
J
H
E
P
0
1
(
2
0
1
8
)
1
5
9

Published for SISSA by Springer

Received: December 28, 2017

Accepted: January 18, 2018

Published: January 31, 2018

QCD-induced electroweak phase transition

Benedict von Harlinga and Géraldine Servanta,b
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1 Introduction

The nature of the electroweak phase transition is still weakly constrained experimentally

and many possibilities remain open, in particular when the scalar sector of the theory

is extended. There has been growing interest lately in the possibility of a strong first-

order electroweak phase transition, not only because of its relevance for baryogenesis but

also because it is a potential source of gravitational waves detectable at LISA [1]. The

majority of the literature has focused on polynomial potentials for the Higgs and associated

scalar fields.

On the other hand, if the Higgs is part of an approximately conformal sector, elec-

troweak symmetry breaking is tied to the breaking of conformal invariance. The electroweak

phase transition is then governed by a nearly conformal potential. This scenario has very

interesting cosmological properties as such potentials generically lead to large amounts of

supercooling, see e.g. refs. [2–8]. This may in particular delay the phase transition to tem-

peratures near the QCD scale or below. When this happens, QCD confines and gluons and

quarks form condensates. The main motivation of this paper is to study if these conden-

sates can subsequently trigger the breaking of conformal invariance and thereby induce the

electroweak phase transition.

For illustration, we work with the 5D Randall-Sundrum (RS) model [10]. Via the

gauge-gravity duality, this and related constructions [11, 12] are dual to composite Higgs

models with partial compositeness, where the Higgs arises from a nearly conformal sec-

tor [13–15]. The RS model has been a very popular solution to the hierarchy problem. In
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addition, it provides a framework to address the flavour puzzle in the standard model [16–

18]. The distance between the UV and IR brane in the RS model corresponds to a scalar

field, the so-called radion. This field maps to the dilaton of the dual CFT, the pseudo-

Nambu-Goldstone boson of broken scale invariance. It can obtain a potential for example

by means of the Goldberger-Wise mechanism [19] which stabilizes the inter-brane distance,

or equivalently, triggers the breaking of conformal invariance. The corresponding potential

is nearly conformal and has the form

V (µ) = µ4 × f(µε) , (1.1)

where f(µε) with |ε| � 1 is a very slowly-varying function of µ. Due to this form, the

potential is very shallow with extrema which are far separated from each other in field

space. A potential of the Goldberger-Wise type in particular typically has a barrier at

very small field values which separates the origin from the minimum. The dilaton/radion

then needs to tunnel through this barrier during the phase transition which leads to the

breaking of conformal invariance, or the stabilisation of the inter-brane distance, in the

early universe (for earlier studies of this phase transition see [5, 20–26]). However, the

vast distance between the extrema suppresses the tunneling rate. The phase transition can

therefore typically not complete and the field instead remains stuck in the wrong vacuum.

This is the origin of the supercooling that we have mentioned earlier.

The shallowness of the potential, however, also means that corrections to the potential

at small field values can have a big impact. As we will show in this paper, such corrections

can in particular arise from the QCD condensates which form when the temperature drops

to the QCD scale. In the RS model, the gluon is a 5D bulk field. The gauge coupling of the

4D massless mode which we identify with the gluon is then affected by the length of the

extra dimension and thus by the radion. In the dual CFT, on the other hand, the gluon

gauges an SU(3) symmetry of the CFT. The resulting contribution to the QCD β-function

decouples when the CFT confines. This leads to a dependence of the QCD coupling on

the confinement scale of the CFT and thus on the dilaton. The scale where QCD becomes

strongly coupled and itself confines then also depends on the radion/dilaton. Via the gluon

and quark condensates, this gives an additional contribution to the potential which can

change its shape near the barrier. This can in turn significantly enhance the tunneling

probablility, allowing the phase transition to complete.

The Higgs is localized towards the IR brane of the RS model which in the dual CFT

corresponds to the Higgs being a composite state. The fact that in this scenario the tem-

perature during the phase transition of the radion/dilaton is below the QCD scale, means

that temperature corrections to the Higgs potential are negligible. Electroweak symmetry

will therefore generically be broken simultaneously and QCD thus induces the electroweak

phase transition. This potential dramatic impact on the nature of the electroweak phase

transition was overlooked in the previous literature on RS and composite Higgs models.

A fascinating application would be to use the strong CP -violation from the QCD axion,

which would be large during such a phase transition near QCD temperatures, as the source

of CP -violation for cold baryogenesis [9]. The output of this work will give strong support

for this possibility.
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The outline of the paper is as follows. We begin with a review of the Goldberger-Wise

potential for the radion in section 2. In section 3, we then show how the QCD confinement

scale depends on the vacuum expectation value of the radion. Section 4 presents the new

contribution to the radion potential from the QCD condensate. In section 5, we then

review the RS phase transition, first without the QCD effect and then showing the impact

of the QCD condensate on the nature of the phase transition. We comment on cosmological

implications and experimental signatures in section 7 and conclude in section 8.

2 The radion potential in Randall-Sundrum models

We begin with a review of the important properties of the Randall-Sundrum model from

which the nearly-conformality of the scalar potential originates. The geometry is that of a

slice of AdS5 space with metric

ds2 = e−2ky ηµνdx
µdxν − dy2 , (2.1)

where k ∼ O(MPl) is the AdS5 curvature. The slice is bounded by two branes at y = 0

and y = yIR to which we refer as the UV and IR branes, respectively. It can be obtained

either from an orbifold or directly from an interval. In either case, we shall restrict the

coordinate to the interval [0, yIR ] here and below. The size yIR of the extra dimension can

be stabilized by means of the Goldberger-Wise mechanism [19]. To this end, a bulk scalar

is introduced,

S ⊃
∫
d5x
√
g

(
1

2
∂Aφ∂

Aφ−
m2
φ

2
φ2 − δ(y)VUV − δ(y − yIR)VIR

)
(2.2)

with boundary potentials

VUV = λUV(φ2 − v2
UV
k3)2 , VIR = λIR(φ2 − v2

IR
k3)2 . (2.3)

These trigger a vacuum expectation value (VEV) for the scalar with profile along the extra

dimension given by

〈φ〉 = Ak3/2e(4+ε)ky + B k3/2e−εky , (2.4)

where

ε ≡
√

4 +m2
φ/k

2 − 2 . (2.5)

The mass of a scalar in AdS5 can be tachyonic, m2
φ ≥ −4k2 according to the Breitenlohner-

Freedman bound [27], and ε can thus be both positive and negative. The integration con-

stants A and B are determined by the boundary conditions which depend on the boundary

potentials. In the limit of large couplings λIR and λUV , one finds

A =
vIR − vUVe

−εky
IR

e(4+ε)ky
IR − e−εkyIR

' vIR e
−(4+ε)ky

IR − vUV e
−(4+2ε)ky

IR , (2.6)

B = vUV −A ' vUV . (2.7)
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The scalar VEV and its contribution to the energy-density thus depends on the size of

the extra dimension. Integrating over the extra dimension then leads to the effective 4D

potential

VGW(µ) ' µ4

[
(4 + 2ε)

(
vIR − vUV

(
µ

k

)ε)2

− ε v2
IR

+ δ

]
, (2.8)

where

µ ≡ e−kyIRk . (2.9)

We will refer to this field as the radion. In the potential, we have neglected a constant

piece but included an additional contribution δ µ4. The latter arises if the IR brane tension

T is detuned from the value which is required to obtain a static solution in the Randall-

Sundrum model without radion stabilization, T = −24M3
5k + δ k4 with M5 being the 5D

Planck scale. Due to various loop corrections on the IR brane, δ is generically expected to

be nonzero.

Provided that −(4 + ε)v2
IR

< δ < (ε + ε2/4)v2
IR

, the above potential has a global

minimum and one maximum at

µmin,max ' k

(
vIR
vUV

)1/ε

X
1/ε
min,max , (2.10)

where

Xmin,max ≡
(

1 +
ε

2

)−1
(

1 +
ε

4
± sign(ε)

2

√
ε+

ε2

4
− δ

v2
IR

)
. (2.11)

The radion can then be stabilized at hierarchically small values µ � k with an order-one

ratio vIR/vUV if |ε| � 1. Note that µmax < µmin and the maximum is thus a barrier which

separates the origin from the minimum. As we discuss in more detail in section 5, in

the early universe the radion needs to transition from the origin to the minimum of the

potential. The barrier therefore means that this phase transition is first-order. On the

other hand, for δ < −(4 + ε)v2
IR

the barrier disappears if ε > 0, while the potential then

only has a minimum at the origin if ε < 0. Both the barrier and the minimum disappear

for δ > (ε+ ε2/4)v2
IR

. One thus necessarily needs a nonvanishing δ if ε is negative. We can

use the above relation to trade vUV for µmin. The potential then reads

VGW(µ) = µ4 v2
IR

[
(4 + 2ε)

(
1 − Xmin

(
µ

µmin

)ε)2

− ε +
δ

v2
IR

]
. (2.12)

In the derivation so far we have tacitly assumed that the scalar VEV does not deform

the geometry. As we discuss in the appendix, for ε > 0 this is fulfilled provided that

vIR
N
� min

[
1

2πXmin

√
3

ε

(
µmin

k

)ε
,

√
3

4π

]
, (2.13)

where

N ≡ 4π

(
M5

k

)3/2

. (2.14)
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Using this parameter is motivated by the AdS/CFT correspondence which suggests that

the gauge theory which is dual to the Randall-Sundrum model has O(N) colors (the precise

prefactor is undetermined; the prefactor in the definition above arises for the gauge theory

dual to type IIB string theory on AdS5 × S5). For later use, we note that the ratio M5/k

and thus N is restricted by the requirement that we can neglect higher powers of the Ricci

scalar compared to the Einstein-Hilbert term in the action. Estimating the coefficients of

these terms from naive dimensional analysis, this gives the condition [28]

N &
4 · 53/4

√
3π

. (2.15)

Let us next consider the case ε < 0. As we discuss in more detail in the appendix, in

this case there is always a region around the origin in the radion potential for which the

backreaction of the Goldberger-Wise scalar on the geometry can not be neglected. It may

still be possible to reliably analyse the phase transition if this region is sufficiently small.

Nevertheless, we will focus on the case ε > 0 in this paper, which is enough for our purpose.

Together with its kinetic term [29, 30], the 4D action for the radion reads

S ⊃
∫
d4x

(
3N2

4π2
(∂ρµ)2 + VGW(µ)

)
. (2.16)

The field µ is thus not canonically normalized. We will nevertheless continue to work

with µ since it sets the mass scale of the Kaluza-Klein (KK) modes. The minimum µmin

of its potential is therefore directly constrained by collider and flavour experiments and

electroweak precision tests. We will use µmin = 2.5 TeV throughout this paper.1

The potential (2.12) is the basis for most studies of the phase transition in RS models [5,

20–26]. The position of the barrier and the shape of the potential in the vicinity of the

barrier control the size of the tunneling action. On the other hand, for small ε as needed

to explain the hierarchy between the electroweak (EW) and Planck scales, the position of

the barrier is close to the origin of the potential. Any corrections of the potential at scales

much smaller than the IR scale (i.e. of order TeV) can therefore have a strong impact on

the phase transition dynamics. The purpose of this work is to consider the corrections from

QCD confinement which were ignored so far. We will see that they substantially improve

the tunneling probability and open up parameter space for a viable cosmology.

3 Dependence of the QCD scale on the radion in Randall-Sundrum

models

We next review relevant aspects of QCD in an RS model and then discuss how this leads

to a dependence of the QCD scale on the radion. The action for QCD in an RS model

1With a custodial symmetry in the bulk, the bound from electroweak precision tests is µmin > 1.9 TeV [31,

32]. An additional strong constraint arises from CP -violation in K − K̄-mixing. This can be satisfied by

either a larger µmin or an accidental cancellation of order 5−10% [31, 32]. Alternatively, the relevant process

can be suppressed by extending the QCD gauge group in the bulk [33] or by coupling the Goldberger-Wise

scalar to the bulk fermions [34].
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reads

S ⊃
∫
d5x
√
g

(
− 1

4g2
5

GMNG
MN − δ(y)

τUV

4
GµνG

µν − δ(y − yIR)
τIR
4
GµνG

µν

)
, (3.1)

whereGMN and g5 are the field strength and coupling of QCD in 5D and we have allowed for

localized kinetic terms on the two branes. Performing a KK decomposition and integrating

over the extra dimension, we get

S ⊃
∫
d4x

−1

4g2
QCD

G(0)
µν G

(0)µν , (3.2)

where G
(0)
µν is the field strength of the zero mode (which is identified with the standard

model gluon). The tree-level contribution to its gauge coupling reads

1

g2
QCD

=
log kµ
kg2

5

+ τUV + τIR . (3.3)

Taking also the running due to the standard model particles from the UV scale k to an

energy scale Q into account, we get at energies below the IR scale µ (see e.g. [35])2

1

g2
QCD(Q,µ)

=
log kµ
kg2

5

− bUV

8π2
log

k

Q
− bIR

8π2
log

µ

Q
+ τUV + τIR (for Q . µ) . (3.4)

Here bUV is the contribution to the β-function coefficient from quarks localized near the

UV brane and the gluon itself, while bIR arises from quarks localized near the IR brane. We

make the common choice that the top-bottom doublet and the right-handed top are in the

IR, whereas the remaining quarks are in the UV. This then gives bUV = 8 and bIR = −1.

It is straightforward to understand the origin of the terms in the above expression from

the dual perspective. A gauge field in the bulk of an RS model is dual to a gauge field that

weakly gauges a global symmetry of a CFT. The action in eq. (3.1) then maps to

S ⊃
∫
d4x

(
LCFT −

τUV

4
GµνGµν + GµJ µCFT

)
, (3.5)

where LCFT defines the CFT, Gµ is the gauge field and J µCFT is the current of the global

symmetry. Furthermore, the IR scale of the RS model is dual to the confinement scale

of the CFT. The first term in eq. (3.4) can then be understood as arising from the CFT

degrees of freedom which contribute with the β-function coefficient

bCFT ≡ −
8π2

kg2
5

. (3.6)

It depends on µ because the CFT confines at that scale and no longer contributes to the

running at lower energies. The second term is due to the contribution from standard model

particles which are fundamental and not part of the CFT sector. Instead the third term

2If the cutoff is above the AdS scale, additional corrections arise from loop momenta between the two

scales. These corrections can be absorbed into the parameters g5, τUV and τIR (see e.g. [36]).
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results from standard model particles which are (dominantly) composite states. Since the

latter only arise at the confinement scale, this contribution again depends on µ. Finally,

the last term is due to threshold corrections at the confinement scale.

The QCD coupling thus depends on the IR scale in an RS model. Correspondingly,

the scale ΛQCD at which it becomes strong depends on the IR scale too. Let us define

ΛQCD as the scale where the QCD coupling diverges.3 From eq. (3.4), we then find

ΛQCD(µ) =

(
kbUVµbIR e−8π2τ

(
µ

k

)−bCFT
)1/(b

UV
+b

IR
)

(for ΛQCD(µ) . µ) , (3.7)

where τ ≡ τUV + τIR and we have assumed that ΛQCD(µ) . µ. The latter condition arises

because eq. (3.4) is only valid for energy scales Q . µ. Indeed, the QCD scale is above the

IR scale if ΛQCD(µ) & µ and the analysis in terms of the zero mode of the 5D gauge field

is no longer justified. We discuss what happens in this regime below.

In order to reproduce the QCD coupling today, the free parameters g5 and τ need to

be chosen such that ΛQCD(µmin) = ΛQCD,SM, where µmin is the minimum of the radion

potential and ΛQCD,SM is the QCD scale today. This relation allows us to fix τ in terms of

g5 which then gives4

ΛQCD(µ) = ΛQCD,SM

(
µ

µmin

)n
(for ΛQCD(µ) . µ) , (3.8)

where

n ≡ bIR − bCFT

bUV + bIR
. (3.9)

The size of g5 and thus bCFT and n is limited by the requirement that the KK decomposition

is sensible in the effective 4D theory. Indeed, since the gauge coupling in 5D is an irrelevant

operator, the theory is expected to become strongly coupled at the scale Λc ∼ 16π2/g2
5.

Demanding that at least one KK mode is still in the perturbative regime, πk . Λc, we find

the condition g2
5k . 16π. This translates to n & 0.1.

We will be interested in the case n < 1. For the radion at the minimum of its potential,

µ = µmin, the QCD scale is given by ΛQCD(µmin) = ΛQCD,SM � µmin. Then moving the

radion away from the minimum to smaller values, the QCD scale decreases. For n < 1,

ΛQCD(µ) decreases slower than linearly with decreasing µ though and eventually both

become comparable. For even smaller radion values, the condition for eq. (3.8) is then no

longer satisfied. In order to see what happens for ΛQCD & µ, it is again useful to consider

the dual perspective. The dependence of the QCD scale on µ arises in this description,

because the CFT confines at the scale µ and (most of) its states no longer contribute to

the running of the QCD coupling at energies below µ. In addition, such a dependence also

results because some states (corresponding to the IR-localized quarks) only arise at the

scale µ and then contribute to the running at lower energies. Since for ΛQCD > µ, QCD

3If we define it instead as the scale where gQCD(ΛQCD(µ), µ) = 4π, τ → τ − 1/16π2 in eq. (3.7) below.
4Note that τ is always positive for the parameters that we consider.
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confines at higher energies than the CFT, in this regime ΛQCD will become independent of

µ.5 By continuity, we then expect

ΛQCD(µ) = ΛQCD(µc) (for ΛQCD(µ) & µ) . (3.10)

Here µc is the IR scale for which ΛQCD(µc) is so large that eq. (3.8) is no longer applicable.

We parametrise our ignorance where precisely this happens by a parameter nc and define

µc as the IR scale for which

ΛQCD(µc) = nc µc . (3.11)

The conditions of validity for eqs. (3.8) and (3.10) then become ΛQCD(µ) ≶ nc µ. For

n < 1, this is equivalent to µ ≷ µc. Using eq. (3.8), we find

µc = µmin

(
ΛQCD,SM

ncµmin

) 1
1−n

. (3.12)

We expect that nc is larger than 1. Indeed, the description in terms of the zero mode of

the 5D gauge field should not break down immediately when the QCD confinement scale

becomes larger than the IR scale, ΛQCD(µ) > µ. We instead expect that this description

becomes no longer applicable only once the QCD confinement scale reaches the mass scale

of the first KK mode of the 5D gauge field, ΛQCD(µ) & mKK. This would imply nc ∼ π.

We plot ΛQCD(µ) as determined in this section for µmin = 2.5 TeV, nc = 3 and different

values of n in figure 1. Starting from µ = µmin, it initially decreases with decreasing µ

according to eq. (3.8). It then eventually reaches the value in eq. (3.11), after which it

stays constant. We expect that the change between the scalings in eqs. (3.8) and (3.10)

will be smoother than shown in the plot.

4 Contribution of the QCD condensates to the radion potential

As we will discuss in more detail in section 5, if the radion potential is solely determined by

the Goldberger-Wise field, the phase transition in RS models can only complete in small

regions of parameter space. For most choices of parameters the radion instead remains

stuck in the wrong vacuum and the universe enters an inflationary phase. This lowers

the temperature of the surrounding plasma. Eventually the temperature reaches the QCD

scale and QCD confines. As is well-known, this generates condensates for the gluon and

the light quarks. We now discuss how these can affect the radion potential.

The gluon condensate was determined in ref. [40] as (see also [41, 42])6

〈G(0)
µν G

(0)µν〉 = 4π · (7± 1) · 10−2 GeV4 , (4.1)

5In the 5D description, eq. (3.4) is the running gauge coupling of the zero-mode of the 5D gauge field.

For energies above the KK mass scale, such a coupling is ill-defined. Instead one can define the coupling

in this regime via the gauge field correlator with endpoints restricted to the UV brane [37–39]. One then

in particular finds that the loop corrections become independent of the IR scale (or KK mass scale) for

energies above that scale (see e.g. section III B in [39]).
6In the relevant literature, typically a convention is used where the gauge coupling appears in the

covariant derivative. Then values for the expectation value 〈αsGµν Gµν〉 are quoted. In our convention

(cf. eq. (3.2)), this leads to the factor 4π in eq. (4.1).

– 8 –
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Figure 1. Schematic plot of the QCD confinement scale ΛQCD as a function of the IR scale µ for

µmin = 2.5 TeV, nc = 3 and n = 0.1, 0.2, 0.3, 0.4, 0.5 (in blue, yellow, green, red, purple).

where the index (0) denotes that the gluon is the zero-mode of a KK tower in our 5D model.

A somewhat smaller value was given in ref. [43], though with a significantly larger error,

while lattice studies in refs. [44–46] find a range of values. We use the result in eq. (4.1)

for definiteness in the following but our analysis is not very sensitive to O(1)-variations in

the gluon condensate. The condensates of the light quarks, on the other hand, are found

to be [43]

〈ψ(0)
u,d ψ

(0)
u,d 〉 = −(1.65± 0.15) · 10−2 GeV3 . (4.2)

The condensate of the strange quark is smaller by about a factor 0.8 [43]. These condensates

contribute to the trace of the energy-momentum tensor

T ρρ ⊃ −
bQCD

32π2
G(0)
µν G

(0)µν +
∑

quarks

mq ψ
(0)
i ψ

(0)
i . (4.3)

The first term is due to the scale anomaly of QCD, where bQCD is the β-function coefficient

of QCD, and the sum in the second term is over all quarks that form a condensate, where

mq denotes their masses. The trace of the energy-momentum tensor in turn relates to the

energy density as

V =
1

4
〈T ρρ 〉 . (4.4)

Once QCD confines, it thus contributes to the energy density of the universe. Since in the

RS model the scale at which QCD becomes strongly coupled depends on the radion, the

size of the condensates and thus their contribution to the energy density depends on it too.

On dimensional grounds, we expect that

〈G(0)
µν G

(0)µν〉 ∼ (ΛQCD(µ))4 , (4.5)

〈ψ(0)
u,d ψ

(0)
u,d 〉 ∼ (ΛQCD(µ))3 . (4.6)
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Following from eqs. (4.3) and (4.4), this leads to an additional contribution from QCD to

the radion potential.

We are thus interested in situations where the phase transition of RS models happens at

temperatures at or below the QCD scale. Electroweak symmetry is then generically broken

simultaneously. Correspondingly, we in principle need to analyze the phase transition in the

two-field potential for the radion µ and the Higgs 〈H〉. The Higgs then in particular affects

the potential from the quark condensates via the quark masses. Let us for the moment

assume that the radion tunnels into its minimum first and the Higgs only follows afterwards.

Then 〈H〉 = 0 during the phase transition of the radion and the contribution from the quark

condensates vanishes. For the contribution from the gluon condensate, we can estimate

the prefactor in eq. (4.5) by matching with eq. (4.1) for ΛQCD = ΛQCD,SM ' 330 MeV [47].

We then find

VQCD(µ, 〈H〉 = 0) ≈ −
bQCD

17
(ΛQCD(µ))4 (4.7)

for the contribution of the gluon condensate to the radion potential. Several comments are

in order: the prefactor in this relation could have an additional dependence on ΛQCD and

thus µ. However, we expect that the resulting change with µ in the prefactor is at most of

order 1. We will later see that our results are relatively insensitive to changes of this (or even

somewhat larger) magnitude. More important is that the gluon condensate 〈G(0)
µν G(0)µν〉

remains positive for all confinement scales, so that the prefactor does not change sign.

But since this quantity should (at least in principle) be calculable using a path integral in

Euclidean space-time, this is trivially satisfied (see the discussion in section 6.9 in ref. [48]).

The positivity of the gluon condensate also makes intuitive sense because it means that the

energy density is lowered during confinement (the quark condensates give a comparatively

smaller contribution).

Note that all quarks are massless along the direction 〈H〉 = 0. The relevant β-function

coefficient in eq. (4.7) therefore is bQCD = 7. Correspondingly instead of ΛQCD,SM, which

is the scale where the QCD coupling diverges if 3 flavours are light at that scale (the other

3 flavours are decoupled at their respective masses), we need to use ΛQCD,0 ' 90 MeV for

the case of 6 light flavours [47] in eqs. (3.8) and (3.10). This gives

VQCD(µ, 〈H〉 = 0) ≈ −
bQCD

17
·


Λ4

QCD,0

(
µ

µmin

)4n
for µ > µc

(ΛQCD(µc))
4 for µ < µc .

(4.8)

The energy density in the minimum of the Goldberger-Wise potential is given by

VGW(µmin) ' −ε v2
IR
µ4

min

(√
ε+

ε2

4
− δ

v2
IR

− δ

2v2
IR

)
. (4.9)

This is typically much bigger than VQCD(µmin) since µmin � ΛQCD,SM. The new contribu-

tion from QCD is thus negligible near the minimum of the radion potential. However, the

Goldberger-Wise potential goes approximately like µ4, while the potential from the gluon

condensate is proportional to µ4n. For n < 1, the importance of the latter relative to the
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Figure 2. The radion potential plotted around the Goldberger-Wise barrier without (left) and

with (right) the contribution from the gluon condensate for µmin = 2.5 TeV, n = 0.15, nc = 3,

ε = 1/20, vIR = 1 and δ = −1/2. The combined potential is negative near the origin because the

gluon condensate contributes with a negative sign, while the Goldberger-Wise potential vanishes

there. For better comparison, we have shifted the combined potential to make it vanish at the

origin too. Notice that the barrier does not completely disappear even with the contribution from

the gluon condensate.

former thus grows with decreasing µ. Since the gluon condensate contributes with a nega-

tive sign to the energy density, it can then partly remove the barrier in the Goldberger-Wise

potential between the origin and the minimum. This is borne out in figure 2, where we plot

the radion potential without and with the contribution from the gluon condensate near the

Goldberger-Wise barrier for n = 0.15 (and nc = 3, µmin = 2.5 TeV, vIR = 1, ε = 1/20).

The gluon condensate indeed removes a significant part of the barrier and, more generally,

changes the shape of the potential. Notice that it does not remove the barrier completely

though and a small barrier remains. The reason is that the gluon condensate becomes

independent of µ for µ . µc as discussed previously, while the Goldberger-Wise potential

grows approximately like µ4 near the origin. Since a barrier remains, the phase transition

is still first order. We then need to calculate the bounce in order to see if the tunneling

rate is sufficiently high for the phase transition to complete in the early universe. But from

the plot of the potential, we expect that the QCD contribution can significantly increase

the tunneling rate. We will see later that this is indeed the case.

Let us next discuss the case where both µ and 〈H〉 change simultaneously during

the phase transition. The contribution from the gluon condensate is then still given by

eq. (4.7). But the β-function coefficient becomes a (stepwise) function of µ and 〈H〉 since it

depends on the number of light fermions near the QCD scale ΛQCD. In addition, the quark

condensates now contribute to the potential. Matching with eq. (4.2) for ΛQCD = ΛQCD,SM

gives the estimate

VQCD(µ, 〈H〉) ⊃ − 1

2

∑
quarks

yq 〈H〉 (ΛQCD(µ))3 . (4.10)

As we discuss below, this relation is a priori only valid for ΛQCD(µ) . µ. Also again

we expect some additional O(1)-dependence on µ in this relation for ΛQCD different from

ΛQCD,SM. The sum is over all quarks with mq = yq〈H〉 . ΛQCD(µ). Near the minimum of

the combined radion-Higgs potential at µ = µmin and 〈H〉 = vEW, this sum is dominated
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by the strange quark with yq ≈ 10−3. On the other hand, in the region of the potential

where 〈H〉 . ΛQCD, even the top quark condenses and contributes. In order to compare

with the contribution from the gluon condensate, let us consider two sample trajectories

near the minimum of the two-field potential. For

〈H〉 = vEW

(
µ

µmin

)n
, (4.11)

the ratio 〈H〉/ΛQCD(µ) remains constant and the strange quark condensate dominates over

the other quark condensates everywhere along the trajectory. We then see from eqs. (4.7)

and (4.8) that the gluon and quark condensates contribute approximately equally to the

potential. Let us next consider the trajectory

〈H〉 = vEW
µ

µmin
(4.12)

along the minimum of the Higgs potential.7 The ratio 〈H〉/ΛQCD(µ) then decreases for

n < 1 when going along this trajectory from µ = µmin towards µ = 0 and more and more

quark flavours condense. This increases the importance of the quark condensates for the

potential relative to the gluon condensate. On the other hand, this is counteracted by the

fact that eq. (4.8) now decreases proportional to µ1+3n with decreasing µ, while eq. (4.7)

still scales as µ4n.

Nevertheless, it is possible that there are regions of parameter space and trajectories in

the two-field potential for which the quark condensates dominate over the gluon condensate.

However, we will refrain from analyzing this quantitatively. As earlier in this section, we

will instead focus on the tunneling path along the (µ, 〈H〉 = 0)-direction for the radion and

assume that the Higgs only later obtains a VEV. We can then restrict ourselves to the gluon

condensate. Let us assume that, for a given point in parameter space, the tunneling action

along this direction is sufficiently small to allow the phase transition to complete. If the

actual tunneling path in the two-field potential differs from this direction, it necessarily

has a smaller tunneling action and therefore provides a successful phase transition too.

Focusing on the path along the (µ, 〈H〉 = 0)-direction and the gluon condensate is therefore

sufficient for showing that QCD can significantly enlarge the regions of parameter space

where the RS phase transition completes in the early universe. Other paths and the quark

condensates can only open up more parameter space.

In addition, there are technical reasons for focusing on the gluon condensate: it is in

particular less clear that the sign of the quark condensate does not change when ΛQCD

becomes different from ΛQCD,SM (contrary to the case for the gluon condensate). But only

7We note that this trajectory is along the minimum of the Higgs potential only if the Higgs mass pa-

rameter m2
H is independent of µ. However, various phenomenological constraints require that this mass is

much smaller than its natural value, |m2
H | � e−2ky

IRM2
5 (or a similar cutoff). In absence of a dynamical

mechanism to generate this (little) hierarchy, one needs an accidental cancellation among different contri-

butions to m2
H to bring it down to the required value. It is then expected that this accidental cancellation

only happens for µ close to µmin and that the Higgs mass parameter is brought back to its natural value for

different µ. This would change the trajectory along the minimum of the Higgs potential to 〈H〉 ∼ O(1) · µ.

We thank Jay Hubisz for emphasizing this to us.
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for a negative sign as in eq. (4.2) can the resulting contribution to the radion potential

remove the barrier and thereby help with the phase transition. Furthermore, the derivation

of eqs. (4.3) and (4.8) assumes that we can perform a KK expansion of the 5D fields and

then add confinement as a small perturbation. If the QCD scale becomes larger than the

KK scale, this assumption is no longer justified. In particular, higher-dimensional operators

involving colored KK modes then grow with ΛQCD/µ and this description is thus no longer

under control. It is unclear how the Higgs couples to the quark condensates in this regime.

5 The phase transition in Randall-Sundrum models

We next review the phase transition that happens in RS models when they cool from

temperatures above to temperatures below the IR scale. In this section, we ignore the

effect of the gluon condensate on the radion potential and the phase transition. Readers

familiar with this may jump straight to the next section, where we include the QCD effect

and which presents our main results.

At temperatures far above the IR scale µmin, the geometry of the Randall-Sundrum

model is deformed into AdS-Schwarzschild. This space has a black hole horizon instead

of the IR brane. The position of this horizon, or equivalently its Hawking temperature

TH , is the relevant field variable in the AdS-Schwarzschild phase (similar to the radion

µ in the Randall-Sundrum phase). Its potential is given by the free energy of AdS-

Schwarzschild [20]8

VAdS−S(TH) =
3

8
π2N2T 4

H −
1

2
π2N2T 3

HT , (5.1)

where T denotes the ambient temperature. As expected, this potential is minimized for

TH = T . Notice that the energy in this minimum increases with decreasing temperature.

Eventually the temperature in the early universe has cooled so much that the minimum

becomes shallower than the minimum of the Goldberger-Wise potential. Subsequently a

phase transition from AdS-Schwarzschild to the Randall-Sundrum space can take place.

This becomes energetically possible at the critical temperature

Tc =

(
−8VGW(µmin)

π2N2

)1/4

, (5.2)

where the energy density VGW(µmin) in the minimum of the Goldberger-Wise potential is

given in eq. (4.9).

The two spaces have different topologies since AdS-Schwarzschild is simply connected

whereas the Randall-Sundrum space is not. But they can be smoothly connected by sending

respectively the horizon and the IR brane to infinity, TH , µ→ 0, which in both cases gives

pure AdS5 (cut off by a brane in the UV). As argued in ref. [20], it is then plausible to expect

that the dominant bounce which mediates the phase transition interpolates between the

two spaces via pure AdS5. The potential which governs this bounce is obtained by gluing

8Bulk fields like the Goldberger-Wise scalar give additional, smaller contributions (see ref. [20]).
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the potentials for Th and µ, VAdS−S and VGW, together at the origin, TH = µ = 0.9 In

figure 3, we plot this combined potential at the critical temperature. Notice that the AdS-

Schwarzschild phase leads to a barrier that separates the two minima in the potential. This

comes in addition to the barrier in the Goldberger-Wise potential which we have mentioned

before and which is already present at zero temperature. The phase transition therefore is

first-order and proceeds via the nucleation of bubbles. The rate with which these bubbles

form is given by

Γn = Γ0 e
−S , (5.3)

where Γ0 is of order of the fourth power of the relevant energy scale of the potential and S is

the bubble action. For O(4)-symmetric bubbles, Γ0 is a function of the characteristic bubble

size, the field value µr to which the field tunnels and the second derivative of the potential

along the tunneling path [49–51]. The scale of all these quantities is set by µr. For O(3)-

symmetric bubbles, an additional dimensionful quantity is the ambient temperature [51].

Since these bubbles are only important for relatively high temperatures, this is typically

again of order µr. In addition, Γ0 can depend on the dimensionless quantities N, ε, vIR , δ.

Since Γ0 only enters logarithmically into the relation for the required bubble action S (see

below), though, these parameters can be neglected.

The phase transition can only complete if the rate of bubble nucleation Γn becomes

larger than the Hubble rate per horizon time and volume H4. This leads to the condition

on the bubble action

S . 4 log

(
µrMPl

µ2
min

)
, (5.4)

where we have used the estimate Γ0 ∼ µ4
r and that H ∼ µ2

min/MPl during the phase tran-

sition. Note that the latter relation applies for both temperatures near and far below the

critical temperature. The Hubble rate in the former case is driven by the AdS-Schwarzschild

phase, while in the latter case it is determined by the cosmological constant which arises

from the universe being stuck in the wrong vacuum (cf. eqs. (4.9) and (5.1)). If the radion

potential is of the Goldberger-Wise type, the radion typically tunnels to near the minimum

of the potential so that µr ∼ µmin. This leads to the criterion S . 140. As we will discuss in

section 6, if the gluon condensate modifies the potential near the origin, the radion instead

tunnels to the much smaller value µr ∼ ΛQCD(µc). The resulting criterion S . 50 − 90

for n = 0.1− 0.5 is more stringent. The modified potential from the gluon condensate will

have a much smaller tunneling action, though, which can then still satisfy the tightened

criterion for the phase transition to complete.

One can distinguish two types of bubbles that form during the phase transition. If the

spatial size of the bubble is much larger than the radius T−1 of the time direction, it has

O(3) symmetry. The bubble action is then given by S = S3/T , where S3 is the action of

the spatial part. In the opposite case, the bubble has O(4) symmetry and its action reads

S = S4. The action for both bubble types generically depends on the temperature and thus

9Note that in the region 0 ≤ µ . T , temperature corrections to the radion potential are not under

control as the effective 4D description breaks down. However, we are mainly interested in the potential at

the nucleation temperature Tn which is much smaller than µmin (see below). The region which is not under

control is therefore small and can be neglected in calculating the bounce.
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μ

VAdS-S,VGW

Figure 3. Schematic plot of the combined potential for the AdS-Schwarzschild and Randall-

Sundrum spaces, glued together at the origin and evaluated at the critical temperature.

changes as the universe expands and cools. For O(4)-symmetric bubbles, it decreases with

the temperature as the energy difference between the false and true minima then grows

(cf. eqs. (4.9) and (5.1)). This effect is partly counteracted for O(3)-symmetric bubbles due

to the explicit T−1-suppression of the action. The latter is therefore typically minimized

for temperatures not too far below the critical temperature.

Let us first consider bubbles with O(4) symmetry. If we want to determine whether the

phase transition can complete, it is sufficient to calculate their action at zero temperature

since this minimizes the action. The AdS-Schwarzschild part of the instanton vanishes in

this limit and we can use the origin of the Goldberger-Wise potential as the initial state

corresponding to the false vacuum. The radial profile µ(r) of the bubbles is then obtained

by solving the bounce equation

3N2

2π2

(
d2µ

dr2
+

3

r

dµ

dr

)
=

dVGW

dµ
, (5.5)

where r =
√
~x2 + t2 is the radial distance from the center of the bubble and the boundary

conditions are µ(r) → 0 for r → ∞ and dµ/dr = 0 at µ = 0. The bubble action follows

from the integral

S4 = 2π2

∫
r3dr

[
3N2

4π2

(
dµ

dr

)2

+ VGW(µ)

]
. (5.6)

We have numerically calculated the resulting action for µmin = 2.5 TeV, N = 4.5 and

different values of ε, vIR and δ (ignoring the QCD effect). In order to stay in the window

for δ above eq. (2.10) for varying vIR , we choose the parametrization δ = δ̃ v2
IR

. In the

left panel of figure 4, we then fix δ̃ = −0.5 and show results in the (vIR − ε)-plane. In

the right panel, vIR = 0.5 and results are plotted in the (δ̃ − ε)-plane. Regions where the

action satisfies the criterion in eq. (5.4) and where the phase transition can thus complete

are shown in green. In the remaining parameter space, shown in red, the phase transition

does not complete and the radion instead remains stuck in the wrong vacuum. In the

hashed region, above and to the right of the dashed black line, the contraint in eq. (2.13) is

not fulfilled and the backreaction of the Goldberger-Wise scalar on the geometry can not

be neglected. The blue, orange, green, red dashed-dotted lines correspond to the radion
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Figure 4. Results for µmin = 2.5 TeV and N = 4.5 without the QCD effect. For the left panel,

we have fixed δ̃ = −0.5, and for the right panel, vIR = 0.5. Regions where the phase transition can

complete via the nucleation of O(4)-symmetric bubbles are shown in green, while regions where the

nucleation rate is too low are colored in red. Regions above the purple dashed and dotted lines

are allowed according to the analytical estimate of the bubble action for O(4)- and O(3)-symmetric

bubbles, respectively. In the hashed region (above the black, dashed line in the left panel and to right

of the black, dashed line in the right panel), the backreaction constraint is not fulfilled. The blue,

orange, green, red dashed-dotted lines (from bottom to top in the left panel and in the reversed order

in the right panel) correspond to the radion mass being mradion = 200 GeV, 600 GeV, 1 TeV, 1.4 TeV,

respectively.

mass being (neglecting the backreaction, see the discussion at the end of this section)

mradion = 200 GeV, 600 GeV, 1 TeV, 1.4 TeV, respectively.10

The bubble action can also be estimated analytically. For O(4)-symmetric bubbles,

we are interested in the action at zero temperature, in which case the energy difference

between the false and true minima is big and the thick-wall approximation is applicable.

This gives [51]

S4 ≈
9N4

8π2

µ4
r

−VGW(µr)
. (5.7)

The point µr to which the field tunnels is determined by minimizing S4 with respect to µr.

In figure 4, the region where the resulting S4 satisfies eq. (5.4) and the phase transition thus

completes is above the dashed purple line. As one can see, the results using the analytical

estimate agree reasonably well with the (more precise) numerical calculation.

Let us next consider O(3)-symmetric bubbles. The bounce equation and bubble action

are obtained from eqs. (5.5) and (5.6) via the replacements 3/r → 2/r, S4 → S3, and

2π2r3 → 4πr2. The contribution to the radion potential from the QCD condensates that

10The radion mass is, even if the QCD effect is included, dominated by the Goldberger-Wise potential

and given by

m2
radion ' ε

4π2

3N2

(
v2
IR

(4 + ε)

(√
ε (4 + ε)− 4δ

v2
IR

+ ε

))
µ2
min .
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we include in the next section, requires the temperature to drop below the QCD scale. The

action of O(3)-symmetric bubbles is then very large and they become unimportant. Since

this scenario is the main topic of this paper, we will not calculate their action numerically.

At higher temperatures, bubbles with O(3) symmetry can be important though. In order

to check if they open up parameter space for the phase transition to complete, we will use

an analytical estimate for their action. As shown in [21], the thick-wall approximation is

again applicable for these bubbles in the Randall-Sundrum model. The action can then be

estimated as [52]11

S3 ≈
√

3

π2

N3µ3
r√

VGW(µmin)(T/Tc)4 − VGW(µr)
. (5.8)

The term in the denominator arises from the energy difference between the false vacuum

(eq. (5.1) at TH = T ) and the potential at the release point (eq. (2.12) at µ = µr). In

figure 4, the region where the resulting action satisfies eq. (5.4) and the phase transition

thus completes is above the dotted purple line. We see that O(3)-symmetric bubbles do

not open up much more parameter space than those with O(4) symmetry.

Notice that the regions where we found sufficiently small bubble actions are entirely

within the hashed regions. Since our calculation of the bubble actions effectively assumes

negligible backreaction, the results in the hashed regions are a priori not reliable. In

addition, significant backreaction is expected to raise the radion mass to the IR scale, an

effect not included in the contour lines. If the radion is so heavy, however, the description of

the phase transition in terms of only the radion becomes questionable. Instead one would

have to include higher KK modes or calculate the full 5D instanton [20, 22]. It is therefore

not clear whether the phase transition can really complete in the corresponding regions of

figure 4. Furthermore, note that N = 4.5 is just above the constraint in eq. (2.15) from

neglecting higher powers of the Ricci scalar in the action. If one increases N , these region

quickly disappears since the action scales12 as N4.

We thus conclude that when using the Goldberger-Wise potential, the RS phase tran-

sition does not complete for most of the parameter space. Several approaches have been

proposed to remedy this situation, for example by deforming the RS geometry [23–25] or by

invoking brane-localised curvature [26]. We show in the next section how QCD confinement

provides a universal and effective solution to this problem.

11Note that the AdS-Schwarzschild part of the instanton has been neglected in this estimate. Its contri-

bution to the bubble action can not be properly calculated since the normalization of the kinetic term for

the field TH is not known. However, it was argued in ref. [20] that this part of the instanton is suppressed

by powers of N relative to the contribution from the Randall-Sundrum space and can therefore justifiably

be neglected.
12This follows from the transformation properties under scale transformations x→ λx of the kinetic term

and potential in eq. (5.6). Denoting them by T and V , respectively, one has T → λ2T and V → λ4V . For

λ = N , we then see that S4 ∝ N4. From the fact that the bounce is an extremum of the action, one can

similarly show that T = −2V (see e.g. ref. [53]). We use this property as a quality control for the numerical

calculation of the bounce.
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6 Effect of the QCD condensates on the phase transition

We now include the effect of the QCD condensates on the radion potential and the phase

transition. As we have seen in section 4, the contribution from the gluon condensate in

particular can partly remove the barrier in the Goldberger-Wise potential. We expect that

this increases the tunneling rate. Let us now see whether this is the case.

In regions of parameter space where the phase transition does not complete for the

Goldberger-Wise potential, the radion remains stuck in the wrong vacuum. This vacuum

has a large, positive cosmological constant since the energy density in the true minimum

needs to equal the cosmological constant today and thus almost vanishes (which is achieved

by adding a constant contribution to the radion potential). The universe therefore quickly

enters an inflationary phase. During this period, the temperature drops exponentially and

eventually reaches the QCD scale. The QCD condensates then form and contribute to the

radion potential. However, the QCD scale is itself a function of the radion. It decreases

with µ and then saturates at ΛQCD(µc) given in eqs. (3.11) and (3.12). The effect of the

QCD condensates on the radion potential is maximized if the temperature drops below

this scale ΛQCD(µc). For points in parameter space where the QCD effect allows the phase

transition to complete, this provides a lower bound on the temperature Tn at which the

phase transition happens:

Tn & ΛQCD(µc) . (6.1)

We emphasize that this is only a lower bound though. For n = 0.1− 0.5, this then gives

Tmin
n ∼ 10−2 GeV − 10−6 GeV. (6.2)

The inflationary phase ends once the phase transition completes. We can estimate the

resulting maximal number of e-folds of this stage as

Nmax
e ∼ log

(
Tc
Tmin
n

)
∼ log

(
µmin

Tmin
n

)
∼ 10 − 20 . (6.3)

We assume that an earlier stage of inflation is responsible for the features of the Cosmic

Microwave Background. A second stage of inflation with a number of e-folds in the above

range is then safe from observational constraints.

From eq. (6.2), we expect the phase transition to happen at temperatures far below

the critical temperature (for example even for ε = 10−3, vIR = 10−2 and N = 10, the latter

is of order 10 GeV). Then O(3)-symmetric bubbles are highly suppressed and only bubbles

with O(4) symmetry are relevant. As discussed in section 4, we assume that n < 1 and

restrict ourselves to the gluon condensate and the direction (µ, 〈H〉 = 0) in the combined

radion-Higgs potential. The bounce equation, action and approximate action for O(4)-

symmetric bubbles is obtained from eqs. (5.5) to (5.7) by replacing the Goldberger-Wise

potential with

Vradion(µ) = −VQCD(0) + VQCD(µ) + VGW(µ) . (6.4)

The first term is chosen such that the potential vanishes for µ = 0. This is an underlying

assumption for the bounce equation (which for the Goldberger-Wise potential is automat-

ically fulfilled).
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Let us begin with some analytical estimates. The gluon condensate can affect the

barrier if its contribution to the potential at the position of the barrier is larger than the

barrier height,

|VQCD(µmax)| & |VGW(µmax)| . (6.5)

The importance of the QCD potential relative to the Goldberger-Wise potential grows

with decreasing µ. There is then a region 0 ≤ µ ≤ µQCD with some µQCD & µmax, where

we can neglect the Goldberger-Wise potential. Using eqs. (3.12) and (4.8) (with ΛQCD,SM

replaced by ΛQCD,SM as discussed in section 4), the radion potential in this region can be

rewritten as

Vradion(µ) ≈ 7

17
Θ(µ− µc) (ΛQCD(µc))

4

(
1 −

(
nc µ

ΛQCD(µc)

)4n
)
. (6.6)

Defining µ̃ ≡ µ/ΛQCD(µc), the approximate analytical result for the bubble action in

eq. (5.7) then gives

S4 ≈ N4 3

π2

µ̃4
r

Θ(µ̃r − 1/nc) ((nc µ̃r)4n − 1)
. (6.7)

In order to find the bubble action, this expression needs to be minimised with respect to

the release point µ̃r. As we have discussed in section 3, we expect that nc ∼ π. For values

of nc in the vicinity of this and n = 0.1, we then find

S4 ≈ N4


0.5 for nc = 2

0.1 for nc = 3

0.03 for nc = 4 .

(6.8)

For n = 0.5, on the other hand, we find

S4 ≈ N4


0.08 for nc = 2

0.02 for nc = 3

5 · 10−3 for nc = 4 .

(6.9)

The criterion in eq. (5.4) for the phase transition to complete evaluates to S4 . 50 for

n = 0.1 and S4 . 90 for n = 0.5. We then expect that the phase transition can complete in

the entire region delimited by eq. (6.5) for n = 0.1, nc & 3 or n = 0.5, nc & 2 and N = 4.5

(close to its minimal allowed value according to eq. (2.15)). Depending on the parameters,

higher values of N can be viable. For example for n = 0.5 and nc = 4, the phase transition

could complete for N up to 12.

In order to see if these expectations are borne out, we have calculated the action for

O(4)-symmetric bubbles numerically. We model ΛQCD(µ) by the function13

Λapprox.
QCD (µ) = ΛQCD,0

µ e−(µcµ )2

+ µc
µmin

n

(6.10)

13Alternatively, one can for example approximate the Θ-function in eq. (6.6) by [1 + tanh ((µ− µc)/b)]/2
with b� 1. This is numerically less stable than the choice in eq. (6.10) but gives comparable results.
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Figure 5. Results for µmin = 2.5 TeV, N = 4.5 and n = 0.1 and n = 0.3 when the QCD effect is

included. For the left panel, we have fixed δ̃ = −0.5, and for the right panel, vIR = 0.5. Regions

where the phase transition can complete via the nucleation of O(4)-symmetric bubbles for both

n = 0.1 and n = 0.3 are shown in green. This to be compared with the allowed regions in figure 4

without the QCD effect. Regions where the nucleation rate is too low are colored in pale (dark) red

for n = 0.3 (n = 0.1). The corresponding green dashed lines delimit the region satisfying eq. (6.5),

where we expect the QCD effect to be important. In the hashed region (above the black, dashed

line in the left panel and to right of the black, dashed line in the right panel), the backreaction

constraint is not fulfilled. The radion masses are as in figure 4.

which smoothly interpolates between eqs. (3.8) and (3.10) and assume that nc = 3. For

parameters for which the condition in eq. (6.5) is not satisfied, the gluon condensate typ-

ically leads to a second local minimum in the radion potential in the region µ < µmax.

Since the bubble action for tunneling into this local minimum is much smaller than for

tunneling directly into the global minimum, the phase transition will then happen in a

two-step process. For parameter points for which such a second minimum appears, we

therefore calculate the bubble action for the tunneling from the false vacuum into the local

minimum and from there into the global minimum separately. The phase transition can

then complete if each of these two bubble actions satisfies the criterion in eq. (5.4).

We have performed the calculation for µmin = 2.5 TeV, N = 4.5, n = 0.3 and n = 0.1

and different values of ε, vIR and δ. As in section 5, we choose the parametrization δ = δ̃ v2
IR

to ensure that δ stays in the window above eq. (2.10) for varying vIR . In the left panel of

figure 5, we then fix δ̃ = −0.5 and show results in the (vIR − ε)-plane. In the right panel,

vIR = 0.5 and results are plotted in the (δ̃− ε)-plane. We color the region where the phase

transition does not complete for both n = 0.1 and n = 0.3 in dark red. The region which is

in addition excluded for n = 0.3 is shaded in pale red, while the remaining allowed region

is in green. In the hashed region (above and to the right of the black, dashed line), the

contraint in eq. (2.13) is again not fulfilled and the backreaction of the Goldberger-Wise

scalar on the geometry can not be neglected. Comparing with figure 4 without the QCD

effect, we see that the latter opens up a large region of parameter space. We show the
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regions delimited by the condition in eq. (6.5), where we expect the gluon condensate to

have an effect, as green dashed lines. As one can see, these match very well the region

where the gluon condensate allows the phase transition to complete. To avoid clutter,

we have not plotted contour lines for the radion mass. But since the QCD condensates

contribute negligibly to the potential near the minimum, they are as in figure 4.

7 Cosmological implications and experimental tests

In our setup, the cosmological history is the following: we start at high temperatures in

a hot CFT gas. The universe is trapped in the false vacuum at µ = 0 separated by a

barrier from the true vacuum until the dilaton tunnels out and gets a VEV. This leads

to the confinement of the CFT, which induces EW symmetry breaking due to the Higgs-

dilaton coupling.14 The shallow dilaton potential is associated with a large bubble action,

thus a small tunnelling probability, and the universe supercools to very low temperatures.

When ignoring QCD effects, one finds that the universe typically remains stuck in the

wrong vacuum. We have found that the QCD condensates, on the other hand, can have a

large impact on the tunneling action in the radion potential, and can enable the RS phase

transition to complete in large regions of parameter space.

After tunneling to the release point, the radion starts classically rolling down its po-

tential towards the minimum. When the QCD condensates are important, this release

point is given by µr ∼ ΛQCD(µc) which is much smaller than µmin. Since the potential is

rather flat for small field values, the field moves slowly and we have to check that quantum

fluctuations do not bring it back towards the origin, which would lead to eternal inflation.

To this end, let us consider the equation of motion for µ,

µ̈ + 3Hµ̇ =
1

C3

∂Vradion

∂µ
, (7.1)

where H is the Hubble rate and C = 3N2/(2π2) accounts for the normalisation of the

kinetic term of µ. The quantum fluctuations of the radion in the Hubble background are

∆µquant ∼ H/2π and its classical displacement during one Hubble time ∆t ∼ H−1 is

∆µclass ∼ ∆t× µ̇ ∼
V ′radion

3C3H2
, (7.2)

where we have neglected the µ̈-term in the equation of motion. We can then define a

critical field value µ∗ [55] for which

∆µclass = ∆µquant → ∂Vradion

∂µ

∣∣∣∣
µ∗

=
3C3H3

2π
. (7.3)

14How this Higgs-dilaton interplay happens depends on the details of the UV completion. From localising

the Higgs on the IR brane with a mexican hat potential, a Higgs-dilaton potential of the form λ(H2−ξµ2)2/4

is obtained, where ξ = v2EW/µ
2
min and vEW is the Higgs VEV today (see, however, footnote 7). If the Higgs

is a pseudo-Nambu-Goldstone boson, the potential instead has the form µ4(α0 sin2[h/µ] + β0 sin4[h/µ]),

whose coefficients depend on the matter content in the composite sector [54].
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Since ∆µclass decreases with µ, quantum fluctuations would dominate the evolution of µ

if µr . µ∗. We would then be in the regime of eternal inflation. The Hubble rate H is

controlled by the vacuum energy in the false vacuum which is approximately of order µ4
min.

This gives

µ∗ ∼
µ2

min

MPl
∼ TeV2

MPl
∼ 10−12 GeV . (7.4)

For the parameter space of interest, µr ∼ ΛQCD(µc) is always significantly bigger than

this µ∗. There is therefore no danger of eternal inflation and the field instead classically

rolls towards the minimum of its potential after tunneling. A few e-folds of inflation may

result from this short slow-rolling stage. The associated cosmological implications will be

discussed in future work [56].

The dilaton phase transition can thus trigger the EW phase transition, and the dynam-

ics that we have studied are therefore directly relevant for EW baryogenesis. Furthermore,

since the QCD phase transition takes place before the EW phase transition when the top

quark is still massless, the QCD phase diagram may be impacted. This potentially makes

the QCD phase transition first-order [8, 57]. Just before the EW phase transition, the

temperature of the universe is below the QCD scale. However, the energy density of the

universe is dominated by the TeV scale vacuum energy of the dilaton and the universe is

inflating. After the dilaton phase transition proceeds, reheating takes place as the dilaton

energy density is transferred to the standard model particles. We can thus expect that the

universe reaches EW scale temperatures again so that the QCD phase transition eventu-

ally happens a second time, in the standard way, and the usual standard thermal history

follows. The only remnant of the supercooling stage will be in the form of a stochastic

background of gravitational waves observable at LISA [1, 21]. Because of a potentially

first-order QCD phase transition preceeding the EW phase transition and both happening

when the energy density of the universe is at the TeV scale, this could lead to an enhanced

amplitude of the signal at LISA and potentially some features in the gravitational-wave

spectrum (the double-bump would be difficult to resolve though).

We assume a cosmological scenario in which inflation took place at high scales, when

the power of density perturbations at the origin of the Cosmic Microwave Background

(CMB) was produced, followed by reheating to high (above the TeV scale) temperatures.

The subsequent later stage of supercooling leading to additional 10 to 20 e-folds of infla-

tion may dilute pre-existing heavy particles and potentially have an impact on the axion

abundance [9]. A second stage of inflation with a number of e-folds in this range is not

constrained, though, and the CMB remains unaffected.

Cosmological implications of this scenario were discussed in [5], such as the possibility

of dilution of relic abundances of stable particles during the TeV-scale inflationary stage

or non-thermal dark-matter production during bubble collisions. A particularly interest-

ing consequence is baryogenesis. Since the EW phase transition takes place essentially

in vacuum, the usual charge transport mechanism in the vicinity of bubble walls is not

appropriate. This setup is, on the other hand, a natural framework for implementing the

mechanism of cold baryogenesis [9, 58] which is very different from the usual EW baryo-

genesis mechanism and does not involve sphalerons. Instead, Higgs quenching induces

– 22 –



J
H
E
P
0
1
(
2
0
1
8
)
1
5
9

Chern-Simons transitions [59, 60]. In particular, we provide a natural explanation for a

nucleation temperature at the QCD scale, which nicely motivates the possibility that the

QCD axion could be responsible for providing enough CP -violation for baryogenesis [9].

Our scenario works if the dilaton is rather light (below the mass scale of the composite

resonances, see figure 4). Experimental tests will therefore come from the detection of the

dilaton. In a natural realisation without fine-tuning, this means the dilaton is accessible

at the LHC. The properties and signatures of the dilaton are determined by its Nambu-

Goldstone nature [61–65] and it can be distinguished from other additional singlets in

extended scalar sectors of the standard model. While discovering a light dilaton at the

LHC would be a signal in favour of our scenario, this would not be enough. In fact, as

clearly shown by the comparison between figures 4 and 5, we also need a small parameter

n for the phase transition to complete. According to eqs. (3.6) and (3.9), such a small n

corresponds to a small |bCFT| which means a large 5D gauge coupling kg2
5. This coupling

can be probed by measuring resonant production of KK gluons or KK quarks. Given

the bounds from EW precision tests of order 2 TeV on the KK scale (see footnote 1), we

conclude that a future high energy collider is needed to probe this scenario.

8 Conclusions

Our analysis shows that the possibility to delay the electroweak phase transition down to

QCD temperatures can arise naturally in models where electroweak symmetry breaking is

linked to nearly conformal sectors, as is well-motivated in Randall-Sundrum and compos-

ite Higgs models. We have found that the first-order Randall-Sundrum phase transition

becomes much more likely when including effects from the QCD condensate in the ra-

dion/dilaton potential. The comparison between figures 4 and 5 shows that a large region

of parameter space opens up when incorporating this effect in the analysis of the tunneling

probability. We summarise our key ingredients:

• The dilaton VEV µ determines the confinement scale of the CFT (or the radion VEV

the IR scale of the RS model).

• The Higgs acquires a potential from its coupling to the radion/dilaton and gets a

non-zero VEV controlled by the scale µ.

• The composite sector is colored and thus coupled to gluons, as imposed by the scenario

of composite Higgs models with partial compositeness [14, 15]. At energies lower

than µ, the CFT degrees of freedom no longer contribute to the running of the QCD

coupling. The latter thereby depends on µ. In the Randall-Sundrum description,

this results from the gluon living in the bulk of the extra dimension.

• Consequently, the scale ΛQCD at which the QCD coupling becomes strong depends

on µ too. It scales as (see eq. (3.8))

ΛQCD(µ) ∝ µn for ΛQCD(µ) . µ .
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This means that at small µ, the blowing-up of the QCD coupling is delayed for n < 1,

where n is a free parameter determined by the CFT degrees of freedom contributing

to the QCD β-function, or by the 5D gauge coupling (see eq. (3.9)).

• The QCD contribution from gluon condensation to the radion/dilaton potential comes

with a negative sign, (see eq. (4.7)),

VQCD ∝ − (ΛQCD(µ))4 .

This lowers the potential at small µ and contributes to remove a significant part of

the barrier, leading to an important impact on the tunneling action for 0.1 . n . 1.

While we have not included the Higgs in our analysis, the Higgs-radion interplay

can lead to additional non-trivial effects such as Yukawa coupling variation during the

electroweak phase transition [34, 54].

The effect that we have studied in detail in the context of the Randall-Sundrum model

is rather general and applies to other nearly conformal potentials. A related discussion

was presented in ref. [8] in the framework of a classically conformal B − L-extension of

the standard model. In this context, the Higgs has a quartic coupling to an additional

singlet scalar whose VEV breaks B − L. The corresponding Coleman-Weinberg potential

has no barrier at zero temperature (it remains to be checked whether in this model a zero-

temperature barrier could be generated through slowly running perturbing operators at

higher order, similar to what happens in the Goldberger-Wise mechanism). Rather than

the gluon condensate, the top-quark condensate is considered, which generates a linear

term in the Higgs potential yt〈t̄t〉h/
√

2 that suppresses the thermal barrier from the Higgs

thermal mass at temperatures below the QCD scale.

Our results strongly motivate the possibility of cold baryogenesis [9, 58, 59] and open

novel opportunities for cosmology such as a natural TeV-scale stage of inflation which can

lead to the production of primordial black holes [56]. The strongly first-order electroweak

phase transition also leads to a large stochastic signal of gravitational waves observable at

LISA [1, 21].
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A Perturbativity constraints for Goldberger-Wise

In order to be able to neglect the backreaction of the Goldberger-Wise scalar on the geom-

etry, the magnitude of its energy-momentum tensor needs to be smaller than the contribu-

tion from the cosmological constant. The energy momentum tensor of the Goldberger-Wise

scalar is given by

TMN
φ = gMN

(
1

2
(∂Mφ)2 − m2

2
φ2

)
−
(
∂Mφ

) (
∂Nφ

)
. (A.1)

Plugging in its VEV in eq. (2.4), the µν-components read

Tµνφ ' k5v2
IR
ηµν
(
k

z

)2
[

(8 + 2ε)

(
1−

(
µ

µmin

)ε
Xmin

)2(
µ

z

)8+2ε

− 2 ε

(
z

µmin

)2ε

X2
min

− 8 ε

(
1−

(
µ

µmin

)ε
Xmin

)(
µ

z

)4+ε( z

µmin

)ε
Xmin

]
, (A.2)

where z ≡ ke−ky. The 55-component leads to the same constraints and will therefore not

be given explicitly. The energy-momentum tensor due to the bulk cosmological constant

in the RS model is given by

TMN
Λ = −24M3

5 k
2gMN . (A.3)

We need to impose that the absolute value of eq. (A.2) is smaller than that of eq. (A.3)

everywhere in the bulk, k ≥ z ≥ µ, and for different radion values µ. For the analysis of

the phase transition, we are in particular interested in the radion potential for the range

0 ≤ µ . µmin. For ε > 0, the VEV of the Goldberger-Wise scalar decreases in magnitude

when going from both the IR and UV brane towards the bulk. It is then sufficient to

compare the energy-momentum tensors near the two branes. From the UV brane, this

gives the constraint

vIR �
N

2πXmin

√
3

ε

(µmin

k

)ε
. (A.4)

Near the IR brane, on the other hand, the energy-momentum tensor of the Goldberger-

Wise scalar depends more strongly on the radion VEV µ. The most stringent constraint in

the range of interest 0 ≤ µ . µmin arises for µ� µmin, where terms in eq. (A.2) involving

(µ/µmin)ε can be neglected. This gives

vIR �
√

3N

4π
. (A.5)

Note that in the literature, the constraint has instead sometimes been evaluated for µ =

µmin. This leads to the factors (1 − (µ/µmin)εXmin) in eq. (A.2) being suppressed by ε.

The resulting less stringent constraint can then not guarantee that the backreaction can

be neglected for µ� µmin.

For ε < 0, the terms involving (µ/µmin)ε become arbitrarily big for sufficiently small

µ. In this case, there is therefore always a region around the origin in the radion potential

for which the backreaction can not be neglected.15

15This has been noticed already e.g. in ref. [66].
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