
Chapter 24
Markov Models and Cost Effectiveness
Analysis: Applications in Medical
Research

Matthieu Komorowski and Jesse Raffa

Learning Objectives
Understand how Markov models can be used to analyze medical decisions and
perform cost-effectiveness analysis.

This case study introduces concepts that should improve understanding of the
following:

1. Markov models and their use in medical research.
2. Basics of health economics.
3. Replicating the results of a large prospective randomized controlled trial using a

Markov Chain and Monte Carlo simulations, and
4. Relating quality-adjusted life years (QALYs) and cost of interventions to each

state of a Markov Chain, in order to conduct a simple cost-effectiveness
analysis.

24.1 Introduction

Markov models were initially theroreticized at the beginning of the 20th century by
Russian mathematician Andrey Markov [1]. They are stochastic processes that
undergo transitions from one state to another. Over the years, they have found
countless applications, especially for modeling processes and informing decision
making, in the fields of physics, queuing theory, finance, social sciences, statistics
and of course medicine. Markov models are useful to model environments and
problems involving sequential, stochastic decisions over time. Representing such
environments with decision trees would be confusing or intractable, if at all pos-
sible, and would require major simplifying assumptions [2]. Markov models can be
examined by an array of tools including linear algebra (brute force), cohort simu-
lations, Monte Carlo simulations and, for Markov Decision Processes, dynamic
programming and reinforcement learning [3, 4].
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A fundamental property of all Markov models is their memorylessness. They
satisfy a first-order Markov property if the probability to move a new state to st+1
only depends on the current state st, and not on any previous state, where t is the
current time. Said otherwise, given the present state, the future and past states are
independent. Formally, a stochastic process has the first order Markov property if
the conditional probability distribution of future states of the process (conditional on
both past and present values) depends only upon the present state:

P stþ 1js1; s2; . . .; stð Þ ¼ P stþ 1jstð Þ

This chapter will provide a brief introduction to the most common Markov
models, and outline some potential applications in medical research and health
economics. The last section will discuss a practical example inspired from the
medical literature, in which a Markov chain will be used to conduct the
cost-effectiveness analysis of a particular medical intervention. In general, the crude
results of a study are unable to provide the necessary information to fully imple-
ment cost-effectiveness analysis, thus demonstrating the value of expressing the
problem as a Markov Chain.

24.2 Formalization of Common Markov Models

The four most common Markov models are shown in Table 24.1. They can be
classified into two categories depending or not whether the entire sequential state is
observable [5]. Additionally, in Markov Decision Processes, the transitions between
states are under the command of a control system called the agent, which selects
actions that may lead to a particular subsequent state. By contrast, in Markov chains
and hidden Markov models, the transition between states is autonomous. All
Markov models can be finite (discrete) or continuous, depending on the definition
of their state space.

24.2.1 The Markov Chain

The discrete time Markov chain, defined by the tuple fS; Tg is the simplest Markov
model, where S is a finite set of states and T is a state transition probability matrix,

Table 24.1 Classification of Markov models

Fully observable
system

Partially observable systems

Autonomous system Markov chain (MC) Hidden Markov model (HMM)

System containing a
control process

Markov decision
process (MDP)

Partially observable Markov decision
process (POMDP)
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T s0; sð Þ ¼ P stþ 1 ¼ s0jst ¼ sð Þ. A Markov chain can be ergodic, if it is possible to
go from any state to every other state in finitely many moves. Figure 24.1 shows a
simple example of a Markov Chain.

In the transition matrix, the entries in each column are between 0 and 1 (in-
clusive) and their sum is 1. Such vectors are called probability vectors. The
Table 24.2 shows the transition matrix corresponding to Fig. 24.1. A state is said to
be absorbing if it is impossible to leave it (e.g. death).

24.2.2 Exploring Markov Chains with Monte Carlo
Simulations

Monte Carlo (MC) simulations are a useful technique to explore and understand
phenomena and systems modeled under a Markov model. MC simulation generates
pseudorandom variables on a computer in order to approximate difficult to estimate
quantities. It has wide use in numerous fields and applications [6]. Our focus is on
the MC simulation of a Markov chain, and it is straightforward once a transition
probability matrix, T s0; sð Þ, and final time t* have been defined. We will assume at
the index time (t = 0), the state is known, and call it s0. At t = 1, we simulate a
categorical random variable using the s0th row of the transition probability matrix
T s0; sð Þ. We repeat this t ¼ 1; 2; . . .; t� � 1; t� to simulate one simulated instance of
the Markov chain we are studying. One simulated instance only tells us about one
possible sequence of transitions out of very many for this Markov chain, and we
need to repeat this many (N) times, recording the sequence of states for each of the
simulated instances. Repeating this process many times, allows us to estimate
quantities such as: the probability at t = 5, that the chain is in state 1; the average

Fig. 24.1 Example of a Markov chain, defined by a set S of finite states {Healthy, Ill} and a
transition matrix, containing the probabilities to move from current state s to next state s′ at each
iteration

Table 24.2 Example of a
transition matrix
corresponding to Fig. 24.1

Next state s Total

Healthy Ill

Initial state s Healthy 0.9 0.1 1

Ill 0.5 0.5 1
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proportion of time spent in state 1 over the first 10 time points; or the average length
of the longest consecutive streak in state 1 in the first t* time points.

Using the example shown in Fig. 24.1, we will estimate the probability for
someone to be healthy or ill in 5 days, knowing that he is healthy today. MC
methods will simulate a large number of samples (say 10,000), starting in
s0 = Healthy and following the transition matrix T s0; sð Þ for 5 steps, sequentially
picking transitions to s′ according to their probability. The output variable (the
value of the final state) is recorded for each sample, and we conclude by analyzing
the characteristics of the distribution of this output variable (Table 24.3).

The distribution of the final state at day + 5 for 10,000 simulated instances is
represented on Fig. 24.2.

Table 24.4 reports some sample characteristics for “healthy” state on day 5 for
100 and 10,000 simulated instances, which illustrates why it is important to sim-
ulate a very large number of samples.

Table 24.3 Example of
health forecasting using
Monte Carlo simulation

Instance
1

Instance
2

… Instance
10,000

Today Healthy Healthy … Healthy

Day + 1 Healthy Healthy Healthy

Day + 2 Healthy Ill Healthy

Day + 3 Healthy Ill Ill

Day + 4 Healthy Ill Healthy

Day + 5 Healthy Ill … Healthy

Fig. 24.2 Distribution of the health on day 5, for 10,000 instances
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By increasing the number of simulated instances, we drastically increase our
confidence that the true sample mean falls within a very narrow window (0.83–0.84
in this example). The true mean calculated analytically is 0.838, which is very close
to the estimate generated from MC simulation.

24.2.3 Markov Decision Process and Hidden Markov
Models

Markov Decision Processes (MDPs) provide a framework for running reinforce-
ment learning methods. MDPs are an extension of Markov chains, which include a
control process. MDPs are a powerful and appropriate technique for modeling
medical decision [3]. MDPs are most useful in classes of problems involving
complex, stochastic and dynamic decisions like medical treatment decisions, for
which they can find optimal solutions [3]. Physicians will always need to make
subjective judgments about treatment strategies, but mathematical decision models
can provide insight into the nature of optimal choices and guide treatment
decisions.

In Hidden Markov models (HMMs), the state space is only partially observable
[7]. It is formed by two dependent stochastic processes (Fig. 24.3). The first is a
classical Markov chain, whose states are not directly observable externally, therefore
“hidden.” The second stochastic process generates observable emissions, condi-
tional on the hidden process. Methodology has been developed to decode the hidden
states from the observed data and has applications in a multitude of areas [7].

Table 24.4 Sample characteristics for 100 and 10,000 simulated instances

100 simulated instances 10,000 simulated instances

Mean 0.81 0.83

Standard deviation 0.39 0.37

95 % confidence interval for the mean 0.73–0.89 0.83–0.84

Fig. 24.3 Example of a hidden Markov model (HMM)
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24.2.4 Medical Applications of Markov Models

MDPs have been praised by authors as being a powerful and appropriate approach
for modeling sequences of medical decisions [3]. Controlled Markov models can be
solved by algorithms such as dynamic programming or reinforcement learning,
which intends to identify or approximate the optimal policy (set of rules that
maximizes the expected sum of discounted rewards).

In the medical literature, Markov models have explored very diverse problems
such as timing of liver transplant [8], HIV therapy [9], breast cancer [10], Hepatitis C
[11], statin therapy [12] or hospital discharge management [5, 13]. Markov models
can be used to describe various health states in a population of interest, and to detect
the effects of various policies or therapeutic choices. For example, Scott et al. has
used a HMM to classify patients into 7 health states corresponding to side effects of 2
psychotropic drugs [14]. The transitions were analyzed to specify which drug was
associated with the least side-effects. Very recently, a Markov chain model was
proposed to model the progression of diabetic retinopathy, using 5 pre-defined
states, from mild retinopathy to blindness [15]. MDPs have also been exploited in
medical imaging applications. Alterovitz has used very large MDPs (800,000 states)
for motion planning in image-guided needle steering [16].

Besides those medical applications, Markov models are extensively used in
health economics research, which is the focus of the next section of this chapter.

24.3 Basics of Health Economics

24.3.1 The Goal of Health Economics: Maximizing
Cost-Effectiveness

This section provides the reader with a minimal background about health eco-
nomics, followed by a worked example. Health economics intends to maximize
“value for money” in healthcare, by optimizing not only clinical effectiveness, but
also cost-effectiveness of medical interventions. As explained by Morris:
“Achieving ‘value for money’ implies either a desire to achieve a predetermined
objective at least cost or a desire to maximise [sic] the benefit to the population of
patients served from a limited amount of resources” [17].

Two main approaches can be outlined in health economics: cost-minimization
and cost-effectiveness analysis (CEA). In both cases, the purpose is identical: to
identify which treatment option is the most cost-effective. Cost minimization deals
with the simple case where the several treatment options available have the same
effectiveness but different costs. Quite logically, cost-minimization will favor the
cheapest option. CEA represents a more likely scenario and is more widely used.
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In CEA, several options with different costs and different effectiveness are com-
pared. The analysis will compute the relative cost of an improvement in health, and
metrics to optimally inform decision makers.

24.3.2 Definitions

Measuring Outcome: Survival, Quality of Life (QoL), Quality-Adjusted
Life-Years (QALY)
Outcomes are assessed in terms of enhanced survival (“adding years to life”) and
enhanced quality of life (QoL) (“adding life to years”) [17]. Although sometimes
criticized, the concept of Quality-adjusted life-years (QALY) remains of central
importance in cost-utility analysis [18]. QALYs apply weights that reflect the QoL
being experienced by the patient. One QALY equates to one year in perfect health.
Perfect health is equivalent to 1 while death is equivalent to 0. QALYs are esti-
mated by various methods including scales and questionnaires filled by patients or
external examiners [19]. As an example, the EuroQoL EQ 5D questionnaire
assesses health in 5 dimensions: mobility, self-care, usual activities, pain/discomfort
and anxiety/depression.

Cost-Effectiveness Ratio (CER)
The cost-effectiveness ratio (CER) will inform the decision makers about the cost of
an intervention, relative to the health benefits this intervention generates. For
example, an intervention costing $20,000 per patient and providing 5 QALYs
(5 years of perfect health) has a CER of $20,000/5 = $4000 per QALY. This
measure allows a direct comparison of cost-effectiveness between interventions.

Incremental Cost-Effectiveness Ratio (ICER)
The incremental cost-effectiveness ratio (ICER) is a measure very commonly
reported in the health economics literature and allows comparing two different
interventions in terms of “cost of gained effectiveness.” It is computed by dividing
the difference in cost of 2 interventions by the difference of their effectiveness [20].

As an example, if treatment A costs $5000 per patient and provides 2 QALYs,
and treatment B costs $8000 while providing 3 QALYS, the ICER of treatment B
will be:

ð$8000� $5000Þ
3� 2

¼ $3000

Said otherwise, it will cost $3000 more to gain one more QALY with treatment
B, for this particular medical condition. ICER can inform decision makers about the
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need to adopt or fund a new medical intervention. Schematically, if the ICER of a
new medical intervention lies below a certain threshold, it means that health ben-
efits can be achieved with an acceptable level of spending.

The Cost Effectiveness Plane
The cost-effectiveness plane (CE plane) is an important tool used in CEA
(Fig. 24.4). It aims to clearly illustrate differences in costs and effects between
different strategies, whether they comprise medical interventions, treatments, or
even a combination of the two.

The CE plane consists of a four-quadrant diagram where the X-axis represents
the incremental level of effectiveness of an outcome and the Y-axis represents the
additional total cost of implementing this outcome. For example, the further right
you move on the X-axis, the more effective the outcome. In the upper-right
quadrant, a treatment may receive funding if its ICER lies below the maximum
acceptable ICER threshold.

Fig. 24.4 The cost-effectiveness plane, comparing treatment A with treatment B
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24.4 Case Study: Monte Carlo Simulations of a Markov
Chain for Daily Sedation Holds in Intensive Care,
with Cost-Effectiveness Analysis

This example is inspired by the publication by Girard et al. [21], and will allow us
to illustrate how to construct and examine a simple Markov Chain to represent a
medical intervention, how to relate QALYs and cost of interventions to each state of
the Markov Chain, in order to carry out a cost-effectiveness analysis. In this
prospective randomized controlled trial, the authors evaluated the impact of daily
sedation holds in intensive care on various outcomes such as the number of
ventilator-free days, delirium and 28-day mortality. In the ICU, patients frequently
undergo mechanical ventilation in the setting of severely impaired consciousness,
after heavy surgical procedures, and when suffering from severe respiratory failure.
Therapeutically, patients are sedated to maximize their comfort. A growing body of
literature, however, has identified the risks of continuous sedation in the ICU, as it
is associated with increased mortality, delirium, duration of mechanical ventilation
and length of ICU and hospital stay [22]. To strike the right balance between
maintaining sedation and mechanical ventilator support as long as the patient needs
it, but also moving to extubation as soon as possible, Girard and colleagues pro-
posed actively waking up the patients daily to assess their readiness to come off of
the ventilator. The main results are shown in Table 24.5.

In this case study example, we will attempt to approximate those results using a
very simple 3-state Markov Chain examined by MC simulation. As an exercise, we
will extend the study to CEA. This tutorial will provide the reader with all the tools
necessary to implement in other contexts Markov Chain MC simulation methods
and simple cost-effectiveness studies.

Most of the study results can be approximated using a very crude 3-state Markov
chain (Fig. 24.5), with the following state space: {Intubated, Extubated, Dead}.
In this simplistic model, only 7 transitions are possible, and the state ‘dead’ is
absorbing.

Table 24.5 Main results from the original study

Intervention group Control group

Ventilator-free days (mean) 14.7 11.6

Ventilator-free days (median) 20.0 8.1

Patients Successfully extubated at 28 days (%) ≈93 ≈88

28 day mortality (%) 29 35
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Two different transition matrices can be built by trial-and-error, corresponding to
the intervention and control arms of the study (Table 24.6). They correspond to the
daily probabilities of transitioning from one state to another. The initial values were
selected using a few simple assumptions: the state ‘death’ is absorbing, the prob-
ability to remain intubated or extubated is larger than the probability to change
state, the risk of dying while intubated is larger than when extubated, and the total
of each row in the transition matrix is one. Another assumption is that the inter-
vention (daily sedation hold) will change the probability of successful extubation
and mortality, hence the transition matrix. After each modification, the number of
patients in each state was computed for 28 days (results in Table 24.8), so as to try
to match the initial study’s results as closely as possible.

We can check to see if our code is running correctly by comparing important
aspects of the simulation to known theoretical properties of probability theory and
Markov Chains. For example, in our example all patients are assumed to be intu-
bated at t = 0. Under our Markov model, the waiting time until extubation or death
can be determined theoretically, but how to determine this is beyond the scope of
this chapter. This waiting time, W*, is a discrete random variable with a geometric
distribution. Geometric distributions have probability mass functions, for a given
waiting time, w of pðwÞ ¼ ð1� pÞpðw�1Þ, where p is the probability of remaining
intubated. In Fig. 24.6, we compare the number of times we observed different
values of w to what we would expect under the true theoretical distribution of W*,
by computing Np(w), where N is the number of simulated instances we computed.

Fig. 24.5 The 3-state
Markov chain used in this
example

Table 24.6 Transition
matrices used in the case
study

Intervention group Next state S′

I E D

Initial state S I 0.862 0.12 0.018

E 0.0088 0.982 0.0092

D 0 0 1

Control group Next state S′

I E D

Initial state S I 0.878 0.1 0.022

E 0.01 0.978 0.012

D 0 0 1
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We can see that our simulation follows very closely to what is theoretically known
to be true.

In order to perform CEA, each state must be assigned a value for QALYs and
cost. For the purpose of this example, let’s also assume the values for QALYs and
daily costs shown in Table 24.7.

Table 24.8 shows the results of the first iterations for the control group, when
starting with 100 patients intubated (function IED_transition.m). At each
time step, the number of patients still intubated corresponds to the patients who
stayed intubated, minus the patients who became extubated (daily probability of
10 %) and those who died (probability of 2.2 %), plus the extubated patients who
had to be re-intubated (probability 1 %). After 28 days, the cumulated mortality
reaches 35.6 %, and the ratio of patients extubated among the patients still alive is
88.8 %, hence matching quite closely the results of the initial study. At each time
step, the sum of the QALYs and costs for all the patients is computed, as well as
their cumulative values. The number of QALYs initially increases as more patients
become extubated, then decreases as a consequence the number of patients dying.

Fig. 24.6 Example of the life expectancy in state “I” in the control group, with fitted geometric
distribution. The bar chart represents the distribution of the time spent in the state “intubated” of
the Markov chain, before transitioning to another state, for 5000 samples

Table 24.7 Definition of
QALY and daily cost for each
state

State I E D

QALY 0.5 1 0

Daily cost ($) 2000 1000 0
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The following figure represents the ratio of number of patients extubated over
number of patients alive, over time and for both strategies (Fig. 24.7). It can be
compared to the original figure in the source article.

By simulating the distribution of the average number of ventilator-free days, and
its characteristics, can be computed for both strategies (function MCMC_solver.m).
The following Table 24.9 shows examples of patients’ states computed using the
transition matrix of the control group.

The distribution of ventilator-free days in our 10,000 samples is plotted shown in
Fig. 24.8.

The mean and median number of ventilator-free days for both groups is shown in
Table 24.10.

Table 24.8 Number of patients in each state, QALYs and cost analysis, during 28 iterations
(control group)

Day I E D Extubated/Alive QALYs Cumulative
QALYs

Daily
cost (K
$)

Cumulative
cost (K$)

0 100.00 0.00 0.00 0.00 50.00 50.00 200.00 200

1 87.80 10.00 2.20 0.10 53.90 103.90 185.60 386

2 77.19 18.56 4.25 0.19 57.15 161.05 172.94 559

3 67.96 25.87 6.17 0.28 59.85 220.90 161.78 720

4 59.92 32.10 7.98 0.35 62.06 282.96 151.95 872

5 52.94 37.38 9.68 0.41 63.85 346.81 143.25 1016

… … … … … … … … …

28 7.19 57.21 35.60 0.89 60.80 1863.84 71.59 3184

Fig. 24.7 Modelled primary
outcome of the study using a
Markov chain
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The cost-effectiveness ratio at 28 day of the both strategies can be computed by
dividing the final cumulative cost by the cumulative QALYs (Table 24.11).

The intervention is more expensive but is also associated with health benefits
(significantly more QALYs). It belongs to the upper-right quadrant of the CE plane,

Table 24.9 Computing the number of ventilator-free days by Monte Carlo (10,000 simulated
instances)

Day Instance 1 Instance 2 Instance 3 … Instance
10,000

0 I I I I

1 I I I I

2 I I I I

3 I I I I

4 I I I I

5 I I I I

6 I I I I

7 I I I E

8 E E I E

9 E E I E

10 I E I E

… … … … …

28 D D D E

Total ventilator-free days 7 3 0 … 22

Fig. 24.8 Ventilator-free
days for 10,000 samples, for
the intervention and control
group
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where the ICER is used to determine the cost-effectiveness of an intervention.
The ICER of this intervention is shown below:

ICER ¼ ð3; 213; 000� 3; 184; 000Þ
ð2029� 1864Þ ¼ 177:3

According to this crude analysis, Sedation holds appear to be a very
cost-effective strategy, costing only $177 more per additional QALY, relative to the
control strategy. Reducing the value (QALY) of the state E from 1 to 0.6 signifi-
cantly increases the ICER to $1918 per QALY gained, demonstrating the huge
impact that the definition of our health states has on the results of the CEA.
Likewise, increasing the daily cost of state E from $1000 to $1900 (now only
slightly cheaper than state I) leads to a much more expensive ICER of $2041 per
QALY gained. Some medical interventions may or may not be funded depending
on the assumptions of the model!

24.5 Model Validation and Sensitivity Analysis
for Cost-Effectiveness Analysis

An important component to any CEA is to assess whether the model is appropriate
for the phenomena being examined, which is the purpose of model validation and
sensitivity analyses. In the previous section, we model daily sedation hold as a
Markov chain with a known transition probability matrix and costs. Deviations
from this model can come in at least two types.

First, the use of a Markov Chain may be inappropriate to describe how subjects
transition from the intubation, extubation and death states. It was presumed that this
process follows a first-order Markov chain. Given enough real clinical data we can
test to see if this assumption is reasonable. For example, given the transition
probability matrices above, we can calculate quantities via MC simulation and

Table 24.10 Mean and median number of ventilator-free days for both groups

Number of ventilator-free days Intervention group Control group

Mean 17.1 15.9

Median 20 18

Table 24.11 Cost-effectiveness ratio in both groups

Intervention group Control group

Cumulative cost (K$) 3213 3184

Cumulative QALYs 2029 1864

Cost-effectiveness ratio ($ per QALY) 1583 1708
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compare them to values reported in the real data. For instance, the authors report a
28-day mortality rate of 29 and 35 % in the intervention and control groups,
respectively. From our simulation study, we estimate these quantities to be 27 and
35 %, which is reasonably close. One can perform formal goodness-of-fit testing as
well to better assess if any differences noted provide any evidence that the model
may be mis-specified. This process can also be repeated for other quantities, for
example, the mean number of ventilator-free days.

In addition to validating the Markov model used to simulate the states and
transitions for the system of interest, it is also important to perform a sensitivity
analysis on the assumptions and parameters used in the simulation. Performing this
step allows one to see how sensitive the results are to slight changes to parameter
values. Choosing which parameters values to use in sensitivity analyses can be
difficult, but some good practices are to find other parameters (e.g., transition
probability matrices) reported in other studies of a similar type. For cost estimates,
one may want to try costs reported in other countries, or incorporate important
economic parameters like inflation. If using these other scenarios drastically affects
the conclusions drawn from the simulation study, this does not necessarily mean
that the study was a failure, but rather that there are limits to the generalizability of
the simulation study’s results. If particular parameters cause great fluctuations this
may warrant further investigation into why this is the case. In addition to changing
the parameters, one may try to alter the model significantly, by for example, using a
higher order Markov model or semi-Markov model in place of a simple first order
assumption, but these are advanced topic beyond the scope of this chapter.

The theoretical concepts introduced in the first sections of this chapter were
applied to a concrete example coming from the medical literature. We demonstrated
how clinical states and transition probabilities could be defined ad hoc, and how the
stationary distribution of the chain could be estimated using Monte Carlo methods.
The methodology outlined in this chapter will allow the reader to expand the results
of other interventional studies to CEA, but countless other applications of Markov
models exist, in particular in the domain of decision support systems.

24.6 Conclusion

Markov models have been used extensively in the medical literature, and offer an
appealing framework for modeling medical decision making, with potential pow-
erful applications in decision support systems and health economics analysis. They
represent relatively simple mathematical models that are easy to grasp by non-data
scientists or non-statisticians. Very careful attention must be paid to the verification
of a fundamental assumption which is the Markov property, without which no
further analysis should be carried out.
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24.7 Next Steps

This tutorial hopefully provided basic tools to understand or develop CEA and
Markov chains to model the effect of medical interventions. For more information
on health economics, the reader is directed towards external references, such as the
work by Morris and colleagues [17]. Guidance regarding the use of more advanced
Markov models such as MDPs and HMMs is beyond the scope of this book, but
numerous sources are available, such as the excellent Sutton and Barto, freely
available online [4].

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website. The following functions are
provided:

• health_forecast.m: This function computes 100 Monte-Carlo simulations
of a 5-day health forecast and displays the results.

• IED_transition.m: This function computes and displays the proportion of
patients in each state (Intubated, Extubated, or Dead), following the transition
matrix in the intervention group.

• MCMC_solver.m: This function computes 10,000 Monte Carlo simulations
for both the control and intervention group, and computes the distribution of
ventilator-free days.
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