
Chapter 20
Error-Correcting Codes and Dirty Paper
Coding

20.1 Introduction and Background

In the following we are concerned with impressing information on an independent
signal, such as an image or an audio stream with the aim of the additional energy
used consistent with reliable detection of the information. Information can even be
impressed on background noise with no apparent signal present. A secondary aim is
that in impressing the information, the independent signal should suffer a minimal
amount of degradation or distortion to the point that in some circumstances the
difference is virtually undetectable.

20.2 Description of the System

The following, for simplicity, is first described in terms of using binary codes and
binary information. It is shown later that themethodmay be generalised to non-binary
codes and non-binary information. The independent signal or noise is denoted by the
waveform v(t) and the information carrying signal to be impressed on the waveform
v(t) is denoted by s(t). The resulting waveform w(t) is simply given by the sum:

w(t) = v(t) + s(t) (20.1)

The decoder which is used to determine s(t) from the received waveform will
usually be faced with additional noise, interference and sometimes distortion due
to the receiving equipment or the transmission. With no distortion, the input to the
decoder is denoted by r(t) and given by:

r(t) = v(t) + s(t) + n(t) (20.2)
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In its simplest form s(t) carries only one bit of information and

s(t) = k0s0(t) − k1s1(t) (20.3)

to convey data 0, and

s(t) = k0s1(t) − k1s0(t) (20.4)

to convey data 1.
The multiplicative constants, k0 and k1 are chosen to adjust the energy of the

information carrying signal and k1 is used to reduce the correlation of the alternative
information carrying signal that could cause an error in the decoder. The multi-
plicative constants, k0 and k1 are normally chosen as a function of v(t), the main
component of interference in the decoder, which is attempting to decode r(t).

In conventional communications, s0(t) (or s1(t)) is transmitted or stored and s0(t)
(or s1(t)) is decoded despite the presence of interference or noise. s(t) is added to
v(t) and s0(t) (or s1(t)) is decoded from the composite waveform v(t)+ s(t) despite
the presence of additional interference or noise.

Noting that the transmitter has no control over the independent signal or noise v(t),
a good strategy is to choose s0(t) and s1(t) from a large number of possiblewaveforms
in order to produce waveforms which have a large correlation with respect to v(t).
Each possible waveform is constrained to be a codeword from an (n, k, dmin) error-
correcting code. In one approach using binary codes, the 2k codewords are partitioned
into two disjoint classes, codewords having even parity and codewords having odd
parity. The codeword s0(t) is the even parity codeword with highest correlation out
of all even parity codewords and the codeword s1(t) is the odd parity codeword with
highest correlation out of all odd parity codewords. The idea is that w(t) should have
maximum correlation with s0(t) if the information data is 0 compared to any of the
other 2k − 1 codewords. Conversely if the information data is 1, w(t) should have
maximum correlation with s1(t) compared to any of the other 2k − 1 codewords. As
there is a minimum Hamming distance of dmin, between codewords, this prevents
small levels of additional noise or interference causing an error in detecting the data
in the decoder.

As an example, consider a typical sequence of 47 Gaussian noise samples v(t)
as shown in Fig. 20.1. A binary quadratic residue [4] code, described in Chap.4, the
(47, 24, 11) code is used and the highest correlation codeword having even parity is
determined using a near maximum likelihood decoder, the modified Dorsch decoder
described in Chap.15. The waveform of Fig. 20.1 is input to the decoder. The highest
correlation codeword, which has a correlation value of 20.96 is the codeword:

{010010011001100100100001000010000100 10000000000}

The highest correlation, odd parity codeword, is then determined. This codeword,
which has a correlation value of 22.65, is the codeword:

{ 111010010110000110011001000100000100 00100000000 }

http://dx.doi.org/10.1007/978-3-319-51103-0_4
http://dx.doi.org/10.1007/978-3-319-51103-0_15
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Fig. 20.1 Noise waveform to be impressed with data

It should be noted that in carrying out the correlations, codeword 1’s are mapped to
−1’s and codeword 0’s are mapped to +1’s.

The information bit to be impressed on the noise waveform is say, data 0, in which
case the watermarked waveform w(t) needs to produce a maximum correlation with
an even parity codeword. Correspondingly, the value given to k0 is 0.156 and to
k1 is 0.02 in order to make sure that the codeword which produces the maximum
correlation with the marked waveform is the previously found even parity codeword:

{0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0}

The marked waveform w(t) is as shown in Fig. 20.2. It may be observed that the
difference between the marked wavefordm and the original waveform is small. In
the decoder it is found that the codeword with highest correlation with the marked
waveform w(t) is indeed the even parity codeword:

{01001001100110010010000100001000010010000000000 }

and this codeword has a correlation of 28.31.
One advantage of this watermarking system over conventional communications

is that the watermarked waveform may be tested using the decoder. If there is insuf-
ficient margin, adjustments may be made to the variables k0 and k1 and a new
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Fig. 20.2 Noise waveform impressed with data 0

watermarkedwaveform produced. Conversely, if there is more than adequatemargin,
adjustments may be made to the variables k0 and k1, so that there is less degradation
to the original waveform v(t).

The highest correlation, odd parity codeword with correlation 25.31 is the code-
word:

{ 111010010110000110011001000100000100 00100000000 }

It should be noted that this odd parity codeword is the same odd parity codeword as
determined in the encoder, but this is not always the case depending upon the choice
of values for k0 and k1.

For the case where the information bit is a 1, the marked waveform w(t) needs to
produce a maximum correlation with an odd parity codeword. In this case, the value
of k0 is 0.043 and the value of k1 is 0.02 and s(t) = k0s1(t) − k1s0(t). The marked
waveform w(t) is as shown in Fig. 20.3. This time in the decoder it is found that the
codeword with highest correlation with w(t) is indeed the odd parity codeword:

{ 111,01001011000011001100100010000010000100000000 }

and this codeword has a correlation of 24.70. The highest correlation,even parity,
codeword has a correlation of 22.02.

In the encoding and decoding procedure above, the maximum correlation code-
word needs to be determined. For short codes a maximum likelihood decoder [6]
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Fig. 20.3 Noise waveform impressed with data 1

may be used. For medium length codes, up to 200 bits long, the near maximum
likelihood decoder, the modified Dorsch decoder of Chap. 15 is the best choice. For
longer codes, decoders such as an LDPC decoder [3], turbo code decoder [1], or turbo
product code decoder [7] may be used in conjunction with the appropriate iterative
decoder. An example of a decoder for LDPC codes is given in by Chen [2].

Once the maximum correlation codeword has been found, codewords with sim-
ilar, high correlation values, may be found from the set of codewords having small
Hamming distance from the highest correlation codeword. Linear codes are the most
useful codes because the codewords with high correlations with the target waveform
are given by the sum of the highest correlation codeword and the low-weight code-
words of the code, modulo q, (where GF(q) is the base field [4] of the code). The
low-weight codewords of the code are fixed and may be derived directly as described
in Chaps. 9 and 13, or determined from the weight distribution of the dual code [4].

For practical implementations, the most straightforward approach is to restrict
the codes to binary codes less than 200 bits long and determine the high correlation
codewords by means of the modified Dorsch decoder. This conveniently, can output
a ranked list of the high cross correlation codewords is together with their correla-
tion values. It is straightforward to modify the decoder so as to provide the output
codewords in odd and even parity classes, with the maximum correlation codeword
for each class. The results for the example above were determined in this way.

http://dx.doi.org/10.1007/978-3-319-51103-0_15
http://dx.doi.org/10.1007/978-3-319-51103-0_9
http://dx.doi.org/10.1007/978-3-319-51103-0_13
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Additional information may be impressed upon the independent signal or noise
by partitioning the 2k codewords into more disjoint classes (other than binary). For
example four disjoint classes may be obtained by partitioning the codewords accord-
ing to odd and even parity for the odd numbered codeword bits and odd and even
parity for the even numbered codeword bits.Namely, if the codewords are represented
as:

c(x) = c0 + c1x + c2x
2 + c3x

3 + c4x
4 + · · · + ck−1x

k−1 (20.5)

then the codewords are partitioned according to the values of p0 and p1 given by

p0 = c0 + c2 + c4 + c6 · · · + ck−1 modulo 2 = 0

p1 = c1 + c3 + c5 + c7 · · · + ck−2 modulo 2 = 0

or with the result

p0 = c0 + c2 + c4 + c6 · · · + ck−1 modulo 2 = 1

p1 = c1 + c3 + c5 + c7 · · · + ck−2 modulo 2 = 1

Clearly the proceduremay be extended tom parity bits by partitioning the 2k code-
words into 2m disjoint classes. In this case, following encoding,m bits of information
will be conveyed by the marked waveform and determined from the codeword which
has the highest correlation with the marked waveform. This is by virtue of which of
the 2m classes this codeword resides.

An alternative to this procedure is to use non-binary codes [5] with a base field of
GF(q) as described in Chap.7. For convenience a base field of GF(2m) may be used
so that each symbol of a codeword is represented by m bits. In this case codewords
are partitioned into 2m classes according to the value of the overall parity sum:

p0 = c0 + c1 + c2 + c3 + c4 + · · · + ck−1 modulo 2m (20.6)

The n non-binary symbols of each codeword may be mapped into n Pulse Ampli-
tude Modulation (PAM) symbols [6] or into n.m binary symbols or a similar hybrid
combination before correlation with v(t).

Rather than maximum correlation with the waveform to be marked, codewords
may be chosen that have near zero correlation with the waveform to be marked.
Information is conveyed by the watermarked marked waveform by the addition of a
codeword to v(t), which is orthogonal or near orthogonal to the codeword which has
maximum correlation to the independent signal or noise waveform v(t). In this case,
the codeword with maximum correlation to v(t) is denoted as smax(t). Codewords
that are orthogonal or near orthogonal to smax(t) are denoted as smax,i(t) for i = 1 to
2m. The signal impressed upon v(t) is:

s(t) = k0smax(t) + k1smax,η(t) (20.7)

http://dx.doi.org/10.1007/978-3-319-51103-0_7
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where η determines which one of the 2m orthogonal codewords is impressed on the
waveform to convey the m bits of information data. The addition of the maximum
correlation codeword k0smax(t) to v(t) is tomake sure that smax(t) is still the codeword
with maximum correlation after the waveform has been marked. Although the code-
words smax,i(t) for i = 1 to 2m are orthogonal to k0smax(t) they are not necessarily
orthogonal to v(t). In this case, the signal impressed upon v(t) needs to be:

s(t) = k0smax(t) +
2m∑

i=1

kismax,i(t) (20.8)

The coefficients ki will usually be small in order to produce near zero correlation
of the codewords smax,i with w(t) except for the coefficient kj in order to produce a
strong correlation with the codeword smax,j.

The choice of themultiplicative constants, k0 and k1 or themultiplicative constants
ki for the general case (these adjust the energy of the components of the information
signal), depends upon the expected levels of additional noise or interference and
acceptable levels of decoder error probability. If the marked signal to noise ratio is
represented as SNRz, the marked signal energy as Ez, and the difference in highest
correlation to next highest correlation of the codewords is Δc, then the probability
of decoder error p(e) is lower bounded by:

p(e) � 1

2
erfc

(Δ2
c .SNRz

8.Ez

)0.5
(20.9)

This is under the assumption that there is only one codeword close in Euclidean
distance to the maximum correlation codeword.

The multiplicative constants may be selected “open loop” or “closed loop”. In
“closed loop”,which is a further variation of the system, the encoding is followed by a
testing phase. After encoding, the information is decoded from themarkedwaveform
and the margin for error determined. Different levels of noise or interference may
be artificially added to the marked waveform, prior to decoding, in order to assist in
determining the margin for error. If the margin for error is found to be insufficient,
then the multiplicative constants may be adjusted and a new marked waveform w(t)
produced and tested.

In the decoder, once the maximum correlation codeword has been detected from
themarked signal or noise waveform, candidate orthogonal, or near orthogonal code-
words, are generated from the maximum correlation codeword and these codewords
are cross correlated with the marked signal or noise waveform in order to determine
which weighted orthogonal, or near orthogonal, codewords have been added to the
marked signal or noisewaveform. In turn the detected orthogonal, or near orthogonal,
codewords from the cross correlation coefficients are used to determine the additional
information which was impressed on the marked signal or noise waveform.

In order to clarify the description, Fig. 20.4 shows a block diagram of the encoder
for the example of a system conveying two information bits. The independent signal
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Fig. 20.4 Encoder for two information bits using near orthogonal codewords

marked
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Fig. 20.5 Decoder for marked waveform containing orthogonal codewords

or noise is input to a buffer memory which feeds a maximum correlation decoder,
which usually will be a modified Dorsch decoder. The maximum correlation decoder
has as input the error-correcting code parameters (n, k, dmin) and the code partition
information. In this case the partition information is used to partition the codewords
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into four classes. The codewords, in each class, having highest correlation, and their
correlation values are output as shown in Fig. 20.4. From the input data and these
correlation values, the multiplicative constants are determined. The coefficients of
each codeword are weighted by these constants, and added to the stored independent
signal or noise to produce the marked waveform, which is output from the encoder.

Figure20.5 shows a block diagram of the corresponding decoder. The marked
waveform is input to the buffer memorywhich feeds amaximum correlation decoder.
The error-correcting code parameters of the same (n, k, dmin) code and the code par-
tition information are also input to the maximum correlation decoder. The codeword
with the highest correlation is determined. The class in which the codeword resides
is found and the two bits of data identifying this class are output from the decoder.

In a further approach, additional informationmaybe conveyed by addingweighted
codewords to the marked signal or noise waveform such that these codewords are
orthogonal, or near orthogonal, to the codeword having maximum correlation with
the marked signal or noise waveform.

20.3 Summary

This chapter has described how error-correcting codes can be used to impress addi-
tional information onto waveforms with a minimal level of distortion. Applications
include watermarking and steganography. A method has been described in which
the modified Dorsch decoder of Chap. 15 is used to find codewords from partitioned
classes of codewords, whose waveformsmay be used as a watermark which is almost
invisible, and still be reliably detected.
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