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Abstract 13 

A rapidly growing share of global agricultural areas is devoted to the production of biomass for non-14 

food purposes. The expanding non-food bioeconomy can have far-reaching social and ecological 15 

implications; yet, the non-food sector has attained little attention in land footprint studies. This paper 16 

provides the first assessment of the global cropland footprint of non-food products of the European 17 

Union (EU), a globally important region regarding its expanding bio-based economy. We apply a novel 18 

hybrid land flow accounting model, combining the biophysical trade model LANDFLOW with the multi-19 

regional input-output model EXIOBASE. The developed hybrid approach improves the level of product 20 

and country detail, while comprehensively covering all global supply chains from agricultural 21 

production to final consumption, including highly-processed products, such as many non-food 22 

products. The results highlight the EU’s role as a major processing and the biggest consuming region 23 

of cropland-based non-food products while at the same time relying heavily on imports. Two thirds of 24 

the cropland required to satisfy the EU’s non-food biomass consumption are located in other world 25 

regions, particularly in China, the US and Indonesia, giving rise to potential impacts on distant 26 

ecosystems. With almost 39% in 2010, oilseeds used to produce for example biofuels, detergents and 27 

polymers represented the dominant share of the EU’s non-food cropland demand. Traditional non-28 

food biomass uses, such as fibre crops for textiles and animal hides and skins for leather products, also 29 

contributed notably (22%). Our findings suggest that if the EU Bioeconomy Strategy is to support global 30 

sustainable development, a detailed monitoring of land use displacement and spillover effects is 31 

decisive for targeted and effective EU policy making. 32 

 33 

Keywords: bioeconomy, land footprint, non-food products, multi-regional input-output analysis, 34 

hybrid land flow accounting, European Union 35 

1 Introduction 36 

Over the past 15 years, many governments and international organizations have developed strategies 37 

and initiatives to design and foster an economy that increasingly uses bio-based materials, chemicals, 38 

and renewable energy sources (European Commission, 2012a; Meyer, 2017; OECD, 2009; Staffas et al., 39 

2013; White House, 2012). These efforts are driven by the need to reduce greenhouse gas emissions 40 
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 2 

and fossil fuel dependence, with the expectation that a bio-based economic transformation will 41 

contribute to economic development and employment both in urban and rural regions (McCormick 42 

and Kautto, 2013). 43 

The European Union (EU) is particularly active in promoting bio-based transformations and seeks to 44 

respond to global social-environmental challenges through its Bioeconomy Strategy (European 45 

Commission, 2012a). The bioeconomy has been envisioned as an important component for smart and 46 

green growth while simultaneously achieving the EU’s climate and other environmental targets and 47 

the 2030 Agenda (Bell et al., 2018; McCormick and Kautto, 2013; Scarlat et al., 2015). EU action towards 48 

increasing bio-based resource use, bioenergy in particular, has earlier roots, however. In 2003, it 49 

established the Biofuel Directive (2003/96/EC) to promote the use of biofuels and other renewable 50 

fuels for transport. The Renewable Energy Directive (2009/28/EC) followed in 2009 and provided the 51 

policy framework for the production and use of domestically produced and imported energy from 52 

renewable sources in the EU, including an EU-wide 20% renewable energy target as well as a 10% 53 

renewable transport fuel target for individual member countries by 2020. 54 

The sustainability of the EU’s expanding bioeconomy has also been questioned (O’Brien et al., 2015; 55 

O’Brien et al., 2017; Pfau et al., 2014; Ramcilovic-Suominen and Pülzl, 2018). Evidence is rising that an 56 

expanding industrial bioeconomy, for example, causes direct and indirect land use change, thereby 57 

generating greenhouse gas emissions (Searchinger et al., 2008), and has implications for water quality 58 

and quantity (Thomas et al., 2009). Imports of feedstock for the EU bioeconomy can thus have negative 59 

consequences for ecosystems in distant places (Deininger, 2013). Based on a systematic review, Pfau 60 

et al. (2014) found that bioeconomy should not be considered as self-evidently sustainable. They 61 

concluded that further research and policy development should pay attention to how the bioeconomy 62 

could contribute to sustainable development. Ramcilovic-Suominen and Pülzl (2018) argued that 63 

sustainability is not a core motivation of the EU Bioeconomy Strategy, in which the main emphasis is 64 

on biotechnology, eco-efficiency, competitiveness, innovation, economic output and industry, while 65 

the strategy is ambiguous about how it will contribute to sustainability. O’Brien et al. (2017) also 66 

stressed that the sustainability of the EU’s bioeconomy depends on how it is being implemented, with 67 

a particular risk being increased global land use requirements of the economy. This risk is illustrated 68 

by the fact that Europe stands out as the only world region that is a net-importer of the four major 69 

natural resource categories: materials, water, carbon and land (Häyhä et al., 2018; Tukker et al., 2016). 70 

With around 3,000 m² per capita in 2010, the EU-28 had a per capita cropland footprint that was more 71 

than 40% above the global average (Tramberend et al., 2019). 72 

Various EU policy documents acknowledge that European production and consumption patterns cause 73 

land use-related impacts beyond Europe’s borders. For example, in its Resource Efficiency Roadmap 74 

(European Commission, 2011), the EU states that “by 2020, EU policies take into account their direct 75 

and indirect impact on land use in the EU and globally” (p. 15). In its 7th Environmental Action 76 

Programme (European Commission, 2012b), the EU also committed to support a “land degradation 77 

neutral world in the context of sustainable development” (p. 3) and calls for targets to be set to limit 78 

land take. Directive (EU) 2015/1513 targets indirect land use change of biofuels production, aiming at 79 

a drastic reduction of unintended consequences of the EU’s biofuel use on the earth’s climate (Council 80 

Directive, 2015/1513/EU). Despite these policy objectives, the EU’s Bioeconomy Strategy does not 81 

explicitly address resource use displacement. Moreover, the EU has so far not agreed on a common 82 

methodology to assess distant land use-related impacts of EU policies. Key indicator systems with high 83 

relevance for land, such as the Resource Efficiency Scoreboard (EUROSTAT, 2015) thus focus on 84 
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 3 

territorial indicators only and fail to take into account the international teleconnections (Yu et al., 85 

2013).  86 

The importance of footprinting approaches has been widely acknowledged in national and regional 87 

sustainability assessments to account for possible land use displacement and leakage effects (Liu et 88 

al., 2018; O’Brien et al., 2015; Wiedmann and Lenzen, 2018). Research so far focused on the land 89 

footprint of food consumption and of different dietary patterns (FoEE, 2016; Giljum et al., 2013; 90 

Kastner et al., 2011; Kastner et al., 2012; Meier and Christen, 2012; Meier et al., 2014). Some 91 

assessments of the overall land footprint of countries were also presented (Bringezu et al., 2012; 92 

O’Brien et al., 2015; Weinzettel et al., 2013; Yu et al., 2013).  93 

However, existing studies do not further distinguish food from non-food uses and are therefore unable 94 

to assess this important part of the bioeconomy transformation. In this paper, we fill this research gap 95 

for the European Union by analysing its role in the global non-food bioeconomy with a novel hybrid 96 

method, linking biophysical and monetary accounting models for assessing the non-food sector’s land 97 

requirements. We include both products from plant and animal sources and apply three perspectives 98 

to assess the EU’s non-food cropland footprint between 1995 and 2010: 1) the land use perspective 99 

(cropland use for non-food purposes), 2) the industry perspective (cropland embodied in agricultural 100 

products used in non-food manufacturing industries) and 3) the consumer perspective (cropland 101 

embodied in final consumption of non-food products).  102 

The scope of this study is confined on the cropland footprint and thus excludes land areas related to 103 

the production of wood and wood products. Although timber is a key resource in the bioeconomy 104 

context, the calculation of land demand related to timber consumption is challenged by limited data 105 

availability regarding actual harvested forest areas – in contrast to overall forest areas (Bruckner et al., 106 

2015; Fischer et al., 2017).  107 

2 Methods: hybrid land flow accounting 108 

Land footprint studies either use biophysical or monetary accounting models applying top-down or 109 

bottom-up methods to attribute land use to final consumers (for a detailed review see Bruckner et al., 110 

2015). The present study implements a hybrid top-down accounting approach to track the demand for 111 

cropland embodied in biomass flows along global supply chains by linking the biophysical LANDFLOW 112 

model (European Commission, 2013; Fischer et al., 2017) with the multi-regional input-output (MRIO) 113 

model EXIOBASE 3 (Stadler et al., 2018). This hybrid method was described in detail and applied 114 

previously by Tramberend et al. (2019). 115 

Hybrid models are argued to “provide more accurate results than the standard MRIO method” 116 

(Weinzettel et al., 2014, p.115). Using the physical accounting model LANDFLOW in combination with 117 

an MRIO model substantially increases the product detail of the results, while ensuring the 118 

comprehensive coverage of all economic activities worldwide. A particular strength of the LANDFLOW 119 

model is that it specifies non-food uses of each agricultural product, which was a prerequisite for this 120 

study. By linking EXIOBASE to a biophysical accounting model, non-food flows can be traced to the final 121 

consumer, instead of being truncated and allocated to those countries, where the industrial processing 122 

takes place. 123 
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 4 

To grant full access and foster transparency, all data, R scripts, and supplementary files to reproduce 124 

this study as well as all presented maps and figures can be found on GitHub: 125 

https://github.com/fineprint-global/eu_bioeconomy_footprint/.  126 

The applied models: LANDFLOW and EXIOBASE 127 

LANDFLOW is a global physical biomass trade accounting model based on data from the UN Food and 128 

Agriculture Organization (FAOSTAT, 2017). It follows the approach of Kastner et al. (2014) and uses 129 

detailed and comprehensive agricultural supply and use data (covering production, stock changes, 130 

international trade and utilization) measured in physical volumes (i.e. tons) from the FAOSTAT’s 131 

Commodity Balance Sheets to set up a global tree structure for all commodity flows and tracks 132 

embodied cropland along these supply chains. For example, land used to produce soybeans is tracked 133 

from harvest via processing to final utilization. In the case of co-production, such as soybean oil and 134 

cake, land areas are split and allocated to the derived products in relation to their economic value, i.e. 135 

using price allocation.  136 

The method not only covers crops and derived crop products, but also animal products such as milk, 137 

meat, fats and hides, among others (Table S.1 in the Supplementary Material). Feed balances are 138 

estimated for ruminants and monogastrics respectively and available feed crops are allocated 139 

according to dietary and energy requirements of the two livestock groups. Once cropland areas are 140 

allocated to the two livestock groups, embodied land areas are attributed to multiple derived products 141 

(e.g. milk, meat and hides from ruminant livestock) using value shares as described for the case of 142 

soybean oil and cake. 143 

The land embodied in products is tracked to final utilization, differentiated into food, seed, waste and 144 

other uses. The category of other uses comprises all non-food uses, including, for example, the 145 

quantities of vegetable oils used for the production of detergents, polymers and biodiesel, and meat 146 

and offal processed into pet food and pharmaceutical products (FAO, 2001). In contrast to food use, 147 

the category of other uses, however, does not formally describe a final use but rather an industry use. 148 

LANDFLOW analysis thus tracks the supply chains of raw materials to the destination of industrial use 149 

but cannot track the further trade of highly processed industrial commodities. For instance, once 150 

vegetable oils enter the industrial sector to produce detergents, or cotton enters the textile industry, 151 

the further trade of detergents or textiles is not recorded in the FAO data.  152 

Therefore, we allocated the results of the LANDLFOW model for the category of other uses, 153 

representing the land embodied in agricultural commodities when entering non-food manufacturing 154 

industries, to the respective industries of the MRIO model EXIOBASE 3 (Stadler et al., 2018). This 155 

allowed further tracing upstream flows of non-food biomass commodities from processing industries 156 

through the global economy along monetary supply chains to the final consumers. EXIOBASE is an 157 

environmentally extended multi-regional input-output database ranging from 1995 to 2011 for 44 158 

countries and five continental rest regions. Its symmetric product-by-product MRIO tables reflect the 159 

input structure for the production of 9800 products (200 products per country) and their domestic and 160 

bilateral interlinkages. MRIO models, and particularly EXIOBASE, are widely used in footprinting (see, 161 

for example, Giljum et al., 2016; Moran and Wood, 2014; Tisserant et al., 2017; Tukker et al., 2016; 162 

Wiedmann and Lenzen, 2018). In this study, the MRIO model was used to complement the limited 163 

information on non-food supply chains in the LANDFLOW model, in order to identify the final consumer 164 

of crop-based products manufactured in industrial processes. 165 
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 5 

Linking LANDFLOW and EXIOBASE 166 

The decisive step in linking the two models was the mapping of the non-food commodity supply from 167 

the LANDFLOW model to the using industries in the EXIOBASE MRIO model. We defined a 168 

corresponding EXIOBASE sector for each LANDFLOW commodity, e.g. the EXIOBASE sector ‘Products 169 

of vegetable oils and fats’ corresponds to the LANDFLOW commodity ‘vegetable oils’. We then masked 170 

the uses of the outputs of this sector in the MRIO entering (domestic and foreign) non-food 171 

manufacturing industries, i.e. by removing any uses by the food industry or the service sectors. The 172 

resulting correspondence table then delivered the monetary value of the vegetable oil uses by non-173 

food industry (see Table S.3 for a summarized representation of the correspondence tables). Based on 174 

this information, we derived industry shares and allocate the land inputs proportionally. As a result, 175 

we obtained a land use matrix 𝐏, with elements 𝑝𝑖𝑗  containing information on the land embodied in 176 

each agricultural product 𝑖 further processed for non-food purposes by manufacturing industry 𝑗. For 177 

more details see Tramberend et al. (2019). 178 

The consumption footprint of cropland embodied in non-food products 𝐅 was then calculated straight-179 

forward by using the environmentally extended demand-driven Leontief model (Miller and Blair, 2009) 180 

defined by the equation 𝐅 = 𝐄 ∗ (𝐈 − 𝐀)−1 ∗ 𝐘, where (𝐈 − 𝐀)−1 is the Leontief inverse and 𝐘 is the 181 

final demand matrix showing the final demand for each product in each region. The environmental 182 

extension matrix 𝐄 for the MRIO model was derived by dividing absolute input quantities by the 183 

respective output value of each industry: 𝐄 = 𝐏 �̂�−1.  184 

Limitations of the methodology 185 

There are some important limitations of the presented data and methods. Even though the data 186 

available from FAOSTAT provide full country detail for all UN member states, we run the LANDFLOW 187 

model at a more aggregated level (see Table S.2). Geographical detail should therefore be improved 188 

for assessing region-specific impacts from agricultural production. Some authors even argue that an 189 

accurate assessment of impact footprints requires a trade model operating at the subnational level, 190 

particularly for big and diverse countries such as Brazil (Flach et al., 2016; Godar et al., 2016). 191 

Moreover, the model currently does not allow separately reporting of final bio-based products such as 192 

biofuels, cosmetics, detergents, lubricants or biopolymers, but rather aggregated product groups such 193 

as vegetable oils, covering all products derived thereof.  194 

Grid cell level results  195 

We downscaled the national results for some major crops to the level of 5 arc minute grid cells (around 196 

10 km x 10 km at the equator) using the spatial distribution of 42 crops provided by the Spatial 197 

Production Allocation Model (SPAM) v3.2 (You et al., 2017). In the first step, we aggregated the SPAM 198 

maps to three crop groups: 1) maize and sugarcane, 2) oil crops, and 3) fibre crops. We then allocated 199 

the EU footprint in each region to the geographically corresponding cells within that region, using the 200 

harvested area reported by SPAM to weight the allocation of the EU footprint into the SPAM grid cells. 201 

The weight 𝜔𝑖
𝑔

 to allocate a crop group 𝑔 to a cell 𝑖 is given by 𝜔𝑖
𝑔

= 𝑎𝑖
𝑔

/𝑠𝑟
𝑔

, where 𝑎𝑖
𝑔

 is the harvested 202 

area of the crop group 𝑔 in the grid cell 𝑖 and 𝑠𝑟
𝑔

 is the sum of the harvested area of the crop group 𝑔 203 

for all cells within region 𝑟. The weight in a region sums up to one. This approach does not consider 204 

sub-national differences in the export shares and structure, which obviously biases the results. The 205 

downscaled results presented in this article thus should be interpreted as a probability distribution of 206 
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 6 

the EU’s footprint, rather than an exact localization. The detailed R codes and data used for this 207 

downscaling approach can be found in the previously indicated GitHub repository. 208 

3 Results: European Union’s non-food cropland footprint 209 

We analysed global patterns of raw material producers, processors and consumers of bio-based non-210 

food products. Here we describe the results for the development of the EU’s cropland footprint of non-211 

food products between 1995 and 2010 as well as its geographical and product composition. Further 212 

results and illustrations, illustrating for example changes over time , can be found in the Supplementary 213 

Material, including the global cropland requirements for non-food products in different world regions 214 

(Table S.4 and Figure S.2) and the changes over time of the non-food cropland footprint of the EU 215 

(Figure S.1) and other world regions (Figure S.3).  216 

Global flows of embodied non-food cropland 217 

The primary production perspective on the left side of Figure 1 shows the land areas used for 218 

production of crops and livestock for non-food purposes. The harvested biomass is then further 219 

processed by industries, such as the chemical, the rubber or the textile industries. These processing 220 

steps may be located in the same country, or may import feedstock from other countries. The 221 

processing phase can have many steps. Figure 1 shows the amounts of embodied cropland 222 

requirements when the products first enter the processing phase in non-food manufacturing 223 

industries. Finally, the end-products are consumed by individuals or governments, or are put on stock 224 

for use in the following years. Again, consumers may be located in the country of production or 225 

processing, or the final products may be exported to be consumed in other world regions. Note that 226 

the aggregated totals of embodied land are identical in all three parts of the Sankey diagram.  227 

The EU-28 is a major processor and the biggest consumer region of non-food cropland, but ranks only 228 

fifth among the largest crop producing regions. Consequently, the EU is a major net importer of 229 

embodied cropland (Figure S.4). 230 
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 231 

 232 

Figure 1. Global flows of embodied cropland associated with the international trade with non-food products in 2010. The 233 
left hand side of the Sankey diagram shows the cropland use in each region for the cultivation of crops later on used for 234 

non-food purposes. In the middle, we see the land embodied in crops and derived products used in industrial 235 
manufacturing processes. Finally, the right hand side of the graph depicts the land embodied in the final consumption of 236 

non-food products such as textiles or biofuels in each region. 237 

The cropland area within the EU used for non-food purposes increased from 10.4 Mha to 14.6 Mha 238 

between 1995 and 2010 (Table S.4). The latter accounted for about 8% of the global non-food 239 

agricultural area in 2010. Oil crops were the most dominant crop type (43%), with rapeseed and 240 

sunflower being the most dominant plants. Animal products, such as hides and skins, also played a 241 

notable role reaching 31% of total non-food cropland area in the EU in 2010. 242 

The EU also has a significant processing industry with around a quarter of the required raw materials 243 

and related land use being imported from other world regions. In particular, vegetable oils for biofuel, 244 

polymer and detergent production were imported from Indonesia and other Asian countries. In 2010, 245 

the EU’s processing industry required 19.8 Mha of cropland. Most of the processing output served 246 

consumption within the EU itself. In addition, processed products were imported from all other world 247 

regions, including China (4.4 Mha; primarily embodied in oleochemical products), Rest of Asia-Pacific 248 

(3 Mha; vegetable oils and rubber) and the USA (1.6 Mha; primarily maize and ethanol).  249 

The EU was the largest consuming region in absolute terms with 28.2 Mha in 2010 followed by China 250 

(27.7 Mha). In relation to population, Australia leads the ranking (1199 m²/capita) followed by the USA 251 

(828 m²/capita), Canada (807 m²/capita), the EU (562 m²/capita) and Brazil (468 m²/capita). In 252 

comparison, the average non-food cropland demand in India was only 75 m²/capita (see Figure S.2 and 253 

Table S.6). From 1995 to 2010, the overall cropland footprint of the EU’s consumption of non-food 254 

products increased by 23% from around 23 Mha to 28 Mha, after reaching a peak in the year 2007 with 255 

31.5 Mha (see Figure S.3).  256 

Non-food cropland footprint of the EU 257 

Land use Industrial processing Consumption 
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While the vast majority (86%) of cropland embodied in the EU’s food consumption in 2010 stemmed 258 

from the EU itself (Fischer et al., 2017), for the case of non-food products only 35% (9.9 Mha) were 259 

based on domestic land resources (Table S.5). The remaining 65% of the cropland (18.3 Mha) was 260 

imported from outside the EU-28 (Figure 2). Large amounts of embodied land (7.3 Mha) were also 261 

imported to serve manufacturing processes in the EU.  262 

With 2.7 Mha of embodied land, China was a major supplying country for the EU, accounting for almost 263 

10% of the EU’s non-food cropland footprint, mainly in the form of oil crops, maize, and fibre crops, or 264 

products derived therefrom (Figure 2 and Table S.5). Indonesia, with 2 Mha, also provided large areas, 265 

largely related to palm and coconut oil. The group Rest of Asia-Pacific, including Malaysia, Bangladesh, 266 

the Philippines and Thailand, among others, supplied Europe particularly with vegetable oils, rubber, 267 

fibre crops and non-food alcohol. Northern America also played an important role as an exporter of 268 

maize for industrial uses (e.g. in the form of starch or ethanol).  269 

In 2010, more than one third of the EU’s cropland footprint for non-food products was related to 270 

vegetable oils and oil crops, which are mainly consumed in the form of biofuels, detergents, lubricants 271 

and polymers (FNR, 2014). This is more than double the embodied land of this category in 1995. 272 

Increasing consumption of vegetable oils was a main determinant for the overall growth of the EU non-273 

food cropland footprint. 274 

  275 
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 276 

Figure 2. Global cropland footprint of the EU’s consumption of non-food products in 2010, by producing region and 277 
commodity, x-label in million hectares, y-label in percentage shares, values inside the figure in thousand hectares. EU-28 = 278 

European Union, EUR = Rest of Europe, AFR = Africa, NAM = Northern America, LAM = Latin America, ASI = Asia 279 

Spatially explicit footprint maps 280 

Figure 3 provides a probability distribution of the EU’s footprint over a 5 arcminute grid for selected 281 

crops: a) maize and sugarcane, which together represent more than 90% of the global ethanol 282 

feedstock and in addition are used for material purposes e.g. in the production of adhesives or 283 

bioplastics; b) oil crops, which is the biggest crop category in the EU’s non-food cropland footprint; and 284 

c) fibre crops, mainly represented by cotton used in the textile industry.  285 

Spatially explicit footprint maps allow identifying regional hotspots, such as the maize plantations in 286 

the Great Plains of the US, sugarcane in south-central Brazil, or cotton in the big river basins of Pakistan. 287 

Consistent spatially explicit supply chain and footprint assessments are essential to fully capture the 288 

spatiotemporal heterogeneity of biomass production and related impacts, such as deforestation, 289 

biodiversity loss or water scarcity, which differ greatly between production regions. 290 

Another noticeable aspect is the change in composition of the EU non-food cropland footprint 291 

between 1995 and 2010 (Figure S.1). While in 1995, crop products contributed 63% to the overall land 292 

footprint of the EU bioeconomy, this share increased to 80% in 2010. This includes increasing 293 

quantities of cereals, non-food alcohol (mainly from maize and sugar cane) and vegetable oils for fuel 294 

and material use. In contrast, the cropland area related to the consumption of animal products, such 295 

as hides and skins, showed a declining trend.  296 

 297 
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298 

299 

 300 

Figure 3. European Union’s non-food related cropland use outside the EU in hectares per grid cell for a) maize and 301 
sugarcane, b) oil crops, and c) fibre crops. The colour scale indicates the number of hectares of cropland used by the EU in 302 

each grid-cell (5 arcminutes). 303 

 304 
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4 Discussion  305 

Social and environmental implications  306 

Our results emphasise that a particular attention should be given to the non-food sector, as it is the 307 

main driver of growing biomass demand, in recent years particularly due to increasing vegetable oil 308 

demand for fuel use. The EU’s high external non-food land footprint indicates that a big part of the 309 

environmental impacts related with the EU’s consumption occur in other world regions. Our findings 310 

show that the EU increasingly sources non-food biomass feedstocks from tropical regions, which have 311 

been identified as hotspots of both deforestation and biodiversity loss (Koh and Wilcove, 2008; Sodhi 312 

et al., 2004). 313 

While the production-based approach measures territorial land use, the consumption perspective 314 

brings in the global socio-economic dynamics. Literature indicates that the European Union’s 315 

consumption-based cropland use is already beyond a globally equitable limit (Bringezu et al., 2012; 316 

Häyhä et al., 2018; O'Neill, 2015; O’Brien et al., 2015; Tukker et al., 2016). Anthropogenic land 317 

modification, in particular deforestation, has already transgressed the planetary boundary for land 318 

system change, causing increasing pressure on climate and biodiversity (Campbell et al., 2017; Steffen 319 

et al., 2015). Many global energy and land use scenarios envision that the systemic change towards a 320 

bio-based economy will be more heavily reliant on terrestrial ecosystems and land resources (e.g. Di 321 

Fulvio et al., 2019; Lotze-Campen et al., 2010; Popp et al., 2014; Schipfer et al., 2017). The expanding 322 

bioeconomy will then add to the already high land demand for food supply, resulting in growing 323 

pressure on planetary boundaries. This relates closely to issues of global justice when it comes to a fair 324 

distribution of biophysical resources (Häyhä et al., 2016). 325 

Assessments of social and environmental impacts related to the consumption of bio-based 326 

commodities are usually focussing on certain products or regions. Only few studies conducted 327 

comprehensive consumption-based assessments of certain impacts with global coverage of all traded 328 

products. The model approach presented in this article facilitates the analysis of impacts from a 329 

consumption perspective. Potential environmental impacts to be studied include, for example, 330 

increased water scarcity (Mekonnen and Hoekstra, 2016) and nutrient pollution (Zhang et al., 2014), 331 

but also potential negative climate impacts, in particular due to deforestation in tropical regions 332 

(Achard et al., 2014; Lawrence and Vandecar, 2015), driven by a growing demand for raw materials for 333 

the bioeconomy (Sheppard et al., 2011). Social impacts may arise due to the dislocation of vulnerable 334 

socio-demographic groups in developing countries, such as subsistence farmers with unclear land 335 

access rights (McMichael, 2012), and the commodification of land and food crops (Birch et al., 2010).  336 

There is a need to analyse pathways for reducing negative impacts of the bioeconomy, for example by 337 

optimizing feedstock composition or sourcing from world regions with favourable social and 338 

environmental production conditions, including the partial substitution of globally sourced biomass by 339 

local or regionally produced alternatives (Kpdonou and Barbier, 2012; Priefer et al., 2017). However, 340 

as responsible consumers pull out of producer regions with questionable impacts, voids will eventually 341 

be filled by others, if incentives prevail. 342 

Economic implications  343 

At the current level of the model’s geographical aggregation, most countries and world regions are 344 

net-exporters of biomass for non-food use and related land areas between the steps of primary 345 
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production and processing, implying that a part of the involved manufacturing processes (and related 346 

value added) does not take place in the producer country of the raw material. For example, in 2010, 347 

Brazil produced crops destined for non-food uses on around 11.7 Mha. However, Brazilian industries 348 

only processed crops equivalent to around 9.2 Mha. This means that products equivalent to an area of 349 

around 2.5 Mha were exported to processing industries in other countries and regions. This pattern is 350 

even more pronounced in Indonesia, where the domestic industry processed only around half of the 351 

primary products produced within Indonesia (7.8 Mha compared to 14 Mha). Indonesia is a major 352 

exporter of palm oil and other non-food products, most notably to the EU and the region ‘Rest of Asia-353 

Pacific’. These results have implications for ongoing debates about the economic benefits of 354 

developing and emerging economies engaging in global value chains (GVCs). Studies have illustrated 355 

that participation of these countries in GVCs can have positive economic impacts, e.g. through 356 

dissemination and uptake of new technologies, but results are particularly positive when combined 357 

with an upgrading of exports (UNCTAD, 2013). The adoption of bioeconomy strategies in an increasing 358 

number of countries, including import-dependent regions, such as the EU, offers new options for value 359 

creation in developing countries (Dietz et al., 2018). However, the key challenge will be to ensure that 360 

value addition through processing will take place in the countries of production (Virchow et al., 2016). 361 

The results illustrated above suggest that – from the perspective of biomass producer countries – there 362 

is still significant room for increasing domestic upgrading of biomass exports and develop a biomass 363 

export portfolio oriented towards higher value-added products.  364 

The mismatch between domestic production on the one hand and industry demand for crops for 365 

material and energy uses on the other hand will likely grow in the future. The industry perspective can 366 

be expected to further gain importance, considering the fact that the share of agriculture on the value 367 

added of food supply chains is decreasing while the share of processing industries continues growing, 368 

as documented by the European Commission (2009). The economic (and environmental) benefits and 369 

costs of a global bioeconomy transformation will therefore likely be geographically unevenly 370 

distributed as countries have largely varying competitive advantages for the production and processing 371 

of bio-based materials. 372 

Besides socio-ecological considerations, the vulnerability of export crop production to climate change 373 

in some major supplying countries (McGregor et al., 2016; Vörösmarty et al., 2005) also puts highly 374 

import-dependent economies at risk of supply constraints.  375 

Methodological considerations 376 

Given the far-reaching global implications of an expanding European bioeconomy, robust methods and 377 

indicators need to be developed and applied, to comprehensively assess Europe’s resource use as well 378 

as the related environmental and social impacts.  379 

This paper contributes to advancing land footprint accounting and demonstrates a hybrid approach 380 

integrating the biophysical accounting method with the EXIOBASE MRIO model. As discussed 381 

extensively in the earlier literature (Bruckner et al., 2015; Liang and Zhang, 2013; Schoer et al., 2013; 382 

Vringer et al., 2010; Weinzettel et al., 2014), a hybrid footprint model allows to increase product and 383 

country detail, and (partially) avoids the assumption of unique sector prices. At the same time, the 384 

model keeps a comprehensive coverage of the entire economy including all manufacturing industries 385 

and service sectors, and considers non-market commodity flows. To exploit the full potential of hybrid 386 

methods, the highest possible level of country and commodity detail provided by FAO statistics should 387 

be used. Adding more spatial and product detail will be an important task for future modelling, as 388 
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yields and environmental impacts may differ largely within product and country groups, thus 389 

introducing an avoidable aggregation error. 390 

Moreover, there is still significant room and need to expand the presented method by including other 391 

biomass commodities of key importance (e.g. timber and forest areas). Furthermore, current statistics 392 

from the FAO and EXIOBASE do not allow to explicitly separate bioenergy (e.g. biodiesel and ethanol) 393 

from biomaterial uses (e.g. detergents, adhesives, polymers). Industry data could help refine the model 394 

for addressing more detailed research questions. 395 

Alternative accounting approaches based on economy-wide material flow analysis (ew-MFA) can reach 396 

far greater level of product detail than the present study. O’Brien et al. (2015), for example, calculate 397 

the land footprint of the EU accounting for a list of 991 commodities, including both food and non-398 

food products. The ew-MFA method basically accounts for imports and exports of all commodities and, 399 

in the case of the land footprint, converts them into land equivalents, i.e. the area required for their 400 

production. For this conversion, data from Life Cycle Assessment studies and process analyses are used 401 

to derive land use coefficients in hectares per ton of product. While being the most detailed method 402 

in terms of products, the regional resolution of ew-MFA studies is very limited, as it is not possible to 403 

specify the country of origin of the raw materials, consequently not being able to consider differences 404 

in yields or local environmental impacts. 405 

Finally, cropland footprints are only a part of a much larger puzzle that involves the quantification and 406 

equitable sharing of the costs and benefits associated with the production and consumption of 407 

biomass-based commodities. Footprinting methods thus need to be downscaled from national to local 408 

levels to account for regional differences and dynamics in the socio-environmental conditions that 409 

determine biomass production and its impacts in producer regions (Flach et al., 2016; Godar et al., 410 

2015; Godar et al., 2016; Kanemoto et al., 2016; Moran and Kanemoto, 2016; Moran and Kanemoto, 411 

2017).  412 

Governance implications 413 

Our results clearly indicate a growing demand for non-food bio-based products. This means that 414 

cropland demand is increasingly driven by other than traditional food value chains, including more 415 

complex or completely new value chains that emerge in response to new biomass applications (Philp 416 

et al., 2013). Moreover, biomass production may gradually shift from traditional sources in the 417 

Americas and South East Asia to new agricultural frontiers with lower governance capacities in Africa 418 

(Gasparri et al., 2016). Hence, better information and transparency about the socio-economic and 419 

environmental benefits and costs associated with globally traded biomass will become key to inform 420 

the increasing number of value-chain based governance initiatives (Gardner et al., 2018). Key 421 

governance challenges include substitution effects between value chains with heterogeneous levels of 422 

regulation or regulatory enforcement that can lead to environmentally costly indirect land use change 423 

(Arima et al., 2011). Hybrid footprinting approaches with high spatial and temporal resolution can help 424 

to address this challenge by serving as early warning systems, when biomass sourcing patterns shift to 425 

regions or value chains that exhibit severe governance gaps.   426 

5 Conclusions 427 

To date the literature on land footprints has not separated food and non-food applications of crops 428 

and derived products. In this paper, we assessed, for the first time, global patterns of land demand for 429 
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non-food products from a production, processing and consumption perspective, with a focus on 430 

Europe’s role in the global non-food biomass trade. The analysis highlighted the increasing importance 431 

of non-food products, being the fastest growing source of direct and indirect demand for agricultural 432 

land in the EU, as well as globally. The dependence of EU consumption on foreign land areas for the 433 

non-food sector is striking. While 86% of the land used to satisfy European food demand is located in 434 

Europe, only 35% of the land providing non-food products to the region is cultivated within the EU, 435 

resulting in net imports of up to 18 Mha per year. The expanding European bioeconomy is thus highly 436 

dependent on agricultural areas in other world regions, most notably in Asia. 437 

From the methodological perspective, this paper builds on the on-going discussion about the 438 

robustness of land footprints and potentials for further improving the currently used accounting 439 

methods. With the novel hybrid model, we were able to trace the non-food flows until the final 440 

consumer, without truncating these flows, as done in biophysical accounting models. Moreover, it 441 

allowed us to increase the level of product detail and to avoid the assumption of homogeneous prices 442 

as implicit in monetary MRIO models. At current data availability, only the hybrid accounting method 443 

is capable of combining high product detail with comprehensiveness of economic supply chains, 444 

particularly when it comes to manufacturing industries and service sectors. Therefore, we suggest that 445 

future studies aiming at quantifying land use related footprints, such as the biodiversity footprint, 446 

should use a hybrid accounting approach.  447 

We argued that the EU’s bioeconomy should be assessed not only territorially but from a global 448 

consumption-based perspective. Our findings showed that the non-food sector is attaining a growing 449 

importance in the EU’s bioeconomy – as well as globally. Europe plays a crucial role in determining 450 

global developments as it is the biggest consuming region of non-food biomass products (measured in 451 

cropland area) and also the largest net-importer. If the European bioeconomy were to promote 452 

sustainable development at global scale, tools need to be in place that monitor trade-induced land use 453 

spillover and displacement effects that emanate from the region’s energy, agricultural, and 454 

bioeconomy policy programs. 455 

Environmental footprint measures, such as the land footprint, together with global environmental 456 

targets, can guide the EU in its process of implementing the Sustainable Development Goals, and 457 

provide the data basis to monitor and review progress. 458 

 459 
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