;

};

}

SIMPLE

{

nNonOrthogonalCorrectors 1;

pRefCell 0;

pRefValue 0;

}

relaxationFactors

{

fields

{

p 1.0;

}
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equations

{

U 0.2;

nuTilda 0.2;

k 0.2;

omega 0.2;

}

}

fieldBounds

{

U 50;

p -1e2 2e2;

}
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