1 Forest decision support systems for the analysis of ecosystem services

2 provisioning at the landscape scale under global climate and market

3 change scenarios

- 4
- 5 Eva-Maria Nordström^{1*}, Maarten Nieuwenhuis^{2*}, Emin Zeki Başkent³, Peter Biber⁴, Kevin Black², Jose G.
- 6 Borges⁵, Miguel N. Bugalho⁶, Giulia Corradini⁷, Edwin Corrigan², Ljusk Ola Eriksson¹, Adam Felton⁸,
- 7 Nicklas Forsell⁹, Geerten Hengeveld¹⁰, Marjanke Hoogstra-Klein¹⁰, Anu Korosuo⁹, Matts Lindbladh⁸, Isak
- 8 Lodin⁸, Anders Lundholm², Marco Marto⁵, Mauro Masiero⁷, Gintautas Mozgeris¹¹, Davide Pettenella⁷,
- 9 Werner Poschenrieder⁴, Robert Sedmak^{12,13}, Jan Tucek¹² and Davide Zoccatelli^{7,14}
- 10
- 11 *Corresponding authors.
- 12 E-MN. Address: Department of Forest Resource Management, Swedish University of Agricultural Sciences (SLU),
- 13 901 83 Umeå, Sweden. Telephone: +46 (0)90 7868258. Email: eva-maria.nordstrom@slu.se
- 14 MN. Address: UCD Forestry, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4,
- 15 Ireland. Telephone: +353 (0)1 7167004. Email: maarten.nieuwenhuis@ucd.ie 16
- 17 ¹Department of Forest Resource Management, Swedish University of Agricultural Sciences (SLU), 901 83 Umeå,
- 18 Sweden. Email: eva-maria.nordstrom@slu.se, ola.eriksson@slu.se
- ¹⁹ ²UCD Forestry, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland. Email:
- 20 maarten.nieuwenhuis@ucd.ie, kevin.g.black@gmail.com, edwint.corrigan@gmail.com,
- $21 \qquad \text{anders.lundholm@ucdconnect.ie} \\$
- ³Faculty of Forestry, Karadeniz Technical University, 61080 Trabzon, Turkey. Email: eminzekibaskent@gmail.com
- 23 ⁴Chair of Forest Growth and Yield Science, TUM School of Life Sciences Weihenstephan, Technical University of
- 24 Munich (TUM), Hans-Carl-von-Carlowitz-Platz 2, Freising 85354, Germany. Email: peter.biber@lrz.tum.de,
- 25 werner.poschenrieder@lrz.tum.de
- ⁵Forest Research Centre, School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisbon 1349-017, Portugal.
- 27 Email: joseborges@isa.ulisboa.pt, marcovmarto@isa.ulisboa.pt
- 28 ⁶Centre for Applied Ecology (CEABN-InBIO), School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisbon
- 29 1349-017, Portugal. Email: migbugalho@isa.ulisboa.pt
- 30 ⁷TeESAF Department, University of Padova, Agripolis, v.le dell'Università 16, Legnaro I-35020, Italy. Email:
- 31 giulia.corradini@unipd.it, mauro.masiero@unipd.it, davide.pettenella@unipd.it, zoccatelli.davide@gmail.com
- 32 ⁸Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences (SLU), Box 49, 230 53
- 33 Alnarp, Sweden. Email: adam.felton@slu.se, matts.lindbladh@slu.se, isak.lodin@slu.se
- ⁹Ecosystem Services and Management Program, International Institute for Applied Systems Analysis (IIASA),
- 35 Schlossplatz 1, A-2361 Laxenburg, Austria. Email: forsell@iiasa.ac.at, korosuo@iiasa.ac.at
- ³⁶ ¹⁰Forest and Nature Conservation Policy Group, Wageningen University and Research, Droevendaalsesteeg 3,
- 37 6708PB Wageningen, the Netherlands. Email: geerten.hengeveld@wur.nl, marjanke.hoogstra@wur.nl
- 38 ¹¹Institute of Forest Management and Wood Science, Aleksandras Stulginskis University, Studentu 11, LT-53361
- 39 Akademija, Lithuania. Email: gintautas.mozgeris@asu.lt
- 40 ¹²Department of Forest Management and Geodesy, Technical University in Zvolen, T.G. Masaryka 24, Zvolen 960
- 41 53, Slovakia. Email: sedmak@tuzvo.sk, tucek@tuzvo.sk

- 42 ¹³Department of Forest Management, Czech University of Life Sciences Prague, Kamýcká 1176, 165 21 Prague 6-
- 43 Suchdol, Czech Republic
- 44 ¹⁴Institute of Earth Sciences, The Edmond J. Safra Campus Givat Ram, Hebrew University of Jerusalem, Jerusalem
- 45 9190401, Israel

46 Acknowledgements

- 47 This project has received funding from the European Union's Horizon 2020 research and innovation
- 48 programme under grant agreement No 676754. We further acknowledge the Portuguese Science
- 49 Foundation (FCT) for supporting Miguel Bugalho by a Principal Investigator contract (IF/01171/2014), for
- 50 funding the Forest Research Centre (UID/AGR/00239/2013) and for the Ph.D. grant of Marco Marto
- 51 (SFRH/BD/108225/2015).

52 Abstract

53 Sustainable forest management is driving the development of forest decision support systems (DSSs) to 54 include models and methods concerned with climate change, biodiversity and various ecosystem 55 services (ESs). The future development of forest landscapes is very much dependent on how forest 56 owners act and what goes on in the wider world, thus models are needed that incorporate these 57 aspects. The objective of this study is to assess how nine European state-of-the-art forest DSSs cope 58 with these issues. The assessment focuses on the ability of these DSSs to generate landscape level 59 scenarios to explore the output of current and alternative forest management models (FMMs) in terms 60 of a range of ESs and the robustness of these FMMs in the face of increased risks and uncertainty. 61 Results show that all DSSs assessed in this study can be used to quantify the impacts of both stand and 62 landscape-level FMMs on the provision of a range of ESs over a typical planning horizon. DSSs can be 63 used to assess how timber price trends may impact that provision over time. The inclusion of forest 64 owner behavior as reflected by the adoption of specific FMMs seems to be also in the reach of all DSSs. 65 Nevertheless, some DSSs need more data and development of models to estimate the impacts of 66 climate change on biomass production and other ESs. Spatial analysis functionality need to be further 67 developed for a more accurate assessment of the landscape level output of ESs from both current and 68 alternative FMMs.

69 Keywords: ALTERFOR, biodiversity, forest management models, forest owner behaviour

70 Introduction

Ecosystem Services (ESs) are the benefits that humans obtain from ecosystems (Millennium Ecosystem
Assessment 2005). Since the ES concept includes economic, ecological as well as social values of nature,
it can be a used as tool for decision and policy making concerning sustainable resource management.
Ecosystem service delivery is strongly dependent on ecosystem management and frequently implies

trade-offs among services (Bugalho et al. 2011, 2016). However, to allow for the analysis of trade-offs
and effects of land use and management on the provision of ES, the ES concept needs to be
operationalized through quantitative assessments based on mapping and modelling (Seppelt et al. 2011;
Borges et al. 2014a; Andrew et al. 2015).

79 Even before ESs became a widely known concept, forest management was concerned with assessing the 80 benefits produced by forests under different kind of management (Grêt-Regamey et al. 2016; Kindler 81 2016). Since the start of modern forestry, forest management has mainly focused on wood production 82 and on how to manage forests efficiently for a sustainable yield of wood. However, multiple-use forestry 83 has long been practiced and was formally introduced already in the 1960s in the US (Hoogstra-Klein et 84 al. 2017). Later, the concept of sustainable forest management emphasized the need for inclusion of 85 ecological and social aspects and consideration of future generations (United Nations 1992). In the past 86 30 years, advanced forest decision support systems (DSS) have been developed to enable analysis of 87 complex problems related to forest management (Reynolds et al. 2008; Borges et al. 2014b). A forest 88 DSS is a software system that can be used for modelling of forest development based on both biological 89 processes and management effects over long time horizons. Though many forest DSSs were initially 90 developed with a strong focus on wood production, the wider perspective required in the analysis of 91 sustainable forest management is driving the development of DSSs to include models and methods 92 concerned with, e.g., climate change, biodiversity and various ESs (Borges et al. 2014b; Vacik and Lexer 93 2014).

94

A number of studies have addressed the question of how forest DSSs can be used to assess the future
 provisioning of ESs. Some of the earliest examples are from the US where DSSs for ecosystem
 management were developed to support forest management aimed at production of goods and services
 as well as maintaining ecosystem structures and functions (Rauscher 1999; Reynolds 2005). The Forest

Planning Model (FORPLAN) was developed in the late 1970s to support planning for multiple use and
 sustained yield of goods and services (Kent et al. 1991). NED (Twery et al. 2005) and the Ecosystem
 Management Decision Support (EMDS) system (Rauscher 1999; Reynolds 2005) was then developed by
 the USDA Forest Service, starting some 20 years ago.

103

104 In a more recent study, Biber et al. (2015) analyzed the effects of forest management intensity on ESs 105 delivery by compiling information from case studies in ten European countries where ten different DSSs 106 were used for scenario analysis. The results showed that there was an obvious strong positive 107 correlation between management intensity and wood production. However, for biodiversity the 108 correlation with management intensity depended on the forest region in which the case study area was 109 located. In some forest regions there was a trade-off between biodiversity and management intensity, 110 but in others a positive correlation between biodiversity and more intense management was found. For 111 other ESs, the correlation with management intensity was only weak and negative. For instance, there 112 was no clear trend for the relationship between non-wood products (mushrooms, cork, pine cones and 113 grazing) and management intensity. Further, Biber et al. (2015) concluded that local data and DSSs are a 114 useful complement to large-scale studies since they provide the most accurate and relevant information 115 available on a local level. The reader is referred to Corrigan and Nieuwenhuis (2017), Borges et al. (2017) 116 and Hengeveld et al. (2015) for a detailed description of how three of these DSSs were used to assess a 117 wide range of ESs in case study areas in Ireland and Portugal. Further, in their review of the same ten 118 DSSs included in Biber et al. (2015), Orazio et al. (2017) pointed out that even though the set of DSSs is 119 diverse, all of these DSSs can take ecological and socioeconomic conditions into account, in one way or 120 another. However, modelling of tree development and wood production output are still the strongest 121 parts in the DSSs and there is a need to develop the modelling to include indicators for other ESs and 122 biodiversity. Further, only some of the DSSs were able to include climate effects on forest growth and

most do not include other land uses. Most DSSs are thus well suited for current conditions but need further development to be useful under a changing climate as well as under new, alternative forest management regimes. This is in line with conclusions from more general reviews of DSSs in forest management (Reynolds et al. 2008; Muys et al. 2010; Vacik and Lexer 2014).

127

128 The studies mentioned above focus mainly on scenarios describing the development of the forest over 129 time, given biological processes such as growth and mortality, and the effects of harvesting and 130 silvicultural activities on the delivery of ESs and biodiversity conservation, i.e., the supply side. The 131 demand for ESs is rarely explicitly considered in these scenarios. However, the future development of a 132 forest landscape is very much dependent on what goes on in the world around this landscape. Drivers 133 like economic development, population growth and climate change will affect the demand for various 134 ESs and should also be considered at the landscape level. There are scenarios that could be used for this 135 type of analysis; for instance, the fifth Assessment Report of the Intergovernmental Panel on Climate 136 Change (IPCC) has set up a scenario framework which allows for global analysis of climate change 137 impacts and mitigation options under different socioeconomic development and covers a wide range of 138 potential future trajectories for global development of climate change, economic growth, population 139 development and overall use of natural resources (IPCC 2013, 2014a, b).

140

Furthermore, even projecting the forest development subject to external drivers is not sufficient when scenarios are supposed to reflect management responses on landscape level to various policies, climate change and market developments. The forest owner behavior as a response to policy, climate change, changing prices for forest products and other stakeholders will in many cases be an important factor that needs to be considered in the analysis (Mozgeris et al. 2016; Rinaldi et al. 2015).

146

147	The challenges in including ESs and biodiversity in scenario analysis using forest DSSs that have been				
148	highlighted above are in line with general issues that have been identified as problematic in ESs				
149	assessment for decision support: i) use of simplistic approaches due to lack of data and realistic models,				
150	ii) focus on only a limited number of ESs, often due to a lack of information on others despite their				
151	relevance to decision making, iii) precision, accuracy and uncertainties in assessments are not dealt				
152	with, and iv) that the demand for ESs is rarely considered since this usually requires an interdisciplinary				
153	approach (Eigenbrod et al. 2010; Seppelt et al. 2011; Wolff et al. 2015; Grêt-Regamey et al. 2016).				
154					
155	The objective of this study is to assess how a number of European state-of-the-art (i.e., the highest level				
156	of general development achieved in each country) forest management planning DSSs cope with				
157	modeling of ESs. The assessment will focus on the ability of these DSSs to generate landscape level				
158	scenarios to explore the output of current and alternative silvicultural approaches and forest				
159	management models (FMMs) in terms of a range of ESs and the robustness of these FMMs in the face of				
160	increased risks and uncertainty. With this general objective in view, this study more specifically aims to:				
161					
162	 evaluate the capacity of forest DSSs to project the output of ESs over time at the landscape 				
163	level, under different global climate change and market scenarios and taking forest owner				
164	behaviour into account, and				
165	 highlight needs for the further development of DSSs and propose approaches that could be used 				
166	to improve modelling.				

- 167 Material and methods
- 168 Assessment of DSSs

169 This study considers nine DSSs (Table 1) that are currently used as decision support tools for European 170 forest management and investigates how they can be used to analyze the impacts of different FMMs on 171 the provisioning of ESs in a range of forest landscapes in nine European countries (Germany, Ireland, 172 Italy, Lithuania, Netherlands, Portugal, Slovakia, Sweden and Turkey). These DSSs are all part of the 173 European Union project ALTERFOR (www.alterfor-project.eu), in which they will be used to examine 174 currently used and alternative FMMs in case study areas in each country and the potential to optimize 175 the forest management with regard to ES provisioning in different European countries. The case study 176 areas are briefly presented in Table 2, including some information on the main ESs and stakeholders in 177 each case study area. The assessment of the DSSs in this study is based on the properties of the DSSs 178 rather than the results from applying the DSSs in the case studies to create scenarios. However, 179 investigating how a DSS handles different ESs requires a context in which the DSS operates, i.e., a 180 landscape in which certain ESs are important and could be quantified in certain ways. Thus, in this study 181 the function of the case studies was to provide a range of forest landscapes with different focuses on ES 182 provision and different stakeholders as a background for the assessment of the DSSs. 183 184 [INSERT TABLE 1 AROUND HERE] 185 [INSERT TABLE 2 AROUND HERE} 186 187 More specifically, by forest DSS we mean a software system used for analysis pertaining to the domain

of forest management. Thus, it includes stand simulators, growth and yield models, and associated tools that are integrated into systems that make landscape projections for management planning. However, it does not encompass general purpose software systems like Microsoft Excel or GIS software, unless the DSS is implemented on those platforms. With this definition, a mere transfer of data from the DSS to a GIS for calculating an index does not make the GIS part of the DSS as the term is used here.

194	In the analysis of future output of ESs under various FMMs, the capability to include information on				
195	climate change and socioeconomic development from global scenarios as well as the behavior of forest				
196	owners at landscape level are important elements. Specific properties that are critical for DSSs to be				
197	able to handle these requirements were formulated based on existing knowledge and experiences from				
198	the INTEGRAL project (e.g., Biber et al. 2015; Orazio et al. 2017) and other studies (Muys et al. 2010;				
199	Vacik and Lexer 2014). These properties are:				
200	1) capability to deal with changing market prices over time for timber and biomass assortments;				
201	2) capability to include climate change effects in landscape level scenarios;				
202	3) the spatial specificity of the landscape scale analyses (i.e., the extent to which location of and				
203	spatial relationships between forest stands is known);				
204	4) inclusion of forest owner behaviour, in terms of the existing FMMs that different owner types				
205	use and alternative FMMs that may be used in the future.				
206	More detailed descriptions of these properties are presented in the section "Specific DSS properties				
207	considered in the assessment". These were defined by the authors in collaboration with researchers				
208	within the ALTERFOR project.				
209					
210	Information on the critical properties of the DSSs was solicited from researchers working with the				
211	systems in a number of steps. Initially, a questionnaire was sent out, in which a description of each DSS				
212	(Table 1) and their capabilities was requested based on a series of targeted questions. The information				
213	requested related both to the current status of the DSS at that time and to the developments that were				
214	planned to improve the DSS, referring to the specific properties mentioned above. These questionnaires				
215	were followed-up with telephone interviews that allowed for further discussion of missing or incomplete				

216 answers. A follow up request for information was sent out six months later and the researchers were 217 asked to report on the progress in DSS development and indicate if and how their respective DSSs 218 included the four properties listed above. This information, together with the earlier questionnaires, 219 provided a structure for the reporting of the results in this paper. Based on the comprehensive 220 information resulting from this process, a more detailed analysis was carried out to identify those 221 properties and ESs for which proper DSS design solutions had been found and, more importantly, 222 properties and ESs which in some DSSs were causing difficulties in terms of proper system integration. 223 The purpose of this analysis was to identify basic commonalities, contrasts and 'best practice' among all 224 DSSs in dealing with the critical properties and the analysis was carried out in collaboration with 225 researchers with expertise on the different ESs.

226 **Ecosystem services considered in the assessment**

227 Many forest DSSs are designed to primarily project the output of timber and other biomass, but with 228 increasing focus on sustainable forest management and the need to take other ESs into account, 229 development of DSSs are going in this direction. Besides timber and biomass, this study includes 230 biodiversity and four important ES categories that forest ecosystems provide and that forest 231 management may affect in different ways:

1) Biodiversity conservation (hereafter "biodiversity" and considered an ES) – based on three

habitat proxies for biodiversity at both stand and landscape scales, i.e., tree species

234 composition, forest structures (e.g. large trees, dead wood, etc.), and spatial-temporal

- 235 disturbance patterns. The specifics will of course vary (to some extent) between case study
- areas and the wildlife supported will depend on context and the proximity of species pools.
- 237 2) Carbon sequestration (including carbon storage in the forest) based on three main carbon
 238 pools, i.e., above and below ground biomass, deadwood, and harvested wood products.

239	3)	3) Other regulatory services (hereafter "regulatory services" and not including carbon				
240	sequestration) – other regulatory services apart from carbon sequestration, including forest					
241		attributes (e.g. tree species composition, stand age, etc.) that influence the risk and impact of				
242	catastrophic events at both stand and landscape scales, i.e., wildfire, windstorms, pests,					
243		snowstorms and droughts.				
244	4)	Recreational and aesthetic value – based on visual forest characteristics at both stand and				
245		landscape scales, conceptualized through the concepts of stewardship,				
246		naturalness/disturbances, complexity, visual scale, historicity/imageability, and ephemera (i.e.,				
247		landscape changes that are the outcome of seasonal variation (Ode et al. 2008)).				
248	5)	Water – includes five water-related ESs, i.e., water yield, flood protection, water flow				
249		maintenance, erosion control, and chemical conditions.				
250	Variables that are needed as output from the DSSs for evaluating the effects on ESs under different					
251	scenarios and FMMs are listed in Table 3. They were identified as part of this study by experts on these					
252	ESs, who developed standards for how each of these ESs should be modeled using a typical forest DSS,					
253	based on the available input data and specifying the resulting outputs (Nieuwenhuis and Nordström					
254	2017).					
255						
256	[INSERT TABLE 3 AROUND HERE]					
257						
258	Global climate change and market scenarios applied in the assessment					
259	Global	scenarios to be used as a background for landscape level scenarios produced by forest DSSs				
260	should provide trends in the demand and prices for various timber assortments at least at the country					
261	level based on developments in trade and on global markets. To include effects of climate change on					

forest growth and development, the global scenarios should also provide information on climate effects,
 namely temperature and precipitation.

The global scenarios considered in this study provide this information with 10-year intervals until 2100
 and reflect three alternative development pathways for this period:

- Current development Taking into account the EU policies until 2020 that are in the current
 legislation, thereafter continuing with some development towards the climate targets, following
 typical pathways of the past.
- 269 2) Rapid development of EU bioenergy sector Taking into account EU policies that aim at a 80%
- 270 reduction in emissions by 2050. Outside the EU, it is assumed that only the climate change
- 271 mitigation policies that were in place before 2015 are in effect.
- 3) Global development toward the climate targets Climate policies are assumed to be taken into
 action globally, but their effects are mostly seen in the latter half of the century.

274 These three scenarios were prepared using the global land use model GLOBIOM/G4M (Havlík et al. 275 2011; Kindermann et al. 2013) and were based on the policy targets for the European Union combined 276 with the Representative Concentration Pathways (RCP) - Shared Socioeconomic reference Pathways 277 (SSP) framework developed for the IPCC (IPCC 2013, 2014a, b; van Vuuren et al. 2011, 2014). The 278 framework consisted of two sets of independent scenarios in a matrix that allowed for various 279 combinations of scenarios: the four RCPs corresponding to different levels of radiative forcing, and the 280 SSPs that express the development of socioeconomic drivers. Since these are the most recent scenarios 281 produced by the IPCC based on substantial scientific input, they were the most appropriate scenarios 282 available for this kind of analysis, but any global scenarios providing similar information could be used. 283 The three global scenarios in this study are all based on the SSP2 "Middle of the road" scenario in

284 combination with RCP4.5 (Current development), RCP8.5 (Rapid development of EU bioenergy sector)

and RCP2.6 (Global development toward the climate targets). The climate model used to produce these

286 scenarios was HadGEM2-ES.

287 Specific DSS properties considered in the assessment

288 Timber assortments and prices

Timber and timber assortments is the basic output for most forest DSSs, but since there may still be differences, the DSSs are categorized into different levels of detail concerning the modeling. Timber assortments are classified in two main categories, 'stemwood' and 'other biomass' (i.e., tops, branches and stumps). For each category, the level of detail provided by each DSS is described using four levels of

293 increasing complexity:

1) harvested wood is given only in total volumes for each category (stemwood and other biomass),

295 2) harvested wood is given in volumes per stemwood assortments (sawlogs, pulpwood and

firewood) and also that the extracted volume of other biomass need to be available,

- 297 3) in addition to level 2, harvesting costs have to be included, and
- 4) in addition to level 3, transport costs should be included as well.

299 The capability to include and model changing timber prices and the effect on forest management is

300 needed as a link to global climate and market change scenarios that shows how prices for timber change

- 301 due to, e.g., market developments for bioenergy due to climate policies. For this project, the global
- 302 scenarios produced with the GLOBIOM/G4M model are downscaled to national level. These price trends
- 303 were expressed as average decadal mill gate prices for two assortment categories, sawlog and
- 304 pulpwood. In the DSSs, this price information (and linear interpolation) should be used in the
- 305 simulation/optimisation of the choice of FMMs over the planning horizon. Price changes should

306 therefore be reflected in the harvest levels. The most important aspect of the prices is their trend, so 307 the global trend should be properly reflected when landscape level scenarios are produced for each case 308 study.

309 *Climate change*

310 The global scenarios described in the section on timber prices also include climate change trends for 311 each country, indicating overall temperature and precipitation changes over the period until 2100 for 312 each country. To fully incorporate climate change effects, the DSSs should be capable of modelling 313 climate change in terms of its impact on tree growth and tree mortality. As these are the fundamental 314 processes behind forest dynamics from tree to landscape level, such DSSs can also provide ESs provision 315 trends under changing climate. In the assessment, climate change trends that can be incorporated in the 316 DSSs are described and variables in the DSSs that are impacted by these trends and the data sources for 317 the models used in the DSSs to represent these impacts are identified.

318 **Owner behaviour**

The Forest Landscape Development Scenarios (FoLDS) framework (Hengeveld et al. 2017) has been
 presented as an approach to model forest owner behaviour, and in this study the FoLDS framework will

321 be used as a baseline for the assessment of how owner behaviour is included in the DSSs.

322

In the FoLDS framework, different forest owner types (OTs) are defined along with their potential use of different forest management models (FMMs). This can be described using a so-called OT-FMM matrix. In this matrix, the proportions of the forest estate owned by different OTs are identified, and for each OT, the proportions of their forests that are managed using different FMMs are quantified. In order to reflect changing conditions over time, the values in this OT-FMM matrix should be dynamic, reflecting changes in OT proportions and in the FMMs that each OT uses. For instance, forests may be inherited by

329 city dwellers from farmers, resulting in different OT proportions, as well as changed management 330 objectives resulting in the use of different FMMs. At the same time, within (certain) OTs, the changing 331 market conditions (reflected by demand and prices) and the changes in climate will result in changes in 332 the (proportions of) FMMs used. Certain OT and their choice of FMMs may also be influenced by other 333 stakeholders. Existing FMMs are forest management models that are currently being used, while 334 alternative FMMs are management models that will be introduced in the future to deal with changing 335 market and climate conditions, and owner and stakeholder requirements. Existing OTs are categories of 336 forest owners grouped according to their management objectives and use of FMMs. New OTs may 337 develop over time based on changing market, socio-economic, environmental and climate conditions. 338 339 Thus, to incorporate the OT-FMM approach in a DSS, data on existing FMM proportions for existing OTs 340 and variables influencing OT behaviour (i.e., the selection and proportions of FMMs used) are needed. In 341 addition, alternative FMMs and new OTs and their behavior need to be defined based on sound 342 assumptions. For each decade (or other period), an OT-FMM matrix in which the proportions of existing 343 and alternative FMMs used by each existing and new OT can then be defined. 344 345 346 Spatial specificity 347 The level of spatial specificity in the DSS is relevant especially in the modeling of ESs but also affects 348 other aspects (e.g., the possibility to include transportation costs in the costs for harvesting). In this 349 study, spatial specificity in a DSS is considered to depend on the source of the spatial data used in the 350 DSS, the data format, and if forest stands, inventory plots or other basic forest information units are 351 used as a basis or if they are grouped into homogenous strata (based on stand, site and management

352 characteristics) and, if so, at what scale. The reason is that grouping will result in a partial loss of spatial

- 353 specificity, as the location of each stand is lost in the strata. If no grouping takes place, the level of
- 354 spatial specificity is still affected by whether the adjacency of stands is known within the DSS and how
- this information is used.

356 **Results**

357 The results of the assessment of the DSSs are summarized for the ESs and for each property in the 358 following sections. Table 4 shows a classification of the nine DSSs according to their ability to quantify 359 the variables required for the ES provision assessment. A green cell indicates that the variable is part of 360 the DSS and that the ES is assessed within the DSS and a red cell indicates that the variable is not part of 361 the DSS. A yellow cell indicates that some of the analysis required to produce the outputs for the 362 variable in question can only be done outside of the DSS, though based on the DSS 363 simulation/optimisation outputs, i.e., by using models or software that are not part of the DSS. For 364 instance, frequently separate GIS software is needed for spatial analysis since several DSSs lack this 365 functionality. When a DSS does not include certain models, e.g., for dead wood, harvest residues or 366 below ground biomass, this also results in a yellow cell since separate models are then used to calculate 367 the variables based on output from simulation/optimization carried out in the DSS.

368

369 **Ecosystem Services**

370 Most of the DSSs include the standard forest inventory variables (Table 4); however, non-timber related 371 variables such as those associated with stand structure and dead wood are less often an integral part of 372 the DSSs and need to be quantified outside of the DSS, for instance in a stand-alone GIS, or are not part 373 of the DSS at all. In most DSSs, the definition of decision variables is based on harvest related options. 374 These options need to be considered in order to address concerns with both wood and non-wood goods 375 and services. Nevertheless, the outcome of the simulation or optimization depends in most cases on 376 timber related criteria (i.e., they are the decision variables), while other criteria are more often 377 addressed when analyzing the results of the simulation and optimization processes. This demonstrates 378 that most DSSs have their origin in traditional forest management, with environmental and social 379 elements added at a later stage.

380

381 [INSERT TABLE 4 AROUND HERE]

382

383 Timber assortments and prices

384 Concerning the timber assortment 'stemwood', most DSSs can output harvested wood volumes per

385 stemwood assortment (sawlogs, pulpwood and firewood). Furthermore, most DSS may include

386 harvesting costs. In some cases, the analysis is conducted considering stumpage prices and thus

387 harvesting and transportation costs are considered indirectly (e.g., SADfLOR). SILVA is the only DSS that

388 can include transportation costs (based on assumptions on distances). Kupolis, EFISCEN-space, Sibyla,

389 Heureka and ETÇAP can only include transportation costs in the forest up to the roadside.

390 Most DSSs use look-up tables to account for dynamic timber prices (Supplementary Table S1). In many

391 cases, the modeling would also be based on the assumption that rising timber prices would lead to at

392 least some increased management activity or even changes in FMMs for some OTs. A chain of effects

393 from changing prices to changing FMMs and changes in ESs provisioning levels seems to be expected for

395

394

396 Climate change

most of the DSSs.

All but three of the DSSs currently include climate models of some kind (Supplementary Table S2), which allow for the modeling of climate change effects on growth rates, either on tree or stand level. In Kupolis, SADfLOR and ETÇAP, which do not explicitly include climate models, climate change effects could be included in a similar way by adjusting growth rates; the main problem in these cases is the lack of data on climate change effects on growth. In some DSSs the climate change scenarios used to assess

402	the impact on forest grow	h. and hence forest	products supply, d	o not correspond to the global

403 scenarios used to derive timber price and demand. Therefore, supply and demand are not perfectly

404 balanced and may not be directly comparable in these cases.

405

406 **Owner behaviour**

- 407 All of the DSSs can somehow take owner behavior in terms of FMMs into account and make the OT-
- 408 FMM matrix dynamic over time in scenarios. The OT-FMM matrix describing the current situation is
- 409 based on multiple sources: information from stakeholders, expert knowledge, scientific studies, forest
- 410 statistics and inventory data (Supplementary Table S3). These will also be the basic sources for
- 411 formulation of OT-FMM matrices that describe the future state, but there is obviously a great challenge
- 412 in making predictions about future OTs and alternative FMMs.
- 413

414 Spatial specificity

415 The level of spatial specificity varies between the DSSs (Supplementary Table S4). Half of the DSSs use

416 stand-level data and the rest group stands into strata in the analysis, resulting in a loss of stand-level

- 417 spatial specificity in the assessment of the ESs. Most of the DSSs are spatial to the degree that the
- 418 locations of stands in the landscape are known, but only two of them (SADfLOR and ETÇAP) can handle
- 419 the more complex issue of adjacency, i.e., the relative location of stands in relation to each other.
- 420
- 421

423 **Discussion**

424

425 support on how various FMMs will affect the output of ESs and biodiversity, and how global drivers as 426 well as forest owner behavior on local level can influence future development. The capacity of a number 427 of forest DSSs to perform the kind of analyses needed is assessed based on their capabilities to model 428 the provisioning of ES under various FMMs and properties of the DSSs relevant to that. The discussion 429 focuses on how the DSSs cope with the modelling of timber and biomass, biodiversity, carbon 430 sequestration, regulatory services, recreational and aesthetic value and water. Certain properties of the 431 DSSs and lessons learned concerning methodological approaches are also discussed and needs for future 432 development of the DSSs are identified.

This study is motivated by the need to provide policy makers as well as forest owners with decision

433 Modelling of ecosystem services

434 Timber and biomass

435 For most DSSs in this study, timber is clearly the ES which has been in focus when the DSS was 436 developed and all DSSs are very strong in the modelling of timber, both the standing stock and 437 harvested volumes. This is in line with previous research on forest DSSs (Vacik and Lexer 2014; Nobre et 438 al. 2016). The DSSs can output harvested volumes of stemwood and the basic assortments sawlog, 439 pulpwood and firewood. However, not all these DSSs can model output of residues that can be used for, 440 e.g., bioenergy, probably because this is not a traditional assortment in the area where those DSSs are 441 used. This may be a limiting factor when scenarios with alternative FMMs are created, but using 442 estimates based on results from DSSs applied in similar types of forest could be a solution to this 443 problem.

444 An issue that required adjustment of the timber and biomass prices used in the modelling was that the 445 global scenarios considered in this study included prices for material delivered to the industry (i.e., mill 446 gate prices) while almost all DSSs only included harvesting and primary in-forest transport costs and not 447 secondary transport costs such as road haulage. This is because the systems are not designed to link 448 harvesting operations in individual stands with the particular industries that will process the timber and 449 biomass, while the prices in the global scenarios consider the industry relevant mill gate prices because 450 the underlying reasoning is based on economic partial equilibrium modelling. This means that the global 451 scenario prices will have to be adjusted in each DSS to reflect the average secondary timber and biomass 452 transport costs within the case study areas.

453 **Biodiversity**

454 As the necessary parameters for modelling population-level responses are generally limited to a small 455 number of forest species (Johansson et al. 2016), the landscape scale implications for biodiversity from 456 forest management alternatives are often projected using biodiversity proxies (Felton et al. 2017b). In 457 this assessment we evaluated three categories of biodiversity proxies: forest structure, tree species 458 composition, and spatial-temporal disturbance patterns, all with demonstrated relevance to the 459 maintenance of biodiversity in production forest stands (Felton et al. 2017a). In this regard most of the 460 DSSs assessed appear to provide at least minimal indicators of direct relevance to each of these three 461 broad categories of habitat-relevant proxies. With respect to tree species composition, for example, all 462 of the DSSs are capable of modeling relevant outcomes. Capturing changes in tree species composition 463 is vital as a particular tree species provides distinctive resources and habitats which may now be rare 464 due to recent and historic shifts in land-use in many regions of Europe (Lindbladh et al. 2014; Reitalu et 465 al. 2013; Wulf and Rujner 2011). These changes are frequently associated with population declines and 466 increased extinction risk for many forest species (Berg et al. 1994; Lindenmayer et al. 2006).

467

468 There are however some limitations with respect to DSS capabilities. A subset of the DSSs assessed were 469 unable to project some forest structures, including the provision of dead wood of different sizes, and in 470 one case, the capacity to model large trees. Large trees may be vital to habitat provision in forest 471 ecosystems, due to the resources and environments created by their well-developed crowns, complex 472 bark features, stem hollows, and sap flows (Lindenmayer et al. 2012; Siitonen and Ranius 2015). The 473 presence of old and large trees is also directly relevant to the provision of coarse woody debris within 474 forest landscapes (Jonsson et al. 2006; Lindenmayer and Franklin 2002). Dead wood is also a critical 475 resource for a large number of species in forests, which may represent a quarter of all forest species in 476 some regions (Siitonen 2001; Stokland et al. 2003). The capacity to model dead wood is thus often an 477 important capacity of DSSs when modelling habitat availability in these regions. The inability to do so 478 generally resulted from a lack of available input data for dead wood amounts and categories within 479 different forest types at different stages of forest development, or a lack of model parameters for 480 projecting, for example, dead wood decomposition rates. Qualitative assessments and/or expert input 481 may be means of at least partially compensating for such limitations. Careful consideration of trade-offs 482 is however required. For instance, increased amount of woody debris may lead to significant increase of 483 wildfire hazard in some ecosystems, which may ultimately induce loss of habitat and biodiversity in case 484 of occurrence of severe wildfire.

485

486 We also note that there are limitations with regards to the extent to which spatially explicit

487 considerations can be analyzed by these DSSs. In the case of biodiversity conservation indicators, it is 488 crucial that DSSs may extend from stand to landscape scale and include spatial components, as pointed 489 out by previous studies (Filyushkina et al. 2016; Nobre et al. 2016). There are biodiversity components 490 that may only be assessed at the landscape level. This is especially the case with respect to adjacency 491 issues. The spatial configuration of habitat availability and the proximity of source populations are of

492 direct relevance to understanding population dynamics and emergent patterns in forest biodiversity 493 (Fahrig 2003). Additional complexities and concerns may be raised regarding the ability of DSSs to 494 capture the wide variation in resultant habitat availability that arises due to everything from ownership 495 differences in silvicultural interventions to fine scale differences in site conditions. More specifically, the 496 complexities and uncertainties involved in projecting the interactions of climate change, abiotic and 497 biotic disturbance regimes, and forest dynamics, highlight the need for caution when interpreting DSS 498 projections of future habitat availability. Despite these limitations, we believe that in general, current 499 DSSs, in combination with qualitative assessments and expert opinion, should provide output of 500 sufficient resolution to distinguish FMMs in terms of their habitat provisioning capabilities.

501 Carbon sequestration

502 The variables listed in table 4 are useful for characterizing carbon stocks and for estimating carbon stock 503 changes or carbon gains and losses. These issues can be addressed, in a harmonized manner, by using 504 well developed conversion factors for standing volume (stocks) or volume increment (carbon gains) in 505 the case of above and below ground biomass (IPCC 2006). In the case of deadwood, carbon fluxes can be 506 estimated using inflows of carbon from harvest residues, the existing deadwood pool and published 507 decomposition factors (see Olajuyigbe et al. 2011; Yatskov et al. 2003). Carbon dynamics of harvested 508 wood products could be derived from timber assortments based on relationships between timber 509 assortments and semi-finished wood products (Donlan et al. 2013) and published half-lives using the 510 harvested wood products decay model (IPCC 2006). However, it must be recognized that the model 511 system boundary would not be limited to regional carbon stock changes given the large influence of 512 timber trade.

Alternative FMMs for carbon sequestration could be used to analyze effects of, e.g., plantation/clearfell
 versus continuous cover forestry (Lundmark et al. 2016), rotation age and thinning intensity (Chikumbo

and Starka 2012), low impact management versus extensive management (Vanderberg et al. 2011), fate
of harvested wood products and product substitution (Lundmark et al. 2016; Moore et al. 2012).
Different silvicultural practices and forest disturbance events influence forest and product carbon
storage over different time periods. The most common approach to account for this is to derive
estimates assuming steady-state to steady-state transitions by running model simulations for 3
rotations, typically 200-400 years (e.g., Lundmark et al. 2016).

521 Carbon assessment only includes aboveground, belowground biomass, deadwood and harvested wood 522 product pools. However, carbon sequestration of European forest ecosystems is also influenced by the 523 balance of numerous other greenhouse gases such as N₂O, CH₄ and CO, particularly in relation to 524 fertilizers, forest fires and drainage of peatland soils (IPCC 2006). In countries where non-CO₂ emissions 525 from forest may be large, such as resulting from the drainage of organic soils (Ireland, Sweden) or forest 526 fires (Portugal, Italy), additional efforts would be required to provide a more comprehensive greenhouse 527 gas footprint. Mineral soil carbon stock changes have not been included in the DSSs because of the large 528 uncertainty and difficulty in deriving these estimates. Current knowledge remains inconclusive on both 529 the magnitude and direction of carbon stock changes in mineral forest soils associated with forest type, 530 management and other disturbances, and cannot support broad generalizations (IPCC 2006). Emissions 531 from drained organic soils, on the other hand are well described and easily estimated if sufficient detail 532 on soil type and extent of drainage is known (IPCC 2006).

In many forest DSSs, land use change (i.e., afforestation or deforestation) can be included, but the impact of such change on the carbon dynamics cannot be modeled, and yet such change will have a profound influence on the regional carbon balance. This is confounded by the inability of most DSSs to provide estimates of soil and dead organic matter stock changes, which may occur for years after a land

use transition occurs. Estimation of soil stock changes, in particular, requires a high spatial resolution for
input data (i.e., soils types, etc.).

539 Perhaps the most influential process influencing forest mitigation potential is, and one not considered in 540 this context, the effect of energy and product substitution. Dearing Oliver et al. (2014) suggest that the 541 use of wood products for substitution could reduce global emission by 14% to 31%. Lundmark et al. 542 (2016), suggest that product substitution had the greatest influence on overall mitigation capacity when 543 different FMMs were compared. Life cycle analysis of wood products provides a way of measuring the 544 CO_2 savings that can be made by use of wood products and replacement of high CO_2 emission potential 545 products such as energy, cement, etc. (Sathre and O'Connor 2010). The overall concept is avoidance of 546 emissions by replacement of processes or products using wood as a substitution (Sathre and O'Connor 547 2010). This is a complex problem and can only be introduced at the stand or regional scale using broad 548 generalizations for the fate of harvested products (see Lundmark et al. 2016). The only feasible solution 549 is to perform sensitivity or scenario analysis on different FMMs and use displacement factors (Sathre 550 and O'Connor 2010) to estimate emission savings due to product substitution above a BAU scenario. The 551 use of the three global scenarios presented for this study may provide a framework.

552 **Regulatory services**

Results evince that all DSSs in this study are able to quantify stand-level variables required to assess the likelihood and damage associated to catastrophic events in the respective case study areas. This information is an important basis for supporting regulatory ecosystem services at the landscape level, but not entirely sufficient since spatial aspects are important to the regulatory services defined in this study, i.e., wildfire, windstorms, pests, snowstorms and droughts. Most DSSs lack spatial analysis components to assess how a catastrophic event may spread over a landscape. Moreover, the comparability of results across case studies will depend on the definition of vulnerability classes

560 according to the values of the stand-level variables. The literature underlines the local specificity of 561 models to assess the contribution of each FMM to the mitigation of impacts of catastrophic events. For 562 example, this was demonstrated by research that analyzed the correlation of inventory variables over 563 which forest managers have control and a) the likelihood of occurrence of wildfires (e.g., Botequim et al. 564 2013; Garcia-Gonzalo et al. 2012), b) the damage caused by wildfires (e.g., Gonzalez et al. 2007; 565 Marques et al. 2011) and c) the damage caused by windstorms (Zeng et al. 2010). For example, in the 566 Mediterranean region an increased frequency of extreme events such as fire and droughts is highly likely 567 as a result of climate change and will result in changes in ES output.

568 Future climate and forest management are likely to have a large influence on future forest disturbances 569 such as pest outbreaks, forest fires and windthrow effects. These disturbances are recognized as among 570 the most important components of forest greenhouse gas emissions and the effects may last for 571 hundreds of years after a disturbance event (Kurz et al. 2009; Moore et al. 2012; Vilen and Fernandes 572 2011). It would be important to include also likely emissions from disturbance under different FMMs in 573 scenario analysis. For example, low intervention management may result in limited regeneration and a 574 build-up of fuel sources (dead wood), which could increase the likelihood of fires, windthrow, etc. 575 Ideally, these risks must be included in the FMMs applied in the DSSs. A possible approach is the use of 576 mean disturbance intervals or disturbance probabilities for different forest management scenarios (see 577 Vanderberg et al. 2011). The complexity of modeling risks and effects of climate change and the need 578 for developing this further to provide relevant decision support for the development of adaptation and 579 mitigation strategies has been pointed out in previous reviews of forest DSS (Muys et al. 2010; Vacik and 580 Lexer 2014; Orazio et al. 2017).

581 Recreational and aesthetic value

582 Existing studies present experiences made with quantifying the recreational and aesthetic value in 583 forestry as well as in other fields, such as landscape research, and together they add up to an extensive 584 list of possible criteria and indicators that could be used to measure this value. The assessment of the 585 capabilities of the DSSs showed that variables related to other factors than traditional forest attributes 586 and silvicultural activities are difficult to implement. Considering that most forest DSSs have not been 587 specifically developed to include modeling of recreational and aesthetic values, the pragmatic approach 588 to provide output on this value was to focus on variables related to forest attributes (cf. Edwards et al. 589 2011). Focusing on these attributes provided a list as defined in Table 4.

590 All DSSs in this study have the capability to provide information on the output of recreational and 591 aesthetic value as they are defined in terms of these variables, but all the DSSs do not include all these 592 variables; what output can be delivered varies between DSSs. In order to still be able to compare 593 outcomes from different DSSs, a potential solution is to accept that the DSSs use different indicators for 594 recreational and aesthetic value and instead determine a total index score based on different indicators 595 for this ES and compare the outcomes for different FMMs for different countries. The forest data 596 commonly used as input for the DSSs might in some cases be complemented with data from other 597 sources. Especially variables related to spatial aspects are out of limits to many DSSs, e.g., spatial 598 relationships between different stands or between a forest stand and another feature in the landscape, 599 and may have to be omitted. However, as is the case for many of the DSSs, GIS analysis may be 600 performed outside the DSS to complement the DSS output.

601 Water

Most DSSs are not built with a focus on water related ESs. It is often difficult to relate ES indicators to
 simple parameters at the stand level without additional modeling. For example, most DSSs do not
 include evapotranspiration, soil water storage, annual erosion or nutrients uptake. To quantify the

605 variation in these indicators additional modelling is required. Some DSSs do have built-in quantification 606 of ESs (such as soil erosion and sedimentation risk for Ireland), but others need to be integrated with 607 additional models. For most DSSs, outputs can be used to feed a simplified model able to evaluate some 608 water related ESs. For instance, though not explicitly included in the DSS, a rough estimation of water 609 yield is relatively simple to obtain from DSS outputs. For erosion control and chemical conditions some 610 of the parameters are available from the DSSs, such as the annual felling area and tree species 611 composition. For a better estimation, soil properties (e.g., water storage capacity and soil infiltration) 612 should be included as well as indicators such as local slopes or proximity to rivers, which is a spatial 613 variable. Flood protection and water flow maintenance are difficult to estimate since important 614 parameters are often missing, but inclusion of soil properties would be of help. 615 Spatial aspects are important for water related ESs on landscape level and the capabilities of the DSSs in

this respect could be improved. An important factor would be the inclusion of other land use than

617 forestry in the analysis, since water related ES provisioning is often similar even under different forest

618 management. However, an explicit spatial distribution of FMMs would also improve the output.

619

620 Alternative forest management models

Of the four properties identified as critical for the DSSs to project the output of ESs, the capability to deal with changing timber and biomass prices over time, the capability to include climate change effects, and the spatial specificity of the landscape scale analyses have been discussed above in connection to the ESs. However, the capability to include alternative FMMs that may be used in the future needs some further attention. 626 The DSSs are mainly developed to address current issues and solve existing tasks. DSSs that are tailored 627 to stands of horizontally homogeneous cohorts have often been designed to describe competition and 628 growth on the stand level rather than on the individual tree level. Such models have successfully been 629 applied to silvicultural systems that focus on large even-aged stands. However, if other ESs beyond 630 wood production, climatic resilience and risk management are to be considered, a multi-species stand 631 structure with a continuous distribution of age classes may become relevant. Such alternative FMMs 632 usually go beyond the scope of operational DSS and there is a risk that alternative FMMs may be limited 633 by the existing functionality of DSSs and the current FMMs, which have also been highlighted by 634 previous reviews of forest DSS (Muys et al. 2010; Filyushkina 2016; Nobre et al. 2016). To use existing 635 empirical growth and yield models to include very different FMMs in scenarios can be problematic, e.g., 636 if a DSS has been built and used mainly for even-aged forestry, models for tree growth and regeneration 637 will probably have to be adjusted or newly developed if the DSS is to be used to create scenarios that 638 include FMMs based on continuous cover forestry. Further development of the DSSs in this respect may 639 thus be essential if indeed the provision of ESs depends on mixed uneven-aged stands. To cover growth 640 and structure development of highly heterogeneous stands, model developers will need to describe the 641 effect of position-dependent thinning interventions on nearest-neighbour competition and growth. 642 While much of the theory implemented within modern DSSs will persist and contribute to future 643 development, many models may require an increase in their spatial discretization down to the individual 644 tree level. Nevertheless, the landscape ecology literature demonstrates that addressing the provision of 645 ESs other than timber may be achieved by targeting landscape structure and composition variables 646 (Borges and Hoganson 2000). It is landscape-scale process and form that provide the framework to 647 ecological functioning (Baker 1992). The relation between the forested landscape spatial structure and 648 its ecological characteristics was highlighted by several authors (e.g., Bradshaw 1992; Franklin and 649 Forman 1987; Naiman et al. 1993). Hunter (1990) further emphasized that biodiversity in a forested

landscape would be best preserved in a land mosaic characterized by a diverse array of stands. The DSSs
that report spatial analysis functionalities may thus be used to generate alternative landscape-level
FMMs and assess their contribution to the provision of a wide range of ESs.

653 Landscape scale decision support

654 The DSSs included in this study originated from stand-level forest management planning models that 655 incorporate single tree or stand growth and yield models. As is known from landscape ecology, 656 addressing the provision of ESs other than timber requires the evaluation of landscape-level structures 657 and composition variables. This study has shown that the assessed DSSs have been developed further 658 and are now capable of dealing with the analysis of ESs at the landscape level, but only for the forest 659 component. Only a few forest DSSs are capable of landscape analysis that includes other land cover than 660 forest and other land use than forestry, as shown in a review of the 63 DSSs listed on the wiki produced 661 within FORSYS, the EU-COST Action FP0804 Forest Management Decision Support Systems (Packalen et 662 al. 2013). Ecosystem service and climate impact research, beyond the prediction of productivity and 663 species composition, needs to address the above and below ground interactions within and between 664 forests and with neighbouring landscape units. A widened spectrum of ecosystem services that result 665 from the interaction among different components of the landscape, such as forests, agricultural areas 666 and anthropogenic systems can then be considered. For example, models that use a detailed 667 physiological component (Gutsch et al. 2002) are particularly suitable to represent hydrological 668 processes including lateral fluxes. Coupling of hydrological and ecosystem models may enhance the 669 quality of landscape-related case studies and enables the capturing of feedback processes between the 670 forest and the hydrological system, such as groundwater recharge and nutrient and pollutant discharge 671 (Molina-Herrera et al. 2015).

672 The study at hand underpins that all the DSSs presented can quantify essential stand properties for 673 assessing forest vulnerability due to catastrophic events, which forms the basis for defining an effective 674 regulatory ecosystem service framework at the landscape level. However, the lateral interaction of 675 landscape elements is particularly relevant in the case of catastrophic events, such as the spread of fire 676 across the landscape (Luo et al. 2014) or the protection of forest areas against storm damage as a result 677 of shelter provided by other forests on the windward side and by other topographical landscape 678 features. Seed dispersal is also an important long-term landscape-level process within the scope of 679 forest resilience after fires and wind throw (Wang et al. 2013). Therefore, quantifying disturbance 680 processes and preventative management approaches is a typical objective of landscape models (e.g. 681 Syphard et al. 2011). 682 The rapid increase of computational capacity within research and land-use management institutions will 683 promote the integration of all landscape components into the DSSs so that interactions between and 684 within all landscape elements can be incorporated in the ES assessments (e.g. Schumacher et al. 2004). 685 At the same time, the refinement of the forest representation within the DSSs will continue (e.g. 686 through the development of physiological single-tree growth models) and will facilitate a more accurate 687 and detailed assessment of the effects of climate change on the development and productivity of the 688 forest component of the landscape. 689

690 **Conclusions**

To sum up, all DSSs assessed may be used to estimate the impacts of both stand and landscape-level
FMMs on the provision of a range of ecosystem services over a typical temporal planning horizon (e.g.,
one and a half rotation in the case of even-aged structures). Results evince further that DSSs can be
used to assess how timber price trends may impact that provision over time. The inclusion of forest

695 owner behavior as reflected by the adoption of specific FMMs seems to be also in the reach of all DSS.

696 Nevertheless, in some cases the DSSs need more data and models that may help to estimate the impacts

697 of climate change on biomass production and other ESs. In scenarios covering long time horizons it is

698 crucial to include modelling of climate change effects, since the outputs of most ESs are likely to change

699 due to a changing climate. In many DSSs, the spatial analysis functionality need to be further developed

for a more accurate assessment of the landscape level output of ESs from both current and alternative

701 FMMs. The capability to include alternative and truly innovative FMMs is also an issue for many of the

702 DSSs, e.g., FMMs driven by the production of other ESs than timber and biomass.

703 Even though the DSSs produce estimates of the same ESs using the same variables, different methods

are used in the modelling approaches. The question is if the methodologies used to estimate the ESs

705 have an impact on the outputs and, ultimately, if the outputs, in terms of ES estimates, are really

706 comparable (cf. Biber et al. 2015). However, insisting on uniform methodologies could result in a loss of

relevance of ES estimations at the local landscape scale. We hope that this study has taken a few steps

in the direction of making outputs of different DSSs comparable by assessing their capabilities to

rogenetic testimate certain ESs in an integrated manner using a range of global scenarios.

710 **References**

- 711 Andrew ME, Wulder MA, Nelson TA, Coops NC (2015) Spatial data, analysis approaches, and information
- needs for spatial ecosystem service assessments: a review. GISci & Remote Sens 52(3): 344-373.
- 713 https://doi.org/10.1080/15481603.2015.1033809
- 714 Baker WL (1992) The landscape ecology of large disturbances in the design and management of nature
- 715 reserves. Landsc Ecol 7: 181-194. https://doi.org/10.1007/BF00133309
- 716 Baskent EZ, Keles S (2005) Spatial forest planning: A review. Ecol Model 188(2-4): 145-173.
- 717 https://doi.org/10.1016/j.ecolmodel.2005.01.059.
- 718 Başkent EZ, Keleş S, Kadıoğulları AI (2013) Challenges in developing and implementing a decision support
- systems (ETÇAP) in forest management planning: a case study in Honaz and Ibradı, Turkey. Scand J For
- 720 Res 29(sup1): 121-131. https://doi.org/10.1080/02827581.2013.822543

- 721 Berg A, Ehnström B, Gustafsson L, Hallingbäck T, Jonsell M, Weslien J (1994) Threatened plant, animal,
- and fungus species in Swedish forests Distribution and habitat associations. Conserv Biol 8(3): 718-731.
- 723 Biber P, Borges JG, Moshammer R, Barreiro S, Botequim B, Brodrechtová Y, Brukas V, Chirici G, Cordero-
- 724 Debets R, Corrigan E, Eriksson LO, Favero M, Galev E, Garcia-Gonzalo J, Hengeveld G, Kavaliauskas M,
- 725 Marchetti M, Marques S, Mozgeris G, Navrátil R, Nieuwenhuis M, Orazio C, Paligorov I, Pettenella D,
- 726 Sedmák R, Smreček R, Stanislovaitis A, Tomé M, Trubins R, Tuček J, Vizzarri M, Wallin I, Pretzsch H,
- 727 Sallnäs O (2015) How sensitive are ecosystem services in european forest landscapes to silvicultural
- 728 treatment? For 6: 1666-1695. https://doi.org/10.3390/f6051666
- 729 Borges JG, Garcia-Gonzalo J, Bushenkov VA, McDill ME, Marques S, Oliveira MM (2014a) Addressing
- 730 multi-criteria forest management with Pareto Frontier methods: an application in Portugal. For Sci 60:
- 731 63-72. https://doi.org/10.5849/forsci.12-100
- 732 Borges JG, Hoganson HM (2000) Structuring a landscape by forestland classification and harvest
- 733 scheduling spatial constraints. For Ecol Manag 130: 269-275. https://doi.org/10.1016/S0378-
- 734 1127(99)00180-2
- 735 Borges JG, Marques S, Garcia-Gonzalo J, Rahman AU, Bushenkov VA, Sottomayor M, Carvalho PO,
- 736 Nordström E-M (2017) A multiple criteria approach for negotiating ecosystem services supply targets
- and forest owners' programs. For Sci 63: 49-61. https://doi.org/10.5849/FS-2016-035
- 738 Borges JG, Nordström E-M, Garcia-Gonzalo J, Hujala T, Trasobares A (2014b) Computer-based tools for
- range supporting forest management: the experience and the expertise world-wide. Department of Forest
- 740 Resource Management, Swedish University of Agricultural Sciences (SLU), Umeå.
- 741 Botequim B, Garcia-Gonzalo J, Marques S, Ricardo A, Borges JG, Tomé M, Oliveira M (2013) Developing
- 742 wildfire risk probability models for Eucalyptus globulus stands in Portugal. iForest 6:217-227.
- 743 https://doi.org/10.3832/ifor0821-006
- 744 Botequim B, Zubizarreta-Gerendiain A, Garcia-Gonzalo J, Silva A, Marques S, Fernandes P, Pereira J,
- Tomé M (2015) A model of shrub biomass accumulation as a tool to support management of Portuguese
- 746 forests. iForest 8: 114–125. https://doi.org/10.3832/ifor0931-008
- 747 Bradshaw FJ (1992) Quantifying edge effect and patch size for multiple-use silviculture: a discussion
- 748 paper. For Ecol Manag 48: 249-264. https://doi.org/10.1016/0378-1127(92)90148-3
- de Bruin JO, Hoogstra-Klein MA, Mohren GMJ, Arts BJM (2015) Complexity of forest management:
- 750 exploring perceptions of Dutch forest managers. For 6 (9): 3237-3255.
- 751 https://doi.org/10.3390/f6093237
- de Bruin JO, Kok K, Hoogstra-Klein MA (2017) Exploring the potential of combining participative
- backcasting and exploratory scenarios for robust strategies: Insights from the Dutch forest sector. For
- 754 Policy Econ 85: 269-282. https://doi.org/10.1016/j.forpol.2017.06.007

- 755 Bugalho MN, Caldeira MC, Pereira JS, Aronson JA, Pausas J (2011) Mediterranean cork oak savannas
- require human use to sustain biodiversity and ecosystem services. Front Ecol Environ 9(5): 278-286.
- 757 https://doi.org/10.1890/100084
- 758 Bugalho MN, Dias FS, Briñas B, Cerdeira JO (2016) Using the high conservation value forest concept and
- Pareto optimization to identify areas maximizing biodiversity and ecosystem services in cork oak
- 760 landscapes. Agrofor Syst 90: 35-44. https://doi.org/10.1007/s10457-015-9814-x
- 761 Canton A, Pettenella D (2010) Family forest owners' motivations in forest management activities: a case
- study in Recoaro Terme municipality (north-east Italy). Forest@ 7: 44-57.
- 763 https://doi.org/10.3832/efor0618-007
- 764 Chikumbo O, Starka ST (2012) Maintaining an optimal flow of forest products under a carbon market:
- 765 Approximating a Pareto set of optimal silvicultural regimes for Eucalyptus fastigata. Open J For 2(3):
- 766 138-149. https://doi.org/10.4236/ojf.2012.23017
- 767 Clerkx A, Hengeveld G, Schelhaas M, Helmink A (2016) Boseigendom in Twente en Salland: resultaten
- van een enquête onder kleine boseigenaren in Twente en Salland. Alterra-rapport 2731. Alterra-
- 769 Wageningen University and Research, Wageningen.
- 770 Corrigan E, Nieuwenhuis M (2017) Using goal-programming to model the effect of stakeholder
- determined policy and industry changes on the future management of and ecosystem services provision
- by Ireland's Western Peatland forests. Sustain 9(1): 11. https://doi.org/10.3390/su9010011
- 773 Dearing Oliver C, Nassar NT, Lippke BR, McCartet JB (2014) Carbon, fossil fuel, and biodiversity
- mitigation with wood and forests. J Sustain For 33(3): 248-275.
- 775 https://doi.org/10.1080/10549811.2013.839386
- Donlan J, Black K, Hendrick E, O'Driscoll E, Byrne KA (2013) Future change in carbon in harvested wood
- products from Irish forests established prior to 1990. Carbon Manag 4(4): 377-386.
- 778 https://doi.org/10.4155/cmt.13.37
- Dudley N (ed) (2008) Guidelines for applying protected area management categories, including Stolton
- 780 S, Shadie P, Dudley N (2013) IUCN WCPA best practice guidance on recognising protected areas and
- 781 assigning management categories and governance types. Best Practice Protected Area Guidelines Series
- 782 No. 21, IUCN, Gland.
- 783 Edwards D, Jensen FS, Marzano M, Mason B, Pizzirani S, Schelhaas M-J (2011) A theoretical framework
- to assess the impacts of forest management on the recreational value of European forests. Ecol Indic
- 785 11(1): 81-89. https://doi.org/10.1016/j.ecolind.2009.06.006
- 786 Eggers J, Holmström H, Lämås T, Lind T, Öhman K (2015) Accounting for a diverse forest ownership
- 787 structure in projections of forest sustainability indicators. For 6: 4001-4033.
- 788 https://doi.org/10.3390/f6114001

- Eggers J, Lämås T, Lind T, Öhman K (2014) Factors influencing the choice of management strategy among
 small-scale private forest owners in Sweden. For 5: 1695-1716. https://doi.org/10.3390/f5071695
- Eigenbrod F, Armsworth P, Anderson B, Heinemeyer A, Gillings S, Roy D, Thomas C, Gaston K (2010) The
- impact of proxy-based methods on mapping the distribution of ecosystem services. J Appl Ecol 47: 377-
- 793 385. https://doi.org/10.1111/j.1365-2664.2010.01777.x
- Fabrika M, Ďurský J (2005) Algorithms and software solution of thinning models for SIBYLA growth
 simulator. J For Sci 51(10):431-445.
- Fabrika M, Pretzsch H (2013) Forest ecosystem analysis and modelling. Technical University in Zvolen,Zvolen.
- Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34: 487-515.
 https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
- 800 Felton A, Ranius T, Roberge J-M, Öhman K, Lämås T, Hynynen J, Juutinen A, Mönkkönen M, Nilsson U,
- 801 Lundmark T (2017a) Projecting biodiversity and wood production in future forest landscapes: 15 key
- 802 modeling considerations. J Environ Manag 197: 404-414.
- 803 https://doi.org/10.1016/j.jenvman.2017.04.001
- 804 Felton A, Sonesson J, Nilsson U, Lämås T, Lundmark T, Nordin A, Ranius T, Roberge J-M (2017b) Varying
- 805 rotation lengths in northern production forests: Implications for habitats provided by retention and
- 806 production trees. Ambio 46(3):324-334. <u>https://doi.org/10.1007/s13280-017-0909-7</u>
- 807 Filyushkina A, Strange N, Löf M, Ezebilo EE, Boman M (2016) Non-market forest ecosystem services and
- 808 decision support in Nordic countries. Scand J For Res 31(1): 99-110.
- 809 https://doi.org/10.1080/02827581.2015.1079643
- 810 Franklin JF, Forman RT (1987) Creating landscape patterns by forest cutting: ecological consequences
- 811 and principles. Landsc Ecol 1: 5-18. https://doi.org/10.1007/BF02275261
- 812 Garcia-Gonzalo J, Zubizarreta-Gerendiain A, Ricardo A, Marques S, Botequim B, Borges JG, Oliveira MM,
- 813 Tomé M, Pereira JMC (2012) Modelling wildfire risk in pure and mixed forest stands in Portugal.
- 814 Allgemeine Forst und Jagdzeitung (AFJZ) German Journal of Forest Research 183 (11/12): 238-248
- 815 González JR, Trasobares A, Palahí M, Pukkala T (2007) Predicting tree survival in burned forests in
- 816 Catalonia (North-East Spain) for strategic forest planning. Ann For Sci 64: 733-742.
- 817 https://doi.org/10.1051/forest:2007053
- 818 Grêt-Regamey A, Sirén E, Brunner SH, Weibel B (2016) Review of decision support tools to
- 819 operationalize the ecosystem services concept. Ecosyst Serv 26: 306-315.
- 820 https://doi.org/10.1016/j.ecoser.2016.10.012

- 821 Gutsch M, Lasch-Born P, Suckow F, and Reyer CPO (2015) Modeling of two different water uptake
- 822 approaches for mono-and mixed-species forest stands. Forests 6(6): 2125–2147.
- 823 https://doi:10.3390/f6062125.

- Havlík P, Schneider UA, Schmid E, Böttcher H, Fritz S, Skalský R, Aoki K, Cara SD, Kindermann G, Kraxner
- 826 F, Leduc S, McCallum I, Mosnier A, Sauer T, Obersteiner M (2011) Global land-use implications of first
- 827 and second generation biofuel targets. Energ Policy 39(10):5690-5702.
- 828 https://doi.org/10.1016/j.enpol.2010.03.030
- 829 Hengeveld GM, Didion M, Clerkx S, Elkin C, Nabuurs G-J, Schelhaas M-J (2015) The landscape-level effect
- 830 of individual-owner adaptation to climate change in Dutch forests. Reg Environ Change 15(8): 1515-
- 831 1529. https://doi.org/10.1007/s10113-014-0718-5
- 832 Hengeveld G, Schüll E, Trubins R, Sallnäs O (2017) Forest Landscape Development Scenarios (FoLDS) A
- 833 framework for integrating forest models, owners' behaviour and socio-economic developments. For
- 834 Policy Econ 85: 245-255. https://doi.org/10.1016/j.forpol.2017.03.007
- 835 Hoogstra-Klein MA (2016) Exploring the financial rationales of Dutch forest holdings and their relation
- 836 with financial results. Eur J For Res 135(6): 1025-1036. https://doi.org/10.1007/s10342-016-0991-6
- 837 Hoogstra-Klein MA, Brukas V, Wallin I (2017) Multiple-use forestry as a boundary object: From a shared
- 838 ideal to multiple realities. Land Use Policy 69: 247-258.
- 839 https://doi.org/10.1016/j.landusepol.2017.08.029
- 840 Hoogstra-Klein M, Burger M (2013) Rational versus adaptive forest management planning: exploratory
- 841 research on the strategic planning practices of Dutch forest management organizations. Eur J For Res
- 842 132 (5-6): 707-716. https://doi.org/10.1007/s10342-013-0707-0
- 843 Hunter ML (1990) Wildlife, forests and forestry. Principles of managing forests for biological diversity.844 Prentice-Hall, New Jersey.
- 845 IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories, prepared by the national
- 846 greenhouse gas inventories programme. Institute for Global Environmental Strategies, Hayama.
- 847 IPCC (2013) Climate change 2013: The physical science basis. Contribution of working group I to the fifth
- assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press,
- 849 Cambridge and New York.
- 850 IPCC (2014a) Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral
- aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel
- 852 on Climate Change. Cambridge University Press, Cambridge and New York.
- 853 IPCC (2014b) Climate change 2014: Mitigation of climate change. Contribution of working group III to
- the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University
- 855 Press, Cambridge and New York.

- Johansson V, Felton A, Ranius T (2016) Long-term landscape scale effects of bioenergy extraction on
- 857 dead wood-dependent species. For Ecol Manag 371: 103-113.
- 858 https://doi.org/10.1016/j.foreco.2015.10.046
- Jonsson M, Ranius T, Ekvall H, Bostedt G, Dahlberg A, Ehnström B, Nordén B, Stokland JN (2006) Cost-
- 860 effectiveness of silvicultural measures to increase substrate availability for red-listed wood-living
- 861 organisms in Norway spruce forests. Biol Conserv 127(4): 443-462.
- 862 https://doi.org/10.1016/j.biocon.2005.09.004
- Kareiva P, Tallis H, Ricketts T, Daily G, Polasky S (eds) (2011) Natural capital. Theory and practice of
 mapping ecosystem services. Oxford University Press, Oxford.
- 865 Kent B, Bare BB, Field RC, Bradley GA (1991) Natural resource land management planning using large-
- scale linear programs: The USDA Forest Service experience with FORPLAN. Oper Res 39(1): 13-27.
- 867 https://doi.org/10.1287/opre.39.1.13
- 868 Kindermann GE, Schörghuber S, Linkosalo T, Sanchez A, Rammer W, Seidl R, Lexer MJ (2013) Potential
- 869 stocks and increments of woody biomass in the European Union under different management and
- 870 climate scenarios. Carbon Balance Manag 8(1): 2. https://doi.org/10.1186/1750-0680-8-2
- 871 Kindler E (2016) A comparison of the concepts: Ecosystem services and forest functions to improve
- 872 interdisciplinary exchange. For Policy Econ 67: 52-59. http://dx.doi.org/10.1016/j.forpol.2016.03.011
- 873 Kuliešis A, Kasperavičius A, Kulbokas G, Brukas V, Petrauskas E, Mozgeris G (2017) Lithuania. In: Barreiro
- 874 S, Schelhaas M, McRoberts R, Kändler G (eds) Forest inventory-based projection systems for wood and
- biomass availability. Managing Forest Ecosystems, vol 29. Springer, Cham, pp 223-239.
- 876 https://doi.org/10.1007/978-3-319-56201-8_19
- 877 Kurz WA, Dymond CC, White TM, Stinson G, Shaw CH, Rampley GJ, Smyth C, Simpson BN, Neilson ET,
- 878 Trofymow JA, Metsaranta J, Apps MJ (2009) CBM-CFS3: a model of carbon-dynamics in forestry and
- 879 land-use change implementing IPCC standards. Ecol Model 220(4): 480-504.
- 880 https://doi.org/10.1016/j.ecolmodel.2008.10.018
- Li X, He HS, Wu Z, Liang Y, Schneiderman JE (2013) Comparing Effects of Climate Warming, Fire, and
- Timber Harvesting on a Boreal Forest Landscape in Northeastern China. PLoS ONE, 8(4), e59747.
- 883 <u>https://doi.org/10.1371/journal.pone.0059747</u>
- Lindbladh M, Axelsson A-L, Hultberg T, Brunet J, Felton A (2014) From broadleaves to spruce the
- borealization of southern Sweden. Scand J For Res 29(7): 686-696.
- 886 https://doi.org/10.1080/02827581.2014.960893
- 887 Lindenmayer BD, Franklin JF (2002) Conserving forest biodiversity: A comprehensive multiscaled
- 888 approach. Island Press, Washington.

- Lindenmayer DB, Franklin JF, Fischer J (2006) General management principles and a checklist of
- 890 strategies to guide forest biodiversity conservation. Biol Conserv 131(3): 433-445.
- 891 https://doi.org/10.1016/j.biocon.2006.02.019
- Lindenmayer DB, Laurance WF, Franklin JF (2012) Global decline in large old trees. Sci 338(6112): 1305-
- 893 1306. https://doi.org/10.1126/science.1231070
- Lundmark T, Bergh J, Nordin A, Fahlvik N, Poudel BC (2016) Comparison of carbon balances between
- continuous-cover and clear-cut forestry in Sweden. Ambio 45(Suppl. 2): S203–S213.
- 896 https://doi.org/10.1007/s13280-015-0756-3
- Luo X, He HS, Liang Y, Wang WJ, Wu Z, Fraser JS (2014). Spatial simulation of the effect of fire and
- harvest on aboveground tree biomass in boreal forests of Northeast China. Landscape Ecology, 29(7),
 1187–1200. <u>https://doi.org/10.1007/s10980-014-0051-x</u>
- 900 Marques S, Garcia-Gonzalo J, Borges JG, Botequim B, Oliveira MM, Tomé J, Tomé M (2011) Developing
- 901 post-fire Eucalyptus globulus Labill stand damage and tree mortality models for enhanced forest
- 902 planning in Portugal. Silv Fenn 45(1): 69-83
- 903 Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: Synthesis. Island Press,904 Washington D.C.
- 905 Molina-Herrera S, Haas E, Grote R, Kiese R, Klatt S, Kraus D, Kampffmeyer T, Friedrich R, Andreae H,
- 906 Loubet B, Ammann C, Horváth L, Larsen K, Gruening C, Frumau A, and Butterbach-Bahl K (2017)

907 Importance of soil NO emissions for the total atmospheric NO x budget of Saxony, Germany. Atmos

- 908 Environ 152: 61–76. doi:10.1016/j.atmosenv.2016.12.022
- 909 Montesarchio M, Mercogliano P, Manzi MP, Buccignani E (2012) A sensitivity study with the RCM
- 910 COSMO CLM over the north and center Italy. CMCC Research Papers Issue RP0143.
- 911 http://dx.doi.org/10.2139/ssrn.2195479
- 912 Moore PT, DeRose RJ, Long JN, van Miegroet H (2012) Using silviculture to influence carbon
- 913 sequestration in Southern Appalachian spruce-fir forests. For 3(2): 300-316.
- 914 http://dx.doi.org/10.3390/f3020300
- 915 Mozgeris G, Brukas V, Stanislovaitis A, Kavaliauskas M, Palicinas M (2016) Owner mapping for forest
- 916 scenario modelling A Lithuanian case study. For Policy Econ 85: 235-244.
- 917 http://dx.doi.org/10.1016/j.forpol.2016.02.002
- 918 Mozzato D, Gatto P (2016) Determinants, attitudes and willingness of private forest owners to produce
- 919 goods and services: A review of the international literature. Forest@ 13(1): 18-30.
- 920 https://doi.org/10.3832/efor1751-013

- 921 Muys B, Hynynen J, Palahi M, Lexer MJ, Fabrika M, Pretzsch H, Gillet F, Briceño E, Nabuurs G-J, Kint V
- 922 (2010) Simulation tools for decision support to adaptive forest management in Europe. For Syst 19: 86-
- 923 99. https://doi.org/10.5424/fs/201019S-9310
- Naiman RJ, Decamps H, Pollock M (1993) The role of riparian corridors in maintaining regional
- 925 biodiversity. Ecol Appl 3: 209-212. https://doi.org/10.2307/1941822
- 926 Nieuwenhuis M, Nordström E-M (2017) Milestone 9 Quality standard to be met by the upgraded DSSs.
- 927 ALTERFOR Milestone report. https://www.alterfor-
- 928 project.eu/files/alterfor/download/Deliverables/ALTERFOR%20MS9%20Quality%20standard%20upgrad
- 929 up%20DSS.PDF. Accessed 16 November 2017.
- 930 Nobre S, Eriksson Ljusk O, Trubins R (2016) The use of decision support systems in forest management:
- Analysis of FORSYS Country Reports. For 7(3): 72. https://doi.org/10.3390/f7030072
- 932 Ode Å, Tveit MS, Fry G (2008) Capturing landscape visual character using indicators: touching base with
- 933 landscape aesthetic theory. Landscape Research, 33(1), 89-117. https://doi:
- 934 10.1080/01426390701773854
- 935 Olajuyigbe SO, Tobin B, Gardiner P, Nieuwenhuis M (2011) Stocks and decay dynamics of above- and
- belowground coarse woody debris in managed Sitka spruce forests in Ireland. For Ecol Manag 262(6):
 1100 1118 https://doi.org/10.1016/j forese.2011.06.010
- 937 1109-1118. https://doi.org/10.1016/j.foreco.2011.06.010
- 938 Orazio C, Cordero Montoya R, Égolini M, Borges JG, Garcia-Gonzalo J, Barreiro S, Botequim B, Marques S,
- 939 Sedmák R, Smrěcek R, Brodrechtová Y, Brukas V, Chirici G, Marchetti M, Moshammer R, Biber P,
- 940 Corrigan E, Eriksson LO, Favero M, Galev E, Hengeveld GM, Kavaliauskas M, Mozgeris G, Navráti R,
- 941 Nieuwenhuis M, Paligorov I, Pettenella D, Stanislovaitis A, Tomé M, Trubins R, Túcek J, Vizzarri M, Wallin
- 942 I, Pretzsch H, Sallnäs O (2017) Decision support tools and strategies to simulate forest landscape
- 943 evolutions integrating forest owner behaviour: A review from the case studies of the European project,
- 944 INTEGRAL. Sustainability 9(4): 599. https://doi.org/10.3390/su9040599
- 945 Packalen T, Marques AF, Rasinmäki J, Rosset C, Mounir F, Rodriguez LCE, Nobre SR (2013) A brief
- 946 overview of forest management decision support systems (FMDSS) listed in the FORSYS wiki. For Syst
- 947 22(2): 263-269. http://dx.doi.org/10.5424/fs/2013222-03192
- 948 Packalen T, Sallnäs O, Sirkiä S, Korhonen KT, Salminen O, Vidal C, Robert N, Colin A, Belouard T,
- 949 Schadauer K, Berger A, Rego F, Louro G, Camia A, Räty M, San-Miguel-Ayanz J (2014) The European
- 950 forestry dynamics model (EFDM). JRC Scientific and Policy Reports, Publications Office of the European
- 951 Union, Luxembourg.
- Pretzsch H (2009) Forest dynamics, growth, and yield. A review, analysis of the present state, and
- 953 perspective. Springer, Berlin and Heidelberg. https://doi.org/10.1007/978-3-540-88307-4_1
- 954 Pretzsch H, Biber P, Ďurský J (2002) The single tree-based stand simulator SILVA: construction,
- 955 application and evaluation. For Ecol Manag 162:3-21. https://doi.org/10.1016/S0378-1127(02)00047-6

- 956 Rauscher HM (1999) Ecosystem management decision support for federal forests in the United States: A
- 957 review. For Ecol Manag 114(2-3): 173-197. https://doi.org/10.1016/S0378-1127(98)00350-8
- Ray D, Xenakis G, Tene A, Black K (2009) Developing a site classification system to assess the impact of
 climate change on species selection in Ireland. Irish For 66 (1&2): 101-122.
- 960 Reitalu T, Seppä H, Sugita S, Kangur M, Koff T, Avel E, Kihno K, Vassiljev J, Renssen H, Hammarlund D
- 961 (2013) Long-term drivers of forest composition in a boreonemoral region: the relative importance of
- 962 climate and human impact. J Biogeogr 40: 1524-1534. https://doi.org/10.1111/jbi.12092
- 963 Reynolds KM (2005) Integrated decision support for sustainable forest management in the United
- 964 States: Fact or fiction? Comput Electron Agric 49(1): 6-23.
- 965 https://doi.org/10.1016/j.compag.2005.02.002
- 966 Reynolds KM, Rodriguez S, Bevans K (2003) User guide for the Ecosystem Management Decision Support
- 967 System, version 3.0. Environmental Systems Research Institute, Redlands.
- 968 Reynolds KM, Twery MJ, Lexer MJ, Vacik H, Ray D, Shao G, Borges JG (2008) Decision support systems in
- 969 natural resource management. In: Burstein F, Holsapple C (eds) Handbook on decision support systems.
- 970 International Handbooks on Information Systems Series, Handbook on Decision Support System 2.
- 971 Springer, Berlin and Heidelberg, pp. 499-534.
- 872 Rinaldi F, Jonsson R, Sallnäs O, Trubins R (2015) Behavioral modelling in a decision support system. For
 873 6(2): 311-327. https://doi.org/10.3390/f6020311
- Sathre R, O'Connor J (2010) Meta-analysis of greenhouse gas displacement factors of wood product
 substitution. Environ Sci Policy 13: 104-114. https://doi.org/10.1016/j.envsci.2009.12.005
- 976 Schelhaas MJ, Clerkx APPM, Daamen WP, Oldenburger JF, Velema G, Schnitger P, Schoonderwoerd H,
- 977 Kramer H (2014) Zesde Nederlandse bosinventarisatie: methoden en basisresultaten. Alterra-
- 978 Wageningen University and Research, Wageningen.
- 979 Schumacher S, Bugmann H, Mladenoff DJ (2004) Improving the formulation of tree growth and
- 980 succession in a spatially explicit landscape model. Ecological Modelling 180(1): 175–194.
- 981 <u>https://doi.org/10.1016/j.ecolmodel.2003.12.055</u>
- 982 Seppelt R, Dormann CF, Eppink FV, Lautenbach S, Schmidt S (2011) A quantitative review of ecosystem
- 983 service studies: approaches, shortcomings and the road ahead. J Appl Ecol 48: 630-636.
- 984 https://doi.org/10.1111/j.1365-2664.2010.01952.x
- Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian
 boreal forests as an example. Ecol Bull 49: 11-41.
- 987 Siitonen J, Ranius T (2015) The importance of veteran trees for saproxylic insects. In: Kirby KJ, Watkins C
- 988 (eds) Europe's changing woods and forests: From wildwood to managed landscapes. CABI Publishing,
- 989 UK, pp. 140-153.

- 990 Stokland JN, Eriksen R, Tomter SM, Korhonen K, Tomppo E, Rajaniemi S, Söderberg U, Toet H, Riis-
- Nielson T (2003) Forest biodiversity indicators in the Nordic countries: status based on national forest
- 992 inventories. Nordic Council of Ministers, Copenhagen.
- 993 Syphard AD, Scheller RM, Ward BC, Spencer WD, Strittholt JR (2011) Simulating landscape-scale effects
- of fuels treatments in the Sierra Nevada, California, USA. International Journal of Wildland Fire, 20(3),
- 995 364–383. <u>https://doi.org/10.1071/WF09125</u>
- 996 Twery MJ, Knopp PD, Thomasma SA, Rauscher HM, Nute DE, Potter WD, Maier F, Wang J, Dass M,
- 997 Uchiyama H, Glende A, Hoffman RE (2005) NED-2: A decision support system for integrated forest
- 998 ecosystem management. Comput Electron Agric 49(1): 24-43.
- 999 https://doi.org/10.1016/j.compag.2005.03.001
- 1000 Twery MJ, Rauscher HM, Bennett DJ, Thomasma SA, Stout SL, Palmer JF, Hoffman RE, DeCalesta DS,
- 1001 Gustafson E, Cleveland H, Grove JM, Nute D, Kim G, Kollasch RP (2000) NED-1: integrated analyses for
- 1002 forest stewardship decisions. Comput Electro Agric 27(1-3): 167-193. https://doi.org/10.1016/S0168-
- 1003 1699(00)00107-1
- 1004 United Nations (1992) Non-legally binding authoritative statement of principles for a global consensus
 1005 on the management, conservation and sustainable development of all types of forests. United Nations,
 1006 New York.
- 1007 Vacik H, Lexer MJ (2014) Past, current and future drivers for the development of decision support
- 1008 systems in forest management. Scand J For Res 29: 2-19.
- 1009 https://doi.org/10.1080/02827581.2013.830768
- 1010 Vanderberg MR, Boston K, Bailey J (2011) Maximizing carbon storage in Appalachians: Method for
- 1011 considering the risk if disturbance events. Proceedings of the 17th Central Hardwood Forest Conference
- 1012 GTR-NRS-P-78. https://www.nrs.fs.fed.us/pubs/gtr/gtr-p-78papers/15vanderbergp78.pdf. Accessed 23
- 1013 November 2017.
- 1014 Vilén T, Fernandes PM (2011) Forest fires in Mediterranean countries: CO₂ emissions and mitigation
- 1015 possibilities through prescribed burning. Environ Manag 48: 558-567. https://doi.org/10.1007/s00267-
- 1016 011-9681-9
- 1017 van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V,
- 1018 Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith S, Rose SK (2011) The representative
- 1019 concentration pathways: An overview. Clim Change 109(1): 5-31. https://doi.org/10.1007/s10584-011-
- 1020 0148-z
- 1021 van Vuuren D, Kriegler E, O'Neill B, Ebi K, Riahi K, Carter T, Edmonds J, Hallegatte S, Kram T, Mathur R,
- 1022 Winkler H (2014) A new scenario framework for climate change research: Scenario matrix architecture.
- 1023 Clim Change 122(3): 373-386. https://doi.org/10.1007/s10584-013-0906-1

- 1024 Wang WJ, He HS, Spetich M, Shifley SR, Thompson III FR, Larsen DR, Yang J (2013) A large-scale forest
- landscape model incorporating multi-scale processes and utilizing forest inventory data. Ecosphere, 4(9),
 art106. https://doi.org/10.1890/ES13-00040.1
- 1027 Winter S (2012) Forest naturalness assessment as a component of biodiversity monitoring and 1028 conservation management. Forestry 85(2): 293-304. https://doi.org/10.1093/forestry/cps004
- 1029 Wolff S, Schulp C, Verburg P (2015) Mapping ecosystem services demand: A review of current research
- 1030 and future perspectives. Ecol Indic 55: 159-171. https://doi.org/10.1016/j.ecolind.2015.03.016
- 1031 Wulf M, Rujner H (2011) A GIS-based method for the reconstruction of the late eighteenth century
- 1032 forest vegetation in the Prignitz region (NE Germany). Landsc Ecol 26: 153-168.
- 1033 https://doi.org/10.1007/s10980-010-9555-1
- 1034 Yatskov M, Harmon ME, Krankina ON (2003) A chronosequence of wood decomposition in the boreal
- 1035 forests of Russia. Can J For Res 33(7): 1211-1226. https://doi.org/10.1139/x03-033
- 1036 Zeng H, García-Gonzalo J, Peltola H, Kellomäki S (2010) The effects of forest structure on the risk of wind
- 1037 damage at a landscape level in a boreal forest ecosystem. Ann For Sci 67(1): 111.
- 1038 https://doi.org/10.1051/forest/2009090

1039

Table 1. Description of the DSSs considered in the assessment

System name	Country	Forestry dynamics model type ^a	Modeling approach ^b	Further information on DSS
SILVA	Germany (GER)	stand dynamics model	simulation	Pretzsch 2009; Pretzsch et al. 2002
Remsoft Woodstock	Ireland (IRL)	tightly coupled integrated stand and forestry dynamics model	optimisation	Corrigan and Nieuwenhuis 2017
InVEST and VALE	Italy (IT)	not forestry dynamics models (GIS and Excel based models)	simulation	InVEST: Kareiva et al. 2011 http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/
Kupolis	Lithuania (LIT)	tightly coupled integrated stand and forestry dynamics model	simulation	Kuliešis et al. 2017
EFISCEN- space	Netherlands (NL)	matrix model of forestry dynamics with a spatial extension	simulation	Schelhaas et al. manuscript in prep.
SADfLOR	Portugal (POR)	tightly coupled integrated stand and forestry dynamics model	simulation, optimisation	http://www.isa.ulisboa.pt/cef/forchange/fctools/en/SimflorPlatform/ StandSimulators http://www.forestdss.org/wiki/index.php ?title=SADfLOR web-based
Sibyla	Slovakia (SVK)	stand dynamics model	simulation	Fabrika and Pretzsch 2013 http://sibyla.tuzvo.sk/index.html
Heureka and HoldSim	Sweden (SWE)	tightly coupled integrated stand and forestry	simulation, optimisation	Stand simulator: Heureka: http://www.slu.se/en/collaborative-centres-and-projects/forest-sustainability- analysis/en-heureka/ Landscape simulator built on AIMMS: https://aimms.com/

		dynamics model		
ETÇAP	Turkey (TUR)	loosely coupled integrated stand and forestry dynamics model	simulation, optimization	Başkent et al. 2013

^a Corresponds to the categorization of forestry dynamics models in Packalen et al. (2014). ^b Corresponds to the methods groups categorization of DSSs in Nobre et al. (2016), though the category 'MCDA' was not considered here.

Table 2: Details of the case study areas (CSA)

CSA name (Country)	Area, 1000 ha (% forest)	Forest ownership (%)	Main stakeholders	Main ES	DSS(s) used
Augsburg Western Forests (GER)	150 (33)	50 Private 50 Public	PFO ^a , ENGOs ^b , forest service forest industry, general public (stable ownership structure for decades)	Timber, Biodiversity, Recreation, Water, Soil protection	SILVA
Lieberose – Schlaubetal (GER)	90 (37)	44 Private 56 Public	PFO (their share steadily increasing), forest service ENGOs, forest industry, general public	Timber, Biodiversity, Recreation, Soil protection	SILVA
Barony of Moycullen (IRL)	81 (16)	22 Private 78 Public	Forest service, advisory services, PFO, ENGO, industries, public, fisheries, investment bodies	Timber, Biodiversity Water, Recreation	Remsoft Woodstock
Veneto (IT)	76 (100)	74 Private 26 Public	PFO, logging enterprises, municipalities, regional forest administration, ENGO	Timber, Biodiversity Water, Erosion control	InVEST VALE
Telšiai (LIT)	254 (34)	63 Private 37 Public	Institute of Forest Management Planning, state forest managers, PFO, ENGO, regional park	Timber, Biodiversity Water, Recreation	Kupolis
The Netherlands (NL)	3,734 (11)	52private 48 public	National and regional government, FOA ^c , state forestry, National Trust, non-industrial PFO & general public	Timber, recreation, biodiversity	EFISCEN-space
Sousa Valley (POR)	15 (10)	100 Private 0 Public	FOA, forest owner federation, forest industry, forest service, local municipality, other NGO	Timber, Recreation	SADfLOR
Podpolanie (SVK)	34 (57)	7 Private 93 Public	State forest managers, PFO, ENGO, general public	Timber, Biodiversity Water, Recreation	Sibyla
Kronoberg county (SWE)	847 (77)	83 Private 17 Public	FOA, ENGO, forest industry, Swedish Forest Agency, public	Timber, Biodiversity, Water, Recreation	Heureka HoldSim
Gölcük (TUR)	83 (58)	1 Private 99 Public	General Directorate of Forestry, NGOs, forest industry, public	Timber, Biodiversity, Water, Recreation, Non-wood Forest Products	ETÇAP

^a private forest owners ^b Environmental non-governmental organization(s)

^c Forest owners' association

Table 3. List of variables required as output from the DSSs on stand and/or landscape level for quantification of the ESs (marked in the table as S=stand level

and L=landscape level)

Variable	Unit	Comment	Timber and biomass	Recreational and aesthetic value	Regulatory services	Carbon sequestration	Water	Biodiversity
Afforestation	age of forest cover (per period)	Concerns afforestation of non-forest land, not regeneration after final felling		S, L				
Age	year (per period)	Mean age		S, L	S		S, L	
Basal area	m ² /ha (per period)			S, L	S			
Below ground biomass	kt C/ha (per period)					L		
Dead wood, logs	m ³ /ha and kt C/ha (per period)	Per species		S, L		L		S, L
Dead wood, stumps and roots	kt C/ha (per period)					L		
Density/openness	stems/ha (per period)			S, L	S			S, L
Fertilization (nitrogen and/or phosphorus)	kg/ha and area fertilized (per period)						S, L	
Final felling area	ha (per period)	For uneven-aged forests: size of contiguous harvested areas. For shelterwood: two figures regarding harvested area / time period are given		S, L			S, L	L
Forest edges	m/ha (per period)	Length of forest edge relative to the landscape area		L				
Forest stand size	ha (per period)	Area of individual stands		L				
Forest stand types	no. of different stand types in the landscape (per period)	Definitions of forest stand types may differ		L				
Harvested wood, total	m ³ /ha (per period)		S, L			L	S, L	S
Large dead wood	stems/ha (per period)	Per species, suggestion for size classes (diameter in cm): >30 cm, >40cm, >50cm, >60cm						S, L
Large trees	m ³ /ha and stems/ha (per period)	Per species, suggestion for size classes (diameter in cm): >30 cm, >40cm, >50cm, >60cm						S, L
Naturalness	Hemeroby index (per period)	The hemeroby index measures the deviation from the potential natural vegetation caused by human activities (see Winter 2012). Gradients of human influence are assessed on a scale from "natural" or non-disturbed landscapes and habitats to totally disturbed or "artificial" landscapes. In this study the naturalness is assessed based on stand characteristics (varying depending on region and forest type) on the following scale: 0 = natural, non-disturbed forest, 0.33 = close to natural, 0.66 = semi-natural, 1 = relatively far from natural (monoculture, plantations)		S, L				
Protected area	ha (per period)	Area as per IUCN category (Dudley 2008)						L
Residues harvested	m ³ /ha or kg/ha, and area where residues are harvested (per period)	In final felling (and thinning if possible/applicable, but these should be separated)	S, L	S, L		L		
Spatial fragmentation	index value per habitat/forest type (per period)	Spatial fragmentation refers to the composition (i.e. the amount of habitat) and configuration (i.e., the size of habitat patches and the extent to which they are aggregated or dispersed of the landscape) and can be described by different landscape measures/indices, e.g., number and mean area of patches, core area and shape index of patches (Baskent and Keles 2005).			L			L
Standing volume	m ³ /ha and kt/ha (per period)		S, L			L	S, L	S
Tree height	m (per period)	Dominant height			S			
Tree size diversity	m ³ /size class (per period)	Suggestion for size classes (diameter in cm): 1-10, 11-20, 21-30, 31-40, 41- 50, 51-60, >61		S	S			S, L
Tree species composition	m ³ /ha (per period)	Per species		S, L	S		S, L	S, L
Understory	m ³ /ha or no/yes (per period)			S, L	S			
Volume harvested by assortments (sawlogs and pulpwood)	m ³ /ha and kt C/ha (per period)		S, L			L		

Table 4. Classification of the nine DSSs according to their ability to quantify the variables required for the ES provision assessment. A green cell indicates that the variable is part of the DSS and that the ES is assessed within the DSS; a yellow cell indicates that the variable is part of the DSS but that the ES is assessed outside of the DSS following the simulation/optimisation; and a red cell indicates that the variable is not part of the DSS. The DSSs included are (left to right, starting at the top row): SILVA (Germany), Remsoft Woodstock (Ireland), InVEST and VALE (Italy), Kupolis (Lithuania), EFISCENspace (Netherlands), SADfLOR (Portugal), Sibyla (Slovakia), Heureka (Sweden) and ETÇAP (Turkey)

Variable	Unit	Timber and biomass	Recreational and aesthetic value	Regulatory services	Carbon sequestration	Water	Biodiversity
Afforestation	age of forest cover (per period)			-			
Age	year (per period)						
Basal area	m ² /ha (per period)						
Below ground biomass	kt C/ha (per period)						
Dead wood, logs	m ³ /ha and kt C/ha (per period)						
Dead wood, stumps and roots	kt C/ha (per period)						
Density/openness	stems/ha (per period)						
Fertilization (nitrogen and/or phosphorus)	kg/ha and area fertilized (per period)						
Final felling area	ha (per period)			-			
Forest edges	m/ha (per period)						
Forest stand size	ha (per period)						
Forest stand types	no. of different stand types in the landscape (per period)						
Harvested wood, total	m ³ /ha (per period)						
Large dead wood	st/ha (per period)						
Large trees	m ³ /ha and stems/ha (per period)						
Naturalness	Hemeroby index (per period)						
Protected area	ha (per period)						
Residues harvested	m ³ /ha or kg/ha, and area where residues are harvested (per period)						
Spatial fragmentation	index value per habitat/forest type (per period)						
Standing volume	m ³ /ha and kt/ha (per period)		-				

Tree height	m (per period)					
Tree size diversity	m ³ /size class (per period)					
Tree species composition	m ³ /ha (per period)					
Understory	m ³ /ha or no/yes (per period)					
Volume harvested by assortments (sawlogs and pulpwood)	m ³ /ha and kt C/ha (per period)					

Supplementary Material

for

Forest decision support systems for analysis of ecosystem services provisioning at landscape scale under global climate and market change scenarios

Eva-Maria Nordström, Maarten Nieuwenhuis, Peter Biber, Emin Zeki Başkent, Kevin Black, Jose G. Borges, Miguel N. Bugalho, Giulia Corradini, Edwin Corrigan, Ljusk Ola Eriksson, Adam Felton, Nicklas Forsell, Geerten Hengeveld, Marjanke Hoogstra-Klein, Anu Korosuo, Matts Lindbladh, Isak Lodin, Anders Lundholm, Marco Marto, Mauro Masiero, Gintautas Mozgeris, Davide Pettenella, Werner Poschenrieder, Robert Sedmak, Jan Tucek and Davide Zoccatelli Supplementary Table S1. DSS information in relation to the use of dynamic timber prices as provided by the global scenarios

DSS (Country)	Ability to include global price trends in DSS	Methodology used	Assumptions on how OT reacts to prices	DSS outputs influenced by changing prices
SILVA (GER)	Yes	Look-up table with periodic assortment prices	Depending on OT, higher prices may lead to the use of FMMs that increase harvesting. Reactions are strong (very un-elastic) for economically focused OTs, and quite elastic for OTs focused on other, e.g., biodiversity-related goals.	Harvest volumes, FMM selection by OTs, ES provision levels.
Remsoft Woodstock (IRL)	Yes	Look-up table with periodic assortment prices	Depending on OT, higher prices may lead to the use of FMMs that increase harvesting.	Harvest volumes, NPV, FMM selection by OTs, ES provision levels
InVEST and VALE (IT)	Yes	Look-up table with periodic assortment prices	Higher prices may lead to the use of FMMs that increase harvesting, though timber production is not the main aim of current FMMs.	Harvest volumes, NPV and other financial/economic profitability and risk indicators, ES provision levels
Kupolis (LIT)	Yes	Look-up table with periodic timber prices	Changing prices have no influence on FO behavior as existing FMMs are based on legal and ecological conditions of the forests.	Costs, incomes and profits of forestry activities. More detailed outputs will be generated outside DSS, including NPV by FMM, FOT, etc.
EFISCEN- space (NL)	Yes	Look-up table with periodic assortment prices.	Higher prices may lead to the use of FMMs that increase harvesting.	FMM selection by OTs and all outputs, includingES provision levels
SADfLOR (POR)	Yes	The increase/decrease price rates of the global scenarios are used and applied to initial local prices to compute NPVs	No assumptions made.	FMM selection by OTs and all outputs, including ES provision levels.
Sibyla (SVK)	No	Look-up table with assortment prices, constant over time.	OTs are assumed to expect current prices to persist.	
Heureka and HoldSim (SWE)	Yes	Look-up table with periodic assortment prices.	Depending on OT, higher prices may lead to the use of FMMs that increase harvesting.	FMM selection by OTs and all outputs, including ES provision levels.

ETÇAP (TUR)	To a certain extent	Current prices are guided by interest rate to reflect periodical changes in prices over time.	Depending on OT, higher prices may lead to the use of FMMs that increase harvesting.	All outputs related to prices.
----------------	------------------------	---	---	--------------------------------

Supplementary Table S2. DSS information in relation to the use of climate change data as provided by the global scenarios. Cited studies are listed in the References section of the article.

DSS (Country)	Climate change modelling is part of DSS	Climate change data source	Variables/models affected	Scientific basis and references
SILVA (GER)	Yes	HadGEM2-ES projections	Single tree growth potential	Pretzsch 2009; Pretzsch et al. 2002
Remsoft Woodstock (IRL)	Yes	Met Eireann's C4I projections of A2 and B1 scenarios in IPCC SRES	Stand growth by species, species selection	ClimAdapt. Ray et al. 2009
InVEST and VALE (IT)	Yes	Based on CMCC's regional elaborations via COSMO-CLM (radiation scenarios RCP 4.5 and 8.5)	Stand growth	http://www.cmcc.it/models/3d- cmcc-fem-three-dimension-forest- ecosystem-model Montesarchio et al. 2012
Kupolis (LIT)	Noª			
EFISCEN- space (NL)	Yes	Any SRES or RCP scenario downscaled to 1 km ² maps	Stand growth by species	Schelhaas et al. manuscript in prep.
SADfLOR (POR)	In part		Stand growth. A shrub biomass model can estimate the impact on fuel accumulation.	Botequim et al. 2015
Sibyla (SVK)	Yes	Any SRES and/or RCP scenarios providing the projections of temperatures, precipitations, temperature amplitudes, air humidity, content of NOx and SO2 in air and length of growing season.	Tree growth potential and related increments	Fabrika and Ďurský 2005 Fabrika and Pretzsch 2013

Heureka and HoldSim (SWE)	Yes	MPI 4.5: Based on Max Planck Institute MPI-ESM model using radiation scenario RCP 4.5. MPI 8.5: Based on Max Planck Institute MPI-ESM model using radiation scenario RCP 8.5. ECHAMS_A1B: Based on Max Planck Institute climate model ECHAM using emission scenario SRES A1B.	Stand growth	An approximation model of BIOMASS. The BIOMASS model is documented in Bergh et al. 2003; 1998
ETÇAP (TUR)	No			

^a Kupolis does not currently model changing climatic conditions. However, growth functions and forest regeneration characteristics used for simulation may be adjusted by the user based on, e.g., expert judgement.

Supplementary Table S3. DSS information in relation to the use of Owner Type (OT) and Forest Management Model (FMM). Cited studies are listed in the References section of the article.

DSS (Country)	a) What variables /parameters determine the distribution of forest area to OTs? b) What is the source of data?	a) What variables/parameters determine the allocation of existing FMMs to existing OTs? b) What is the source of data?	Source of data for new OTs and for alternative FMMs and associated proportions
SILVA (GER)	 a) The distribution is assumed to be constant based on historical distribution which has been stable. b) Forest inventory data 	 a) OTs' preferences concerning ESs, wood prices, wood demand. b) stakeholder feedback (especially from EU projects INTEGRAL and ALTERFOR), long-term experience from collaboration with certain OTs 	Stakeholder interviews and from forest consulting experience
Remsoft Woodstock (IRL)	a) Land use b) GIS datasets from State forestry board, Irish Department of Agriculture and Ireland's Forest Service	a) Timber prices, species growth rates, ES provision requirements b) Expert knowledge, scientific knowledge, INTEGRAL and ALTERFOR stakeholder meetings	Expert knowledge, in Ireland and in countries where alternative FMMs are already used
InVEST and VALE (IT)	a & b) Expert knowledge, ALTERFOR stakeholder meetings, existing literature on forest owners' attitudes towards FMM (Canton and Pettenella 2010; Mozzato and Gatto 2016) and other relevant scientific and grey literature	a) Owner preferences, stakeholder preferences, wood prices, legal constraints (e.g., Natura 2000 sites) b) Expert knowledge, ALTERFOR stakeholder meetings, existing literature on forest owners' attitudes towards FMM	Expert knowledge, ALTERFOR stakeholder meetings
Kupolis (LIT)	 a) Size of estate, total area of forest owned, presence of agricultural land-use in the estate, environmental restrictions on the estate, characteristics of forest stands b) Real estate cadaster, forest cadaster, expert knowledge 	a) A set of legal acts regulating the forestry, characteristics of forest stands b) Information available from state forest cadaster, INTEGRAL stakeholder meetings (Mozgeris et al. 2016)	Expert knowledge, stakeholder contacts, involvement of non-academic partner, and other relevant research
EFISCEN- space (NL)	a & b) National forest inventory (Schelhaas et al. 2014) and local inventory (Clerkx et al. 2016)	a & b) National forest inventory (Schelhaas et al. 2014) and local inventory (Clerkx et al. 2016), scientific knowledge (Hoogstra-Klein 2016; Hoogstra-Klein and Burger 2013), INTEGRAL stakeholder meetings (de Bruin et al. 2015; 2017), ALTERFOR stakeholder meetings	Stakeholder contacts, relevant research

SADfLOR (POR)	a) The distribution is based on the history of the region and the corresponding socioeconomic and demographic variables b) INTEGRAL reports, ALTERFOR stakeholder meetings	a) The history of the region and the corresponding socioeconomic and demographic variables.b) INTEGRAL reports, ALTERFOR stakeholder meetings	ALTERFOR stakeholder meetings and workshops
Sibyla (SVK)	 a) Ownership rights, forestry and nature conservation legislation b) Forest statistics, expert and scientific knowledge, INTEGRAL and ALTERFOR stakeholder meetings and interviews 	a) Ownership rights, forestry and nature conservation legislation b) Forest statistics, expert knowledge, scientific knowledge, stakeholder meetings	Expert and scientific knowledge, stakeholder contacts, ALTERFOR stakeholder meetings, interviews
Heureka and HoldSim (SWE)	a) Size of property b) Government register of properties, map of stands in GIS	a) Preferences related to economic interest, management tradition, biodiversity interest, and degree of involvement in management b) Articles on forest owner strategies (Eggers et al. 2014; 2015), interviews of forest consultants from the forest owners' association; forest statistics on forest operations	Stakeholder contacts, stand- level modelling research
ETÇAP (TUR)	a) The distribution is assumed to be static since almost all forests are state owned by legislation b) Forest inventory data	 a) Management guidelines, species type, site factors, timber prices, species growth rates, ES provision requirements b) Knowledge of local foresters, scientific knowledge, ALTERFOR stakeholder meetings, national forest inventory 	Major stakeholder contacts, scientific knowledge

Supplementary Table S4. DSS information in relation to the spatial data source, resolution, stratification and adjacency

DSS (Country)	Origin of spatial data (i.e. organisations from which data were obtained)	Grouping of stands into strata?	If grouping is used, at what scale?	Is the location of stands or strata in the landscape known in the DSS	If no grouping, is adjacency of stands known in the DSS, and how is this information used?
SILVA (GER)	Raster inventory plots from Federal country forest services and Federal Republic of Germany (national forest inventory data)	Yes	Case study area, by stratum	Yes, applies to strata; inventory data resolution too low on stand scale	No; spatial metrics applied to set of inventory plots used
Remsoft Woodstock (IRL)	GIS datasets from multiple sources	Yesª	Case study area ^b	Yes	No ^c
InVEST and VALE (IT)	GIS datasets from multiple sources	Yes, but single stand optimisation will also be analysed	Case study area/Forest type	Yes	No
Kupolis (LIT)	State forest cadastre data, available from Lithuanian State Forest Service	No (each stand has unique properties)	-	No	No ^d
EFISCEN- space (NL)	GIS datasets from multiple sources (mainly developed by Wageningen University and Research)	Yes (Each inventory plot is individually projected. However, each plot represents a stratum.)	Based on NFI strata	The information is not used in the simulation, inventory data resolution too low on stand scale	No ^d
SADfLOR (POR)	GIS	No, but individual stands may be aggregated into larger analysis areas if needed	-	Yes	Yes. The information may be used in model building to generate spatial conditions' requirements to address ES other than timber. It may be used further to interpret solutions when model solving
Sibyla (SVK)	GIS/National Forest Centre	No (stand level approach)	-	No	No

Heureka and HoldSim (SWE)	SLU Forest Agency Land Survey	No (each stand has unique properties)	-	Yes, in the sense that location of stand vs. property is used.	No ^d
ETÇAP (TUR)	Forest inventory plots and GIS from the General Directorate of Forestry	No (each stand has unique properties)	-	Yes	Yes, the adjacency is created within the DSS and the output is fed back to GIS for graphical/spatial analysis

^a Initially, but single stand optimisation/heuristics is explored later.

^b However, only when all stand site and management variables are identical.

^c Not in the standard Remsoft Woodstock DSS optimiser, but will be explored in the Spatial Optimiser.

^d The DSS as such is non-spatial. Spatial analyses of landscape patterns are carried out in GIS as post analyses of simulations.

References

Bergh J, Freeman M, Sigurdsson B, Kellomäki S, Laitinen K, Niinistö S, Peltola H, Linder S (2003) Modelling the short-term effects of climate change on the productivity of selected tree species in Nordic countries. For Ecol Manage 183: 327-340. https://doi.org/10.1016/S0378-1127(03)00117-8

Bergh J, McMurtrie RE, Linder S (1998) Climatic factors controlling the productivity of Norway spruce: A model-based analysis. For Ecol Manage 110: 127-139. https://doi.org/10.1016/S0378-1127(98)00280-1

Botequim B, Zubizarreta-Gerendiain A, Garcia-Gonzalo J, Silva A, Marques S, Fernandes P, Pereira J, Tomé M (2015) A model of shrub biomass accumulation as a tool to support management of Portuguese forests. iForest 8: 114–125. https://doi.org/10.3832/ifor0931-008

de Bruin JO, Hoogstra-Klein MA, Mohren GMJ, Arts BJM (2015) Complexity of forest management: exploring perceptions of Dutch forest managers. For 6 (9): 3237-3255. https://doi.org/10.3390/f6093237

de Bruin JO, Kok K, Hoogstra-Klein MA (2017) Exploring the potential of combining participative backcasting and exploratory scenarios for robust strategies: Insights from the Dutch forest sector. For Policy Econ 85: 269-282. https://doi.org/10.1016/j.forpol.2017.06.007

Canton A, Pettenella D (2010) Family forest owners' motivations in forest management activities: a case study in Recoaro Terme municipality (north-east Italy). Forest@ 7: 44-57. https://doi.org/10.3832/efor0618-007

Clerkx A, Hengeveld G, Schelhaas M, Helmink A (2016) Boseigendom in Twente en Salland: resultaten van een enquête onder kleine boseigenaren in Twente en Salland. Alterra-rapport 2731. Alterra-Wageningen University and Research, Wageningen.

Eggers J, Holmström H, Lämås T, Lind T, Öhman K (2015) Accounting for a diverse forest ownership structure in projections of forest sustainability indicators. For 6: 4001-4033. https://doi.org/10.3390/f6114001

Eggers J, Lämås T, Lind T, Öhman K (2014) Factors influencing the choice of management strategy among small-scale private forest owners in Sweden. For 5: 1695-1716. https://doi.org/10.3390/f5071695

Fabrika M, Ďurský J (2005) Algorithms and software solution of thinning models for SIBYLA growth simulator. J For Sci 51(10):431-445.

Fabrika M, Pretzsch H (2013) Forest ecosystem analysis and modelling. Technical University in Zvolen, Zvolen.

Hoogstra-Klein MA (2016) Exploring the financial rationales of Dutch forest holdings and their relation with financial results. Eur J For Res 135(6): 1025-1036. https://doi.org/10.1007/s10342-016-0991-6

Hoogstra-Klein M, Burger M (2013) Rational versus adaptive forest management planning: exploratory research on the strategic planning practices of Dutch forest management organizations. Eur J For Res 132 (5-6): 707-716. https://doi.org/10.1007/s10342-013-0707-0 Montesarchio M, Mercogliano P, Manzi MP, Buccignani E (2012) A sensitivity study with the RCM COSMO CLM over the north and center Italy. CMCC Research Papers Issue RP0143. http://dx.doi.org/10.2139/ssrn.2195479

Mozgeris G, Brukas V, Stanislovaitis A, Kavaliauskas M, Palicinas M (2016) Owner mapping for forest scenario modelling — A Lithuanian case study. For Policy Econ 85: 235-244. http://dx.doi.org/10.1016/j.forpol.2016.02.002

Mozzato D, Gatto P (2016) Determinants, attitudes and willingness of private forest owners to produce goods and services: A review of the international literature. Forest@ 13(1): 18-30. https://doi.org/10.3832/efor1751-013

Pretzsch H (2009) Forest dynamics, growth, and yield. A review, analysis of the present state, and perspective. Springer, Berlin and Heidelberg. https://doi.org/10.1007/978-3-540-88307-4_1

Pretzsch H, Biber P, Ďurský J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manag 162:3-21. https://doi.org/10.1016/S0378-1127(02)00047-6

Ray D, Xenakis G, Tene A, Black K (2009) Developing a site classification system to assess the impact of climate change on species selection in Ireland. Irish For 66 (1&2): 101-122.

Schelhaas MJ, Clerkx APPM, Daamen WP, Oldenburger JF, Velema G, Schnitger P, Schoonderwoerd H, Kramer H (2014) Zesde Nederlandse bosinventarisatie: methoden en basisresultaten. Alterra-Wageningen University and Research, Wageningen.