

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

Efficient Compilation of a

Verification-friendly Programming

Language

A thesis

submitted in fulfilment

of the requirements for the Degree

of

Doctor of Philosophy in Computer Science

at

The University of Waikato

by

Min-Hsien Weng

2019

Abstract

This thesis develops a compiler to convert a program written in the verification-

friendly programming language Whiley into an efficient implementation in C.

Our compiler uses a mixture of static analysis, run-time monitoring and a

code generator to find faster integer types, eliminate unnecessary array copies

and de-allocate unused memory without garbage collection, so that Whiley

programs can be translated into C code to run fast and for long periods on

general operating systems as well as limited-resource embedded devices. We

also present manual and automatic proofs to verify memory safety of our im-

plementations, and benchmark on a variety of test cases for practical use. Our

benchmark results show that, in our test suite, our compiler effectively re-

duces the time complexity to the lowest possible level and stops all memory

leaks without causing double-freeing problems. The performance of implemen-

tations can be further improved by choosing proper integer types within the

ranges and exploiting parallelism in the programs.

Acknowledgements

This work can not be done without the team of my wonderful supervisors.

It is fantastic to have the opportunity to work with them in such a good

department.

I would like to thank my supervisors: Dr. Robi Malik, Dr. Mark Utting

and Dr. Bernhard Pfahringer for contributing to most of the thoughts and

insightful feedback in this project. They consistently give me lots of support

on thesis writing and under their guidance, we explore two difficult research

fields — compiler optimisation and program verification — and overcome lots

of problems and have several publications about our findings.

My sincere thanks also goes to Oracle Labs, Australia for providing travel

funding to attend SAPLING14 and SAPLING16 meetings.

With a special gratitude to Dr David J. Pearce and the people involved in

the development of Whiley compiler at the School of Engineering and Com-

puter Science, Victoria University of Wellington.

Contents

1 Introduction 1

2 Background Knowledge 7

2.1 Verifying Compiler . 7

2.2 Whiley Language . 8

2.3 Whiley Intermediate Language 10

2.3.1 Example . 11

2.3.2 WyIL Code Types . 17

2.3.3 Benefits of WyIL Code 20

2.4 WyIL To C . 20

2.4.1 Bounded Integer . 21

2.4.2 Memory Reduction . 21

2.4.3 System Architecture 21

3 Related Work 23

3.1 Static Analysis . 23

3.2 Static Bound Analysis . 25

3.3 Memory Management . 27

3.3.1 Reference Counting . 29

3.3.2 Garbage Collection . 30

3.4 Copy Elimination . 31

3.5 Verifying Compiler . 33

3.6 Rust Comparison . 35

4 Live Variables and Bound Analysis 36

4.1 Bound Consistency Check . 37

4.1.1 CFG Construction . 37

4.1.2 Live Variable Analysis 39

4.1.3 Bound Inference . 44

4.1.4 Widening Operator . 52

4.2 Pattern Matching and Transform 63

4.2.1 Pattern . 63

v

4.2.2 Pattern Transformation 67

5 Copy Elimination Analysis 71

5.1 Function Analyses . 71

5.1.1 Read-Write Analyser 72

5.1.2 Return Analysis . 73

5.1.3 Live Variable Analysis 74

5.2 Copy Elimination Analysis . 74

5.3 Reverse Example . 76

6 Memory Deallocation Analysis 79

6.1 Deallocation Invariant . 80

6.2 Deallocation Macros . 81

6.2.1 Pre-Deallocation Macro 81

6.2.2 Post-Deallocation Macros 81

6.3 Informal Proofs . 86

6.3.1 Pre-Deallocation Macro 88

6.3.2 Array Generator . 92

6.3.3 Assignment . 96

6.3.3.1 ADD DEALLOC Macro 96

6.3.3.2 TRANSFER DEALLOC Macro 102

6.3.4 Function Call . 107

6.3.4.1 RETAIN DEALLOC macro 107

6.3.4.2 RESET DEALLOC macro 109

6.3.4.3 CALLER DEALLOC macro 117

6.3.4.4 CALLEE DEALLOC macro 128

6.4 Automatic Proofs by Boogie 134

6.4.1 Declaration . 135

6.4.2 Macro Construction . 136

6.4.3 Proof Results . 138

7 Code Generator 141

7.1 Naive Code Generator . 142

7.1.1 Function Signature . 142

7.1.2 Variable Declaration 143

7.1.3 Function Body . 144

7.2 Code Optimisation and Integer Type Choice 152

7.2.1 Copy Elimination . 152

7.2.2 Deallocation Macro . 154

7.2.3 Code Optimisation and Generation 156

7.2.4 Choosing Fixed-Size Integers 170

vi

8 Benchmarks for Sequential Programs 179

8.1 Micro-Benchmarks . 180

8.2 Case Study: Cash Till . 185

8.3 Case Study: Coin Game . 188

8.4 Case Study: LZ77 Algorithm 193

8.4.1 LZ77 Compression . 194

8.4.1.1 LZ77 Compression using Append Array . . . 194

8.4.1.2 LZ77 Compression using Pre-allocate Array . 196

8.4.1.3 Benchmark Results 198

8.4.2 LZ77 Decompression 201

8.4.2.1 LZ77 Decompression using Append Array . . 201

8.4.2.2 LZ77 Decompression using Array List 203

8.4.2.3 Benchmark Results 203

8.4.3 Handwritten Code and Performance 206

8.4.3.1 Handwritten LZ77 compression 206

8.4.3.2 Handwritten LZ77 Decompression 207

8.4.4 Conclusions . 208

8.5 Case Study: Sobel Edge Detection 209

8.5.1 Algorithm . 210

8.5.2 Benchmark Results . 213

8.5.3 Handwritten Code and Performance 215

8.5.4 Conclusions . 220

9 Benchmarks for Parallel Programs 221

9.1 OpenMP Data/Task Parallelism 222

9.2 Polly Compiler Data Parallelism 225

9.2.1 Polly Compiler . 226

9.2.1.1 Static Control Parts (SCoPs) 227

9.2.1.2 Polly OpenMP Parallelism 230

9.2.2 Performance Evaluation 231

9.2.2.1 Micro-benchmark on standalone machine . . . 232

9.2.2.2 MatrixMult benchmarks on virtual machine . 233

9.3 Cilk Plus Task Parallelism . 236

9.3.1 Performance Evaluation 238

9.4 Case Study: Coin Game . 243

9.4.1 OpenMP Parallel For 245

9.4.2 Cilk Plus For . 246

9.4.3 Benchmark Results . 247

9.4.3.1 Performance Evaluation on Standalone Machine 247

9.4.3.2 Performance Evaluation on Virtual Machine . 250

vii

9.5 Case Study: LZ77 Compression 253

9.5.1 Polly Parallelism . 253

9.5.2 OpenMP Map/Reduce Code 254

9.5.3 Cilk Plus Reducer . 258

9.5.4 Benchmarks . 262

9.5.4.1 Performance Evaluation on Standalone Machine 263

9.5.4.2 Performance Evaluation on Virtual Machine . 263

9.6 Summary . 265

10 Conclusions and Future Work 267

Appendices 280

A Boogie Program 281

B Benchmark Programs 286

B.1 Benchmark Whiley Program 286

B.2 LZ77 benchmark results . 312

B.3 Sobel Edge Benchmark Results 318

C Development Logs 320

C.1 Development Logs for Parallel Benchmarks 320

C.1.1 OpenMP Map/Reduce 320

C.1.2 Profiling Results . 324

C.1.3 Understanding LLVM Code 325

C.2 Parallel Benchmark Results 328

List of Figures

2.1 System architecture (dashed boxes: our project) 22

4.1 While-loop structure . 38

4.2 Control flow graph of While-loop nest program (edge: live

variable set) . 43

4.3 Bound inference and reachability check of If-Else program

with x := 1 (solid: reachable, dashed: unreachable) 50

4.4 Control flow graph of While-loop program using naive widen

operator in breath-first order 56

4.5 Control flow graph of While-loop program using gradual widen

operator in breath-first traversal 58

4.6 Control flow graph of While-loop with break program using

naive widening Operator in breath-first traversal 59

4.7 Control flow graph of While-loop with break program using

naive widening operator in depth-first traversal 60

4.8 Control flow graph of While-loop nest program using naive

widening operator in breath-first traversal 61

4.9 Control flow graph of While-loop nest program using naive

widen operator in depth-first traversal 62

5.1 Average execution time graph of naive and copy eliminated

Reverse program . 78

7.1 Flow chart of code generation and optimisation (dashed box) . 141

8.1 Execution time graph of cash till test case 187

ix

8.2 A line of coin array Cn . 188

8.3 Execution time graph of coin game 192

8.4 Execution time graph of LZ77 compression on medium sizes . 199

8.5 Execution time graph of LZ77 compression using pre-allocate

array on large sizes . 200

8.6 Execution time graph of lZ77 decompression on medium prob-

lem sizes . 205

8.7 Execution time graph of LZ77 decompression using array list on

large problem sizes . 205

8.8 Execution time graph of written LZ77 compression code . . . 207

8.9 Execution time graph of generated and written LZ77 decom-

pression code . 208

8.10 Sample images before and after Sobel edge detection 209

8.11 Pixel point and its neighbouring points 210

8.12 Sobel edge detection with varying threshold values 211

8.13 Execution time graph of Sobel edge on small problem sizes . . 214

8.14 Execution time graph of Sobel edge on large problem sizes . . 215

8.15 Execution time graph of written Sobel edge code at O2 optimi-

sation . 216

8.16 Execution time graph of written Sobel edge code at O3 optimi-

sation . 217

9.1 OpenMP work-sharing parallel programming model 223

9.2 Polly architecture . 226

9.3 Automatic parallelisation and code generation by Polly compiler 230

9.4 Relative speed-ups of Polly OpenMP micro-benchmark programs

on standalone machine . 233

9.5 Relative speedups of Polly OpenMP MatrixMult program . . . 236

9.6 Cilk Plus work-stealing task parallelism 238

9.7 Average execution time of Cilk Plus mergesort program on stan-

dalone machine . 239

x

9.8 Relative speed-ups of Cilk Plus mergesort program on stan-

dalone machine (problem size: 300,000,000) 240

9.9 Relative speed-up of mergesort Cilk Plus program on 8-core (up

to 16 threads) AWS EC2 machine (Problem Size: 300 million) 242

9.10 Relative speed-up of mergesort Cilk Plus program on 8-core

(up to 16 threads) Google Cloud machine (problem size: 300

million) . 242

9.11 Iteration space of the loop in coin game program 244

9.12 Relative speedup of parallel coin game programs on 4-core ma-

chine (Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz, 4 cores) . 249

9.13 Relative speed-up of coin game on 8 cores (16 hyper-threads)

Google Cloud Machine (Intel(R) Xeon(R) CPU@2.20GHz and

16 GB) . 251

9.14 Directed Acyclic Graph (DAG) of offset loop iterations (N = 8)

with 2 threads in LZ77 compression 260

9.15 Relative Speedup of parallel LZ77 compression program on 4-

core (up to 8 threads) standalone machine (Intel(R) Core(TM)

i7-4770 CPU @ 3.40GHz and 16 GB memory) 263

9.16 Relative speedup (vs. 1 Thread) of parallel LZ77 programs on

8-core (up to 16 threads) Google Compute Engine machine (In-

tel(R) Core(TM) i7-4770 CPU @ 3.40GHz and 16 GB memory) 264

List of Tables

2.1 Partially supported WyIL code types 17

2.2 Non-supported WyIL code types 18

2.3 Fully supported WyIL code types 19

4.1 Bound constraints and bound propagation rule 44

4.2 Bound results . 50

4.3 Threshold values of fixed-width integer type 54

4.4 Bound results using naive widening operator in breath-first or-

der (limit :=43, l : lower bound, u: upper bound) 57

4.5 Bound results using naive widening operator in depth-first order

(limit:=43, l: lower bound, u: upper bound) 57

5.1 Copy elimination rule . 75

5.2 Live variable analysis result 77

6.1 Post-deallocation macro for function call 83

6.2 Counter Example from Boogie Verifier 139

7.1 Supported fixed-width integer type and value range 171

7.2 Final Domains of Function func 175

7.3 Final bounds of copy eliminated method main 176

8.1 Memory leaks (bytes) of micro-benchmarks 181

8.2 Average execution time (seconds) of micro-benchmarks 184

8.3 Memory leaks (bytes) of cash till 186

xii

8.4 Average execution time (seconds) of cash till (OOM: out-of-

memory) . 187

8.5 Memory leaks (bytes) of coin game 191

8.6 Average execution time (seconds) of coin game test case . . . 191

8.7 Offset-length pairs encoded in LZ77 compression of sample string193

8.8 Memory leaks (bytes) of LZ77 compression 198

8.9 Memory leaks (bytes) of LZ77 decompression 204

8.10 Memory leaks (bytes) of Sobel edge detection 213

9.1 Average execution time (seconds) of micro-benchmarks opti-

mised by GCC and Polly compilers on standalone machine . . 231

9.2 Absolute speed-ups of Polly optimised micro-benchmark pro-

grams (vs. GCC compiler) on standalone machine 232

9.3 Average execution time (sec.) of MatrixMult case on standalone 234

9.4 Average execution time (sec) of MatrixMult case on AWS EC2 234

9.5 Average execution time (sec) of MatrixMult case on Microsoft

Azure . 234

9.6 Average execution time (seconds) of Cilk Plus mergesort pro-

gram on standalone machine 239

9.7 Average execution time (seconds) of Cilk Plus mergesort pro-

gram on 8-core (up to 16-threads) AWS EC2 machine (Intel(R)

Xeon(R) CPU E5-2666 v3 @ 2.90GHz, 30 GB memory) 241

9.8 Average execution time (seconds) of mergesort Cilk Plus pro-

gram on 8-core (up to 16 threads) Google Cloud machine (In-

tel(R) Xeon(R) CPU @ 2.20GHz and 16 GB memory) 241

9.9 Results of MOVES arrays in coin game program 244

9.10 Average execution Time (seconds) of parallel coin game pro-

grams on 4-core (up-to 8 threads) standalone machine (Intel(R)

Core(TM) i7-4770 CPU @ 3.40GHz and 16 GB memory) . . . 247

xiii

9.11 Average execution time (seconds) of parallel coin game pro-

grams on 4-core standalone machine (Intel(R) Core(TM) i7-

4770 CPU @ 3.40GHz and 16 GB memory) 248

9.12 Average execution time (seconds) of parallel coin game code

on 8-core (up to 16 threads) Google Virtual Machine (Intel(R)

Xeon(R) CPU @ 2.20GHz and 16 GB memory) 250

9.13 Average execution time (seconds) of Polly LZ77 compression

program on 4-core standalone machine (Intel(R) Core(TM) i7-

4770 CPU @ 3.40GHz, 16 GB memory) 253

9.14 Best match of string AACAACABCABAAAC 255

9.15 Sample outputs of LZ77 OpenMP map/reduce program at po-

sition 3 using 3 threads . 257

9.16 Sample outputs of Cilk Plus LZ77 compression at position 8

using 2 threads . 260

9.17 Grain size varying on large256x (147.2 MB) file 262

B.1 Average execution time (seconds) of LZ77 compression on medium

sizes (OOM: out-of-memory, OOT: out-of-time ≥ 10 minutes) 312

B.2 Average execution time (seconds) of LZ77 compression on medium

sizes (OOM: out-of-memory, OOT: out-of-time ≥ 10 minutes) 313

B.3 Average execution time (seconds) of LZ77 compression on large

sizes . 314

B.4 Average execution time (seconds) of LZ77 decompression . . . 315

B.5 Average execution time (seconds) of LZ77 decompression using

array list on large sizes . 316

B.6 Average execution time (seconds) of handwritten and generated

LZ77 compression programs 316

B.7 Average execution time (seconds) of handwritten and generated

LZ77 decompression programs 317

B.8 Average execution time (seconds) of Sobel Edge on small sizes 318

B.9 Average execution time (seconds) of Sobel Edge on large sizes 318

xiv

B.10 Average execution time (seconds) of written Sobel edge at O3

optimisation . 319

C.1 Complete list of Length-Offset Pairs computed by using OpenMP

map/reduce program with 2 threads 320

C.1 Complete list of Length-Offset Pairs computed by using OpenMP

map/reduce program with 2 threads 321

C.1 Complete list of Length-Offset Pairs computed by using OpenMP

map/reduce program with 2 threads 322

C.1 Complete list of Length-Offset Pairs computed by using OpenMP

map/reduce program with 2 threads 323

C.2 Top 5 functions of OpenMP map/reduce program 324

C.3 Average execution time (seconds) of parallel LZ77 compression

programs on 4-core (up to 8 threads) standalone machine (In-

tel(R) Core(TM) i7-4770 CPU @ 3.40GHz and 16 GB memory) 328

C.4 Average execution time (sec) of parallel LZ77 compression pro-

grams on 8-core (upto 16 threads) Google Cloud machine(Intel(R)

Xeon(R) CPU@2.20GHz and 16 GB memory) 329

Chapter 1

Introduction

Software in modern life is used anywhere and anytime, so bugs occur conse-

quently. A single software failure can lead to severe and costly losses as it

requires a long correction time, extra efforts for debugging and software patch,

and most importantly can cause damage to people’s productive life.

The software bug problem becomes worse as the increasing software com-

plexity rapidly raises the difficulty of debugging, and also the bugs from poor

coding expose potential risks to security vulnerability and cause crashes in

systems.

Tools for improving software quality are needed and can be developed in

different ways. Testing-based methods use a set of test cases to check if software

meets its requirements and find possible software defects. Software verifica-

tion (Huth and Ryan, 2004) applies formal proof techniques to show a program

works correctly and verify the software is fit for use. The formal and rigor-

ous proofs also help programmers come up with precise and reliable program

design, and guarantees the correct performance within proper use so that po-

tential life-threatening errors in safety-critical systems can be eliminated.

However, it is a grand challenge to build a verifying compiler (Hoare,

2003) using automated mathematical and logical reasoning to find as many

bugs as possible at early compilation. Much research has attempted to enable

the verification and reduce design flaws for existing programming languages,

2

e.g. Extended Static Check for Java programs (Flanagan et al., 2002) and

Spec# (Mike Barnett, 2005) for C# programs.

Whiley (Pearce and Groves, 2015a) is a new programming language and

is designed with an extended verifying compiler to make it easy to write up

formal specifications in the program and verify the software at compile-time

such that the program can run correctly without run-time errors. The Whiley

compiler can also convert the program into Java or JavaScript to be executed

across heterogeneous platforms.

This thesis focuses on building a compiler to translate high-level Whiley

into low-level C code and improve the efficiency of generated C code, and

formalises and proves the memory safety of the generated code using formal

verification. However, as value semantics is used in Whiley to guarantee pro-

gram correctness, the naive and line-by-line translated implementation has

potential inefficiency problems as follows.

• Arbitrary-sized integers leads to poor performance.

• Too much extra and unneeded array copying increases memory overhead

and lowers the efficiency.

• Manual deallocation is required to avoid memory leaks and to ensure

memory safety.

Since Whiley is intended to be used for programming embedded devices as

well as general programming, an inefficient implementation like this is not

acceptable, as it would mean Whiley programs running on small embedded

processors could run out of memory, or the program might run too slowly for

its intended purpose. For general acceptance of Whiley, it is important that

reasonably efficient implementations of Whiley are available.

This leads to the main research questions of this thesis:

Can the overheads caused by the design of Whiley be reduced using a

compiler whilst preserving the correctness?

3

Contributions The main contribution of this thesis is as follows.

• Building the optimising compiler for Whiley and preserving the safety.

• Inventing algorithms for copy eliminations and improving the efficiency.

• Inventing new algorithm for de-allocation analysis:

– Combines static and dynamic analysis,

– Guarantees exactly one memory de-allocation (no leaks nor double

freeing problems occur in the generated C code),

– Has less overhead than reference counting.

• Proving the memory safety of our macros using formal verification.

The below describes our compiler back-end in more detail.

• Abstract interpretation-based bound inference with extended symbolic

analysis is developed to estimate the intervals of integer variables and

speed up the convergence of approximating the ranges within finite steps.

It also finds the matching patterns and make any necessary program

transformation for high efficiency of the resulting code. A shorter version

of bound analysis also appears in the paper (Weng et al., 2016).

• The value semantics in Whiley makes copies at each assignment and func-

tion call, so wastes time and memory copying large arrays. A copy elim-

ination analyser is developed to detect and remove unnecessary copies

wherever possible. By reducing expensive overheads of array copying,

the generated code gains speed-ups and has more memory space to run

on large-scaled problems. A shorter version of copy elimination analysis

is presented as the conference paper (Weng et al., 2017).

• Memory deallocation without garbage collection is complex particularly

for aliased and shared memory. A deallocation analyser extended with

dynamic run-time monitoring is developed in this thesis. It inter-operates

4

with the copy analyser to find unneeded memory when no longer used,

and inserts deallocation macros in the generated code to avoid memory

leakages and ensure each memory space is freed only once. A shorter ver-

sion of memory deallocation analysis also appears in the same conference

paper as copy elimination analysis (Weng et al., 2017).

• Semi-formal proofs are constructed to show our deallocation eliminates

double deallocation problems and avoids memory leaks in the generated

code whilst preserving memory safety. The proofs involve assumptions,

invariants and the program reasoning about pre-and post-conditions, and

are converted into Boogie program and are validated using the automatic

SMT theorem prover Z3 (version 4.6.1).

• A code generator is developed to automatically translate the source

Whiley program at byte-code level into the C programming language.

The code generator can use our copy or deallocation analysis separately,

or combine the results of both copy and deallocation analyses to improve

the generated code, such that the resulting C code runs efficiently.

• Our code analysis and code generator have been applied to five micro-

benchmark programs and four large case studies. The results show our

code optimisation can remove most of unnecessary array copies in com-

plex programs and give high efficiency. Furthermore, our optimised code

can absolutely prevent memory leaks and avoid use-after-free memory

vulnerability without garbage collection.

• Parallel computing utilises multiple processors in modern computers to

run the program simultaneously and reduce long waiting time caused by

the sequential execution. We convert our generated C code into parallel

code by-hand and experiment with three kinds of parallel techniques:

Polly compiler (Polyhedral optimisations for LLVM), Cilk Plus task par-

allelism and OpenMP map-reduce program styles. We provide several

case studies of the effectiveness of each technique.

5

Project Scope Our project aims to reduce the overheads caused by the

language design. Our compiler takes a Whiley program as input, analyses and

optimises the program at Whiley intermediate representation level (WyIL) to

produce a safe and efficient C implementation for running correctly, faster and

for longer.

Our project implements a subset of the Whiley programming language

with static code analysis tools along with an automatic code generator, and

our project limitations are as follows.

• The program can be run with one dimensional array of primitive types

(integer, byte and Boolean) without cyclic references. For multi-dimensional

arrays, recursive data type or nested data structures, whose sizes and

memory space dynamically change at run-time, a re-design of memory

deallocation is required.

• The program does not have recursion because our analyser has not yet

defined static analysis behaviours of recursive function calls, which can

be implemented by extending our analyser as a part of the future work.

• The program invariant and verification conditions are all stripped off

when translating into C code, as they are not relevant to the computation

part of the program and this kind of code erasing technique is also used

in F* to C code (Protzenko et al., 2017a). These formal specifications

can provide crucial and useful information to our compiler, e.g. loop

invariant contains the estimated array sizes and the bounded values,

and can be encoded as constraints to improve the precision of our static

analysis and make a better decision for code translation.

• The program executes in sequential, and does not utilise any concurrency.

We are aware that the support of parallelisation is an important future

work to gain further performance and better throughput from multi-core

machines as well as high performance computing cloud.

6

Thesis Outline Chapter 2 gives background knowledge. Chapter 3 con-

tains related work that our project uses. Chapter 4 describes our bound anal-

yser. Chapter 5 details our copy elimination analyser, and Chapter 6 describes

the memory deallocation approach and provides semi-formal proof of memory

safety in our macro design. Chapter 7 presents the procedure of code gener-

ation and optimisation. Chapter 8 shows performance evaluation of our code

optimisation with micro benchmarks as well four real case studies. Chapter 9

investigates parallelism and gives experimental results on our parallel C code.

Chapter 10 gives conclusion and future work.

Chapter 2

Background Knowledge

This chapter provides basic preliminaries for our project.

2.1 Verifying Compiler

Prof. Sir Tony Hoare (the ACM Turing Award Winner, FRS) (Hoare, 2003)

once said that it is a grand challenge for computing research to create a veri-

fying compiler, with automated mathematical and logical reasoning, to detect

the software errors at the compile time. By catching more bugs at compile-

time, we can avoid unexpected software failure while running the program.

Also, via the verification process we can check whether the implementation

meets user specification, and thus improve the quality of software.

Many researchers have been trying to build up automatic compile-time

verifying tools to transform a program into constraints, and verify their validity

to prove the correctness of program and identify defects. However, these new

tools are extended from object-oriented programming languages (Java and

C#) to include verification feature and there are limitations on the usage of a

verifying compiler.

8

2.2 Whiley Language

Whiley (Pearce and Groves, 2015b) is a new verification-friendly functional

programming language and its compiler aims to solve the verification issues

that arise from object-oriented programming languages. The language uses

hybrid functional core and imperative paradigms. The functional core ensures

the output of each Whiley function depends only on input values and does not

cause any side effect, e.g. sin(x) function always produces the same output

value for the same x each time. The imperative layer allows Whiley program-

mers to describe a program with sequence of statements. Whiley supports:

Pure Function Java or C# language allows functions to have different

states, e.g. passing call-by-reference parameter to called function. Because

callee may change the value of passed parameter, it would produce different

results at each function call.

Side effects are not easily observed by verifying compiler because side-

effecting function would modify a variable outside its scope and cause an un-

expected error. Whiley (Pearce and Groves, 2015b) explicitly defines functions

that are side effect-free and pure, whilst method are impure. Consider the be-

low example.

1 function func(int[] a) -> int[]: // Pure function
2 a[0] = 10
3 return a
4 // Impure method
5 method main(System.Console sys):
6 int[] a = [0, 0, 0] // a[0] = 0
7 int[] b = func(a) // Does not update array ’a’
8 assert a[0] == 0
9 assert b[0] == 10

Function func uses call-by-value semantics and thus does not change the value

of input array a, because a is first copied and then passed to called function.

The output array b however has updated value. A pure Whiley function has

below properties:

• Given the same input, Whiley function always produces the same output.

• Function evaluation in Whiley does not cause any side effect.

9

Separating pure functions from methods allows specifying what can be under-

taken in a function, and simplifies the reasoning and verification of Whiley

programs.

Value Semantics Java arrays or objects are passed by reference to the called

function, and because both callee and caller can change its value, these objects

are no longer immutable. The presence of mutable collections makes it difficult

to verify the program as anticipated.

Whiley (Pearce and Groves, 2015b) uses value semantics on compound data

types, e.g. arrays, so the verification in Whiley can focus on the values, rather

than objects themselves. For example, an array assignment in Whiley copies

the value of an existing array, and then assigns to the new variable, so that

any change to new array will not affect or update the existing array.

Consider the following Whiley program:

1 function func(int[] a) -> int[]: // a[0] = 0
2 int[] b = a // b = COPY(a)
3 b[0] = 1 // b[0] = 1
4 assert a[0] == 0
5 assert b[0] == 1
6 return a // The value of ’a’ remains unchanged.

Variable a and b are both integer arrays. The assignment in line 2 copies the

value of array a to b, so variable b does not share the same array as a but

points to a new and separate array. Any change to array b will not update

array a or return value. As such, value semantics makes function func pure

because it passes parameters by value and does not cause any change to the

actual parameters outside function scope.

Value semantics and pure functions enable Whiley language to have hy-

brid characteristics of imperative and functional languages. That means, we

can write Whiley programs in imperative statements and still ensure program

safety using side effect free function.

Unbound Arithmetic The unbounded integers in Whiley (Pearce and Groves,

2015b) can ease the difficulty of reasoning about soundness of arithmetic op-

10

erations using an automatic theorem prover. For example, adding two 32-bit

integers may exceed the maximal value which a 32-bit integer can hold, and

thus such an arithmetic will have integer overflow problems and lead to an

unpredictable system behaviour.

Whiley verifying compiler can detect bugs at compile-time and convert

the program into bug-less Java or C code. However, translating high-level

Whiley programs into efficient implementations has some challenges, for ex-

ample, array copies and unbounded integers causes substantial slowdown on

the performance of Whiley implementations.

2.3 Whiley Intermediate Language

Our code analysis first uses Whiley compiler to compile a source Whiley pro-

gram into WyIL (Whiley Intermediate Language) code and then performs code

analysis on WyIL code and translates WyIL to optimised C code.

WyIL byte-code language (Pearce, 2015b) is a register-based and three-

address like code, similar to LLVM (Low Level Virtual Machine), with semi-

structure control-flows. The three-address form consists of an instruction and

three registers. Each register is denoted with a prefix % and an integer number,

and the set of register numbers is unlimited to accommodate all operands. A

WyIL code has below features:

• A WyIL code statically assigns a register to hold a parameter on entry,

constant, local variable or a temporary operand which is used to store

computed results. Register number starts from input parameters to all

operands in the context order of WyIL code, e.g. register %0 represents

the first parameter, and %1 maps to the second parameter, etc. And

different registers never share the same number.

• Register allocation at WyIL level generates a temporary operand to store

the value of computed result. For example, add %6 = %2, %5 adds the

values of register %2 and %5 , and then assigns the result to target

11

register %6 , which differs from any other existing ones. By having a

unique target register, we can avoid potential variable aliasing at an

assignment and a function call.

• Each WyIL code has at most one register on the left-hand side but may

contain two or more registers on the right side. For example, a loop byte-

code loop (%3, %4, ...) lists what registers can be changed within

the loop.

WyIL acts as an intermediate language and aims to be translated and op-

timised into different kinds of implementations and run efficiently across plat-

forms. The WyIL code keeps all type information and preserves all invariant

at source code to ensure program behaviour, e.g. we can place a loop invariant

to ensure our loop counter does not exceed the maximal loop bound and avoids

potential out-of-range error. Also, the WyIL code reduces the number of code

types to represent statements and expression in Whiley source code, so that

the complexity of our code generation and optimisation can be reduced.

There are a number of WyIL code types. We will choose some code types

necessary to our project and illustrate each code type with an example.

2.3.1 Example

1 // input: input array, output: output array
2 function func(int[] input) -> (int[] output):
3 int n = |input| // Get the size of ’input’ array
4 output = [0;n]// Create output array of size ’n’ filled with 0
5 int i = 0
6 while i < n where i <= n:
7 output[i] = input[i] * 2// Array update
8 i = i + 1
9 return output

10

11 // Main entry point
12 method main(System.Console sys):
13 int[] a = [1;20]// Create an input array of size 20 filled with 1
14 int[] b = func(a)// Call ’func’ function
15 assert a[0] == 1 // Check ’a[0]’
16 assert b[0] == 2 // Check ’b[0]’
17 sys.out.println(b[0])// Print out ’b[0]’

Listing 2.1: Example Whiley program

12

Example 2.1 Function func takes an array as input, and creates output array

with the length of passed input array, and populates the output array by using a

while-loop. Main method creates the input array and makes a call to function

func. Then it checks the input and output arrays with two assertions, and

prints out the array value.

1 private function func(int[]) -> (int[]): // %0: input, %1: output
2 body: // Function body
3 lengthof %4 = %0 : int[] // %4 = |input|
4 assign %2 = %4 : int // %2 = n = %4
5 const %5 = 0 : int
6 arraygen %6 = [%5; %2] : int[] // %6 = [0;n]
7 assign %1 = %6 : int[] // %1 = output = %6
8 const %7 = 0 : int
9 assign %3 = %7 : int // i = 0

10 loop (%1, %3, %8, %9, %10, %11, %12) // Start of loop
11 invariant // Start of loop invariant
12 ifle %3, %2 goto label0 : int // ’i<=n’
13 fail
14 .label0
15 return// End of loop invariant
16 ifge %3, %2 goto label1 : int // loop condition ’i>=n’
17 indexof %8 = %0, %3 : int[] // %8 = input[i]
18 const %9 = 2 : int
19 mul %10 = %8, %9 : int // %10 = input[i] ∗ 2
20 update %1[%3] = %10 : int[] -> int[] // output[i] = %10
21 const %11 = 1 : int
22 add %12 = %3, %11 : int // %12 = i + 1
23 assign %3 = %12 : int // i = %12
24 // End of loop
25 .label1 // Loop exit
26 return %1 // return output

Listing 2.2: Function func at WyIL Level

Function func Consist of function declaration, function body and pre- and

post-conditions. Each WyIL code contains the code itself and includes type

information of all relevant operands and results. Because outputting all con-

tents is quite lengthy and hard to interpret, Listing 2.2 displays each WyIL

code in a simplified format with selected type information.

Our code generation skips the translation of pre and post conditions be-

cause these have been verified during the compilation at Whiley source level,

and focus on function declaration and body.

13

Function Declaration Include function signature and variable declara-

tion. The signature consists of function name, return type and a list of param-

eter types. In our example, private function func(int[]) -> (int[])

means the input and output of function func are integer arrays.

All variables and operations in a function are statically stored with a set

of registers, and register order is consistent with the context of WyIL code.

In our example, register %0 denotes the parameter input , and %1 represents

array output , which both appear in the function signature.

A register could be associated with a present variable at Whiley source

code if it stores the value, e.g. register %2 maps to variable n.

Function Body Contains a block of WyIL code to represent each state-

ment in Whiley program. The code types used in Listing 2.2 are discussed as

follows. The lengthof code loads array parameter input from register %0 and

writes its array size to temporary %4 . The assign code copies array size to

target %2 or local variable n. The const code loads constant value 0 to register

%5 . And the arraygen code loads size from %2 and the value at register %5 ,

and then creates an array of the given size and fills each array item with the

value, and assigns to a temporary register %6 . Then by using assign code, we

can copy array at register %6 to %1 or return variable output . Similarly, we

use const and assign code to write 0 to register %3 or variable i .

1 loop (%1, %3, %8, %9, %10, %11, %12)// A list of modified registers
2 invariant// Start of loop invariant ’where i <= n’
3 ifle %3, %2 goto label0 : int // i <= n
4 fail
5 .label0
6 return// End of loop invariant
7 ifge %3, %2 goto label1 : int // Loop condition ’i>=n’
8 indexof %8 = %0, %3 : int[] // %8 = input[i]
9 const %9 = 2 : int //%9 = 2

10 mul %10 = %8, %9 : int // %10 = input[i] ∗ 2
11 update %1[%3] = %10 : int[] -> int[] // output[i] = %10
12 const %11 = 1 : int
13 add %12 = %3, %11 : int // %12 = i + 1
14 assign %3 = %12 : int // i = %12
15 // End of loop
16 .label1// Loop exit

Listing 2.3: Loop WyIL code

14

The loop code (see Listing 2.3) contains a loop block and includes a set of

registers to indicate those registers may be changed by the loop body.

The loop invariant code in where clause (e.g. where i ≤ n) is represented

as a separate invariant block and placed before the loop condition at line 9.

The invariant is translated as conditional and fail code to throw out a run-

time error when the condition does not hold. The conditional code is prefixed

with if and a comparing operator to compare the values of two registers and

decide whether to go forward to next code or jump to a further label code

which indicates a position within WyIL code. In our example, ifge %3, %2

goto label1 checks that %3 ≥ %2 . If so, then jump to label1 . Otherwise,

move on to next step. WyIL conditional code is forward-only branch because

the control flow does not allow call back and backward branches.

After loop condition, we use indexof code to access array at a given in-

dex and return the value to target register, e.g. indexof %8 = %0, %3 is

equivalent to %8 = input[i]. Then we use binOp code to perform arithmetic

operation on two registers and writes the result to target register, e.g. mul %10

= %8, %9 is %10 = %8×%9. We use update code to update the array at a spe-

cific index with given result, e.g. update %1[%3] = %10 is %1 [%3] = %10 .

And the loop counter i is incremented by one using a combination of const,

add and assign code.

Outside the loop, we place label code to indicate the loop exit label when

the loop iterations stop. And finally, we use return code to return the value

of target register and stop the function.

Method are impure and different from side effect free functions.

• A method can call another method and allow side-effecting standard

input and output stream, such as print, but a function can not call a

method nor display messages on console.

• Method argument can optionally be passed by reference

15

• A method may or may not have a return, but a function always returns

values.

1 method main(System.Console sys):// Main entry point
2 int[] a = [1;20]// Create an input array of size 20 filled with 1
3 int[] b = func(a)// Call ’func’ function
4 assert a[0] == 1 // Check ’a[0]’
5 assert b[0] == 2 // Check ’b[0]’
6 sys.out.println(b[0])// Print out ’b[0]’

Listing 2.4: Main Method in Example Whiley Program

Example 2.2 Consider our example 2.4 again. In main method we make

a call to function func with an input array, and add assertions to check the

function input/return and print out an array value.

1 private method main(whiley/lang/System:Console):// %0 = sys
2 body:
3 const %3 = 1 : int
4 const %4 = 20 : int
5 arraygen %5 = [%3; %4] : int[] // %5 = [1;20]
6 assign %1 = %5 : int[] // %1 = a = %5
7 invoke (%6) = (%1) example:func : function(int[])->(int[])// %6 =

func(a)
8 assign %2 = %6 : int[] // %2 = b = %6
9 assert // Start of ’assert a[0] == 1’

10 const %7 = 0 : int
11 indexof %8 = %1, %7 : int[]
12 const %9 = 1 : int
13 ifeq %8, %9 goto label2 : int
14 fail
15 .label2 // End of assertion
16 assert // Start of ’assert b[0] == 2’
17 const %10 = 0 : int
18 indexof %11 = %2, %10 : int[]
19 const %12 = 2 : int
20 ifeq %11, %12 goto label3 : int
21 fail
22 .label3 // End of assertion
23 fieldload %13 = %0 out : {int[][] args,{method(any)->() print,

method(int[])->() print_s,method(any)->() println,method(int
[])->() println_s} out} // %13 = sys.out

24 fieldload %14 = %13 println : {method(any)->() print,method(int
[])->() print_s,method(any)->() println,method(int[])->()
println_s} // %14 = sys.out.println

25 const %15 = 0 : int
26 indexof %16 = %1, %15 : int[] // %16 = b[0]
27 indirectinvoke () = %14 (%16) : method(any)->()// sys.out.println

(%16)
28 return

Listing 2.5: Method main at WyIL Level

16

Method Declaration Contain all used registers and their associated

types. Because register allocation starts from method arguments, register %0

in our example is assigned to system console object and ready to display any

message.

Method Body Can contain everything in function body (See Listing 2.5).

In our example, we have invoke code at line 7 to call function func with the

parameter from register %1 , and then return the result to target %6 . Invoke

code uses the colon to split the contents of code, and example:func indicates

the called function and function(int[])->(int[]) shows the input and re-

turn types of called function. Furthermore, invoke code can be used to call

the functions in Whiley run-time library, such as Math.max or File.Reader.

We then use assert code to handle an assertion at WyIL level by using

conditional and fail code to ensure a run-time exception is thrown out when

the assertion condition is not met (see line 9 to 22 in Listing 2.5).

1 public type PrintWriter is { // Nested type inside System.Console
2 method print(any), // out.print
3 method println(any), // out.println
4 method print_s(ASCII.string), // out.print s
5 method println_s(ASCII.string) // out.println s
6 }
7 // System.Console type
8 public type Console is {
9 PrintWriter out, // Output stream method interfaces

10 ASCII.string[] args // command line arguments
11 }

Listing 2.6: System.Console Package

After two assert code, we use two lines of fieldload code to access method

out.println from register %0 to target %14 because the method is nested and

associated to System.Console object. As shown in Listing 2.6, the console has

one field out and another field args. The out field is declared as PrintWriter

type and contains a list of printing method interfaces whilst the args field is

an array of ASCII code (numerical presentation of characters).

In our example, the fieldload code at line 23 loads out field from register

%0 to %13 and the contents after colon lists all field types of System.Console

type, which is surrounded by curly braces, and each field is split by comma.

17

Similarly, the fieldload code at line 24 loads println field from %13 to %14 and

displays field types after the colon.

In line 27, we use indirectinvoke code to indirectly call ’println’ method

as the called method/function is determined by a register. In our example

indirectinvoke () = %14 (%16) loads sys.out.println method from reg-

ister %14 and invokes the method to print out passed parameter %16 . The

method after colon indicates the types of called method (sys.out.println).

A function call in WyIL code can be direct or indirect. The invoke code

directly runs a static function or method declared in the same source file or

method in Whiley runtime library (e.g. Math.abs) whereas the indirectinvoke

code executes a function or method indirectly determined by a given operand.

2.3.2 WyIL Code Types

We categorise and list the WyIL code types with the support level of our

project: full, partial and none. The symbols in the table are described as

follows. l1 is target register on the left-hand side. r1 and r2 are the operand

registers on the right-handed side. constant number is the constant value.

And label identifier indicates a labelled position at WyIL code, type denotes

a given type and field presents a field name of a structure. And func is the

name of called function.

Table 2.1: Partially supported WyIL code types

Code Type Description Syntax

Assert Assertion block assert

Dereference Dereference a reference deref l1 = r1

FieldLoad Load a field value from a key fieldload l1 = r1 field

IfIs Type checking on a register ifis r1, type goto label

Invariant Loop invariant invariant

NewRecord Create a object structure newrecord l1 = (r1...)

18

Table 2.2: Non-supported WyIL code types

Code Type Description

Convert Convert a value to a type

Debug Print out debugging messages

Invert Bit-wise Inversion

Lambda Lambda expression

Move Move a register to another and make the original register void.

This move is similar to move semantics in Rust language.

NewObject Create an object

Not Invert a boolean

Quantify Encoded quantifiers at WyIL

Switch Multi-way branches

Void Make a register void

Table 2.1 shows a list of partially supported WyIL code types. Our project

does not translate assert and invariant code into C code as a default action,

but provides ea compiler option to enable its code generation. For structure

related code (dereference, fieldload and newrecord), our project supports the

code generation of single-array like structure, which contains only one integer

array with a few extra integer fields, but our deallocation analysis does not

guarantee the memory leaks and safety of structure types. Our ifis code checks

if a register is null type and can not perform the check on other types. Table 2.2

lists the code types that our project has not supported yet, and the below table

shows the code types of fully supported Whiley intermediate level (WyIL) and

gives a short explanation of code syntax.

19

Table 2.3: Fully supported WyIL code types

Code Type Description Syntax

ArrayGenerator Generate an array arraygen l1 = [r1; r2]

Assign Assignment assign l1 = r1

BinOp Arithmetic operations





add l1 = r1, r2

sub l1 = r1, r2

mul l1 = r1, r2

div l1 = r1, r2

rem l1 = r1, r2

Const Load a constant const l1 = constant

Fail Throw an exception fail

Goto Jump to a label position goto label

If Conditional branch





ifeq r1, r2 goto label

ifneq r1, r2 goto label

iflt r1, r2 goto label

iflteq r1, r2 goto label

ifgt r1, r2 goto label

ifgteq r1, r2 goto label

IndexOf Access array item indexof l1 = r1, r2

IndirectInvoke Indirect function call indirectinvoke (l1) = r1(r2...)

Invoke Function Call invoke (l1) = (r1...) : func

Label Label position .label

LengthOf Array size lengthof l1 = r1

Loop Loop block loop (r1...)

Continued on next page

20

Table 2.3 Fully Supported WyIL Code Types (Continued)

Code Type Description Syntax

NewArray Create an array from a

list of initial values

newlist l1 = (r1...)

Nop Non-operation nop

Return Return from a function return r1

Update Update an array update l1[r1] = r2

UnaryOperator Unary operation neg l1 = r1

2.3.3 Benefits of WyIL Code

Our code analysers and optimiser operate at Whiley intermediate language

level because WyIL code provides several advantages over source code. Firstly,

WyIL reduces the number of operation code (opcode) types and replaces nested

control-flows with uniform branching, so that we can use the same approach as

conditional to handle with nested control-flow break or continue. As a result,

the implementation complexity of code analysis can be reduced. Secondly,

WyIL breaks down a long calculation into a sequence of binary operations

and provides greater flexibility for our back-end to apply code optimisation.

Finally, we can take the same WyIL code without needing re-compilation from

source code to experiment with different code optimisations and to compare

the performance improvement.

2.4 WyIL To C

Our project translates WyIL code into efficient C code of lower memory usage

and faster execution, compared to the naive C code that our compiler produces

without any optimisation. Two additional things are required to undertake

during code generation, as follows.

21

2.4.1 Bounded Integer

Arbitrary-precision integer requires more memory and computing than a fixed-

size integer. For example, BigInteger in Java has variable-length size and must

run on slow software layer whereas fixed-size integers, such as int16 t (signed

16-bit integer), uses exact size and can directly run on fast hardware layer.

In our project we use static bound analysis to find the ranges of integer

variables and substitute arbitrary-precision integers with a variety of fixed-size

types whenever possible.

2.4.2 Memory Reduction

Unnecessary array copying causes program inefficiency and memory leaks lead

to program in-scalability. In our naive implementation of WyIL to C code, we

include value semantics to have an array copy at each assignment or function

call. But excessive array copies which are not always needed waste execution

time and resources. In addition, the amount of memory leaks from heap-

allocated arrays is accumulated to cause thrashing and a failure to scale up

the program to a larger problem size.

In our project, we design a macro system to detect unnecessary array copies

and minimise the memory usage whilst maintaining the memory safety.

2.4.3 System Architecture

Our WyIL-to-C backend includes code generation and three static analysers

(integer bound, copy elimination and deallocation analysers). Our backend

operates at Whiley intermediate language (WyIL) generated from high-level

Whiley source code to generate and optimise C Code.

22

Whiley

Program

Whiley Compiler

WyIL Code

Code Generator
Static Bound

Analyser

Copy Elimination

Analyser

Deallocation

Analyser

C Code

Execution

Whiley-to-C Backend

Invoke

Optimise

Integer Types

In
vo
ke

Op
ti
mi
se

Co
pi
es

Invoke
Add

Macro

Figure 2.1: System architecture (dashed boxes: our project)

As shown in Figure 2.1, the code generator converts the WyIL code into

efficient C code while interacting with bound analyser to make use of the

fixed-size integer types, and with copy elimination and deallocation analyser

to minimise the memory usage in the generated C code by reducing the num-

ber of array copies and de-allocating on the unused arrays. Our project goal

is to implement a large subset of Whiley in C with parallelism where possi-

ble/useful.

Chapter 3

Related Work

In this chapter we first go through some static (bound) analysis to find a proper

tool to estimate integer intervals and choose bounded integer types, and then

examine some related work about memory management and design principles

to reduce the memory usage. Lastly, we reviewed some important work about

static and dynamic analysis to eliminate the unused array copies and improve

program efficiency.

3.1 Static Analysis

Static analysis validates the consistency between software specifications and

program behaviours using mathematical methodologies. For example, the

bound consistency technique is widely used to solve the finite constraint do-

main problem (Marriott and Stuckey, 1998).

However, the problems of object-oriented program languages, such as side-

effects and non-deterministic results, make it a grand challenge (Hoare, 2003)

to create a compiler, with automated mathematical and logical reasoning, that

can statically verify the specifications and detect the errors at compile-time.

Some automatic static analysers use different approaches to find software

defects at early compilation stage to improve program correctness and produce

high-quality software. Extended static checker for Java (ESC/Java) (Flanagan

et al., 2002) uses an automatic theorem prover to analyse the program and find

24

common Java run-time errors, (e.g. array out-of-bound or null dereference,

etc). Also, ESC checker can be used to analyse concurrent Java programs and

issue warnings for potential run-time race conditions and dead locks. As ESC

requires to annotate specifications in programs, the annotation burden and

excessive warning messages could cause inconvenience for programmers.

Boogie, which was originally developed in Microsoft Spec# (Mike Barnett,

2005) system to verify a C# program, acts as an intermediate verification lan-

guage (Leino, 2008) to transform a Boogie program into verification conditions.

By using an automatic theorem prover (e.g. Z3 satisfiability modulo theories

solver (de Moura and Bjørner, 2008)) it can statically prove the correctness of

a program against pre- and post-conditions, and Boogie can point out possible

error cause in the program if verification fails. Using Boogie can avoid expen-

sive run-time check and improve the efficiency of program execution as Boogie

has statically verified those conditions at compile time and thus can remove

them from run-time. Furthermore, Boogie verification resembles writing a pro-

gram, e.g. we can write frame conditions as modifies and ensures clauses in

Boogie to restrict which variables a function can change and to write complex

formulas in pre- and post-conditions. Apart from Spec#, Boogie supports a

variety of programming languages, including Java byte-code with BML (Mallo,

2007), Dafny (Leino, 2010), Eiffel (Tschannen et al., 2011) and C (Vanegue

and Lahiri, 2013). Furthermore, Whiley also supports Boogie as a verification

back-end (Utting et al., 2017).

The static analysis using abstract interpretation can approximate the ab-

stract semantics of a program without execution and allows the compiler to

detect errors and find applicable optimisation. For example, Microsoft Re-

search Clousot (Manuel Fahndrich, 2010) can statically check the absence of

run-time errors and infer facts to discharge assertions. In our project, the

number of WyIL code is much larger than its high-level and human-readable

Whiley source code as every complicated operation in Whiley is broken down

into a series of three-address forms in WyIL to preserve the semantics. We use

25

abstract interpretation-based static analysis to analyse such a large amount of

WyIL code because it can operate at lower execution time and still produce

high precision.

3.2 Static Bound Analysis

Static bound analysis is a compiler optimisation technique, which estimates the

upper and lower bounds of a variable and detects potential run-time arithmetic

overflows at compile time.

The static bound analysis in LLVM (Low Level Virtual Machine) becomes

popular as the LLVM code can be optimised and converted to machine-depend

assembly code by the compiler without changes to original source program.

For example, an industrial-quality range analysis (Campos et al., 2012) has

been implemented in LLVM compiler and adapts revised polynomial interval

analysis (Gawlitza et al., 2009) to observe the decrease or increase in cycles

and then saturate the cycles by using the widening operator. However, LLVM

bound analyser tends to have overflow problems as the signedness information

has been lost at LLVM level, but could be solved by using a signedness-agnostic

bound analyser (Navas et al., 2012).

Static loop bound analysis approximates the number of loop iterations and

proves the termination of loop. And the estimated loop bounds can also be

used to unroll the loop and to increase program speed. The commonly used

techniques include pattern-matching and counter increment. Pattern-matching

CodeStatistics (Fulara and Jakubczyk, 2010) can prove the loop termination

by finding all for loop patterns in Java programs, and inserting termination

conditions as annotation into existing code. Their results show that their

method can efficiently prove 80% of for loops and detect error-prone loops

in large-scaled applications, including Google App Engine, Apache Hadoop,

TomCat and Oracle Berkeley DB. A counter-incremented approach (Shkar-

avska et al., 2010) is presented to obtain the linear and non-linear loop-bound

26

function (LBF), that binds the numeric loop condition to the number of loop

iterations. Shkaravska’s approach can handle very complicated loops to in-

fer polynomial LBFs but also ensure the correctness of derived LBFs using

an external verifying tool. Due to inefficiency on simple loops, it is usually

considered as a complementary approach to other existing ones.

Pattern-matching and counter-increment approaches do not handle multi-

path loops of different effects or non-trivial patterns well. A control-flow refine-

ment technique (Gulwani et al., 2009) is used to transform a multi-path loop

into one or more explicit interleaving loops to simplify the analysis, and then

use progress invariant technique to compute precise symbolic loop bounds.

The experimental results show that their approach can find 90% of loop bounds

in a large Microsoft product.

The static bound analysis usually has a trade-off between precision and effi-

ciency. When dealing with undecidable problems, the analyser usually accepts

imprecise results to avoid long running time and non-termination problems.

An interval analysis without widening or narrowing operator (Su and Wag-

ner, 2004) is proposed to solve integer range constraints, and shows that their

approach produces precise bounds in polynomial time whilst the termination

is guaranteed. Our project uses abstract interpretation iteration strategy to

compute the integer bounds in an abstract domain and accelerate the conver-

gence of bound inference by using widening operator with thresholds (Blanchet

et al., 2003) which goes through a number of threshold values and effectively

approximates the loop bound to fix-points within finite time.

A forward-propagated integer analysis (Pearce, 2015a) is presented in Whiley

compiler to exploit type and loop invariant to restrict the ranges of integer vari-

ables with explicit integer type declaration. In our project, we use abstract

interpretation-based static bound analysis to estimate the ranges of integer

variables, and base on the resulting bounds to use precise integer types in the

generated code. Our approach targets at abstract typed integers and infers

their bounds with abstract interpretation-based widening operator. We may

27

obtain the over-estimated bound results but ensure there is no integer over-

flows occurring with our bound results and also guarantee the termination of

our bound analysis.

3.3 Memory Management

There are two kinds of memory space: stack and heap, and both stack and heap

are stored in the same random-access memory (RAM). Our project represents

a Whiley array with heap-allocated array in C and needs to undertake below

work to produce efficient C code:

• Extra dynamic memory deallocation is needed to free the arrays on heap.

• Extra analysis for array-typed arguments is required to avoid memory

leaks during a function call.

• Extra care must be taken to ensure the aliased array is only freed once

and no double freeing memory problem occurs in our program.

We give a brief comparison between stack and heap arrays, and discuss the

region-based memory management.

Stack Store small and local arrays faster, because stack memory can be freed

automatically without extra deallocation efforts when the function returns.

There are some restriction on stack memory. i) The array on stack can

be passed to called function, but can not be returned because all stack data

will be deleted at function return. ii) Stack size is set to be small (8MB)

to avoid over-writing heap space. A too large stack requires moving heap

space and may invalidate all heap-allocated pointer addresses and break the

program. Also, if maximal stack size is reached we have a stack overflow and

cause segmentation fault. iii) Arrays on stack must be declared and specified

statically at source code and do not allow re-allocation to grow and shrink

back the array size at run-time.

28

Heap Use dynamic memory allocation to provide more flexibility to store

large and variable-length data of longer life-time.

Heap-allocated memory has several advantages over stack one. i) Heap

arrays can be used outside the function as a parameter or return. ii) Heap

size is limited to the size of virtual address space (thanks to the operating

system’s swap mechanism), so is able to accommodate most problem sizes

in 64-bit operation system. iii) Heap provides several built-in functions for

programmers to dynamically change the heap-allocated array size at run-time

by using malloc, realloc, calloc and free functions.

However, heap space has less efficient allocation than stack and may cause

memory leaks and double freeing issues. Region-based memory allocation is

another way of memory management.

Region Region-based memory management (Hicks et al., 2004) allocates and

assigns each array to a region, and has hybrid advantages of heap and stack

memory.

1 int* bar(int* a){
2 return a; // Return input array ’a’
3 }
4

5 int* foo(){
6 Region *r1 = createRegion();// Create region memory
7 // Allocate array ’a’ to region ’r1’
8 int* a = allocateFromRegion(r1, sizeof(int)*10);
9 int* b = bar(a); // Array ’a’ and ’b’ are aliased.

10 destroyRegion(r1); // Free aliased array ’a’ and ’b’, so ’b’ becomes null.
11 return b; // Array ’b’ is dangling pointer
12 }

Listing 3.1: Dangling pointers in region-based memory

Region memory, similar to stack, has low overheads of allocation and deal-

location because all the objects in one region are allocated to a block of con-

tiguous memory space, and when the region is destroyed, all objects are de-

allocated at once in a constant time without needing to empty each object

separately. Moreover, region-allocated objects have longer lifetime and larger

space access than stack-allocated ones. As such, the region memory is more

suitable to store complex data structures, such as linked list, and make it easy

29

to reason about the required memory space.

However, region memory needs manual de-allocation, like heap, and still

has memory leaks and dangle pointers. Consider the example in Listing 3.1.

Arrays a and b are aliased at function call (line 9) but they are freed when

region r1 is destroyed (line 10). As such, function foo returns a dangling

pointer that refers to invalid address.

Solving this problem requires region inference to statically find the scope of

variables and limit the use of deallocation, e.g. unique pointers are integrated

to safe C dialect Cyclone (Hicks et al., 2004) programming language to ensure

only one valid reference points to an object, and to avoid any attempt to

de-reference any dangling pointer.

Reference counting and garbage collection are common approaches, which

are used to deal with the deallocation of unused memory automatically.

3.3.1 Reference Counting

Reference counting algorithm can reclaim an unused memory as soon as it is

no longer in use. The basic reference counting firstly creates an extra counter

for each referenced item to track the number of its references during execu-

tion. Secondly, it increments the counter when a new reference is created and

referenced, and decrements the counter when the reference is out-of-scope or

over-written. Lastly, the item can be deleted when its counter reaches to zero.

Reference counting gives prompt response to clear out all unused memory

and reduce memory usage to improve performance in limited resource systems,

particularly embedded system.

However, frequent updates on the reference count consume too much com-

putation and slow down the execution. Also, reference counting can not handle

reference cycles, where an object refers to itself and forms a cyclic chain of ob-

jects. We could solve this cyclic reference issues by implementing additional

approaches to reference counting but increase its complexity. In our project,

we focus on only arrays of primitives (no pointers of pointers are allowed) so

30

there will be no cycles used in the program and thus reference counting can be

used to solve our memory deallocation problem. We use a run-time boolean

flag, rather than counting reference number, to keep track of reference changes

from one variable to another.

3.3.2 Garbage Collection

Garbage collection automatically detects and frees unused memory without

manual instruction so garbage collector can avoid some memory leaks and

safety bugs, such as dangling pointers and double freeing problem, which frees

the memory space that has been de-allocated before.

Tracing garbage collection algorithm identifies in-used and unused objects,

which are no longer referenced, and then reclaim unused memory. Unlike

reference counting, the garbage collector can effectively free the memory of

cyclic reference objects. The basic mark-and-sweep algorithm assigns each

object with a flag to indicate whether the object is reachable and build up a

set of roots to preform two-phased operation to detect all unreachable objects

(mark phase) and clean the memory space for all unreachable objects (sweep

phase).

However, mark-and-sweep phase needs to suspend the program during

garbage collection and may cause long pause as the algorithm must exam-

ine and check the entire memory space. Also, make-and-sweep may consume

and exhaust the memory space if it has been triggered constantly. Additional

and well-defined methods are required to solve these performance issues. In

our project, the target programs do not have cyclic references and therefore

there are no needs for automatic garbage collection to clean up memory.

Rust is the most relevant to our project. Rust programming language (Blandy,

2015) provides the control over memory, like C and C++, and also ensures the

memory safety and data-race-free concurrency with single ownership, move

semantics, borrow reference, etc. So Rust compiler can estimate the lifetime

31

of every variable and drop every value whenever not having ownership, so that

dangling pointers can never be used. Our project bases on Rust design prin-

ciples to determine the responsible deallocation at run-time and avoid double

freeing problem.

Smart pointers (Alexandrescu, 2001) are implemented in C++ with built-

in memory management to reduce the misused pointers and avoid memory

leaks. Our project uses similar pointers, particularly shared pointers. Multiple

pointers are allowed to access the shared memory. But the de-allocation occurs

only once as the flag has been transferred to the last (used) variable during

assignments.

3.4 Copy Elimination

Copying is an expensive operation and creating redundant copies leads to in-

efficient problems in most programming languages that uses the copy/value

semantics. Some reference type programming languages, including C, C++,

Java and Rust (Blandy, 2015), allow programmers to mark the immutable vari-

ables as mutable and update the values without copying. However, in a copy-

semantics programming language, such as MATLAB, Whiley or TCL (Ouster-

hout et al., 2010), copies are always made to avoid side effects of updating

existing variables, so compiler optimisations have been developed to find un-

necessary copies in a program.

Static analysis can be used to detect unneeded copy operation in functional

programming languages. Static abstract interpretation reference counting (Hu-

dak and Bloss, 1985) was proposed to approximate the number of references

with the termination of inference guaranteed, so that the compiler can apply

in-place updates onto the variables which are used only once. However, the

copy avoidance on divide and conquer programs, such as quicksort , requires

a further inter-procedural analysis (Gopinath and Hennessy, 1989). Their ap-

proach uses fix-point iterations to compute the aliasing of function argument

32

and substitute for call-by-reference parameter. Our approach performs a simi-

lar inter-procedural and linear-timed analysis to collect the sets of read-write,

return and live variables, rather than their exponential-timed aliasing analysis,

to make the determination of parameter copies during a call.

Our copy elimination analysis appears most similar to the algorithm of

hybrid static analysis and dynamic reference counting (Goyal and Paige, 1998)

proposed to eliminate copies in an imperative programming language SETL.

Their approach keeps track of reference counts during program execution

but our approach uses boolean run-time flags, which indicate whether the

variable is responsible for the deallocation of its memory space, and speeds up

the run-time checks. Their approach, like ours, uses static alias analysis and

live variables to find destructive updates at each program point and inserts

extra code to reduce the reference counts so that the run-time can replace

the copy with an in-place update when the reference count reaches one. Our

approach relies on live variable analysis to remove the copies of dead variables

at compile-time.

Their analysis can run in low polynomial time, but does not perform well on

function call parameters. So an efficient and polynomial-time algorithm (Wand

and Clinger, 2001) for inter-procedural array update was developed to generate

a set of constraints from live variables and aliasing analysis results and solve

these constraints to replace call-by-value parameters by the references. Instead

of inferring constraints, our approach performs static analysis on both called

function and caller sites, and uses a rule-based macro system to explicitly

remove or keep the copy of a parameter. But under some uncertain function

behaviours, our approach chooses to keep the extra copies of parameters to

avoid side effects of function calls and includes dynamic checks to delete unused

parameter copies.

MATLAB uses reference counting to determine the unneeded copies but

incurs extra run-time overheads and slows down the program execution. Thus,

a pure static analysis without reference counting (Lameed and Hendren, 2011)

33

was developed for the MATLAB JIT compiler. Their approach firstly per-

forms a quick check to remove the copies of read-only variables and secondly

uses a forward analysis to find all the required copies for live variables and

then performs a backward analysis to find a better location to place the copy.

Their approach is pure static analysis but relies on garbage collection to free

unused array copies. Our approach combines static and dynamic analysis, and

provides a simple way to eliminate unnecessary copies and to undertake the

deallocation tasks without garbage collection.

3.5 Verifying Compiler

A verifying compiler (Hoare, 2003) uses automated mathematical and logical

reasoning methods to check the correctness of the programs that it compiles.

The compiler verifies the program (mostly written in a high-level programming

language) by generating all the verification conditions, and discharging each

via a built-in or external verifier, such as SMT solver, to find any runtime error

when possible, and prove the program correctness. Once the input program

is verified, the compiler translates it into the low-level implementation with

explicit details (memory model and data representation) to run on the machine.

VCC (Cohen et al., 2009) verifier enables C programs with verification

annotations to include functional pre-and post-conditions, and with its static

verifier proves the C code at function level. To deal with variable aliasing

and dangling pointers in C, VCC introduces its ownership memory model

and type invariant, and therefore extra annotation overheads are unavoidable.

CompCert (Leroy et al., 2016) compiler also verifies the program correctness

in C level using Coq theorem prover. Our approach however verifies high

level Whiley programs, rather than the low-level C code, because Whiley is

designed to ease the verification difficulties. For example, the use of value

semantic makes every value immutable without any aliasing, so the verification

in Whiley becomes less complicated than C code.

34

Many verification frameworks use a similar strategy: verifying the program

in high level language and translating into low-level code for better efficiency.

Dafny (Leino, 2010) verifier extracts all verification conditions from the source

code, and then translates into Boogie (Leino, 2008) and validates the Boogie

program using automatic SMT Z3 solver (de Moura and Bjørner, 2008). After

the verification, Dafny compiler takes the program and converts into executable

C# code. The Dafny compiler (Leino, 2017) uses two strategies to improve

the efficiency of generated code. First, it chooses fixed-sized integer types

based on given constraints whenever possible, and takes advantage of their fast

speed at runtime. Second, it ignores the compilation of specifications (pre-and

post-conditions) into actual code, and reduces the overheads. Our approach

includes a similar bound analysis to replace the unbounded integers with the

smallest fixed-size types. Our analysis erases all the specifications, which are

not related to computation, from Whiley programs and also performs extra

code optimisations, e.g. array copy elimination and memory deallocation, to

reduce the overheads of C code.

F* verification programs (Protzenko et al., 2017b) can be compiled to fast

and well-defined C code. Its memory model is similar to CompCert, and can

facilitate both the stack and heap with memory safety guarantee. As such, its

C code never has out-of-bounds access or double freeing problems, but due to

the restriction in F*, the C code requires explicitly manual heap allocation in

the source F* program. However, our approach implicitly uses the heap space

for all array variables, and can automatically place allocation or deallocation

in the generated C code without any statement in Whiley programs.

The optimising compiler has been actively applied on machine learning

area of research. Glow compiler (Rotem et al., 2018) at Facebook translates

the machine-learning specific programs written in high-level Pytorch Paszke

et al. (2017) language down to LLVM code and optimises memory usages

and instruction schedules to take advantages of hardware features and execute

across various target machines.

35

3.6 Rust Comparison

Rust compiler (team, 2019) converts its program into LLVM IR code, and

by using the Clang compiler, the generated LLVM code can be compiled and

optimised to fast and safe executables for various target machines. When

translating Rust to LLVM code, Rust compiler can use type checker to infer

untyped variables and include borrow check to enforce the generated code

conforming to the move and borrow semantics in Rust ownership system, so

that the LLVM code can be run safely without needing a garbage collection.

Our approach is inspired by Rust ownership but the idea of ‘owner’ is

simplified to deal with memory deallocation only, and we use the below scheme

to achieve zero memory leaks and zero double deallocation.

• Every array variable is associated with a Boolean deallocation flag. This

flag’s value is used to keep track of which variable is responsible for

actual deallocation of the shared memory space at runtime. Unlike Rust

ownership that requires the owner to explicitly gain the read-write access,

our flag is only used to decide whether freeing the allocated memory, and

has no controls over value mutability.

• Our deallocation invariant ensures that at any program point, exactly

one variable is responsible to free the allocated memory space. This is

similar to Rust single ownership principle.

• Our approach includes 8 deallocation macros and ensures our dealloca-

tion invariant always holds after each macro. Rust relies on variable

scopes to drop out the values, but our approach does not use the scope

(every local variable is in function scope) but use static analysis and

runtime flag to decide whether to free unneeded memory space.

Chapter 4

Live Variables and Bound

Analysis

On 10 January 2017, 22 transactions of Largan Precision Co. at Taiwan stock

exchange were disruptively halted due to an integer overflow bug on price,

which was falsely set up with 32-bit integer range by the system. So, when the

maximal value of each Largan stock transaction (4, 295, 250, 000) exceeds the

upper limit of unsigned 32-bit integers (232 − 1 = 4, 294, 967, 295), the safety

mechanism was accidentally triggered and then caused huge loss to investors.

Such a false alarm can be avoided by choosing a proper and suitable integer

type, e.g. unsigned 64-bit integers, to increase the stock price range.

This chapter presents an abstract interpretation-based bound inference ap-

proach (Weng et al., 2016) to estimate the range for integer variables at Whiley

intermediate level and to make use of primitive integer types, rather than

third-party infinite integer type (e.g. using GMP arbitrary precision library),

on generated code and increase the efficiency.

The Whiley program is first compiled into WyIL code, and then the bound

analyser is invoked to estimate the upper and lower bounds of each integer vari-

able and determine a specific fixed-width types (int16 t, int32 t or int64 t)

such that the type has the smallest range but still can hold the maximal and

minimal value of the variable to avoid arithmetic overflows during execution.

37

The bound analysis develops a conservative bound consistency technique to

ensure that the output bounds are large enough to avoid all integer overflows

in the generated code. In addition, the abstract interpretation-based widening

operator is used to speed up the converging time of bound inference.

The bound analyser is implemented as a Java plug-in on top of Whiley

compiler project. It infers the bounds of integer variables in two phases. First,

the analyser evaluates each WyIL code semantics to extracts the constraints

on abstract domain. Then the analyser computes bounds with the bound

consistency technique and speed up the convergence time by using the abstract

interpretation-based widening operator.

4.1 Bound Consistency Check

Bound consistency technique (Marriott and Stuckey, 1998) restricts the vari-

ables to a finite set of values and satisfies the arithmetic constraints. This tech-

nique allows the bound analyser to propagate lower or upper bounds among

variables in the form of constraints and ensure that lower bounds never exceed

upper ones.

The bound analyser takes the code of a function block as input, goes

through the context-sensitive bound inference procedure, and produces the

output bounds of a function call, which reflect the input parameters. Bound

inference starts from main function and performs inter-procedural bound anal-

ysis on a function call whenever necessary. The steps include control flow graph

(CFG) construction, live variable analysis and bound inference.

4.1.1 CFG Construction

The analyser builds up control flow graph of each function. It scans the code at

each program point, processes the semantics of each line of code to construct

a new block or get current block and add the code to that block. Each block

connects other block with a directed edge to show the program execution flow.

38

For example, the below while-loop contains three blocks: loop header, loop

body and loop exit.

1 // While−loop in Whiley
2 while i<10:
3 sum = sum + i
4 i= i + 1

[Loop Header]

[Loop Body]

i < 10
sum = sum+ i

i = i+ 1

[Loop Exit]

i ≥ 10

Figure 4.1: While-loop structure

As shown in Figure 4.1, the loop header is an empty block, which does not

have any code, but used to connect loop body and exit. The loop body stores

the loop condition and other statements at loop body whereas loop exit stores

the negated loop condition, and other code after the loop.

Our project supports standard control flow block types (Aho et al., 1986):

basic block, entry and exit, loop structure (loop header, loop body and

loop exit), if branch, else branch, label and return blocks with addition

of update and function call. Entry block is the root node of graph whereas

exit is the leaf node, which does not have any child node.

Loop structure and if-else branches are typical blocks as they change the

control flow, based on some conditions, and then perform different instructions.

A basic block includes a sequence of code which does not branch out the flow.

Label code indicates the needs of a new block scope in the current flow, so we

create a new block, linking to current block as a child node, to store the code

within labelled block after the label code.

Return block represents the end of a program execution path. As a function

may contain conditional branches and create more than one execution paths,

a function may have multiple returns. All return blocks link to exit block, to

indicate the termination of a function.

Apart from above control-flow blocks, we introduce additional update block

39

and function call block. The update code accesses an array item at a given

index and updates it with a new value, e.g. a[0] = 1. The update code makes

changes to an array variable but does not have a copy or aliasing. So a separate

update block is needed for live variable analysis to determine the live variables

after update code.

A function call with array-typed parameters involves code optimisation,

such as array copying and memory deallocation, and thus requires a separate

block to check the liveness and function behaviour. Each block consists of:

• Block name and type along with all the code within the block scope.

• Parent blocks connecting to the block towards entry, and child blocks

connecting to the block away from entry.

• Constraints that are extracted from each code in the block.

• Live variable set which contains the in-use variables after the block, and

dead variable set which includes the unused variables after the block.

• Bound set which contains lower and upper bounds for all live variables

in the block.

4.1.2 Live Variable Analysis

Live variables at a control flow block means the variables may be used or

read after the code whereas dead variables will not be used in the future.

Live variable analysis (Aho et al., 1986), an iterative backward data-flow al-

gorithm, finds and collects live and dead variables before and after each block

in a function. Firstly, the analyser constructs control flow graph. Secondly, it

backtracks through each block and computes code-level liveness transfer equa-

tion at each line of code at block blk in function func to find the set of live

variables before and after this block, denoted by IN (blk) and OUT (blk) respec-

tively. This procedure repeats until all sets have no changes and fixed-point is

reached.

40

Procedure 4.1 Compute Live and Dead Variables
Input: Function func and its control flow blocks
Output: Live and dead variables at each block in function func
1: Variables

Code c at block blk in function func
def (c): a set of variables defined at code c
use(c): a set of variables used at code c
in(c): a set of live variables before code c
out(c): a set of live variables after code c
VARS (blk): a set of all variables used in block blk
IN (blk): a set of live variables before blk
OUT (blk): a set of live variables after blk
LIVE VARS (blk): a set of live variables after blk
DEAD VARS (blk): a set of dead variables after blk

2: end Variables
3: // Compute live variables at each block of function func
4: procedure compute LiveVars(func)
5: for each block blk other than RETURN in function func do
6: OUT (blk) = ∅// Initialise OUT set in all blocks
7: end for
8: IN (RETURN) = {return variable}
9: OUT (RETURN) = {return variable}

10: while Changes to any IN (blk) set do// Repeat until fixed-point
11: for each block blk other than RETURN in backward order do
12: // OUT at block blk as the union of IN in all its child blocks
13: OUT (blk) =

⋃
s∈succ[blk] IN (s)

14: // Compute live variables from last to first code
15: for each ci ∈ {cn . . . c0} at block blk do
16: if ci == cn then
17: // OUT (blk) set is out set at last code of block blk
18: out(cn) = OUT (blk)
19: else
20: // out set is in set of previous code
21: out(ci) = in(ci+1)
22: end if
23: // Compute liveness transfer equation
24: in(ci) = use(ci) ∪ (out(ci)− def (ci))
25: end for
26: IN (blk) = in(c0)// IN (blk) is in set at first code of block blk
27: end for
28: end while
29: // Compute live and dead variables at each block
30: for each block blk other than RETURN do
31: LIVE VARS (blk) = OUT (blk)
32: DEAD VARS (blk) = VARS (blk)−OUT (blk)
33: end for
34: end procedure

41

Our live variable analysis (see Algorithm 4.1) is based on Whiley live vari-

able analysis (Pearce and Groves, 2015b) to compute live variable set before

and after each line of code c, denoted by in(c) and out(c), from the last code

backward to the first at block blk . Suppose we have c0 , c1 , . . . , cn at block blk .

As each block has no branching or interruption (each code has only one child

code), we have the liveness transfer equation for code ci as follows:

out(ci) = in(ci+1)

in(ci) = use(ci) ∪ (out(ci)− def(ci))

where use(ci) is the set of used variables at ci and def (ci) represents the set of

defined variables at ci ; in(ci) is the set of live variables before ci and out(ci)

is the set of live variables after ci .

The liveness transfer equation can be applied on the composition of all code

in a block, so that we can compute block-level live variables for each block blk

in a function by using code-level in and out sets with below relationship:

OUT (blk) = out(cn)

IN(blk) = in(c0)

Note RETURN block is processed separately as the return variable must be live

both before and after the return block.

Procedure 4.2 Live Variable Check
Input: Variable var at code of function func
Output: true: var is live after code in func

// Check var is live after code in func
1: procedure is Live(var , code, func)
2: if code is a Function Call AND var is used at least once at code then
3: return true
4: end if
5: blk=Locate the block of code at function func
6: return (var ∈ LIVE VARS (blk))? true : false
7: end procedure

Thirdly, we repeat the backward iterative procedure until IN sets at all

blocks converge, and obtain comprehensive live variable sets such that we can

use live variables to determine if a variable is still live at a program point

42

(see Algorithm 4.2). Furthermore, we can use live variable set to find out

dead variables in each block. Because live variable set (Seidl et al., 2012,

Chapter 1.7) takes as the union set of variables possible live at least one of

child blocks, the complementary set of a block contains only dead variables

which are definitely not used at any of child blocks. The dead variable set,

denoted by DEAD VARS (b), in block blk is:

DEAD V ARS(blk) = V ARS(blk)−OUT (blk)

where OUT (blk) is the live variable set at block blk and VARS (blk) contains

all the in-use variables at block blk .

Dead variable set can be used in bound inference to avoid unstable bounds.

As dead variables are not used after a block, their bounds become unpre-

dictable outside their scope. As such, propagating out-of-scoped bounds from

dead variables to a block leads to diverged bound changes, and fails converg-

ing to the fixed-point and may go into an infinite loop during bound inference

phase. To guarantee the termination of bound inference, our bound analyser

skips dead variables but combines all possible live variables to produce the

bounds for a block.

1 function func(int limit) -> int:
2 int i =0
3 int sum=0
4 while i < limit:
5 int j = 0
6 while j < limit:
7 sum = sum + i*j
8 j = j + 1
9 i = i + 1// j becomes dead

10 return sum

Listing 4.1: While-loop nest Whiley program

Example 4.1 The example in Listing 4.1 illustrates a while-loop nest in Whiley.

The program uses variable i and j to keep track of the counter at outer and

inner loops respectively. We build up the control flow graph for function func

and then perform live variable analysis to find live and dead variables in each

block, as follows.

43

Inner Loop

[ENTRY]
limit

i, sum := 0

A [Loop Header]

B [Loop Body]

i < limit
j = 0

D [Loop Header]

E [Loop Body]

j < limit
sum = sum + i ∗ j

j = j + 1

F [Loop Exit]

j ≥ limit

i = i + 1

C [Loop Exit]

i ≥ limit

G [Return]

return sum

[EXIT]

1 {i, limit, sum}

2 {i, limit, sum}

8 {sum}

3 {i, j, limit, sum}

4 {i, j, limit, sum}

5 {i, j, limit, sum}{i, j, limit, sum} 6

{i, limit, sum}
(j NOT live)

7

9 {sum}

10 {sum}

Figure 4.2: Control flow graph of While-loop nest program (edge: live vari-

able set)

The entry block, as shown in Figure 4.2, stores the values of parameter

limit , and variable i and sum. Then we construct an outer loop structure

(blocks A, B and C) to place the code at line 4 and 5, and an inner loop

(blocks D , E and F) to store the code from line 6 to 8. And return block G

connects outer loop exit and function exit blocks.

The live variable set is shown on the edge after the block. For example,

7©{i , limit , sum} indicates variables i , limit and sum are used and live after

inner loop exit block F . Variable j is used only in the inner loop and becomes

dead at the inner loop exit (Block F). So when the analyser propagates bounds

from inner loop exit (Block F) to outer loop header (Block A), variable j is

skipped to avoid passing out-of-scoped bounds to the inference procedure.

44

4.1.3 Bound Inference

The bound inference extracts bound constraints from WyIL code and then

perform the bound propagation and inference repeatedly until all the bounds

are consistent with all the constraints (Malik and Utting, 2005).

Bound Constraint Our bound analyser takes the control flow graph as

input, iterates each block in the graph to discover the bound constraints from

each line of code at the block, and place the extracted constraints in the

corresponding block. By imposing these constraints in each block, we can

get a set of bounds that satisfies all the conditions over integer domains and

provide possible range of a variable, rather than infinite value.

Table 4.1: Bound constraints and bound propagation rule

WyIL code Constraints/Bound Propagation Rule

const X = 10 (X := 10) =⇒ d(X) := [10 . . . 10]

assign X = Y (X := Y) =⇒ d(X) := d(Y)

ifeq X, Y (X == Y) =⇒





d(X) := d(X) ∩ d(Y)

d(Y) := d(Y) ∩ d(X)

ifgt X, Y (X > Y) =⇒





d(X) := d(X) ∩ [min(Y) + 1 . . .∞]

d(Y) := d(Y) ∩ [−∞ . . .max(X)− 1]

ifge X, Y (X ≥ Y) =⇒





d(X) := d(X) ∩ [min(Y) . . .∞]

d(Y) := d(Y) ∩ [−∞ . . .max(X)]

iflt X, Y (X < Y) =⇒





d(X) := d(X) ∩ [−∞ . . .max(Y)− 1]

d(Y) := d(Y) ∩ [min(X) + 1 . . .∞]

ifle X, Y (X ≤ Y) =⇒





d(X) := d(X) ∩ [−∞ . . .max(Y)]

d(Y) := d(Y) ∩ [min(X) . . .∞]

45

Definition 4.1 Bound Definition and Constraints

Variables X , Y and Z each has a domain d with lower and upper bounds, de-

noted by d(X) = [min(X) . . .max(X)] where functions ′min ′ and ′max ′ get the

minimal and maximal values of a domain respectively. Domain d(X) indicates

the output domain of variable X after being applied with a bound constraint.

Each domain is initialised with an empty value ∅ which represents unknown

bounds.

The bound union operator, denoted by ∪, produces a new domain that con-

tains two input domains and finds the smaller lower bound and larger upper

bound of input domains, as follows.

d(X) := d(Y) ∪ d(Z)

=⇒ d(X) :=





d(Y) if d(Z) is ∅

d(Z) if d(Y) is ∅

[min(min(Y), min(Z)) . . .max(max(Y), max(Z))]

The domain intersection operator, denoted by ∩, outputs a domain that

includes both two input domains and finds the larger lower bound and smaller

upper bound of input domains, as follows.

d(X) := d(Y) ∩ d(Z)

=⇒ d(X) :=





∅ if d(Z) is ∅

∅ if d(Y) is ∅

[max(min(Y), min(Z)) . . .min(max(Y), max(Z))]

Each line of WyIL code type could be encoded and expressed in the form of

bound constraint and bound propagation rules such that the resulting bounds

satisfy all given constraints. Table 4.1 lists the bound rules for an equality,

relational and assignment. Our analysis also supports arithmetic operators,

i.e. unary negation, addition and multiplication. The propagation rule of a

negative operation is to negate the maximal and minimal values and swap

46

them:

d(−X) =⇒ [−max(X) . . .−min(X)]

For an addition X := Y + Z , the bound propagation rule updates domain

X with the sum of minimum and maximum of Y and Z , as follows.

d(X) := d(Y + Z) := [min(Y) + min(Z) . . .max(Y) + max(Z)]

For instance, domains Y and Z are [0 . . . 5] and [−2 . . . 2] respectively, and the

resulting domain X is [−2 . . . 7] and domains Y and Z remain unchanged.

For a multiplication X := Y × Z, the bound rule explores the limits of

variable Y and Z , and calculates all the products of maximal and minimal

values to find the minimum and maximum of the resulting domain X .

d(X) := d(Y ×Z) :=





min′ = min(min(Y) ∗min(Z), min(Y) ∗max(Z),

max(Y) ∗min(Z), max(Y) ∗max(Z))

max′ = max(min(Y) ∗min(Z), min(Y) ∗max(Z),

max(Y) ∗min(Z),max(Y) ∗max(Z))

d(X) = [min′ . . .max′]

Consider the above example. Domain Y is [0 . . . 5] and domain Z is

[−2 . . . 2]. The combination of variable Y multiplied by Z are:

d(Y × Z) :=





min(Y) ∗min(Z) = 0

min(Y) ∗max(Z) = 0

max(Y) ∗min(Z) = −10

max(Y) ∗max(Z) = 10

So the result domain is d(X) = [−10 . . . 10].

We define constraints and bound propagation rules, and will go through

bound inference to infer constraints and bounds for a function.

47

Procedure 4.3 Tree-Traversal Bound Inference for a Function
Input: Function func is a function; Argument Bounds args of function func.
Output: The domain of return variable ret of function func
1: Variables
2: blk .d is the domain set of block blk ; blk .d(var) is the domain (lower and

upper bounds) of variable var in block blk .
3: end Variables
4: procedure Is Reachable(blk)// Check the reachability of block blk
5: return (Any domain ∈ blk .d == ∅) ? false : true
6: end procedure// Return true if blk does not have empty domain
7: // Infer bounds of function func using breath-first or depth-first traversal
8: procedure Infer Bounds(func, args)
9: cfg = buildCFG(func)// Build control flow graph of function func

10: extractConstraints(cfg)// Extract constraints in each block
11: Init(func) // Initialise each domain in each block with ∅
12: deque.add(cfg .getEntry())// Put entry to deque as starting block
13: while deque is NOT empty do
14: blk = deque.poll()// Retrieve block in breath-first or depth-first order
15: if blk is a function call then// Bound inference on a function call
16: callee = getCalledFunction(blk)
17: args = GetArgumentBounds(bounds, blk)
18: // Infer the bounds of called function
19: ret = Infer Bounds(callee, args)
20: // Add the domain of variable ret as a constraint to block blk
21: AddConstraint(ret , blk)
22: end if
23: // Infer the domains of all variables in block blk
24: blk .din := blk .d// Store domain set of block blk before inference
25: blk .d := {}
26: for each parent block in blk do
27: for each var ∈ parent .vars do
28: if var is a live variable in parent then
29: // Propagate domains of live variables from parents to blk
30: blk .d := blk .d

⋃
parent .d(var)

31: end if
32: end for
33: end for// Produce initial value of blk .d from parent blocks
34: for each constraint ∈ blk .constraints do
35: Apply the bound propagation rules of constraint on blk .d
36: end for// Produce blk .d domains consistent with all constraints
37: if blk .d has any change (blk .d 6= blk .din) then
38: Add children blocks of blk (except EXIT) to deque
39: end if// We start inferring the bounds of child blocks
40: end while// Repeat until the domains of all blocks become stable
41: // Produce final domains of each variable in function func at EXIT block
42: exit :=

⋃{blk .d • (∀ blk : BLOCKS • is reachable(blk))}
43: return exit .d(′ret ′) // Return the domain of return variable ret
44: end procedure

48

Bound Inference Bound inference determines the maximal and minimal

ranges or a domain of an integer variable that it is used in a function. Once the

control flow graph of the function is built up (using procedure buildCFG) and

the bound constraints are extracted and added to the corresponding blocks in

the graph (using procedure extractConstraints), the bound analyser starts

the bound inference in depth-first or breath-first block order and produces the

bounds satisfying constraints in each block. Then the analyser iterates each

block and combines the inferred bounds to yield the final domain results for

each variable in the function.

Bound Inference on a Function The bound analyser takes the WyIL

code of function func as input, and outputs the inferred bounds of the function,

including return variable ret , all local variables and input parameters. The

bound inference on a function (see procedure Infer Bounds in Algorithm 4.3)

consists of four steps.

Firstly, the analyser goes through every block of the control flow graph and

initialises each domain in one block to ∅ (using procedure INIT). Then we use

the deque data structure to store all the blocks that have bound changes. And

entry block is pushed into the deque so that we can start the block inference.

Secondly, the analyser takes out one block from the deque in either depth-

first (Last-In First-Out) or Breath-First (First-In First-Out) order and carries

out block bound inference as follows.

1. Domain depends on variables and blocks. Then, we represent a function

blk .d : VAR → domain which maps a variable to its domain in block blk .

blk .d(var) is the domain of variable var in block blk .

2. blk .din stores the domain set of block blk before block bound inference.

3. We reset domain set of block blk and take union of every live variable’

domain from all the parent blocks of block blk and produce initial block

domain set blk .d for bound inference. By doing so we can restrict the

variables of block blk to only two conditions:

49

• The variables are first used in the block blk or,

• The variables are live (not dead) in parent block.

These variable rules guarantee every domain is consistent with the block

scope that it appears in, and thereby avoid propagating out-of-scope

bounds to blocks and causing unstable convergence during inference.

4. We iterate every constraint imposed by the code in block blk to infer or

propagate the bounds and produce the resulting block domain set blk .d ,

which is satisfied with all constraints in block blk .

5. After inferring the bounds of block blk , we add blk ’s child blocks to

deque for further block inference when the domain set of block b has any

change, i.e. blk .d is not the same as blk .din .

6. We proceed to the next block in deque and start its block bound inference

described as above. This procedure repeats until the deque becomes

empty and all bounds converge to the fixed point, at which every bound

in the domain set of each block stays unchanged and stable.

Finally, the bound analyser combines the inferred bounds of each block to

produce the final resulting domains for all integer variables of function func,

including return variable, all local variables and passing parameters.

Some blocks may contain empty domains (due to empty intersection on

bound inference) and become unreachable, in which case the program flow does

not execute the block. Thus, the bound analyser performs reachability check

(see Is Reachable procedure in Algorithm 4.3), ignores unreachable blocks

and take union of the bounds in remaining ones, in order to approximate the

comprehensive domains of integer variables in the execution of function func.

These resulting domains may be over-estimated but can be used to determine

a fixed-width integer type that does not cause arithmetic overflows.

For a function call, we need analysing the domains of passing parameters

and return variable described as follows.

50

Bound Inference for a Function Call The above algorithm 4.3 also

shows the bound inference for a function call. The bound analyser passes the

bounds of parameters as constraints to the called function, and performs the

bound inference on the function, and then propagates the return bounds as

a constraint to caller site. We will illustrate the procedure with below example.

Listing 4.2: Whiley program

1 function f(int x)->(int r)
2 ensures r >= 0:
3 if x < 10:
4 return 1
5 else:
6 if x > 10:
7 return 2
8 return 0

Table 4.2: Bound results

Input Domain Output Domain

d(x) := [1 . . . 1] d(r) := [1 . . . 1]

d(x) := [10 . . . 10] d(r) := [0 . . . 0]

d(x) := [11 . . . 11] d(r) := [2 . . . 2]

ENTRY

x := 1

B [ELSE]

x >= 10
A [IF]

x < 10

E [RETURN]

return 1

C [IF]

x > 10
D [ELSE]

x <= 10

F [RETURN]

return 2
G [RETURN]

return 0

EXIT

EXIT.d(r) := [1 . . . 1]

ENTRY.d(x) := [1 . . . 1]

A.d(x) := [1 . . . 1]

ENTRY.d(x) := [1 . . . 1]

B.d(x) := ∅
B.d(x) := ∅

C.d(x) := ∅ D.d(x) := ∅

E.d(r) := [1 . . . 1]

Figure 4.3: Bound inference and reachability check of If-Else program with

x := 1 (solid: reachable, dashed: unreachable)

Example 4.2 Consider the above example. Function f takes an integer x as

input and returns an integer r as output. The input and output domains are

listed in Table 4.2. Figure 4.3 shows the bound inference for ENTRY.D(x) =

51

[1 . . . 1]. Only block A is reachable as block B and others become unreachable

due to empty intersection between input bounds and constraints B.d(x) :=

[1 . . . 1] ∩ [10 . . .∞] := ∅.

This example shows that our context-sensitive bound inference procedure can

produce the output bounds corresponding to the domain of input parame-

ters. In our example, when encountering a function call, our bound analyser

passes the domain of input parameter ENTRY .d(x) := [1 . . . 1] to the called

function f and then performs the bound inference in each block of function

f . After inferring and converging all the bounds to fix-points, our analyser

then checks the reachability of each block in function f and takes the union of

bounds at all reachable blocks to yield the output domain of function return

EXIT .d(r) := [1 . . . 1].

Our analyser evaluates each individual function call with respect to input

parameter and stores the return bounds separately, as shown in Table 4.2.

Once all the function calls have been analysed, our analyser combines all the

inferred bounds into one domain set. That mean, each domain in the resulting

set is the union of bounds of these three calls and large enough to store all the

values during calls. As such, using these resulting domains can choose a safe

and fixed-width integer types for their associated variables so that arithmetic

overflows does not occur in the generated code.

Consider our example again. The final return domain of function f is

the union of bounds of all three function calls, i.e. EXIT.d(r) := [1 . . . 1] ∪

[0 . . . 0] ∪ [2 . . . 2] := [0 . . . 2]. With this range, we can use a unsigned 16-bit

integers to store the value of return variable in function f .

For a while-loop, our bound inference, described as above, needs to go

through all loop iterations to repeatedly estimate the bounds of loop variables

and converge to stable domains. When the loop is too large to analyse, our

analysis takes too long time to be executed and does not always terminate.

Thus, we modify our bound inference procedure with the following widening

operator, which is used to accelerate inference time and proven to terminate.

52

4.1.4 Widening Operator

Abstract interpretation-based widening operator (Cortesi and Zanioli, 2011) is

an over-approximation technique to speed up time to the fixed point without

executing all loop iterations. In this project, the widening operator can be

operated in naive or gradual mode. The former follows Cousot’s original design

to jump straight into ±∞ whilst the latter widens bounds against a list of

thresholds.

Procedure 4.4 Bound Inference using Naive Widening Operator
Input: Block blk
Output: Return the widen bounds blk .dwiden in block blk
1: Variables
2: blk .din(var) is domain d(var) before a loop iteration of bound inference;
3: blk .d(var) is domain d(var) after the loop iteration of bound inference;
4: ub c(var) is the counter of upper bound for domain d(var);
5: lb c(var) is the counter of lower bound for domain d(var).
6: end Variables

// Check bound changes and widen the bounds with threshold
7: procedure Naive Widen Bound(blk)
8: for each var in blk do
9: // Widen upper bound every subsequent three iterations

10: if upper(blk .d(var)) > upper(blk .din(var)) then
11: // The upper bound increases in this iteration
12: ub c(var) + +
13: if ub c(var) == 3 then
14: // Widen the upper bound of d(var) in block blk to ∞
15: blk .d(var).upper := +∞
16: ub c(var) := 0// Reset upper bound’s counter
17: end if
18: else
19: ub c(var) := 0// Reset upper bound’s counter
20: end if
21: // Widen lower bound every subsequent three iterations
22: if lower((blk .d(var)) < lower(blk .din(var)) then
23: // The lower bound decreases in this iteration
24: lb c(var) + +
25: if lb c(var) == 3 then
26: // Widen lower bound of d(var) in block blk to -∞
27: blk .d(var).lower := −∞
28: lb c(var) := 0// Reset lower bound’s counter
29: end if
30: else
31: lb c(var) := 0// Reset lower bound’s counter
32: end if
33: end for
34: return blk .d// Return the widen domain set
35: end procedure

53

Definition 4.2 Naive Widening Operator ∇

∅∇x = x

x∇∅ = x

[ln, un]∇ [ln+1, un+1] = [l′, u′] , where

l′ =





−∞, IF ln+1 < ln

ln, otherwise

and u′ =





∞, IF un+1 > un

un, otherwise

The naive widening operator∇ can be used to extrapolate the unstable bounds

of an interval to ± infinity. The naive widening operator ∇ observes the

increase of upper bound at each iteration and then decides whether to blow

out the upper bound to +∞. In the same manner, the operator converges

decreasing lower bounds to −∞. Within finite steps, the widening operator

can stabilise the bounds and accelerate the time of bound inference.

Algorithm 4.4 shows that, in each loop iteration the naive widening oper-

ator checks the bound changes of each variable and keeps track of its number

of changes, to determines whether the upper or lower bound widens to ±∞.

If so, we have ultimately stationary bounds to enforce termination of the loop

and to stabilise the bounds within finite and fewer iterations. Therefore, the

convergence time of bound inference can be accelerated.

The naive widening operator throws away bound information generously

and thus may over-approximate the bounds (±∞), and reach the bound con-

vergence earlier than expected. To use widen operator more wisely, we intro-

duce three widen parameterisation:

• Block traversal order can be specified to infer the blocks in breath-first

or depth-first order.

• Feedback block set (Seidl et al., 2012) is used to restrict the widening

operation is only applied on loop header blocks, rather than on every

block, so that we can reduce the number of bound checking on widen

operator and improve the efficiency.

54

• Strict widening rule is applied to limit the widen operator is used every

subsequent three iterations. We observe the bound change and count the

number of iterations and reset the counter if any bound stays unchanged

or does not increase or decrease continuously.

Table 4.3: Threshold values of fixed-width integer type

Threshold Description Value

INT64max max(signed int64 t) 263 − 1

INT32max max(singed int32 t) 231 − 1

INT16max max(singed int16 t) 215 − 1

INT16min min(singed int16 t) −215

INT32min min(singed int32 t) −231

INT64min min(singed int64 t) −263

Widening with thresholds (Blanchet et al., 2003) can improve the precision

of interval analysis and proves the boundedness of variables by using a series

of thresholds defined in C99 stdint.h header file (see Table 4.3).

Definition 4.3 Threshold Set

A maximal threshold set THmax is a set which contains all maximal values of

integer types in ascending order, i.e.

THmax = {INT16max, INT32max, INT64max, +∞}

A minimal threshold set THmin is a set which contains all minimal values of

integer types in ascending order, i.e.

THmin = {INT16min, INT32min, INT64min, −∞}

The gradual widening operator∇ goes through each threshold to find a suitable

interval which can stabilise the bounds to reach the fixed point.

55

Definition 4.4 Gradual Widening Operator ∇

∅∇x = x

x∇∅ = x

[ln, un]∇ [ln+1, un+1] = [lth, uth], where

lth =





max{thmin ∈ THmin • (thmin < ln+1)}, if ln+1 < ln

ln, otherwise

uth =





min{thmax ∈ THmax • (thmax > un+1)}, if un+1 > un

un, otherwise

The gradual widening operator broadens an increasing upper bound to the

minimum of maximal thresholds until the bound stays unchanged. In the

same manner, the operator widens decreasing lower bound to the maximum

of minimal thresholds. The resulting bounds can provide the code generator

to choose a proper fixed-sized data type for integer variable such that the

inferred bound falls within the range, e.g. the bound between INT16 MAX and

INT16 MIN can be stored with an int16 t integer.

1 function f(int limit)-> int
2 requires limit < 1000000:
3 int i = 0
4 int sum = 0
5 while i < limit:
6 sum = sum + i
7 i = i + 1
8 return sum

Listing 4.3: While-loop Whiley Program

Example 4.3 Consider the above while-loop Whiley Program to compute the

total of integer values from 0 to the loop bound which is the passed parameter

of function f .

56

ENTRY
limit := 43
i, sum := 0

A [Loop Header]

1st A.d(i) := [0 . . . 0]
2nd A.d(i) := [0 . . . 1]
3rd A.d(i) := [0 . . . 2]
4th A.d(i) := [0 . . .∞]
5th A.d(i) := [0 . . . 43]

B [Loop Body]

i < limit
sum := sum+ i

i := i+ 1

C [Loop Exit]

i >= limit

D [Return]

sum

EXIT
EXIT.d(i) := [0 . . . 43]

EXIT.d(sum) := [0 . . .∞]

ENTRY.d(i) := [0 . . . 0]
ENTRY.d(sum) := [0 . . . 0]

1

A.d(i) := [0 . . . 43]
A.d(sum) := [0 . . .∞]

2

3
A.d(i) := [0 . . . 43]

A.d(sum) := [0 . . .∞]

B.d(i) := [1 . . . 43]
B.d(sum) := [0 . . .∞]

1

4
C.d(i) := [43 . . . 43]

C.d(sum) := [0 . . .∞]

Figure 4.4: Control flow graph of While-loop program using naive widen

operator in breath-first order

This example uses an incremental while-loop to calculate the summation

of a given limit (43). As shown in Figure 4.4, the program is broken down

into several blocks and a loop structure (A: loop header, B : loop body and

C : loop exit). All the directed edges show the relations among blocks and the

circled number indicates the sequence block order on bound inference.

The analyser iterates each block in the breath-first order and infers the

bound in each individual block. And the widening operator is applied only on

loop header to improve its efficiency and accelerate the bound convergence.

57

Table 4.4: Bound results using naive widening operator in breath-first order

(limit :=43, l : lower bound, u: upper bound)

Iteration
Block Entry A B C G Exit

VARS l u l u l u l u l u l u

0 i 0 0 0 0 1 1 ∅ ∅

sum 0 0 0 0 0 0 0 0

1 i 0 1 1 2 ∅ ∅

sum 0 0 0 1 0 0

2 i 0 2 1 3 ∅ ∅

sum 0 1 0 3 0 1

3 i 0 ∞ 1 43 43 ∞ 43 ∞

sum 0 3 0 45 0 3 0 3

4 i 0 43 1 43 43 43 43 43 0 43

sum 0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞

Table 4.5: Bound results using naive widening operator in depth-first order

(limit:=43, l: lower bound, u: upper bound)

Iter.
Block Entry A C G B Exit

VARS l u l u l u l u l u l u

0 i 0 0 0 0 ∅ ∅ 1 1

sum 0 0 0 0 0 0 0 0

1 i 0 1 ∅ ∅ 1 2

sum 0 0 0 0 0 1

2 i 0 2 ∅ ∅ 1 3

sum 0 1 0 1 0 1

3 i 0 ∞ 43 ∞ 43 ∞ 1 43

sum 0 3 0 3 0 3 0 45

4 i 0 43 43 43 43 43 1 43 0 43

sum 0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞

Table 4.4 and 4.5 are the steps of bound inference coupling with the naive

widening operator in breath-first and depth-first block order respectively. Re-

58

sults show that the widen operator can reduce 43 fixed-point iterations down

to 5.

ENTRY
limit := 43
i, sum := 0

A: Loop Header

1st A.d(i) := [0 . . . 0] A.d(sum) := [0 . . . 0]
2nd A.d(i) := [0 . . . 1] A.d(sum) := [0 . . . 0]
3rd A.d(i) := [0 . . . 2] A.d(sum) := [0 . . . 1]
4th A.d(i) := [0 . . . 215 − 1] A.d(sum) := [0 . . . 3]
5th A.d(i) := [0 . . . 43] A.d(sum) := [0 . . . 215 − 1]
6 . . . 8th A.d(i) := [0 . . . 43] A.d(sum) := [0 . . . 231 − 1]
9 . . . 12th A.d(i) := [0 . . . 43] A.d(sum) := [0 . . . 263 − 1]
13 . . . 15th A.d(i) := [0 . . . 43] A.d(sum) := [0 . . .∞]

B: Loop Body

i < limit
sum := sum+ i

i := i+ 1

C: Loop Exit

i >= limit

D: Return

sum

EXIT
EXIT.d(i) := [0 . . . 43]

EXIT.d(sum) := [0 . . .∞]

ENTRY.d(i) := [0 . . . 0]
ENTRY.d(sum) := [0 . . . 0]

1

A.d(i) := [0 . . . 43]
A.d(sum) := [0 . . .∞]

2

3
A.d(i) := [0 . . . 43]

A.d(sum) := [0 . . .∞]

B.d(i) := [1 . . . 43]
B.d(sum) := [0 . . .∞]

1

C.d(i) := [43 . . . 43]
C.d(sum) := [0 . . .∞]

4

Figure 4.5: Control flow graph of While-loop program using gradual widen

operator in breath-first traversal

Table 4.5 applies the gradual widen operator on variable i and jump to

the range of 16 bit integer 215 − 1 and converges to limit on loop body and

then reach fixed-point (see 4th and 5th iterations). However, due to the lack

of constraints on variable sum, the widen operator needs to be re-applied and

increases the upper bound from 16, 32, 64-bit integer up to positive ∞ to

terminate the bound inference.

Even though the resulting bounds in this example do not make any differ-

ence, the gradual widen operator (Blanchet et al., 2003) can give more precise

results on more complex loop update, such as x = x/2 + 100.

59

Example 4.4 Function find uses a while-loop with break statement as follows.

1 function find(int limit, int item) -> int:
2 int r=0
3 while r<limit where 0<=r:
4 if r == item:
5 break
6 r=r+1
7 return r

Listing 4.4: While-loop with break source Whiley program

ENTRY
limit := 43
item := 10

r := 0

A [Loop Header]

1st A.d(r) := [0 . . . 0]
2nd A.d(r) := [0 . . . 1]
3rd A.d(r) := [0 . . . 2]
4th A.d(r) := [0 . . .∞]
5th A.d(r) := [0 . . . 43]

B [Loop Body]

r < limit
C [Loop Exit]

r >= limit

F [Return]

r

EXIT

EXIT.d(r) := [0 . . . 43]

D [IF]

r == item
E [ELSE]

r = r + 1

ENTRY.d(r) := [0 . . . 0] 0

A.d(r) := [0 . . . 43] 1

2 A.d(r) := [0 . . . 43]

3 B.d(r) := [0 . . . 42]

2 D.d(r) := [10 . . . 10]

4 B.d(r) := [0 . . . 42]

0 E.d(r) := [1 . . . 43]

5 C.d(r) := [43 . . . 43]

Figure 4.6: Control flow graph of While-loop with break program using

naive widening Operator in breath-first traversal

The bound inference in breath-first order is as follows:

• Variable r at block A is widened to∞ after three visits and then reaches

the fixed-point [0 . . . 43].

• Variable r is narrowed down to [10 . . . 10] because of equality constraint

at D block. Finally, we take union of bounds from block A and D and

produce a larger domain [10 . . . 10]
⋃

[0 . . . 43] = [0 . . . 43] at block C .

60

ENTRY
limit := 43
item := 10

r := 0

A [Loop Header]

1st A.d(r) := [0 . . . 0]
2nd A.d(r) := [0 . . . 1]
3rd A.d(r) := [0 . . . 2]
4th A.d(r) := [0 . . .∞]
5th A.d(r) := [0 . . . 43]

B [Loop Body]

r < limit
C [Loop Exit]

r >= limit

F [Return]

r

EXIT

EXIT.d(r) := [0 . . . 43]

D [IF]

r == item
E [ELSE]

r = r + 1

ENTRY.d(r) := [0 . . . 0] 0

A.d(r) := [0 . . . 43] 3

1 A.d(r) := [0 . . . 43]

5 B.d(r) := [0 . . . 42]

1 D.d(r) := [10 . . . 10]

4 B.d(r) := [0 . . . 42]

E.d(i) := [1 . . . 43] 0

2 C.d(r) := [43 . . . 43]

Figure 4.7: Control flow graph of While-loop with break program using

naive widening operator in depth-first traversal

The depth-first Bound inference produce the same bounds as breath-first.

1 function f(int limit) -> int:
2 int i =0
3 int sum=0
4 while i < limit:
5 int j = 0
6 while j < limit:
7 sum = sum + i*j
8 j = j + 1
9 i = i + 1

10 return sum

Listing 4.5: Nested While-loop Source Whiley Program

Example 4.5 Consider a nested while-loop Whiley Program. The outer and

inner loop variables are variable i and j respectively. Both of loop bounds are

the same (limit).

61

ENTRY
limit := 43
i, sum := 0

A [Loop Header]

1st A.d(i) := [0 . . . 0] 6th A.d(i) := [0 . . . 3]
2nd A.d(i) := [0 . . . 1] 7th A.d(i) := [0 . . . 4]
3rd A.d(i) := [0 . . . 2] 8th A.d(i) := [0 . . . 5]
4th A.d(i) := [0 . . . 2] 9th A.d(i) := [0 . . .∞]
5th A.d(i) := [0 . . . 2] 10th A.d(i) := [0 . . . 43]

B [Loop Body]

i < limit
j := 0

D [Loop Header]

1st D.d(j) := [0 . . . 0]
2nd D.d(j) := [0 . . . 1]
3rd D.d(j) := [0 . . . 2]
4th D.d(j) := [0 . . .∞]
5th D.d(j) := [0 . . . 43]

E [Loop Body]

j < limit
sum := sum+ i ∗ j

j := j + 1

F [Loop Exit]

j ≥ limit
i := i+ 1

C [Loop Exit]

i >= limit

G [Return]

sum

EXIT
EXIT.d(i) := [0 . . . 43]
EXIT.d(j) := [0 . . . 43]

1 ENTRY.d(i) := [0 . . . 0]

2 A.d(i) := [0 . . . 43]

3 A.d(i) := [0 . . . 43]

4
B.d(i) := [0 . . . 42]
B.d(j) := [0 . . . 0]

6
D.d(i) := [0 . . . 42]
D.d(j) := [0 . . . 43]

5
E.d(i) := [0 . . . 42]
E.d(j) := [1 . . . 43]

D.d(i) := [0 . . . 42]
D.d(j) := [0 . . . 43]

7

F.d(i) := [1 . . . 43] 8

9 C.d(i) := [43 . . . 43]

Figure 4.8: Control flow graph of While-loop nest program using naive

widening operator in breath-first traversal

Breath-First Bound inference The bound inference in breath-first order

explores all the sibling blocks first and then move on to the next level, so the

block orders are:

A,B,C,D,E, F,G

The figure shows that

• Variable j increases its upper bound with three visits in D block, and by

applying widen operator, converges the domain to fix interval [0 . . . 43].

• Variable sum also increases consecutively inside the inner loop header

during 6 to 8 visits at D block, so blow out the bound to ∞.

• Variable i stays at [0 . . . 2] for the first few visits. But once variable j

and sum reach a fixed-point, variable i start changing its value, widen

the bound and reach the fixed point [0 . . . 43].

62

ENTRY
limit := 43
i, sum := 0

A [Loop Header]

1st A.d(i) := [0 . . . 0]
2nd A.d(i) := [0 . . . 1]
3rd A.d(i) := [0 . . . 2]
4th A.d(i) := [0 . . .∞]
5th A.d(i) := [0 . . . 43]

B [Loop Body]

i < limit
j := 0

D [Loop Header]

1st D.d(j) := [0 . . . 0] 10th D.d(j) := [0 . . . 7]
2nd D.d(j) := [0 . . . 1] 11th D.d(j) := [0 . . . 8]
3rd D.d(j) := [0 . . . 2] 12th D.d(j) := [0 . . .∞]
4th D.d(j) := [0 . . .∞] 13th D.d(j) := [0 . . . 9]
5th D.d(j) := [0 . . . 3] 14th D.d(j) := [0 . . . 10]
6th D.d(j) := [0 . . . 4] 15th D.d(j) := [0 . . . 11]
7th D.d(j) := [0 . . . 5] 16th D.d(j) := [0 . . .∞]
8th D.d(j) := [0 . . .∞] 17th D.d(j) := [0 . . . 43]
9th D.d(j) := [0 . . . 6]

E [Loop Body]

j < limit
sum := sum+ i ∗ j

j := j + 1

F [Loop Exit]

j ≥ limit
i := i+ 1

C [Loop Exit]

i >= limit

G [Return]

sum

EXIT
EXIT.d(i) := [0 . . . 43]
EXIT.d(j) := [0 . . . 43]

1 ENTRY.d(i) := [0 . . . 0]

4 A.d(i) := [0 . . . 43]

2 A.d(i) := [0 . . . 43]

5
B.d(i) := [0 . . . 42]
B.d(j) := [0 . . . 0]

8
D.d(i) := [0 . . . 42]
D.d(j) := [0 . . . 43]

9
E.d(i) := [0 . . . 42]
E.d(j) := [1 . . . 43]

D.d(i) := [0 . . . 42]
D.d(j) := [0 . . . 43]

6

F.d(i) := [1 . . . 43] 7

3 C.d(i) := [43 . . . 43]

Figure 4.9: Control flow graph of While-loop nest program using naive widen

operator in depth-first traversal

Depth-First Bound inference The depth-first search traverses blocks at

the deepest level and then back-traces the sibling block, so the orders are as

below:

A,C,G,B,D, F,E

The analyser goes through the inner loop (D, F, E blocks) and blows out

the upper bound of variable j to ∞ until F block becomes reachable. So the

analyser can go back block A and infer the bound in outer loop. The figure

shows that:

• variable i is blown out to ∞ once and then yields bounded domain

[0 . . . 43] during the first 5 visits in block A.

• Every visit in block A recurs the bound inference on the inner loop.

That means it will go through blocks D , F and E until domain j is large

enough to make F block reachable so it will proceed to outer loop.

63

Variable j is widened to ∞ every three visits in D block, but due to the

memorised domain from previous visit in E block, variable j is then reset

to the fixed interval. For example, domain j is reset to [0 . . . 3] at 5th

visit in block D .

In round-robin iterations, domain j is repeatedly widened to ∞ whereas

variable sum stays at unbounded domain [0 . . .∞] after applying widen

operator.

• At the last visit at block D , variable j propagates the bound from blocks

E and B , and produce the fixed interval [0 . . . 43]. As domain i , j and

sum all reach the fixed-point and do not change the bound in any block,

the bound inference procedure terminates.

4.2 Pattern Matching and Transform

In this section we show how our analyser finds the pattern of a function and, if

matched, performs pattern transformation to improve the efficiency of resulting

code.

4.2.1 Pattern

Our analyser has been built in with several patterns, including while-loop,

while-loop increment, while-loop decrement and append array patterns.

Definition 4.5 (Symbol Set) Let VARS be a set of symbols (variables and

values).

Definition 4.6 (While-Loop Pattern) Function func is said to satisfy a while-

loop pattern if func contains a while-loop structure, where the loop variable V

initialises to INIT value, and the loop condition has a loop comparator OP

and loop bound B.

64

The form of while-loop pattern is:

〈V 〉 = 〈INIT 〉; // Initialise loop variable V

while 〈V 〉 〈OP〉 〈B〉: // Loop condition

〈BODY not assigning to/updating V and not changing B〉
〈Update V〉

where variable V keeps track of the loop counter; expression INIT denotes

the initial value of loop variable V ; OP is the comparing operator of loop

condition; expression B denotes the loop bound; BODY represents a sequence

of code inside loop body and does not update loop variable V nor loop bound

B. Note expression INIT and B do not contain or update loop variable V .

A while-loop can be categorised as either an incremental or decremental while-

loop pattern by the value of loop update. With the information of loop update

and loop bound, we can estimate the number of loop iterations loop iters(V)

described as follows.

Definition 4.7 (Incremental While-loop Pattern) Function func is said to

satisfy a while-loop increment loop if func is matched with while-loop pattern

and the loop variable V is incremented by one in each iteration. The form of

incremental while-loop pattern is:

〈V 〉 = 〈INIT 〉 // Initialise loop variable

while 〈V 〉 〈OP〉 〈B〉:// Loop condition

〈BODY not updating V or B〉
〈V 〉 = 〈V 〉+ 1 // Loop variable must be increased by one

where OP can only be < or ≤; expression B and INIT are taken before entering

the loop. The number of loop iterations loop iters(V) is

loop iters(V) =





B − INIT, OP is <

B − INIT + 1, OP is ≤

Definition 4.8 (Decremental While-loop Pattern) Function func is said to

satisfy a while-loop decremental loop if func is matched with while-loop pattern

65

and the loop variable is decremented by one in each iteration. The form of

decremental while-loop pattern is:

〈V 〉 = 〈INIT 〉 // Initialise loop variable

while 〈V 〉 〈OP〉 〈B〉:// Loop condition

〈BODY not updating V or B〉
〈V 〉 = 〈V 〉 − 1 // Loop variable must be decreased by one

where OP can only be > or ≥; expression B and INIT are taken before entering

the loop. The number of loop iterations loop iters(V) is

loop iters(V) =





INIT −B, OP is >

INIT −B + 1, OP is ≥

In some cases, the while-loop can be used to build up and extend an ar-

ray dynamically to accommodate new array items by using function append .

Function append is a standard system library function and makes a copy of

input array, puts a new item into its last and returns the new array, as shown

in the following Whiley program.

1 // Copy array ’items’ to ’nitems’ and append ’item’ to ’nitems’
2 function append(byte[] items, byte item) -> (byte[] nitems)
3 ensures |nitems| == |items| + 1:
4 nitems = [0b; |items|+1]//Create an array filled in 0 (length: |items|+1)
5 int i = 0
6 while i < |items|:
7 nitems[i] = items[i]
8 i = i + 1
9 nitems[i] = item

10 // Return the new array
11 return nitems

Listing 4.6: Function append Whiley program

The above loop appends a fixed number of items (1 or more items) to the array

every iteration. In this case, there is a linear relation between the number of

array elements and the loop iterations. As such, we can express the length of

such an array in terms of the number of loop iterations executed.

We propose append array pattern to identify such an array manipulation

which calls function append to add one item to the array within a while-loop,

and to give an estimate of the array size before the loop executed, so that we

can allocate the necessary memory space for the target array.

66

Definition 4.9 (Append Array Pattern) Function func is said to satisfy an

append array pattern if func matches with incremental or decremental while-

loop pattern, as well as an output array variable ARR. Also, function append

is called to add one item to array ARR per loop iteration.

The form of append array pattern with incremental while-loop is:

〈ARR〉 = [〈X 〉; 0] // Initialize ARR with an empty array

〈V 〉 = 〈INIT 〉
while 〈V 〉 〈OP〉 〈B〉:

〈S0 not updating V, B or ARR〉
〈V 〉 = 〈V 〉+ 1 // Increment loop variable by one

〈S1 not updating V, B or ARR〉
〈ARR〉 = append(〈ARR〉, 〈item1 〉) // Append item1 to array ARR

...

〈Sn not updating V, B or ARR〉
〈ARR〉 = append(〈ARR〉, 〈itemn〉)// Append itemn to array ARR

〈Sn+1 not updating V, B or ARR〉

Or the form of append array pattern with decremental while-loop is

〈ARR〉 = [〈X 〉; 0] // Initialize ARR with an empty array

〈V 〉 = 〈INIT 〉
while 〈V 〉 〈OP〉 〈B〉:

〈S0 not updating V, B or ARR〉
〈V 〉 = 〈V 〉 − 1

〈S1 not updating V, B or ARR〉
〈ARR〉 = append(〈ARR〉, 〈item1 〉)// Append item1 to array ARR

...

〈Sn not updating V, B or ARR〉
〈ARR〉 = append(〈ARR〉, 〈itemn〉)// Append itemn to array ARR

〈Sn+1 not updating V, B or ARR〉

ARR denotes the loop variable. S0 , S1 , . . . Sn+1 each represents some state-

ments that do not contain or update loop variable V or array variable ARR.

item1 , . . . itemn denotes an array item that is appended to the last.

In each loop iteration function append is being called n times to append

67

n items to array ARR. Thus, array ARR grows linearly with the number of

function append calls and the number of loop iterations. And we can estimate

the size of array ARR, denoted by arr capacity(ARR):

arr size(ARR) = loop iters(V)× n

where n is the number of function append executed in a loop iteration and

loop iters(V) represents the number of loop iterations.

With above definition, we can use append array pattern to pre-allocate the

array with an estimate of array size before the execution, so that we can avoid

slow array appending but use efficient array update to improve the program

efficiency.

Definition 4.10 (Null Pattern) Function func is said to be a null pattern if

func is not matched with any while-loop pattern.

The pattern matching procedure is straight-forward and described as follows.

Given a function, the pattern matcher attempts to iterate each of our patterns

and construct the pattern with the code of function. If the pattern can be

built up successfully, then the function is matched with the pattern.

As our patterns is inherited from while-loop, we can conduct the procedure

hierarchically. That is, we start with the while-loop pattern first and check the

function matches it. If so, then we can move on to incremental or decremental

while-loop, and even array append until we find the pattern at the deepest

level. If no pattern is found, then NULL pattern is returned.

4.2.2 Pattern Transformation

Our analyser matches the function with append array pattern, and then can

perform the code transformation on that function to make use of preallocated

array pattern and improve the efficiency of program execution.

Definition 4.11 (From Append Array Pattern to Preallocate Array Pattern)

Append array pattern adds n items to the array by using function append in

68

each loop iteration, but introduce expensive overheads of array copying. But

the append array pattern can be transformed into preallocate array pattern with

estimated array size:

arr size(ARR) = loop iters(V) ∗ n =





(B − INIT)× n, OP is <

(B − INIT + 1)× n, OP is ≤

(see append array pattern 4.9 and incremental while-loop pattern 4.7).

Append array pattern

〈ARR〉 = [〈X 〉; 0]
〈V 〉 = 〈INIT 〉
while 〈V 〉 〈OP〉 〈B〉:
〈S0 not updating V, B or ARR〉
〈V 〉 = 〈V 〉+ 1

〈S1 not updating V, B or ARR〉
〈ARR〉 = append(〈ARR〉, 〈item1 〉)

...

〈Sn not updating V, B or ARR〉
〈ARR〉 = append(〈ARR〉, 〈itemn〉)

〈Sn+1 not updating V, B, ARR〉

=⇒ Preallocate array pattern

〈ARR〉 = [〈X 〉; arr size(ARR)]

〈V 〉 = 〈INIT 〉
while 〈V 〉 〈OP〉 〈B〉:
〈S0 not updating V, B or ARR〉
〈V 〉 = 〈V 〉+ 1

〈S1 not updating V, B or ARR〉
〈ARR[size]〉 = 〈item1 〉
size = size + 1

...

〈Sn not updating V, B or ARR〉
〈ARR[size]〉 = 〈itemn〉
size = size + 1

〈Sn+1 not updating V, B, ARR〉

Array variable is ARR and loop variable is V ; expression X represents the

initial value of array item; expression arr size(ARR) denotes the estimated

size of array ARR; expression INIT is the initial value of loop variable V ;

OP stands for the comparing operator of loop condition; B is the loop bound;

S1 ...n+1 each represents a sequence of code which does not assign to/update

loop variable V , loop bound B or array variable ARR; item1 ...n+1 each is the

array item; variable size keeps track of the size of array ARR.

Preallocate array pattern uses the estimate of array size to allocate all the nec-

essary space in memory for array VAR before loop executed, so that expensive

array copying can be replaced with fast and constant-time array update. The

69

performance of resulting code therefore can be improved. We will illustrate

the pattern transformation with the below example.

1 // Append an array one by one at each iteration
2 function f(byte[] input) -> (byte[] output):
3 int pos = 0
4 output = [0b;0] // Empty output array
5 while pos < |input|:// Iterate each byte in ’input’ array
6 byte index = Int.toUnsignedByte(pos)
7 byte item = input[pos]
8 pos = pos + 1
9 // Append index and item to ’output’ array

10 output = append(output, index)
11 output = append(output, item)
12 return output

Listing 4.7: Append array Whiley program

Example 4.6 Consider the above example in Listing 4.7. Suppose variable

input is a byte array. Function f takes it as input and produces an array

output. The function starts with an empty array and uses function append to

copy the output array and add a new item onto the end of array.

The pattern transformation has two main steps: estimating array size and

transforming the code.

Array Size Estimation We firstly find the pattern of function f and then

obtain the array size information to perform pattern transformation. Since

function f is matched with incremental while-loop, we can know the number

of loop iterations is the length of array input (see Definition4.7):

loop iters(pos) = |input| − 0 = |input|

Function f is further matched with append array pattern. As the loop

makes two append function calls every iteration, we can estimate the size of

array output (see append array pattern 4.9):

arr size(output) = loop iters(pos)× 2 = |input| × 2

With above information, we can allocate array output with double the size

of array input before the loop. Then inside the loop, we gradually update

array output with items and count its array size. Finally, outside the loop we

then have array output filled up with all the items.

70

Code Transformation According to pattern transformation in Definition 4.11,

we can change function f to the following program:

1 // Function ’f’ uses resize array pattern
2 function f(byte[] input) -> (byte[] output):
3 int pos = 0
4 // Pre−allocate output array with 2x input array size
5 output = [0b;2*|input|]
6 int size = 0// Actual array size
7 while pos < |input|: // Iterate each byte in ’input’ array
8 byte index = Int.toUnsignedByte(pos)
9 byte item = input[pos]

10 output[size] = index// Fill in the array with in−place update
11 size = size + 1
12 output[size] = item
13 size = size + 1
14 pos = pos + 1
15 output = resize(output, size)// Resize output array to actual size
16 return output

Listing 4.8: Tranformed Function f using Resize Array Pattern

Listing 4.8 shows that array output is pre-allocated with the size large

enough to hold all its items, so that any out-of-bound array error can be

avoided during loop iterations executed. And we use fast array update, instead

of slow array append, to populate array output . And at the end of function,

we reduce array output to precise-sized one to save the memory space.

Time Complexity One may be interested in the efficiency improvement

obtained from our pattern transformation. Assume the array size is n. The

complexity of performing append array pattern is calculated as below.

• Function append has a linear-time complexity O(n).

• Function append is repeatedly invoked within a loop, so the total number

of function calls is the same as loop iterations or n.

So in the worse case the array append pattern is quadratic-timed complexity

O(n ∗ n) = O(n2). However, the preallocate array pattern utilises in-place

array update and thus has linear-time complexity O(n). Therefore, we can

conclude preallocate array pattern is more efficient than append array.

Chapter 5

Copy Elimination Analysis

Our project (Weng et al., 2017) develops several function analyses, copy elim-

ination analysis and de-allocation analysis to extract the properties of each

WyIL code, and then assist our code generator to apply code optimisation

and produce efficient code.

5.1 Function Analyses

The function analysers all employ a conservative strategy to extract variable

information from functions, and store that information in order to support

the copy and de-allocation analysers to make safe code optimisation, while

improving the efficiency.

Each function analyser traverses all the functions and processes specific

information. Our project includes three function analysers:

• The read-write analyser checks if a variable is or may be read and written

inside a function

• The return analyser checks if a variable is or may be returned by a

function.

• The live analyser checks if a variable is alive or used after the code of a

function.

72

5.1.1 Read-Write Analyser

Procedure 5.1 Read-Write Analysis
Input: WyIL file, compiled by Whiley compiler
Output: MUT maps each function to a mutable set

// Collect mutable sets in all functions
1: procedure Mutable Analysis(WyIL)
2: MUT = ∅
3: for each func function in WyIL do
4: MUT (func) = ∅
5: for each code in func do
6: lhs ← Extract LHS variable at code
7: if lhs != NULL then
8: MUT (f) = MUT (f) ∪ lhs
9: end if

10: end for
11: end for
12: end procedure

The left-hand side (LHS) variable is used to store the computation result of

a code, so is considered to be a mutable or read-write variable and added to

the set (see Procedure 5.1). The variable at right-hand side (RHS) is usually

not mutable, because it is copied before update. As we shall see later, if our

copy-elimination causes it to become aliased with the mutable variable then it

can also appear in the result set of the read-write analyser.

Procedure 5.2 Mutable Check
Input: Variable var in function func
Output: Return true if var is mutated inside func function
1: procedure isMutated(var , func)
2: return var ∈MUT (func)
3: end procedure

Our read-write analysis conservatively keeps all ‘definite’ and ‘may-be’ mu-

table variables. The check (see Procedure 5.2) weakly identifies a mutable

variable, but can strongly detect immutable or read-only ones. This informa-

tion about read-only variables is used by the copy analyser to decide whether

copying is necessary or not.

73

5.1.2 Return Analysis

Procedure 5.3 Return Analysis
Input: WyIL file, compiled by Whiley compiler
Output: RET maps each function to a return set

// Collect return sets for all functions
1: procedure Return Analysis(WyIL)
2: RET = ∅
3: for each func function in WyIL do
4: RET (f) = ∅
5: for each code in func do
6: if code is Return then
7: ret ← Extract return variable from code
8: if ret is NOT NULL then
9: RET (f) = RET (f) ∪ ret

10: end if
11: end if
12: end for
13: end for
14: end procedure

The return analyser (see Procedure 5.3) includes all definite and possible return

variables, even those within if-else. The return variable information allows the

update from copy analyser to add ‘may-be’ or aliased return variable after

copy removal.

Procedure 5.4 Return Check
Input: Variable var at function func
Output: Return true if var is returned by function func

// Check var is returned by function func
1: procedure isReturned(var , func)
2: return var ∈ RET (func)
3: end procedure

Due to the expansion of return set, the return check (see Algorithm 5.4)

can be used to effectively detect those non-returnable variables that are never

returned by the function, which can allow that memory to be de-allocated

within the function. As opposed to strong definitely-returned results, this

check may mistakenly report a variable as returnable, when it is not actually

returned, and skip the memory de-allocation. Despite the potential memory

leak problem, the conservative false alarm can reduce the chances of invalid

freeing while maintaining memory safety.

74

5.1.3 Live Variable Analysis

Procedure 5.5 Liveness Check
Input: Variable var at code in Function func
Output: true: var is live after code in func
1: procedure is Live(var , code, func)
2: if code is a Function Call AND var is used more than once at code then
3: return true
4: end if
5: blk ← Locate the block of code in function func
6: return (var ∈ LIV E V ARS(blk))
7: end procedure

Live variable analysis (see Algorithm 4.1 in Section 4.1.2) is used to determine

whether a variable is still live or used after a specific code (see Procedure 5.5).

Apart from live variable sets, we introduce an extra rule to determine the

liveness of a function call parameter when it is used more than once at a call.

Consider the function call func(a, a). Variable a is used twice at func call, so

the first parameter a should be considered a live variable at the call because

it is passed to the function as second formal parameter.

5.2 Copy Elimination Analysis

The copy elimination analysis (Weng et al., 2017) aims to reduce the number

of array copies in generated code whilst avoiding sides effects. Rather than

the abstraction-based method (Schnorf et al., 1993) that gives promising re-

sults but has difficult limits on implementations, we develop a straightforward

analysis tool, similar to alias annotation analysis in Java (Aldrich et al., 2002),

to work at intermediate level of Whiley code and to detect where and what

copies are unneeded using our live variable analysis, which is based on the live

variable analysis in Whiley compiler with variation.

75

Table 5.1: Copy elimination rule

Function Call a := f (b)

f Mutates b? F F T(’maybe’) T(’maybe’)

f Returns b? F T(’maybe’) T(’maybe’) F

b is live?
F No Copy No Copy No Copy No Copy

T No Copy Copy Copy Copy

No Copy : avoid the copy and pass b to called function f

Procedure 5.6 Copy Elimination Check
Input: Variable var at code of function func
Output: Return true if copy of var can be removed at code of function func
1: Variables

LiveAnalyser : live variable analyser, ReadWriteAnalysis: Read-Write anal-
yser, ReturnAnalysis: Return analyser

2: end Variables
3: procedure is CopyEliminated(var , code, func)
4: if var is array type then
5: isLive ←liveAnalyser .isLive(var , code, func)
6: if ¬isLive then// var is NOT live at code at caller
7: return true // Copy can be removed
8: end if
9: if code is a function call then// Special check for passing parameter

10: fParam ← map var to formal parameter at called function callee
11: isMutate ←ReadWriteAnalysis.IsMutated(fParam, callee)
12: isReturn ←ReturnAnalysis.IsReturned(fParam, callee)
13: if ¬isMutate AND ¬isReturn then
14: return true// Copy can be removed
15: end if
16: end if
17: end if
18: return false// Copy is needed in all other cases
19: end procedure

Table 5.1 shows the rules to remove a copy of function parameter. Whiley

uses copy semantics for every array, but for an assignment a = copy(b) or

function call a = func(copy(b)) the array copy is unnecessary when:

• b is dead (not used) afterwards, or

• b is passed as read-only parameter.

76

The copy analyser first initialises read-write, return and live variable anal-

ysers, and then store all mutable, return and liveness sets for each function.

Secondly, the copy analyser detects what copies can be eliminated using back-

ward live variable analysis along with a decision procedure (see Algorithm 5.6).

This removes copies of dead variables, which are not used afterwards, and read-

only and not returned function parameters. But the copies of structure typed

variables are conservatively kept avoiding memory aliases.

For each line of code in a function, our copy elimination analysis iterates

through every array variable on the right-handed side, and checks if the copy

can be removed and then passes the resulting flag to the code generator to

produce the corresponding C code.

If the copy of a variable is removed and aliased to an existing read-write

or return variable, then we will update such aliasing information to read-write

and return sets to ensure the copy analyser gets updated and copy-optimised

function analysis results.

5.3 Reverse Example

1 // Reverse an array
2 function reverse(int[] arr) -> int[]:
3 int i = |arr|
4 int[] r = [0; |arr|]
5 while i > 0 where i <= |arr| && |r| == |arr|:
6 int item = arr[|arr|-i]
7 i = i - 1
8 r[i] = item
9 return r

10 // Main entry point
11 method main(System.Console sys):
12 int[] input = [0;10] // Generated an array ’input’
13 int index = 0
14 while index < 10:
15 input[index] = 10 - index// Fill in the array (10, 9, 8, 7, ..., 2, 1)
16 index = index + 1
17 // Re−order the array
18 int[] tmp = reverse(copy(input))
19 // Check the first element of input array
20 assert input[0] == 10
21 int[] output = copy(tmp)
22 // Check the first element of output array
23 assert output[0] == 1
24 return

Listing 5.1: Reverse Whiley program

77

Example reverse program (See Listing 5.1) takes an array as input and

produces an array in its backward order. The main function has two copies

(at line 18 and 21) to ensure the mutability of input/output arrays whereas

reverse sub-function does not involve any copy. To decide the necessity of each

copy, we apply copy analysis at byte-code level of Whiley program to eliminate

unused copies.

Table 5.2: Live variable analysis result

Program Point out use def in = use ∪ (out− def)

L24: return ∅ ∅ ∅ ∅

L23: assert output[0] == 1 ∅ {output} ∅ {output}

L21: int[] output = copy(tmp) {output} {tmp} {output} {tmp}

L20: assert input[0] == 10 {tmp} {input} ∅ {input, tmp}

L18: int[] tmp = reverse(copy(input)) {input, tmp} {input} {tmp} {input}

L16: index = index + 1 {input} {index} {index} {input, index}

L15: input[index] = 10 - index {input, index} {index} ∅ {input, index}

L14: while index < 10 {input, index} {index} ∅ {input, index}

L13: int index = 0 {input, index} ∅ {index} {input}

L12: int[] input= [0;100] {input} ∅ {input} ∅

The copy elimination analysis first requires the backward liveness informa-

tion of main function. In the live variable analysis, we enable assertion flag

(-ea) to analyse assert code (see L20 and L23), and consider the updated array

variable (see L15) as live.

Table 5.2 shows the list of live variable sets and can be used to identify

whether variables are live at each program point. Note that the last return

code has an empty output set and the first array generator code has an empty

input set. Both are consistent to the scope of variable declaration at method

main. We then can base on live variable analysis results to safely remove the

copy of array tmp at L21 as tmp is not used afterwards.

However, to make the removal decision of another copy at L18, we need not

only liveness of array input at method main but also function analysis results

at function reverse as follows:

78

• Array input is read-only at function reverse.

• Array input is not returned by at function reverse.

• Array input is live at L19 at method main.

According to copy elimination rule (see Table5.1), the copy of Array input can

be safely removed.

 0

 1

 5

 10

 0 1x10
8

 2x10
8

 4x10
8

 6x10
8

 8x10
8

 1x10
9

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
)

Problem Size (N)

Naive Code
Copy Eliminated Code

Figure 5.1: Average execution time graph of naive and copy eliminated Reverse

program

The reverse example is translated into C code with/without copy analysis

and then bench-marked on Intel i7-4770 CPU (@3.4 GHz) machine with 16

GB memory. As shown in Figure 5.1, the copy eliminated code optimised by

our copy analysis remove unnecessary array copies and gain better speed-ups,

without causing side effects or violating program safety. Moreover, the copy

eliminated code uses less memory and increases program scalability to run for

long.

Chapter 6

Memory Deallocation Analysis

The arrays or compound structures are declared as pointers in generated C

code. As these data structures are dynamically allocated and explicitly de-

allocated on the heap memory, any incorrect memory error leads to critical

safety problems, e.g. memory leaks or double freeing.

Intuitively any previously allocated variable, which is no longer used but

still bound to a memory space, needs the memory de-allocation before function

exit. To determine whether the allocated variable can be safely released or not,

an extra run-time de-allocation flag is added to each variable and its boolean

value changes as the program iterates each code. At the function exit, the

program checks each flag and de-allocates the corresponding variable. Note

that the array size is another extra run-time flag, to explicitly indicate the

length of an array variable and propagate the array size to a function call.

The de-allocation analyser (Weng et al., 2017) takes WyIL code as input,

and adds the pre-deallocation and post-deallocation macros to change the flag

value at run-time. Pre-deallocation macro targets the left-handed variable at

each code to check its de-allocation flag and free the memory space. After

each code, the analyser adds post-deallocation macro to bases analysis results

of the code to change the flag, but still maintains the de-allocation invariant.

80

6.1 Deallocation Invariant

Theorem 6.1 Deallocation Invariant For every allocated structure, and

before every WyIL code, there is exactly one variable that points to that struc-

ture and has the deallocation flag across all function scopes. Given an envi-

ronment e that maps variable names to values, this invariant inv is defined

as:

∀i, j : V ARS • (e(idealloc) ∧ e(i) 6= NULL

∧ i 6= j ∧ e(i) == e(j))

=⇒ e(jdealloc) = false

where V ARS denotes the set of all variables, and idealloc and jdealloc denote

the deallocation flags of variable i and j respectively.

The general invariant can be narrowed down to a given variable, i.e. inv(a)

(e(adealloc) ∧ e(a) 6= NULL)

=⇒ (∀j : V ARS • (j 6= a ∧ e(j) == e(a))

=⇒ e(jdealloc) = false)

This deallocation invariant ensures that at any program point at most one

variable has the deallocation flag set to true, which allows freeing the allocated

memory space. This invariant enables multiple variables to share the same

allocated memory space but restricts only one variable to be responsible for

de-allocating the memory structure.

The deallocation invariant is similar to the single ownership principle in

Rust (Blandy, 2015): every array is bound to a single owner variable that

has true flag at any given time, and when the owner is dropped, the array is

deleted. But our deallocation flag is only used to indicate which variable is

responsible for de-allocation purpose, and does not have control over read or

write access.

81

6.2 Deallocation Macros

The deallocation analyser takes each WyIL code as input, and adds pre-

deallocation and post-deallocation macros to the generated C code, to release

the old memory and make changes to the deallocation run-time flag.

6.2.1 Pre-Deallocation Macro

PRE DEALLOC macro empties the left-hand side variable prior to a code, so

avoids any memory leak caused by the update. Any time that the value of an

allocated variable is about to be overwritten, Our macro checks the flag and

determines whether the variable is responsible to free that memory space, as

below.

1 // Free variable ’a’ if its deallocation flag is true
2 #define PRE_DEALLOC(a)
3 {
4 if(a_dealloc){
5 free(a);
6 a:= NULL;
7 a_dealloc:=false;
8 }
9 }

However, when encountering return code the macro is applied on all previ-

ously allocated variables (excluding the return variable), to reclaim all unused

memory before the function exit.

6.2.2 Post-Deallocation Macros

After each statement, one of the following post-deallocation macros is called

to update the heap variables and make changes to the deallocation flags. Ac-

cording to code type and copy information, the macros are defined as follows:

Array Generator An array generator a := [value;size] creates a new array

of given size and initial value of each array item, and stores the new array to a

variable. We define below NEW1DARRAY DEALLOC macro to create a new array

and check if the array is successfully allocated in memory and then populate

the array by using a loop.

82

1 // Create an array of given type and size, and fill in given value
2 #define NEW1DARRAY DEALLOC(a, value, size, type)
3 {
4 PRE DEALLOC(a);
5 a_size := size;
6 a := (type*)malloc(a_size*sizeof(type));
7 if(a == NULL){
8 fputs("fail to allocate the memory\n", stderr);
9 exit(-2);

10 }
11 // Initialize each item value of array ’a’
12 for(size t i:=0;i<a_size;i++){
13 a[i] := value;
14 }
15 a_dealloc := true;
16 }

NEW1DARRAY DEALLOC macro includes PRE DEALLOC macro to free the target

variable before array generation, and then assigns true flag to target variable

because the macro creates a fresh array address.

Assignment An assignment may or may not copy right-hand side variable

(source) into the left-hand side variable (destination). The post-deallocation

macro can be split into two cases:

1 #define ADD DEALLOC(a, b)
2 {
3 PRE DEALLOC(a);
4 a := copy(b);
5 a_dealloc := true;
6 }

ADD DEALLOC macro lets the destination point to a fresh copy of the source

variable structure. Due to having separate memory structures, the macro sets

the destination deallocation flag to true, but leaves the source deallocation flag

unchanged as no change has occurred to that variable.

1 #define TRANSFER DEALLOC(a, b)
2 {
3 PRE DEALLOC(a);
4 a := b;
5 a_dealloc := b_dealloc;
6 b_dealloc := false;
7 }

TRANSFER DEALLOC macro aliases the source and destination to the same mem-

ory structure, so transfers the deallocation flag from the source to destination

and resets the source flag, to ensure that only the destination variable will be

responsible for deallocation.

83

This macro is similar to move semantics in Rust (Blandy, 2015). Assign-

ment in most of Rust types moves the value from one owner to another, and

assigns ownership to new destination and leaves the old source unused and

void. By combining single ownership rule, Rust compiler can estimate the

lifetime of every variable and drop every value which does not have ownership,

so that dangling pointers can never be used.

Our project also integrates similar but less restrictive move ownership to

transfer the de-allocation flag from source to destination. But other aliased

pointers are allowed to access the shared memory. Because the flag is trans-

ferred out during assignments, the double deallocation can be avoided.

Function Call A function call passes parameters to the called function

(callee) and then returns the result back to caller site. As a call may or

may not create a copy of each parameter, the deallocation problem involves:

• when the parameter copy is made, should the callee or caller free the

passing parameter?

• when the parameter copy is eliminated, should the callee or caller free

the passing parameter?

Table 6.1: Post-deallocation macro for function call

Function call a := f (b) where a is function return and b is parameter

f mutates b? F F T(‘may-be’) T(‘may-be’)

f returns b? F T(‘may-be’) T(‘may-be’) F

b is live at caller? F No Copy No Copy No Copy No Copy

RETAIN DEALLOC RESET DEALLOC RESET DEALLOC RETAIN DEALLOC

T No Copy Copy Copy Copy

(‘may-be’) RETAIN DEALLOC CALLER DEALLOC CALLER DEALLOC CALLEE DEALLOC

The post-deallocation macro specifies the caller to free function return

(destination), and appends one flag value along with each parameter (source)

to the function call, to indicate whether the passing parameter can be freed by

84

callee. The flag value is determined by taking account of mutable, return and

liveness analysis as shown in Table 6.1. Note these macros are induced from

simulation results with all possible combinations of flag values, and validated

by checking that all the test cases have no memory leaks.

Function Call of Copied Parameter The parameter is passed to a func-

tion call with a copy as the parameter is or may be mutated by callee, but the

original value is used after the call.

1 #define CALLER DEALLOC(a, b)
2 {
3 PRE DEALLOC(a);// Do not free copied ‘b’ at ‘func’
4 a := func(tmp := copy(b), false);
5 if (a != tmp) {// Possible memory leak on ‘tmp’
6 free(tmp);
7 }
8 a_dealloc := true;
9 }

CALLER DEALLOC macro is applied when the parameter is or may be re-

turned by the call and avoids being freed by callee. Due to over-approximation

of return analysis, this macro would make an extra copy and lead to potential

memory leaks. For example, the called function contains an if-else to output

different returns (a new array or copied b array). The ‘may-be‘ return, if it

is not actually returned, skips the de-allocation of passing parameter within

callee and leaves the extra copy un-deallocated after the function exits, and

such memory leaks can be avoided by the additional de-allocation check. The

conservative caller macro is a trade-off between memory leaks and memory

safety, to deal with the uncertainty on function return at run-time and avoid

wrongly nullifying the return.

1 #define CALLEE DEALLOC(a, b)
2 {
3 PRE DEALLOC(a); // Free copied ‘b’ at ‘func’
4 a := func(tmp := copy(b), true);
5 a_dealloc := true;// No change to ‘b dealloc’
6 }

CALLEE DEALLOC macro is applied when the passing parameter is NOT returned

by function call. So the parameter can be deallocated separately at callee since

it is not aliased with function return.

85

Function Call of Not Copied Parameter The parameter is passed straight

to a function call without copying. Due to being used and shared by caller

and callee, the passing parameter, if freed within callee, may cause dangling

pointers and make use of invalid data at caller site. So the de-allocation of

un-copied parameter is always delegated to the caller.

1 #define RETAIN DEALLOC(a, b)
2 {
3 PRE DEALLOC(a);
4 a := func(b, false); // Do not free ’b’ at ’func’
5 a_dealloc := true;// No change to ’b dealloc’
6 }

RETAIN DEALLOC macro is applied when the parameter is not returned by

function call. Since the parameter is not aliased with function return, its flag

at caller site can stay unchanged.

1 #define RESET DEALLOC(a, b)
2 {
3 PRE DEALLOC(a);
4 a := func(b, false);// Do not free ’b’ at ’func’
5 if(a != b){
6 a_dealloc := true;
7 }else{
8 a_dealloc := b_dealloc;// Transfer ‘b’ flag to ‘a’
9 b_dealloc := false;

10 }
11 }

RESET DEALLOC macro is applied when the passing parameter is or may be

returned by called function, so specifies the de-allocation flag at caller site.

The macro includes an aliasing check to determine flag values after the call.

If the parameter is returned and thus is aliased to result, the flag is transferred

out from parameter to function return. If not, a new flag is assigned to function

result as the call returns a new and fresh memory space. Our macro is similar to

shared or mutable borrow reference in Rust (Blandy, 2015). RETAIN DEALLOC

macro uses shared reference as the passed parameter is read-only and does not

allow the called function to modify or drop its value. The mutable passed-

by-reference parameter is used in RESET DEALLOC macro to provide read-write

access for the called function to change its value.

86

6.3 Informal Proofs

Our macros take variables as arguments and make changes to run-time deal-

location flags and variable values. Each macro is designed to preserve a deal-

location invariant before and after each execution, and ensures that only one

variable is responsible for freeing one allocated memory space. To prove this,

we provide the following informal proofs by using deductive reasoning.

Definition 6.1 Our deallocation analysis supports three data types: integer

(int), Boolean value (bool) and one dimensional integer array (int[]).

B is a set of Boolean values for variables having bool type, i.e. {true, false}.

Z is a set of integers for variable having int type.

ADR is a set of memory addresses for variables having int[] type, which

each points to the value of an array. NULL is a special address (NULL ∈

ADR), and used to indicate an invalid address.

Let VARS be the set of variables of all supported types, including integer,

Boolean and integer array.

Let ARRVARS be the set of integer array variables (ARRVARS ⊂ VARS).

Let VALUES be the value space which consists of all the sets of variable

values (VALUES = B ∪ Z ∪ ADR).

Let e be a function which maps a variable to its value:

e : VARS → VALUES

ARRVARS → ADR

Function e bases on variable type to get the value:

• e(i) can be a value such as true or 1, if i is a Boolean or integer variable.

∀i ∈ VARS • e(i) ∈ VALUES (6.1)

• e(i) can be the address of an array, if i is an integer array typed variable.

∀i ∈ ARRVARS • e(i) ∈ ADR (6.2)

87

Definition 6.2 Let i, j ∈ ARRVARS be array variables. i ≡ j means variable

i and j are the same variables. If i ≡ j, then i and j are aliased to the same

address:

i ≡ j =⇒ e(i) = e(j) (6.3)

However, e(i) = e(j) does not guarantee i ≡ j.

Definition 6.3 Let i ∈ ARRV ARS be array variable and fresh(i) stand for

a predicate that describes variable i and satisfies:

fresh(i) : ∀j ∈ ARRVARS • e(j) = e(i) =⇒ j ≡ i (6.4)

or equivalently

fresh(i) : ∀j ∈ ARRVARS • j 6≡ i =⇒ e(j) 6= e(i) (6.5)

Definition 6.4 Let valid be a function which maps the address to true or

false. valid(d) means d is a valid address, returned from malloc function and

not yet freed.

For x ∈ ARRVARS, we have valid(e(x)) or ¬valid(e(x)). What we know

about valid function are:

• if e(x) is NULL, then we have false value

¬valid(NULL) (6.6)

• after malloc function call, we have a fresh and valid address

{} x = malloc() {valid(e(x)) ∧ fresh(x)} (6.7)

• after free function call, we have invalid address

{valid(e(x))} free(x) {¬valid(e(x))} (6.8)

• after making a copy of another array variable y, we have a fresh and

valid address

{valid(e(y))} x = copy(y) {valid(e(x)) ∧ fresh(x)} (6.9)

Note that variable y is a valid address before the copy is made.

88

Assume the deallocation invariant (see Theorem 6.1) holds before a macro.

After applying the macro, we still have the invariant.

Definition 6.5 Let i, j ∈ VARS ∧ i 6≡ j and

inv dealloc(i, j) : e(idealloc) ∧ e(jdealloc) ∧ e(i) = e(j) =⇒ i ≡ j (6.10)

or equivalently,

inv dealloc(i, j) : e(idealloc) ∧ e(jdealloc) ∧ i 6≡ j =⇒ e(i) 6= e(j) (6.11)

stand for deallocation invariant of variable i, j. As the invariant is symmetric,

we have inv dealloc(i, j) ≡ inv dealloc(j, i).

Also, we include array invariant to ensure any array variable i ∈ ARRVAR

with true flag points to a valid address:

inv arr(i) : e(idealloc) =⇒ valid(e(i)) (6.12)

So the deallocation invariant can be represented as:

INV :∀i, j ∈ V ARS • inv dealloc(i, j)∧ (6.13a)

∀i ∈ ARRV ARS • inv arr(i) (6.13b)

6.3.1 Pre-Deallocation Macro

1 #define PRE DEALLOC(a)
2 {
3 if(a_dealloc){
4 free(a); a:=NULL; a_dealloc:=false;
5 }
6 }

PRE DEALLOC macro aims to free out the existing value of a variable and resets

its flag, and leads to below proposition:

e(adealloc) = false (6.14a)

e(a) = NULL (6.14b)

PRE DEALLOC macro is the only way of freeing a variable and avoid the

double free problem in C (the same memory space is de-allocated twice).

89

Theorem 6.2 If INV is true before PRE DEALLOC macro, then INV is still

true after the macro, as the below Hoare logic:

{INV ∧ (∀i ∈ V ARS • e(i) = e0(i)) ∧ (∀d ∈ ADR • valid(d) = v0(d))}

PRE DEALLOC(a)

{INV ∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e0(i))

∧ (∀d ∈ ADR • d 6= e0(a) =⇒ valid(d) = v0(d)) ∧ ¬e(adealloc)}

The precondition stores variable address and validity in the pre-states with

e0 (i) and v0 respectively. And the post-condition ensures all array variables,

except for a, remain the same address and validity.

1 {INV ∧ (∀i ∈ V ARS • e(i) = e0(i)) ∧ (∀d ∈ ADR • valid(d) = v0(d))}
2 if(a_dealloc){
3

4 {INV ∧ (∀i ∈ V ARS • e(i) = e0(i)) ∧ (∀d ∈ ADR • valid(d) = v0(d))
5 ∧e(adeallc) ∧ valid(e(a)} 1©
6 free(a);
7 a:=NULL;
8 a_dealloc:=false;
9 {(∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e0(i)) 2a©

10 ∧(∀d ∈ ADR • d 6= e0(a) =⇒ valid(d) = v0(d)) 2b©∧
11 ¬e(adealloc) ∧ INV 2c©}
12

13 }
14

15 {INV ∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e0(i))
16 ∧(∀d ∈ ADR • d 6= e0(a) =⇒ valid(d) = v0(d) ∧ ¬e(adealloc)) 3©

Listing 6.1: Tableau of PRE DEALLOC(a) macro

Reasoning about 1© Show that valid(e(a)) holds true before free code

because INV is true, which implies inv arr(a) is true.

inv arr(a) = e(adealloc) =⇒ valid(e(a))

Also e(adealloc) holds true (in line 3), so we have valid(e(a)) in 1©

Assumption 2a© and 2b© Assumes e(i) = e0(i) and valid(d) = v0(d) is true.

Since line 5 to 7 changes variable a and a’s flag, the other variables remain

unchanged.

90

Reasoning about 2c© Show that INV holds at the end of IF branch.

INV : ∀i, j ∈ V ARS • inv dealloc(i, j) A© ∧ ∀i ∈ ARRV ARS • inv arr(i) B©

Proof. [Reasoning Deallocation Invariant A©]

Let i, j ∈ VARS and i 6= j be the witness variables. Assume that ∀i, j ∈

VARS • inv dealloc(i, j)) holds true before PRE DEALLOC macro. Consider the

following three cases:

• Case 1: Only i include a

Given i ≡ a ∧ j 6≡ a, we can replace variable i with a and write the

invariant as below:

inv dealloc(a, j) ⇐⇒ (e(adealloc) ∧ e(jdealloc)

∧ a 6≡ j) =⇒ e(a) 6= e(j)

(6.15)

From Proposition 6.14a, we evaluate the predicate of inv dealloc(a, j) to

be false and thus produces the true value of inv dealloc(a, j).

• Case 2: Only j includes a

This case is the same as Case 1 that a is one of i or j (inv dealloc(i, a) ⇐⇒

inv dealloc(a, i)). As inv dealloc(a, j) is proven to be true in Case 1, we

can conclude inv dealloc(i, a) also holds true.

• Case 3: i , j NOT include a

In this case i 6≡ a ∧ j 6≡ a, our macro does not change any variable, so

the invariant inv dealloc(i , j) still holds true.

2

Proof. [Reasoning Array Invariant B©]

We must show ∀i ∈ ARRV ARS • inv arr(i) = e(idealloc) =⇒ valid(e(i))

holds true in the post-state.

Let i ∈ ARRV ARS such that e(idealloc) is true in the post-state and we

have to show valid(e(i)).

91

We have ¬e(adealloc) and e(idealloc). So a 6≡ i.

For a 6≡ i, we know variable i ’s flag is unchanged e(idealloc) = e0(idealloc),

which we assume it is true.

Also, variable a’s flag is true e0(adealloc) from entry condition of IF branch.

So e0(adealloc) ∧ e0(idealloc) ∧ a 6≡ i.

Because INV holds before the macro (using e0 instead of e), we have

e0(adealloc) ∧ e0(idealloc) ∧ a 6≡ i =⇒ e0(a) 6= e0(i)

Therefore, e0(a) 6= e0(i)

From 2a©, we also know that the validity of all addresses, except for e0(a),

is unchanged.

e0(i) 6= e0(a) =⇒ valid(e0(i)) = v0(e(i)) (6.16)

Also from INV in the pre-state

e0(idealloc) =⇒ v0(e(i)) (6.17)

And because i 6≡ a and from 2b© we know that e(i) is unchanged.

e(i) = e0(i) =⇒ valid(e(i)) = valid(e0(i)) = v0(e(i)) = true (6.18)

2

Reasoning about 3© Show INV holds true in the post condition because

INV is true in IF branch (see 2c©). At 3©, we use the condition in IF branch

and skip the one in ELSE branch, which has not defined yet. So we have

{INV ∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e0(i))

∧ (∀d ∈ ADR • d 6= e0(a) =⇒ valid(d) = v0(d))

Also, we have ¬e(adealloc) in the post condition because the conditional

branch gives adealloc false value.

92

6.3.2 Array Generator

An array generator arraygenerator(a = [value;size]) creates an array a of given

size and value.

1 #define NEW1DARRAY DEALLOC(a, value, size, type)
2 {
3 PRE DEALLOC(a);
4 a_size = size;
5 a = (type*)malloc(a_size*sizeof(type));
6 if(a == NULL){
7 fputs("fail to allocate memory\n", stderr);
8 exit(-2);
9 }

10 // Initialize each item value of array ’a’
11 for(size t i=0;i<a_size;i++){
12 a[i] = value;
13 }
14 a_dealloc := true;
15 }

NEW1DARRAY DEALLOC(a, value, size) macro:

• uses pre-deallocation macro to empty variable a;

• use NEW 1DARRAY macro to create a fresh array of given size and initialise

the value of each array item;

• assigns value true to a dealloc flag to indicate variable a is responsible

for the de-allocation of this newly created array.

Assumption 1 For an array generator a := [value; size], we include a pre-

condition that INV is true before NEW1DARRAY DEALLOC macro.

With this precondition, we can ensure there is a single deallocation owner

each array variable. Thus, using PRE DEALLOC(a) macro to release the mem-

ory of array variable a will not cause double freeing problem.

Theorem 6.3 NEW1DARRAY DEALLOC(a, value, size) macro creates a new

array of given size and value, and then assigns to a.

If INV holds before NEW1DARRAY DEALLOC(a, value, size) macro, then

93

INV still holds true after the macro, as below Hoare Logic:

{INV ∧ (∀i ∈ V ARS • e(i) = e0(i))

∧ (∀d ∈ ADR • valid(d) = v0(d))}

NEW1DARRAY DEALLOC(a, value, size)

{INV ∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e0(i))

∧ (∀d ∈ ADR • d 6= e0(a) ∧ d 6= e(a) =⇒ valid(d) = v0(d))

∧ valid(e(a))}

As INV is preserved before and after pre-deallocation macro, we only need

to prove our invariant still holds after NEW1DARRAY DEALLOC macro, as below:

1 {INV ∧ (∀i ∈ V ARS • e(i) = e0(i)) ∧ (∀d ∈ ADR • valid(d) = v0(d))} 1©
2 PRE_DEALLOC(a);
3 {INV ∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e0(i))
4 ∧(∀d ∈ ADR • d 6= e0(a) =⇒ valid(d) = v0(d))} 2©
5

6 {INV ∧ (∀i ∈ V ARS • e(i) = e1(i))
7 ∧(∀d ∈ ADR • valid(d) = v1(d)) 3©
8

9 NEW_1DARRAY(a, value, size, int64_t);
10 a_dealloc:=true;
11

12 {(∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e1(i)) 4a©∧
13 (∀d ∈ ADR • d 6= e(a) =⇒ valid(d) = v1(d)) 4b©∧
14 fresh(a) ∧ valid(e(a)) ∧ e(adealloc) 4c©}
15

16 {INV 5a© ∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e0(i)) 5b©∧
17 (∀d ∈ ADR • d 6= e0(a) ∧ d 6= e(a) =⇒ valid(d) = v0(d)) 5c©∧
18 valid(e(a)) ∧ e(adealloc)}

Listing 6.2: Tableau of NEW1DARRAY DEALLOC(a, value, size) macro

Assumption 1© INV e(i) = e0 (i) and valid(d) = v0 (d) are assumed to be

true in the entry condition of the macro.

Reasoning about 2© Show INV e(i) = e0 (i) and valid(d) = v0 (d) hold

true in the post condition of pre-deallocation macro (refer to Theorem 6.2).

Assumption 3© Define e1 (i) and v1 (d) to store the addresses and validity

of variables respectively after PRE DEALLOC macro. By doing so, we can focus

on the pre-and post-conditions of line 8 and 9.

94

Reasoning about 4a© and 4b© Show e(i) = e1 (i) and valid(d) = v1 (i) is

true. Because our macro creates a fresh address for variable a, e(a) and adealloc

are changed by line 8 and 9. For all other variables, e(i) remains the same as

e1 (i) and the validity is unchanged as v1 (i) in line 7 for all addresses, except

for e(a).

Assumption 4c© Show fresh(a) valid(e(a)) and e(adealloc) are true in the

post-condition. fresh(a) ∧ valid(e(a)) is included into the post-state because

of malloc function calls used in NEW 1DARRAY macro (see Definition 6.7).

e(adealloc) is true from line 9.

Reasoning about 5a© Show that INV holds at the end of macro.

INV : ∀i, j ∈ V ARS • inv dealloc(i, j) A© ∧ ∀i ∈ ARRV ARS • inv arr(i) B©

Proof. [Reasoning Deallocation Invariant (A©)]

Let i, j ∈ ARRV ARS such that e(idealloc) and e(jdealloc) and i 6≡ j. We must

show that inv dealloc(i , j) holds true after NEW1DARRAY DEALLOC(a, value,

size) macro.

Consider the following three cases:

• Case 1: i ≡ a

Given i ≡ a ∧ j 6≡ a, we can replace variable i with a and write the

invariant as below:

inv dealloc(a, j) ⇐⇒ (e(adealloc) ∧ e(jdealloc)

∧ a 6≡ j) =⇒ e(a) 6= e(j)

Because of fresh(a) at 4c©, we have j 6≡ a =⇒ e(j) 6= e(a) hold true.

Thus, we can conclude inv dealloc(a, j) is true in the post state.

• Case 2: j ≡ a

This case is the same as Case 1 that a is one of i or j

inv dealloc(i, a) ⇐⇒ inv dealloc(a, i)

95

Since inv dealloc(a, j) is proven to be true in Case 1, we can conclude

inv dealloc(i , a) also holds true.

• Case 3: i , j NOT include a

Because i 6≡ a ∧ j 6≡ a, our macro changes a and a dealloc but keeps

variable i or j unchanged, and because INV holds at 3©, therefore

inv dealloc(i , j) still holds true.

2

Proof. [Reasoning Array Invariant B©]

We must show ∀i ∈ ARRV ARS • e(idealloc) =⇒ valid(e(i)) holds true in the

post-state.

Let i ∈ ARRV ARS such that e(idealloc) is true in the post state and we

have to show valid(e(i)).

• Case 1: i 6≡ a

We know e(i) 6= e(a) because of fresh(a).

From inv arr(i) at 3©, we have

∀i ∈ ARRV ARS • e1(idealloc) =⇒ v1(e1(i))

From 4a©, we have e(i) = e1(i) because i 6≡ a ∧ i 6≡ adealloc.

From 4b©, we have valid(e(i)) = v1(e(i)) because e(i) 6= e(a)

Therefore, the validity must remain unchanged in the post-state.

valid(e(i)) = v1(e(i)) = v1(e1(i))

• Case 2: i ≡ a

inv arr(a) : e(adealloc) =⇒ valid(e(a)) holds true because we have

valid(e(a)) in 4c© from the post condition of malloc function call (see

Definition 6.7)

2

96

Reasoning about 5b© Show ∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) =

e0(i) is true in the post condition.

Proof. Let i ∈ V ARS be a variable such that i 6≡ a and i 6≡ adealloc. We must

show e(i) = e0(i).

From 4a© because i 6≡ a ∧ i 6≡ adealloc, we have e(i) = e1(i).

From 2© and 3© because i 6≡ a ∧ i 6≡ adealloc, we have e0(i) = e1(i).

Therefore, by combining the above conditions i 6≡ a ∧ i 6≡ adealloc, we

conclude e(i) = e0(i).

2

Reasoning about 5c© Show ∀d ∈ ADR • d 6= e0(a) ∧ d 6= e(a) =⇒

valid(d) = v0(d) is true in the post condition.

Proof. Let d ∈ ADR be an address such that d 6= e0(a) and d 6= e(a). We

must show valid(d) = v0(d).

From 4b© because d 6= e(a), we have valid(d) = v1(d).

From 2© and 3© because d 6= e0(a), we have v0(d) = v1(d).

Therefore, by combining the above conditions (d 6= e0(a) ∧ d 6= e(a)), we

conclude valid(d) = v1(d) = v0(d).

2

6.3.3 Assignment

For an assignment a := b, our deallocation analyser uses the live variable

analysis to decide whether to remove the copy at right-handed side.

6.3.3.1 ADD DEALLOC Macro

1 #define ADD DEALLOC(a, b)
2 {
3 PRE DEALLOC(a);
4 a := copy(b);
5 a_dealloc := true; // Add the Deallocation to ’a’
6 }

97

ADD DEALLOC(a, b) macro:

• uses pre-deallocation macro to empty variable a and reset its flag value;

• creates a fresh copy of variable b, whose memory space is not aliased

with any existing variable;

• assigns the copied b to variable a and add the flag to a

Assumption 2 For an assignment a := copy(b), we include a precondition

e(a) 6= e(b)

to ensure when adealloc and bdealloc are both true, variable a and b are not

aliased to the same memory space before the function call. Also, we need an

extra precondition

valid(e(b)) = true

to ensure the memory address pointed by variable b is valid and safe to per-

form the operation. With above preconditions, we can ensure adealloc must be

false when variable a and b are aliased and also bdealloc is true. Therefore,

PRE DEALLOC(a) will not free the memory at e(a) = e(b), making e(b) an

invalid address and avoid segmentation fault when trying to copy from e(b).

Theorem 6.4 ADD DEALLOC(a, b) macro makes a copy of variable b and as-

signs it to a. If INV and e(a) 6= e(b) and valid(e(b)) hold before ADD DEALLOC(a,

b) macro, then INV still holds true after the macro, as below Hoare Logic:

{INV ∧ (∀i ∈ V ARS • e(i) = e0(i)) ∧ (∀d ∈ ADR • valid(d) = v0(d))

∧ e(a) 6= e(b) ∧ valid(e(b))}

ADD DEALLOC(a, b)

{INV ∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e0(i))

∧ (∀d ∈ ADR • d 6= e0(a) ∧ d 6= e(a) =⇒ valid(d) = v0(d))

∧ valid(e(a)) ∧ valid(e(b))}

98

1 {INV ∧ (∀i ∈ V ARS • e(i) = e0(i)) ∧ (∀d ∈ ADR • valid(d) = v0(d))∧
2 e(a) 6= e(b) ∧ valid(e(b))} 1©
3 PRE_DEALLOC(a);
4 {INV ∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e0(i))
5 ∧(∀d ∈ ADR • d 6= e0(a) =⇒ valid(d) = v0(d))∧
6 e0(a) 6= e(b) ∧ valid(e(b))} 2©
7

8 {INV ∧ valid(e(b)) ∧ (∀i ∈ V ARS • e(i) = e1(i))
9 ∧(∀d ∈ ADR • valid(d) = v1(d)) 3©

10 a:=copy(b);
11 a_dealloc:=true;
12 {fresh(a) ∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e1(i)) 4a©∧
13 (∀d ∈ ADR • d 6= e(a) =⇒ valid(d) = v1(d)) 4b©∧
14 valid(e(a)) ∧ valid(e(b)) ∧ e(adealloc) 4c©}
15

16 {INV 5a© ∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e0(i)) 5b©∧
17 (∀d ∈ ADR • d 6= e0(a) ∧ d 6= e(a) =⇒ valid(d) = v0(d)) 5c©∧
18 valid(e(b)) ∧ valid(e(a)) ∧ e(adealloc)}

Listing 6.3: Tableau of ADD DEALLOC(a, b) macro

The previous section shows our invariant is preserved before and after pre-

deallocation macro. So we are only required to prove our invariant still holds

after the last two code statements, as below:

Assumption 1© e(a) 6= e(b) and valid(e(b)) are assumed to be true in the

entry condition of the macro.

Reasoning about 2© Show e(b) = e0(a) and valid(e(b)) are both true in

the post condition of pre-deallocation macro (refer to Theorem 6.2).

Because e(b) = e0(b) 6= e0(a) and only validity of e0(a) is changed by

pre-deallocation macro, valid(e(b)) is true in the post-state.

Assumption 3© Define e1 (i) and v1 (d) to store the addresses and validity

of variables respectively after PRE DEALLOC macro. In doing so, we can focus

on the precondition and post condition of line 10 and 11.

Reasoning about 4a© and 4b© Show e(i) = e1(i) and valid(d) = v1(i) is

true. Since only e(a) and adealloc is changed by line 10 and 11, e(i) remains

the same as e1 (i) for all other variables, and the validity is unchanged for all

addresses except for e(a) as v1(i) in line 8.

99

Assumption 4c© Show valid(e(a)), valid(e(b)), fresh(a) and e(adealloc) are

true in the post-condition.

valid(e(a)) ∧ fresh(a) is included into the post-state from 6.9.

valide(e(b)) remains true in the post-state because our macro in (line 10

and 11) does not de-allocate anything.

e(adealloc) is true from line 11.

Reasoning about 5a© Show that INV holds at the end of macro.

INV : ∀i, j ∈ V ARS • inv dealloc(i, j) A© ∧ ∀i ∈ ARRV ARS • inv arr(i) B©

Proof. [Reasoning Deallocation Invariant (A©)]

Let i, j ∈ V ARS be the witness variables. We must show that ∀i, j•inv dealloc(i, j)

holds true after ADD DEALLOC(a, b) macro. Consider the following four cases:

• Case 1: i , j includes both a and b

Given i ≡ a ∧ j ≡ b (or equivalently j ≡ a ∧ i ≡ b), the invariant can be

rewritten as:

inv dealloc(a, b) :(e(adealloc) ∧ e(bdealloc)∧

a 6≡ b) =⇒ e(a) 6= e(b)

(6.19)

From precondition e0(a) 6= e0(b), which implies a 6≡ b, and fresh(a), we

conclude that a 6≡ b =⇒ e(a) 6= e(b). That implies that inv dealloc(a, b)

still is true in the post-state.

• Case 2: i , j includes a but NOT b

Given i ≡ a ∧ j 6≡ b (or equivalently j ≡ a ∧ i 6≡ b), the invariant can be

rewritten as:

inv dealloc(a, j) :e(adealloc) ∧ e(jdealloc)∧

a 6≡ j =⇒ e(a) 6= e(j)

(6.20)

Assume that all the preconditions in (6.20) are true, including a 6≡ j.

With true value of fresh(a) : j 6≡ a =⇒ e(j) 6= (a), we have e(j) 6= e(a)

in the post-state and conclude inv dealloc(a, j) is true after the macro.

100

• Case 3: i , j includes b but NOT a

Given i ≡ b ∧ j 6≡ a (or equivalently j ≡ b ∧ i 6≡ a), the invariant can be

rewritten as:

inv dealloc(b, j) :e(bdealloc) ∧ e(jdealloc)∧

b 6≡ j =⇒ e(b) 6= e(j)

(6.21)

Because j 6≡ a and only variable a and adealloc are changed so variable j

and jdealloc stay unchanged in post-state.

Since inv dealloc(b, j) was true in the pre-state, we have inv dealloc(b, j)

hold true in the post-state.

• Case 4: i , j are both different from a, b

The macro does not change any value of variable i and j , so the invariant

inv dealloc(i , j) still holds.

2

Proof. [Reasoning Array Invariant B©]

We must show ∀i ∈ ARRV ARS • e(idealloc) =⇒ valid(e(i)) holds true in the

post-state.

Let i ∈ ARRV ARS such that e(idealloc) is true in the post-state and we

have to show valid(e(i)).

• Case 1: i 6≡ a

We know e(i) 6= e(a) because of fresh(a).

From inv arr(i) in line 8, we have

∀i ∈ ARRV ARS • e1(idealloc) =⇒ v1(e1(i))

From 4a©, we have e(i) = e1(i) because i 6≡ a ∧ i 6≡ adealloc.

From 4b©, we have valid(e(i)) = v1(e(i)) because e(i) 6= e(a)

Therefore, the validity must remain unchanged in the post-state.

valid(e(i)) = v1(e(i)) = v1(e1(i))

101

• Case 2: i ≡ a

inv arr(a) : e(adealloc) =⇒ valid(e(a)) holds true because we have

valid(e(a)) in 4c©, which comes from post condition of copy.

2

Reasoning about 5b© Show ∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) =

e0(i) is true in the post condition.

Proof. Let i ∈ V ARS be a variable such that i 6≡ a and i 6≡ adealloc. We must

show e(i) = e0(i).

From 4a© because i 6≡ a ∧ i 6≡ adealloc, we have e(i) = e1(i).

From 2© and 3© because i 6≡ a ∧ i 6≡ adealloc, we have e0(i) = e1(i).

Therefore, by combining the above conditions i 6≡ a ∧ i 6≡ adealloc, we

conclude e(i) = e0(i).

2

Reasoning about 5c© Show ∀d ∈ ADR • d 6= e0(a) ∧ d 6= e(a) =⇒

valid(d) = v0(d) is true in the post condition.

Proof. Let d ∈ ADR be an address such that d 6= e0(a) and d 6= e(a). We

must show valid(d) = v0(d).

From 4b© because d 6= e(a), we have valid(d) = v1(d).

From 2© and 3© because d 6= e0(a), we have v0(d) = v1(d).

Therefore, by combining the above conditions (d 6= e0(a) ∧ d 6= e(a)), we

conclude valid(d) = v1(d) = v0(d).

2

102

6.3.3.2 TRANSFER DEALLOC Macro

1 #define TRANSFER DEALLOC(a, b)
2 {
3 PRE DEALLOC(a);
4 a := b;
5 a_dealloc := b_dealloc;
6 b_dealloc := false;
7 }

TRANSFER DEALLOC(a, b) macro:

• uses pre-deallocation macro to empty variable a and reset its flag value;

• aliases variable a and b, so they both point to the same memory space;

• assigns variable b’s flag value to a and then reset b’s flag.

Assumption 3 For an assignment a := b, we include a precondition

e(a) 6= e(b)

to ensure both adealloc and bdealloc can not be true when variable a and b are

aliased to the same memory space before the function call.

Also, we need an extra precondition

valid(e(b)) = true

to ensure the memory address pointed by variable b is valid and safe to perform

the operation.

These preconditions ensure the aliased variables a and b after the macro do

not point to an invalid address, and cause null-pointer de-reference exceptions

when accessing the value of variable a or b.

Theorem 6.5 Let e0 (b) be the value of variable b and e0 (bdealloc) be the flag

value of variable b in the pre-state of TRANSFER DEALLOC(a, b) macro.

If INV holds before TRANSFER DEALLOC(a, b) macro, then INV still holds

103

true after the macro, as below Hoare Logic:

{INV ∧ (∀i ∈ V ARS • e(i) = e0(i))

∧ (∀d ∈ ADR • valid(d) = v0(d))

∧ e(a) 6= e(b) ∧ valid(e(b))}

TRANSFER DEALLOC(a, b)

{INV ∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc ∧ i 6≡ bdealloc =⇒ e(i) = e0(i))

∧ (∀d ∈ ADR • d 6= e0(a) =⇒ valid(d) = v0(d))

∧ e(a) = e(b) ∧ valid(e(a)) ∧ e(adealloc) = e0(bdealloc)}

1 {INV ∧ (∀i ∈ V ARS • e(i) = e0(i)) ∧ (∀d ∈ ADR • valid(d) = v0(d))∧
2 e(a) 6= e(b) ∧ valid(e(b))} 1©
3 PRE_DEALLOC(a);
4 {INV ∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e0(i))∧
5 (∀d ∈ ADR • d 6= e0(a) =⇒ valid(d) = v0(d))∧
6 e0(a) 6= e(b) ∧ valid(e(b))} 2©
7 {INV ∧ valid(e(b)) ∧ (∀i ∈ V ARS • e(i) = e1(i))∧
8 (∀d ∈ ADR • valid(d) = v1(d))} 3©
9

10 a:=b;
11 a_dealloc:=b_dealloc;
12 b_dealloc:=false;
13

14 {(∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc ∧ i 6≡ bdealloc =⇒ e(i) = e1(i)) 4a©∧
15 (∀d ∈ ADR • valid(d) = v1(d) 4b©)∧
16 e(a) = e(b) = e1(b) ∧ valid(e(a)) ∧ e(adealloc) = e1(bdealloc) ∧ ¬e(bdealloc) 4c©}
17

18 {INV 5a© ∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc ∧ i 6≡ bdealloc =⇒ e(i) = e0(i)) 5b©
19 ∧(∀d ∈ ADR • d 6= e0(a) =⇒ valid(d) = v0(d)) 5c©∧
20 e(a) = e(b) ∧ valid(e(a)) ∧ e(adealloc) = e0(bdealloc)}

Listing 6.4: Tableau of TRANSFER DEALLOC(a, b) macro

Assumption 1© Assume e(a) 6= e(b) and valid(e(b)) are true in the entry

condition of the macro as we justify the precondition at start of an assignment

(see Definition 2).

Reasoning about 2© Show that e0(a) 6= e(b) and valid(e(b)) are true in

post condition of the pre-deallocation macro (refer to Theorem 6.2).

Assumption 3© Define e1 (i) and v1 (d) to store the addresses and validity

of variables respectively after PRE DEALLOC macro. By doing so we can focus

on the pre- and post conditions between line 10 and 12.

104

Reasoning about 4© Show e(a) = e(b) = e0(b) and valid(e(a)) are true

in the post-condition. Because transfer macro does not change the validity of

any variable but aliases a and b, we have e(a) = e(b). Therefore, we conclude

valid(e(a)) = valid(e(b)) = valid(e1(b)) = v1(e1(b)) = true.

Reasoning about 5a© Show that INV holds at the end of macro.

INV : ∀i, j ∈ V ARS • inv dealloc(i, j) A© ∧ ∀i ∈ ARRV ARS • inv arr(i) B©

Proof. [Reasoning Deallocation Invariant A©]

Let i, j ∈ V ARS be the witness variables. We must show ∀i, j•inv dealloc(i, j)

holds true after TRANSFER DEALLOC(a, b) macro.

As inv dealloc(i , j) is symmetric, we can swap variable i and j without

breaking the invariant, so inv dealloc(i, j) ⇐⇒ inv dealloc(j, i) and the

reasoning just needs to consider three cases:

• Case 1: i , j includes b

Given j ≡ b (or equivalently i ≡ b), the invariant can be rewritten as:

inv dealloc(i, b) :(e(idealloc) ∧ e(bdealloc)∧

i 6≡ b) =⇒ e(i) 6= e(b)

(6.22)

Since e(bdealloc) is false in post-state, inv dealloc(i, b) holds true after the

macro.

• Case 2: i , j includes a but NOT b

Given i ≡ a ∧ j 6≡ b (or equivalently j ≡ a ∧ i 6≡ b), the invariant can be

rewritten as:

inv dealloc(a, j) :(e(adealloc) ∧ e(jdealloc)∧

j 6≡ a) =⇒ e(a) 6= e(j)

(6.23)

Because of e(adealloc) = e1(bdealloc) from 4©, we can rewrite the invariant:

inv dealloc(b, j) :(e1(bdealloc) ∧ e(jdealloc)

∧ j 6≡ a) =⇒ e(a) 6= e(j)

where j 6≡ b by the assumption of this case

(6.24)

105

Assume the preconditions of above implication (6.24) hold in the post-

state. We need to show e(a) 6= e(j):

– From e1(bdealloc) we conclude e(bdealloc) was true in line 8.

– From e(jdealloc) we conclude e(jdealloc) was true in line 8, because

j 6≡ a, b and the macro only changes a and b.

Because j 6≡ b and the inv dealloc(b, j) was true in line 8, we get e1(b) 6=

e1(j). Finally, by using e(a) = e1(b) from 4c© and e(j) = e1(j) from 4a©,

because j 6≡ b, we have e(a) 6= e(j) in the post-state. So inv dealloc(b, j)

is true after the macro.

• Case 3: i , j are both different from a, b

This macro does not change any variable, except for a and b, so the

invariant still holds.

2

Proof. [Reasoning Array Invariant B©]

We must show inv arr(i) : ∀i ∈ ARRV ARS • e(idealloc) =⇒ valid(e(i)) holds

true in the post-state.

Let i ∈ ARRV ARS such that e(idealloc) is true in the post-state and we

have to show valid(e(i)).

• Case 1: i 6≡ a

Because e(bdealloc) = false, we know i 6≡ b .

From 4a© because e(idealloc) = e1(idealloc) we get e1(idealloc) = true.

Because INV holds true at line 8

inv arr(i) : e1(i dealloc) =⇒ v1(e1(i))

We have v1(e1(i)) = true.

Therefore, since e(i) = e1(i) from 4b©, we conclude v1(e1(i)) = valid(e1(i)) =

valid(e(i)) by 4b©.

106

• Case 2: i ≡ a

We have e(idealloc) = e(adealloc) = e1(bdealloc) 4c©.

Because INV is true at line 9,

inv arr(b) : e1(bdealloc) =⇒ v1(e1(b))

So v1(e1(b)) = true

Also, e(a) = e1(b) from 4c©, so v1(e(a)) = v1(e1(b)). And by 4b©, we have

valid(e(i)) = valid(e(a)) = v1(e(a)) = v1(e1(b)) = true

2

Reasoning about 5b© Show ∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc ∧ bdealloc =⇒

e(i) = e0(i) is true in the post condition.

Proof. Let i ∈ V ARS be a variable such that i 6≡ a and i 6≡ adealloc. We must

show e(i) = e0(i).

From 4b© because i 6≡ a ∧ i 6≡ adealloc ∧ bdealloc, we have e(i) = e1(i).

From 2© and 3© because i 6≡ a ∧ i 6≡ adealloc, we have e0(i) = e1(i).

Therefore, by combining the above conditions i 6≡ a ∧ i 6≡ adealloc ∧ bdealloc,

we conclude e(i) = e0(i).

2

Reasoning about 5c© Show ∀d ∈ ADR • d 6= e0(a) =⇒ valid(d) = v0(d)

is true in the post condition.

Proof. Let d ∈ ADR be an address such that d 6= e0(a) and d 6= e(a). We

must show valid(d) = v0(d).

From 4b© we have valid(d) = v1(d).

From 2© and 3© because d 6= e0(a), we have v0(d) = v1(d).

Therefore, by combining the above conditions (d 6= e0(a)), we conclude

valid(d) = v1(d) = v0(d).

2

107

6.3.4 Function Call

The de-allocation analyser takes a function call at WyIL level as input and

checks the properties of each array parameter to determine the flag passed to

called function, and to indicate whether input parameter can be freed by the

callee. After the function call, the analyser also adds extra code to change

run-time de-allocation flags, depending on the aliasing of function return and

passed parameter.

To avoid dangling pointers occurring during function call, the analyser uses

below rules to decide the flag value:

• Single flag rule ensures that each integer typed array has only one de-

allocation flag. And our deallocation is acted on the entire array, so all

its sub arrays must be reclaimed back to system once the array is freed.

However, primitive integer or boolean typed parameter does not have

the de-allocation flag as they are allocated on stack memory and deleted

automatically by the system without any manual deallocation.

• Single function rule avoid double freeing problems by restricting each

array parameter is only deleted by one function.

6.3.4.1 RETAIN DEALLOC macro

1 #define RETAIN DEALLOC(a, b)
2 {
3 PRE DEALLOC(a);
4 a := func(b, false); // Do not free ’b’ at ’func’
5 a_dealloc := true;// No change to ’b dealloc’
6 }

RETAIN DEALLOC(a, b) can be expanded into as follows:

• PRE DEALLOC macro may be used to empty variable a and reset its flag;

• func function does not change or return parameter b. That means, b

is read-only and not aliased to the return of func function. Therefore,

func can borrow variable b without a copy and thus does not need to

de-allocate b.

108

• the return value of func function is passed and assigned to a, so the flag

is delegated to a

Assumption 4 For a function call a := func(b), we include a precondition

e(a) 6= e(b)

to ensure adealloc and bdealloc both can not be true when variable a and b are

aliased to the same memory space before the function call.

Also, we need an extra precondition

valid(e(b)) = true

to ensure the memory address pointed by variable b is valid and safe to perform

the operation. These preconditions prevent PRE DEALLOC(a) from freeing the

aliased memory space before the call and avoid null-pointer exception errors.

Assumption 5 The called function func takes variable b as an argument and

its procedure does not make any change to b nor return b, and does not de-

allocate b.

{valid(e(b)) ∧ (∀i ∈ V ARS • e(i) = e0(i)) ∧ (∀d ∈ ADR • valid(d) = v0(d))}

a := func(b, false);

{valid(e(b)) ∧ (∀i ∈ V ARS • i 6≡ a =⇒ e(i) = e0(i))∧

(∀d ∈ ADR • d 6= e(a) =⇒ valid(d) = v0(d)) ∧ fresh(a)}

Theorem 6.6 If INV holds before RETAIN DEALLOC(a, b) macro, then INV

still holds true after the macro, as below Hoare Logic:

{INV ∧ (∀i ∈ V ARS • e(i) = e0(i)) ∧ (∀d ∈ ADR • valid(d) = v0(d))

∧ e(a) 6= e(b) ∧ valid(e(b))}

RETAIN DEALLOC(a, b)

{INV ∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e0(i)) 6©∧
(∀d ∈ ADR • d 6= e0(a) ∧ d 6= e(a) =⇒ valid(d) = v0(d))∧

valid(e(b)) ∧ valid(e(a)) ∧ e(adealloc)}

109

1 {INV ∧ (∀i ∈ V ARS • e(i) = e0(i)) ∧ (∀d ∈ ADR • valid(d) = v0(d))∧
2 e(a) 6= e(b) ∧ valid(e(b))} 1©
3 PRE_DEALLOC(a);
4 {INV ∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e0(i))
5 ∧(∀d ∈ ADR • d 6= e0(a) =⇒ valid(d) = v0(d))∧
6 e0(a) 6= e(b) ∧ valid(e(b))} 2©
7

8 {INV ∧ valid(e(b)) ∧ (∀i ∈ V ARS • e(i) = e1(i))∧
9 (∀d ∈ ADR • valid(d) = v1(d))} 3©

10

11 a:=func(b, false);
12 a_dealloc:=true;
13

14 {(∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e1(i))∧
15 (∀d ∈ ADR • d 6= e(a) =⇒ valid(d) = v1(d))∧
16 fresh(a) 4a© ∧ valid(e(a)) ∧ valid(e(b)) ∧ e(adealloc)} 4©
17

18 {INV ∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e0(i))∧
19 (∀d ∈ ADR • d 6= e0(a) ∧ d 6= e(a) =⇒ valid(d) = v0(d))∧
20 valid(e(b)) ∧ valid(e(a)) ∧ e(adealloc)} 5©

Listing 6.5: Tableau of RETAIN DEALLOC(a, b) macro

Assumption 4a© Show fresh(a) is true in the post condition of the macro.

From 5, we know func does not return nor de-allocate parameter b, and also

the returning result a is not aliased to b or any other variable at caller site.

Therefore, we include fresh(a) in the post condition.

Reasoning about 1©. . . 5© Show Tableau 6.6 is almost the same as ADD DEALLOC

macro (see 6.3.3.1). Thus, we can follow the same idea to prove RETAIN DEALLOC.

6.3.4.2 RESET DEALLOC macro

1 #define RESET DEALLOC(a, b)
2 {
3 PRE DEALLOC(a);
4 a := func(b, false);// Do not free ’b’ at ’func’
5 if(a != b){
6 a_dealloc := true;// ’a’ and ’b’ are NOT aliased
7 }else{
8 a_dealloc := b_dealloc;// ’a’ and ’b’ are aliased
9 b_dealloc := false;

10 }
11 }

RESET DEALLOC(a, b) can be expanded as follows:

• pre-deallocation macro may empty variable a and reset its flag value;

110

• the called function func does not change parameter b but may pass back

b to caller site. So variable b can not be freed by func because it would

cause dangerous null-pointer de-reference error;

• func may or may not return variable b, so the aliasing of a and b at

caller site is not certain.

We discuss the function call with two cases:

– Case 1: b is returned and aliased to a

We transfer b’s flag to a’s flag.

– Case 2: b is NOT returned and NOT aliased to a

We assign the flag to variable a.

Assumption 6 For a function call a := func(b), we include a precondition

e(a) 6= e(b)

to ensure variable a and b both can not have true flag when they are aliased

to the same memory space before the function call.

Also, we need an extra precondition

valid(e(b)) = true

to ensure the memory address pointed by variable b is valid and safe to perform

the operation.

These preconditions prevent PRE DEALLOC(a) macro from freeing the aliased

memory space before the function call, and avoid null-pointer exception errors.

Assumption 7 The called function func takes b as an argument and its pro-

cedure does not change b, but may or may not return b so that func does not

de-allocate b. We define the behaviour of func as below:

{valid(e(b)) ∧ (∀i ∈ V ARS • e(i) = e0(i)) ∧ (∀d ∈ ADR • valid(d) = v0(d))}

a := func(b, false);

{valid(e(a)) ∧ (∀i ∈ V ARS • i 6≡ a =⇒ e(i) = e0(i))∧

(∀d ∈ ADR • d 6= e(a) =⇒ valid(d) = v0(d)) ∧ (e(a) = e(b) ∨ fresh(a))}

111

Theorem 6.7 If INV holds before RESET DEALLOC(a, b) macro, then INV

still holds true after the macro, as below Hoare Logic:

{INV ∧ (∀i ∈ V ARS • e(i) = e0(i))

∧ (∀d ∈ ADR • valid(d) = v0(d))

∧ e(a) 6= e(b) ∧ valid(e(b))}

RESET DEALLOC(a, b)

{INV ∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc ∧ i 6≡ bdealloc =⇒ e(i) = e1(i))

∧ (∀d ∈ ADR • d 6= e0(a) ∧ d 6= e(a) =⇒ valid(d) = v0(d))

∧ valid(e(b)) ∧ valid(e(a)) ∧ e(adealloc)}

1 {INV ∧ (∀i ∈ V ARS • e(i) = e0(i)) ∧ (∀d ∈ ADR • valid(d) = v0(d))∧
2 e(a) 6= e(b) ∧ valid(e(b))} 1©
3 PRE_DEALLOC(a);
4 {INV ∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e0(i))
5 ∧(∀d ∈ ADR • d 6= e0(a) =⇒ valid(d) = v0(d))∧
6 e0(a) 6= e(b) ∧ valid(e(b))} 2©
7

8 {INV ∧ valid(e(b)) ∧ (∀i ∈ V ARS • e(i) = e1(i))∧
9 (∀d ∈ ADR • valid(d) = v1(d))} 3©

10

11 a:=func(b, false);
12 if(a != b) {
13 a_dealloc := true;
14 {(∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e1(i)) 4a©∧
15 (∀d ∈ ADR • d 6= e(a) =⇒ valid(d) = v1(d)) 4b©∧
16 (e(a) 6= e(b) ∧ fresh(a) ∧ valid(e(a)) ∧ e(adealloc) 4c©}
17

18 {INV 5a© ∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e1(i))∧
19 (∀d ∈ ADR • d 6= e(a) =⇒ valid(d) = v1(d))∧
20 (e(a) 6= e(b) ∧ valid(e(a)) ∧ e(adealloc)}
21 }else{
22 a_dealloc := b_dealloc;
23 b_dealloc := false;
24 {(∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc ∧ i 6≡ bdealloc =⇒ e(i) = e1(i)) 4d©∧
25 (∀d ∈ ADR • d 6= e(a) =⇒ valid(d) = v1(d)) 4e©∧
26 e(a) = e(b) ∧ valid(e(a)) ∧ e(adealloc) = e1(bdealloc) ∧ ¬e(bdealloc) 4f©}
27

28 {INV 5b©∧
29 (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc ∧ i 6≡ bdealloc =⇒ e(i) = e1(i))∧
30 (∀d ∈ ADR • d 6= e(a) =⇒ valid(d) = v1(d))∧
31 e(a) = e(b) ∧ valid(e(a)) ∧ valid(e(b))}
32 }
33

34 {INV 6a©∧
35 (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc ∧ i 6≡ bdealloc =⇒ e(i) = e0(i)) 6b©∧
36 (∀d ∈ ADR • d 6= e0(a) ∧ d 6= e(a) =⇒ valid(d) = v0(d)) 6c©∧
37 valid(e(b)) ∧ valid(e(a)))}

Listing 6.6: Tableau of RESET DEALLOC(a, b) macro

112

Assumption 1© Assume e(a) 6= e(b) and valid(e(b)) are true in the entry

condition of the macro as we justify the precondition at start of an assignment

(see Definition 6).

Reasoning about 2© Show that e0(a) 6= e(b) and valid(e(b)) are true in

post condition of the pre-deallocation macro (refer to Theorem 6.2).

Assumption 3© Define e1 (i) and v1 (d) to store the addresses and validity

of variables respectively after PRE DEALLOC macro.

Reasoning about 4a©, 4b© and 4c© Show function return a is not aliased

with parameter b. From Assumption 7, we have below conditions in the post

state.

• valid(e(a)), e(a) 6= e(b) and fresh(a) are included since function return

is a valid address and different from parameter b (refer to 6);

• because only variable a and adealloc are changed, the values of all other

variables remain unchanged ∀i ∈ V ARS • i 6≡ a∧ i 6≡ adealloc =⇒ e(i) =

e1(i) and

• the validity of all array variables, apart from a, should be the same before

func function call ∀d ∈ ADR • d 6= e(a) =⇒ valid(d) = v1(d)

Reasoning about 4d©, 4e© and 4f© Show function return a is aliased with

parameter b. From Assumption 7, we have below conditions in the post state.

• valid(e(a)) comes from Assumption 7; e(a) = e(b) is included as a and

b are aliased from IF branch;

• because only variable a, adealloc and bdealloc are changed, the values of all

other variables remain unchanged, ∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒

e(i) = e1(i);

113

• from Assumption 7 and no malloc/free code from line 21 to 22, the

validity of all array variables, apart from a, should be the same as before

func function call ∀d ∈ ADR • d 6= e(a) =⇒ valid(d) = v1(d);

• variable b’s flag is transferred to a, so we have e(adealloc) = e1(bdealloc) in

line 21 and ¬e(bdealloc) in line 22.

Reasoning about 5a© Show that INV holds at the end of IF branch.

INV : ∀i, j ∈ V ARS • inv dealloc(i, j) A© ∧ ∀i ∈ ARRV ARS • inv arr(i) B©

Proof. [Reasoning Deallocation Invariant A©]

Let i, j ∈ V ARS be the witness variables. We must show that ∀i, j•inv dealloc(i, j)

holds true at 5a©. Consider the following cases:

• Case 1: i , j includes both a and b

Given i ≡ a ∧ j ≡ b (or equivalently j ≡ a ∧ i ≡ b), the invariant can be

rewritten as:

inv dealloc(a, b) : (e(adealloc) ∧ e(bdealloc) ∧ a 6≡ b) =⇒ e(a) 6= e(b)

By e(a) 6= e(b) from 4c©, we can conclude inv dealloc(a, b) is true at 5a©.

• Case 2: i , j includes a but NOT b

Given i ≡ a ∧ j 6≡ b (or equivalently j ≡ a ∧ i 6≡ b), the invariant can be

rewritten as:

inv dealloc(a, j) : e(adealloc) ∧ e(jdealloc) ∧ j 6≡ a =⇒ e(j) 6= e(a)

Assume that all the preconditions of inv dealloc(a, j) are true, including

j 6≡ a. Since we get fresh(a) at 4c© and j 6≡ a we have e(j) 6= e(a).

Therefore, we can conclude inv dealloc(a, j) is true at 5a©

• Case 3: i , j does NOT include a

Given j 6≡ a (or equivalently i 6≡ a), the invariant is as below:

inv dealloc(b, j) : e(bdealloc) ∧ e(jdealloc) ∧ b 6≡ j =⇒ e(b) 6= e(j)

114

Because b 6≡ a and j 6≡ a from the given assumptions, and only a and

adealloc are changed, we know variable j and jdealloc and b and bdealloc

therefore stay unchanged at 5a©.

Since inv dealloc(b, j) was true at 3©, we have inv dealloc(b, j) in at 5a©.

2

Proof. [Reasoning Array Invariant B©]

We must show ∀i ∈ ARRV ARS • e(idealloc) =⇒ valid(e(i)) holds true in the

post-state.

Let i ∈ ARRV ARS such that e(idealloc) is true in the post-state and we

have to show valid(e(i)).

• Case 1: i 6≡ a

We know e(i) 6= e(a) because of fresh(a) from 4c©.

From inv arr(i) at 3©, we have

e1(idealloc) =⇒ v1(e1(i))

From 4a©, we have e(i) = e1(i) because i 6≡ a ∧ i 6≡ adealloc.

Since e(idealloc) is assumed to be true from given assumption, e1(idealloc)

is true in the post state because i 6≡ a. So we get

v1(e1(i)) = true

From 4b©, we have valid(e(i)) = v1(e(i)) because e(i) 6= e(a)

Therefore, the validity must remain unchanged in the post state.

valid(e(i)) = v1(e(i)) = v1(e1(i)) = true

• Case 2: i ≡ a

inv arr(a) : e(adealloc) =⇒ valid(e(a)) holds true because we have

valid(e(a)) in 4c©.

2

115

Reasoning about 5b© Show that INV holds at the end of Else branch.

INV : ∀i, j ∈ V ARS • inv dealloc(i, j) A© ∧ ∀i ∈ ARRV ARS • inv arr(i) B©

Proof. [Reasoning Deallocation Invariant A©]

Let i, j ∈ V ARS be the witness variables. We must show ∀i, j•inv dealloc(i, j) :

e(idealloc) ∧ e(jdealloc) ∧ i 6≡ j =⇒ e(i) 6= e(j) holds true at 5b©.

As inv dealloc(i , j) is symmetric, we can swap variable i and j without

breaking the invariant, so inv dealloc(i, j) ⇐⇒ inv dealloc(j, i) and the

reasoning just needs to consider three cases:

• Case 1: i , j includes b

Given j ≡ b (or equivalently i ≡ b), the invariant can be rewritten as:

inv dealloc(i, b) : (e(idealloc) ∧ e(bdealloc) ∧ i 6≡ b) =⇒ e(i) 6= e(b)

Since e(bdealloc) is false by 4f©, inv dealloc(i, b) holds true after the macro.

• Case 2: i , j includes a but NOT b

Given i ≡ a ∧ j 6≡ b (or equivalently j ≡ a ∧ i 6≡ b), the invariant can be

rewritten as:

inv dealloc(a, j) : (e(adealloc) ∧ e(jdealloc) ∧ j 6≡ a) =⇒ e(a) 6= e(j)

Because of e(adealloc) = e1(bdealloc) from 4f©, this is the same as

inv dealloc(a, j) : (e1(bdealloc) ∧ e(jdealloc) ∧ j 6≡ a) =⇒ e(a) 6= e(j)

where j 6≡ b by the assumption of this case.

Assume the preconditions of above implication hold in the post-state.

We need to show e(a) 6= e(j):

– From e1(bdealloc) we conclude e(bdealloc) was true at 3©.

– From e(jdealloc) we conclude e(jdealloc) was true at 3©, because j 6≡

a, b and the macro only changes adealloc and bdealloc (and a).

116

Because j 6≡ b and inv dealloc(b, j) was true at 3©, we get e1(b) 6= e1(j).

Finally, by using e(a) = e(b) = e1(b) from 4f© and e(j) = e1(j) from

4d©, because j 6≡ a and j 6≡ b, we have e(a) 6= e(j) in the post-state. So

inv dealloc(b, j) is true at 5b©.

• Case 3: i , j does NOT include a or b

The instructions of reset macro do not change anything, except for adealloc

and bdealloc and a. That means, e(idealloc) = e1(idealloc) and e(i) = e1(i)

for i 6≡ a ∧ i 6≡ adealloc ∧ i 6≡ bdealloc. Since inv dealloc(i , j) was true in

3©, we therefore can conclude inv dealloc(i , j) is still true at 5b©.

2

Proof. [Reasoning Array Invariant B©]

We must show inv arr(i) : ∀i ∈ ARRV ARS • e(idealloc) =⇒ valid(e(i)) holds

true in the post-state.

Let i ∈ ARRV ARS such that e(idealloc) is true at 5b© and we have to show

valid(e(i)).

• Case 1: e(i) 6= e(a) (thus i 6≡ a)

We get

– valid(e(i)) = v1(e(i)) from 4e© because e(i) 6= e(a)

– e(i) = e1(i) from 4d© because i 6≡ a

– e1(idealloc) = e(idealloc) = true because i 6≡ a from assumption and

i 6≡ b from e(idealloc) = true and e(bdealloc) = false.

– inv arr(i) at 5b©: e1(idealloc) =⇒ v1(e1(i)), so v1(e1(i)) = true.

With above, we conclude

valid(e(i)) = v1(e(i)) = v1(e1(i)) = true

• Case 2: e(i) = e(a)

We have valid(e(i)) = valid(e(a)) = true from 4f©

2

117

Reasoning about 6a© Show INV holds true in the post condition of reset

macro as INV is true at both if branch (see 5a©) and else branches (see 5b©).

Reasoning about 6b© Show ∀i ∈ V ARS•i 6≡ a∧i 6≡ adealloc∧i 6≡ bdealloc =⇒

e(i) = e0(i) is true in the post condition.

Proof. Let i ∈ V ARS be a variable such that i 6≡ a and i 6≡ adealloc and

i 6≡ bdealloc. We must show e(i) = e0(i).

From 4a© and 4d© because i 6≡ a ∧ i 6≡ adealloc ∧ i 6≡ bdealloc, we have e(i) =

e1(i).

From 2© and 3© because i 6≡ a ∧ i 6≡ adealloc, we have e0(i) = e1(i).

Therefore, by combining the above conditions i 6≡ a ∧ i 6≡ adealloc ∧ i 6≡

bdealloc, we conclude e(i) = e0(i).

2

Reasoning about 6c© Show ∀d ∈ ADR • d 6= e0(a) ∧ d 6= e(a) =⇒

valid(d) = v0(d) is true in the post condition.

Proof. Let d ∈ ADR be an address such that d 6= e0(a) and d 6= e(a). We

must show valid(d) = v0(d).

From 4b© and 4e© because d 6= e(a), we have valid(d) = v1(d).

From 2© and 3© because d 6= e0(a), we have v0(d) = v1(d).

Therefore, by combining the above conditions (d 6= e0(a) ∧ d 6= e(a)), we

conclude valid(d) = v1(d) = v0(d).

2

6.3.4.3 CALLER DEALLOC macro

1 #define CALLER DEALLOC(a, b)
2 {
3 PRE DEALLOC(a);
4 tmp_dealloc := false;// Do not free copied ‘b’ at ‘func’
5 a := func(tmp := copy(b), tmp_dealloc);
6 if (a != tmp) {// Possible memory leak on ‘tmp’
7 free(tmp);
8 }
9 a_dealloc := true;

10 }

118

CALLER DEALLOC(a, b) can be expanded into below:

• PRE DEALLOC(a) may be used to empty variable a and reset its flag;

• Parameter b may be changed by the called function func. Since b’s value

will be used after the call, b is copied to tmp first and then passed to

func. In doing so, we can eliminate the side effects from function calls.

• Variable tmp is or may not be returned by func, so tmp will not be de-

allocated by the called function func. If tmp and a are not aliased and

different, then function func does not return variable tmp and thus tmp

is the extra copy and can be safely deleted at caller site.

• Variable a is assigned with true flag to give it the responsible to free the

allocated memory space.

Assumption 8 For a function call a := func(copy(b)), we include a precon-

dition

e(a) 6= e(b)

to ensure variable a and b both can not have true flag when they are aliased

to the same memory space before the function call.

Also, we need an extra precondition

valid(e(b)) = true

to ensure the memory address pointed by variable b is valid and safe to perform

the operation.

These preconditions stop PRE DEALLOC(a) macro freeing the aliased mem-

ory space of variable b before the function call, and avoid segmentation errors

when copying variable b.

We also include an assumption

a 6≡ tmp

to ensure tmp and a have different variable names. By adding this assumption,

we can be sure variable tmp does not duplicate the name of variable a so avoids

119

potential variable shadowing, which uses the same variable name in different

scopes of the macro.

Assumption a 6≡ tmp stays consistently within the macro because we use a

naming rule to make variable tmp distinct from variable a. This assumption

is found by automatic prover Boogie (see Section 6.4).

Assumption 9 The called function func takes tmp as an argument, and may

change tmp but may return tmp to the caller site. We define the behaviour of

function func as below:

{a 6≡ tmp ∧ valid(e(tmp))

∧ (∀i ∈ V ARS • e(i) = e0(i))

∧ (∀d ∈ ADR • valid(d) = v0(d))}

a := func(tmp, false);

{a 6≡ tmp ∧ (fresh(a) ∨ e(a) = e(tmp)) ∧ valid(e(a))

∧ (∀i ∈ V ARS • i 6≡ a =⇒ e(i) = e0(i))

∧ (∀d ∈ ADR • d 6= e(a) =⇒ valid(d) = v0(d))}

Theorem 6.8 If INV holds before CALLER DEALLOC(a, b) macro, then INV

still holds true after the macro, as below Hoare Logic:

{a 6≡ tmp ∧ INV

∧ (∀i ∈ V ARS • e(i) = e0(i))

∧ (∀d ∈ ADR • valid(d) = v0(d))}

∧ e(a) 6= e(b) ∧ valid(e(b))

CALLER DEALLOC(a, b)

{a 6≡ tmp ∧ INV

(∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc ∧ i 6≡ tmp ∧ i 6≡ tmpdealloc =⇒ e(i) = e0(i))

∧ (∀d ∈ ADR • d 6= e0(a) ∧ d 6= e(a) ∧ d 6= e(tmp) =⇒ valid(d) = v0(d))

∧ valid(e(a)) ∧ e(adealloc)}

120

1 {a 6≡ tmp ∧ INV ∧
2 (∀i ∈ V ARS • e(i) = e0(i)) ∧ (∀d ∈ ADR • valid(d) = v0(d))∧
3 e(a) 6= e(b) ∧ valid(e(b))} 1©
4 PRE_DEALLOC(a);
5 {a 6≡ tmp ∧ INV ∧ e0(a) 6= e(b) ∧ valid(e(b))∧
6 (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e0(i))
7 ∧(∀d ∈ ADR • d 6= e0(a) =⇒ valid(d) = v0(d))} 2©
8

9 {a 6≡ tmp ∧ INV ∧ valid(e(b)) ∧ (∀i ∈ V ARS • e(i) = e1(i))∧
10 (∀d ∈ ADR • valid(d) = v1(d))} 3©
11 tmp := copy(b);
12 tmp_dealloc:=false;
13 {a 6≡ tmp ∧ valid(e(tmp)) ∧ fresh(tmp) ∧ ¬e(tmpdealloc)∧
14 (∀i ∈ V ARS • i 6≡ tmp ∧ i 6≡ tmpdealloc =⇒ e(i) = e1(i))∧
15 (∀d ∈ ADR • d 6= e(tmp) =⇒ valid(d) = v1(d))} 4©
16

17 {a 6≡ tmp ∧ valid(e(tmp)) ∧ fresh(tmp) ∧ ¬e(tmpdealloc)∧
18 (∀i ∈ V ARS • e(i) = e2(i))∧
19 (∀d ∈ ADR • valid(d) = v2(d))} 5©
20 a := func(tmp, tmp_dealloc);
21 {a 6≡ tmp ∧ (e(a) = e(tmp) ∨ fresh(a)) ∧ valid(e(a)) ∧ valid(e(tmp))∧
22 ¬e(tmpdealloc) ∧ (∀i ∈ V ARS • i 6≡ a =⇒ e(i) = e2(i))∧
23 (∀d ∈ ADR • d 6= e(a) =⇒ valid(d) = v2(d))} 6©
24 if (a != tmp) {
25 {a 6≡ tmp ∧ (e(a) 6= e(tmp) ∧ fresh(a) ∧ valid(e(a)) ∧ ¬e(tmpdealloc)∧
26 (∀i ∈ V ARS • e(i) = e3(i))∧
27 (∀d ∈ ADR • valid(d) = v3(d))} 7a©
28

29 free(tmp);
30

31 {a 6≡ tmp ∧ (e(a) 6= e(tmp) ∧ fresh(a) ∧ valid(e(a)) ∧ ¬e(tmpdealloc)∧
32 (∀i ∈ V ARS • i 6≡ a =⇒ e(i) = e2(i))∧
33 (∀d ∈ ADR • d 6= e(a) ∧ d 6= e(tmp) =⇒ valid(d) = v2(d))} 7b©
34

35 }else{
36 // Do nothing
37

38 {a 6≡ tmp ∧ e(a) = e(tmp) ∧ valid(e(a)) ∧ valid(e(tmp)) ∧ ¬e(tmpdealloc)∧
39 (∀i ∈ V ARS • i 6≡ a =⇒ e(i) = e2(i))∧
40 (∀d ∈ ADR • d 6= e(a) =⇒ valid(d) = v2(d))} 7c©
41

42 }
43

44 {a 6≡ tmp ∧ valid(e(a)) ∧ ¬e(tmpdealloc)∧
45 (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ tmp ∧ i 6≡ tmpdealloc =⇒ e(i) = e1(i))∧
46 (∀d ∈ ADR • d 6= e(a) ∧ d 6= e(tmp) =⇒ valid(d) = v1(d))∧
47 (∀i ∈ ARRV ARS • i 6≡ a ∧ i 6≡ tmp =⇒ e(i) 6= e(a))} 8©
48

49 a_dealloc := true;
50 {a 6≡ tmp ∧ e(adealloc) ∧ valid(e(a)) ∧ ¬e(tmpdealloc)∧
51 (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ tmp ∧ i 6≡ adealloc ∧ i 6≡ tmpdealloc
52 =⇒ e(i) = e1(i)) 9a©∧
53 (∀d ∈ ADR • d 6= e(a) ∧ d 6= e(tmp) =⇒ valid(d) = v1(d)) 9b©∧
54 (∀i ∈ ARRV ARS • i 6≡ a ∧ i 6≡ tmp =⇒ e(i) 6= e(a)) 9c©} 9©
55

56 {a 6≡ tmp ∧ INV 10a© ∧ valid(e(a)) ∧ e(adealloc)∧
57 (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc ∧ i 6≡ tmp ∧ i 6≡ tmpdealloc

=⇒ e(i) = e0(i))10b©∧
58 (∀d ∈ ADR • d 6= e0(a) ∧ d 6= e(a) ∧ d 6= e(tmp) =⇒ valid(d) = v0(d))10c©

Listing 6.7: Tableau of CALLER DEALLOC(a, b) macro

121

Assumption 1© Assume e(a) 6= e(b) and valid(e(b)) are true in the entry

condition of the macro as we provide evidence for the precondition at start of

Assumption 8.

Reasoning about 2© e0(a) 6= e(b) and valid(e(b)) are true in post condition

of the pre-deallocation macro (refer to Theorem 6.2).

Assumption 3© Define e1 (i) and v1 (d) to store the variables addresses and

their validity respectively after PRE DEALLOC macro.

Reasoning about 4© Show valid(e(tmp)) and fresh(tmp) and ¬e(tmpdealloc)

are true in the post-condition.

valid(e(tmp)) ∧ fresh(tmp) is included because we make a fresh copy

of variable b to tmp in line 11, and from line 12 we assign a false flag to

tmp dealloc.

Assumption 5© Define e2 (i) as the value of variable i at line 17 before the

function call. And we also define v2 (d) as the validity of address d at line 17.

And a 6≡ tmp is included from given Assumption 8 to ensure actual parameter

tmp and function return a are not aliased before the call, so that we will not

introduce side effects to called function.

Assumption 6© (e(a) = e(tmp) ∨ fresh(a)) ∧ valid(e(a) holds true be-

cause of function behaviour (see Assumption 9). From line 17 valid(e(tmp))∧

¬e(tmpdealloc) is included in the post state.

Assumption 7a© Define e3 (i) to store e2 (i) values of variable i before free

statement at line 29. Also, we define v3 (d) to store v2 (i) validity of address d .

122

Reasoning about 7b© Show

{a 6≡ tmp ∧ e(a) 6= e(tmp) ∧ fresh(a) ∧ valid(e(a)) ∧ ¬e(tmpdealloc)

∀i ∈ V ARS • i 6≡ a =⇒ e(i) = e2(i)∧

∀d ∈ ADR • d 6= e(a) ∧ d 6= e(tmp) =⇒ valid(d) = v2(d)}

Proof. From 7a© to 7b© all the other variables, except for tmp, are unchanged

and thus we can include e(a) 6= e(tmp)∧fresh(a)∧valid(e(a))∧¬e(tmpdealloc)

in the post condition. And a 6≡ tmp is included to the post state because of

given assumption.

By combining 6© and 7a©, we get e(i) = e3(i) = e2(i) except for i 6≡ a.

We have ¬valid(e(tmp)) in the post state of free(tmp) statement, so we

can get v3(d) = v2(d) for d 6= e(tmp). Also, we have v2(d) = v3(d) for d 6= e(a)

from 6© and 7a©.

We can write the validity as follows:

valid(d) = v3(d) = v2(d) for d 6= e(a) ∧ d 6= e(tmp)

2

Reasoning about 7c© Show

{a 6≡ tmp ∧ e(a) = e(tmp) ∧ valid(e(a)) ∧ valid(e(tmp)) ∧ ¬e(tmpdealloc)

∀i ∈ V ARS • i 6≡ a =⇒ e(i) = e2(i)∧

∀d ∈ V ARS • d 6= e(a) =⇒ valid(d) = v2(d)}

Proof. Because it is in ELSE branch, we have e(a) = e(tmp) in the post

condition. And we can include valid(e(a)) ∧ valid(e(tmp)) ∧ ¬e(tmpdealloc) as

those are not changed.

We can just repeat valid(d) = v2(d) for d 6= e(a) and e(i) = e2(i) for i 6≡ a

from 6© because they have no change in ELSE branch. 2

123

Reasoning about 8© We have the post-condition of IF branch:

{a 6≡ tmp ∧ e(a) 6= e(tmp) ∧ fresh(a) ∧ valid(e(a))∧ 6= e(tmpdealloc)

∀i ∈ V ARS • i 6≡ a =⇒ e(i) = e2(i)∧

∀d ∈ V ARS • d 6= e(a) ∧ d 6= e(tmp) =⇒ valid(d) = v2(d)} 7b©

and ELSE branch :

{a 6≡ tmp ∧ e(a) = e(tmp) ∧ valid(e(a)) ∧ valid(e(tmp))∧ 6= e(tmpdealloc)

∀i ∈ V ARS • i 6≡ a =⇒ e(i) = e2(i)∧

∀d ∈ V ARS • d 6= e(a) =⇒ valid(d) = v2(d)} 7c©

In the post state of IF and ELSE branches, we get 7b© ∨ 7c©. So we must

show this implies:

{a 6≡ tmp ∧ valid(e(a)) ∧ ¬e(tmpdealloc)∧

(∀i ∈ V ARS • i 6≡ a =⇒ e(i) = e2(i))∧

(∀d ∈ ADR • d 6= e(a) ∧ d 6= e(tmp) =⇒ valid(d) = v2(d))∧

(∀i ∈ ARRV ARS • i 6≡ a ∧ i 6≡ tmp =⇒ e(i) 6= e(a))} *©

From 7b© and 7c©, we have valid(e(a)) ∧ ¬e(tmpdealloc) in the post state.

Also, we have common ∀i ∈ V ARS • i 6≡ a =⇒ e(i) = e2(i)).

By combining the validity at 7b© and 7c©, we have valid(d) = v2(d) for

addresses d 6≡ e(a) ∧ d 6≡ e(tmp).

Consider 7b© and 7c© separately. We can show:

∀i ∈ ARRV ARS • i 6≡ a ∧ i 6≡ tmp =⇒ e(i) 6= e(a)

Proof. Let i ∈ ARRV ARS such that i 6≡ a and i 6≡ tmp.

• Case 7b©
We have fresh(a) at 7b©:

fresh(a) : ∀i ∈ ARRV ARS • i 6≡ a =⇒ e(i) 6= e(a)

And because a 6≡ tmp, we get

∀i ∈ ARRV ARS • i 6≡ tmp ∧ i 6≡ a =⇒ e(i) 6= e(a)

124

• Case 7c©
fresh(tmp) at 5© means:

∀i ∈ ARRV ARS • i 6≡ tmp =⇒ e2(i) 6= e2(tmp) A©

From 7c©, we have

e(a) = e(tmp) B©
(a 6≡ tmp) ∧ (∀i ∈ V ARS • i 6≡ a =⇒ e(i) = e2(i)) C©

Proof. Let i ∈ ARRV ARS such that i 6≡ a and i 6≡ tmp.

By C©, e(i) = e2(i) and also e(tmp) = e2(tmp) because tmp 6≡ a.

By A©, e2(i) 6= e2(tmp)

Therefore,

e(i)
C©

== e2(i)
A©
6= e2(tmp)

C©
== e(tmp)

B©
== e(a)

Since i was chosen arbitrarily:

∀i ∈ ARRV ARS • i 6≡ tmp ∧ i 6≡ a =⇒ e(i) 6= e(a)

2

2

Now we can show *© implies 8©:

{a 6≡ tmp ∧ valid(e(a)) ∧ ¬e(tmpdealloc)∧

(∀i ∈ V ARS • i 6≡ a =⇒ e(i) = e2(i))∧

(∀d ∈ ADR • d 6= e(a) ∧ d 6= e(tmp) =⇒ valid(d) = v2(d))∧

(∀i ∈ ARRV ARS • i 6≡ a ∧ i 6≡ tmp =⇒ e(i) 6= e(a))} *©
=⇒ {a 6≡ tmp ∧ valid(e(a)) ∧ ¬e(tmpdealloc)∧

(∀i ∈ V ARS • i 6≡ a ∧ i 6≡ tmp ∧ i 6≡ tmpdealloc =⇒ e(i) = e1(i))∧

(∀d ∈ ADR • d 6= e(a) ∧ d 6= e(tmp) =⇒ valid(d) = v1(d))∧

∀i ∈ ARRV ARS • i 6≡ a ∧ i 6≡ tmp =⇒ e(i) 6= e(a)} 8©

125

Proof. Let i ∈ V ARS such that i 6≡ a and i 6≡ tmp and i 6≡ tmpdealloc. Then

we have e1(i) = e2(i) because i 6≡ tmp ∧ i 6≡ tmpdealloc at 4©, and e(i) = e2(i)

because i 6≡ a at *©. Therefore, we have:

∀i ∈ V ARS • i 6≡ a ∧ i 6≡ tmp ∧ i 6≡ tmpdealloc =⇒ e(i) = e2(i) = e1(i)

Let d 6= e(a) and d 6= e(tmp). We must show valid(d) = v1(d) is true in

the post state.

By 7c©, we have valid(d) = v2(d)...(i)

By 4© + 5©, we have d 6= e2(tmp) =⇒ v2(d) = v1(d). By 7c©, ∀i ∈

V ARS • i 6≡ a =⇒ e(i) = e2(i), because tmp 6≡ a, we have e(tmp) = e2(tmp).

For d 6= (e(tmp) = e2(tmp)) (means d 6= e2(tmp)) we get v2(d) = v1(d)...(ii)

By combining (i) and (ii), for d 6= e(a) ∧ d 6= e(tmp) we have

valid(d) = v2(d) = v1(d)

The other conditions are unchanged so can be moved to 8© as we do not

include any extra statement to change any value. 2

Assumption 9© e(adealloc) is included in the post condition because the

assignment changes adealloc value. In addition, we include i 6≡ adealloc to the

predicate of e(i) = e1(i) to reflect this change.

Reasoning about 10a© Show that INV holds at the end of macro.

INV : ∀i, j ∈ V ARS • inv dealloc(i, j) A© ∧ ∀i ∈ ARRV ARS • inv arr(i) B©

By 9©, we assume a 6≡ tmp in the post state.

Proof. [Reasoning Deallocation Invariant A©]

We must show ∀i, j •inv dealloc(i, j) : e(idealloc)∧e(jdealloc)∧i 6≡ j =⇒ e(i) 6=

e(j) holds true at 10a©.

Let i, j ∈ ARRV ARS such that e(idealloc) and e(jdealloc) and i 6≡ j.

Then i 6≡ tmp and j 6≡ tmp because e(tmpdealloc) is false at 9©.

126

As inv dealloc(i , j) is symmetric, we can swap variable i and j so inv dealloc(i, j) ⇐⇒

inv dealloc(j, i) and the reasoning just needs to consider two cases:

• Case 1: i , j includes a

Given i ≡ a (or equivalently j ≡ a), the invariant can be rewritten as:

inv dealloc(a, j) : (e(adealloc) ∧ e(jdealloc) ∧ a 6≡ j) =⇒ e(a) 6= e(j)

From 9c©, we have j 6≡ a and j 6≡ tmp implies e(j) 6= e(a) = e(i), which

makes inv dealloc(a, j) true in the post state.

• Case 2: i , j does NOT include a

Given i 6≡ a and j 6≡ a and since i 6≡ tmp∧ j 6≡ tmp, we have e(i) = e1(i)

and e(j) = e1(j) from 9a©.

Because invariant INV holds at 3©, inv dealloc(i , j) is true for e1 and

thus we get

e(i) = e1(i) 6= e1(j) = e(j)

2

Proof. [Reasoning Array Invariant B©]

We must show ∀i ∈ ARRV ARS • e(idealloc) =⇒ valid(e(i)) holds true in the

post-state.

Let i ∈ ARRV ARS such that e(idealloc) is true in the post-state, and we

have to show valid(e(i)).

• Case 1: e(i) = e(a)

e(adealloc) =⇒ valid(e(a)) holds true, because valid(e(a)) at 9©.

• Case 2: e(i) = e(tmp)

e(tmpdealloc) =⇒ valid(e(tmp)) is true because ¬e(tmpdealloc) at 9©.

• Case 3: e(i) 6= e(a) and e(i) 6= e(tmp) (implies i 6≡ a and i 6≡ tmp)

127

From inv arr(i) at 3©, we have e1(idealloc) =⇒ v1(e1(i))

From 9a©, we have e(i) = e1(i) because i 6≡ a∧ i 6≡ tmp∧ i 6≡ adealloc∧ i 6≡

tmpdealloc.

Since e(idealloc) is assumed to be true, e1(idealloc) is true in the post state

because i 6≡ a and i 6≡ tmp by 9a©. So we get

v1(e1(i)) = true

From 9b©, we have valid(e(i)) = v1(e(i)) because e(i) 6= e(a) ∧ e(i) 6=

e(tmp).

Therefore, the validity must remain unchanged as 3©.

valid(e(i)) = v1(e(i)) = v1(e1(i)) = true

2

Reasoning about 10b© Show ∀i ∈ V ARS • i 6≡ a∧ i 6≡ adealloc∧ i 6≡ tmp∧ i 6≡

tmpdealloc =⇒ e(i) = e0(i) is true in the post condition.

Proof. Let i ∈ V ARS be a variable such that i 6≡ a, i 6≡ adealloc, i 6≡ tmp and

i 6≡ tmpdealloc. We must show e(i) = e0(i).

From 9a© because i 6≡ a ∧ i 6≡ tmp ∧ i 6≡ adealloc ∧ i 6≡ tmpdealloc, we have

e(i) = e1... (a)

From 3© and 2©, because i 6≡ a and i 6≡ adealloc, we get e1(i) = e0... (b)

By combining (a) and (b) with the predicate i 6≡ a, i 6≡ adealloc, i 6≡ tmp

and i 6≡ tmpdealloc we can therefore conclude

e(i) = e1(i) = e0(i)

2

128

Reasoning about 10c© Show ∀d ∈ ADR • d 6= e0(a) ∧ d 6= e(a) ∧ d 6=

e(tmp) =⇒ valid(d) = v0(d) is true in the post condition.

Proof. Let d ∈ ADR be an address such that d 6= e0(a) and d 6= e(a) and

d 6= e(tmp). We must show valid(d) = v0(d).

From 9b© because d 6= e(a) ∧ d 6= e(tmp), we have valid(d) = v1(d)... (a)

From 3© and 2©, we get v1(d) = v0(d) because d 6= e0(a)... (b)

By combining (a) and (b), because d 6= e(a) ∧ d 6= e(tmp) ∧ d 6= e0(a), we

can therefore conclude

valid(d) = v1(d) = v0(d)

2

6.3.4.4 CALLEE DEALLOC macro

1 #define CALLEE DEALLOC(a, b)
2 {
3 PRE DEALLOC(a);
4 tmp := copy(b);
5 a := func(tmp, true);// Free copied ‘b’ at ‘func’
6 tmp_dealloc = false;
7 a_dealloc := true;// No change to ‘b dealloc’
8 }

CALLEE DEALLOC(a, b) can be expanded into below:

• pre-deallocation macro may be used to empty variable a and reset its

flag value;

• parameter b may be changed by the called function func and its value will

be used afterwards. To ensure the immutable values in Whiley functional

programming, the parameter b is copied to tmp first and passed to func,

so that we can eliminate the side effects from function calls.

Since tmp is not returned by func, it can be de-allocated safely by func

to avoid the memory leaks.

• func does not return variable b, so a and b are not aliased at caller site.

129

Assumption 10 For a function call a := func(copy(b)), we include a pre-

condition

e(a) 6= e(b)

to ensure variable a and b both can not have true flag when they are aliased

to the same memory space before the function call. Also, we need an extra

precondition

valid(e(b)) = true

to ensure the memory address pointed by variable b is valid and safe to perform

the operation.

We also include an assumption

a 6≡ tmp

to ensure tmp and a have different variable names. By adding this assumption,

we can be sure there is no potential variable shadowing, so we can safely assign

the value to deallocation run-time flag, such as a dealloc and tmp dealloc.

Assumption 11 The called function func takes tmp as an argument and its

procedure may or may not change tmp, but does not return tmp and de-allocates

tmp. We define the behaviour of func as below:

{a 6≡ tmp ∧ valid(tmp)

∧ (∀i ∈ V ARS • e(i) = e0(i))

∧ (∀d ∈ ADR • valid(d) = v0(d))}

a := func(tmp, true);

{a 6≡ tmp

∧ (∀i ∈ V ARS • i 6≡ a =⇒ e(i) = e0(i))

∧ (∀d ∈ ADR • d 6= e(a) =⇒ valid(d) = v0(d))

∧ fresh(a) ∧ ¬valid(e(tmp)) ∧ valid(e(a))}

130

Theorem 6.9 If INV holds before CALLEE DEALLOC(a, b) macro, then INV

still holds true after the macro, as below Hoare Logic:

{a 6≡ tmp ∧ INV

∧ (∀i ∈ V ARS • e(i) = e0(i))

∧ (∀d ∈ ADR • valid(d) = v0(d)) ∧ e(a) 6= e(b) ∧ valid(e(b))}

CALLEE DEALLOC(a, b, tmp)

{a 6≡ tmp ∧ INV

∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc ∧ i 6≡ tmp ∧ i 6≡ tmpdealloc =⇒ e(i) = e0(i))

∧ (∀d ∈ ADR • d 6= e0(a) ∧ d 6= e(a) ∧ d 6= e(tmp) =⇒ valid(d) = v0(d)))

∧ valid(e(b)) ∧ valid(e(a)) ∧ e(adealloc)}

We construct the proof tableau of CALLEE DEALLOC(a, b) macro as follows.

1 {a 6≡ tmp ∧ INV e(a) 6= e(b) ∧ valid(e(b))∧
2 (∀i ∈ V ARS • e(i) = e0(i)) ∧ (∀d ∈ ADR • valid(d) = v0(d))} 1©
3 PRE_DEALLOC(a);
4 {a 6≡ tmp ∧ INV ∧ (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc =⇒ e(i) = e0(i))
5 ∧(∀d ∈ ADR • d 6= e0(a) =⇒ valid(d) = v0(d))∧
6 e0(a) 6= e(b) ∧ valid(e(b))} 2©
7

8

9 {a 6≡ tmp ∧ INV ∧ valid(e(b)) ∧ (∀i ∈ V ARS • e(i) = e1(i))∧
10 (∀d ∈ ADR • valid(d) = v1(d))} 3©
11 tmp := copy(b);
12 tmp_dealloc:=true;
13 {a 6≡ tmp ∧ INV ∧ valid(e(b)) ∧ valid(e(tmp)) ∧ fresh(tmp) ∧ e(tmpdealloc)∧
14 (∀i ∈ V ARS • i 6≡ tmp ∧ i 6≡ tmpdealloc =⇒ e(i) = e1(i))∧
15 (∀d ∈ ADR • d 6= e(tmp) =⇒ valid(d) = v1(d))} 4©
16

17

18 {a 6≡ tmp ∧ INV ∧ valid(e(tmp)) ∧ (∀i ∈ V ARS • e(i) = e2(i))∧
19 (∀d ∈ ADR • valid(d) = v2(d))} 5©
20 a := func(tmp, true);
21 tmp_dealloc = false;
22 a_dealloc := true;
23 {a 6≡ tmp ∧ fresh(a) ∧ ¬valid(e(tmp)) ∧ valid(e(a)) ∧ ¬e(tmpdealloc)∧
24 (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc ∧ i 6≡ tmpdealloc =⇒ e(i) = e2(i)) 6a©∧
25 (∀d ∈ ADR • d 6= e(a) =⇒ valid(d) = v2(d)) 6b© ∧ valid(e(b)) ∧ e(adealloc)} 6©
26

27

28 {a 6≡ tmp ∧ INV 7a© ∧ valid(e(a)) ∧ valid(e(b)) ∧ e(adealloc)∧
29 (∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc ∧ i 6≡ tmp ∧ i 6≡ tmpdealloc
30 =⇒ e(i) = e0(i)) 7b©
31 ∧(∀d ∈ ADR • d 6= e0(a) ∧ d 6= e(a) ∧ d 6= e(tmp) =⇒ valid(d) = v0(d)) 7c©}

Listing 6.8: Tableau of CALLEE DEALLOC(a, b) macro

131

Assumption 1© Show e(a) 6= e(b) and valid(e(b)) are assumed to be true

in the entry condition of the macro.

Reasoning about 2© Show e(b) 6= e0(a) and valid(e(b)) are both true in

the post condition of pre-deallocation macro (refer to Theorem 6.2).

Assumption 3© Define e1 (i) and v1 (d) to store the values of variables and

validity of addresses respectively after PRE DEALLOC macro.

Reasoning about 4© Show valid(e(b)), valid(e(tmp)), fresh(tmp) and

e(adealloc) are true in the post-condition.

From line 11, we get e(tmpdealloc).

valid(e(tmp)) ∧ fresh(tmp) is included because we make a fresh copy of

variable b to tmp.

valide(e(b)) remains true in the post-state because our macro in line 10

and 11 does not de-allocate anything.

Assumption 5© Define e2 (i) to store the values of variable i at 5©. Also,

we define v2 (d) to store the validity of address d .

Assumption 6© Show fresh(a) ∧ ¬valid(e(tmp)) ∧ valid(e(a)) holds true

from the function behaviour (see Assumption 11). And ¬e(tmpdealloc)∧e(adealloc)

is included from line 19 and 20.

Reasoning about 7a© Show that INV holds at the end of macro.

INV : ∀i, j ∈ V ARS • inv dealloc(i, j) A© ∧ ∀i ∈ ARRV ARS • inv arr(i) B©

Proof. [Reasoning Deallocation Invariant A©]

Let i, j ∈ V ARS be the witness variables. We must show ∀i, j•inv dealloc(i, j) :

e(idealloc) ∧ e(jdealloc) ∧ i 6≡ j =⇒ e(i) 6= e(j) holds true at 7a©.

As inv dealloc(i , j) is symmetric, we can swap variable i and j without

breaking the invariant, so inv dealloc(i, j) ⇐⇒ inv dealloc(j, i) and the

reasoning just needs to consider three cases:

132

• Case 1: i , j includes a

Given i ≡ a (or equivalently j ≡ a), the invariant can be rewritten as:

inv dealloc(a, j) : (e(adealloc) ∧ e(jdealloc) ∧ a 6≡ j) =⇒ e(a) 6= e(j)

Assume that all the preconditions in inv dealloc(a, j) are true, including

j 6≡ a. By fresh(a) : j 6≡ a =⇒ e(j) 6= (a) from 6©, we have e(j) 6= e(a)

and conclude inv dealloc(a, j) is true in the post condition.

• Case 2: i , j includes tmp

Given i ≡ tmp (or equivalently j ≡ tmp), the invariant can be rewritten

as:

inv dealloc(tmp, j) : (e(tmpdealloc)∧e(jdealloc)∧tmp 6≡ j) =⇒ e(tmp) 6= e(j)

We know e(tmpdealloc) = false from 6©, and therefore inv dealloc(tmp, j)

is true after the macro.

• Case 3: i , j does NOT include a or tmp

Let i, j be variables such that i 6≡ a and i 6≡ tmp (and j 6≡ tmp and

j 6≡ tmp).

The instructions of callee macro do not change anything, except for a

and tmp. That means, e(idealloc) = e2(idealloc) and e(i) = e2(i) for i 6≡ a

and i 6≡ tmp. Since inv dealloc(i , j) was true in 5©, we therefore can

conclude inv dealloc(i , j) is still true in the post condition.

2

Proof. [Reasoning Array Invariant B©]

We must show ∀i ∈ ARRV ARS • e(idealloc) =⇒ valid(e(i)) holds true in the

post-state.

Let i ∈ ARRV ARS such that e(idealloc) is true in the post-state, and we

have to show valid(e(i)).

133

• Case 1: i ≡ a

inv arr(a) : e(adealloc) =⇒ valid(e(a)) holds true because we have

valid(e(a)) in 6©.

• Case 2: i ≡ tmp

inv arr(tmp) : e(tmpdealloc) =⇒ valid(e(tmp)) is true since we have

¬e(tmpdealloc) in 6©.

• Case 3: i 6≡ a and i 6≡ tmp

We know e(i) 6= e(a) because of fresh(a).

From inv arr(i) at 5©, we have e1(idealloc) =⇒ v1(e1(i))

From 6a©, we have e(i) = e2(i) because i 6≡ a∧ i 6≡ adealloc∧ i 6≡ tmpdealloc.

From 6b©, we have valid(e(i)) = v2(e(i)) because e(i) 6= e(a) and e(idealloc) =

e2(idealloc)

Therefore, the validity must remain unchanged as 5©.

valid(e(i)) = v2(e(i)) = v2(e2(i))

2

Reasoning about 7b© Show ∀i ∈ V ARS • i 6≡ a∧ i 6≡ adealloc∧ i 6≡ tmp∧ i 6≡

tmpdealloc =⇒ e(i) = e0(i) is true in the post condition.

Proof. Let i ∈ V ARS be a variable such that i 6≡ a, i 6≡ adealloc, i 6≡ tmp and

i 6≡ tmpdealloc. We must show e(i) = e0(i).

From 6a© because i 6≡ a∧i 6≡ tmpdealloc∧i 6≡ adealloc, we have e(i) = e2(i)...(i)

From 4© because i 6≡ tmp ∧ i 6≡ tmpdealloc, we have e(i) = e1(i)...(ii)

From 3© and 2©, because i 6≡ a and i 6≡ adealloc, we get e1(i) = e0(i)...(iii)

By combining (i) (ii) (iii), with the predicate i 6≡ a, i 6≡ adealloc, i 6≡ tmp

and i 6≡ tmpdealloc we can therefore conclude

e(i) = e2(i) = e1(i) = e0(i)

2

134

Reasoning about 7c© Show ∀d ∈ ADR • d 6= e0(a) ∧ d 6= e(a) ∧ d 6=

e(tmp) =⇒ valid(d) = v0(d) is true in the post condition.

Proof. Let d ∈ ADR be an address such that d 6= e0(a) and d 6= e(a) and

d 6= e(tmp). We must show valid(d) = v0(d).

From 6a© because d 6= e(a), we have valid(d) = v2(d)...(i).

From 6b© ∀i 6≡ a =⇒ e(i) = e2(i). As tmp 6≡ a, we have e(tmp) = e2(tmp).

From 4© e(tmp) = e2(tmp) and from 5©, we get d 6= e2(tmp) =⇒ v2(d) =

v1(d)...(ii)

From 3© and 2©, we get v1(d) = v0(d) because d 6= e0(a)...(iii).

By combining (i), (ii) and (iii), because d 6= e(a)∧ d 6= e(tmp)∧ d 6= e0(a),

we can therefore conclude

valid(d) = v2(d) = v1(d) = v0(d)

2

6.4 Automatic Proofs by Boogie

In the previous section, we have formally defined the deallocation invariant

along with theorems of 8 deallocation macros. These properties are verified

by hand to prove our invariant is preserved by each of our macros so that no

double freeing problems would occur in our generated code.

In this section, we carry out the proofs of our invariant and macros by

using the automatic theorem prover Boogie (Leino, 2008) which generates ver-

ification conditions from Boogie programs, and passes them to the SMT solver

Z3 to verify the program properties. Boogie project is being developed by Mi-

crosoft Research, but is open-source (https://github.com/boogie-org/boogie).

We have mapped our invariant and macros to a Boogie program, as shown

in Appendix A. There are two steps to this mapping: declarations and macro

construction.

135

6.4.1 Declaration

0 // User−defined Type declaration
1 type VAR; // Generic variable types
2 type AVAR; // Array variable
3 type ADDR; // Adrress variable
4 // Map types
5 var e : [AVAR]ADDR;// Map an array variable to its addresses.
6 var dealloc : [AVAR]bool;// Indicate the deallocation flag for a array variable
7 // Indicate an address is valid if it has been heap−allocated, and not yet freed.
8 var valid : [ADDR]bool;
9 // define INV to describe deallocation invariant : inv dealloc(i, j), inv arr(i)

10 function INV(e : [AVAR]ADDR, dealloc : [AVAR]bool, valid : [ADDR]bool)
11 returns (r : bool);
12 axiom
13 (
14 ∀ e : [AVAR]ADDR, dealloc : [AVAR]bool, valid : [ADDR]bool •
15 INV(e, dealloc, valid)
16 ⇐⇒ (∀ i,j : AVAR • dealloc[i] ∧ dealloc[j] ∧ i 6= j
17 =⇒ e[i] 6= e[j]) // inv dealloc (i, j)
18 ∧ (∀ i : AVAR • dealloc[i] =⇒ valid[e[i]]) // inv arr(i)
19);

Listing 6.9: Type declarations and Invariant

The declaration consists of types and invariant. We first need to declare

types and invariant used in our macros, as shown in Listing 6.9, and also

need map types to map one type to another, e.g. e maps an array variable

to its memory address, and dealloc maps an array variable to the value of its

deallocation flag (a boolean value). And valid maps an address to its boolean

validity.

Second, we declare our deallocation invariant as a function INV . And then

we postulate the properties of function INV by using an axiom for verifying

our invariant is preserved by pre- and post-states of each macro. Our axiom

combines single deallocation flag (see inv dealloc(i , j) in Definition 6.5) and

valid address invariant (see inv arr(i) in Definition 6.5) to ensure only one

variable with true flag value allows freeing the heap-allocated memory space,

and guarantee that memory address is valid, which has not been freed yet.

So in our example axiom, variable i is an array type AVAR, and then

the map selection dealloc[i] denotes variable i ’s deallocation flag value (or

e(idealloc)). Likewise, e[i] denotes the memory address that array variable i

points to, or equivalently e(i). And valid[e[i]] indicates if the address of

array variable i is valid (or valid(e(i))).

136

6.4.2 Macro Construction

We define each macro as a procedure along with an implementation. A pro-

cedure includes the macro name, input parameters of the macro and a set

of execution tracks, specified by pre and post-conditions with a combination

of requires, modifies and ensures clauses. The implementation contains the

actual code of the macro.

Example 6.10 Consider caller macro (see Theorem 6.8) as an example. The

Hoare triple of caller macro is listed:

{a 6≡ tmp ∧ INV ∧ (∀i ∈ V ARS • e(i) = e0(i))∧

(∀d ∈ ADR • valid(d) = v0(d)) ∧ e(a) 6= e(b) ∧ valid(e(b))}

CALLER DEALLOC(a, b)

{a 6≡ tmp ∧ INV ∧ valid(e(a)) ∧ e(adealloc)∧

(∀i ∈ V ARS • i 6≡ a ∧ i 6≡ adealloc ∧ i 6≡ tmp ∧ i 6≡ tmpdealloc =⇒ e(i) = e0(i))∧

(∀d ∈ ADR • d 6= e0(a) ∧ d 6= e(a) ∧ d 6= e(tmp) =⇒ valid(d) = v0(d))}

0 procedure caller_dealloc(a : AVAR, b : AVAR, tmp : AVAR) returns();
1 requires tmp 6= a;
2 requires INV(e, dealloc, valid) ∧ e[a] 6= e[b] ∧ valid[e[b]];
3 modifies e, dealloc, valid;
4 ensures (∀ i : AVAR • i 6= a ∧ i 6= tmp =⇒ e[i] = old(e[i]));
5 ensures (∀ d : ADDR • d 6= old(e[a]) ∧ d 6= e[a] ∧ d 6= e[tmp]
6 =⇒ valid[d] = old(valid[d]));// Address validity
7 ensures (∀ i : AVAR • i 6= a ∧ i 6= tmp
8 =⇒ dealloc[i] = old(dealloc[i]));// Deallocation flag
9 ensures valid[e[a]];

10 ensures dealloc[a];
11 ensures INV(e, dealloc, valid);
12 implementation caller_dealloc(a : AVAR, b : AVAR, tmp : AVAR)
13 returns ()
14 {
15 var ret : ADDR;// Local variable ’ret’ stores the address
16 call pre_dealloc(a);
17 call ret := copy(b);
18 e := e[tmp := ret]; // e[tmp]:= ret
19 dealloc := dealloc[tmp := false]; // dealloc[tmp] := false
20 call ret := reset_caller_func(tmp, false); // ret := func(b, false);
21 e := e[a := ret]; // e[a]:=ret;
22 if(e[a] 6= e[tmp]){
23 call freed(tmp); // free variable ’tmp’
24 }
25 dealloc := dealloc[a := true]; //dealloc[a] := true
26 }

Listing 6.10: Caller Macro in Boogie

137

We will transform caller macro to a procedure implementation in Boogie (as

shown in Listing 6.10). The program is explained as follows.

Procedure We define the macro as a procedure which takes array variables

a and b as input parameters, and tmp as block-scoped array variable.

We express the pre-conditions of caller macro as requires clause that our

invariant holds before the macro, and also use one modifies clause to spec-

ify the variables that will be changed in the implementation of our macro.

We do not include e(i) = e0(i) and valid(d) = v0(d) in the pre-conditions of

caller dealloc macro because procedure implementation is two-state con-

texts in Boogie, and old expression is provided to access the value on entry

to the procedure. So old(e[i]) denotes e0 (i), and old(valid[d]) refers to

v0 (d).

We encode post-conditions as a number of ensures clauses, such as our

invariant, address validity, etc. For example,

ensures (∀ i : AVAR • i 6= a ∧ i 6= tmp =⇒ e[i] = old(e[i]));

the above post-condition (ensure clause) specifies the final values of all the

other variables, except for i and tmp, are the same as their initial values. And

we also include another post-condition:

ensures (∀ i : AVAR• i6=a ∧ i6=tmp =⇒ dealloc[i]=old(dealloc[i]));

and verify that, apart from variables a and tmp, the deallocation flag values

of all the other variables remain unchanged on exit of procedure caller macro,

so are the same as their values on entry.

0 implementation caller_dealloc(a : AVAR, b : AVAR, tmp : AVAR) returns ()
1 {
2 var ret : ADDR;// Local variable ’ret’ stores the address of a function call
3 call pre_dealloc(a); // PRE DEALLOC(a);
4 call ret := copy(b); // ret = copy(a);
5 e := e[tmp := ret]; // e[tmp] = ret;
6 dealloc := dealloc[tmp := false]; // tmp dealloc = false;
7 call ret := func(tmp, false);// ret = func(tmp, false);
8 e := e[a := ret]; // a =ret;
9 if(e[a] 6= e[tmp]){call freed(tmp);}// if (a 6= tmp) {free(tmp);}

10 dealloc := dealloc[a := true]; //a dealloc = true;
11 }

Listing 6.11: Caller Macro Implementation in Boogie (Comment: C code)

138

Implementation Convert the actual code of our macro into the below Boo-

gie implementation (see Listing 6.11).

We introduce local variable ret to temporarily store the memory space

returned by procedure copy at line 5 or func at line 8 in Boogie program.

The call statement call pre dealloc(a) invokes procedure pre dealloc

which checks flag value of variable a to free the memory address of variable

a. If procedure pre dealloc is called while satisfying all its preconditions, then

Boogie assumes the post-conditions of procedure pre dealloc to be true when

the call finishes. As such, the specifications (pre- and post-conditions) are

mandatory to define the behaviour of a procedure whereas the implementation

can be optional. For example, procedure freed can be written:

0 procedure freed(a : AVAR) returns ();// ’freed’ procedure
1 requires valid[e[a]]; // A valid address of ’a’ on entry
2 modifies valid;
3 ensures valid[e[a]] = false; // An invalid address of ’a’ on exit
4 // Other addresses remain the same validity upon procedure return
5 ensures (∀ d : ADDR • d 6= e[a] =⇒ valid[d] = old(valid[d]));

Listing 6.12: Procedure freed in Boogie

This procedure does not have any implementation but includes a list of speci-

fications to specify that the address of variable a on entry is valid and has not

been freed yet, and invalidate the address of variable a on exit. Note that the

complete code of procedures pre dealloc, copy and reset caller func is shown

in the Boogie program A.1.

6.4.3 Proof Results

Boogie verifier automatically transforms our Boogie program into a set of veri-

fication conditions and validates these pre- and post-conditions with a theorem

prover (Z3) to prove the correctness of given program. Boogie verifier can pro-

vide counter examples to explain the potential errors in the program if the

proof fails.

Example 6.11 Consider our caller macro again. We delete the pre-condition

a 6≡ tmp at line 2 in Listing 6.10 and enable captureState feature to capture

139

intermediate states of each statement in the implementation body so that we

can keep track of the value change of each variable in the program. Then we

try to verify the program with Boogie again. And the proof fails because the

post-condition at line 6 may not hold at the end of procedure. And we obtain

a counter example in the following trace.

Table 6.2: Counter Example from Boogie Verifier

Line No. Statement
Variable Address Address Validity

e(a) e(b) e(tmp) ret valid(’5) valid(e(b)) valid(ret)

16. var ret:ADDR ’19 ’15 ’19 ’13 False

17. call pre dealloc(a) ’15 ’13 False True

18. call ret := copy(b) ’15 ’5 True True True

19. e[tmp]:=ret ’5 ’15 ’5 ’5 True True True

20. dealloc[tmp]:=false ’5 ’15 ’5 ’5 True True True

21. ret := func(tmp, false) ’5 ’15 ’5 ’7 True True True

22. e[a]:= ret ’7 ’15 ’7 ’7 True True True

27. end ’7 ’15 ’7 ’7 True True True

The counter example in Table 6.2 shows the memory addresses of variables

at each intermediate step and their corresponding validity. From the table,

we know variable a and tmp are the same array variable as they are update

simultaneously at line 19 and 22, and the assumption a 6≡ tmp is removed from

the Boogie program.

The address ′5 is the return value of procedure copy at line 18 and changes

its validity from false to true. Because of variable update at line 19, we have

a shared address for variables a, tmp and ret (e(a) = e(tmp) = ret =′ 5).

Likewise, the address ′7 is the return value of procedure func at line 21

and the variable update at line 22 makes variables a, tmp and ret point to the

new address (e(a) = e(tmp) = ret =′ 7)

At the end of the procedure (line 27), the address ′5 has changed its validity

during the macro and does not belong to any variable (a, tmp or old(a)) in

the predicate of address validity post-condition:

140

ensures (∀ d : ADDR • d 6= old(e[a]) ∧ d 6= e[a] ∧ d 6= e[tmp]
=⇒ valid[d] = old(valid[d]));// Address validity

So Boogie indicates that the post-condition of unchanged address validity may

not hold on exit of caller macro procedure. This failure happens because

variables a and tmp are the same variables (a ≡ tmp), and we conclude that

a 6≡ tmp is necessary for proving the correctness of caller macro program.

The Boogie program of all our macros using this pre-condition a 6≡ tmp is

shown in Listing A.1 of Appendix A, and the program has been verified to be

valid without any error by Boogie verifier (version 2.3.0.61016).

Such a pre-condition a 6≡ tmp was originally omitted at our specifications.

But Boogie helps us discover the potential mistakes of our by-hand proofs, and

lets us strengthen both of our manual and automatic verification. So Boogie

can be a complementary tool to our manual proofs as it automatically double-

checks the correctness of our proofs so that mistakes during the proving process

can be avoided. But good and sound manual program reasoning skill is still

required to use the automatic Boogie verification. For example, we need to

correctly transform the specifications and verification conditions into a Boogie

program, and also need to be able to interpret the complicated and lengthy

counter example from Boogie verifier.

Chapter 7

Code Generator

This chapter details the code generator and code optimisation using analysis

results. Firstly, the Whiley compiler reads and translates a Whiley program

into Whiley Intermediate Language (WyIL) code. Secondly, our code genera-

tor works with copy and deallocation analysers to produce efficient C code.

The copy analyser detects and removes unnecessary copies at generated

code so that we can greatly decrease expensive overheads caused by array

copies and thus improve the speed-up of program execution. Also, our deallo-

cation analyser helps choose suitable de-allocation macros and apply them to

generated code. So the optimised code with our macros can keep single own-

ership of the shared memory and therefore we can safely over-write unused

array pointers and ensure no delete occurs on the same memory space twice.

Whiley
Program

Whiley
Compiler

Copy
Elimination
Analysis

Deallocation
Analysis

Code
Generator

Optimised
C Code

WyIL
code

Avoid
Copies

Apply
Macro

Figure 7.1: Flow chart of code generation and optimisation (dashed box)

142

7.1 Naive Code Generator

Procedure 7.1 Generating naive C code
Input: The input WyIL code, produced by Whiley Compiler
Output: The list of generated C code

1: list := []
2: for each func function in WyIL code do
3: list .append(Define Function(func))
4: vars = variable tables of func
5: for each var in vars do
6: list .append(Declare Variable(var , func))
7: end for
8: for each code in function body do
9: list .append(Generate Code(code, func))

10: end for
11: end for
12: return list

The code generator without any code optimisation will translate WyIL code

into naive/unoptimised C code, semantically equivalent to original program,

which makes copies before any change to avoid side effects and also lacks

memory deallocation. A typical function includes three parts:

• Function signature consists of return type, function name and param-

eters.

• Variable declaration defines the type of a variable and its initial value.

• Function body contains a collection of statements, which is translated

from each line of WyIL code.

Each part will be discussed in following sections.

7.1.1 Function Signature

The code generator extracts function name, parameters and parameter types

and return type to produce the function signature. For each array parameter,

an additional size variable is then appended to the function signature, to pass

the size of input array from caller site to called function. If the return is an

array, we also pass the size variable as call-by-reference parameter to the called

143

function, so that the size of output array can be changed by called function

and the updated size value is visible at caller site.

1 // private function func(int[] a) −> int[] r:
2 // ’a size’: size of input array ’a’
3 // ’ret size’: Cally−by−reference size of output array ’r’
4 int64 t* func(int64 t* a, size t a_size, size t* r_size){
5 int64 t* r;
6
7

8 // Update return array size
9 *r_size = 10;

10 return r;
11 }

For example, input and output of function func are array a and r respectively.

We then pass the size variable of input array a size as one parameter to the

called function, and also include the size variable of output array ret size as

call-by-reference parameter, as shown in above listing.

7.1.2 Variable Declaration

The code generator goes through each variable’ names and type in a function

to produces a list of variable declarations before function body. WyIL byte-

code is register-based (Pearce and Groves, 2015a), and thus each parameter or

variable is prefixed with %. Additionally, because of single assignment form

(SSA) used in WyIL code, each variable is assigned once and must be defined

before its use. We therefore have more number of registers at WyIL level than

at source Whiley level. Consider the below Whiley program.

1 function func(int[] x, int num) -> int[]:
2 x[0] = num
3 return x

The converted WyIL code is as below:

1 private function func(int[], int) -> (int[]):
2 // %0: x and %1: num
3 body:
4 const %3 = 0 : int // %3: constant value 0
5 update %0[%3] = %1 : int[] -> int[] // x[0] = num
6 return %0 // x

Registers %0 and %1 hold the values of first x and second parameters num

respectively on the function entry. Register %3 loads constant value 0 from

const WyIL code to access array item at index of 0.

144

By default, an integer variable is declared as signed 64-bit type (int64 t)

to have the maximal and minimal range in 64-bit operation system. For an

array typed variable, we declare it as the below pointer and also include a size

variable to store its value.

1 int64 t* a = NULL; // int[] a
2 size t a_size = 0; // size variable

The reasons that we choose heap-allocated pointers over stack arrays are:

• Heap pointer can make use of all available physical memory that oper-

ation system provides at most, so give bigger array capacity to run on

large-scaled benchmarks, whereas stack arrays have smaller limitation

on array size;

• Heap pointer can be resized at run-time whereas static array size is de-

termined at declaration and can not be altered once compiled.

If the value range of an integer or array can be statically known and esti-

mated by our bound analysis, the code generator can use more fitting integer

types to store the values.

7.1.3 Function Body

The code generator maps each WyIL code of function body to its type and

then translates it into a sequence of C code. The following shows a list of

crucial code types for generating and optimising code.

• code == arraygenerator(a = (value, size)) An array generator

statement creates an array variable a of given size and initialises each

array element with given value.

For a one-dimensional array, we assume the array stores signed 64-bit

integers as default type. And we define a single dimensional array as

a pointer with an extra size variable to keep track of its array length

using above NEW 1DARRAY macro. We also includes a check after memory

allocation to ensure the array pointer points to a valid memory address.

145

1 // Create an array of provided type and size and fill with given value
2 #define NEW 1DARRAY(a, value, size, type)
3 ({
4 a_size = size;
5 a = (type*)malloc(a_size*sizeof(type));
6 if(a == NULL){
7 fputs("fail to allocate the memory at _NEW_1DARRAY\n",

stderr);
8 exit(-2);
9 }

10 // Initialize each item value of array ’a’
11 for(size t i=0;i<a_size;i++){
12 a[i] = value;
13 }
14 })

For a two-dimensional array, we first map it to 1D array and specify its

size variable to the total number of array items, i.e. width×height, and

then populate the array’s value. Therefore, we access the array item at

i row and j column by using a[i ∗ width + j], instead of a[i][j].

In doing so, all array elements are allocated on contiguous memory space

so that the data locality can be improved. Since each sub-array has the

same length, the dynamical-sized array is not supported in our project.

• code == assign(a = b) An assignment statement assigns value b to

variable a. For an integer-typed assignment, we do not need to make a

copy as primitive integers are declared in stack and automatically copied

before any change occurs.

For an array assignment a = b our naive code without optimisation al-

ways makes a copy of right-handed side variable b and assigns the copied

one to left-handed side a. In addition, the old array size is propagated

to the new array.

1 // Make a copy of array ’b’
2 #define COPY(a, b, type)
3 ({
4 a_size = b_size;
5 a = (type*) malloc(a_size * sizeof(type));
6 if (b == NULL) {
7 fputs("fail to malloc at COPY macro\n", stderr);
8 exit(-2);
9 }

10 memcpy(a, b, b_size * sizeof(type));
11 })

146

Making a copy of right-handed side variable in each assignment slows

down program execution. Thus, we use copy elimination and de-allocation

analysers (see Section 7.2) to find out and remove extra copies from some

assignments and improve the efficiency.

• code == binOp(a = (b, c)) A binary operator manipulates variable

b and c with operator binOp, and stores the result to variable a.

1 a = b + c; // add a = (b, c)
2 a = b * c; // mul a = (b, c)

The common operators include addition (+), subtraction (-), multiplication

(*), division (/) and remainder (%), etc.

1 // Detect the addition overflow ’a = b + c’
2 #define INT_ADD_OVERFLOW(a, b, c)
3 ({
4 if(__builtin_add_overflow(b, c, &a)){
5 fputs("Detected an add overflow \n", stderr);
6 exit(-2);
7 }
8 })

We may encounter arithmetic overflows for unbounded integers, and thus

use GCC built-in functions (Stallman and the GCC Developer Commu-

nity, 2003) to check whether the operation causes overflow or not, and

throw out run-time exceptions if detected. By default, the overflow check

is disabled because we declare all integer variables as signed 64-bit inte-

gers, and its range (−263 + 1 ∼ 263 − 1) is large enough to perform all

normal arithmetic operations on a 64-bit operation system.

• code == label(blklab) A label statement specifies the block label,

which is composed of an identifier and block number (e.g.blklab1), to

indicate the location of block within source code.

• code == if(OP(a, b) goto blklab) An IF statement compares the

values of variable a and b with operator OP , and then specifies the block

label blklab that is to be executed when the condition is met (true).

Common comparing operators OP include eq (==), neq (! =), lt (<), le

(<=), gt (>) and ge (>=).

147

1 // if(ge(x, 10) goto blklab1)
2 if(x>=10){goto blklab1;}
3 ...
4 blklab1:; // Block label that ’goto’ branches to

• code == loop([a, ...], [codes]) A loop repeatedly executes a list

of codes until any loop condition, comparing the value of a loop variable

a, is no longer true. We use a while loop along with one or a series of

conditional checks, to decide whether to continue or terminate the loop,

as shown in below:

1 // loop ([i, 10, sum], [sum = sum + i, i = i + 1])
2 while(true){
3 if(i > 10){goto blklab1;}// loop condition
4 sum = sum + i;
5 i = i + 1;
6 }
7 blklab1:; // Loop exit label

A loop may contains one or more inner loops, and our code generator

therefore goes into each inner loop recursively, and then put it within

the outer loop to form a hierarchy of loop nests.

• code == invoke(a = func(b, c, ...)) A function call passes one

or more parameters b, c, . . . to the called function func, and returns the

result to variable a if return value is required.

Our naive code always copies an array parameter first and then pass

the copied one to called function, to ensure all changes to parameters

made by the function call will not affect the original values at caller site.

By doing so, our naive code conforms to immutable value semantics in

functional programming language and thus does not cause any side effect.

1 // a = func(b)
2 // Make a copy at ’b’ at function call ’func’
3 // Pass call−by−reference array size ’a size’ to ’func’
4 a = func(COPY(b), b_size, &a_size);

However, the copying of array parameters increases the overheads when

arrays are large and makes the execution slow. Also, the de-allocation

148

of array parameters is another performance issue because it may lead to

memory leaks or worse double freeing problem.

Our copy elimination and deallocation analysers can work together to

sort out the needs of parameter copies and determine their deallocation

responsibility (see Section 7.2)

• code == assert(expr) An assert statement contains a block of byte-

codes to evaluate an condition expr . If the assertion fails, an exception

is thrown out to stop the program execution and ensure the safety.

1 // assert (expr)
2 {// Beginning of assertion block
3 if(expr){goto blklab0;}// If expr is evaluated to true, go to blklab0
4 fprintf(stderr,"fail");// expr is evaluated to false, throw error
5 exit(-1);// Stop the program
6 blklab0:;
7 }// End of assertion block

• code == return(a) A return statement passes back variable a to the

caller when the invoked function finishes. In the case that a is an array

return, as its array size is stored separately, the size variable a size can

not be passed back to caller site at the same time as return array variable

a because C language restricts a single return. To address this issue, we

use below workaround to handle an array return.

1 // ’a’ is an array returned by function ’func’
2 // ’a size’ is updated by ’func’ function and the change is visible at

method ’main
3 int64 t* func(int64 t* b, size t b_size, size t* a_size){
4 ...
5 *a_size = 10; // Update the size of array ’a’
6 return a; // Return array
7 }
8 // Method ’main’
9 void main(){

10 int64 t* a;
11 size t a_size = 0;
12 int64 t* b;
13 size t b_size;
14 ...
15 // Pass ’a size’ as call−by−reference parameter
16 a = func(b, b_size, &a_size);
17 assert(a_size == 10);
18 }

The size variable a size is passed as a call-by-reference parameter to

called function func, so that its value is updated before the return. After

149

the function call, we will have both output array and size updated by

called function func, and those changes are visible at caller site.

1 // Function ’func’ may change ’b’ array and may return ’b’ array
2 // If not, return new array ’c’
3 function func(int[] b, int num) -> int[]:
4 int[] c = [0;3] // c[0] = 0
5 if num > 10:
6 b[0] = num
7 return b
8 else:
9 return c

10 // Method ’main’
11 method main(System.Console sys):
12 int[] b = [2;3] // b[0] = 2
13 int[] tmp = func(b, 11) // function call
14 b = tmp // b[0] = tmp[0] = 11
15 assert b[0] == 11
16 sys.out.println(b[0])
17 b = func(b, 65536) // function call
18 sys.out.println(b[0])
19 assert b[0] == 65536

Listing 7.1: Example Whiley program

1 // function func(int[] b, int num) −> int[]:
2 int64 t* func(int64 t* b, size t b_size, int64 t num,
3 size t* ret_size){
4 int64 t* _6 = NULL; size t _6_size = 0;
5 int64 t* c = NULL; size t a_size = 0;
6 //arraygen %6 = [0; 3] : int[]
7 NEW 1DARRAY(_6, 0, 3, int64 t); // 6 size = 3;
8 //assign c = %6 : int[]
9 c = COPY(_6, int64 t); // c size = 6 size;

10 //ifle %1, 10 goto blklab0 : int
11 if(num<=10){goto blklab0;}
12 //update b[0] = num
13 b[0] = num;
14 //return b
15 *ret_size = b_size;
16 return b;
17 blklab0:;
18 //return c
19 *ret_size = c_size;
20 return c;
21 }

Listing 7.2: Naive C code of function func (comments: WyIL code)

Example 7.1 We will illustrate the procedure of generating naive code from

a WyIL file with an example program as shown in Listing 7.1. Function func

takes array b and integer num as inputs, and checks num value to decide

whether to return an array b with update, or a new array c.

At method ’main’ in line 13, we make a function call and assign return

150

value to array tmp, and then over-write array b with array tmp. In line 17,

we make another function call to update array b with larger value.

Function func Has argument array b and its size b size and integer num.

Also, an extra call-by-reference size variable ret size is passed as an argument

to function func to keep track the actual size of return array. And we declare

all the local variables as follows:

• All integer typed variables are signed 64-bit integers (int64 t);

• All integer array typed variables are signed 64-bit integer pointers (int64 t*);

• All array size variables are defined as size type (size t) as it can repre-

sent the size of any object in a program;

• The argument of return array size is declared as size typed pointers

(size t*), instead of a value, so that function func has direct access to

modify its value and make the updates visible to the caller.

Whiley intermediate code replaces each target of every assignment with a

new variable since it follows static single assignment form (Pearce and Groves,

2015a). Thus, we have arraygen code in line 7 to store the newly created

array to a temporary variable 6 . Then we have an assignment in line 9 to

write temporary array 6 to target variable a. Due to value semantics for each

assignment, we therefore make an extra copy in line 9.

The return of function func is based on the value of passed num to deter-

mine to pass back array x or c. And before each return statement, we update

the passed call-by-reference size argument ret size with specified size variable

of return array.

Method main Creates a new array using NEW 1DARRAY macro and makes

two function calls on func and assigns the return to variable x . Similar to Func-

tion func, we use the same rule to declare the types of all local variables. And

in naive/unoptimised code all the copies are needed to ensure right-handed

151

side variable will not be changed by an assignment and passed parameters will

not affect the values at caller site, and achieve side effect-free function calls as

well as assignments.

1 int main(int argc, char** args){
2 int64 t* _5 = NULL; size t _5_size = 0;
3 int64 t* b = NULL; size t b_size = 0;
4 int64 t* _8 = NULL; size t _8_size = 0;
5 int64 t* tmp = NULL; size t tmp_size = 0;
6 int64 t* _18 = NULL; size t _18_size = 0;
7 //arraygen %5 = [2; 3] : int[]
8 NEW 1DARRAY(_5, 2, 3, int64 t); // 5 size = 3;
9 //assign b = %5 : int[]

10 b = COPY(_5, int64 t); // b size = 5 size;
11 //invoke (%8) = (b, 11) func : function(int[],int)−>(int[])
12 _8 = func(COPY(b, int64 t), b_size, 11, &_8_size);
13 //assign tmp = %8 : int[]
14 tmp = COPY(_8, int64 t); // tmp size = 8 size;
15 //assign b = tmp : int[]
16 b = COPY(tmp, int64 t); // b size = tmp size;
17 //assert b[0] == 11
18 ASSERT(b[0] == 11);
19 //sys.out.println(b[0])
20 printf("%"PRId64"\n", b[0]);
21 //invoke (%18) = (b, 65536) func : function(int[],int)−>(int[])
22 _18 = func(COPY(b, int64 t), b_size, 65536, &_18_size);
23 //assign b = %18 : int[]
24 b = COPY(_18, int64 t); // b size = 18 size;
25 //assert b[0] == 11
26 ASSERT(b[0] == 65536);
27 //sys.out.println(b[0])
28 printf("%"PRId64"\n", b[0]);
29 //return
30 exit(0);
31 }

Listing 7.3: Naive C code of method main (comments: WyIL code)

Listing 7.3 shows the naive code of main method. In the first function

call (line 13), array variable b explicitly is copied and passed to function func.

Primitive typed variables (e.g. num and b size) do not need COPY macro

but can be automatically copied to function func because C programming

language applies call-by-value approach to those arguments by default. Then

the function result is assigned to a new fresh variable 8 , which does not appear

before, due to static single-assignment (SSA) form at intermediate level. In

line 25, we have another function call and thus make a copy of array b.

In line 10, 16, 18 and 28 we have an assignment that requires the copy of

right-handed side variables, Therefore, we have six copies in main method.

152

7.2 Code Optimisation and Integer Type Choice

The naive C code requires further optimisation to improve program efficiency.

Before generating the optimised code, we have function analysers to pre-

process each function by scanning each line of code and collecting the sets

of read-write variables, return variables and live variables, and then keep trace

of all analysis results for copy and deallocation analyser, to determine the

optimisation for each code and produce corresponding optimised C code.

The naive C code makes a copy as default action for each assignment and

function call, because of value semantics, but results in expensive overheads of

program execution. Our copy analyser aims to remove unneeded copies from

generated code and still keep the program running without any side effect.

The naive or copy eliminated C code has memory leak problem as all

arrays are allocated on heap memory and require manual deallocation. Our de-

allocation analyser aims to automatically choose proper deallocation macros

for each code so that the unused variables can be freed at run-time. Also,

our macro has been designed to have single deallocation ownership and thus

ensure the same memory space is never freed twice.

The default integer type for all unoptimised and optimised code is signed

64-bit integer (int64 t). Our bound analyser performs static range analysis

to estimate the domain of every integers, and varies the used fixed-size integer

types wherever possible.

7.2.1 Copy Elimination

Copying takes place at an array assignment, or array typed parameter passed

to a function call. For an assignment a = b where a and b are arrays, copy

analysis takes out the copy of array b if variable b is not live/used afterwards

and simply aliases the left and right variables.

153

Procedure 7.2 Removal of Copies using Copy Elimination Analysis
Input: Variable var at code in function func
Output: Return true if the copy of variable var is removed.

1: Variables
2: MutateAnalyser : Read/Write Analyser
3: ReturnAnalyser : Return analyser
4: LiveAnalyser : Live variable analyser
5: isLive: Is var still used/live after code in func
6: isMutated : Is var mutated by called function callee
7: isReturned : Is var returned by called function callee
8: end Variables
9: procedure IsCopyRemoved(var , code, func)

10: if code is Assignment then
11: // Check if var is used after code in func
12: isLive ← LiveAnalyser .isLive(var , code, func)
13: return ¬isLive // Remove copy when var is NOT live
14: else if code is Function Call then
15: callee = get called function from code
16: param = map var to formal parameter of function callee
17: // Check if param is mutated by function callee
18: isMutated ← MutateAnalyser .isMutated(param, callee)
19: // Check if param is returned by function callee
20: isReturned ← ReturnAnalyser .isReturn(param, callee)
21: isLive ← LiveAnalyser .isLive(var , code, func)
22: if ¬isLive OR (¬isMutated AND ¬isReturned) then
23: return true // Eliminate the copy
24: end if
25: return false // Keep the copy
26: else// No needs to optimise the code
27: end if
28: end procedure

For a function call a = func(b) where b is an array, the naive code generator

goes through each parameter of function call and makes one copy for each array

parameter. Our copy analysis removes the copy of array parameter b if

• variable b at caller site is not live/used after the function call. Since

dead b has no uses afterwards, its copy is unnecessary, or

• parameter b is not changed nor returned by called function func. So

parameter b is read-only and not aliased to the return at function func.

Since parameter b does not change during function call, it does not cause

any side effect and thus its copy can be safely eliminated.

154

7.2.2 Deallocation Macro

Heap-allocated arrays are the source of memory leaks in our naive or copy

eliminated code and require extra de-allocation to free their previously allo-

cated memory space. If failing to do so, the amount of memory leaked will be

accumulated as the program is run for long, and eventually exhaust all system

memory. We go through naive and copy eliminated code and find the following

memory leaks:

• Memory leaks for left-handed side at an assignment or a function call:

An assignment or a function call directly writes a new value to the left

variable without deallocation. The old value of left variable is still allo-

cated on heap, and thus results in memory leaks.

• Memory leaks for function parameter: Once a call-back is finished, if

none of called and caller function tries to de-allocate the parameter, it

causes memory leaks. But if both of called function and caller try to

free the same and shared parameter, then it leads to double free memory

errors as no space can be deleted twice.

• Memory leaks for local variables: Local variables are not freed after a

function terminates.

Our deallocation analyser designs a macro system to handle the above

memory problems and splits the de-allocation work into pre-deallocation and

post-deallocation macros, which each chooses the macro according to our deal-

location rule. The analyser firstly creates one boolean flag variable for every

heap-allocated array variable and associates the flag value with its array’s

deallocation responsibility at run-time. When a new variable takes over an

old array, our macro will change flag value of relevant variables to ensure that

single owner is responsible for deallocation, and that every array variable with

true flag points to a valid address.

155

Procedure 7.3 Pre-deallocation macro by deallocation analysis
Input: code in function func
Output: A list of pre-deallocation macros suggested for code in func
1: procedure choosePreDeallocMacro(code, func)
2: macros := []
3: if code is Assignment OR code is Function call OR
4: code is Array Generator then
5: lhs = left-handed side of code
6: if lhs is Array then
7: macros.append(PRE DEALLOC(lhs))
8: end if
9: else if code is Return then

10: ret = return variable of code
11: for each var variable in func, except for ret variable do
12: if var is Array then
13: macros.append(PRE DEALLOC(var))
14: end if
15: end for
16: else// No needs to use macro
17: end if
18: return macros
19: end procedure

Secondly, our analyser targets on array generator, assignment, function

call and return statements, and applies PRE DEALLOC macros on dead variable

before each statement, i.e. left operand at an assignment or array generator,

and target variable at a function call. So we can safely empty the memory

space of target variable to store new values.

For a return statement, we keep return variable unchanged but free all local

variables and function parameters, depending on their associated deallocation

flags as they are out of the function scope. Further, because copy analyser may

make multiple variables aliased to the same memory space, the deallocation

of a return require extra owner check, which can be resolved by using our

pre-deallocation macro.

Our analyser goes through each local variable and function parameter, and

generates a list of PRE DEALLOC macros before the return statement to free

all used memory space in a function. And because the invariant of single de-

allocation owner holds by our deallocation macros, our PRE DEALLOC macro

can free any memory space only once, and thus avoid the problem of double

156

deletes on the shared memory.

Thirdly, our deallocation analyser chooses the post-deallocation macros to

change the values of deallocation flag in the post state.

• For an array generator, we use NEWARR macro to assign true flag to target

variable

• For an assignment, we choose between ADD or TRANSFER macro, depend-

ing on the copies of right variable, which may be removed by our copy

analyser.

• For a function call, we have four kinds of post-deallocation macros:

RETAIN, RESET, CALLER and CALLEE macros. The choice depends on

true liveness of actual parameter at caller site and the variable prop-

erties (mutation and return) of its corresponding formal parameter at

called function (see deallocation rule 6.1).

7.2.3 Code Optimisation and Generation

Once copy and deallocation analysers finish the optimisation of all functions,

our code generator goes through each function and produces optimised C code

as output, as shown in below Algorithm 7.5. For a function func, the code

generation phase consists of three parts: function signature, variable declara-

tion and body. First, our code generator constructs the function definitions

(return type, name and parameters). But for each array typed parameter, our

deallocation optimisation appends one extra boolean flag variable, next to the

parameter in declaration, to indicate if the variable has true flag to free the

allocated memory space. Secondly, our code optimiser appends the run-time

deallocation variable for each local array variable, and initialises the value to

be false. Thirdly, we go through each line of code in function body, check the

code type (assignment, function call and return) to call the correspond-

ing code optimiser, and then produce optimised C code with help from copy

and deallocation analysers. We will discuss each code optimisation as follows.

157

Procedure 7.4 Post-Deallocation Macro by Deallocation Analysis
Input: One line of code in function func
Output: A list of post-deallocation macros suggested for code in func
1: Variables
2: MutateAnalyser : Read/Write Analyser
3: ReturnAnalyser : Return analyser
4: LiveAnalyser : Live variable analyser
5: CopyAnalyser : Copy elimination analyser
6: macros: A list of macros used in code
7: aParam: Actual parameter used in function call code
8: fParam: Formal parameter used in definition of called function
9: end Variables

10: procedure computePostDeallocMacro(code, func)
11: macros = []// Store all macros used in code
12: if code is ArrayGenerator then
13: target = array variable of code
14: macros.append(NEWARR DEALLOC(target))
15: else if code is Assignment then
16: lhs = left-handed side of code
17: rhs = right-handed side of code
18: if lhs is an Array AND
19: CopyAnalyer .isCopyRemoved(rhs, code, func) then
20: macros.append(TRANSFER DEALLOC(lhs, rhs))
21: else// Copy of rhs is NOT removed at code
22: macros.append(ADD DEALLOC(lhs, rhs))
23: end if
24: else if code is Function call then
25: ret = return variable of code
26: callee = called function of code
27: for each aParam in code do// Iterate each actual parameter aParam
28: if aParam is Array then// Macro is applied on array type only
29: isLive ← LiveAnalyser .isLive(aParam, func)
30: fParam = map aParam at caller func to

formal parameter at called function callee
31: isMutated ← MutateAnalyser .isMutated(fParam, callee)
32: isReturned ← ReturnAnalyser .isReturn(fParam, callee)
33: switch isMutated − isReturned − isLive do
34: case F-F-T ∨ F-F-F ∨ T-F-F
35: macros.append(RETAIN DEALLOC(ret, aParam))

36: case F-T-F ∨ T-T-F
37: macros.append(RESET DEALLOC(ret, aParam))

38: case F-T-T ∨ T-T-T
39: macros.append(CALLER DEALLOC(ret, aParam))

40: case T-F-T
41: macros.append(CALLEE DEALLOC(ret, aParam))

42: end if
43: end for
44: else// No needs to use post-deallocation macro
45: end if
46: end procedure

158

Procedure 7.5 Generate Optimised C Code for Function func
Input: Function func at WyIL level
Output: The list of optimised C code using copy and deallocation analysers
1: Variables
2: CopyAnalyser : Copy elimination analyser
3: DeallocAnalyser : De-allocation analyser
4: list : a list of optimised C code
5: end Variables
6: procedure Code Optimise(func, list)
7: list := []
8: // Beginning function signature
9: list .append(”return type ”)// Function return type

10: list .append(”function name(”)// Function name
11: for each param in func do// Function parameters
12: type ← type of param from func function declaration
13: list .append(”type param,”)// Append param
14: if param is Array then// Add extra passed parameter
15: list .append(”size t param size,”)
16: list .append(”bool param dealloc,”)
17: end if
18: end for
19: list .append(”){”)// Ending function signature
20: // Beginning variable declaration
21: vars = variable tables from func variable declaration
22: for each var in vars do
23: type ← type of var
24: list .append(”type var;”)
25: if var is Array then
26: list .append(”size t var size = 0;”)
27: list .append(”bool var dealloc = false;”)// Add deallocation flag
28: end if
29: end for// Ending variable declaration
30: // Beginning function body
31: for each code in function body do// Generate Optimised Code
32: switch code do
33: case Array Generator
34: list .append(ArrayGeneratorOpt(code, func))

35: case Array Assignment
36: list .append(AssignmentOpt(code, func))

37: case Function Call
38: list .append(FunctionCallOpt(code, func))

39: case Return
40: list .append(ReturnOpt(code, func))

41: case Default// Generate Naive Code
42: list .append(GenerateCode(code, func))

43: end for
44: list .append(”}”)// Ending function body
45: return list
46: end procedure

159

Array Generator Optimisation A new array generator creates an array

var of given size with an initial value. We first use pre-deallocation macro

to free array variable and assigns true flag to the de-allocation flag of array

variable var using the following pre- and post macros

1 #define PRE DEALLOC(var) // Pre−deallocation macro
2 ({
3 if(var_dealloc){free(var); var=NULL; var_dealloc=false;}
4 })

1 #define NEW ARRAY POST(var)
2 ({
3 var_dealloc=true;
4 })

Example 7.2 Consider an assignment a = [2;3] where variable a is an array

of size 3, and the value of each array item is 2. The code optimiser generates

the below code

1 PRE DEALLOC(a); // Empty ’a’ if ’a dealloc’ is true
2 NEW 1DARRAY(a, 2, 3, int64 t);// a = [2;3]
3 NEW ARRAY POST(a); // a dealloc = true

Assignment Optimisation The optimisations of an assignment consist

pre-deallocation macro, the copy of right variable and post-deallocation macro.

Our optimiser does not deal with primitive typed assignment (integer/boolean)

because it is made by call-by-value and optimised automatically by stack mem-

ory management.

1 #define PRE DEALLOC(lhs)
2 ({
3 if(lhs_dealloc){free(lhs); lhs=NULL; lhs_dealloc=false;}
4 })

1 #define ADD DEALLOC POST(lhs, rhs)
2 ({
3 lhs_dealloc = true;
4 })

1 #define TRANSFER DEALLOC POST(lhs, rhs)
2 ({
3 lhs_dealloc = rhs_dealloc;
4 rhs_dealloc = false;
5 })

160

Procedure 7.6 Generate Optimised C Code for Assignment code in func
Input: Assignment code in function func at WyIL level
Output: A list of optimised assignment code
1: Variables
2: CopyAnalyser : Copy elimination analyser
3: DeallocAnalyser : De-allocation analyser
4: end Variables

// Produce optimised assignment code
5: procedure OptimiseAssignment(code, func)
6: list = []
7: lhs = left variable of code
8: rhs = right variable of code
9: list .append(”PRE DEALLOC(lhs)”)// Pre-Deallocation Macro on lhs

10: if CopyAnalyser .isCopyRemoved(rhs, code, func) then
11: // Assignment without copy
12: list .append(” lhs = rhs; lhs size = rhs size; ”)
13: else// Assignment with copy
14: list .append(” lhs = COPY(rhs); lhs size = rhs size; ”)
15: end if
16: macro ←DeallocAnalyser .choosePostDealloc(code, func)
17: if macro == ADD DEALLOC then
18: list .append(” ADD DEALLOC POST(lhs, rhs) ”)
19: else// TRANSFER DEALLOC

20: list .append(” TRANSFER DEALLOC POST(lhs, rhs) ”)
21: end if
22: return list
23: end procedure

Before an array assignment, deallocation analyser applies PRE DEALLOC

macro on left variable to empty its value, as above. Then the assignment

statement itself can be optimised by copy analyser to remove the copy of right

variable, and also apply ADD DEALLOC POST or TRANSFER DEALLOC POST post

code to make changes of left and right variables’ flag values after the assign-

ment. Algorithm 7.6 shows the code optimisation on an assignment.

Example 7.3 Consider an assignment a = b where variable a and b are ar-

rays. The code optimiser generates an assignment with copy

PRE DEALLOC(a);
a = COPY(b);
ADD DEALLOC POST(a, b);

or an assignment without copy

PRE DEALLOC(a);
a = b;
TRANSFER DEALLOC POST(a, b);

161

Function Call Optimisation The optimisation of a function call includes

• The code before a function call, including pre-deallocation of return vari-

able and copying parameters

• Actual function call, including actual and copied parameters and deallo-

cation flag value,

• Post-deallocation of parameters and return variable

Procedure 7.7 Variable name for array parameter at index of code in func
Input: Parameter at index of function call code in function func at WyIL level
Output: Temporary variable name
1: Variables

map: Global Hash map stores the name of a temporary variable at index of
code in func

2: end Variables
3: // Get the name of temporary variables used in code and func
4: procedure VarStore(index , code, func)
5: name ← map.lookup(index , code, func)
6: if name == NULL then// Make a new variable name
7: fparam = name of formal parameter at position index in called

function of code
8: name = ”tmp ” + fparam
9: suffix = 0

10: while name is used in func do
11: name = ”tmp ” + fparam + ” ” + suffix// Append suffix
12: suffix++
13: end while
14: // Include name to map
15: map.add((index , code, func) 7→ name)
16: end if
17: return name
18: end procedure

Our code optimisation focuses on array types, and does not need to have

extra work on primitive typed parameters because C language takes call-by-

value as default action to pass the values of those built-in types to the called

function.

In addition, our code optimisation requires temporary variables to store

the copied parameters at a function call. As the names of temporary variables

should be different from any existing variable, we thus introduce VarStore to

162

keep track of all temporary variable names and avoid naming conflicts (see

Algorithm 7.7).

Consider the called function func(a, b) as an example. The copy of array

parameter at index of 1 would be tmp b. If such a name is used in function

func, then we use tmp b 0 , tmp b 1 , etc

Procedure 7.8 Generate code before function call code in func
Input: Function call code in function func at WyIL level
Output: A list of code before a function call
1: Variables

CopyAnalyser : Copy elimination analyser
VarStore: A variable set stores the names of temporary variables

2: end Variables
3: // Generate pre-deallocation code of a function call
4: procedure Optimise PreFunctionCall(code, func)
5: list = []
6: ret = function return variable at code
7: if ret != NULL AND ret is an Array then
8: list .append(”PRE DEALLOC(ret)”)// Pre-Deallocation Macro on ret
9: end if

10: params = parameter list of code
11: // Check each actual parameter param at code
12: for index ← 0 ; index < |params|; index ++ do
13: param = params[index]
14: if (param is an Array AND
15: ¬CopyAnalyser .isCopyRemoved(param, code, func)) then
16: // Copying of param is needed
17: tmp ←VarStore(index , code, func)// Temporary variable tmp
18: // Store the copy of param with temporary variable tmp
19: list .append(”void* tmp = COPY(param);”)
20: end if
21: end for// Ending declaration
22: return list
23: end procedure

Algorithm 7.8 shows the procedure of generating the code before an opti-

mised function call. Firstly, the code optimiser gets the function return ret if

provided, and then applies pre-deallocation macro to safely empty its value.

Secondly, it goes through each actual parameter param, and if the parameter

is an array and the copy is needed from copy analysis, declares an additional

block-scope temporary variable tmp, which is obtained from VarStore, to store

the copied function parameter.

163

Procedure 7.9 Generate actual function call code in func
Input: Function call code in function func at WyIL level
Output: A list of actual function call code
1: Variables

CopyAnalyser : Copy elimination analyser
DeallocAnalyser : De-allocation analyser
VarStore: A variable set stores the names of temporary variables

2: end Variables
3: // Optimise actual function call
4: procedure Optimise ActualFunctionCall(code, func)
5: list = []
6: callee name = get the name of called function at code
7: ret = function return variable at code
8: // Beginning of a function call
9: if ret is NOT NULL then

10: list .append(” ret = callee name(”)
11: else
12: list .append(” callee name(”)
13: end if
14: for index ← 0 ; index < |params|; index + + do
15: param = params[index]
16: if param is an Array then
17: param size = get size of array param
18: if CopyAnalyser .isCopyRemoved(param, code, func) then
19: // Pass param with false flag
20: list .append(” param, param size, false ”)
21: else
22: macro ←DeallocAnalyser .choosePostMacro(param,

code, func)
23: tmp ←VarStore(index , code, func)// Temporary variable
24: // Pass copied parameter tmp
25: if macro == CALLEE then
26: list .append(” tmp, param size, true ”)
27: else// CALLER

28: list .append(” tmp, param size, false ”)
29: end if
30: end if
31: else
32: list .append(” param ”)// Pass param without optimisation
33: end if
34: end for
35: list .append(”); ”)// Ending of a function call
36: return list
37: end procedure

Algorithm 7.9 shows the procedure of generating optimised actual func-

tion call. The code optimiser uses copy analysis results and post-deallocation

macros, to produce the optimised function call, including the name of called

function callee name, parameter list and return variable if provided.

164

The parameter list includes all the actual parameters. We pass primitive

typed parameters to called function without any extra optimisation, because

they are copied and managed automatically by C language run-time. But

for array-typed parameters, we need to have three arguments: array variable,

size variable and the value of deallocation flag. The array variable can be

actual parameter param or temporary variable tmp, depending on the needs

of copying. Size variable is the size of actual parameter. And the deallocation

flag is false by default, but if CALLEE macro is used, the flag is true.

Procedure 7.10 Generate optimised code after function call code in func
Input: Function call code in function func at WyIL level
Output: A list of code after a function call
1: Variables

DeallocAnalyser : De-allocation analyser
VarStore:A variable set stores the names of temporary variables

2: end Variables
3: procedure Optimise PostFunctionCall(code, func)
4: list = []
5: ret = function return variable at code
6: for index ← 0 ; index < |params|; index ++ do
7: if param is An Array then
8: macro ←DeallocAnalyser .choosePostMacro(param, code, func)
9: if ret is an Array then

10: switch macro do
11: case RETAIN

12: list .append(” RETAIN DEALLOC POST(ret , param) ”)

13: case RESET

14: list .append(” RESET DEALLOC POST(ret , param) ”)

15: case CALLER

16: tmp ← VarStore(index , code, func)
17: list .append(” CALLER DEALLOC POST(ret , tmp) ”)

18: case CALLEE

19: list .append(” CALLEE DEALLOC POST(ret , tmp) ”)

20: else if macro == CALLER then
21: list .append(” free(tmp); ”)// Free extra copy
22: end if
23: end if
24: end for// Ending post macro
25: return list
26: end procedure

Algorithm 7.10 shows the procedure of generating optimised code after a

function call. The code optimiser goes through each array parameter, picks

up its post-deallocation macro type from deallocation analyser, and inserts

165

the corresponding code (see the below macros) to make changes of run-time

de-allocation flags between function return and parameters in the post state

of a procedure call.

1 #define RETAIN DEALLOC POST(ret, param)
2 ({
3 ret_dealloc = true;
4 })

1 #define RESET DEALLOC POST(ret, param)
2 ({
3 if(ret != param){
4 ret_dealloc = true;
5 }else{
6 ret_dealloc = param_dealloc;
7 param_dealloc = false;
8 }
9 })

1 #define CALLER DEALLOC POST(ret, tmp)
2 ({
3 if (ret != tmp) {free(tmp);}
4 ret_dealloc = true;
5 })

1 #define CALLEE DEALLOC POST(ret, tmp)
2 ({
3 ret_dealloc = true;
4 })

These post code extracts from our de-allocation macros to set the deallo-

cation flag of array typed function return and parameters after the call. In

case of primitive typed returns, we do not apply our post code because those

variables do not have flags. But since CALLER macro makes an extra copy

of parameter and the called function does not return it, we therefore include

a free statement to release temporary copy and avoid the memory leaks.

Example 7.4 Consider a function call d = func(a, b, c). Called function func

returns an array variable d, and array variables a, b and c are passed param-

eters of function func. And then we use our analysis to determine the dealloca-

tion macros for parameters a, b and c and use CALLEE DEALLOC, CALLER DEALLOC

and RETAIN DEALLOC macros respectively. Then our code generator produces

the below code:

166

1 {
2 PRE DEALLOC(d);// Empty array ’d’
3 // Copied parameters
4 void* tmp_a_0 = COPY(a);
5 void* tmp_b_0 = COPY(b);
6 // Do not need to copy c;
7 // Actual function call code
8 d = func(
9 tmp_a_0, a_size, true, // Pass copied ’a’

10 tmp_b_0, b_size, false, // Pass copied ’b’
11 c, c_size, false // Pass ’c’ wihtout copy
12);
13 // Post code
14 CALLEE DEALLOC POST(d, tmp_a_0);
15 CALLER DEALLOC POST(d, tmp_b_0);
16 RETAIN DEALLOC POST(d, c);
17 }

Return Optimisation Apart from return variable, the code optimiser pro-

duces a list of PRE DEALLOC macros to free the allocated memory space for all

local array-typed variables and function parameters. We do not free return

variable because it will be returned to caller site.

1 // Function ’func’ may change ’b’ array and may return ’b’ array
2 // If not, return new array ’c’
3 function func(int[] b, int num) -> int[]:
4 int[] c = [0;3] // c[0] = 0
5 if num > 10:
6 b[0] = num
7 return b
8 else:
9 return c

10 // Method ’main’
11 method main(System.Console sys):
12 int[] b = [2;3] // b[0] = 2
13 int[] tmp = func(b, 11) // function call
14 b = tmp // b[0] = tmp[0] = 11
15 assert b[0] == 11
16 sys.out.println(b[0])
17 b = func(b, 65536) // function call
18 sys.out.println(b[0])
19 assert b[0] == 65536

Listing 7.4: Example Whiley program

Example 7.5 Consider the example 7.1 again. The Whiley source code is

shown in Listing7.4. We use code optimisation to produce the code of function

func and method main by:

• Eliminating unnecessary copies with copy analysis,

167

• Inserting pre and post-deallocation macros into the generated code by

using de-allocation analysis

The code generator works with copy and deallocation analysers, and the

procedure of code optimisation starts with function func and then moves on

to method main, and performs on each line of code in each function. The code

generator checks copy analysis to delete or keep the copying, and deallocation

analyser to choose the macros for copy optimised C code.

1 // function func(int[] b, int num) −> int[]:
2 int64 t* func(int64 t* b, size t b_size, bool b_dealloc,
3 int64 t num, size t* _size){
4 int64 t* _6 = NULL;size t _6_size = 0;bool _6_dealloc = false;
5 int64 t* c = NULL;size t c_size = 0;bool c_dealloc = false;
6 NEW 1DARRAY(_6, 0, 3, int64 t);//arraygen %6 = [0; 3] : int[]
7 NEW ARRAY POST(_6); // 6 dealloc=true;
8 PRE DEALLOC(c);
9 c = _6; c_size = _6_size;//assign c = %6 : int[]

10 TRANSFER DEALLOC POST(c, _6); // c dealloc=true, 6 dealloc=false
11 if(num<=10){goto blklab0;}
12 b[0] = num; //update b[0] = num
13 PRE DEALLOC(c);// c dealloc = true
14 PRE DEALLOC(_6);// 6 dealloc = false
15 *_size = b_size; // Update return array size to call−by−reference ’ size’
16 return b;//return b
17 blklab0:;
18 PRE DEALLOC(b);// b dealloc = false
19 PRE DEALLOC(_6);// 6 dealloc = false
20 *_size = c_size;
21 return c;//return c
22 }

Listing 7.5: Code snippet of copy optimised function func (comments:
deallocation flag or WyIL code)

Function func Includes an extra b dealloc to indicate if parameter b can

be freed by function func or not. In the first statement, we create a new array

variable 6 , and assign true 6 dealloc flag using NEW ARRAY POST macro.

The next assignment in line 8 writes array 6 to variable c without copies

because 6 has no uses and becomes dead after this program point.

In line 9, we place a branch depending on num value.

• num > 10: we update and return parameter b and thus need to free all

the other local variables using PRE DEALLOC macro. In this case, we will

only free variable c because 6 and c are aliased to the same array and

only variable c has true flag.

168

• num ≤ 10 : we return a new array c and thus need to use PRE DEALLOC

macro parameter b and temporary variable 6 . And we will not free 6

because 6 has a false flag. The de-allocation of variable b will depend

on the value of passed b dealloc parameter.

Before each return, we update the size of output array to call-by-reference

parameter size so that the array size can be passed back to caller site.

1 int main(int argc, char** args){
2 int64 t* _5=NULL; size t _5_size=0; bool _5_dealloc=false;
3 int64 t* b=NULL; size t b_size=0; bool b_dealloc=false;
4 int64 t* _8=NULL; size t _8_size=0; bool _8_dealloc=false;
5 int64 t* tmp=NULL; size t tmp_size=0; bool tmp_dealloc=false;
6 int64 t* _18=NULL; size t _18_size=0; bool _18_dealloc=false;
7 NEW 1DARRAY(_5, 2, 3);// arraygen %5 = [2; 3] : int[]
8 NEW ARRAY POST(_5); // 5 dealloc = true;
9 PRE DEALLOC(b);

10 b = _5; b_size = _5_size;//assign b = %5 : int[]
11 TRANSFER DEALLOC POST(b, _5);
12 //b dealloc = true, 5 dealloc = false
13 {//invoke ()%8) = func(b, 11)
14 PRE DEALLOC(_8);
15 _8 = func(b, b_size, false, 11, &_8_size)// Pass ’b’ without copy
16 RESET DEALLOC POST(_8, b);
17 }// 8 dealloc = true, b dealloc = false
18 PRE DEALLOC(tmp);
19 tmp = _8; tmp_size = _8_size;//assign tmp = 8 : int[]
20 TRANSFER DEALLOC POST(tmp, _8);
21 // tmp dealloc = true, 8 dealloc = false
22 PRE DEALLOC(b);
23 b = tmp; b_size = tmp_size;//assign b = tmp : int[]
24 TRANSFER DEALLOC POST(b, tmp);// b dealloc = true, tmp dealloc =

false
25 ASSERT(b[0] == 11);
26 printf("%"PRId64"\n", b[0]);
27 {//invoke (%18) = func(b, 65536)
28 PRE DEALLOC(_18);
29 _18 = func(b, b_size, false, 65536, &_18_size);
30 RESET DEALLOC POST(_18, b);
31 }// 18 dealloc = true, b dealloc = false
32 PRE DEALLOC(b);
33 b = _18; b_size = _18_size;//assign b = 18 : int[]
34 TRANSFER DEALLOC POST(b, _18);//b dealloc = true, 18 dealloc =

false
35 ASSERT(b[0] == 65536);
36 printf("%"PRId64"\n", b[0]);
37 PRE DEALLOC(b);// b dealloc = true
38 PRE DEALLOC(tmp);// tmp dealloc = false
39 PRE DEALLOC(_5);// 5 dealloc = false
40 PRE DEALLOC(_8);// 8 dealloc = false
41 PRE DEALLOC(_18);// 18 dealloc = false
42 exit(0);//return
43 }

Listing 7.6: Code snippet of copy cptimised method main (comments:
deallocation flag)

169

Method main Firstly creates and assigns a new array to variable b with-

out copies, so b dealloc is true. In the next, we make a function call to func so

apply PRE DEALLOC macro to empty 8 , which is not executed because of false

8 dealloc value. We use RESET DEALLOC post-deallocation macro on variable

b because:

• Passed parameter b may be updated and returned by called function

func;

• Variable b becomes dead after the call as the assignment in line 20 over-

writes variable b at method main

So the function call with expanded macro shows as follows:

1 { // 8 dealloc=false
2 if(_8_dealloc){free(_8); _8=NULL; _8_dealloc=false;}
3 // b dealloc = true
4 _8 = func(b, b_size, false, 11, &_8_size);
5 // ’b’ will not be freed by ’func’
6 if(_8 != b){ // 8 points to a new array
7 _8_dealloc = true;
8 }else{ // 8 and b point to the same array
9 _8_dealloc = b_dealloc;// 8 dealloc = b dealloc = true

10 b_dealloc = false; // b dealloc = false
11 }
12 }

Since the deallocation flag b dealloc is passed as false value to called func-

tion func, b will not be free by function func. Because b and 8 are the same

array, reset macro will transfer the flag from b to 8 .

In the next two assignments (line 19 to 26), we move array 8 from tmp to

b by using transfer macro, so does the deallocation flag value.

In the second call (line 24 to 28) we also use reset macro similarly to assign

the flag from parameter x to target variable 18 , and then over-writes array b

with variable 18 .

Throughout the entire main method, we have only one copy of array b,

made by NEW 1DARRAY macro. Although 6 different variables alias to this array,

only variable b has true flag. Therefore, by using PRE DEALLOC macro we can

restrict the memory de-allocation on variable b only, and free the shared array

without double free errors.

170

7.2.4 Choosing Fixed-Size Integers

Whiley programming language provides two types of integers: int and byte.

By default, we uses signed 64-bit integers (int64 t) to store the value of

each integer/array, regardless of its domain in the program. For byte typed

integers/arrays, because its value range always falls within 0 and 255, we use

unsigned 8 bit integers (uint8 t) to store its value.

Procedure 7.11 Choosing Suitable Integer type
Input: Integer Variable var of function func
Output: Fixed-size integer type for var suggested by our bound analyser
1: Variables
2: type: Fixed-sized Integer types (int16 t, int32 t, int64 t, uint16 t,

uint32 t, uint64 t)
3: MAX (type): Maximal value of type
4: MIN (type): Minimal value of type
5: end Variables

// Use bound result to choose fixed-width integer type
6: procedure ChooseIntegerType(var , func)
7: d = domain(var)
8: lower = d .getLower()// Get lower bound
9: upper = d .getUppser()// Get upper bound

10: if lower ≥ 0 then// Unsigned integer
11: if upper ≤ MAX (uint16 t) then
12: return uint16 t

13: else if upper ≤ MAX (uint32 t) then
14: return uint32 t

15: else
16: return uint64 t

17: end if
18: else// Signed integer
19: if MIN (int16 t) ≤ lower AND upper ≤ MAX (int16 t) then
20: return int16 t

21: else if MIN (int32 t) ≤ lower AND upper ≤ MAX (int32 t) then
22: return int32 t

23: else
24: return int64 t

25: end if
26: end if
27: end procedure

Once those domains can be statically estimated by our bound analysis, we

can use inferred lower and upper bound to choose suitable integer type (see

Algorithm 7.11). For example, the lower bound of an integer variable has only

positive value (no negative value), and then we can use unsigned integer types.

171

Then by checking the upper bound with maximal value of each type, we can

determine integer size, e.g. unsigned 16 bits (uint16 t) or unsigned 32 bits

(uint32 t) to hold its value. Currently our bound analysis supports below

integer types and its ranges:

Table 7.1: Supported fixed-width integer type and value range

Integer type Description [Min . . .Max]

int16 t Signed integer with exactly 16 bits [−(215 − 1) . . . 215 − 1]

int32 t Signed integer with exactly 32 bits [−(231 − 1) . . . 231 − 1]

int64 t Signed integer with exactly 64 bits [−(263 − 1) . . . 263 − 1]

uint16 t Unsigned integer with exactly 16 bits [0 . . . 216 − 1]

uint32 t Unsigned integer with exactly 32 bits [0 . . . 232 − 1]

uint64 t Unsigned integer with exactly 64 bits [0 . . . 264 − 1]

Some compiler can generate the most efficient implementation for a basic

typed integer but its size varies depending on platform and program request.

For example, int integers has a range of sizes varying from 16 to 64 bits as

long as it holds the requested value. Thus, we may have 32-bit on one compiler

and 64-bit on another even if the same processor is used.

Using fixed-size integers in our generated code results in consistent and

portable memory usage across different platforms because fixed-sized inte-

gers always use the exact width of memory space as indicated on the name

(uint16 t integer takes only 16 bits wide of memory). We therefore can esti-

mate the required memory space and ensure the program is able to execute in

a limited memory embedded system.

Our analyser performs bound analysis on each function call: propagating

input bounds from caller site to called procedure, extracting range constraints

and then inferring the bounds using fixed-point iteration along with widening

operator. Lastly, our analyser stores the bound results of each call separately

and takes union of all function calls to produce aggregated final bounds for all

172

integer variables, including input parameters and return value.

Our code optimisation may alias some variables due to copy elimination,

and those aliasing also changes the variable bounds. Our bound analyser goes

through all aliasing variables at final stage, makes the union of bounds and

updates the bounds of all aliasing variables. With this information, our code

generator can select a fixed-size integer for each variable within its range.

1 function func(int[] b, int num) -> int[]:
2 int[] c = [0;3] // c[0] = 0
3 if num > 10:
4 b[0] = num
5 return b// Function ’func’ may change and return ’b’ array
6 else:
7 return c// If not, return new array ’c’
8

9 method main(System.Console sys):
10 int[] b = [2;3] // b[0] = 2
11 int[] tmp = func(b, 11) // function call
12 b = tmp // b[0] = tmp[0] = 11
13 assert b[0] == 11
14 sys.out.println(b[0])
15 b = func(b, 65536) // function call
16 sys.out.println(b[0])
17 assert b[0] == 65536

Listing 7.7: Example Whiley program

Example 7.6 Consider the example 7.7 again. We enable bound analysis to

find the matching integer types for each target variable. Method main makes

two function calls at line 12 and 15 and over-writes variable b twice. Each

call passes different value of parameter num and results in different bounds

of function func. Our bound analyser examines all calls and takes union of

bounds to produce final results for function func, and apply the resulting bounds

to use integer types in the code.

1 // d(b) = [2..2] d(num) = [11..11] d(return) = [0..11]
2 function func(int[] b, int num) -> int[]:
3 int[] c = [0;3] // d(c) = [0..0]
4 if num > 10:
5 // num > 10 => d(num)=[11..11]
6 b[0] = num // d(b) = [2..11]
7 return b // d(b) = [2..11]
8 else:
9 // Unreachable block

10 // num <= 10 => d(num)=[empty..empty]
11 return c // d(c) = [0..0]

Listing 7.8: Bound inference on 1st function call func(b, 11) (comments:
inferred bounds)

173

1st Function Call func(b, 11) (see Listing 7.8) take array b and integer

num as inputs, and extracts the constraints from condition in line 4 for IF

and ELSE blocks, and starts fixed-point iteration to infer the bounds in each

block. Given input bounds d(b) = [2 . . . 2] and d(num) = [11 . . . 11], we have:

• IF block (num > 10):

d(num) = d(num) ∩ [11 . . .∞] = [11 . . . 11]

The update statement in line 6 changes the domain of variable b

d(b) = d(b) ∪ [11 . . . 11] = [2 . . . 2] ∪ [11 . . . 11] = [2 . . . 11]

The above domains are feasible so make IF block reachable.

• ELSE block (num ≤ 10):

d(num) = d(num) ∩ [−∞ . . . 10] = [11 . . . 10] = ∅

d(c) = [0 . . . 0]

Domain d(num) is not feasible so makes ELSE block unreachable.

The return variables are aliased to b and c (see return statements in line

7 and 11) even although ELSE block is unreachable, variable c is aliased with

function return. So we can obtain the domain of return variable as the union

bounds of all aliasing variables, and then update the resulting domain to all

aliasing variables. The output domain of 1st function call func(b, 11) is

d(return) = d(b) ∪ d(c) = [2 . . . 11] ∪ [0 . . . 0] = [0 . . . 11] = d(b) = d(c)

1 method main(System.Console sys):
2 int[] b = [2;3]
3 int[] tmp = func(b, 11) // d(tmp) = d(return) = [0..11]
4 b = tmp // d(b) = d(tmp) = [0..11]
5 assert b[0] == 11
6 sys.out.print_s("b[0] = ")
7 sys.out.println(b[0]) // d(b) = [0..11]
8 b = func(b, 65536)
9 assert b[0] == 65536

10 sys.out.print_s("b[0] = ")
11 sys.out.println(b[0])

Listing 7.9: Bound propagation on 1st function call func(b, 11) (comments:
inferred bounds)

174

Method main Main (see Listing 7.9) propagates domain d(return) back to

variable tmp at caller , and then assignment in line 4 passes the domain from

variable tmp to b. So we have below domains

d(b) = d(tmp) = d(return) = [0 . . . 11]

Before the 2nd function call, d(b) is updated to d(b) = [0 . . . 11]

1 // d(b) = [0 .. 11] d(num) = [65,536 .. 65,536] d(return) = [0 .. 65,536]
2 function func(int[] b, int num) -> int[]:
3 int[] c = [0;3] // d(c) = [0 .. 0]
4 if num > 10:
5 b[0] = num // d(b) = [0 .. 65,536]
6 return b // d(b) = [0 .. 65,536]
7 else:
8 return c // d(c) = [0 .. 0]

Listing 7.10: Code snippet of bound inference on 2nd function call func
(comments: inferred domain)

2nd Function Call func(b, 65536) (see Listing 7.10) takes d(b) = [0 . . . 11]

and d(num) = [65, 536 . . . 65, 536] as input bounds , and produces output the

following bounds:

• IF block (num > 10):

d(num) = d(num) ∩ [11 . . .∞] = [65, 536 . . . 65, 536]

The updated domain of b is

d(b) = d(b) ∪ [65, 536 . . . 65, 536] = [0 . . . 11] ∪ [65, 536 . . . 65, 536]

= [0 . . . 65, 536]

The above domains are feasible so make IF block reachable.

• ELSE block (num ≤ 10):

d(num) = d(num) ∩ [−∞ . . . 10] = [65, 536 . . . 10] = ∅

d(c) = [0 . . . 0]

Domain d(num) is not feasible so make ELSE block unreachable.

Therefore, we combine the bounds of variable b and c to produce the domain

of return value, and then update resulting domains to variable b and c.

d(return) = d(b)∪d(c) = [0 . . . 0]∪ [0 . . . 65, 536] = [0 . . . 65, 536] = d(b) = d(c)

175

Final Bounds Function func combines the results of 1st and 2nd function

calls to produce the bounds for function func. The domains are summarised

as follows.

Table 7.2: Final Domains of Function func

Domain(var) 1st Call 2nd Call Final bounds Integer Type

d(b) [0 . . . 11] [0 . . . 65, 536] [0 . . . 65, 536] uint32 t

d(num) [11 . . . 11] [65, 536 . . . 65, 536] [11 . . . 65, 536] uint32 t

d(c) [0 . . . 11] [0 . . . 65, 536] [0 . . . 65, 536] uint32 t

d(return) [0 . . . 11] [0 . . . 65, 536] [0 . . . 65, 536] uint32 t

Our code generator bases on the final inferred bound results (see Table 7.2)

to choose a specific fixed-size type for each variable, and generates C code of

function func. For example, we use unsigned 32-bit integers to store array c

because its domain falls within [0 . . . 232 − 1]. And we also can use uint32 t

types for input parameters b and num since their ranges are within unsigned

32-bit integers.

1 // d(b) = [2..65,536] d(num) = [11..65,536]
2 uint32 t* func(uint32 t* b, size t b_size, uint32 t num,
3 size t* _size){
4 uint32 t* _6=NULL;
5 size t _6_size=0; bool _6_dealloc = false;
6 uint32 t* c=NULL;
7 size t c_size=0; bool c_dealloc = false;
8 NEW 1DARRAY(_6, 0, 3, uint32 t);
9 PRE DEALLOC(c);

10 c = _6; c_size = _6_size;
11 TRANSFER DEALLOC POST(c, _6);
12 if(num<=10){goto blklab0;}
13 b[0] = num;
14 PRE DEALLOC(c);
15 PRE DEALLOC(_6);
16 *_size = b_size;
17 return b;
18 blklab0:;
19 PRE DEALLOC(b);
20 PRE DEALLOC(_6);
21 *_size = c_size;
22 return c;
23 }

Listing 7.11: Code snippet of function func using fixed-sized integers
(comments: inferred bounds)

176

Method main We will illustrate the bounds of a variable may be changed

due to aliasing effects caused by the copy optimisation.

1 // Main method in our example
2 method main(System.Console sys):
3 int[] b = [2;3] // d(b) = [2..2]
4 int[] tmp = func(b, 11) // d(tmp) = [0..11]
5 b = tmp // d(b) = d(tmp) = [0..11]
6 assert b[0] == 11
7 sys.out.print_s("b[0] = ")
8 sys.out.println(b[0])
9 b = func(b, 65536) // d(b) = [0..65536] = d(tmp)

10 assert b[0] == 65536
11 sys.out.print_s("b[0] = ")
12 sys.out.println(b[0])

Listing 7.12: Code snippet of bound inference on method main (comments:
inferred domain at each program point)

Example 7.7 Assignment in line 4 at Method main assigns array tmp to b.

In copy removed code, because the copy is taken out at the assignment, array

b is aliased to tmp. Because of variable aliasing, we need to use an extra step

to produce final bounds.

Table 7.3: Final bounds of copy eliminated method main

Variable Domain Integer Type

d(5) [0 . . . 65, 536] uint32 t

d(b) [0 . . . 65, 536] uint32 t

d(8) [0 . . . 65, 536] uint32 t

d(tmp) [0 . . . 65, 536] uint32 t

d(18) [0 . . . 65, 536] uint32 t

Once copy analyser optimises and removes the unused copies at method main,

our bound analysis starts the bound inference procedure and meanwhile, keeps

track of variable aliasing sets, where all aliased variables are store in the same

set.

177

At the final phase of bound inference, our analyser goes through each vari-

able in the same aliased set to take the union of all aliasing variable domains,

and then use the union domain to update all relevant variables’ bounds. There-

fore, we have consistent variable domain to fit into maximal and minimal values

of all aliased variables.

Consider our example again. The domain results of copy eliminated code

are listed as follows.

Table 7.3 shows the bound analyser produces consistent bound results for

copy optimised code. After the copies are removed, variable b is aliased to

four variables: 5 , 8 , tmp and 18 .

Variable 5 is the target of array generator code at line 2 in example 7.12.

The array generator code creates an array of size 3, and initialises all array

elements with 2, and then assigns to variable 5 . So domain d(5) is [2 . . . 2].

Variable 8 and 18 are the return at 1st and 2nd function calls respectively.

From previous section, we know the domain of 1st function return d(8) is

[0 . . . 11] and is updated to variable tmp and b.

d(tmp) = d(8) = [0 . . . 11] = d(b)

The domain of 2nd return 18 is [0 . . . 65, 536] and overwrites variable b, so

the final domains are

d(b) = d(18) = [0 . . . 11] ∪ [0 . . . 65, 536] = [0 . . . 65, 536]

Since the copy eliminated code removes copies at all assignments and aliases

all variables, so the analyser takes union of bounds and update the domains

of all aliasing variables: b, 5 , tmp and 18 .

The final bounds are updated to the below domain

d(b) = d(tmp) = d(5) = d(18) = [0 . . . 65, 536]

178

1 int main(int argc, char** args){
2 uint32 t* _5=NULL; size t _5_size=0; bool _5_dealloc=false;
3 uint32 t* b=NULL; size t b_size=0; bool b_dealloc=false;
4 uint32 t* _8=NULL; size t _8_size=0; bool _8_dealloc=false;
5 uint32 t* tmp=NULL; size t tmp_size=0; bool tmp_dealloc=false;
6 uint32 t* _18=NULL; size t _18_size=0; bool _18_dealloc=false;
7 // arraygen %5 = [2; 3]
8 NEW 1DARRAY(_5, 2, 3); _5_dealloc = true;
9 //assign b = %5 : int[]

10 PRE DEALLOC(b);
11 b = _5; b_size = _5_size;
12 TRANSFER DEALLOC POST(b, _5); // b dealloc = true, 5 dealloc =

false
13 //invoke ()%8) = func(b, 11)
14 {
15 PRE DEALLOC(_8);
16 _8 = func(b, b_size, false, 11, &_8_size)// Pass ’b’ without copy
17 RESET DEALLOC POST(_8, b); // 8 dealloc = true, b dealloc =

false
18 }
19 //assign tmp = 8 : int[]
20 PRE DEALLOC(tmp);
21 tmp = _8; tmp_size = _8_size;
22 TRANSFER DEALLOC POST(tmp, _8);// tmp dealloc = true, 8 dealloc

= false
23 //assign b = tmp : int[]
24 PRE DEALLOC(b);
25 b = tmp; b_size = tmp_size;
26 TRANSFER DEALLOC POST(b, tmp);// b dealloc = true, tmp dealloc =

false
27 ASSERT(b[0] == 11);
28 printf("%"PRId64"\n", b[0]);
29 //invoke (%18) = func(b, 65536)
30 {
31 PRE DEALLOC(_18);
32 _18 = func(b, b_size, false, 65536, &_18_size);
33 RESET DEALLOC POST(_18, b);// 18 dealloc = true, b dealloc =

false
34 }
35 //assign b = 18 : int[]
36 PRE DEALLOC(b);
37 b = _18; b_size = _18_size;
38 TRANSFER DEALLOC POST(b, _18); // b dealloc = true, 18 dealloc =

false
39 ASSERT(b[0] == 65536);
40 printf("%"PRId64"\n", b[0]);
41 PRE DEALLOC(b);// b dealloc = true
42 PRE DEALLOC(tmp);// tmp dealloc = false
43 PRE DEALLOC(_5);// 5 dealloc = false
44 PRE DEALLOC(_8);// 8 dealloc = false
45 PRE DEALLOC(_18);// 18 dealloc = false
46 //return
47 exit(0);
48 }

Listing 7.13: Copy eliminated code with integer bound inference results on
method main

Chapter 8

Benchmarks for Sequential

Programs

The use of value semantics in Whiley functional programming language in-

troduces expensive overheads of array copying, when array is large. Also, the

generated code, if we naively translate WyIL code into sequential C code, has

memory leaking issues and thus can not scale to larger problem sizes.

Our code optimiser analyses a Whiley program at WyIL level and offsets

above inefficiency at code generation phase to produce efficient C code that can

run fast and for long. Our copy analyser eliminates unused copies to reduce

copying overheads and our deallocation analyser chooses and inserts macros at

appropriate program points to avoid memory leaks and errors, so the resulting

code has fewer overheads and leaks than naive one and thus speed up the

execution.

Our static bound analysis is disabled for all benchmarks, because our bench-

mark program varies the problem sizes at runtime by taking command line

arguments or a text file, whose value can not be statically estimated by our

analysis to give out precise integer ranges and types.

This chapter goes through a series of benchmark programs to illustrate

effectiveness of our code optimisation. Each benchmark program is firstly

compiled into WyIL code. Then our code generator takes WyIL code as input,

180

translates into C code with/without copy and de-allocation analysers, and give

four kinds of C11-compatible implementations:

• Naive code (N) is translated from WyIL code with no optimisation.

• Naive and de-allocated code (N+D) is translated from WyIL code and

optimised with de-allocation analyser only.

• Copy-eliminated code (C) is translated from WyIL code and optimised

with just copy elimination analyser.

• Copy-eliminated and de-allocated code (C+D) is translated from WyIL

code and optimised with both copy elimination and de-allocation analy-

sers.

Each implementation for 10 times on one problem size, and average the

execution time of 10 runs. The performance metric includes

• Memory leaks of each implementation are detected by Valgrind (Nether-

cote and Seward, 2007) and summed up 4 kinds of memory leaks (defi-

nitely, indirectly, possibly and still reachable losses).

• Speedup of copy elimination is the execution rate of naive code over copy

eliminated code N
C

• Speedup of combined optimisation is the execution rate of naive + de-

allocated code over copy eliminated + de-allocated code N+D
C+D

All benchmarks are conducted on Ubuntu machine (i7-4770 CPU @ 3.40GHz

and 16 GB memory), and compiled into executable by GCC compiler (version

5.4.0) with O3 optimisation flag.

8.1 Micro-Benchmarks

The micro-benchmark consists of 5 Whiley programs to test code optimisations

and measure the performance of generated C code. The benchmark suite in-

cludes Reverse (see Appendix B.1) TicTacToe (see Appendix B.2) MergeSort

181

(see Appendix B.4), BubbleSort (see Appendix B.3) and MatrixMulti (see Ap-

pendix B.5) programs.

Each test case takes command line arguments as input to vary the array

size of benchmark programs. In each case, we choose three sizes to measure

the memory leaks and execution time. Note TicTacToe program varies the

number of repeats, rather than the size of game board, for bench-marking.

Table 8.1: Memory leaks (bytes) of micro-benchmarks

Memory Leaks (bytes)

Test Case Problem Size N N + D C C + D

Reverse

100,000 4,800,416 0 1,600,408 0

1,000,000 48,000,424 0 16,000,416 0

10,000,000 480,000,432 0 160,000,424 0

TicTacToe

100,000 276,000,296 0 204,000,288 0

200,000 552,000,296 0 408,000,288 0

300,000 828,000,296 0 612,000,288 0

BubbleSort

1,000 32,408 0 8,400 0

10,000 320,416 0 80,408 0

100,000 3,200,424 0 800,416 0

MergeSort

1,000 320,376 0 80,368 0

10,000 640,648 0 160,544 0

100,000 961,144 0 240,776 0

MatrixMult

1, 000× 1, 000 112,000,464 0 24,000,456 0

2, 000× 2, 000 448,000,464 0 96,000,456 0

3, 000× 3, 000 1,008,000,464 0 216,000,456 0

Memory Leaks Table 8.1 shows that, on our benchmark suite, our dealloca-

tion analysis effectively avoids memory leaks on both naive and copy eliminated

code for all test cases. Also, the copy elimination alone can effectively remove

copies in all test cases, and avoid all unnecessary copies in four cases (at least):

182

Reverse, BubbleSort , MergeSort and MatrixMult . Note in each case, there are

minor and constant amounts of memory leaks, e.g. 424 bytes in Reverse case,

which do not grow with problem sizes, because our program needs to allocate

some extra memory space to store the values of command line arguments.

1 function reverse(int[] arr) -> int[]:
2 int i = |arr|
3 int[] r = [0; |arr|]
4 while i > 0 where i <= |arr| && |r| == |arr|:
5 int item = arr[|arr|-i]
6 i = i - 1
7 r[i] = item
8 return r

Listing 8.1: Reverse program

Reverse program uses two arrays (arr and r) to run function reverse (see

Listing 8.1). Because each array is declared as signed 64-bit integers (int64 t),

we can get the number of arrays used in the program as estimates of memory

leaks.

Consider the array size of 1× 107 as an example. Each array takes up 80

MB, and the memory leaks in Table 8.1 show our copy elimination analysis

reduces six arrays down to only two, and thus removes all redundant array

copies. Leaks in Reverse program also have a linear relation with array sizes,

and then we can get 3.3× 108 = (16GB/48bytes) as the estimated maximal

size of naive Reverse code. We can choose 1× 108, 2× 108 and 3× 108 as

array sizes to benchmark speed-ups.

1 function bubbleSort(int[] items) -> int[]:
2 int length = |items|
3 int last_swapped = 0 // Until no items is swapped
4 while length > 0:
5 last_swapped = 0
6 int index = 1
7 while index < length:
8 if items[index-1] > items[index]:
9 int tmp = items[index-1]

10 items[index-1] = items[index]
11 items[index] = tmp
12 last_swapped = index
13 index = index + 1
14 length = last_swapped// Skip the remaing items as they are ordered.
15 return items

Listing 8.2: Bubble sort program

BubbleSort program creates and sorts one array of int64 t type. Consider

the array size of 1× 105, or 0.8 MB in memory. The leaking results show our

183

copy elimination analysis removes all copies and keeps only one array to do

bubble sorting. We choose 1× 105, 2× 105 and 3× 105 as benchmark levels

to measure the speed-ups of code optimisation.

1 function sortV1(int[] items, int start, int end)->int[]:
2 if (start+1) < end:
3 int pivot = (start+end) / 2
4 int[] lhs = Array.slice(items,start,pivot)
5 lhs = sortV1(lhs, 0, pivot)
6 int[] rhs = Array.slice(items,pivot,end)
7 rhs = sortV1(rhs, 0, (end-pivot))
8 ...
9 // Merge ’lhs’ and ’rhs’ arrays

10 while i < (end-start) && l < (pivot-start)
11 && r < (end-pivot):
12 ...
13 return items

Listing 8.3: Merge sort program

Similarly, in MergeSort program our copy elimination can also remove all un-

necessary copies and reduce four arrays down to one.

Table 8.1 show the memory leaks are not severe in MergeSort and BubbleSort

programs, so we can benchmark speed-up on larger array sizes. Since the

memory leaks in both cases increase linearly with array size, we can predict

that naive MergeSort code runs out of memory at array size of 5.0× 107 =

16(GB)/320(bytes) as an estimate of memory leaks. Therefore, we can set

benchmark levels to 1.0× 107, 2.0× 107 and 3.0× 107 for both MergeSort

and BubbleSort cases.

1 function mat_mult(int[] a, int[] b, int[] data, int width, int height)
-> (int[] c):

2 int i = 0
3 while i < height:
4 int j = 0
5 while j < width:
6 int k = 0
7 int sub_total = 0
8 while k < width:
9 sub_total=sub_total+a[i*width+k]*b[k*width+j]

10 k = k + 1
11 data[i*width+j] = sub_total
12 j = j + 1
13 i = i + 1
14 return data

Listing 8.4: Matrix multiplication program

MatrixMult program creates three matrices of int64 t type and represents

each matrix with a single dimensional array. So in the case of 1, 000× 1, 000,

184

each matrix amounts to 8 MB. The results show our copy elimination removes

all redundant copies but keeps only three necessary matrices to compute matrix

multiplication. Without memory deallocation the naive C code has server

leaks. For example, when matrix size is increased up-to 4, 000 × 4, 000, the

naive MatrixMult code amounts to 17.92 GB and exceeds the memory limits

and causes system breakdown.

Table 8.2: Average execution time (seconds) of micro-benchmarks

Implementation Speed-up

Test Case Problem Size N N + D C C + D N
C

N+D
C+D

Reverse 1× 108 0.903 1.195 0.351 0.371 2.58 3.22

2× 108 1.744 1.735 0.694 0.694 2.51 2.50

3× 108 2.609 2.608 1.015 1.027 2.57 2.54

TicTacToe 100,000 0.241 0.193 0.156 0.118 1.54 1.64

200,000 0.412 0.353 0.277 0.225 1.49 1.57

300,000 0.615 0.517 0.405 0.342 1.52 1.51

BubbleSort 100,000 6.659 6.627 6.634 6.616 1.00 1.00

200,000 26.399 26.396 26.418 26.398 1.00 1.00

300,000 59.358 59.372 59.377 59.364 1.00 1.00

MergeSort 1× 107 0.078 0.077 0.040 0.035 1.95 2.19

2× 107 0.148 0.149 0.046 0.067 3.21 2.21

3× 107 0.196 0.191 0.063 0.073 3.13 2.62

MatrixMult 1, 000× 1, 000 1.28 1.27 1.29 1.39 1.00 0.92

2, 000× 2, 000 19.3 19.2 19.1 19.1 1.01 1.01

3, 000× 3, 000 47.9 47.7 47.9 48.0 1.00 0.99

Execution Time and Speed-up Table 8.2 shows that our de-allocation

macro (N+D) does not slow down the execution of naive code in all cases.

Copy elimination (C) and the combined optimised (C+D) code both increases

speed-ups with array sizes in Reverse, TicTacToe and MergeSort .

185

In conclusion, our combined optimised (C+D) code runs as fast as copy

eliminated code in Reverse and TicTacToe, but runs slower in MergeSort

case. Our de-allocation macro takes up time to free allocated memory and

thus introduces delays in execution. Since the time in merge sort case is

comparatively small, the delays become more significant than other two cases.

The flat speed-ups in BubbleSort and MatrixMult cases require further

profiling to find out performance bottlenecks. By using gprof tool, we can

know naive BubbleSort code spends almost 100% time on sorting and swapping

array items. Likewise, naive MatrixMult code takes 99% time to calculate

the products of rows and columns, and spends only 0.1% on array copying.

Since their computation dominates the overheads of array copies and memory

deallocation, our code optimisation has little effects on speed-ups.

8.2 Case Study: Cash Till

The cash till test case simulates a series of transactions in a cash register.

Typical transaction is: a customer buys one product and gives out certain

amounts of money, and then the cash till calculates the correct amount of

change and returns to the customer.

1 function buy(Cash till, Cash given, int cost) -> Cash:// Compute
changes

2 if total(given) >= cost:
3 Cash|null change = calculateChange(till,total(given) - cost)
4 if change != null:
5 till = add(till,given)// Receive customer’s payment
6 till = subtract(till,change)// Return changes to customer
7 return till
8 public method main(System.Console console):// Main entry point
9 int repeat = 0

10 while repeat < max:
11 Cash till = Cash() // Start with empty cash till
12 if repeat%2==1:// Change every 2 iterations to avoid the same results
13 till = [5,3,3,1,1,3,0,0]// Start with none−empty cash till
14 // now, run through some sequences...
15 till = buy(till,Cash([ONE_DOLLAR]),85)//Cash: $1, Cost: $0.85
16 till = buy(till,Cash([ONE_DOLLAR]),105)//Cash: $1, Cost: $1.05
17 till = buy(till,Cash([TEN_DOLLARS]),5)//Cash: $10, Cost: $5
18 till = buy(till,Cash([FIVE_DOLLARS]),305)//Cash: $5, Cost: $3.05
19 console.out.println_s(toString(till))// Result cash in till
20 repeat = repeat + 1

Listing 8.5: Code Snippets of Cash Till Whiley Program

186

Listing 8.5 shows CashTill benchmark program (full version sees Appendix B.6).

The cash till calculates the amount of change to be returned to customer with

customer’s payment and current cash in the till, and produces the output of

each transaction, e.g. the till may be short of cash change, or customer’s

payment is insufficient for the cost.

The benchmark program registers one cash till and initialises its change in

the till, and then runs through 4 kinds of transactions and prints out final cash

in the till. Each benchmark repeats for a number of times, which is passed

from command line argument, and switches initial change of cash till every

iteration.

Table 8.3: Memory leaks (bytes) of cash till

Implementation

Repeats N N + D C C + D

100 983,902,456 0 737,819,248 0

200 1,967,804,856 0 1,475,638,448 0

300 2,951,707,256 0 2,213,457,648 0

Memory Leaks Table 8.3 show our de-allocation analysis avoids all leaks

and, without our deallocation macros, naive or copy-eliminated C code has

severe memory leaks and fails to run large-scaled problems. Also, the memory

leaked in Cashtill case grow linearly with problem sizes, so we can roughly es-

timate the amount of leaks and the maximal problem size for our benchmark

machine. For example, running naive C code at 1,600 repeats would accumu-

late up to 15.74 GB leaks (16 × 0.984 = 15.74) and uses up all the system

memory of 16 GB. Note that 512 MB is reserved for Ubuntu OS.

We choose 1,000 to 2,000 as benchmark sizes to increase the execution time

and measure the speed-ups.

187

Table 8.4: Average execution time (seconds) of cash till (OOM: out-of-

memory)

Implementation Speed-up

Repeats N N + D C C + D N
C

N+D
C+D

1,000 9.43 7.99 6.27 5.28 1.50 1.51

1,200 11.51 9.59 7.49 6.33 1.54 1.51

1,400 48.49 11.21 8.72 7.42 5.56 1.51

1,600 OOM 12.80 9.99 8.42 1.52

1,800 OOM 14.35 28.83 9.48 1.51

2,000 OOM 15.96 OOM 10.54 1.51

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1000 1200 1400 1600 1800 2000

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
.)

Problem Size (N)

N
N + D

C
C + D

Figure 8.1: Execution time graph of cash till test case

Execution Time and Speedup Table 8.4 also show that, naive or copy-

eliminated C code has out of memory conditions in large-scaled problem sizes

and fails the execution. As the size reaches to maximal repeat number (1, 400),

188

the increased memory leaks cause naive code to greatly slows down the exe-

cution. The slow-down may be caused by page thrashing (Denning, 1968).

When naive or copy eliminated code runs out of physical memory, it requests

the access to store data on disk. But it takes time to swap data from memory

to disk and the computation time also suffers by slow disk access. Therefore,

due to slow paging, naive or copy eliminated Cash Till code runs several orders

of magnitude slower than deallocated code on 1,400 and 1,800 problem sizes

respectively.

Figure 8.1 shows both de-allocated only (N+D) and combined optimised

(C+D) code increase the execution time linearly with problem size. That

means, the cash till program with de-allocation optimisation has linear time

complexity O(n) where n is the number of coins in the till, so the time needed

for processing transactions in a cash till depends on the number of coins the

till has.

In conclusion, our de-allocation analysis not only stops memory leaks effec-

tively but also make the code run fast and for long. In particular, the combined

optimisation (C+D) can produce the fastest execution and steadily gain 1.51x

speed-up over de-allocated code (N+D).

8.3 Case Study: Coin Game

Dynamic programming (Cormen, 2009) is a typical divide and conquer tech-

nique to optimise the program. First, it breaks down a problem into smaller

problems and, solves each of sub-problems and then store or ”memorise” the

solutions for later use. When the same sub-problem occurs, the program can

look up the previous solution without computation and speed up the execution.

Ci Ci+1 Ci+2 Cj−1 Cj

Figure 8.2: A line of coin array Cn

189

Coin-In-A-Line Game is an example of dynamic programming. Suppose N

coins are placed in a line from left to right, and each coin is worth Ci = i%5

and its value ranges from 0 up-to 4, as shown in Figure 8.2

Assume we have two players: Alice and Bob, and Alice plays the game first.

Alice and Bob take turns to pick one coin up either from start or end of the

line. Winner of the game is to collect the most golds. Our goal is to develop

a game strategy to help Alice win the game using dynamic programming.

The dynamic programming strategy uses MOVES [i][j], a two-dimensional

array, to store the maximal coin values that Alice can collect from coin Ci and

Cj . Because both Alice and Bob are keen to win, Alice or Bob will choose

her/his best pick, make the move and leave the minimal value coins for the

opponent.

We can split the move MOVES [i][j] in below cases and find the best one

to maximise Alice’s total gain:

• Assume Alice picks up Ci . Bob needs to choose Ci+1 and Cj , and Alice’s

next move depends on Bob’s decision.

– If Bob chooses Ci+1 , then Alice has to pick Ci+2 or Cj .

– If Bob chooses Cj , then Alice has to pick Ci+1 or Cj−1 .

Bob also chooses the coin that will leave Alice to have fewer gains. So

Alice can only collect the coins:

Ci + min(MOV ES[i + 2][j], MOV ES[i + 1][j − 1]) (8.1)

• Assume Alice picks up Cj . Bob needs to choose between Ci and Cj−1 .

– If Bob picks Ci , then Alice has to pick Ci+1 or Cj−1 .

– If Bob picks Cj−1 , then Alice has to pick Ci or Cj−2 .

Bob also leaves Alice with minimal value coins. So Alice can collect the

coins:

Cj + min(MOV ES[i + 1][j − 1], MOV ES[i][j − 2]) (8.2)

190

From Equations 8.1 and 8.2, we can have the optimal move for Alice:

MOV ES[i][j] = max(Ci + min(MOV ES[i + 2][j], MOV ES[i + 1][j − 1]),

Cj + min(MOV ES[i + 1][j − 1], MOV ES[i][j − 2]))

We also can divide the coin game into N steps, and then solve each step

sequentially and keep track of all moves. By doing so, we can re-use the results

from the previous step and reduce expensive re-computation overheads.

1 // Use dynamic programming to find all moves for Alice
2 function findMoves(int[] moves, int n, int[] coins) -> int[]:
3 int s = 0// s: step
4 while s < n: // Find the optimal ’move[i][j]’ in ’s’ step
5 int i = 0 // coin[i]
6 while i < n -s: //
7 int j = i + s // coin[j] (remaing coin from ’i+s’ upto ’n’)
8 int y = moves[(i + 1)*n + (j - 1)] // moves[i+1][j−1]
9 int x = moves[(i + 2)*n + j]// moves[i+2][j]

10 int z = moves[i*n + (j - 2)]// moves[i][j−2]
11 moves[i*n+j] = Math.max(coins[i] + Math.min(x, y),

coins[j] + Math.min(y, z))
12 i = i + 1// End of i,j loop
13 s = s + 1// End of s loop
14 return moves
15 method main(System.Console sys):
16
17 int[] coins = [0;n]
18 int i = 0
19 while i < n:
20 coins[i] = i % 5 // Coin array is [0,1,2,3,4,0,1,2,3,4...]
21 i = i + 1
22 // Increase ’moves’ array to (n+2)∗(n+2)
23 // so that if/else branches at ’findMoves’ function can be avoided
24 int[] moves = [0;(n+2)*(n+2)]
25 moves = findMoves(moves, n, coins)
26 int sum_alice = moves[n-1]

Listing 8.6: Coin game Whiley program

Listing 9.4 shows coin game Whiley program (full version sees Appendix B.7).

We optimise findMoves function to avoid any branch using below steps:

• We extend MOVES array size to (N + 2)× (N + 2) to accommodate

all array access, e.g. i + 2 or j − 2 , without needing of bound checks.

• We use below macros(Anderson, 2005) to find the maximum and mini-

mum without branching

– max(a, b) = a ^ ((a ^ b) & - (a < b))

– min(a, b) = b ^ ((a ^ b) & -(a < b))

191

Table 8.5: Memory leaks (bytes) of coin game

Implementation

Problem Size N N + D C C + D

100 335,968 0 84,664 0

1,000 32,152,776 0 8,040,672 0

10,000 3,201,520,784 0 800,400,680 0

Memory Leaks Table 8.5 shows enabling de-allocation analysis can effec-

tively avoid memory leaks and make the program run on larger scaled problem.

Also, we find out that naive or copy eliminated code increases memory leaks

linearly with problem size, and we can check if any memory space is wasted

in the implementation. For example, if the problem size is 10, 000, then the

program at least uses (0.08 + 800) MB as we declare coins as 1D array of

int64 t type, and moves as 2D array of int64 t type. Results show copy

eliminated code does not have any extra copy whereas naive code makes three

times of unnecessary copying.

Table 8.6: Average execution time (seconds) of coin game test case

Implementation Speed-up

Problem Size N N + D C C + D N
C

N+D
C+D

10,000 0.739 0.736 0.360 0.333 2.06 2.21

20,000 2.995 2.977 1.400 1.400 2.14 2.13

25,000 OOM 4.749 2.253 2.222 2.14

30,000 OOM OOM 3.13 3.17

40,000 OOM OOM 5.75 5.76

192

 0

 1

 2

 3

 4

 5

 6

 0 10000 20000 25000 30000 40000

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
)

Problem Size (N)

N
N + D

C
C + D

Figure 8.3: Execution time graph of coin game

Execution time and Speed-up Table 8.6 shows copy eliminated (C) and

combined optimised (C+D) code both gain steady and scalable speed-ups with

problem size. Speed-ups N
C

show that eliminating unnecessary copies increases

the speed of program. Speed-ups N+D
C+D

show extra de-allocation code does not

slow down but make the program runs faster. Figure 8.3 shows copy eliminated

(C) and combined optimised (C+D) coin game code both have the fast and

scalable execution whereas naive (N) or de-allocated only code (N+D) requires

lots of memory space so fails to run on large problem sizes.

In conclusion, copy elimination improves the performance of coin game

program and the combined optimised code (C+D) has the fastest execution

and runs for long. The optimised code runs in quadratic time O(n×n), where

n is the total number of coins. The quadratic time complexity is because the

program iterates n steps and the first step processes at most n coins. Thus,

the program takes O(n× n) space to enumerate all possible moves.

193

8.4 Case Study: LZ77 Algorithm

LZ77 algorithm (Ziv and Lempel, 1977) allows to reduce the redundancy of

sequential data, and compress to a list of encoded matches for better storage.

And to save compression time, the encoder maintains a fixed-sized sliding

window to limit the maximal number of searched strings and time. Upon

decoding, the decompression restores each encoded match into a corresponding

string and appends it to output.

In this case, we will investigate the procedure and optimisation of LZ77

compression and de-compression separately. Each program is translated and

optimised into different C code, and compiled by GCC and bench-marked on

Ubuntu machine (Intel i7-4770 CPU @ 3.40GHz and 16 GB). We will show

the memory leaks of each generated code and speed-ups from our code opti-

misation.

Table 8.7: Offset-length pairs encoded in LZ77 compression of sample string

Position
Input: ’AACAACABCABAAAC’ Output Pair

Lookup Array Encoded Array (offset, length)

0 ∅ A ACAACABCABAAAC (0, ’A’)

1 A A CAACABCABAAAC (1, 1)

2 AA C AACABCABAAAC (0, ’C’)

3 AAC AACA BCABAAAC (3, 4)

7 AACAACA B CABAAAC (0, ’B’)

8 AACAACAB CAB AAAC (3, 3)

11 AACAACABCAB AA AC (11, 2)

13 AACAACABCABAA AC (12, 2)

194

8.4.1 LZ77 Compression

LZ77 compression program implements the Lempel-Ziv 77 algorithm to com-

press an input string into a list of encoded numeric pairs. The LZ77 encoder

splits the string from current position into lookup array that occurs earlier,

and an encoded array. It matches the string of encoded array with lookup

one, to find the best match which has the longest size or reaches the slide

window of 256. The found match is then encoded to an offset-length pair,

where offset is distance from current position to the match and length is match

length. Once encoded, the match is moved to lookup array. In the case that

no match could be found, the target character is encoded as a single match,

e.g. (0 , ’A’).

Once the input string is encoded to above offset-length matches, as shown

in Table 8.7, the encoder writes out each match to a byte array as output.

By doing so, the decoder reads each item from compressed array, i.e. offset-

length pair, decode it to a string. For example, the match (12 , 2) at position

13 shows that the longest match has the offset of 12 and length of 2. Given

such a match information, the decoder starts from position 13 and goes back

12 characters to position 1, and then copies 2 characters AC from existing

decompressed string and inserts to the end of output array.

In the case that the match has null offset value and no repetitive words is

found for a specific word, e.g. (0 , ’A’) the decoder takes out the value of length

item and appends to output array. The decoder repeatedly decompresses all

matches and restores them to the original input string.

8.4.1.1 LZ77 Compression using Append Array

The LZ77 compressor takes an uncompressed data array as input, and produces

as output a compressed byte array. The compressor continuously searches for

repeated occurrence/match (see function match) until it finds the longest one

(see function findLongestMatch), and then encodes as an offset-length match.

If not found, then the compressor encodes as a special match. The matches

195

are appended to output array using function append .

1 // Match type stores ’offset−length’
2 type Match is ({nat offset, nat len} this)
3 // Find the length of a match from data array
4 function match(byte[] data, nat offset, nat end) -> (int length)
5 ensures 0 <= length && length <= 255:
6 nat pos = end
7 nat len = 0
8 while offset < pos && pos < |data|
9 && data[offset] == data[pos] && len < 255:

10 offset = offset + 1
11 pos = pos + 1
12 len = len + 1
13 return len
14 // Find the longest match for ’pos’ position
15 // data: uncompressed data array, pos : current position
16 function findLongestMatch(byte[] data, nat pos) -> (Match m):
17 nat bestOffset = 0
18 nat bestLen = 0
19 int start = Math.max(pos - 255, 0)// Sliding window size of 255
20 nat offset = start
21 while offset < pos:
22 int len = match(data, offset, pos)
23 if len > bestLen: // Find the longest match
24 bestOffset = pos - offset
25 bestLen = len
26 offset = offset + 1
27 return {offset:bestOffset, len:bestLen} // Return a ’Match’ object
28 // Append one byte to a byte array
29 function append(byte[] items, byte item) -> (byte[] nitems):
30 nitems = [0b; |items| + 1]
31 int i = 0// Make a copy of passed ’items’ array
32 while i < |items|:
33 nitems[i] = items[i]
34 i = i + 1
35 nitems[i] = item
36 return nitems
37 // Compress data array into output array
38 function compress(byte[] data) -> (byte[] output):
39 nat pos = 0
40 output = [0b;0]
41 while pos < |data|:
42 Match m = findLongestMatch(data, pos)
43 // Encode the match to ’offset−length’ pair
44 // offset: distance to longest match, length: length of longest match
45 byte offset = Int.toUnsignedByte(m.offset)
46 byte length = Int.toUnsignedByte(m.len)
47 if offset == 00000000b:// No match is found.
48 length = data[pos] //Put the first byte of encoded array
49 pos = pos + 1
50 else:
51 pos = pos + m.len// Skip the matched bytes
52 // Write ’offset−length’ pair to output array
53 output = append(output, offset)
54 output = append(output, length)
55 return output

Listing 8.7: LZ77 compression Whiley program using append array

Listing 8.7 shows LZ77 compression Whiley program (full version sees Ap-

pendix B.8). Each function will be discussed as follows.

196

Function findLongestMatch Searches and returns the longest match. The

search starts from current position backward to at most 255, so that the found

match (0 ∼ 255) can fit into a byte array without overflows. The function

continuously increments and passes offset value to function match to find the

match length for each offset and obtain the best match which has the longest

length.

Function match Takes input string array data as input and returns the

match length for a given position pos and offset value offset . Consider the

match AC at position of 13 and offset value of 1. The match searching is:

pos = 13 offset = 1 data[offset] = A data[pos] = A len = 1

pos = 14 offset = 2 data[offset] = C data[pos] = C len = 2

The match does not continue because it reaches the limit of array size, and

thus returns the length of 2.

Function append Makes a copy of input array and appends one item to

the end of output array. Each call creates one array and copies each array

items, and thus is slow and can be sped up by our pattern transform.

8.4.1.2 LZ77 Compression using Pre-allocate Array

Function compress starts with an empty array and then appends each offset-

length pair to the output array. Because function compress can be matched

with append array pattern, we can use the idea of our pattern transform (see

in Definition 4.11) to replace slow array appending with efficient array update.

We can pre-allocate a larger array and resize the array to its actual size.

Instead of initialising with an empty array, we create a larger array with over-

estimated size using the number of loop iterations loop iters and the number

of append function calls n

arr size(output) = loop iters(pos)× n = |data| × 2

197

The number of loop iterations is bound to the length of input array and func-

tion append is invoked twice in each iteration. Therefore, we have the maximal

size of output array 2 × |data|. Once all the compressed data are stored in the

preallocated output array, and then we can shrink the array to actual size by

using function resize as shown in the following program.

1 // Shrink the input array to the array of given array size
2 function resize(byte[] items, int size) -> (byte[] nitems)
3 requires |items| >= size
4 ensures |nitems| == size:
5 nitems = [0b; size]
6 int i = 0
7 while i < size:
8 nitems[i] = items[i]
9 i = i + 1

10 return nitems
11 // Compress in LZ77 algorithm using resize pattern
12 function compress(byte[] data) -> (byte[] output):
13 nat pos = 0
14 output = [0b;2*|data|]// Pre−allocates 2x input array size
15 int size = 0 // Actual array size
16 while pos < |data|:// Iterate each ’data’ array item
17 Match m = findLongestMatch(data, pos)
18 byte offset = Int.toUnsignedByte(m.offset)
19 byte length = Int.toUnsignedByte(m.len)
20 if offset == 00000000b:
21 length = data[pos]
22 pos = pos + 1
23 else:
24 pos = pos + m.len
25 // Update output array with ’offset−length’ pair
26 output[size] = offset
27 size = size + 1
28 output[size] = length
29 size = size + 1
30 // Reduce output array to actual size
31 output = resize(output, size)
32 return output

Listing 8.8: LZ77 compression Whily program using preallocated array

Listing 8.8 shows the transformed compression function and efficient pre-

allocating and resizing array. Initially the output array is allocated with double

the size of input array so that the array is big enough to place all pairs without

needing to extend its capacity and check out-of-bound errors.

While encoding, we use lower-overhead and in-place array update, instead

of slow array appending, to write out offset − length pairs as output. Mean-

while, we use variable size to keep trace of actual array size so that we can

shrink output array to final size and reduce the memory usage.

198

8.4.1.3 Benchmark Results

LZ77 compression program reads a text file as input, and produces a byte

array of encoded matches. The benchmark Whiley program is translated into

four kinds of code with append array and preallocate array.

Table 8.8: Memory leaks (bytes) of LZ77 compression

Implementation

Problem Size N N + D C C + D

Append Array M1x(1.58 kb) 278,322,116 0 1,217,518 0

M2x(3.16 kb) 1,186,085,396 0 4,780,233 0

M4x(6.32 kb) 4,889,942,900 0 18,946,735 0

Preallocate Array M1x(1.58 kb) 273,529,702 0 20,205 0

M2x(3.16 kb) 1,167,113,084 0 38,736 0

M4x(6.32 kb) 4,814,446,504 0 75,798 0

Memory Leaks Table 8.8 shows that our de-allocation analysis can effec-

tively avoid all the memory leaks on both transformed and untransformed LZ77

compression, and that copy elimination analysis can reduce 99% of leaks from

naive code. That means, the naive code creates too many unneeded copies

and does not delete memory when no longer used, and therefore accumulates

a large sum of memory leaks.

However, pre-allocate array has better memory-saving effects on copy-

reduced code as it avoids the memory leaks of the function call append which

over-writes the output array without freeing the old array. Since function

append no longer is used, the program using pre-allocate array has much lower

memory leaks than the program using append array. All these leaks can be

completely eliminated by using our de-allocation macros.

199

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350 400

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
.)

Medium Size (n)

Append Array

N
N + D

C
C + D

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350 400

Medium Size (n)

Resize Array

N
N + D

C
C + D

Figure 8.4: Execution time graph of LZ77 compression on medium sizes

Execution Time on Medium-Sized File We benchmark our code with

a variety of medium-sized files, ranging from 1.5 KB to 404.7 KB. Appendix

Table B.1 and Appendix Table B.2 show the results of LZ77 compression

program using append array and pre-allocate array respectively.

Figure 8.4 shows both append and pre-allocate array programs can vary

from minutes to few milliseconds and depend on whether the copies are elim-

inated or not. Due to severe memory leaks, the naive code stops execution at

small 7x problem sizes.

The de-allocated-only (N+D) code runs faster than naive code, and can

scale up to the largest problem size. However, it has the slowest execution.

Copy-eliminated (C) code runs fast but encounters out-of-memory problems

if we use append array function. And the combined optimised (C+D) code

has the fastest execution and runs for long with both append and pre-allocate

arrays. The de-allocated-only (N+D) code takes quadratic amount of time

O(n2) where n is the array size of input data. Function compression goes

200

through n items of input data array and makes a function call to find the

longest match. And each call requires the copying of input array, so the code

has quadratic time complexity.

 0

 5

 10

 15

 20

 25

 30

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
.)

Problem Size (n)

Resize Array

C
C + D

Figure 8.5: Execution time graph of LZ77 compression using pre-allocate array

on large sizes

Execution Time on Large-Sized File The execution time of our bench-

mark results is too small to investigate the time complexity and may have

measurement errors, e.g. copy eliminated + preallocate array. We will re-run

benchmarks on large files from 10,000x magnitudes (15.8 MB) to 100,000x

(158.1 MB) and investigate the efficiency. The detailed benchmark results are

listed in Appendix Table B.3.

Figure 8.5 show, that combined optimised (C+D) and copy eliminated

(C) code using pre-allocate array have similar speeds and run in linear time

with file size. So we can conclude LZ77 compression using pre-allocate array

reduces time complexity from quadratic O(n2) down to linear time O(n), and

thus gains large amounts of speed-ups and improves the program scalability.

201

8.4.2 LZ77 Decompression

LZ77 decompression program takes the compressed byte array as input, goes

through each encoded pair and decodes the content to its original string and

then appends it to output array. We have two kinds of implementations de-

pending on the behaviour of array appending.

8.4.2.1 LZ77 Decompression using Append Array

Function decompress processes each pair of compressed array in order and

checks if the pair is a match to restore the output string. For a no-match pair,

we append the length, which contains only one item, to output array. For a

match, we obtain the values of offset and length. Then the decoder goes back

offset bytes from current position to read the specified number of bytes len

and append to current end of output array.

1 // Append a byte to the byte array
2 function append(byte[] items, byte item) -> (byte[] nitems):
3 ensures |nitems| == |items| + 1:
4 nitems = [0b; |items| + 1]
5 int i = 0
6 while i < |items|:
7 nitems[i] = items[i]
8 i = i + 1
9 nitems[i] = item

10 return nitems
11 // Decompress input data array to original byte array
12 function decompress(byte[] data) -> (byte[] output):
13 output = [0b;0]
14 nat pos = 0
15 while (pos+1) < |data|:
16 // Get the pair
17 byte header = data[pos]
18 byte item = data[pos+1]
19 pos = pos + 2
20 if header == 00000000b:// For none−match pair
21 output = append(output, item)
22 else:// For match pair
23 int offset = Byte.toUnsignedInt(header) // Get offset
24 int len = Byte.toUnsignedInt(item) // Get length
25 // Go beack to ’offset’ from current position
26 int start = |output| - offset
27 int i = start
28 // Read ’length’ bytes and append to output array
29 while i < (start+len):
30 item = output[i] // Get one byte
31 output = append(output, item) // Append to output
32 i = i + 1
33 return output// Return the decompressed array

Listing 8.9: LZ77 decompression using one-by-one array appending

202

Listing 8.9 shows code snippet of LZ77 decompression using one-by-one

array appending (full version sees Appendix B.9). The decoder still uses slow

array appending (function append) to construct output array. Similarly, we

can statically estimate the size of decompressed array as 128x magnitudes of

the length of compressed array:

< Length of decompressed array >= 128× < Length of compressed array >

because each match size may vary from 1 to 256 randomly. However, allocating

such a big memory space is hard to implement. Instead, we choose Java-like

array list implementation over array to optimise LZ77 decompression.

1 // If full, then double array size and store the data
2 function opt_append(byte[] items, nat item_len, byte new_item) ->

byte[]:
3 if item_len < |items|: // ’items’ array is large enough
4 items[item_len] = new_item// Have in−place array update
5 else:
6 // Copy ’items’ array and append new item to the end of ’items’ array.
7 byte[] nitems = [0b; |items|*2+1]
8 int i = 0
9 while i < |items|:

10 nitems[i] = items[i]
11 i = i + 1
12 nitems[i] = new_item
13 items = nitems
14 return items
15 // Decompress ’data’ to byte array using array list
16 function decompress(byte[] data) -> (byte[] output):
17 byte[] items = [0b;0]
18 nat item_len = 0// Current item number in array list
19 nat pos = 0
20 while (pos+1) < |data|:
21 byte header = data[pos]
22 byte item = data[pos+1]
23 pos = pos + 2
24 if header == 00000000b:
25 // Append ’item’ using array list
26 items = opt_append(items, item_len, item)
27 item_len = item_len + 1 //Increment ’item len’
28 else:
29 int offset = Byte.toUnsignedInt(header)
30 int len = Byte.toUnsignedInt(item)
31 int start = item_len - offset
32 int i = start
33 while i < (start+len):
34 item = items[i]
35 // Append ’item’ using array list
36 items = opt_append(items, item_len, item)
37 item_len = item_len + 1 //Increment ’item len’
38 i = i + 1
39 // all done!
40 output = resize(items, item_len)// Shrink array into accurate length
41 return output

Listing 8.10: LZ77 Decompression using Array List

203

8.4.2.2 LZ77 Decompression using Array List

Array list dynamically grows the array to its double size when the array is

full, and then manipulates the array using fast in-place update, and therefore

it runs in constant time O(1). We use array list to generate the output array

and speed up LZ77 decompression.

As shown in Listing 8.10, function decompress includes variable item len

to keep track of current number of items stored in the array, and use it to

check whether the array reaches its capacity and to decide re-allocating the

array. So when item length is small than array size, the array is large enough

for a new item, so we can use in-place array update to add this item and run

in constant time O(1).

In the case that array list is full, we create a new array with doubled its

size, copy all items from old array and append the new item to the end of

new array. This procedure is similar to array append and takes quadratic time

complexity O(n2). By doing so, we reduce the occurrences of expensive array

copies and make use of fast array update when populating output array.

The decoder iterates through each match in compressed array, and con-

verts the match to a string and append to the output using array list. Once

de-compression finishes, we can resize and shrink the output array to actual

length and decrease memory usage, as shown in Listing 8.10 (full version sees

Appendix B.10).

8.4.2.3 Benchmark Results

LZ77 decompress benchmark reads a compressed file as input, and decodes

the content and produce a string (byte array) as output. We experiment the

decompression with static or dynamic array appending separately to find out

which one is much efficient.

204

Table 8.9: Memory leaks (bytes) of LZ77 decompression

Implementation

Append Problem Size N N + D C C + D

Array M1x(1.58 kb) 5,007,726 0 1,252,913 0

M2x(3.16 kb) 20,012,850 0 5,004,577 0

M4x(6.32 kb) 80,017,830 0 20,006,588 0

Array List M1x(1.58 kb) 3,704,521 0 8,006 0

M2x(3.16 kb) 14,767,380 0 15,214 0

M4x(6.32 kb) 58,970,541 0 29,631 0

Memory Leaks Table 8.9 shows that our de-allocation analysis effectively

avoids all the memory leaks in both naive and copy eliminated code. The

leaks show naive code takes O(n2) space in both array and array list, and

copy eliminated code grows O(n) space in array and less O(n) space in array

list. Furthermore, in copy eliminated code array list can reduce the memory

usage by an order of closely linear magnitude, which is difficult quantifying

space complexity reduced by array list as the leaking data are proportional to

problem sizes in logarithmic space O(log2n).

In LZ77 decompression case, our copy elimination decreases quadratic

amount of memory space down to linear space, and using array list over one-

by-one array appending can further reduce the large amount of memory usages.

Execution Time and Speedup on Medium Sizes We benchmark our

code and vary the sizes of compressed files, which are the outputs from LZ77

compression program. The detailed benchmark results are listed in Appendix

Table B.4.

205

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 15

 0 50 100 150 200

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
.)

Medium Size (x)

Array

N
N + D

C
C + D

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 15

 0 50 100 150 200

Medium Size (x)

Array List

N
N + D

C
C + D

Figure 8.6: Execution time graph of lZ77 decompression on medium problem

sizes

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
.)

Problem Size (n)

Array List

C
C + D

Figure 8.7: Execution time graph of LZ77 decompression using array list on

large problem sizes

206

Figure 8.6 shows, in the case of array , our combined optimised code has

the fastest execution time. And the naive and copy-eliminated only code fails

to run on large problem sizes, due to severe memory leaks. And de-allocation

only code has the slowest execution. All these four kinds of code runs in

quadratic time O(n2). array list improves the speeds of LZ77 decompression,

particularly copy eliminated and combined optimised code.

Execution Time on Large Files We increase the file sizes to eliminate

measure errors of execution time and to investigate the time complexity of

array list and copy elimination. To generate large compressed files, we run

LZ77 compression program across a variety of large input files and write out

compressed data to output files, ranging from 15.3 to 153 MB. The detailed

benchmark results are listed in Appendix Table B.5.

Figure 8.7 shows, using array list lets copy eliminated (C) and combined

optimised (C+D) code both have a linear time complexity. But the copy

eliminated only code runs slower than the combined optimised code by an

order of two magnitudes.

8.4.3 Handwritten Code and Performance

LZ77 test case has two part: compression and decompression. We convert these

LZ77 Whiley programs into C code manually and benchmark these written

code on the same standalone machine.

8.4.3.1 Handwritten LZ77 compression

The LZ77 compression program using preallocate array is translated from

Whiley to C code by hand (see Appendix B.12). Similar to our optimised

code, the handwritten C code removes unneeded array copies and also includes

free() to avoid memory leaks.

207

 0

 5

 10

 15

 20

 25

 30

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
.)

Medium Size (n)

Generated
Written

Figure 8.8: Execution time graph of written LZ77 compression code

We use the execution time of written code as base-line to compare that of

our generated code and the slow-down is defined as below:

Slow-down =
Tg − Tw

Tw

where Tg is the average time of generated code and Tw is the average time of

written code. The detailed benchmark results are listed in Appendix Table B.6.

Figure 8.8 shows our generate code runs slightly slower (1.32% ∼ 1.98%)

than the handwritten code and the slow-downs do not increase with problem

sizes. Both the written and generated code can scale to larger sizes and the

time complexity is linear to problem size O(n), which is the same as our

optimised code.

8.4.3.2 Handwritten LZ77 Decompression

The LZ77 decompression program using array list is translated to C code

manually (see Appendix B.13). We remove the unneeded overheads of array

copying and reduce the memory usage in the written code. Then we benchmark

208

the written code with a variety of problem sizes to measure the slow-down

of generated code. The detailed benchmark results are listed in Appendix

Table B.7.

 0

 0.5

 1

 1.5

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
.)

Medium Size (n)

Generated
Written

Figure 8.9: Execution time graph of generated and written LZ77 decompres-

sion code

Figure 8.9 show our generated code runs slight slower (3.22% ∼ 6.67%)

than hand written code. But the generated and handwritten code both have

similar program scalability and time complexity.

In conclusion, our generated code runs slightly slower (1.3% ∼ 6.6%) than

the written code in both compression and decompression stages. Despite the

subtle difference on speeds, our automatic generated code can maintain similar

efficiency as handwritten code.

8.4.4 Conclusions

LZ77 benchmarks has three interesting results. First, in both compression and

decompression programs, our copy elimination and deallocation analysis can

effectively minimise the overheads of array copies and avoid all the memory

209

leaks to achieve a better program efficiency. Second, we find that the array

append operation in the program can be replaced with pre-allocated array

or array list to further reduce time complexity from quadratic O(n2) down

to linear O(n) or logarithmic O(log2n), and improve the overall performance.

Third, our generated code has the same amount of array copies as hand-written

with 1% ∼ 6% performance loss.

8.5 Case Study: Sobel Edge Detection

Our Sobel operator (Sobel, 1990) takes a black-and-white image as input, de-

tects edge pixels and produces an image with emphasising edges as output. The

algorithm computes and approximates the gradient for each pixel using con-

volution operator with kernels, and then compares the gradient value against

the given thresholds to decide whether the pixel is an edge, and outputs the

results as a byte array.

(a) Input Image (b) Output Image

Figure 8.10: Sample images before and after Sobel edge detection

The input and output images follow portable bit map (PBM) file format of

Netpbm package, as shown in Figure 8.10. PBM format describes an image as

a plain ASCII file with a matrix of rows and columns of pixels, and each pixel

210

is 0 or 1 (0:white and 1: black). And then we can convert these PBM images

to different graphic formats for viewing and exchanging.

8.5.1 Algorithm

Sobel edge detection reads the input image as a single dimensional array pixels .

The pixel value at position p(x , y) can be obtained by using pixels[x+(width∗

y)] formula. Then Sobel operator uses mathematical convolution, denoted by

’∗’, to approximate the gradient G of each pixel in input image.

x axis (width=5)

y axis (height)

0 1 2 3 4

1

2

3

4

p(x, y)

p(x, y+1)

p(x, y-1)

p(x+1, y)

p(x+1, y+1)

p(x+1, y-1)

p(x-1, y)

p(x-1, y+1)

p(x-1, y-1)

Note: p(x, y) = pixels[x +(width*y)]

Figure 8.11: Pixel point and its neighbouring points

The convolution operator ∗ takes one point p(x , y) and its neighbouring 8

pixels, as shown in Figure 8.11, to compute vertical gradient Gp,v and hori-

zontal gradient Gp,h with 3x3 kernel v and h respectively, as shown in below

equation 8.3 and equation 8.4. By doing so, we can intensify the edge pixel in

211

both vertical and horizontal direction, and make it more detectable.

Gp,v = v ∗ p(x, y)

=




−1 0 1

−2 0 2

−1 0 1



∗




p(x− 1, y − 1] p(x, y − 1) p(x + 1, y − 1)

p(x− 1, y) p(x, y) p(x + 1, y)

p(x− 1, y + 1) p(x, y + 1) p(x + 1, y + 1)




=
2∑

j=0

2∑

i=0

v[i, j)× p((x + i− 1), (y + j − 1))

(8.3)

Gp,h = h ∗ p(x, y)

=




1 2 1

0 0 0

−1 −2 −1



∗




p(x− 1, y − 1) p(x, y − 1) p(x + 1, y − 1)

p(x− 1, y) p(x, y) p(x + 1, y)

p(x− 1, y + 1) p(x, y + 1) p[x + 1, y + 1)




=
2∑

j=0

2∑

i=0

h[i, j)× p[(x + i− 1), (y + j − 1))

(8.4)

We then add Gp,v and Gp,h each squared to get the square of total gradient

Gp , and then compare it against threshold value TH squared to decide if a

pixel is an edge, as follows.

G2
p = G2

p,v + G2
p,h > TH2 if ’p’ pixel is an edge

By comparing the total gradient against threshold, we can distinct edges of

input images and then colour the edge pixel as black.

(a) Threshold = 500 (b) Threshold = 800 (c) Threshold = 1100

Figure 8.12: Sobel edge detection with varying threshold values

212

Figure 8.12 shows the output of edge detected images with three different

thresholds. Lowering threshold value yields stronger edges because it brings in

noisy and non-existing edges to output. But heightening threshold produces

blurred edges because it loses some exiting edges.

In our benchmark, we choose 800 as a proper threshold value because it

has the most edges from input images.

1 constant TH is 640000 // Threshold value (800∗800) controls edge number
2 // Compute convolution on pixels[xCenter, yCenter]
3 function convolution(byte[] pixels, int width, int height, int

xCenter, int yCenter, int[] kernel) ->int:
4 int sum = 0
5 int kernelSize = 3
6 int kernelHalf = 1
7 int j = 0
8 while j < kernelSize:
9 int y=Math.abs((yCenter+j-kernelHalf)%height)

10 int i = 0
11 while i < kernelSize:
12 int x=Math.abs((xCenter + i - kernelHalf)%width)
13 int pixel = Byte.toInt(pixels[y*width+x])// pixels[x, y]
14 int kernelVal = kernel[j*kernelSize+i] // Get kernel[i, j]
15 sum = sum + pixel * kernelVal//sum += pixels[x, y]∗kernel[i, j]
16 i = i + 1
17 j = j + 1
18 return sum// ’sum’ : convoluted value at pixels[xCenter, yCenter]
19

20 // Perform Sobel edge detection
21 function sobelEdgeDetection(byte[] pixels, int width, int height) ->

byte[]:
22 int size = width * height
23 // The output image of sobel edge detection
24 byte[] newPixels = [SPACE;size] // A blank picture
25 // vertical and horizontal sobel filter (3x3 kernel)
26 int[] v_sobel = [-1,0,1,-2,0,2,-1,0,1]
27 int[] h_sobel = [1,2,1,0,0,0,-1,-2,-1]
28 // Perform sobel edge detection
29 int x = 0
30 while x<width:
31 int y = 0
32 while y<height:
33 int pos = y*width + x
34 // Get vertical gradient
35 int v_g = convolution(pixels, width, height, x, y, v_sobel)
36 // Get horizontal gradient
37 int h_g = convolution(pixels, width, height, x, y, h_sobel)
38 // Get total gradient using absolute value
39 int t_g = v_g*v_g + h_g*h_g
40 // Large threshold value generates few edges
41 if t_g > TH:
42 newPixels[pos] = BLACK// Color pixel as black
43 y = y + 1
44 x = x + 1
45 // All done
46 return newPixels

Listing 8.11: Sobel Edge Whiley Program

213

List 8.11 shows Sobel edge detection Whiley program (full version sees

Appendix B.11) with threshold value of 800. Function sobelEdgeDetection

performs Sobel operator to estimate the total gradients for all pixels in input

image, filter out non-edges with thresholds and colour the edges on output im-

age. Function convolution convolutes the given pixel p[xCenter , yCenter] with

passed kernel (vertical or horizontal one), and returns the resulting gradient

value.

8.5.2 Benchmark Results

Table 8.10: Memory leaks (bytes) of Sobel edge detection

Implementation

Problem Size N N + D C C + D

image64x64 (4.2 kB) 34,171,344 0 10,552 0

image64x128(8.3 kB) 135,449,072 0 18,776 0

image64x256 (16.6 kB) 539,331,056 0 35,160 0

Memory Leaks Table 8.10 shows our de-allocation analysis can effectively

avoid all memory leaks both in de-allocated and combined optimised code. If

the leaks are measured by size of image pixels n, then the naive (N) code has

closely quadratic space complexity O(n2) and copy eliminated (C) code has

O(n) space complexity.

Each pixel is represented by 1 byte integer (uint8 t) and thus, the leaks of

copy eliminated code shows our copy elimination avoids all unnecessary array

copies and keeps only two arrays for each image. For example, the input array

of image64x256 (width=64 height=256) amounts to 16,384 (64×256) bytes,

and the total number of leaks at copy eliminated code is roughly two times of

input array with some extra constant memory waste (2.3 KB).

214

Execution Time on Small Images We increase the height of image64x64

by 1 to 10 magnitudes and produce input images of our small benchmarks.

The detailed benchmark results are listed in Appendix Table B.8.

 0
 0.05
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
)

Image Size (N)

Sobel Edge Detection (Intel(R) Core(TM) i7-4770 CPU 3.40GHz, 4 cores)

N
N + D

C
C + D

Figure 8.13: Execution time graph of Sobel edge on small problem sizes

Figure 8.13 shows that, as the problem size increases, our copy eliminated

(C) and its combined deallocation (C+D) code both have the fastest execution.

De-allocated only (N+D) code runs slightly slower than copy eliminated code,

due to expensive overheads imposed by array copies, but still outperforms the

naive code. And the naive (N) code has the slowest O(n2) quadratic time

complexity if measured by input file size n.

The naive (N) code grows non-linearly with problem size increases, and

has longer latency on large files. De-allocated only (N+D) code runs at faster

speeds than naive code and has roughly O(n) linear time complexity if mea-

sured by problem size. Copy eliminated (C) and combined optimised (C+D)

code both are the fastest execution, but we can not see the time variation from

the graph, due to their small running time.

215

 0

 1

 2

 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
)

Large Image Size (height = 2,000 x n)

Sobel Edge Detection (Intel(R) Core(TM) i7-4770 CPU 3.40GHz, 4 cores)

C
C + D

Figure 8.14: Execution time graph of Sobel edge on large problem sizes

Execution Time on Large Images We therefore conduct a large bench-

mark and measure the execution time of copy eliminated and combined op-

timised code. We take image2000x2000 (width=2,000 height=2,000) as base

image size, and multiply the height by 1 to 20 times and fill in each item with a

byte number, ranging from 0 to 255, and produce input images for large bench-

marks. The detailed benchmark results are listed in Appendix Table B.9.

Figure 8.14 shows our combined optimised code (C+D) runs as fast as copy

eliminated (C) code, and also shows our extra de-allocation efforts in this test

case does not significantly affect the performance nor slow down the execution.

The copy optimised Sobel edge program with/without deallocation has linear

time complexity O(n) with problem size.

8.5.3 Handwritten Code and Performance

Our project takes a Whiley program as input and produces efficient C code by

our automatic code generator. One may be interested in the performance of

216

handwritten C code. In this section, we take Sobel edge detection as a test case

to manually translate the Whiley program into C code (see Appendix B.14),

and then run the benchmarks to compare the performance with our automatic

generated code. The written code uses only two copies of arrays to hold input

and output image pixels, and includes two free() statements to release the

allocated memory of these two arrays.

We use 64-bit (int64 t) integers as default type on both generated and

handwritten code. After analysing the source program, we notice that Sobel

edge detection is a computation intensive application and requires lots of in-

teger arithmetic. That is, for each image pixel the Sobel operator weights its

value with the kernel matrix by applying the convolution operation of the 3x3

matrix multiplication and summation.

 0
 1
 2
 3
 4
 5

 10

 15

 18

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
.)

Large Image Size (height = 2,000 x n)

Written (int64)
Generated (int64)
Generated (int32)

Written (int32)

Figure 8.15: Execution time graph of written Sobel edge code at O2 optimisa-

tion

To investigate whether the use of integer types affects the performance,

we experiment the generated and handwritten with both 64-bit (int64 t) and

32 integer (int32 t) types. Also, we experiment two kinds of GCC compiler

217

optimisations: level 2 (O2) and level 3 (O3). Level 3 turns on all optimisations

specified by level 2 and also enables more optimisation options, e.g. loop vec-

torisation transforms the loop and improve the performance of resulting code

at the expense of longer compilation time and increasing debugging efforts.

Level 2 Compiler Optimisations We compile the generated and hand-

written code with -O2 optimisation level and run the program across a variety

of problem sizes. Figure 8.15 shows that, 32-bit integers can make the gen-

erated and written Sobel edge program run faster than 64-bit integers, and

the speed-ups however stays flat at a factor of 2.6x and 3.0x in generated and

written code respectively and do not grow with the problem sizes.

Level 2 compiler optimisation makes the handwritten code run slightly

faster (1.03x) than generated code with 32-bit integers but run slower with

64-bit integers. We will try a more aggressive compiler optimisation to speed

up the Sobel edge program.

 0

 1

 2

 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
.)

Large Image Size (height = 2,000 x n)

Generated (int64)
Written (int64)

Generated (int32)
Written (int32)

Figure 8.16: Execution time graph of written Sobel edge code at O3 optimisa-

tion

218

Level 3 Compiler Optimisation We apply -O3 optimisation on both

handwritten and generated code to gain further performance improvement and

then run the benchmarks again. The detailed benchmark results are listed in

Appendix Table B.10.

Figure 8.16 shows that that -O3 optimisation improves the overall perfor-

mance of generated and written Sobel edgee programs more than level 2 such

that the execution time is reduced from 16 down to 0.8 seconds. Similar to

results of level 2 optimisation, using 32-bit integers achieves a better speedup

than using 64-bit type (1.8x and 1.9x in generated and handwritten code re-

spectively). And for the same type of integers, the generated code runs at

least 50% slower than handwritten code. Therefore, the fastest execution is

the 32-bit integer version of handwritten code, followed by 32-bit generated

code and 64-bit handwritten code. And the slowest is 64-bit generated code.

The 32-bit integer types runs more efficiently than 64-bit integers in both

generated and written code, and the generated code is slower than handwritten

code. In this graph, we can see that the generated and handwritten code both

have linear time complexity O(n) and scale to larger problem sizes.

Summary The benchmark results are summarised as follows. First, Sobel

edge detection heavily relies on the integer arithmetic and thus its performance

can be affected by the choice of integer types. On our standalone machine,

32-bit integer type (int32 t) provides a better efficiency than 64-bit type

(int64 t) as it takes up half of space in memory and less time to perform

integer arithmetic. Therefore, using 32-bit integers makes Sobel edge operation

fast.

Second, handwritten code obtains more performance gain from GCC level 3

optimisation than generated code, because the compiler can fully optimise the

handwritten code and gain a substantial speed-up in the running time. Let us

consider the most expensive function convolution of Sobel edge program. The

operator multiplies 3x3 matrices and sums up the total by using the following

219

loop nest.

int j = 0
while j<3:
...
int i =0
while i<3:
...
sum += pixel[x*width+y] * kernel[j*3+i]
i = i + 1

j = j + 1

The inner and outer loops both are known to iterate 3 times and no dependency

exists between pixel and kernel matrices. Then, GCC compiler detects such an

loop nest can be optimised and unrolls the inner and outer loops into sequences

of operations, shown below.

...
sum += pixel[x*width+y] * kernel[0]
sum += pixel[x*width+y] * kernel[1]
sum += pixel[x*width+y] * kernel[2]
...
sum += pixel[x*width+y] * kernel[8]

The loop unrolling pre-calculates the array index and thus reduces the number

of arithmetic operations at run-time. Also, we take out loop conditions and

do not generate conditional jumps in the machine code so that branch penalty

can be avoided and the program speed can be increased.

We compile our generated and handwritten code into assembly code at level

3 optimisation. We observe that in handwritten code, GCC compiler can fully

understand the loop nest and unroll both inner and outer loops to produce

better optimised executable and gain speed-ups. However, in our generated

code GCC compiler transforms only the inner loop into a sequence of instruc-

tions but keeps the outer loop as it is, because our generated code includes a

number of temporary variables which do not appear in the handwritten code,

and makes the program analysis too complicated to carrying out a full loop

optimisation.

Due to extra temporary variables, our generated code has less loop unrolling

optimisation enabled at level 3 of GCC compiler, and thus runs 60% ∼ 70%

slower than handwritten code.

220

8.5.4 Conclusions

Sobel edge detection benchmark has three interesting results. First, our copy

elimination analysis can reduce the array copying overheads of our naive code

from quadratic time complexity O(n2) to linear O(n), and then combines with

our de-allocation analysis to produce an efficient and memory leak-free code.

Second, our implementation runs 52% slower than 64-bit integer version of

handwritten code. Third, we also find the performance of the Sobel edge pro-

gram can be improved further using bound analysis to automatically produce

code with 32-bit integers.

Chapter 9

Benchmarks for Parallel

Programs

Parallel computing is heavily used in data analytics to speed up vast amounts

of data processing and produce the results timely. In particular, the in-memory

parallel/distributed computing gains more focus for its low latency and high

scalability. Most importantly, almost all modern laptops or desktops have

already multi-core CPUs.

In Chapter 8, our benchmark results show our compiler can produce good

and fast sequential code for most of the cases. However, our memory optimi-

sation does not have significant performance improvement on BubbleSort and

MatrixMult cases. By profiling the generated C code, we notice that these two

programs are CPU-bound applications as their computation dominates the en-

tire execution time and results in performance bottleneck. So more computing

resources, instead of reducing memory overheads, are needed to make these

programs run faster.

We conducted a feasibility study to evaluate the difficulties of a parallelis-

ing compiler that can transform a sequential program into the parallel code

using analysis techniques, and to know whether the parallel code can gain fur-

ther speed-ups from concurrent computing. We explore several case studies

and conduct parallel experiments on standalone computers as well as virtual

222

machines on several cloud platforms. Unfortunately, our benchmark results

are disappointing, and only two cases exhibit scalable and useful speed-ups

with the number of threads.

The parallelising compiler is not implemented in our Whiley-to-C project

because its difficulties exceed our expectations, and we lack time to accomplish

it. So in this chapter we present a number of hand-on experiences to transform

the sequential C code, produced and optimised by our back-end, into parallel

applications with Polly automatic compiler, or manually rewrite the C code

with OpenMP and Cilk Plus libraries to take up parallel opportunities with

their runtime environments. Benchmark results are also included to show the

effectiveness of each parallellising approach.

This chapter is structured as follows. Section 9.1 gives an introduction

of OpenMP work-sharing parallel model. Section 9.2 benchmarks Polly au-

tomatic compiler on our micro benchmark programs. Section 9.3 exploits

the task parallelism of MergeSort program with Cilk Plus parallel expres-

sions. Section 9.4 parallelises CoinGame C code with OpenMP, Cilk Plus,

and Polly compiler, and then compare the performance of these three paral-

lel techniques. Section 9.5 uses map-reduce programming model to parallelise

LZ77compression case studies. Through these practices we hope to provide a

way of how to alter our compiler to generate parallel code.

9.1 OpenMP Data/Task Parallelism

OpenMP (Chapman et al., 2008) provides API for programmers to write shared

memory parallel programs in C/C++ and Fortran languages. OpenMP run-

time is based on fork-join model to divide the target task into a number of

smaller sub-tasks and create threads to run each sub-task in parallel and then

at a subsequent program point merge all the results of sub-tasks to one final

result of the execution. For example, the below loop in a sequential code can

be explicitly declared as OpenMP parallel part using OpenMP pragma, shown

223

below program.

1 int a[1000] = ...;
2 int b[1000] = ...;
3 int c[1000] = ...;
4 // Start of parallel region
5 #pragma omp parallel for
6 for(int i=0;i<1000;i++){
7 c[i] = a[i] + b[i] // Work is distributed among all threads.
8 }
9 // Implicit barrier at end of parallel region (#pragma omp barrier)

The compiler directive #pragma omp parallel for specifies the loop must

be executed with multi-threads. So when entering the parallel region of loop,

OpenMP work-sharing run-time creates a team of threads, splits up the entire

loop iterations into a number of parts and then distributes each part of loop

among the team of worker threads, as shown in the following graph:

Parallel region

Master Thread
Worker thread t1 :

i = 0 to 249

Worker thread t2 :
i = 250 to 499

Worker thread t3 :
i = 500 to 749

Worker thread t4 :
i = 750 to 999

barrier

Master Thread

Figure 9.1: OpenMP work-sharing parallel programming model

Array a, b and c are shared among all threads within parallel region. The

master thread, which runs the sequential part of the program, breaks down

the loop iterations into 4 parts. Because each thread processes only one part

and each part does not overlap or has any data dependency, all threads can

perform their computation on the shared arrays in parallel without causing

any data conflicts.

Lastly the run-time implicitly adds a synchronisation barrier at the end

of parallel region to keep each worker thread waiting at barrier point until

224

all threads are completed. Using a barrier can guarantee the master thread

does not use any unfinished data after the parallel region and produces wrong

results.

There are advantages and disadvantages about OpenMP. First, OpenMP

parallel programming language model can be carried out across heterogeneous

multi-threaded machines, but a compiler that supports OpenMP is required

to compile OpenMP programs into parallel execution. A number of compilers

have a built-in implementation for OpenMP, including GCC, LLVM Clang and

Intel C/C++ compiler.

Second, OpenMP parallel program looks alike to the sequential one with

additional compiler directives and allows programmers to experiment different

kinds of parallelism, such as map-reduce parallel model (see Section 9.5.2) and

to gain further speed-ups. However, extra care for synchronisation is required

to avoid race conditions and increases debugging difficulty.

Third, OpenMP run-time automatically decomposes the tasks and makes a

load-balancing schedule to run all threads efficiently. However, some OpenMP

programs have lower parallel efficiency and do not scale up to the processor

number, because

• The program has a large portion of sequential execution, so leads to a

small part of code parallelised. According to Amdahl’s Law, the speed-

up is determined by the fraction of parallel computation and the number

of processors:

Speedup =
1

(1− f) + (f/p)
' 1

1− f
when p is ∞

where f is the parallel percentage in a program and p is the number

of processors. When we increase the processor number p to extremely

large, we have f
p

so small and close to zero that we can omit it in the

speed-up calculation.

Therefore, regardless of how powerful cores the machine hardware has,

the maximal speed-up is limited by the parallelism coverage, which is the

225

percentage of computation that runs in parallel, so we need to exploit as

much parallelism as possible in the program to increase the portion of

parallel OpenMP code and gain more speed-ups.

• Barrier synchronisation protects the shared data in OpenMP programs

but may introduce potential false-sharing problems. Let us consider our

example again. The same array c is updated by four threads, and because

array c is stored in the same shared memory address, each update will

force the entire memory stall and keep other three threads waiting until

the update operation finishes.

The false sharing not only degrades the performance of OpenMP parallel

execution but results in poor scalability. We may eliminate false-sharing

by padding the arrays so that each array element is in different and dis-

tinct memory address/cache line, and thus each update can be operated

independently and concurrently without waiting overheads.

Lastly, OpenMP provides loop-level parallelism to decompose the loop it-

erations among all threads to distribute the computation in parallel. Also,

OpenMP can use divide-and-conquer parallelism technique to continuously

split a task into small sub-tasks until each sub-task has a relatively fine-grain

to be executed directly on the single processor. We will illustrate these two

types of parallelism with the coin game and LZ77 compression test cases.

9.2 Polly Compiler Data Parallelism

LLVM (Low Level Virtual Machine) (Lattner, 2008) is a target and program-

ming language independent code representation, and allows a variety of com-

piler optimisation and code generator to produce efficient LLVM code that

runs efficiently on different hardware.

The Polly (Polyhedral Optimisation for LLVM) (Grosser et al., 2012) pro-

vides automatic code transformation for LLVM code and produces platform-

independent optimised sequential and parallel code.

226

C/C++

program

clang

compiler
LLVM

Polyhedra

representation

model

Dependency

analysis +

Loop transform

Optimised

LLVM

SCoPs

External

Optimiser

Manual

Changes

Polly Compiler

Invoke
Loop tiling

Increase locality

ExportImport

Figure 9.2: Polly architecture

9.2.1 Polly Compiler

Polly compiler (Grosser et al., 2012) (see Figure 9.2) takes as input LLVM

code, translated from a C program by clang compiler, and then analyses loop

kernels and produce optimised LLVM code as output. Polly compiler uses

polyhedral techniques to optimise the data locality and parallelism in LLVM.

It detects parallelisable code sections in LLVM and translates them into poly-

hedral description or static control parts (SCoPs). Then the polyhedral opti-

miser is enabled to analyse SCoPs and apply the optimisation, i.e. changing

execution order of statements in a SCoP and the memory access of a SCoP.

After SCoP transformation, Polly (Raghesh, 2011) can translate the detected

parallel loops into OpenMP code and replace SIMD instructions with parallel

execution.

Polly project has been actively improved since its first creation. The par-

allel reduction technique, such as concurrent sum operator, was introduced in

Polly polyhedral optimiser (Doerfert et al., 2015) to identify possible paral-

lelism of data-dependent loops and generate more efficient scheduling. Multi-

dimensional variable array access (Grosser et al., 2015a) enabled in Polly makes

227

the polynomial array problem solvable to a linear solver. AST (Abstract Syn-

tax Tree) generator with the support of Presburger arithmetic (Grosser et al.,

2015b) was implemented in Polly to enable the validation of user-specific op-

timisation by translating polyhedra programs into an AST, walking through

that AST and checking constraint conditions.

Polly is being used in high performance applications. KenelGen (Mikushin

and Likhogrud, 2012) compiler used Polly LLVM Polyhedra analysis to au-

tomatically transform while-loops to parallel for-loops, and to port the code

running on GPUs. Polly was also used to speed up the Lattice Quantum Chro-

modynamics (QCD) program (Kruse, 2014) running on an IBM Blue Gene/Q

supercomputer, as its optimisation on statement execution orders and data

clusters not only improves the data flow, but reduces transfer overheads across

the distributed system.

A new polyhedral model (Moll et al., 2016) is proposed in Polly to auto-

matically split input data space and produce less-divergent OpenCL kernel, so

that each kernel would access the memory space concurrently without barriers

and generate fewer numbers of instructions to utilise the parallel computing

powers on GPUs.

9.2.1.1 Static Control Parts (SCoPs)

Polly optimiser transforms the iteration space of a loop into smaller blocks,

so that each block fits into the cache size of CPU. The data required in each

block stays in the same CPU cache line, so data locality can be increased to

achieve better performance. The loop tiling includes:

• Interchange changes the execution order of inner and outer loops,

• Fission splits one nested loop into two independent loops.

• Strip mining transforms a single loop into a nested loop with a strip.

• Unroll-And-Jam unrolls most of the loops, except for the innermost

one.

228

• Loop blocking combines ’interchange’ and ’strip mining’ to increase

the data locality.

Polly compiler can be used to expose the parallelism of our generated C code

and produce parallel OpenMP code, which can be run with multiple threads.

The parallel loop is qualified and converted into Polyhedral model and rep-

resented as a SCoP. Polly compiler uses region-based approach to go through

each block in a control flow graph and checks if the block meets below criteria

to form a valid SCoP.

• The block contains regular for-loop structure and the memory base ad-

dress must be distinct or invariant. For example, data structure needs to

be replaced with one dimensional array to avoid indirect memory access.

• The block contains an affine loop bound which increases linearly with

loop variable.

• The block does not have any side effect.

These rules are illustrated with matrix multiplication example.

1 function mat_mult(int[] a, int[] b, int[] c, int width, int height) ->
(int[] c):

2 int i = 0
3 while i < height:
4 int j = 0
5 while j < width:
6 int k = 0
7 while k < width:
8 // c[i][j] = c[i][j] + a[i][k] ∗ b[k][j]
9 c[i*width+j] = c[i*width+j] + a[i*width+k]*b[k*width+j]

10 k = k + 1
11 j = j + 1
12 i = i + 1
13 return c

Listing 9.1: Original matrix multiplication program

Example 9.1 Consider the nested loops in matrix multiplication program (see

Listing 9.1). Function mat mult takes two arrays a and b as input, and mul-

tiplies a[i][k] by b[k][j] and sums up the total to produce the entry c[i][j] in

output array c. The loop tiling optimisation is described as follows.

229

First, function mat mult stores each matrix with one dimensional array,

instead of two-dimensional arrays, as the former has steady and predictable

behaviour whereas the latter may use indirect pointers and stop from being

parallelised. So c[i][j] is equivalent to c[i ∗ width + j].

Second, loop bounds can be calculated as affine results to make Polly com-

piler easily optimise and parallelise the loop. Suppose we introduce variables

i0 , i1 , j0 , j1 , k0 , k1 to represent the inner and outer loop variables respec-

tively, and each of their values increases with the number of loop iteration.

Then we can discover below affine expressions for all loop variables i , j , k :

1 // 1st level tiling − Tiles
2 for(int i0=0;i0<=floord(height-1, 32);i0++)
3 for(int j0=0;j0<=floord(width-1, 32);j0++)
4 for(int k0=0;k0<=(width-1)/32;k0++) {// k0 loop
5 // 1st level tiling − Points
6 for(int i1=0;i1<=min(31, height-32*i0-1);i1++)
7 for(int j1=0;j1<=min(31, width-32*j0-1);j1++)
8 for(int k1=0;k1<=min(31, width-32*k0-1);k1++){// k1 loop
9 int i = i0*32+i1; // Affine expression for i

10 int j = j0*32+j1; // Affine expression for j
11 int k = k0*32+k1; // Affine expression for k
12 // Compute matrix multiplication
13 c[i*width+j]=c[i*width+j] + a[i*width+k]*b[k*width+j];
14 }// Ending k1 loop
15 }// Ending k0 loop

Listing 9.2: Loop-tiling matrix multiplication by Polly compiler

Each loop variable is expressed with a linear function of reference vari-

ables. For example, loop variable i can be expressed as an affine expression

i = 0 + 32 × i0 + 1 × i1 = c0 + c1 × i0 + c2 × i1 where c0 , c1 , c2 are all

constants, reference variable i0 has the ranges from 0 to floord(height − 1 , 32),

and reference variable i1 is between 0 to min(31 , height − 32 × i0 − 1) and

floord and min functions are used to avoid out-of-index array errors. The

affine expression is linear with reference variables are i0 and i1 , and useful for

further Polly optimisation.

Third, Polly compiler splits large space of loop iterations into blocks of

32 tiling size, so that the data in inner loop stays at the same cache line

to compute the matrix multiplication and gain better speed-ups. In addition,

output array c reads and writes the data only at a specific location at each inner

230

loop iteration, so does not cause any side effect. The matrix multiplication

program meets all three conditions and thus forms a valid SCoP, so that Polly

compiler can transform the nested loops into a parallel loop and take advantage

of multi-threading computing power to speed up the execution.

9.2.1.2 Polly OpenMP Parallelism

Polly Compiler

LLVM Code

Polyhedra

representation

model

Any loop iteration

has dependency?
Sequential

LLVM code

Parallel loops

detected

as SCoP

Parallel

OpenMP

code

Transform

YES

NO(Potential Parallelism)

Figure 9.3: Automatic parallelisation and code generation by Polly compiler

Polly compiler(Raghesh, 2011) can automatically analyse and detect the loop

parallelism (see Figure 9.3). First, the LLVM code is transformed into poly-

hedral representation model, to calculate data dependency. If a loop can be

executed without any dependency in two executive iterations, then Polly de-

tects and qualifies the loop as SCoPs and annotates the program part with

parallel pragmas in LLVM:

• GOMP parallel loop runtime start

• GOMP parallel end

231

So the parallel loop can run in concurrently by invoking OpenMP library calls.

9.2.2 Performance Evaluation

The micro-benchmarks Whiley programs (see Section 8.1) are first translated

and optimised into copy eliminated and de-allocated (C+D) code by our code

generator and our analyses. Then we use Polly compiler to compile the gen-

erated C code into sequential and parallel OpenMP executable. And we use

GCC compiler (v.5.4) to produce the base-line sequential executable.

The benchmark programs are run on one standalone machine (i7-4770 CPU

@ 3.40GHz and 16 GB) and several kinds of cloud computing frameworks.

Table 9.1: Average execution time (seconds) of micro-benchmarks optimised

by GCC and Polly compilers on standalone machine

Polly OpenMP

Program Problem Size GCC Polly Seq 1 thread 2 threads 3 threads 4 threads

Reverse

100,000 0.0081 0.0085 0.0105 0.0144 0.0126 0.0150

1,000,000 0.0208 0.0162 0.0635 0.0722 0.0640 0.0580

10,000,000 0.0478 0.0416 0.2250 0.6502 0.5518 0.5054

TicTacToe

1,000 0.0073 0.0078 0.0077 0.0083 0.0084 0.0085

10,000 0.0175 0.0158 0.0167 0.0150 0.0156 0.0152

100,000 0.0972 0.0834 0.0896 0.0902 0.0836 0.1037

BubbleSort

1,000 0.0089 0.0075 0.0079 0.0075 0.0072 0.0073

10,000 0.0789 0.0418 0.0782 0.0758 0.0765 0.0839

100,000 6.6184 3.2852 6.9684 6.9509 6.9288 6.9857

MergeSort

1,000 0.0063 0.0062 0.0103 0.0068 0.0065 0.0082

10,000 0.0083 0.0085 0.0089 0.0155 0.0110 0.0107

100,000 0.0144 0.0167 0.0287 0.0255 0.0228 0.0252

MatrixMult

1,000 1.1709 0.6416 0.4704 0.2474 0.1743 0.1323

2,000 15.7166 5.1205 3.7027 1.8658 1.2701 1.0275

3,000 46.5542 17.3702 12.6093 6.2330 4.3398 3.3259

232

9.2.2.1 Micro-benchmark on standalone machine

We use the execution time of GCC optimised micro-benchmark programs (at

O3 optimisation level) as a baseline to evaluate the performance of Polly se-

quential and OpenMP code. The benchmark results of micro-benchmark pro-

grams are listed in Table 9.1.

Table 9.2: Absolute speed-ups of Polly optimised micro-benchmark programs

(vs. GCC compiler) on standalone machine

Program Problem Size Polly Seq Polly OpenMP

1 thread 2 threads 3 threads 4 threads

Reverse

100,000 0.96 0.78 0.57 0.64 0.54

1,000,000 1.28 0.33 0.29 0.32 0.36

10,000,000 1.15 0.21 0.07 0.09 0.09

TicTacToe

1,000 0.93 0.94 0.88 0.87 0.85

10,000 1.11 1.04 1.16 1.12 1.15

100,000 1.16 1.08 1.08 1.16 0.94

BubbleSort

1,000 1.18 1.13 1.18 1.23 1.21

10,000 1.88 1.01 1.04 1.03 0.94

100,000 2.01 0.95 0.95 0.96 0.95

MergeSort

1,000 1.02 0.62 0.94 0.97 0.78

10,000 0.98 0.94 0.53 0.75 0.78

100,000 0.86 0.50 0.57 0.63 0.57

MatrixMult

1,000 1.83 2.49 4.73 6.72 8.85

2,000 3.07 4.24 8.42 12.37 15.30

3,000 2.68 3.69 7.47 10.73 14.00

Table 9.2 shows that, Polly sequential code in BubbleSort and MatrixMult

cases achieves at least 1.5x speedup than GCC code and a slightly good and

similar performance as GCC compiler in Reverse and TicTacToe cases. But

Polly sequential code has slight slow-down in MergeSort case.

233

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4

R
e
la

ti
v
e
 S

p
e
e
d
u
p
s
 (

v
s
.
1
 t
h
re

a
d
)

Threads

Ideal
MatrixMult (3,000)
MergeSort (100,000)
TicTacToe (100,000)
BubbleSort (100,000)
Reverse (10,000,000)

Figure 9.4: Relative speed-ups of Polly OpenMP micro-benchmark programs

on standalone machine

Figure 9.4 shows relative speedups compared to the execution time of

single-threaded Polly OpenMP code. Results show that Polly OpenMP code

in MatrixMult case has excellent parallel efficiency and achieves ideal paral-

lelism. However, Polly OpenMP code in the remaining cases does not have

performance improvement and even slow-downs.

9.2.2.2 MatrixMult benchmarks on virtual machine

We use MatrixMult program as a test case to benchmark the performance of

Polly optimisation on the below three kinds of machines:

• Standalone machine: Intel i7-4770 CPU (@ 3.40GHz, 4 cores) and 16GB

• Amazon EC2 c4.2xlarge instance: Intel(R) Xeon(R) CPU E5-2666 v3 (@

2.90GHz, 4 cores) and 15GB

• Microsoft Azure F8s standard instance: Intel(R) Xeon(R) CPU E5-

2673 v3 (@ 2.40GHz, 8 cores) and 16 GB

234

Table 9.3: Average execution time (sec.) of MatrixMult case on standalone

Polly OpenMP

Problem Size GCC Polly Seq 1 thread 2 threads 4 threads 6 threads 8 threads

1,000 1.4 0.6 0.6 0.3 0.2 0.2 0.2

2,000 19.0 5.0 4.6 2.3 1.2 1.2 1.2

4,000 173.9 39.8 36.8 18.6 10.3 10.3 9.4

6,000 595.9 134.0 123.5 62.0 35.5 34.5 32.1

8,000 1625.3 330.8 309.7 157.8 84.8 81.4 75.8

10,000 2636.4 622.5 573.6 304.6 168.3 159.5 147.8

Table 9.4: Average execution time (sec) of MatrixMult case on AWS EC2

Polly OpenMP

Problem Size GCC Polly Seq 1 thread 2 threads 4 threads 6 threads 8 threads

1,000 1.2 0.7 0.7 0.4 0.2 0.2 0.2

2,000 26.6 6.1 6.0 3.1 1.6 1.5 1.5

4,000 238.8 48.8 48.3 24.3 12.9 13.0 12.2

6,000 821.6 167.2 165.1 82.6 42.1 42.8 40.2

8,000 1922.6 389.0 385.4 191.9 98.2 103.9 95.3

10,000 3600.0 766.6 758.6 378.6 190.5 195.0 187.8

Table 9.5: Average execution time (sec) of MatrixMult case on Microsoft Azure

Polly OpenMP

Problem Size GCC Polly Seq 1 thread 2 thread 4 thread 6 thread 8 thread

1,000 1.4 0.9 0.9 0.5 0.2 0.2 0.1

2,000 24.7 7.3 7.2 3.7 1.9 1.3 0.9

4,000 235.4 57.7 57.2 29.1 14.7 9.7 7.4

6,000 786.2 195.9 193.6 98.3 49.0 33.1 25.1

8,000 1868.1 461.6 456.2 231.0 120.7 82.1 62.9

10,000 3600.0 847.7 896.0 421.3 224.4 153.5 120.3

235

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 6 8

R
e
la

ti
v
e
 S

p
e
e
d
u
p
s
 (

v
s
.
1
 t
h
re

a
d
)

Threads

Standalone Machine

Ideal
Size = 8,000
Size = 2,000
Size = 4,000
Size = 6,000
Size = 10,000
Size = 1,000

(a) Standalone Machine (Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz, 4 cores)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 6 8

R
e
la

ti
v
e
 S

p
e
e
d
u
p
s
 (

v
s
.
1
 t
h
re

a
d
)

Threads

AWS EC2 Instance

Ideal
Size = 6,000
Size = 8,000
Size = 10,000
Size = 2,000
Size = 4,000
Size = 1,000

(b) AWS EC2 c4.2xlarge (Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz, 4 cores)

236

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 6 8

R
e
la

ti
v
e
 S

p
e
e
d
u
p
s
 (

v
s
.
1
 t
h
re

a
d
)

Threads

Microsoft Azure Instance

Ideal
Size = 4,000
Size = 6,000
Size = 2,000
Size = 10,000
Size = 80,00
Size = 1,000

(c) MS Azure F8s (Intel(R) Xeon(R) CPU E5-2673 v3@ 2.40GHz, 8cores)

Figure 9.5: Relative speedups of Polly OpenMP MatrixMult program

In conclusion, the benchmark results show that:

• The matrix multiplication has time complexity O(n3), and thus the ex-

ecution time greatly increases with matrix sizes.

• Polly sequential code runs at least 4.0x faster than GCC and 1% slower

than single threaded Polly OpenMP code, because it optimises data lo-

cality of loop iterations and improves the overall performance.

• Polly OpenMP code speeds up the parallel execution and achieves a

speed-up at a factor of almost the number of threads until the number

of cores is reached.

9.3 Cilk Plus Task Parallelism

Cilk Plus (Halpern, 2012) is an extension to C/C++ and makes use of fork-

join parallelism in a sequential program. It uses cilk spawn to indicate the

237

tasks which can be safely run in parallel and cilk sync to set up a barrier

to stop the current execution until all the spawned tasks has been completed.

We will illustrate Cilk Plus parallelism with MergeSort example.

1 // Slice an array and perform merge sort on it
2 int* mergesort(int* items, int items_size, int start, int end){
3 if(start +1 < end){
4 int pivot = (start + end)/2;
5 // Slice ’items’ into lhs array
6 lhs = slice(items, start, pivot);
7 if(items_size>=1000){
8 // Perform merge sort on lhs array with spawn threads
9 lhs = cilk spawn mergesort(items, pivot - start, 0, pivot);

10 }else{
11 // Run merge sort in sequential
12 lhs = mergesort(items, pivot - start, 0, pivot);
13 }
14 // Slice ’items’ into rhs array
15 rhs = slice(items, pivot, end);
16 if(items_size>=1000){
17 // Perform merge sort on rhs array
18 rhs = cilk spawn mergesort(items, end - pivot, 0, end);
19 }else{
20 rhs = mergesort(items, end - pivot, 0, end);
21 }
22

23 cilk sync;
24 // Merge the lhs and rhs arrays
25 while(i< (end -start) && l < (pivot - start)
26 && r < (end - pivot)){
27
28 }
29 return items;// Return the sorted array
30 }

Listing 9.3: A hybrid Cilk Plus and sequential merge sort program

Example 9.2 Function mergesort (see Listing 9.3) combines sequential and

Cilk Plus execution. The program sorts the small-size array in sequential and

then creates threads to run the sorting on large-sized array in parallel, so that

the overheads of Cilk Plus run-time can be reduced.

The Cilk Plus version of mergesort function recursively spawns one thread

for each call to perform merge sort on the input array and return the ordered

output array. Each spawned function call (Sukha, 2015) is handled with a

stack frame. The stack frame contains variables, subroutine and passing

parameters, and is pushed into the double-ended queue (deque) to wait for

worker threads to execute.

238

Deque for worker thread w0

Deque for worker thread w1

Task B

Task C

Task A

Thread w1 steals Task A
from Thread w0

Figure 9.6: Cilk Plus work-stealing task parallelism

Each worker thread has its own deque but allows to take/steal one of the

stack frames from the deque of other worker thread. Consider the example in

Figure 9.6. The Cilk Plus run-time creates one stack frame for each function

call (i.e. A, B and C stack frames). When the deque of work thread w1

becomes empty, thread w1 takes frame A from the head of deque w0 and starts

processing the task. By stealing work from a busy thread, Cilk plus run-time

keeps all threads busy and runs tasks asynchronously to reduce waiting time

in a multi-threaded environment and improve the performance.

9.3.1 Performance Evaluation

The sequential merge sort C program is rewritten as parallel Cilk code to

spawn and run the recursive sorting function in parallel and set up a syn-

chronised barrier prior to the merging phase. We experiment three kinds of

implementations:

• Seq code runs merge sorting in sequential.

• Cilk Plus code runs merge sorting in parallel.

• Cilk Plus + Seq code spawns a thread to run merge sort function con-

currently when array size is larger than 1000. Otherwise, it runs merge

sort function in sequential.

239

Table 9.6: Average execution time (seconds) of Cilk Plus mergesort program

on standalone machine

Cilk Plus

Problem Size Seq 1 thread 2 threads 4 threads 8 threads

100,000,000 26.07 32.96 19.90 11.84 10.36

200,000,000 53.29 67.12 40.30 23.93 21.09

300,000,000 82.28 101.62 61.45 36.42 32.32

Cilk Plus + Seq

Problem Size Seq 1 thread 2 threads 4 threads 8 threads

100,000,000 26.07 28.1 17.4 10.6 9.3

200,000,000 53.29 57.4 35.4 21.5 19.0

300,000,000 82.28 87.5 53.9 32.4 29.0

 20

 40

 60

 80

 100

 120

 140

 1x10
8

 2x10
8

 3x10
8

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Problem Size

Cilk Plus (1 Thread)
Seq
Cilk Plus + Seq (1 Thread)

Figure 9.7: Average execution time of Cilk Plus mergesort program on stan-

dalone machine

240

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

R
e
la

ti
v
e
 S

p
e
e
d
u
p
 (

v
s
.
1
 t
h
re

a
d
)

Threads

Standalone Machine

Cilk Plus
Cilk Plus + Seq
Ideal

Figure 9.8: Relative speed-ups of Cilk Plus mergesort program on standalone

machine (problem size: 300,000,000)

Performance on standalone machine The results in Table 9.6 show, with

a single thread the sequential (Seq) code has the fastest execution time, fol-

lowed by the combined Cilk Plus and sequential (CilkPlus + Seq) code. Cilk

Plus-only code has the slowest execution. Relative speed-ups in Figure 9.8

shows that the pure and combined Cilk Plus code both improve the speedups

with increase of thread numbers and achieves 3.18 speedup with 8 threads over

the single threaded implementation.

Performance on virtual machine We benchmark Cilk Plus mergesort

program on virtual machines of Amazon Elastic Compute Cloud (EC2) and

Google Cloud Platform to assess the parallel computing power of Cilk Plus

run-time. The specification of these virtual machines are:

• Standalone machine: Intel i7-4770 CPU (@ 3.40GHz, 4 cores) and 16GB

• Amazon EC2 instance: Intel(R) Xeon(R) CPU E5-2666 v3 (@ 2.90GHz,

241

8 cores) and 30 GB

• Google Cloud instance: Intel(R) Xeon(R) CPU (@ 2.20GHz, 8 cores)

and 16 GB

Table 9.7: Average execution time (seconds) of Cilk Plus mergesort program

on 8-core (up to 16-threads) AWS EC2 machine (Intel(R) Xeon(R) CPU E5-

2666 v3 @ 2.90GHz, 30 GB memory)

Cilk Plus

Problem Size Seq 1 thread 2 threads 4 threads 8 threads 12 threads 16 threads

100,000,000 32.51 41.02 25.19 14.42 8.99 8.65 8.61

200,000,000 66.76 83.66 51.89 29.27 18.04 17.51 17.46

300,000,000 103.41 126.96 78.99 44.62 27.20 26.42 26.00

Cilk Plus + Seq

Problem Size Seq 1 thread 2 threads 4 threads 8 threads 12 threads 16 threads

100,000,000 32.51 34.99 22.05 13.03 8.44 8.07 8.07

200,000,000 66.76 71.77 45.42 26.54 16.84 16.34 16.37

300,000,000 103.41 109.56 68.44 39.87 25.16 24.61 24.34

Table 9.8: Average execution time (seconds) of mergesort Cilk Plus program

on 8-core (up to 16 threads) Google Cloud machine (Intel(R) Xeon(R) CPU

@ 2.20GHz and 16 GB memory)

Problem Size Seq Cilk Plus

1 thread 2 threads 4 threads 8 threads 12 threads 16 threads

100,000,000 37.99 48.39 32.82 20.63 13.51 10.04 9.90

200,000,000 78.23 97.94 66.80 44.04 27.91 20.29 19.83

300,000,000 121.13 148.20 97.50 68.51 41.63 30.22 30.06

Cilk Plus + Seq

1 thread 2 threads 4 threads 8 threads 12 threads 16 threads

100,000,000 40.8 30.0 20.0 13.5 9.26 9.36

200,000,000 84.0 55.7 36.4 25.9 18.59 19.06

300,000,000 127.9 96.5 55.9 40.8 28.22 28.08

242

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 4 8 12 16

R
e
la

ti
v
e
 S

p
e
e
d
u
p
 (

v
s
.
1
 t
h
re

a
d
)

Threads

AWS ECS Instance

Cilk Plus
Cilk Plus + Seq

Figure 9.9: Relative speed-up of mergesort Cilk Plus program on 8-core (up

to 16 threads) AWS EC2 machine (Problem Size: 300 million)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 4 8 12 16

R
e
la

ti
v
e
 S

p
e
e
d
u
p
 (

v
s
.
1
 t
h
re

a
d
)

Threads

Google Cloud Instance

Cilk Plus
Cilk Plus + Seq

Figure 9.10: Relative speed-up of mergesort Cilk Plus program on 8-core (up

to 16 threads) Google Cloud machine (problem size: 300 million)

243

By using 2 or more threads, the parallel Cilk Plus code outperforms the

sequential code, and the hybrid CilkPlus + Seq code has a better execution

time than pure Cilk Plus. However, the pure Cilk Plus code has a slightly

better performance scalability over hybrid CilkPlus + Seq in both AWS and

Google virtual machines. Both of the code can scale the speed up to 8 and 12

threads on AWS EC2 and Google Cloud machines respectively.

9.4 Case Study: Coin Game

We use coin game test case (see Section 8.3) to benchmark the parallelism

and performance of Polly compiler, OpenMP and Cilk Plus code. The parallel

part of coin game program is as follows. We can divide the coin game into N

steps and solve each step sequentially and then keeps track of all results. By

re-using the moves from previous step, we can reduce expensive overheads of

re-computation and speed up the execution.

1 // Use dynamic programming to find moves for Alice
2 function findMoves(int[] moves, int n) -> int[]:
3 int s = 0
4 while s < n: // 0<= s < n
5 int i = 0
6 while i < n -s: // 0 <= i < n −s
7 int j = i + s // j = i + s
8 int y = moves[(i + 1)*n + (j-1)] // y = moves[i+1][j−1]
9 int x = moves[(i + 2)*n + j] // x = moves[i+2][j]

10 int z = moves[i*n + (j-2)] // z = moves[i][j−2]
11 moves[i*n+j] = max(i + min(x, y), j + min(y, z))
12 i = i + 1// End of i,j loop
13 s = s + 1 // End of s loop
14 return moves
15 method main(System.Console sys):
16 int n = Int.parse(sys.args[0])
17 int[] moves = [0;(n+2)*(n+2)]// Increase the move array size to avoid

wrapping
18 moves = findMoves(moves, n) // Find the moves for Alice
19 int sum_alice = moves[n-1] // Final result of Alice

Listing 9.4: Coin game Whiley program

Listing 9.4 shows the Whiley code and the inner loop of findMoves function

does not include any if-else branch as we extend the array size and find the

maximal and minimal values by using specific macro code (Anderson, 2005):

max(a, b) = a ^ ((a ^ b) & - (a < b)) and min(a, b) = b ^ ((a ^ b) &

244

-(a < b)).

Table 9.9: Results of MOVES arrays in coin game program

s = 0 MOV ES(0, 0) = 0 MOV ES(1, 1) = 1 MOV ES(2, 2) = 2

MOV ES(3, 3) = 3 MOV ES(4, 4) = 4

s = 1 MOV ES(0, 1) = 1 MOV ES(1, 2) = 2 MOV ES(2, 3) = 3

MOV ES(3, 4) = 4

s = 2 MOV ES(0, 2) = 2 MOV ES(1, 3) = 4 MOV ES(2, 4) = 6

s = 3 MOV ES(0, 3) = 4 MOV ES(1, 4) = 6

s = 4 MOV ES(0, 4) = 6

i

j = s + i

B (i, j-2)

C (i+1, j-1)

D (i+2, j)

s = 0s = 1

A (i, j)

s = 2s = 3s = 4

Figure 9.11: Iteration space of the loop in coin game program

Let us consider the coin game with 5 coins coins := {0 , 1 , 2 , 3 , 4} and all

the moves for step s ∈ {0 . . . 4} are listed in Table 9.9. We draw out the

iteration spaces (see Figure 9.11) on the grid chart. Each dot is the move and

each diagonal line represents the move for step s .

245

Each move depends on three neighbouring moves, e.g. the dynamic pro-

gramming calculates the best move for A(1 , 3) by reading the move from

B(1 , 1), C (2 , 2) and D(3 , 3) on the diagonal line of s = 0 , and then obtain

the maximal scores for Alice’s move by applying the below equation to :

MOV ES[i][j] = max(Ci + min(MOV ES[i + 2][j], MOV ES[i + 1][j − 1]),

Cj + min(MOV ES[i + 1][j − 1], MOV ES[i][j − 2]))

(9.1)

9.4.1 OpenMP Parallel For

From Figure 9.11, we notice on the same diagonal line each i iteration exhibits

no dependency with other variables. Also, the inner loop does not have to

preserve the order because its calculation relies only on the moves of previous

iterations, which have been computed and stored in the array.

1 #include "omp.h"
2 // Find the moves in parallel
3 int* findMoves(int* moves, int n){
4 for(int s = 0; s<n; s++){
5 // Use parallel worksharing OpenMP construct
6 #pragma omp parallel for
7 for(int i = 0;i<n-s; i++){
8 int j = i+s; // ’j’ variable depends on ’s’
9 int y = moves[(i+1)*n + j-1];// moves[i+1][j−1]

10 int x = moves[(i+2)*n + j];// moves[i+2][j]
11 int z = moves[i*n + (j-2)];// moves[i][j−2]
12 moves[(i*n)+j]=max(i+(min(x, y)), j+ (min(y, z)));
13 }
14 }
15 return moves;
16 }

Listing 9.5: OpenMP parallel for loop in coin game code

That exposes a potential parallelism for the inner loop and splits i iterations

into a team of threads so that each thread can handle one part of the loop

independently and in parallel. So we use omp parallel for OpenMP work-

sharing construct to share the iterations of i loop across different threads and

to execute in parallel, as shown in Listing 9.5. Note that each move in iteration

s depends on the previous iterations (see Figure 9.11). As a result of explicit

data dependency, we can not parallelise the outer loop iteration s .

246

9.4.2 Cilk Plus For

1 #include <cilk/cilk.h>
2 int* findMoves(int* moves, int n){
3 for(int s = 0; s<n; s++){
4 // Use default grain size min(2048, ceil(n−s / (8 ∗ threads)))
5 cilk for(int i = 0;i<n-s; i++){
6 int j = i+s;
7 int y = moves[(i+1)*n+j-1];
8 int x = moves[(i+2)*n+j];
9 int z = moves[(i*n)+j-2];

10 moves[(i*n)+j]=max(i+(min(x, y)), j+ (min(y, z)));
11 }
12 }
13 return moves;
14 }

Listing 9.6: Cilk PLus parallel for loop in coin game

We use cilk for keyword to parallelise the inner loop and run the moves of

same s in a team of threads. As Cilk Plus uses divide-and-conquer technique,

Intel Cilk Plus run-time divides i iterations into two halves, where each part

roughly has equal length, and then recursively sub-divides each part into half

until each sub-part is less than grain size. In this example, we use default

equation for choosing grain size:

cilk grainsize = min(2048,
N

8× p
)

where N is loop iterations and p is the number of threads.

Then the work-stealing scheduler automatically distributes the work to

available cores, keeps all worker threads busy and reaches workload-balance.

Each worker thread has one queue to store all its unfinished work. When a

new task comes in, the worker pushes this task to the head of its de-queue.

And then the worker takes out one work from the bottom of de-queue and

start executing it.

Once the de-queue becomes empty, the worker randomly chooses another

worker and steals one of its work from the head of its de-queue so that no

worker is idle for most of time. Randomised work-stealing algorithm (Blumofe

and Leiserson, 1999) has been mathematically proven to be more efficient in

join-fork computation.

247

9.4.3 Benchmark Results

Our benchmark program creates an array of coins with given size, and each

coin value is the same value as array index coins [i] = i . In doing so, we can

ensure all our benchmarks produce the same output.

9.4.3.1 Performance Evaluation on Standalone Machine

We benchmark the code on Ubuntu 16.04 standalone machine with Intel(R)

Core(TM) i7-4770 CPU @ 3.40GHz and 16 GB. C compilers are used to com-

pile C program into parallel executable, including GCC 5.4 and Polly compiler.

Table 9.10: Average execution Time (seconds) of parallel coin game programs

on 4-core (up-to 8 threads) standalone machine (Intel(R) Core(TM) i7-4770

CPU @ 3.40GHz and 16 GB memory)

Polly OpenMP

Problem Size Seq 1 thread 2 threads 4 threads 8 threads

10,000 0.2892 0.310 0.298 0.300 0.298

20,000 1.17 1.19 1.20 1.18 1.20

30,000 4.37 4.37 4.38 4.41 2.75

40,000 5.03 4.98 4.94 4.92 4.93

Polly Compiler We use Polly to automatically optimise the sequential code

of coin game, produced by our code generator with copy and deallocation anal-

ysis enabled, and then exploit the parallelism and generate parallel OpenMP

code. Table 9.10 shows the benchmark results on 4 cores (8 hyper-thread)

machine, and that Polly parallel code has no speed-ups over Polly sequential

code, and does not scale up with thread numbers.

OpenMP and Cilk Plus Parallelism We benchmark parallel coin game

in OpenMP and Cilk Plus code, and each code is compiled into executable

248

with GCC compiler (v.5.4.0) commands:

• Sequential code: gcc -O0

• OpenMP code: gcc -fopenmp -O0

• Cilk Plus code: gcc -fcilkplus -O0 -lcilkrts

Then we specify the number of threads to use in parallel region using

OMP NUM THREADS and CILK NWORKERS environment variables. Then each bench-

mark is repeatedly run for 10 times on 4-core (up to 8 threads) machine and

the execution times are averaged.

Table 9.11: Average execution time (seconds) of parallel coin game programs

on 4-core standalone machine (Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz

and 16 GB memory)

OpenMP

Problem Size Seq (-O0) 1 thread 2 thread 4 thread 8 thread

10,000 0.876 0.916 0.473 0.316 0.291

20,000 3.579 3.71 1.98 1.23 1.03

30,000 7.960 8.36 4.40 2.73 2.26

40,000 14.264 14.79 7.87 4.62 4.03

Cilk Plus

Problem Size Seq (-O0) 1 thread 2 thread 4 thread 8 thread

10,000 0.876 0.902 0.527 0.404 0.444

20,000 3.579 3.72 2.03 1.39 1.39

30,000 7.960 8.20 4.44 3.10 2.83

40,000 14.264 14.65 7.89 5.14 4.81

Table 9.11 shows that both parallel OpenMP and Cilk Plus using a single

thread runs roughly 3% ∼ 4% slower than sequential code. So the over-head

costs of parallelism slightly reduces the program execution.

249

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 4 8

R
e
la

ti
v
e
 S

p
e
e
d
u
p
s
 (

v
s
.
1
 t
h
re

a
d
)

Threads

OpenMP Coin Game code (Intel(R) Core(TM) i7-4770 CPU 3.40GHz, 4 cores)

Size=40,000
Size=30,000
Size=20,000
Size=10,000

(a) OpenMP coin game program

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 4 8

R
e
la

ti
v
e
 S

p
e
e
d
u
p
s
 (

v
s
.
1
 t
h
re

a
d
)

Threads

Cilk Plus

Size=40,000
Size=30,000
Size=20,000
Size=10,000

(b) Cilk Plus coin game program

Figure 9.12: Relative speedup of parallel coin game programs on 4-core ma-

chine (Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz, 4 cores)

250

Figure 9.12 shows the relative speedups of OpenMP and Cilk Plus code

respectively. Both of OpenMP and Cilk Plus code exhibit good performance

scalability on large problem (>= 20, 000). The parallel speedup increases up-

to the number of cores, and becomes normal 3.6x and 3.0x speedup on using

8 threads.

To sum up, Polly compiler has efficient sequential code because its data

locality gains speed-ups from cache behaviour, but does not improve the per-

formance with concurrency. OpenMP/Cilk Plus sequential version runs slower

than Polly, but can achieve 3.0 ∼ 3.6 speed-ups with concurrency and roughly

the same speed at 4/8 threads.

9.4.3.2 Performance Evaluation on Virtual Machine

This section shows the benchmark results running coin game on HPC clouds.

Table 9.12: Average execution time (seconds) of parallel coin game code on

8-core (up to 16 threads) Google Virtual Machine (Intel(R) Xeon(R) CPU @

2.20GHz and 16 GB memory)

OpenMP

Problem Size Seq 1 thread 2 thread 4 thread 8 thread 16 thread

10,000 2.07 2.09 1.37 0.836 0.593 0.565

20,000 10.32 10.92 6.39 4.04 2.81 2.55

30,000 24.37 25.12 14.82 9.17 6.43 5.88

40,000 45.22 41.29 24.76 15.63 10.96 9.91

Cilk Plus

Problem Size 1 thread 2 thread 4 thread 8 thread 16 thread

10,000 2.18 1.34 1.14 0.981 0.868

20,000 10.84 6.39 4.82 3.60 3.28

30,000 24.96 14.73 10.60 7.64 7.08

40,000 40.98 23.66 16.88 12.63 11.34

251

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 4 8 16

R
e
la

ti
v
e
 S

p
e
e
d
u
p
s
 (

v
s
.
1
 t
h
re

a
d
)

Threads

OpenMP code

Size=40,000
Size=30,000
Size=20,000
Size=10,000

(a) OpenMP coin game code

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 4 8 16

R
e
la

ti
v
e
 S

p
e
e
d
u
p
s
 (

v
s
.
1
 t
h
re

a
d
)

Threads

Cilk Plus

Size=40,000
Size=30,000
Size=20,000
Size=10,000

(b) Cilk Plus coin game code

Figure 9.13: Relative speed-up of coin game on 8 cores (16 hyper-threads)

Google Cloud Machine (Intel(R) Xeon(R) CPU@2.20GHz and 16 GB)

252

The parallel benchmarks of coin game OpenMP and Cilk Plus reducer pro-

grams were performed on 8 core (16 hyper-threads) Google Compute Engine

(Ubuntu 16.04, Intel(R) Xeon(R) CPU @ 2.20GHz and 16 GB memory). The

benchmarks include GCC 5.4, which has been integrated with Intel Cilk Plus.

The compilation options is as follows:

• Sequential code: gcc -O0

• OpenMP code: gcc -fopenmp -O0

• Cilk Plus code: gcc -fcilkplus -O0 -lcilkrts

The detailed benchmark results are listed in Table 9.12.

Figure 9.13 shows benchmark results of OpenMP and Cilk Plus coin game

on 8-core Google virtual machine. Both OpenMP and Cilk Plus with a sin-

gle thread exhibit similarly and even slightly better performance (max =

1.1x speedup) than sequential code at zero optimisation level. With 1 or

2 threads, there is no significant difference between Cilk Plus and OpenMP.

Both OpenMP and Cilk Plus gain more than 3.0x speedups with 8 threads and

slight better with 16. And OpenMP code has a slightly better performance

than Cilk Plus on multi-threaded execution.

OpenMP and Cilk Plus code both improve performance with thread num-

bers and slightly better with 16. OpenMP code maintains consistent and

better scalability over all problem sizes, whereas Cilk Plus has relatively poor

scalability on smallest problem.

Conclusion Polly compiler does not parallelise our coin game C program

because the loop has implicit data dependency on the shared array, so Polly

produces efficient sequential code only. Both of OpenMP and Cilk plus code

can be executed in parallel at speed close to linear with the number of threads

on multi-threaded standalone and virtual machines. Further, OpenMP has a

better parallel efficiency and faster execution than Cilk Plus in coin game case.

253

9.5 Case Study: LZ77 Compression

We use LZ77 compression (see Section 8.4.1) as test case and experiment the

parallel efficiency of Polly compiler, OpenMP and Cilk Plus. We use the

below pre-allocated array Whiley program and combine copy elimination and

deallocation analysis to produce the sequential C code.

9.5.1 Polly Parallelism

We use Polly compiler to compile the sequential C code into OpenMP parallel

code and bench-marked on standalone machine to measure the speed-ups from

Polly optimisation and parallelism.

Table 9.13: Average execution time (seconds) of Polly LZ77 compression

program on 4-core standalone machine (Intel(R) Core(TM) i7-4770 CPU @

3.40GHz, 16 GB memory)

Problem Size Polly Seq
Polly OpenMP

1 thread 2 thread 4 thread 8 thread

large1x (0.57 MB) 0.084 0.092 0.085 0.086 0.082

large2x (1.1 MB) 0.154 0.195 0.152 0.152 0.151

large4x (2.3 MB) 0.296 0.303 0.285 0.300 0.301

large8x (4.6 MB) 0.546 0.578 0.559 0.554 0.542

large16x (9.2 MB) 1.07 1.07 1.08 1.09 1.08

large32x (18.4 MB) 2.14 2.19 2.13 2.12 2.12

large64x (36.8 MB) 4.19 4.24 4.19 4.22 4.20

large128x (73.6 MB) 8.42 8.43 8.39 8.45 8.40

large256x (147.2 MB) 16.82 16.74 16.83 16.83 16.79

Table 9.13 shows there is no significant speedups on Polly optimisation and

parallelism. Polly compiler reports the following messages: an affine expression

can not be derived from the loop bound in function match.

254

1 // Find the matched entry with affine loop bound
2 function match(byte[] data, nat offset, nat end) -> (int length)
3 ensures 0 <= length && length <= 255:
4 nat pos = end
5 nat len = 0
6 while offset < pos && pos < |data| && len < 255
7 && data[offset] == data[pos]:
8 offset = offset + 1
9 pos = pos + 1

10 len = len + 1
11 return len

Listing 9.7: Function match in LZ77 compression Whiley program

The loop bound consists of four conditions. The first three can individually

form a valid affine expression using reference variables offset , pos or len. But

the last condition data[offset] == data[pos] checks the value of array data and

would terminate the loop earlier than expected. Because of unpredictable

behaviours, the loop bound can not be expressed with a linear relation with a

reference variable. Thus, Polly compiler can not optimise the loop and run it

in parallel.

9.5.2 OpenMP Map/Reduce Code

OpenMP (Arif and Vandierendonck, 2015) provides multiple constructs to fa-

cilitate map-reduce programming. In map phase, parallel for clause can

be used to partition a large loop iterations and then spawn a team of threads

to run each part concurrently. In reduce phase, OpenMP allow user-defined

reduction operation to combine all the intermediate values into a single result.

1 // Find the longest match for current position ’pos’
2 Match* findLongestMatch(BYTE* data, int pos){
3 int bestLen=0, bestOffset=0, offset;
4 int start=max(pos-255, 0);
5 for(offset =start;offset<pos;offset++){// The loop can be parallelised
6 // Call function match to find the match for each ’offset’
7 int len = match(data, offset, pos);
8 if (len > bestLen){
9 bestLen = len;

10 bestOffset = pos - offset;
11 }
12 }
13 Match* match = malloc(sizeof(Match));
14 match -> len = bestLen;
15 match -> offset = bestOffset;
16 return match;
17 }

Listing 9.8: Sequential code of searching the match in LZ77 Compression

255

We illustrate OpenMP map-reduce style programming with the procedure

that finds the longest match in LZ77 compression. The search goes through

array data and finds the longest match from the string occurring earlier and

then outputs one length-offset match (two bytes). The sequential program is

as follows.

Position Length-Offset Pair Best match

POS:0 bestLen:0 bestOffset:0 (0, ’A’)

POS:1 bestLen:1 bestOffset:1 (1, 1)

POS:2 bestLen:0 bestOffset:0 (0, ’C’)

POS:3 bestLen:3 bestOffset:4 (3, 4)

POS:7 bestLen:0 bestOffset:0 (0, ’B’)

POS:8 bestLen:3 bestOffset:3 (3, 3)

POS:11 bestLen:2 bestOffset:11 (11, 2)

POS:13 bestLen:2 bestOffset:12 (12, 2)

Table 9.14: Best match of string AACAACABCABAAAC

The sequential code keeps a window size of data buffers (256 bytes in this

case) and then goes through one offset after another to search for the best

match, that has the longest length and offset. For example, ’AACAACAB-

CABAAAC’ can be encoded as above table. The procedure of finding a match

can be encoded as local map tasks, and searching for the best match then can

be implemented as a single reduce task, illustrated as below.

The OpenMP map/reduce program creates a number of threads to find the

longest match length concurrently. The program contains initialise, map and

reduce phases.

• Initialise phase create two arrays localLen and localOffset to store the

local optimal match in each thread, and use omp single clause to ensure

these array values are initialised only once by a single thread.

256

• Map phase partitions the offset iterations in to a number of sub-tasks,

and solves each sub-task in each thread to find the best local optimal

match.

• Reduce phase obtains the global optimal match.

1 int64 t bestLen, bestOffset;
2 int64 t* localLen;
3 int64 t* localOffset;
4 int numofthreads;
5 #pragma omp parallel default(shared)
6 {
7 // Initialize local length and offset
8 #pragma omp single
9 {

10 numofthreads= omp_get_num_threads();
11 localLen = malloc(numofthreads*sizeof(int64 t));
12 localOffset = malloc(numofthreads*sizeof(int64 t));
13 // Initialize local len and local offset
14 for(int i =0; i <numofthreads;i++){
15 localLen[i] = 0;
16 localOffset[i] = 0;
17 }
18 }
19 // Map phase
20 int tid = omp_get_thread_num(); // Thread ID
21 #pragma omp for
22 for(offset = start;offset<pos;offset++){
23 //Private variable to store the found match length
24 int64 t len = match(data, offset, pos);// local variable
25 // Find local optimal length and offset
26 if(len > localLen[tid]){
27 localLen[tid] = len;
28 localOffset[tid] = pos - offset;
29 }
30 }
31 // Reduce phase
32 #pragma omp single
33 {
34 // Find the global optimal length and offset
35 for(int i =0; i <numofthreads;i++){
36 if(localLen[i]>bestLen){
37 bestLen = localLen[i];
38 bestOffset = localOffset[i];
39 }
40 }
41 }
42 }
43 free(localLen);
44 free(localOffset);

Listing 9.9: OpenMP map-reduce LZ77 compression code

Listing 9.9 shows the OpenMP LZ77 compression program. the some changes

for OpenMP map/reduce program is as follows.

Map phase shares all the array variables in OpenMP parallel region to

avoid race conditions, except for the match length variable len. As the offset

257

iteration space is split into several parts, each thread can take a subset of

offsets and compute their best match independently. By privatising the match

length to each thread, we can avoid expensive synchronisation overhead, e.g.

using omp ordered clause to enforce the multi-threads executing in the same

order as the sequential one. And we use omp for work-sharing clause in map

phase to distribute the offset iterations to all the available threads, where each

updates the local arrays localLen and localOffset indexed by its thread number.

Reduce phase use omp single clause to collectively obtain the global match

with master thread.

We illustrate the OpenMP map/reduce program to find the best match at

position 3 using 3 threads. First, we can use omp parallel num threads(3)

clause to specify the number of threads and omp single code region initialises

the local optimal array values only once.

Table 9.15: Sample outputs of LZ77 OpenMP map/reduce program at position

3 using 3 threads

Thread ID Local variables Shared variables

POS: 3 0 offset: 0 len: 4 localOffset[0]: 3 localLen[0] :4

1 offset: 1 len: 1 localOffset[1]: 2 localLen[1]: 1

2 offset: 2 len: 0 localOffset[2]: 0 localLen[2]: 0

bestOffset: 3 bestLen: 4

Second, we use omp for clause to divide the loop iterations into three parts,

so that each thread processes only one part simultaneously. Table 9.15 shows

the local and global matches found by all threads. Each thread takes one part

of offset iterations as input to search for the longest match, so thread 0 finds

the match for offset = 0 and thread 1 searches the match for offset = 1 and

so on. Once it finds a new match of longer length and then stores the match in

shared arrays localOffset and localLen where each thread only allows to access

258

one array element at the index of its distinct thread id to avoid race condition.

Third, the reducer waits until all mapper tasks are completed, and then

starts iterating array localLen and obtain the longest match. And by specifying

omp single clause, we can ensure the reducer executes as the sequential one.

9.5.3 Cilk Plus Reducer

The offset loop in LZ77 program can be executed in parallel by using Cilk Plus

cilk for keyword. In doing so, Intel Cilk Plus compiler and run-time uses

divide and conquer technique to split all the offset iterations into two halves

recursively until each child thread is busy.

1 void Match_init(Match* m) {// Initialize a match to be empty
2 m->len=0;
3 m->offset=0;
4 }
5 void identity_Match(void* reducer, void* m)// Reset reducer’s value
6 {
7 Match_init((Match*)m);
8 }
9 // Combine two reducer’s values into left reducer.

10 void reduce_Match(void* reducer, void* left, void* right)
11 {
12 Match* l_m = (Match*)left;
13 Match* r_m = (Match*)right;
14 if(l_m-> len < r_m-> len){
15 l_m->len = r_m->len;
16 l_m->offset = r_m->offset;
17 }
18 }
19 CILK C DECLARE REDUCER(Match) my_match_reducer =
20 CILK_C_INIT_REDUCER(Match, reduce_Match, identity_Match,

__cilkrts_hyperobject_noop_destroy);// Define a customised reducer
21 // We register/unregister my match reducer with Intel Cilk runtime
22 Match* findLongestMatch(..){
23
24 {
25 Match_init(&REDUCER VIEW(my_match_reducer));// Initialize the

reducer
26 // Spawned threads and execute the offset loop
27 cilk for(int offset = start;offset<pos;offset++){
28 int64 t len = match(data, false, offset, pos);
29 Match* m= &REDUCER VIEW(my_match_reducer);//Get the reducer
30 if(len > m->len){// Update reducer with a better ’len−offset’ pair
31 m->len = _len;
32 m->offset = pos - offset;
33 }
34 }
35 Match* m = &REDUCER VIEW(my_match_reducer);//Get the reducer
36 bestLen = m->len;
37 bestOffset = m->offset;
38 }
39 }

Listing 9.10: LZ77 compression using Cilk Plus reducer

259

Our Cilk Plus for loop concurrently updates the best match but may cause

data race condition. To ensure our match is accessed by a single thread at each

time, we introduce cilk reducer to serialise the access whilst guaranteeing

the execution order. Cilk Plus procedure in Listing 9.10 is described as below:

• Declare a customised reducer in global scope with identity function, re-

duce and destroy functions

– identity Match function is used to initialise reducer’s value when

a thread begins.

– reduce Match function compares and combines the values of two

reducers (left and right) into one value (left) of a working thread,

which has a larger match length.

• Inside compress function, register the reducer and enable the run-time

to manage the reducer’s value during parallel execution.

• Inside findLongestMatch function,

– Retrieve the address of reducer using REDUCER VIEW and initialise

its value.

– Use cilk for to partitions offset iterations and to spawn threads

and run the loop concurrently. Inside the loop, we also use REDUCER VIEW

to obtain the reducer’s value in parallel execution and update it with

the best length and offset.

• cilkrts hyperobject noop destroy function enables the run-time to

automatically clean up the memory of reducers that are no longer in use.

The use of Cilk Plus reducer (Frigo et al., 2009) ensures the reducers are

thread-safe and preserving the execution order with minimal overhead costs in

multi-threaded environment.

260

m1 m2 m3

0 . . . 3

4 . . . 7

0 . . . 1

2 . . . 3

4 . . . 5

6 . . . 7

Figure 9.14: Directed Acyclic Graph (DAG) of offset loop iterations (N = 8)

with 2 threads in LZ77 compression

Table 9.16: Sample outputs of Cilk Plus LZ77 compression at position 8 using

2 threads

Reducer Id Local variable Reducer

POS=3 r0 offset:0 len:0 r0.offset:0 r0.len:0

offset:1 len:0 r0.offset:0 r0.len:0

r1 offset:2 len:2 r1.offset:6 r1.len:2

offset:3 len:0 r1.offset:6 r1.len:2

r2 offset:4 len:0 r2.offset:0 r2.len:0

offset:5 len:3 r2.offset:3 r2.len:3

r3 offset:6 len:0 r3.offset:0 r3.len:0

offset:7 len:0 r3.offset:0 r3.len:0

bestOffset:3 bestLen:4

The data race of shared variable is a common synchronisation error in

parallel execution. Traditionally the mutex lock could solve this problem, but

usually leads to long delay in data contention and increases extra costs in

overhead. In contract to lock-based mechanism, the reducers create a new

261

instance of lock-free view for each spawned thread, so that each strand can

manipulate the reducer privately and avoid data sharing and collision. When

a strand finishes its task and returns to the parent thread, the reducer applies

reduce function to merge the reducer’s views from two strands and leave one

reducer view. The procedure of merging reducers continues until all strands

finish executing and leave the final result to the initial reducer’s view.

Consider LZ77 compression as an example. The program tries to find the

longest match at position 8 with 2 working threads. Cilk Plus run-time divides

the offset iterations (0 . . . 7) into two parts (0 . . . 3 and 4 . . . 7), and then divides

each part into two halves, as shown in Figure 9.14. In DAG graph, each path

of a number indicates the offset iterations that each strand needs to process,

e.g. 0 . . . 1 means the strand finds the best match from iteration 0 to 1.

Table 9.16 shows the value of reducer views in each strand, where r0 . . . r3

are the reducers for each thread, and m1 . . .m3 are nodes that each merges

the values of two reducers.

• The reducer creates and initialises one private view for each strand so

that each spawned thread can store its local optimal match.

• After all strands finish their work, the run-time starts to merge the results

in each strand.

– m1 merges r0 and r1 , and leaves r1 .

– m2 merges r2 and r3 , and leaves r2 .

– m3 merges r1 and r2 , and leaves r2 .

• The final best reducer is r2 (offset : 3 , len : 3), so the best offset is three

and the longest length is three.

Grain Size #pragma cilk grainsize specifies the number of loop iteration

that each strand is allow to execute. The default grain size is:

#pragma cilk grainsize = GRAINSIZE = min(2048,
N

8× p
)

262

where N is loop iterations, and p is the number of threads.

Table 9.17: Grain size varying on large256x (147.2 MB) file

Grain Size 1 Thread 2 Threads 4 Threads 8 Threads

Default 129.4 122.7 149.8 233.3

1 129.5 122.8 149.5 235.9

2 129.6 122.8 149.1 234.7

4 128.7 122.4 149.7 234.8

8 129.4 123.8 150.7 235.5

16 130.2 123.0 148.7 235.3

32 130.2 122.6 148.9 235.3

64 131.4 122.9 149.9 234.4

128 130.3 122.3 149.1 234.5

256 130.5 122.8 149.0 235.0

We vary the number of grain size and set it to be the fixed size, as shown in

Table9.17, and measure the speed-up over default size on large256x file. The

benchmark results show that, increasing grain size does not give significant

speed-ups.

9.5.4 Benchmarks

We use GCC 5.4 to compile OpenMP map/reduce program with -fopenmp -O0

flag enabled and linked with OpenMP run-time library. And the sequential

code which strips off all OpenMP clauses is also compiled at default optimisa-

tion level (-O0), to make an fair comparison with parallel OpenMP code.

We also use GCC 5.4 to compile Cilk Plus reducer program with -fcilkplus

-O0 -lcilkrts flags to link the executable with Cilk Plus run-time. Every

experiment is repeated for 10 times and the execution time is averaged.

263

9.5.4.1 Performance Evaluation on Standalone Machine

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1 2 4 8

R
e
la

ti
v
e
 S

p
e
e
d
u
p
s
 (

v
s
.
1
 t
h
re

a
d
)

Threads

Standalone Machine

OpenMP Map/Reduce
Cilk Reduce

Figure 9.15: Relative Speedup of parallel LZ77 compression program on 4-

core (up to 8 threads) standalone machine (Intel(R) Core(TM) i7-4770 CPU

@ 3.40GHz and 16 GB memory)

The benchmarks are listed in Appendix Table C.3. Figure 9.15 shows that, on

8-threaded standalone machine the parallel OpenMP map/reduce code with

2 thread runs 1.27 times faster than sequential one, and the speed-up scales

up to 4 threads with maximal 1.6 relative speedup. Cilk Plus reducer with

multi-threads, however, has poorer performance than sequential code, and its

speedup drops down with number of threads.

9.5.4.2 Performance Evaluation on Virtual Machine

The parallel benchmarks of LZ77 OpenMP map/reduce and Cilk Plus reducer

programs were performed on 8 core (16 hyper-threads) Google Compute En-

gine (GCE) (Intel(R) Xeon(R) CPU @ 2.20GHz and 16 GB memory). The

C compilers in benchmarks include GCC 5.4, which has been integrated with

264

Intel Cilk Plus. The detailed benchmark results are list in Appendix Table C.4.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 4 8 12 16

R
e
la

ti
v
e
 S

p
e
e
d
u
p
s
 (

v
s
.
1
 t
h
re

a
d
)

Threads

Google Cloud Machine’

OpenMP Map/Reduce
Cilk Reduce

Figure 9.16: Relative speedup (vs. 1 Thread) of parallel LZ77 programs on 8-

core (up to 16 threads) Google Compute Engine machine (Intel(R) Core(TM)

i7-4770 CPU @ 3.40GHz and 16 GB memory)

Figure 9.16 shows the benchmark results on 8-core Google Cloud machine.

The OpenMP code outperforms Cilk Plus code in all kinds of threads and has

a slightly better performance than sequential C code when two threads are

used. However, as the number of thread increases, the OpenMP code does not

scale up the speedup but slows down the execution.

Conclusion Polly compiler does not parallelise LZ77 compress program be-

cause the none-affine loop condition used in the algorithm requires more in-

formation for automatic parallelism. Both of OpenMP and Cilk Plus map/re-

ducer programs are slower than Polly sequential code. The slow-down may

result from expensive overheads of reducers. OpenMP program spends extra

time creating and freeing local arrays, and Cilk Plus program has similar over-

heads but also include additional work to manage the queue for each thread.

265

9.6 Summary

Through these experiments and case studies, we learn that not every program

can be parallelised to achieve good and scalable speed-ups, and the speed-up of

the entire program is limited by the part that cannot benefit from parallelism,

according to Amdahl’s law (Mittal and Vetter, 2015). For example, our bubble

sorting program does not exhibit any parallelism, whereas merge sort obtains

the scalable performance from multi-processor execution.

The parallelisable loop must not have data dependency nor execution order,

so that the computation of the loop can be carried out concurrently to gain

speedups from out-of-order execution and avoid waiting time. We can use some

techniques to analyse loop data dependency. For example, in coin game case

we draw out an iteration space graph, where each node is one loop iteration

and each path is the data flow from one node to another, to show whether the

data dependency is carried out within loop iterations.

The parallelisable task can be partitioned into small sub-tasks and each

sub-task can be computed separately and individually without needing any

data from other sub-tasks. For example, in our LZ77 compression case we

split the time-consuming match searching procedure to a number of sub-tasks.

Each sub-task takes one part of input data and follows the same procedure

to search the optimal result locally. Once all the sub-tasks finish, the reducer

subsequently collects all the local optimal results from all sub-tasks, and merge

to one global optimal result. By scheduling these sub-tasks on multiple pro-

cessors and running them concurrently, the workloads can be shared to achieve

load balancing and maximise the throughouts and minimise the waiting time.

However, the parallelising process, such as identifying the parallelisable

loops and code transform, still heavily relies on human efforts. Besides, to

gain portable speed-ups across various architectures requires the knowledge

of performance tuning, but also lots of experiment efforts to find the optimal

configuration setting. When the program becomes larger, these tasks become

too complicated and tedious to be done by hand.

266

Thus, an effective paralleling framework is urgently needed to analyse a

program and transform the sequential code into the parallel code in a sys-

tematised way. The framework would firstly detect the parallelisable part in

the program and choose a proper and suitable parallel technique, such as map-

reduce style, depending on the data dependency and data-flow controls. Then,

the compiler converts the sequential program into parallel code whilst validat-

ing the safety of parallel code to avoid common multi-threaded problems, e.g.

race conditions and deadlocks. Lastly, the performance tuning analyser runs

some experiments on the parallel code and measure the performance to obtain

its optimal configuration (e.g. task granularity), and to exploit the maximal

parallelism on target machines and scale the performance up.

At the time of writing, we have not found any compiler or useful tool that

can automatically parallelise the verification-friendly Whiley program to run

on multiple CPUs and/or GPUs. Building such a parallelising compiler is one

of our future work, although we know there are many challenges along the way.

Chapter 10

Conclusions and Future Work

The Whiley programming language employs extended static checking to elim-

inate run-time errors at compile time such that a Whiley program can be

converted into different programming languages and executed correctly across

a variety of run-time environments.

Our project builds up an optimising Whiley-to-C compiler to generate fast,

memory-efficient and safe C code from a Whiley program. Our project is built

around Whiley intermediate language (WyIL) code produced by the Whiley

compiler and includes several static code analysers along with an automatic

code generator.

Our pattern matcher and bound analyser enable the code generator to

provide estimated integer intervals to make use of fixed-width integer types in

translation, but the evaluation is not conducted in this work.

Our copy elimination and deallocation analysers can further improve the

efficiency of generated C code by removing unnecessary array copies and mem-

ory leaks. Moreover, our combined static analysis, macro and run-time flags

ensure every memory block is de-allocated exactly once and guarantee memory

safety during program execution.

Semi-formal proofs are constructed by hand to verify all our deallocation

macros do not free a memory block after it has been freed. To further validate

our deallocation macros, we also used automatic theorem prover Boogie to

268

mechanically verify that each macro preserves our deallocation invariant.

Our Whiley-to-C compiler is used in 9 benchmark programs. Each Whiley

benchmark program is automatically translated and optimised into sequential

C code without manual interaction. The benchmark results show our optimal

code runs at low overheads without expensive and unneeded array copies and

effectively stops all memory leaks without violating memory safety at run-

time. As such, the optimised code runs securely, fast and for long periods

whilst maintaining the program correctness.

Future Work Our code generator supports the stable version (v0 .3 .39) of

the Whiley programming language, and needs an upgrade to support new

WyIL code types provided by a newer version of Whiley compiler (v0 .4 .1).

Our project targets the optimisation of one-dimensional array of primitive

types (without cyclic references) in Whiley. The support of multi-dimensional

array, recursive data type or any nested structure requires the re-design of

deallocation responsibility. For example, a new design of size variable is needed

to store the length of non-rectangular array, and a set of new multi-level macros

is also needed to monitor the ownership of de-allocating sub-arrays at run-time.

Recursion will be supported as a part of the future work, by iterating

the static analysis steps until convergence. For example, Tarjan’s strongly

connected components algorithm (Tarjan, 1972) used by gprof (Graham et al.,

2004) can identify the mutually recursive functions, so that our analyser can

use a special strategy to perform the analysis on these functions.

The Whiley verification features can be leveraged to improve the provision

of our static optimisation. Pre- and post-conditions can be incorporated into

our bound analyser to estimate the array values and sizes to decide the array

variable types, particularly those variables whose ranges cannot be determined

statically to fit into fix-sized data types, such as reading the value from a file.

The loop invariant can also be useful for code optimisation, e.g. dynamic-

growing arrays can be transformed to fixed-size arrays for lower overheads.

269

Our static copy and deallocation analyses can also benefit from Whiley

verification specifications. For some uncertain situations where the parameter

may or may not be returned, our analyser tends to keep the array copy and

then remove the unneeded copy dynamically after the call. This conservative

strategy incurs overheads at run-time. By specifying no aliasing information

in the pre- and post-conditions or loop invariant, these unneeded array copies

can be eliminated at compile time to reduce the run-time overheads.

Future work could include a compiler tool-kit to point out these question-

able variables and the uncertainty in function calls, and give the suggestions to

users to include extra assumptions or loop invariants in the Whiley programs.

By doing so, program correctness can be ensured and the quality of generated

code can be improved.

Our deallocation depends on the several static analyses to place the macros

in the generated code and manage the memory deallocation at run-time. These

analyses (live variable, return and mutability analysis) require further formal-

isation to verify their correctness. This future work can further strengthen the

proofs in Section 6.

We experimented with fully automatic and semi-automatic parallelism on

our optimised generated C code, and our results show that these parallel tech-

niques have various impact on the performance, depending on the amount

of available parallelism that can exploit in the program, and the computing

resources that each technique provides. Future research could use the obser-

vations of our parallel experiments to develop a parallelisation heuristics to

exploit the parallelism in Whiley, and build up an automatic parallelisation

framework to select effective technique and scale up the performance across

different platforms and devices.

References

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques, and Tools, chapter 8, pages 529–531. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1986. ISBN 0-201-10088-6.

Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias annota-

tions for program understanding. In ACM SIGPLAN Notices, volume 37,

pages 311–330. ACM, 2002.

Andrei Alexandrescu. Modern C++ design: generic programming and design

patterns applied. Addison-Wesley, 2001.

Sean Eron Anderson. Bit twiddling hacks, 2005. URL http://graphics.

stanford.edu/~seander/bithacks.html#IntegerMinOrMax. [Online; ac-

cessed 29-April-2017].

Mahwish Arif and Hans Vandierendonck. A case study of openmp applied to

map/reduce-style computations. In International Workshop on OpenMP,

pages 162–174. Springer, 2015.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent

Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A Static

Analyzer for Large Safety-critical Software. SIGPLAN Not., 38(5):196–

207, May 2003. ISSN 0362-1340. doi: 10.1145/780822.781153. URL

http://doi.acm.org/10.1145/780822.781153.

Jim Blandy. Why Rust? Trustworthy, Concurrent Systems Programming.

O’Reilly, 2015.

http://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
http://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
http://doi.acm.org/10.1145/780822.781153

271

Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded com-

putations by work stealing. Journal of the ACM (JACM), 46(5):720–748,

1999.

Victor Hugo Sperle Campos, Raphael Ernani Rodrigues, Igor Rafael de As-

sis Costa, and Fernando Magno Quinto Pereira. Speed and Precision

in Range Analysis. In FranciscoHeron de Carvalho Junior and Luis-

Soares Barbosa, editors, Programming Languages, volume 7554 of Lec-

ture Notes in Computer Science, pages 42–56. Springer Berlin Heidelberg,

2012. ISBN 978-3-642-33181-7. doi: 10.1007/978-3-642-33182-4 5. URL

http://dx.doi.org/10.1007/978-3-642-33182-4_5.

Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas. Using OpenMP:

portable shared memory parallel programming, volume 10. MIT press, 2008.

Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Micha l

Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. Vcc: A

practical system for verifying concurrent c. In International Conference on

Theorem Proving in Higher Order Logics, pages 23–42. Springer, 2009.

Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

Agostino Cortesi and Matteo Zanioli. Widening and Narrowing Operators for

Abstract Interpretation. Computer Languages, Systems & Structures, 37(1):

24–42, 2011.

Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In

C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the

Construction and Analysis of Systems, pages 337–340, Berlin, Heidelberg,

2008. Springer Berlin Heidelberg. ISBN 978-3-540-78800-3.

Peter J Denning. Thrashing: Its causes and prevention. In Proceedings of the

December 9-11, 1968, fall joint computer conference, part I, pages 915–922.

ACM, 1968.

http://dx.doi.org/10.1007/978-3-642-33182-4_5

272

Johannes Doerfert, Kevin Streit, Sebastian Hack, and Zino Benaissa. Polly’s

Polyhedral Scheduling in the Presence of Reductions. arXiv preprint

arXiv:1505.07716, 2015.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,

James B. Saxe, and Raymie Stata. Extended Static Checking for Java.

SIGPLAN Not., 37(5):234–245, May 2002. ISSN 0362-1340. doi: 10.1145/

543552.512558. URL http://doi.acm.org/10.1145/543552.512558.

Matteo Frigo, Pablo Halpern, Charles E Leiserson, and Stephen Lewin-Berlin.

Reducers and other cilk++ hyperobjects. In Proceedings of the twenty-first

annual symposium on Parallelism in algorithms and architectures, pages 79–

90. ACM, 2009.

Jdrzej Fulara and Krzysztof Jakubczyk. Practically Applicable Formal Meth-

ods. In Jan van Leeuwen, Anca Muscholl, David Peleg, Jaroslav Pokorn,

and Bernhard Rumpe, editors, SOFSEM 2010: Theory and Practice of

Computer Science, volume 5901 of Lecture Notes in Computer Science,

pages 407–418. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-11265-2.

doi: 10.1007/978-3-642-11266-9 34. URL http://dx.doi.org/10.1007/

978-3-642-11266-9_34.

Thomas Gawlitza, Jrme Leroux, Jan Reineke, Helmut Seidl, Grgoire Sutre,

and Reinhard Wilhelm. Polynomial Precise Interval Analysis Revis-

ited. In Susanne Albers, Helmut Alt, and Stefan Nher, editors, Ef-

ficient Algorithms, volume 5760 of Lecture Notes in Computer Science,

pages 422–437. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-03455-8.

doi: 10.1007/978-3-642-03456-5 28. URL http://dx.doi.org/10.1007/

978-3-642-03456-5_28.

K Gopinath and John L Hennessy. Copy elimination in functional languages. In

Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, pages 303–314. ACM, 1989.

http://doi.acm.org/10.1145/543552.512558
http://dx.doi.org/10.1007/978-3-642-11266-9_34
http://dx.doi.org/10.1007/978-3-642-11266-9_34
http://dx.doi.org/10.1007/978-3-642-03456-5_28
http://dx.doi.org/10.1007/978-3-642-03456-5_28

273

Deepak Goyal and Robert Paige. A new solution to the hidden copy problem.

In International Static Analysis Symposium, pages 327–348. Springer, 1998.

Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. Gprof: A

Call Graph Execution Profiler. SIGPLAN Not., 39(4):49–57, April 2004.

ISSN 0362-1340. doi: 10.1145/989393.989401. URL http://doi.acm.org/

10.1145/989393.989401.

Tobias Grosser, Armin Größlinger, and Christian Lengauer. PollyPerform-

ing Polyhedral Optimizations on a Low-level Intermediate Representation.

Parallel Processing Letters, 22(04):1250010, 2012.

Tobias Grosser, Sebastian Pop, J Ramanujam, and P Sadayappan. On Recov-

ering Multi-dimensional Arrays in Polly. In Proceedings of the Fifth Interna-

tional Workshop on Polyhedral Compilation Techniques (IMPACT), 2015a.

Tobias Grosser, Sven Verdoolaege, and Albert Cohen. Polyhedral AST Gener-

ation is more than Scanning Polyhedra. ACM Transactions on Programming

Languages and Systems (TOPLAS), 37(4):12, 2015b.

Sumit Gulwani, Sagar Jain, and Eric Koskinen. Control-flow Refinement and

Progress Invariants for Bound Analysis. SIGPLAN Not., 44(6):375–385,

June 2009. ISSN 0362-1340. doi: 10.1145/1543135.1542518. URL http:

//doi.acm.org/10.1145/1543135.1542518.

Pablo Halpern. Strict fork-join parallelism. WG21 paper N, 3409, 2012.

Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Experience

with safe manual memory-management in cyclone. In Proceedings of the

4th international symposium on Memory management, pages 73–84. ACM,

2004.

Tony Hoare. The Verifying Compiler: A Grand Challenge for Computing Re-

search. J. ACM, 50(1):63–69, January 2003. ISSN 0004-5411. doi: 10.1145/

602382.602403. URL http://doi.acm.org/10.1145/602382.602403.

http://doi.acm.org/10.1145/989393.989401
http://doi.acm.org/10.1145/989393.989401
http://doi.acm.org/10.1145/1543135.1542518
http://doi.acm.org/10.1145/1543135.1542518
http://doi.acm.org/10.1145/602382.602403

274

Paul Hudak and Adrienne Bloss. The aggregate update problem in functional

programming systems. In Proceedings of the 12th ACM SIGACT-SIGPLAN

symposium on Principles of programming languages, pages 300–314. ACM,

1985.

Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and

reasoning about systems. Cambridge university press, 2004.

Michael Kruse. Lattice QCD Optimization and Polytopic Representations of

Distributed Memory. PhD thesis, Paris 11, 2014.

Nurudeen Lameed and Laurie Hendren. Staged static techniques to efficiently

implement array copy semantics in a matlab jit compiler. In Compiler Con-

struction, pages 22–41. Springer, 2011.

Chris Lattner. Llvm and clang: Next generation compiler technology. In The

BSD Conference, pages 1–2, 2008.

K. R. M. Leino. Accessible software verification with dafny. IEEE Software,

34(6):94–97, November/December 2017. ISSN 0740-7459. doi: 10.1109/MS.

2017.4121212. URL doi.ieeecomputersociety.org/10.1109/MS.2017.

4121212.

K Rustan M Leino. This is boogie 2. Manuscript KRML, 178(131), 2008.

K. Rustan M. Leino. Dafny: An Automatic Program Verifier for Functional

Correctness. In Edmund M. Clarke and Andrei Voronkov, editors, Logic for

Programming, Artificial Intelligence, and Reasoning, pages 348–370, Berlin,

Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-17511-4.

Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus

Pister, and Christian Ferdinand. Compcert-a formally verified optimizing

compiler. In ERTS 2016: Embedded Real Time Software and Systems, 8th

European Congress, 2016.

doi.ieeecomputersociety.org/10.1109/MS.2017.4121212
doi.ieeecomputersociety.org/10.1109/MS.2017.4121212

275

Petra Malik and Mark Utting. CZT: A Framework for Z Tools. In Helen

Treharne, Steve King, Martin Henson, and Steve Schneider, editors, ZB

2005: Formal Specification and Development in Z and B, volume 3455 of

Lecture Notes in Computer Science, pages 65–84. Springer Berlin Heidelberg,

2005. ISBN 978-3-540-25559-8. doi: 10.1007/11415787 5. URL http://dx.

doi.org/10.1007/11415787_5.

Ovidio José Mallo. A translator from bml annotated java bytecode to boogiepl.

Software Component Technology Group, Department of Computer Science,

ETH Zurich, Switzerland, 2007.

Francesco Logozzo Manuel Fahndrich. Static contract checking with Ab-

stract Interpretation. In Proceedings of the Conference on Formal Verifica-

tion of Object-oriented Software (FoVeOOS 2010). Springer Verlag, October

2010. URL https://www.microsoft.com/en-us/research/publication/

static-contract-checking-with-abstract-interpretation/.

K. Marriott and P. J. Stuckey. Programming with Constraints: An In-

troduction. Adaptive Computation and Machine. MIT Press, 1998.

ISBN 9780262133418. URL http://books.google.co.nz/books?id=

jBYAleHTldsC.

Wolfram Schulte Mike Barnett, Rustan Leino. The Spec Programming

System: An Overview. In CASSIS 2004, Construction and Analysis of

Safe, Secure and Interoperable Smart devices, volume 3362, pages 49–

69. Springer, January 2005. URL https://www.microsoft.com/en-us/

research/publication/the-spec-programming-system-an-overview/.

Dmitry Mikushin and Nicolas Likhogrud. KernelGen — a Toolchain for Au-

tomatic GPU-centric Applications Porting. 2012.

Sparsh Mittal and Jeffrey S. Vetter. A survey of cpu-gpu heterogeneous com-

puting techniques. ACM Comput. Surv., 47(4):69:1–69:35, July 2015. ISSN

http://dx.doi.org/10.1007/11415787_5
http://dx.doi.org/10.1007/11415787_5
https://www.microsoft.com/en-us/research/publication/static-contract-checking-with-abstract-interpretation/
https://www.microsoft.com/en-us/research/publication/static-contract-checking-with-abstract-interpretation/
http://books.google.co.nz/books?id=jBYAleHTldsC
http://books.google.co.nz/books?id=jBYAleHTldsC
https://www.microsoft.com/en-us/research/publication/the-spec-programming-system-an-overview/
https://www.microsoft.com/en-us/research/publication/the-spec-programming-system-an-overview/

276

0360-0300. doi: 10.1145/2788396. URL http://doi.acm.org/10.1145/

2788396.

Simon Moll, Johannes Doerfert, and Sebastian Hack. Input Space Splitting for

OpenCL. 2016. http://compilers.cs.uni-saarland.de/papers/moll_

pollocl.pdf.

Jorge A. Navas, Peter Schachte, Harald Sndergaard, and PeterJ. Stuckey.

Signedness-Agnostic Program Analysis: Precise Integer Bounds for Low-

Level Code. In Ranjit Jhala and Atsushi Igarashi, editors, Programming

Languages and Systems, volume 7705 of Lecture Notes in Computer Sci-

ence, pages 115–130. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-

35181-5. doi: 10.1007/978-3-642-35182-2 9. URL http://dx.doi.org/10.

1007/978-3-642-35182-2_9.

Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavy-

weight dynamic binary instrumentation. In ACM Sigplan notices, volume 42,

pages 89–100. ACM, 2007.

John K. Ousterhout, Ken Jones, Eric Foster-Johnson, Donal Fellows, Brian

Griffin, and David Welton. Tcl and the Tk Toolkit. Addision-Wesley Profes-

sional Computing Series. Addison-Wesley, Upper Saddle River, New Jersey,

2 edition, 2010. ISBN 978-0-321-33633-0.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam

Lerer. Automatic differentiation in pytorch. 2017.

David J Pearce. Integer range analysis for whiley on embedded systems.

In Object/Component/Service-Oriented Real-Time Distributed Computing

Workshops (ISORCW), 2015 IEEE International Symposium on, pages 26–

33. IEEE, 2015a.

David J Pearce. Practical verification condition generation for a bytecode lan-

http://doi.acm.org/10.1145/2788396
http://doi.acm.org/10.1145/2788396
http://compilers.cs.uni-saarland.de/papers/moll_pollocl.pdf
http://compilers.cs.uni-saarland.de/papers/moll_pollocl.pdf
http://dx.doi.org/10.1007/978-3-642-35182-2_9
http://dx.doi.org/10.1007/978-3-642-35182-2_9

277

guage. School of Engineering and Computer Science, Victoria University of

Wellington, 2015b.

David J Pearce and Lindsay Groves. Designing a verifying compiler: Lessons

learned from developing whiley. Science of Computer Programming, 113:

191–220, 2015a.

David J. Pearce and Lindsay Groves. Designing a verifying compiler:

Lessons learned from developing whiley. volume 113, pages 191 – 220.

2015b. doi: https://doi.org/10.1016/j.scico.2015.09.006. URL http://www.

sciencedirect.com/science/article/pii/S016764231500266X. Formal

Techniques for Safety-Critical Systems.

Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina Ra-

mananandro, Peng Wang, Santiago Zanella-Béguelin, Antoine Delignat-

Lavaud, Cătălin Hriţcu, Karthikeyan Bhargavan, Cédric Fournet, and Nikhil

Swamy. Verified Low-level Programming Embedded in F*. Proc. ACM

Program. Lang., 1(ICFP):17:1–17:29, August 2017a. ISSN 2475-1421. doi:

10.1145/3110261. URL http://doi.acm.org/10.1145/3110261.

Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina Ra-

mananandro, Peng Wang, Santiago Zanella-Béguelin, Antoine Delignat-

Lavaud, Cătălin Hriţcu, Karthikeyan Bhargavan, Cédric Fournet, et al.

Verified low-level programming embedded in f. Proceedings of the ACM

on Programming Languages, 1(ICFP):17, 2017b.

A Raghesh. A Framework for Automatic OpenMP Code Generation. PhD

thesis, Indian Institute of Technology, Madras, 2011.

Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Summer Deng, Roman

Dzhabarov, James Hegeman, Roman Levenstein, Bert Maher, Satish Na-

dathur, Jakob Olesen, et al. Glow: Graph lowering compiler techniques for

neural networks. arXiv preprint arXiv:1805.00907, 2018.

http://www.sciencedirect.com/science/article/pii/S016764231500266X
http://www.sciencedirect.com/science/article/pii/S016764231500266X
http://doi.acm.org/10.1145/3110261

278

Peter Schnorf, Mahadevan Ganapathi, and John L Hennessy. Compile-time

Copy Elimination. Software: Practice and Experience, 23(11):1175–1200,

1993.

Helmut Seidl, Reinhard Wilhelm, and Sebastian Hack. Compiler Design: Anal-

ysis and Transformation. Springer Science & Business Media, 2012.

Olha Shkaravska, Rody Kersten, and Marko van Eekelen. Test-based inference

of polynomial loop-bound functions. In Proceedings of the 8th International

Conference on the Principles and Practice of Programming in Java, PPPJ

’10, pages 99–108, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-

0269-2. doi: 10.1145/1852761.1852776. URL http://doi.acm.org/10.

1145/1852761.1852776.

Irvin Sobel. An isotropic 3× 3 image gradient operator. Machine vision for

three-dimensional scenes, pages 376–379, 1990.

Richard M. Stallman and the GCC Developer Community. Using the GNU

Compiler Collection. GNU Press, a division of the Free Software Foun-

dation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA,

2003. URL https://gcc.gnu.org/onlinedocs/gcc-5.2.0/gcc.pdf. [On-

line; accessed 21-August-2017].

Zhendong Su and David Wagner. A class of polynomially solvable range con-

straints for interval analysis without widenings and narrowings. In Kurt

Jensen and Andreas Podelski, editors, Tools and Algorithms for the Con-

struction and Analysis of Systems, volume 2988 of Lecture Notes in Com-

puter Science, pages 280–295. Springer Berlin Heidelberg, 2004. ISBN 978-

3-540-21299-7. doi: 10.1007/978-3-540-24730-2 23. URL http://dx.doi.

org/10.1007/978-3-540-24730-2_23.

Jim Sukha. A Quick Introduction to the Intel Cilk Plus Runtime,

2015. URL https://www.cilkplus.org/sites/default/files/papers/

CilkPlusRuntimeTutorial.pdf.

http://doi.acm.org/10.1145/1852761.1852776
http://doi.acm.org/10.1145/1852761.1852776
https://gcc.gnu.org/onlinedocs/gcc-5.2.0/gcc.pdf
http://dx.doi.org/10.1007/978-3-540-24730-2_23
http://dx.doi.org/10.1007/978-3-540-24730-2_23
https://www.cilkplus.org/sites/default/files/papers/CilkPlusRuntimeTutorial.pdf
https://www.cilkplus.org/sites/default/files/papers/CilkPlusRuntimeTutorial.pdf

279

Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal

on computing, 1(2):146–160, 1972.

LLVM Team. LLVM Language Reference Manual, 2016. URL http://llvm.

org/docs/LangRef.html.

Rust team. Guide to rustc development. Technical report, Mozilla Research,

2019. URL https://rust-lang.github.io/rustc-guide/.

Julian Tschannen, Carlo A Furia, Martin Nordio, and Bertrand Meyer. Veri-

fying eiffel programs with boogie. arXiv preprint arXiv:1106.4700, 2011.

Mark Utting, David J Pearce, and Lindsay Groves. Making whiley boogie!

In International Conference on Integrated Formal Methods, pages 69–84.

Springer, 2017.

Julien Vanegue and Shuvendu Lahiri. Towards practical reac-

tive security audit using extended static checkers. In IEEE

Symposium on Security and Privacy (Oakland’13), May 2013.

URL https://www.microsoft.com/en-us/research/publication/

towards-practical-reactive-security-audit-using-extended-static-checkers/.

Mitchell Wand and William D Clinger. Set constraints for destructive array

update optimization. Journal of Functional Programming, 11(3):319–346,

2001.

Min-Hsien Weng, Mark Utting, and Bernhard Pfahringer. Bound analysis for

whiley programs. Electronic Notes in Theoretical Computer Science, 320:

53–67, 2016.

Min-Hsien Weng, Bernhard Pfahringer, and Mark Utting. Static techniques

for reducing memory usage in the c implementation of whiley programs. In

ACSW’17. ACM, 2017.

Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data

http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
https://rust-lang.github.io/rustc-guide/
https://www.microsoft.com/en-us/research/publication/towards-practical-reactive-security-audit-using-extended-static-checkers/
https://www.microsoft.com/en-us/research/publication/towards-practical-reactive-security-audit-using-extended-static-checkers/

280

compression. IEEE Transactions on information theory, 23(3):337–343,

1977.

Appendix A

Boogie Program

Listing A.1: Deallocation macros Boogie program

0 type VAR; // Generic variable types
1 type AVAR; // Array variable
2 type ADDR; // Adrress variable
3 const unique null : ADDR;
4 var e : [AVAR]ADDR;// maps an array variable to its addresses.
5 var dealloc : [AVAR]bool;// a deallocation flag for each array variable
6 var valid : [ADDR]bool;// an address is valid if it has been heap−allocated,

and not yet freed.
7 // define fresh(i) to describe if variable i is a fresh address
8 //function fresh(i : AVAR, e : [AVAR]ADDR) returns (r : bool);
9 //axiom (∀ i : AVAR, e : [AVAR]ADDR • fresh(i, e) ⇐⇒ (∀ j : AVAR • i 6= j

=⇒ e[i] 6= e[j]));
10 // define INV to describe deallocation invariant : inv dealloc(i, j), inv arr(i)
11 function INV(e : [AVAR]ADDR, dealloc : [AVAR]bool, valid : [ADDR]bool)

returns (r : bool);
12 axiom (∀ e : [AVAR]ADDR, dealloc : [AVAR]bool, valid : [ADDR]bool•
13 INV(e, dealloc, valid)
14 ⇐⇒ (∀ i,j : AVAR • dealloc[i] ∧ dealloc[j] ∧ i 6= j =⇒ e[i

] 6= e[j]) // inv dealloc (i, j)
15 ∧ (∀ i : AVAR • dealloc[i] =⇒ valid[e[i]]) // inv arr(i)
16);
17

18 // Define free(a) to delete array ’a’
19 procedure freed(a : AVAR) returns ();
20 requires valid[e[a]];
21 modifies valid;
22 ensures valid[e[a]] = false;
23 ensures (∀ d : ADDR • d 6= e[a] =⇒ valid[d] = old(valid[d]));
24

25 // Pre dealloc Macro to free array if possible
26 procedure pre_dealloc(a : AVAR) returns ();
27 requires INV(e, dealloc, valid);
28 modifies e, dealloc, valid;
29 ensures INV(e, dealloc, valid);
30 ensures (∀ i : AVAR • i 6= a =⇒ e[i] = old(e[i]));
31 ensures (∀ d : ADDR • d 6= old(e[a]) =⇒ valid[d] = old(valid[d])

);
32 ensures (∀ i : AVAR • i 6= a =⇒ dealloc[i] = old(dealloc[i]));
33 ensures dealloc[a] = false;
34 implementation pre_dealloc(a : AVAR) returns ()
35 {

282

36 if (dealloc[a]) {
37 call freed(a); // free(a)
38 e := e[a := null];// e[a] := null;
39 dealloc := dealloc[a := false];// a dealloc := false
40 }
41 }
42

43

44 // Create a new address ’r’
45 procedure malloc() returns (r : ADDR);
46 modifies valid;
47 ensures valid[r];
48 ensures (∀ i : AVAR • e[i] 6= r); // fresh(r)
49 ensures (∀ d : ADDR • d 6= r =⇒ valid[d] = old(valid[d]));
50

51 // New array
52 procedure new_array(a : AVAR) returns();
53 requires INV(e, dealloc, valid);
54 modifies e, dealloc, valid;
55 ensures valid[e[a]];
56 ensures dealloc[a];
57 ensures (∀ i : AVAR • i 6= a =⇒ e[i] = old(e[i]));
58 ensures (∀ d : ADDR • d 6= old(e[a]) ∧ d 6= e[a] =⇒ valid[d] =

old(valid[d]));
59 ensures (∀ i : AVAR • i 6= a =⇒ dealloc[i] = old(dealloc[i]));
60 ensures INV(e, dealloc, valid);
61 implementation new_array(a : AVAR) returns ()
62 {
63 var ret : ADDR;
64 call pre_dealloc(a);
65 call ret := malloc();
66 e := e[a := ret]; // e[a] = e[ret]
67 dealloc := dealloc[a := true];
68 }
69

70 // define ’a := copy(b)’ to make a copy of ’b’ and return a fresh address ’a’
71 procedure copy(b : AVAR) returns (a : ADDR); // Returns ADDR
72 requires valid[e[b]];
73 modifies valid;
74 ensures valid[a];
75 ensures (∀ i : AVAR • e[i] 6= a); // fresh(a)
76 ensures (∀ d : ADDR • d 6= a =⇒ valid[d] = old(valid[d]));
77

78 // Add Dealloc Macro, a : = copy(b)
79 procedure add_dealloc(a : AVAR, b : AVAR) returns();
80 requires e[a] 6= e[b] ∧ INV(e, dealloc, valid) ∧ valid[e[b]];
81 modifies e, dealloc, valid;
82 ensures INV(e, dealloc, valid);
83 ensures (∀ i : AVAR • i 6= a =⇒ e[i] = old(e[i])); // i 6= old(a)

should not be included ˜˜˜Robi
84 ensures (∀ d : ADDR • d 6= old(e[a]) ∧ d 6= e[a] =⇒ valid[d] =

old(valid[d]));
85 ensures (∀ i : AVAR • i 6= a =⇒ dealloc[i] = old(dealloc[i]));
86 ensures valid[e[a]] ∧ valid[e[b]] ∧ dealloc[a];
87 implementation add_dealloc(a : AVAR, b : AVAR) returns ()
88 {
89 var ret : ADDR; // Local variables
90 call pre_dealloc(a);
91 assert valid[e[b]];
92 call ret := copy(b);
93 e := e[a := ret]; // e[a] = e[ret]
94 dealloc := dealloc[a := true];
95 }
96

97 // Transfer Dealloc Macro, a : = b

283

98 procedure transfer_dealloc(a : AVAR, b : AVAR) returns();
99 requires e[a] 6= e[b] ∧ INV(e, dealloc, valid) ∧ valid[e[b]];

100 modifies e, dealloc, valid;
101 ensures INV(e, dealloc, valid);
102 ensures (∀ i : AVAR • i 6= a =⇒ e[i] = old(e[i]));
103 ensures (∀ d : ADDR • d 6= old(e[a]) =⇒ valid[d] = old(valid[d])

);
104 ensures (∀ i : AVAR • i 6= a ∧ i 6= b =⇒ dealloc[i] = old(

dealloc[i]));
105 ensures valid[e[a]] ∧ dealloc[a] = old(dealloc[b]);
106 ensures e[a] = e[b];
107 ensures ¬dealloc[b];// also ensures ¬dealloc[b]
108 implementation transfer_dealloc(a : AVAR, b : AVAR) returns ()
109 {
110 var ret : ADDR; // Local variables
111 call pre_dealloc(a);
112 assert valid[e[b]];
113 e[a] := e[b];
114 dealloc := dealloc[a := dealloc[b]];
115 dealloc := dealloc[b := false];
116 }
117

118 // Function func does not change array ’b’, but returns a new array ’a’
119 procedure retain_func(b : AVAR, flag : bool) returns (r : ADDR);
120 requires valid[e[b]];
121 requires ¬flag;
122 modifies valid;
123 ensures valid[r];
124 ensures (∀ i : AVAR • e[i] 6= r); // fresh(r)
125 ensures (∀ d : ADDR • d 6= r =⇒ valid[d] = old(valid[d]));
126

127 // Retain Dealloc Macro
128 procedure retain_dealloc(a : AVAR, b : AVAR) returns();
129 requires e[a] 6= e[b] ∧ INV(e, dealloc, valid) ∧ valid[e[b]];
130 modifies e, dealloc, valid;
131 ensures (∀ i : AVAR • i 6= a =⇒ e[i] = old(e[i]));
132 ensures (∀ d : ADDR • d 6= old(e[a]) ∧ d 6= e[a] =⇒ valid[d] =

old(valid[d]));
133 ensures (∀ i : AVAR • i 6= a =⇒ dealloc[i] = old(dealloc[i]));
134 ensures valid[e[a]];
135 ensures valid[e[b]];
136 ensures dealloc[a];
137 ensures INV(e, dealloc, valid);
138 implementation retain_dealloc(a : AVAR, b : AVAR) returns ()
139 {
140 var ret : ADDR; // Local variable
141 call pre_dealloc(a); // pre dealloc(a);
142 call ret := retain_func(b, false); // ret:=func(b, false);
143 e := e[a := ret]; // a:=ret;
144 dealloc := dealloc[a := true]; //a dealloc := true
145 }
146

147

148 // Function func does not change array b, but may or may not returns array b
149 // This function is shared by reset and caller macros
150 procedure reset_caller_func(b : AVAR, flag : bool) returns (r : ADDR);
151 requires valid[e[b]];
152 requires ¬flag;
153 modifies valid;
154 ensures valid[r];
155 ensures ((∀ i : AVAR • e[i] 6= r) ∨ (r = e[b])); // fresh(r) or r =

e(b)
156 ensures (∀ d : ADDR • d 6= r =⇒ valid[d] = old(valid[d]));
157

158 // Reset Dealloc Macro

284

159 procedure reset_dealloc(a : AVAR, b : AVAR) returns();
160 requires e[a] 6= e[b] ∧ INV(e, dealloc, valid) ∧ valid[e[b]];
161 modifies e, dealloc, valid;
162 ensures (∀ i : AVAR • i 6= a =⇒ e[i] = old(e[i]));
163 ensures (∀ d : ADDR • d 6= old(e[a]) ∧ d 6= e[a] =⇒ valid[d] =

old(valid[d]));
164 ensures (∀ i : AVAR • i 6= a ∧ i 6= b =⇒ dealloc[i] = old(

dealloc[i]));// a dealloc and b dealloc
165 ensures valid[e[a]];
166 ensures valid[e[b]];
167 ensures INV(e, dealloc, valid);
168 implementation reset_dealloc(a : AVAR, b : AVAR) returns ()
169 {
170 var ret : ADDR; // local variables
171 call pre_dealloc(a); // pre dealloc(a);
172 assert valid[e[b]];
173 call ret := reset_caller_func(b, false); // ret:=func(b, false);
174 e := e[a := ret]; // a:=ret;
175 assert valid[e[a]];
176 if(e[a] 6= e[b]){
177 dealloc := dealloc[a := true]; //a dealloc := true
178 }else{
179 dealloc := dealloc[a := dealloc[b]];
180 dealloc := dealloc[b := false];
181 }
182 }
183

184 // Caller Dealloc Macro
185 procedure caller_dealloc(a : AVAR, b : AVAR, tmp : AVAR) returns();
186 requires tmp 6= a;//Without this precondition, we can not prove the

validity of all address
187 // E.g. valid(old(tmp)) is false. After caller Macro, we get valid(tmp) is

true.
188 // So it might break the validity invariant. Therefore, the termination of

Boogie is not guarantteed.
189 requires e[a] 6= e[b] ∧ INV(e, dealloc, valid) ∧ valid[e[b]];
190 modifies e, dealloc, valid;
191 ensures (∀ i : AVAR • i 6= a ∧ i 6= tmp =⇒ e[i] = old(e[i]));
192 ensures (∀ d : ADDR • d 6= old(e[a]) ∧ d 6= e[a] ∧ d 6= e[tmp] =⇒

valid[d] = old(valid[d])); // validity invariant
193 ensures (∀ i : AVAR • i 6= a ∧ i 6= tmp =⇒ dealloc[i] = old(

dealloc[i]));
194 ensures valid[e[a]];
195 ensures dealloc[a];
196 ensures INV(e, dealloc, valid);
197 implementation caller_dealloc(a : AVAR, b : AVAR, tmp : AVAR) returns ()
198 {
199 var ret : ADDR;
200 assume { : captureState "top"} true;// Capture intermediate states in

the procedure body
201 call pre_dealloc(a); // pre dealloc(a)
202 call ret := copy(b);
203 e := e[tmp := ret]; // tmp:= ret
204 dealloc := dealloc[tmp := false]; //tmp dealloc := false
205 call ret := reset_caller_func(tmp, false); // ret:=func(b, false);
206 e := e[a := ret]; // a:=ret;
207 //assert a 6= tmp;
208 if(e[a] 6= e[tmp]){
209 call freed(tmp);
210 }
211 dealloc := dealloc[a := true]; //a dealloc := true
212 }
213

214 // Function func may change array tmp but does not return array tmp
215 procedure callee_func(tmp : AVAR, flag : bool) returns (r : ADDR);

285

216 requires valid[e[tmp]];
217 requires flag;
218 modifies valid;
219 ensures ¬valid[e[tmp]]; // Free ’tmp’
220 ensures valid[r]; // valid address
221 ensures (∀ i : AVAR • e[i] 6= r); // fresh(r)
222 ensures (∀ d : ADDR • d 6= r ∧ d 6= e[tmp] =⇒ valid[d] = old(

valid[d]));
223

224 // Callee Dealloc Macro
225 procedure callee_dealloc(a : AVAR, b : AVAR, tmp : AVAR) returns();
226 requires a 6= tmp; // a and tmp are different variables
227 requires e[a] 6= e[b] ∧ INV(e, dealloc, valid) ∧ valid[e[b]];
228 modifies e, dealloc, valid;
229 ensures (∀ i : AVAR • i 6= a ∧ i 6= tmp =⇒ e[i] = old(e[i]));
230 ensures (∀ d : ADDR • d 6= old(e[a]) ∧ d 6= e[a] ∧ d 6= e[tmp] =⇒

valid[d] = old(valid[d]));
231 ensures (∀ i : AVAR • i 6= a ∧ i 6= tmp =⇒ dealloc[i] = old(

dealloc[i]));
232 ensures valid[e[a]];
233 ensures ¬valid[e[tmp]];
234 ensures dealloc[a];
235 ensures INV(e, dealloc, valid);
236 implementation callee_dealloc(a : AVAR, b : AVAR, tmp : AVAR) returns ()
237 {
238 var ret : ADDR;
239 call pre_dealloc(a); // pre dealloc(a)
240 call ret := copy(b);
241 e := e[tmp := ret]; // tmp := ret;
242 dealloc := dealloc[tmp := true]; //tmp dealloc := true
243 //assert tmp 6= b;
244 dealloc := dealloc[tmp := true]; //tmp dealloc := true
245 call ret := callee_func(tmp, true); // ret:=func(b, true);
246 e := e[a := ret]; // a:=ret;
247 //assert tmp 6= a;
248 dealloc := dealloc[tmp := false]; //tmp dealloc := false
249 dealloc := dealloc[a := true]; //a dealloc := true
250 }

Appendix B

Sequential Benchmarks

B.1 Benchmark Whiley Program

Listing B.1: Reverse Whiley program

1 import whiley.lang.*
2 // Reverse an integer array
3 function reverse(int[] arr) -> int[]:
4 int i = |arr|
5 int[] r = [0; |arr|]
6 while i > 0 where i <= |arr| && |r| == |arr|:
7 int item = arr[|arr|-i]
8 i = i - 1
9 r[i] = item

10 return r
11

12 //public export method test() −> void:
13 method main(System.Console sys):
14 int|null n = Int.parse(sys.args[0])
15 if n != null:
16 int max = n
17 int size = 10000000
18 int repeats = 0
19 while repeats < max:
20 //Reverse an array ’arr’ ([max ... 0])
21 int index = 0
22 int[] arr = [0;size]
23 //Fill in the array in the reverse order (10000000..0)
24 while index < size:
25 arr[index] = size - index
26 index = index + 1
27 //Sort the array
28 arr = reverse(arr)
29 /∗∗Print the last element of sorted array ∗/
30 sys.out.println(arr[size-1])
31 /∗∗ Print out the successful message ∗/
32 repeats = repeats + 1
33 sys.out.print_s("Number of repeats: ")
34 sys.out.println(repeats)
35 sys.out.println_s("Pass Reverse test case ")

287

Listing B.2: TicTacToe Whiley program

1 import whiley.lang.*
2

3 type nat is (int x) where x >= 0
4

5 constant BLANK is 0
6 constant CIRCLE is 1
7 constant CROSS is 2
8

9 // A square is either blank, or a circle or cross.
10 type Square is (int x)
11 where x == BLANK || x == CIRCLE || x == CROSS
12

13 // A board consists of 9 squares, and a move counter
14 type Board is (null |{
15 nat move,
16 Square[] pieces // 3 x 3
17 } this)
18 where this != null &&
19 |this.pieces| == 9 && this.move <= 9
20 where this != null &&
21 countOf(this.pieces,BLANK) == (9 - this.move)
22 where this != null &&
23 (countOf(this.pieces,CIRCLE) == countOf(this.pieces,CROSS) ||
24 countOf(this.pieces,CIRCLE) == countOf(this.pieces,CROSS)+1)
25

26 // An empty board is one where all pieces are blank
27 function EmptyBoard() -> (Board r)
28 ensures r != null && r.move == 0:// Empty board has no moves yet
29 return {
30 move: 0,
31 pieces: [BLANK,BLANK,BLANK,
32 BLANK,BLANK,BLANK,
33 BLANK,BLANK,BLANK]
34 }
35

36 // Helper Method
37 function countOf(Square[] pieces, Square s) -> (int r):
38 int count = 0
39 int i = 0
40 while i < |pieces|:
41 if pieces[i] == s:
42 count = count + 1
43 i = i + 1
44 return count
45

46 // Test Game
47 constant GAME is [0,1,2,3,4,5,6,7,8]
48

49 method main(System.Console sys):
50 int|null n = Int.parse(sys.args[0])
51 if n != null:
52 int max = n
53 int repeat = 0
54 while repeat < max:
55 Board b1 = EmptyBoard()
56 Board b2 = EmptyBoard()
57 int i = 0
58 while i < |GAME|:
59 int p = GAME[i]
60 if p <0 || p > 9:
61 break
62 else:
63 if b1 != null:

288

64 b1.pieces[p]=CIRCLE
65 b1.move = b1.move + 1
66 b2 = b1
67 b1 = null
68 else:
69 if b2 != null:
70 b2.pieces[p]=CROSS
71 b2.move = b2.move + 1
72 // Move board to next player
73 b1 = b2
74 b2 = null
75 i = i + 1
76 repeat = repeat + 1
77 sys.out.println_s("Pass newTicTacToe test case")

289

Listing B.3: Bubble sort Whiley program

1 import whiley.lang.*
2

3 function bubbleSort(int[] items) -> int[]:
4 int length = |items|
5 // The index of last swapped item.
6 int last_swapped = 0
7 // Until no items is swapped
8 while length > 0:
9 last_swapped = 0

10 int index = 1
11 while index < length:
12 //Check previous item > current item
13 if items[index-1] > items[index]:
14 // Swap them
15 int tmp = items[index-1]
16 items[index-1] = items[index]
17 items[index] = tmp
18 last_swapped = index
19 //End if
20 index = index + 1
21 // Skip the remaing items as they are orderred.
22 // This saves lots of time.
23 length = last_swapped
24 return items
25

26 method main(System.Console sys):
27 int|null n = Int.parse(sys.args[0])
28 if n != null:
29 int max = n
30 int size = 10000
31 int repeats = 0
32 while repeats < max:
33 //Create a reverse array ’arr’ ([10000 ... 1])
34 int index = 0
35 int[] arr = [0;size]
36 //sys.out.println(arr)
37 //Fill in the array in the reverse order (10000..1)
38 while index < size:
39 arr[index] = size - index
40 index = index + 1
41 //Sort the array
42 arr = bubbleSort(arr)
43 // Print the last element of sorted array
44 //sys.out.println(arr[0])
45 sys.out.println(arr[size-1])
46 repeats = repeats + 1
47 sys.out.print_s("Number of repeats ")
48 sys.out.println(repeats)
49 sys.out.println_s("Pass BubbleSort test case")

290

Listing B.4: Merge sort Whiley program

1 import whiley.lang.*
2 // Perform a merge sort on integer array
3 function sortV1(int[] items, int start, int end)->int[]:
4 if (start+1) < end:
5 // First, split unsorted items into left and right sub−arrays
6 int pivot = (start+end) / 2
7 int[] lhs = Array.slice(items,start,pivot)
8 lhs = sortV1(lhs, 0, pivot)// Recursively split left sub−array
9 int[] rhs = Array.slice(items,pivot,end)

10 rhs = sortV1(rhs, 0, (end-pivot))// Split right sub−array
11 // Second, merge left and right sub−arrays into output array.
12 int l = 0 // Starting index of left sub−array
13 int r = 0 // Starting index of right sub−array
14 int i = 0 // Starting index of output array
15 // Update output array with smaller item of left and right sub−arrays
16 while i < (end-start) && l < (pivot-start)
17 && r < (end-pivot):
18 if lhs[l] <= rhs[r]:
19 items[i] = lhs[l]
20 l=l+1
21 else:
22 items[i] = rhs[r]
23 r=r+1
24 i=i+1
25 while l < (pivot-start):// Tidy up left sub−array
26 items[i] = lhs[l]
27 i=i+1
28 l=l+1
29 while r < (end-pivot):// Tidy up right sub−array
30 items[i] = rhs[r]
31 i=i+1
32 r=r+1
33 // Done
34 return items
35

36 method main(System.Console sys):
37 int|null n = Int.parse(sys.args[0])
38 if n != null:
39 int max = n
40 int repeats = 0
41 while repeats < max:
42 // Create a reverse array
43 int size = 10000
44 int index = 0
45 int[] arr = [0;size]
46 //Fill in the array in the reverse order (1000..1)
47 while index < size:
48 arr[index] = size - index
49 index = index + 1
50 //Use merge sort to order reversed array ’arr’ ([1000 ... 1])
51 arr = sortV1(arr, 0, max)
52 // Should be in the ascending order [1..1000]
53 //sys.out.println(arr[0])
54 sys.out.println(arr[max-1])
55 repeats = repeats + 1
56 sys.out.print_s("Number of repeats ")
57 sys.out.println(repeats)
58 sys.out.println_s("Pass Mergesort test case")

291

Listing B.5: Matrix multiplication Whiley program

1 import whiley.lang.*
2 import whiley.io.File
3

4 // Initialize a Matrix
5 function init(int[] data, int width, int height) -> (int[] r):
6 // Fill in Matrix
7 int i = 0
8 while i < height:
9 int j = 0

10 while j < width:
11 data[i*width+j] = i
12 j = j + 1
13 i = i + 1
14 return data
15

16 // Initialize a Matrix and assign each element with its row
17 function mat_mult(int[] a, int[] b, int[] data, int width, int height)

-> (int[] c):
18 int i = 0
19 while i < height:
20 int j = 0
21 while j < width:
22 int k = 0
23 int sub_total = 0
24 while k < width:
25 // c[i][j] = c[i][j] + a[i][k] ∗ b[k][j]
26 sub_total = sub_total + a[i*width+k]*b[k*width+j]
27 k = k + 1
28 data[i*width+j] = sub_total
29 j = j + 1
30 i = i + 1
31 return data
32

33 method main(System.Console sys):
34 int|null n = Int.parse(sys.args[0])
35 if n != null:
36 int size = n
37 int width = size
38 int height = size
39 sys.out.print_s("size = ")
40 sys.out.println(size)
41 // Initialize matrix A
42 int[] A = [0;width*height]
43 A = init(A, width, height)
44 // Initialize matrix B
45 int[] B = [0;width*height]
46 B = init(B, width, height)
47 int[] C = [0;width*height]
48 C = mat_mult(A, B, C, width, height)
49 //sys.out.print s(”Matrix C[size−1][size−1] = ”)
50 sys.out.println(C[(size-1)*size+size-1])
51 sys.out.println_s("Pass MatrixMult test case")

292

Listing B.6: Cash till Whiley program

1 import whiley.lang.*
2 /∗
3 ∗ The source code is from cashtill of Whiley benchmark suite
4 ∗ https://github.com/Whiley/WyBench/blob/master/src/015 cashtill/Main.

whiley
5 ∗/
6 type nat is (int n) where n >= 0
7

8 /∗∗
9 ∗ Define coins/notes and their values (in cents)

10 ∗/
11 constant ONE_CENT is 0
12 constant FIVE_CENTS is 1
13 constant TEN_CENTS is 2
14 constant TWENTY_CENTS is 3
15 constant FIFTY_CENTS is 4
16 constant ONE_DOLLAR is 5 // 1 dollar
17 constant FIVE_DOLLARS is 6 // 5 dollars
18 constant TEN_DOLLARS is 7 // 10 dollars
19

20 constant Value is [
21 1,
22 5,
23 10,
24 20,
25 50,
26 100,
27 500,
28 1000
29]
30

31 /∗∗
32 ∗ Define the notion of cash as an array of coins / notes
33 ∗/
34 type Cash is (nat[] ns) where |ns| == |Value|
35

36 function Cash() -> Cash:
37 return [0,0,0,0,0,0,0,0]
38

39 function Cash(nat[] coins) -> Cash
40 // No coin in coins larger than permitted values
41 requires all { i in 0..|coins| | coins[i] < |Value| }:
42 Cash cash = [0,0,0,0,0,0,0,0]
43 int i = 0
44 while i < |coins|
45 where |cash| == |Value|
46 && all {k in 0..|cash| | cash[k] >= 0}:
47 nat coin = coins[i]
48 cash[coin] = cash[coin] + 1
49 i = i + 1
50 return cash
51

52 /∗∗
53 ∗ Given some cash, compute its total
54 ∗/
55 function total(Cash c) -> int:
56 int r = 0
57 int i = 0
58 while i < |c|:
59 r = r + (Value[i] * c[i])
60 i = i + 1
61 return r

293

62

63 /∗∗
64 ∗ Checks that a second load of cash is stored entirely within the first.
65 ∗ In other words, if we remove the second from the first then we do not
66 ∗ get any negative amounts.
67 ∗/
68 function contained(Cash first, Cash second) -> bool:
69 int i = 0
70 while i < |first|:
71 if first[i] < second[i]:
72 return false
73 i = i + 1
74 return true
75

76 /∗∗
77 ∗ Adds two bits of cash together
78 ∗
79 ∗ ENSURES: the total returned equals total of first plus
80 ∗ the total of the second.
81 ∗/
82 function add(Cash first, Cash second) -> (Cash r)
83 // Result total must be sum of argument totals
84 ensures total(r) == total(first) + total(second):
85 //
86 int i = 0
87 while i < |first|:
88 first[i] = first[i] + second[i]
89 i = i + 1
90 //
91 return first
92

93 /∗∗
94 ∗ Subtracts from first bit of cash a second bit of cash.
95 ∗
96 ∗ REQUIRES: second cash is contained in first.
97 ∗
98 ∗ ENSURES: the total returned equals total of first less
99 ∗ the total of the second.

100 ∗/
101 function subtract(Cash first, Cash second) -> (Cash r)
102 // First argument must contain second; for example, if we have 1
103 // dollar coin and a 1 cent coin, we cannot subtract a 5 dollar note!
104 requires contained(first,second)
105 // Total returned must total of first argument less second
106 ensures total(r) == total(first) - total(second):
107 //
108 int i = 0
109 while i < |first|:
110 first[i] = first[i] - second[i]
111 i = i + 1
112 //
113 return first
114

115 /∗∗
116 ∗ Determine the change to be returned to a customer from a given cash
117 ∗ till, assuming a certain cost for the item and the cash that was
118 ∗ actually given. Observe that the specification for this method does
119 ∗ not dictate how the change is to be computed −−− only that it must
120 ∗ have certain properties. Finally, if exact change cannot be given
121 ∗ from the till then null is returned.
122 ∗
123 ∗ ENSURES: if change returned, then it must be contained in till, and
124 ∗ the amount returned must equal the amount requested.
125 ∗/
126 function calculateChange(Cash till, nat change) -> (null|Cash r)

294

127 // If change is given, then it must have been in the till, and must equal that
requested.

128 ensures r is Cash ==> (contained(till,r) && total(r) == change):
129 if change == 0:
130 return Cash()
131 else:
132 // exhaustive search through all possible coins
133 nat i = 0
134 while i < |till|:
135 if till[i] > 0 && Value[i] <= change:
136 Cash tmp = till
137 // temporarily take coin out of till
138 tmp[i] = tmp[i] - 1
139 null|Cash chg = calculateChange(tmp,
140 change-Value[i])
141 if chg != null:
142 // we have enough change
143 chg[i] = chg[i] + 1
144 return chg
145 i = i + 1
146 return null// cannot give exact change :(
147 /∗∗
148 ∗ Print out cash in a friendly format
149 ∗/
150 function toString(Cash c) -> ASCII.string:
151 ASCII.string r = ""
152 bool firstTime = true
153 int i = 0
154 while i < |c|:
155 int amt = c[i]
156 if amt != 0:
157 if !firstTime:
158 r = Array.append(r,", ")
159 firstTime = false
160 r = Array.append(r,Int.toString(amt))
161 r = Array.append(r," x ")
162 r = Array.append(r,Descriptions[i])
163 i = i + 1
164 if r == "":
165 r = "(nothing)"
166 return r
167

168 constant Descriptions is [
169 " 1c",
170 " 5c",
171 "10c",
172 "20c",
173 "50c",
174 " $1",
175 " $5",
176 "$10"
177]
178 /∗∗
179 ∗ Run through the sequence of a customer attempting to purchase an item
180 ∗ of a specified cost using a given amount of cash and a current till.
181 ∗/
182 public method buy(System.Console console, Cash till, Cash given,

int cost) -> Cash:
183 if total(given) >= cost:
184 Cash|null change = calculateChange(till,total(given) - cost

)
185 if change != null:
186 till = add(till,given)
187 till = subtract(till,change)
188 return till

295

189

190 /∗∗
191 ∗ Test Harness
192 ∗/
193 public method main(System.Console console):
194 int|null n = Int.parse(console.args[0])
195 if n != null:
196 int max = n
197 int repeat = 0
198 while repeat < max:
199 // A cashtill is initialized with an empty array
200 Cash till = Cash()
201 // Change till every 2 iterations to avoid the same results
202 if repeat%2==1:
203 // Initialize till with an empty array
204 till = [5,3,3,1,1,3,0,0]
205 // console.out.print s(”Till: ”)
206 // console.out.println s(toString(till))
207 // now, run through some sequences...
208 till = buy(console,till,Cash([ONE_DOLLAR]),85)
209 till = buy(console,till,Cash([ONE_DOLLAR]),105)
210 till = buy(console,till,Cash([TEN_DOLLARS]),5)
211 till = buy(console,till,Cash([FIVE_DOLLARS]),305)
212 // console.out.print s(”Till: ”)
213 // console.out.println s(toString(till))
214 repeat = repeat + 1

296

Listing B.7: Coin game Whiley program

1 import whiley.lang.*
2 import whiley.io.File
3 import whiley.lang.Math
4

5 // Use dynamic programming to find moves for Alice
6 // The coins are an array, starting from 0 upto 5
7 function findMoves(int[] moves, int n, int[] coins) -> int[]:
8 int s = 0
9 while s < n: // 0<= s < n

10 int i = 0
11 while i < n -s: // 0 <= i < n −s
12 int j = i + s // j = i + s
13 int y = moves[(i + 1)*n+j - 1]
14 int x = moves[(i + 2)*n+j]
15 int z = moves[i*n+j - 2]
16 moves[i*n+j] = Math.max(coins[i] + Math.min(x, y),
17 coins[j] + Math.min(y, z))
18 i = i + 1
19 // End of i,j loop
20 s = s + 1
21 // End of s loop
22 return moves
23

24 method main(System.Console sys):
25 int|null max = Int.parse(sys.args[0])
26 if max != null:
27 int n = max
28 // Create an array of coins [0,1,2,3,4,0,1,2,3,4...]
29 int[] coins = [0;n]
30 int i = 0
31 while i < n:
32 coins[i] = i % 5 // Coin value [0 ˜ 4]
33 i = i + 1
34 // Increase the move array size to (n+2) ∗ (n+2)
35 // to avoid if/else check inside the loop
36 int[] moves = [0;(n+2)*(n+2)]
37 moves = findMoves(moves, n, coins) // Pass ’moves’ and ’coints’

array
38 //play(sys, moves, n)
39 int sum_alice = moves[n-1]
40 sys.out.print_s("Alice gets ")
41 sys.out.println(sum_alice)
42 sys.out.println_s("Pass CoinGame test case")

297

Listing B.8: LZ77 compression Whiley program

1 import * from whiley.io.File
2 import * from whiley.lang.System
3 import whiley.lang.*
4

5 // Positive integer type
6 type nat is (int x) where x >= 0
7 // Match type
8 type Match is ({nat offset, nat len} this)
9

10 // Find the matched entry with affine loop bound
11 function match(byte[] data, nat offset, nat end) -> (int length)
12 ensures 0 <= length && length <= 255:
13 nat pos = end
14 nat len = 0
15 while offset < pos && pos < |data| && data[offset] == data[pos]

&& len < 255:
16 offset = offset + 1
17 pos = pos + 1
18 len = len + 1
19 return len
20

21 // pos is current position in input value
22 function findLongestMatch(byte[] data, nat pos) -> (Match m):
23 // Get ’data’ byte array
24 nat bestOffset = 0
25 nat bestLen = 0
26 int start = Math.max(pos - 255, 0)
27 //assert start >= 0
28 nat offset = start
29 while offset < pos:
30 int len = match(data, offset, pos)
31 if len > bestLen:
32 bestOffset = pos - offset
33 bestLen = len
34 offset = offset + 1
35 // Return a ’Match’ object
36 return {offset:bestOffset, len:bestLen}
37

38 // Append a byte to the byte array
39 function append(byte[] items, byte item) -> (byte[] nitems):
40 //
41 nitems = [0b; |items| + 1]
42 int i = 0
43 //
44 while i < |items|:
45 nitems[i] = items[i]
46 i = i + 1
47 //
48 nitems[i] = item
49 return nitems
50

51 // Resize the input array to the array of given array size
52 function resize(byte[] items, int size) -> (byte[] nitems)
53 requires |items| >= size
54 ensures |nitems| == size:
55 nitems = [0b; size]
56 int i = 0
57 while i < size:
58 nitems[i] = items[i]
59 i = i + 1
60 //
61 return nitems
62

298

63 // Compress ’input’ array into ’output’ array
64 function compress(byte[] data) -> (byte[] output):
65 nat pos = 0
66 // Initialize the output array of bytes
67 output = [0b;0]
68 // Iterate each byte in ’data’
69 while pos < |data|:
70 Match m = findLongestMatch(data, pos)
71 // Encode the match to ’offset−length’ pair
72 // The distance to the longest match
73 byte offset = Int.toUnsignedByte(m.offset)
74 // The length of the match
75 byte length = Int.toUnsignedByte(m.len)
76 if offset == 00000000b:
77 // No match is found. Put the first byte of look−ahead array
78 length = data[pos]
79 pos = pos + 1
80 else:
81 // Skip the matched bytes
82 pos = pos + m.len
83 // Write ’offset−length’ pair to the output array
84 output = append(output, offset)
85 output = append(output, length)
86 return output
87

88 // Decompress ’input’ array to a string
89 function decompress(byte[] data) -> (byte[] output):
90 output = [0b;0]
91 nat pos = 0
92 //
93 while (pos+1) < |data|:
94 byte header = data[pos]
95 byte item = data[pos+1]
96 pos = pos + 2
97 if header == 00000000b:
98 output = append(output, item)
99 else:

100 int offset = Byte.toUnsignedInt(header)
101 int len = Byte.toUnsignedInt(item)
102 int start = |output| - offset
103 int i = start
104 while i < (start+len):
105 // Get byte from output array
106 item = output[i]
107 //sys.out.println(item)
108 output = append(output, item)
109 i = i + 1
110 // all done!
111 return output
112

113 method main(System.Console sys):
114 // Read a text file of repeated contents as a byte array
115 File.Reader file = File.Reader(sys.args[0])
116 byte[] data = file.readAll()
117 sys.out.println_s("Data: ")
118 sys.out.print(|data|)
119 sys.out.println_s(" bytes")
120 // Compress the data with LZ algorithm
121 byte[] compress_data = compress(data)
122 sys.out.println_s("COMPRESSED Data: ")
123 sys.out.print(|compress_data|)
124 sys.out.println_s(" bytes")

299

Listing B.9: LZ77 decompression Whiley program using append array

1 /∗∗
2 ∗ Simplified Lempel−Ziv 77 decompression.
3 ∗ See: http://en.wikipedia.org/wiki/LZ77 and LZ78
4 ∗ https://github.com/Whiley/WyBench/blob/master/src/009 lz77/Main.

whiley
5 ∗/
6 import * from whiley.io.File
7 import * from whiley.lang.System
8 import whiley.lang.*
9

10 // Positive integer type
11 type nat is (int x) where x >= 0
12 // Append one byte to the array
13 function append(byte[] items, byte item) -> (byte[] nitems):
14 nitems = [0b; |items| + 1]
15 int i = 0
16 //
17 while i < |items|:
18 nitems[i] = items[i]
19 i = i + 1
20 //
21 nitems[i] = item
22 return nitems
23 // Decompress ’input’ array to a string
24 function decompress(byte[] data) -> (byte[] output):
25 output = [0b;0]
26 nat pos = 0
27 //
28 while (pos+1) < |data|:
29 byte header = data[pos]
30 byte item = data[pos+1]
31 pos = pos + 2
32 if header == 00000000b:
33 output = append(output, item)
34 else:
35 int offset = Byte.toUnsignedInt(header)
36 int len = Byte.toUnsignedInt(item)
37 int start = |output| - offset
38 int i = start
39 while i < (start+len):
40 // Get byte from output array
41 item = output[i]
42 //sys.out.println(item)
43 output = append(output, item)
44 i = i + 1
45 // all done!
46 return output
47

48 method main(System.Console sys):
49 // Read the compress data from a file
50 File.Reader file = File.Reader(sys.args[0])
51 byte[] input_data = file.readAll()
52 // Decompress the data to a string
53 byte[] decompress_data = decompress(input_data)
54 sys.out.println_s("DECOMPRESSED: ")
55 sys.out.print(|decompress_data|)
56 sys.out.println_s(" bytes")
57 file.close()

300

Listing B.10: LZ77 decompression Whiley Program using array list

1 /∗∗
2 ∗ Lempel−Ziv 77 decompression using array list
3 ∗/
4 import * from whiley.io.File
5 import * from whiley.lang.System
6 import whiley.lang.*
7

8 type nat is (int x) where x >= 0// Positive integer type
9

10 // Resize the input array to the array of given array size
11 function resize(byte[] items, int size) -> (byte[] nitems)
12 requires |items| >= size
13 ensures |nitems| == size:
14 nitems = [0b; size]
15 int i = 0
16 while i < size:
17 nitems[i] = items[i]
18 i = i + 1
19 return nitems
20

21 // If full, then double array size and store the data
22 function opt_append(byte[] items, nat items_length, byte item) ->

byte[]:
23 if items_length < |items|:
24 // Update the array without an array
25 items[items_length] = item
26 else:
27 // Create a new array
28 byte[] nitems = [0b; |items|*2+1]
29 int i = 0
30 while i < |items|:
31 nitems[i] = items[i]
32 i = i + 1
33 nitems[i] = item
34 items = nitems
35 return items
36

37 // Decompress ’data’ array to a byte array by using array list
38 function decompress(byte[] data) -> (byte[] output):
39 byte[] items = [0b;0]
40 nat items_length = 0
41 nat pos = 0
42 while (pos+1) < |data|:
43 byte header = data[pos]
44 byte item = data[pos+1]
45 pos = pos + 2
46 if header == 00000000b:
47 items = opt_append(items, items_length, item)
48 items_length = items_length + 1
49 else:
50 int offset = Byte.toUnsignedInt(header)
51 int len = Byte.toUnsignedInt(item)
52 int start = items_length - offset
53 int i = start
54 while i < (start+len):
55 item = items[i]
56 items = opt_append(items, items_length, item)
57 items_length = items_length + 1
58 i = i + 1
59 //Resize list array into the array of accurate length
60 output = resize(items, items_length)
61 return output
62

301

63 method main(System.Console sys):
64 // Read the compress data from a file
65 File.Reader file = File.Reader(sys.args[0])
66 byte[] input_data = file.readAll()
67 // Decompress the data to a string
68 byte[] decompress_data = decompress(input_data)
69 sys.out.println_s("DECOMPRESSED: ")
70 sys.out.print(|decompress_data|)
71 sys.out.println_s(" bytes")
72 file.close()

302

Listing B.11: Sobel edge Whiley program

1 import * from whiley.io.File
2 import * from whiley.lang.System
3 import whiley.lang.*
4 import whiley.lang.Math
5

6 constant SPACE is 00100000b // ASCII code of space (’ ’)
7 constant BLACK is 01100010b // ASCII code of ’b’
8 constant TH is 640000 // Control the number of edges (800∗800)
9

10 function wrap(int pos, int size) -> int:
11 if pos>=size:
12 return (size -1) - (pos - size)
13 else:
14 if pos <0:
15 return -1 - pos
16 else:
17 return pos
18

19 // Perform convolution convolution on pixel at ’xCenter’ and ’yCenter’
20 function convolution(byte[] pixels, int width, int height, int

xCenter, int yCenter, int[] kernel) ->int:
21 int sum = 0
22 int kernelSize = 3
23 int kernelHalf = 1
24 int j = 0
25 while j < kernelSize:
26 int y=Math.abs((yCenter+j-kernelHalf)%height)
27 int i = 0
28 while i < kernelSize:
29 int x=Math.abs((xCenter + i - kernelHalf)%width)
30 int pixel = Byte.toInt(pixels[y*width+x])// pixels[x, y]
31 // Get kernel[i, j]
32 int kernelVal = kernel[j*kernelSize+i]
33 //sum += pixels[x, y]∗kernel[i, j]
34 sum = sum + pixel * kernelVal
35 i = i + 1
36 j = j + 1
37 return sum// ’sum’ : convoluted value at pixels[xCenter, yCenter]
38

39 // Perform Sobel edge detection
40 function sobelEdgeDetection(byte[] pixels, int width, int height) ->

byte[]:
41 int size = width * height
42 byte[] newPixels = [SPACE;size] // Output image
43 // vertical and horizontal sobel filter (3x3 kernel)
44 int[] v_sobel = [-1,0,1,-2,0,2,-1,0,1]
45 int[] h_sobel = [1,2,1,0,0,0,-1,-2,-1]
46 int x = 0
47 while x<width:
48 int y = 0
49 while y<height:
50 int pos = y*width + x
51 // Get vertical gradient
52 int v_g = convolution(pixels, width, height, x, y, v_sobel)
53 // Get horizontal gradient
54 int h_g = convolution(pixels, width, height, x, y, h_sobel)
55 int t_g = v_g*v_g + h_g*h_g// Get total gradient
56 if t_g > TH:
57 newPixels[pos] = BLACK// Color other pixels as black
58 y = y + 1
59 x = x + 1
60 return newPixels

303

61

62 // Print a pbm image
63 method print_pbm(System.Console sys, int width, int height,
64 byte[] pixels):
65 // File type
66 sys.out.println_s("P1")
67 // Width + height
68 sys.out.print(width)
69 sys.out.print_s(" ")
70 sys.out.println(height)
71 // An array of bytes with an row of pixels in width
72 int j = 0
73 while j<height:
74 int i = 0
75 while i<width:
76 int pos = j*width + i
77 if pixels[pos] == SPACE:
78 sys.out.print(0)
79 else:
80 sys.out.print(1)
81 // Each pixel is separated by a space
82 //sys.out.print s(” ”)
83 i = i + 1
84 // Add a newline
85 sys.out.println_s("")
86 j = j + 1
87

88 // Main function
89 method main(System.Console sys):
90 // args[0]: height
91 int|null n = Int.parse(sys.args[0])
92 if n != null:
93 int width = 2000
94 int height = n
95 int size = width*height
96 // Create input pixels
97 byte[] pixels=[SPACE;size]
98 // Generate each pixels
99 int i=0

100 while i < size:
101 pixels[i]=Int.toUnsignedByte(i%256)
102 i = i + 1
103 sys.out.print_s("pixels[1000]=")
104 sys.out.println(pixels[1000])
105 byte[] newPixels = sobelEdgeDetection(pixels, width, height)
106 sys.out.println_s("Blurred Image sizes: ")
107 sys.out.print(|newPixels|)
108 sys.out.println_s(" bytes")
109 sys.out.print_s("newPixels[1000]=")
110 sys.out.print(newPixels[1000])
111 //print pbm(sys, width, height, newPixels)

304

Listing B.12: LZ77 compression C program using resize array

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <stdint.h>
4 #include <string.h>
5 #define max(a, b) a ^ ((a ^ b) & -(a < b))
6 #define min(a, b) b ^ ((a ^ b) & -(a < b))
7 // Structure
8 typedef uint64_t nat;
9 typedef struct{

10 int64 t len;
11 int64 t offset;
12 } Match;
13 typedef uint8 t BYTE;
14

15 // Read a file from the beginning to end
16 BYTE* readFile(FILE *file, size t* _size){
17 // Set the file position to the beginning of the file
18 rewind(file);
19

20 // Calculate the output size
21 size t size = 0;
22 while(fgetc(file) != EOF){
23 //printf(”%c”, c);
24 size = size + 1;
25 }
26 // Set the file position to the beginning of the file
27 rewind(file);
28

29 // Allocated byte array. Note the last char (EOF)
30 BYTE* arr = (BYTE*)malloc(size*sizeof(BYTE));
31 if(arr == NULL){
32 fputs("fail to allocate the array at ’readAll’ function in Util

.c\n", stderr);
33 exit(-2);
34 }
35

36 // Read the file to ’arr’ array.
37 //’fread’ return the number of items read, i.e. size ∗ sizeof(char)
38 size t result = fread(arr, sizeof(char), size, file);
39 if(result != size*sizeof(char)){
40 fputs("fail to read a file at ’readAll’ function in Util.c\n",

stderr);
41 exit(-2);
42 }
43

44 // Update the size of ’arr’ array
45 *_size = size;
46 return arr;
47 }
48

49 //
50 nat match(BYTE* data, size t data_size, nat offset, nat end){
51 nat pos = end;
52 nat len = 0;
53 while(offset < pos && pos < data_size
54 && data[offset] == data[pos] && len < 255){
55 offset = offset + 1;
56 pos = pos + 1;
57 len = len + 1;
58 }
59 return len;
60 }
61

305

62 Match findLongestMatch(BYTE* data, size t data_size, nat pos){
63 nat bestOffset = 0;
64 nat bestLen = 0;
65 int start = max(pos - 255, 0);
66 //assert start >= 0
67 nat offset = start;
68 while (offset < pos){
69 int len = match(data, data_size, offset, pos);
70 if (len > bestLen){
71 bestOffset = pos - offset;
72 bestLen = len;
73 }
74 offset = offset + 1;
75 }
76 Match ret;
77 ret.len = bestLen;
78 ret.offset = bestOffset;
79 // Return a ’Match’ object
80 return ret;
81 }
82

83 BYTE* resize(BYTE* items, size t items_size,
84 int size, size t* nitems_size) {
85 BYTE* nitems = (BYTE*)malloc(sizeof(BYTE)*size);
86 int i =0;
87 while(i<size){
88 nitems[i] = items[i];
89 i = i + 1;
90 }
91 *nitems_size = size;
92 return nitems;
93 }
94

95 BYTE* compress(BYTE* data, size t data_size, size t* _size){
96 nat pos = 0;
97 Match m;
98 size t tmp_size=0;
99 BYTE* tmp =NULL;

100 size t output_size=2*data_size;
101 BYTE* output = malloc(sizeof(BYTE)*output_size);
102 int size = 0;
103 while(pos < data_size){
104 m = findLongestMatch(data, data_size, pos);
105 BYTE offset = (BYTE) m.offset;
106 BYTE length = (BYTE) m.len;
107 if(offset == 0){
108 length = data[pos];
109 pos = pos + 1;
110 }else{
111 pos = pos + m.len;
112 }
113 output[size] = offset;
114 size++;
115 output[size] = length;
116 size++;
117 }
118 // Resize output array
119 tmp = resize(output, output_size, size, &tmp_size);
120 if(output!=NULL){
121 free(output);
122 }
123 output = tmp;
124 output_size = tmp_size;
125 *_size = output_size;
126 return output;
127 }

306

128 // Compress data
129 int main(int argc, char** args){
130 // Check if file path is passed as argument
131 if(argc != 2){
132 printf("Input file path is required\n");
133 exit(-1);
134 }
135 // Open a file
136 FILE *fp = NULL;
137 int i;
138 fp = fopen(args[1], "r");
139 size t data_size = 0;
140 BYTE* data = readFile(fp, &data_size);
141 fclose(fp);
142 printf("Data: %zu bytes\n", data_size);
143

144 // Compress data array
145 size t compress_data_size;
146 BYTE* compress_data = compress(data, data_size, &

compress_data_size);
147

148 printf("Compress Data: %zu bytes\n", compress_data_size);
149 printf("compress_data[1000]=%d\n", compress_data[1000]);
150 free(data);
151 free(compress_data);
152 return 0;
153 }

307

Listing B.13: LZ77 decompression C Program using array list

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <stdint.h>
4 #include <string.h>
5 // Structure
6 typedef uint64_t nat;
7 typedef uint8 t BYTE;
8 // Read a file from the beginning to end
9 BYTE* readFile(FILE *file, size t* _size){

10 // Set the file position to the beginning of the file
11 rewind(file);
12

13 // Calculate the output size
14 size t size = 0;
15 while(fgetc(file) != EOF){
16 size = size + 1;
17 }
18 // Set the file position to the beginning of the file
19 rewind(file);
20

21 // Allocated byte array. Note the last char (EOF)
22 BYTE* arr = (BYTE*)malloc(size*sizeof(BYTE));
23 if(arr == NULL){
24 fputs("fail to allocate the array at ’readAll’ function in Util

.c\n", stderr);
25 exit(-2);
26 }
27

28 // Read the file to ’arr’ array.
29 size t result = fread(arr, sizeof(char), size, file);
30 if(result != size*sizeof(char)){
31 fputs("fail to read a file at ’readAll’ function in Util.c\n",

stderr);
32 exit(-2);
33 }
34

35 *_size = size;// Update the size of ’arr’ array
36 return arr;
37 }
38 // If full, then double array size and store the data
39 BYTE* opt_append(BYTE* items, size t items_size,
40 nat items_length, BYTE item, size t* _size) {
41 BYTE* nitems = NULL;
42 size t nitems_size=0;
43 if(items_length<items_size){
44 items[items_length] = item;// Update ’items’ array
45 }else{
46 nitems_size = 2*items_size+1;
47 // Create an array of 2∗ items array size + 1
48 nitems = (BYTE*)malloc(sizeof(BYTE)*nitems_size);
49 int i =0;
50 while(i<items_size){
51 nitems[i] = items[i];
52 i = i + 1;
53 }
54 nitems[i] = item;
55 items = nitems;
56 items_size = nitems_size;
57 }
58 *_size = items_size;
59 return items;
60 }
61

308

62 BYTE* resize(BYTE* items, size t items_size,
63 int size, size t* _size) {
64 BYTE* nitems = (BYTE*)malloc(sizeof(BYTE)*size);
65 int i =0;
66 while(i<size){
67 nitems[i] = items[i];
68 i = i + 1;
69 }
70 *_size = size;
71 return nitems;
72 }
73

74 BYTE* decompress(BYTE* data, size t data_size, size t* _size){
75 BYTE* items = NULL;
76 size t items_size=0;
77 nat pos = 0;
78 nat items_length = 0;
79 BYTE* tmp = NULL;
80 size t tmp_size = 0;
81 while ((pos+1) < data_size){
82 BYTE header = data[pos];
83 BYTE item = data[pos+1];
84 pos = pos + 2;
85 if (header == 0){
86 tmp = opt_append(items, items_size, items_length,
87 item, &tmp_size);
88 // Free output array because it is not over−written by tmp
89 if(items != NULL && tmp != items){
90 free(items);
91 items = NULL;
92 }
93 items = tmp;
94 items_size = tmp_size;
95 items_length = items_length + 1;
96 }else{
97 int offset = (int)header;
98 int len = (int)item;
99 int start = items_length - offset;

100 int i = start;
101 while (i < (start+len)){
102 // Get byte from output array
103 item = items[i];
104 // Use array list to append item to array ’items’
105 tmp = opt_append(items, items_size,
106 items_length, item, &tmp_size);
107 if(tmp != items && items != NULL){
108 free(items);
109 items = NULL;
110 }
111 items = tmp;
112 items_size = tmp_size;
113 items_length = items_length + 1;
114 i = i + 1;
115 }
116 }
117 }
118 //Resize the array to accurate length
119 size t output_size = 0;
120 BYTE* output = resize(items, items_size,
121 items_length, &output_size);
122 *_size = output_size;
123 free(items);
124 //
125 return output;
126 }
127

309

128 // Decompress the LZ77−compressed file
129 int main(int argc, char** args){
130 // Check if file path is passed as argument
131 if(argc != 2){
132 printf("Input file path is required\n");
133 exit(-1);
134 }
135 // Open a file
136 FILE *fp = NULL;
137 int i = 0;
138

139 fp = fopen(args[1], "r");
140 if(!fp){
141 printf("File does not exit\n");
142 exit(-1);
143 }
144 size t data_size = 0;
145 BYTE* data = readFile(fp, &data_size);
146 fclose(fp);
147 printf("Data: %zu bytes\n", data_size);
148

149 // Decompress compressed data array
150 size t decompress_data_size;
151 BYTE* decompress_data = decompress(data, data_size,
152 &decompress_data_size);
153 printf("\nDecompress Data: %zu bytes\n", decompress_data_size);
154 free(data);
155 free(decompress_data);
156 return 0;
157 }

310

Listing B.14: Sobel edge C program using int32 t integers

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <stdint.h>
4 #include <string.h>
5 typedef uint8 t BYTE;
6 const int32 t TH = 640000;
7 const BYTE SPACE = 32;
8 const BYTE BLACK = 98;
9

10 int32 t wrap(int32 t pos, int32 t size){
11 if(pos>=size){
12 return (size -1) - (pos - size);
13 }else{
14 if (pos <0){
15 return -1 - pos;
16 }else{
17 return pos;
18 }
19 }
20 }
21

22 int32 t convolution(BYTE* pixels, size t pixels_size,
23 int32 t width, int32 t height,
24 int32 t xCenter, int32 t yCenter,
25 int32 t* kernel){
26 int32 t sum = 0;
27 int32 t kernelSize = 3;
28 int32 t kernelHalf = 1;
29 int32 t j = 0;
30 while(j < kernelSize){
31 int32 t y = abs((yCenter+j-kernelHalf)%height);
32 int32 t i = 0;
33 while(i < kernelSize){
34 int32 t x=abs((xCenter + i - kernelHalf)%width);
35 int32 t pixel = (unsigned int) pixels[y*width+x];
36 int32 t kernelVal = kernel[j*kernelSize+i];
37 sum = sum + pixel * kernelVal;
38 i = i + 1;
39 }
40 j = j + 1;
41 }
42 return sum;
43 }
44 //Sobel edge detection
45 BYTE* sobelEdgeDetection(BYTE* pixels, size t pixels_size, int32 t

width, int32 t height, size t newPixels_size){
46 // The output image
47 BYTE* newPixels = (BYTE*) malloc(sizeof(BYTE)*newPixels_size);
48 int32 t i =0;
49 while(i<newPixels_size){// A blank picture
50 newPixels[i] = SPACE;
51 i++;
52 }
53 // vertical and horizontal sobel filter (3x3 kernel)
54 int32 t v_sobel[9]={-1,0,1,-2,0,2,-1,0,1};
55 int32 t h_sobel[9]={1,2,1,0,0,0,-1,-2,-1};
56 int32 t x = 0;
57 while(x<width){
58 int32 t y = 0;
59 while(y<height){
60 int32 t pos = y*width + x;
61 int32 t v_g = convolution(pixels, pixels_size,
62 width, height, x, y, v_sobel);

311

63 int32 t h_g = convolution(pixels, pixels_size,
64 width, height, x, y, h_sobel);
65 int32 t t_g = (v_g*v_g) + (h_g*h_g);
66 if(t_g > TH){// Large thresholds generate few edges
67 newPixels[pos] = BLACK;// Color other pixels as black
68 }
69 y = y + 1;
70 }
71 x = x + 1;
72 }
73 return newPixels;
74 }
75

76 int main(int32 t argc, char** args){
77 if(argc != 2){
78 printf("Height is required");
79 exit(-1);
80 }
81 int32 t width = 2000;
82 int32 t height = atoi(args[1]);
83 printf("height=%d\n", height);
84 int32 t size = width * height;
85 printf("size=%d\n", size);
86 size t pixels_size = size;
87 BYTE* pixels = (BYTE*)malloc(sizeof(BYTE)*pixels_size);
88 int32 t i =0;
89 while(i<pixels_size){// Initialise each pixel with SPACE
90 pixels[i] = SPACE;
91 i++;
92 }
93 i =0;
94 while(i<pixels_size){// Randomly generate each pixel
95 pixels[i] = (BYTE)(i%256);
96 i++;
97 }
98 printf("pixels[1000]=%d\n",pixels[1000]);
99 size t newPixels_size = pixels_size;

100 BYTE* newPixels = sobelEdgeDetection(pixels, pixels_size,
width, height, newPixels_size);

101 printf("Blurred Image sizes: %zu bytes\n", newPixels_size);
102 printf("newPixels[1000]=%d\n", newPixels[1000]);
103

104 free(pixels);
105 free(newPixels);
106 return 0;
107 }

312

B.2 LZ77 benchmark results

Table B.1: Average execution time (seconds) of LZ77 compression on medium

sizes (OOM: out-of-memory, OOT: out-of-time ≥ 10 minutes)

Implementation Speed-ups

Problem Size N N+D C C+D N
C

N+D
C+D

Append array M1x (1.58 kb) 0.085 0.030 0.013 0.013 6.5 2.3

M5x (7.91 kb) 1.75 0.169 0.028 0.016 61.6 10.4

M7x (11.1 kb) 3.51 0.276 0.035 0.023 99.5 12.1

M10x (15.8 kb) OOM 0.576 0.049 0.022 — 26.0

M25x (39.5 kb) OOM 6.9 0.254 0.091 — 75.8

M50x (79.0 kb) OOM 27.5 0.893 0.215 — 128.1

M75x (118.6 kb) OOM 63.0 2.0 0.485 — 130.0

M100x (158.1 kb) OOM 118.3 3.4 0.914 — 129.4

M120x (189.7 kb) OOM 175.9 31.3 1.41 — 125.2

M125x (197.6 kb) OOM 198.2 OOM 1.53 — 129.1

M150x (237.2 kb) OOM 287.9 OOM 2.31 — 124.4

M175x (276.7 kb) OOM 409.3 OOM 3.26 — 125.5

M200x (316.2 kb) OOM 548.0 OOM 4.37 — 125.4

M225x (355.7 kb) OOM OOT OOM 5.67 — —

M250x (395.2 kb) OOM OOT OOM 7.09 — —

M275x (434.8 kb) OOM OOT OOM 8.69 — —

M300x (474.3 kb) OOM OOT OOM 10.4 — —

M325x (513.8 kb) OOM OOT OOM 12.3 — —

M350x (553.4 kb) OOM OOT OOM 14.3 — —

M375x (592.9 kb) OOM OOT OOM 16.6 — —

M400x (632.4 kb) OOM OOT OOM 18.9 — —

313

Table B.2: Average execution time (seconds) of LZ77 compression on medium

sizes (OOM: out-of-memory, OOT: out-of-time ≥ 10 minutes)

Implementation Speed-ups

Problem Size N N+D C C+D N
C

N+D
C+D

Preallocated Array M1x (1.58 kb) 0.108 0.024 0.037 0.012 2.89 1.93

M5x (7.91 kb) 1.71 0.18 0.016 0.013 108.4 13.9

M7x (11.1 kb) 3.44 0.27 0.014 0.013 — 20.3

M10x (15.8 kb) OOM 0.52 0.015 0.016 — 33.1

M25x (39.5 kb) OOM 6.78 0.028 0.021 — 318.6

M50x (79.0 kb) OOM 26.29 0.038 0.033 — 789.9

M75x (118.6 kb) OOM 60.34 0.050 0.048 — 1,268.6

M100x (158.1 kb) OOM 117.05 0.056 0.063 — 1,852.1

M120x (189.7 kb) OOM 175.51 0.046 0.047 — 3,719.8

M125x (197.6 kb) OOM 197.22 0.068 0.069 — 2,840.7

M150x (237.2 kb) OOM 280.52 0.065 0.061 — 4,613.4

M175x (276.7 kb) OOM 395.14 0.082 0.081 — 4,908.2

M200x (316.2 kb) OOM 540.80 0.094 0.100 — 5,407.3

M225x (355.7 kb) OOM OOT 0.110 0.098 — —

M250x (395.2 kb) OOM OOT 0.089 0.098 — —

M275x (434.8 kb) OOM OOT 0.111 0.101 — —

M300x (474.3 kb) OOM OOT 0.108 0.120 — —

M325x (513.8 kb) OOM OOT 0.138 0.118 — —

M350x (553.4 kb) OOM OOT 0.131 0.126 — —

M375x (592.9 kb) OOM OOT 0.148 0.149 — —

M400x (632.4 kb) OOM OOT 0.141 0.133 — —

314

Table B.3: Average execution time (seconds) of LZ77 compression on large

sizes

Implementation

Problem Size C C+D

M10000x (15.3 Mb) 2.643 2.660

M20000x (30.6 Mb) 5.538 5.319

M30000x (46.0 Mb) 8.281 7.973

M40000x (61.3 Mb) 11.043 10.616

M50000x (76.6 Mb) 13.876 13.257

M60000x (91.9 Mb) 16.705 15.944

M70000x (107.2 Mb) 19.292 18.578

M80000x (122.6 Mb) 22.065 21.241

M90000x (137.9 Mb) 24.805 23.860

M100000x (153.2 Mb) 27.637 26.518

315

Table B.4: Average execution time (seconds) of LZ77 decompression

Implementation (OOM: out-of-memory) Speed-ups

Problem Size N N+D C C+D N
C

N+D
C+D

Array M1x (1.6 kb) 0.016 0.015 0.019 0.013 0.83 1.1

M5x (7.7 kb) 0.067 0.017 0.027 0.015 2.48 1.1

M10x (15.3 kb) 0.152 0.037 0.060 0.020 2.52 1.9

M25x (38.3 kb) 0.835 0.148 0.254 0.084 — 1.8

M50x (76.6 kb) 3.237 0.592 0.927 0.222 — 2.7

M75x (114.9 kb) OOM 1.556 2.032 0.515 — 3.0

M100x (153.2 kb) OOM 3.05 3.61 0.963 — 3.2

M125x (191.5 kb) OOM 5.13 OOM 1.618 — 3.2

M150x (229.8 kb) OOM 7.76 OOM 2.450 — 3.2

M175x (268.1 kb) OOM 10.95 OOM 3.472 — 3.2

M200x (306.4 kb) OOM 14.65 OOM 4.669 — 3.1

Array List M1x (1.6 kb) 0.011 0.015 0.013 0.013 0.84 1.2

M5x (7.7 kb) 0.050 0.017 0.036 0.012 1.39 1.3

M10x (15.3 kb) 0.120 0.025 0.014 0.012 8.89 2.0

M25x (38.3 kb) 0.652 0.123 0.015 0.012 44.55 10.0

M50x (76.6 kb) 2.485 0.393 0.013 0.014 186.22 27.3

M75x (114.9 kb) OOM 0.847 0.019 0.012 — 70.0

M100x (153.2 kb) OOM 1.627 0.013 0.015 — 108.4

M125x (191.5 kb) OOM 2.596 0.020 0.019 — 139.8

M150x (229.8 kb) OOM 3.470 0.028 0.021 — 163.4

M175x (268.1 kb) OOM 4.764 0.022 0.017 — 276.3

M200x (306.4 kb) OOM 6.611 0.047 0.013 — 511.9

316

Table B.5: Average execution time (seconds) of LZ77 decompression using

array list on large sizes

Problem Size C C+D

M10000x (15.3 Mb) 0.283 0.139

M20000x (30.6 Mb) 0.534 0.274

M30000x (46.0 Mb) 0.782 0.405

M40000x (61.3 Mb) 1.031 0.534

M50000x (76.6 Mb) 1.339 0.687

M60000x (91.9 Mb) 1.568 0.797

M70000x (107.2 Mb) 1.918 0.916

M80000x (122.6 Mb) 2.167 1.044

M90000x (137.9 Mb) 2.334 1.213

M100000x (153.2 Mb) 2.594 1.332

Table B.6: Average execution time (seconds) of handwritten and generated

LZ77 compression programs

Problem Size Generated Written Slow-down(%)

M10000x (15.3 Mb) 2.660 2.626 1.32%

M20000x (30.6 Mb) 5.319 5.232 1.68%

M30000x (46.0 Mb) 7.973 7.834 1.77%

M40000x (61.3 Mb) 10.616 10.418 1.90%

M50000x (76.6 Mb) 13.257 12.999 1.98%

M60000x (91.9 Mb) 15.944 15.663 1.79%

M70000x (107.2 Mb) 18.578 18.271 1.68%

M80000x (122.6 Mb) 21.241 20.873 1.76%

M90000x (137.9 Mb) 23.860 23.468 1.67%

M100000x (153.2 Mb) 26.518 26.063 1.75%

317

Table B.7: Average execution time (seconds) of handwritten and generated

LZ77 decompression programs

Problem Size Generated Written Slow-down(%)

M10000x (15.3 Mb) 0.1392 0.1327 4.92%

M20000x (30.6 Mb) 0.2744 0.2658 3.22%

M30000x (46.0 Mb) 0.4047 0.3795 6.62%

M40000x (61.3 Mb) 0.5341 0.5088 4.98%

M50000x (76.6 Mb) 0.6873 0.6444 6.67%

M60000x (91.9 Mb) 0.7971 0.7572 5.27%

M70000x (107.2 Mb) 0.9157 0.8710 5.13%

M80000x (122.6 Mb) 1.0437 0.9955 4.84%

M90000x (137.9 Mb) 1.2127 1.1388 6.49%

M100000x (153.2 Mb) 1.3317 1.2507 6.48%

318

B.3 Sobel Edge Benchmark Results

Table B.8: Average execution time (seconds) of Sobel Edge on small sizes

Problem Size n
Implementation Speed-ups

N N+D C C+D N
C

N+D
C+D

image64x64 (4.2 kB) 1 0.026 0.020 0.011 0.015 2.38 1.36

image64x128(8.3 kB) 2 0.053 0.024 0.013 0.010 4.13 2.37

image64x192 (12.5 kB) 3 0.117 0.036 0.013 0.010 9.27 3.64

image64x256 (16.6 kB) 4 0.177 0.035 0.013 0.019 13.42 1.89

image64x320 (20.8 kB) 5 0.249 0.073 0.013 0.017 18.63 4.29

image64x384 (25.0 kB) 6 0.349 0.092 0.011 0.016 30.53 5.93

image64x448 (29.1 kB) 7 0.437 0.122 0.012 0.012 36.06 10.10

image64x512 (33.3 kB) 8 0.557 0.141 0.027 0.013 20.61 11.21

image64x576 (37.5 kB) 9 0.703 0.162 0.016 0.015 44.32 11.05

image64x640 (41.6 kB) 10 0.854 0.213 0.014 0.019 61.41 11.45

Table B.9: Average execution time (seconds) of Sobel Edge on large sizes

Problem Size n C C+D Problem Size n C C+D

image2000x2000 1 0.133 0.154 image2000x22000 11 1.408 1.391

image2000x4000 2 0.268 0.263 image2000x24000 12 1.525 1.530

image2000x6000 3 0.393 0.395 image2000x26000 13 1.659 1.649

image2000x8000 4 0.526 0.523 image2000x28000 14 1.787 1.785

image2000x10000 5 0.650 0.643 image2000x30000 15 1.910 1.910

image2000x12000 6 0.775 0.778 image2000x32000 16 2.059 2.037

image2000x14000 7 0.908 0.897 image2000x34000 17 2.168 2.147

image2000x16000 8 1.027 1.019 image2000x36000 18 2.284 2.274

image2000x18000 9 1.143 1.173 image2000x38000 19 2.434 2.405

image2000x20000 10 1.271 1.270 image2000x40000 20 2.588 2.536

319

Table B.10: Average execution time (seconds) of written Sobel edge at O3

optimisation

32-bit integer (int32 t) 64-bit integer (int64 t)

Problem Size n Generated Written Slow-down(%) n Generated Written Slow-down(%)

image2000x2000 1 0.076 0.054 41% 1 0.136 0.098 39%

image2000x4000 2 0.156 0.098 59% 2 0.273 0.172 58%

image2000x6000 3 0.231 0.134 72% 3 0.390 0.253 54%

image2000x8000 4 0.289 0.183 58% 4 0.517 0.347 49%

image2000x10000 5 0.354 0.230 54% 5 0.649 0.410 58%

image2000x12000 6 0.419 0.266 58% 6 0.761 0.494 54%

image2000x14000 7 0.499 0.311 60% 7 0.905 0.575 58%

image2000x16000 8 0.563 0.340 65% 8 1.022 0.655 56%

image2000x18000 9 0.620 0.373 66% 9 1.135 0.731 55%

image2000x20000 10 0.695 0.422 65% 10 1.258 0.804 56%

image2000x22000 11 0.765 0.461 66% 11 1.390 0.882 58%

image2000x24000 12 0.834 0.495 69% 12 1.524 0.974 56%

image2000x26000 13 0.904 0.570 59% 13 1.643 1.047 57%

image2000x28000 14 0.978 0.590 66% 14 1.771 1.125 57%

image2000x30000 15 1.065 0.627 70% 15 1.900 1.209 57%

image2000x32000 16 1.126 0.678 66% 16 2.032 1.288 58%

image2000x34000 17 1.170 0.726 61% 17 2.160 1.361 59%

image2000x36000 18 1.258 0.742 70% 18 2.279 1.441 58%

image2000x38000 19 1.333 0.790 69% 19 2.408 1.537 57%

image2000x40000 20 1.432 0.833 72% 20 2.565 1.658 55%

Appendix C

Parallel Benchmarks

C.1 Development Logs for Parallel Benchmarks

This section includes issues related to OpenMP map-reduce, Polly and Cilk

parallelism.

C.1.1 OpenMP Map/Reduce

Table C.1: Complete list of Length-Offset Pairs computed by using OpenMP

map/reduce program with 2 threads

POS Length-Offset Pair

POS:0 bestLen:0 bestOffset:0

POS:1 bestLen:1 bestOffset:1

POS:2

ID:0 len:0 Offset:0 LocalLen[0]:0 LocalOffset[0]:0

ID:1 len:0 Offset:1 LocalLen[1]:0 LocalOffset[1]:0

bestLen:0 bestOffset:0

POS:3

ID:1 len:0 Offset:2 LocalLen[1]:0 LocalOffset[1]:0

ID:0 len:3 Offset:0 LocalLen[0]:3 LocalOffset[0]:3

Continued on next page

321

Table C.1: Complete list of Length-Offset Pairs computed by using OpenMP

map/reduce program with 2 threads

POS Length-Offset Pair

ID:0 len:1 Offset:1 LocalLen[0]:3 LocalOffset[0]:3

bestLen:3 bestOffset:3

POS:6

ID:0 len:1 Offset:0 LocalLen[0]:1 LocalOffset[0]:6

ID:0 len:1 Offset:1 LocalLen[0]:1 LocalOffset[0]:6

ID:0 len:0 Offset:2 LocalLen[0]:1 LocalOffset[0]:6

ID:1 len:1 Offset:3 LocalLen[1]:1 LocalOffset[1]:3

ID:1 len:1 Offset:4 LocalLen[1]:1 LocalOffset[1]:3

ID:1 len:0 Offset:5 LocalLen[1]:1 LocalOffset[1]:3

bestLen:1 bestOffset:6

POS:7

ID:0 len:0 Offset:0 LocalLen[0]:0 LocalOffset[0]:0

ID:0 len:0 Offset:1 LocalLen[0]:0 LocalOffset[0]:0

ID:0 len:0 Offset:2 LocalLen[0]:0 LocalOffset[0]:0

ID:0 len:0 Offset:3 LocalLen[0]:0 LocalOffset[0]:0

ID:1 len:0 Offset:4 LocalLen[1]:0 LocalOffset[1]:0

ID:1 len:0 Offset:5 LocalLen[1]:0 LocalOffset[1]:0

ID:1 len:0 Offset:6 LocalLen[1]:0 LocalOffset[1]:0

bestLen:0 bestOffset:0

POS:8

ID:0 len:0 Offset:0 LocalLen[0]:0 LocalOffset[0]:0

ID:0 len:0 Offset:1 LocalLen[0]:0 LocalOffset[0]:0

ID:0 len:2 Offset:2 LocalLen[0]:2 LocalOffset[0]:6

ID:0 len:0 Offset:3 LocalLen[0]:2 LocalOffset[0]:6

ID:1 len:0 Offset:4 LocalLen[1]:0 LocalOffset[1]:0

Continued on next page

322

Table C.1: Complete list of Length-Offset Pairs computed by using OpenMP

map/reduce program with 2 threads

POS Length-Offset Pair

ID:1 len:3 Offset:5 LocalLen[1]:3 LocalOffset[1]:3

ID:1 len:0 Offset:6 LocalLen[1]:3 LocalOffset[1]:3

ID:1 len:0 Offset:7 LocalLen[1]:3 LocalOffset[1]:3

bestLen:3 bestOffset:3

POS:11

ID:0 len:2 Offset:0 LocalLen[0]:2 LocalOffset[0]:11

ID:0 len:1 Offset:1 LocalLen[0]:2 LocalOffset[0]:11

ID:0 len:0 Offset:2 LocalLen[0]:2 LocalOffset[0]:11

ID:0 len:2 Offset:3 LocalLen[0]:2 LocalOffset[0]:11

ID:0 len:1 Offset:4 LocalLen[0]:2 LocalOffset[0]:11

ID:0 len:0 Offset:5 LocalLen[0]:2 LocalOffset[0]:11

ID:1 len:1 Offset:6 LocalLen[1]:1 LocalOffset[1]:5

ID:1 len:0 Offset:7 LocalLen[1]:1 LocalOffset[1]:5

ID:1 len:0 Offset:8 LocalLen[1]:1 LocalOffset[1]:5

ID:1 len:1 Offset:9 LocalLen[1]:1 LocalOffset[1]:5

ID:1 len:0 Offset:10 LocalLen[1]:1 LocalOffset[1]:5

bestLen:2 bestOffset:11

POS:13

ID:0 len:1 Offset:0 LocalLen[0]:1 LocalOffset[0]:13

ID:0 len:2 Offset:1 LocalLen[0]:2 LocalOffset[0]:12

ID:0 len:0 Offset:2 LocalLen[0]:2 LocalOffset[0]:12

ID:0 len:1 Offset:3 LocalLen[0]:2 LocalOffset[0]:12

ID:0 len:2 Offset:4 LocalLen[0]:2 LocalOffset[0]:12

ID:0 len:0 Offset:5 LocalLen[0]:2 LocalOffset[0]:12

ID:0 len:1 Offset:6 LocalLen[0]:2 LocalOffset[0]:12

Continued on next page

323

Table C.1: Complete list of Length-Offset Pairs computed by using OpenMP

map/reduce program with 2 threads

POS Length-Offset Pair

ID:1 len:0 Offset:7 LocalLen[1]:0 LocalOffset[1]:0

ID:1 len:0 Offset:8 LocalLen[1]:0 LocalOffset[1]:0

ID:1 len:1 Offset:9 LocalLen[1]:1 LocalOffset[1]:4

ID:1 len:0 Offset:10 LocalLen[1]:1 LocalOffset[1]:4

ID:1 len:1 Offset:11 LocalLen[1]:1 LocalOffset[1]:4

ID:1 len:1 Offset:12 LocalLen[1]:1 LocalOffset[1]:4

bestLen:2 bestOffset:12

324

C.1.2 Profiling Results

Table C.2: Top 5 functions of OpenMP map/reduce program

Program Thread % Time (sec) name

Sequential

28.14 0.09 match (LZ77:69)

18.76 0.06 match (LZ77.c:73)

14.07 0.05 match (LZ77.c:85)

3.13 0.01 findLongestMatch(LZ77.c : 155)

3.13 0.01 findLongestMatch(LZ77.c : 164)

OpenMP # 1

21.44 0.06 match(LZ77.c : 74)

10.72 0.03 match(LZ77.c : 70)

7.15 0.02 match(LZ77.c : 27)

7.15 0.02 findLongestMatch. omp fn.0(LZ77.c : 240)

7.15 0.02 match(LZ77.c : 61)

2

11.12 0.03 match(LZ77.c : 27)

11.12 0.03 match(LZ77.c : 70)

7.41 0.02 match(LZ77.c : 80)

3.71 0.01 findLongestMatch(LZ77.c : 207)

3.71 0.01 findLongestMatch. omp fn.0(LZ77.c : 232)

3.71 0.01 findLongestMatch. omp fn.0(LZ77.c : 240)

4

19.06 0.04 match(LZ77.c : 27)

19.06 0.04 match(LZ77.c : 44)

9.53 0.02 findLongestMatch. omp fn.0(LZ77.c : 224)

9.53 0.02 findLongestMatch. omp fn.0(LZ77.c : 232)

9.53 0.02 findLongestMatch. omp fn.0(LZ77.c : 240)

Our parallel OpenMP map/reduce program splits the offset iterations into a

team of threads equally, so each thread has the size of offset space and spends

the same amount of execution time. It seems that the OpenMP code has load-

balanced schedule. The slow performance of parallel OpenMP code may result

325

from the overheads of creating/activated threads in OpenMP run-time.

C.1.3 Understanding LLVM Code

Polly loads Clang to compiler translates C code into LLVM code(Team, 2016)

and perform the optimisation on that LLVM code. The below LLVM code

snippets is parts of MatrixMult C program.

• Module Structure includes global variables, functions and symbol ta-

ble entries (metadata).

1 ; Metadata started with ’!’
2 !1 = !DIFile(filename: "MatrixMult.c", directory: ...}

• Attribute Group specifies the module attributes referenced by all ob-

jects.

1 ; define ’oninline’ attribute
2 attributes #0 = { noinline nounwind uwtable "disable-tail-

calls"="false" ... }

• Identifiers in LLVM has two types: local and global. Local identifiers

start with ’%’ and global identifiers started with ’@’.

1 ; @R is a global 2D array of 2000 X 2000 ints
2 @R = common global [2000 x [2000 x i32]] zeroinitializer
3 ; @.str is a global variable with ”private” linkage.
4 @.str = private unnamed addr constant [32 x i8] c"Pass %d X %d

 matrix test case \0A\00"
5

6 ; %conv is a local variable of 32−bit int.
7 %conv = trunc i64 %call to i32

• Function consists of ”define” keyword.

1 ; ’main’ is a function with ’<type> [parameter Attrs] [name]’
2 define i32 @main() {
3 ; The entry point
4 entry:
5 ; Goto ’entry.split’
6 br label %entry.split
7

8 entry.split:; preds = %entry
9 ; Call ’init’ function with Tail Call Optimization

10 tail call void @init()
11 tail call void @mat_mult()
12

13 ; Get the address of ’A’ 2D array to local register ’%0’
14 %0 = load i32, i32* getelementptr inbounds ([2000 x [2000 x

i32]], [2000 x [2000 x i32]]* @A, i64 0, i64 1999, i64 1999)

326

15 ...
16 ; Print out ’A’ array.
17 %call1 = tail call i32 (i8*, ...) @printf(..., i32 %0, ...)
18

19 ; Return ’0’
20 ret i32 0
21 }

• Loop Nest contains a loop inside another loop. The below is a loop

nest with index of ’i’ and ’j’. The outer loop is split into loop entry

(’for.cond2.preheader’), loop exit (’for.cond12.preheader’) and loop body

(’for.body5’). And the loop body represents the whole inner loop, e.g.

the below loop nest of 2000 iterations

1 for (i=0; i<2000; i++) {
2 for (j=0; j<2000; j++) {
3 A[i][j] = R[i][j];
4 B[i][j] = R[i][j];
5 }
6 }

can be translated to below LLVM code:

1 ;; Indicates the entry of outer loop
2 for.cond16.preheader:
3 ;; <result> = phi <ty> [<val0>, <label0>], ...
4 ;; The index of the outer loop counts from 0
5 %indvars.iv5 = phi i64 [0, %for.cond12.preheader], [%

indvars.iv.next6, %for.inc39]
6 br label %for.body19 ;; %indvars.iv5 := ’i’
7 ;; Represents the loop body of outer loop
8 for.body19: ; preds = %for.cond16.preheader, %for.body19
9 ;; Includes the inner loop ’(j=0; j<2000; j++){Stmt(i,j)}’

10 ;; The index of inner loop counts from 0
11 %indvars.iv = phi i64 [0, %for.cond16.preheader], [%

indvars.iv.next, %for.body19] ;; %indvars.iv := ’j’
12 %arrayidx23 = getelementptr inbounds [...], [...]* @R, i64 0,

i64 %indvars.iv5, i64 %indvars.iv ;; %arrayidx23 := address of
R[i][j]

13 %0 = load i32, i32* %arrayidx23, align 4 ;; %0 := R[i][j]
14 %arrayidx27 = getelementptr ...* @A... ;; %arrayidx27 :=

address of A[i][j]
15 store i32 %0, i32* %arrayidx27, align 4 ;; A[i][j] = R[i][j]
16 %arrayidx31 = getelementptr ...* @R, ...;; %arrayidx31 :=

address of R[i][j]
17 %1 = load i32, i32* %arrayidx31, align 4 ;; %1 := R[i][j]
18 %arrayidx35 = getelementptr ...* @B,...;; %arrayidx35 :=

address of B[i][j]
19 store i32 %1, i32* %arrayidx35, align 4 ;; Write B[i][j] = R[i][j]
20 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 ;; j := j+

1
21 %exitcond = icmp ne i64 %indvars.iv.next, 2000 ;; Check if j !=

2000
22 ;; if %exitcond is true, re−run ’for.body’. Otherwise, increments outer

loop index.
23 br i1 %exitcond, label %for.body19, label %for.inc39
24 ;; The outer loop increments the index (’i’).

327

25 for.inc39: ; preds = %
for.body19

26 %indvars.iv.next6 = add nuw nsw i64 %indvars.iv5, 1 ;; i=i+1
27 %exitcond7 = icmp ne i64 %indvars.iv.next6, 2000;; Check if ’i

!= 2000’
28 ;; If cond holds, exit the loop. Otherwise, go to the entry of outer loop.
29 br i1 %exitcond7, label %for.cond16.preheader, label %

for.end41
30 ;; This is the loop exit and return.
31 for.end41: ; preds = %

for.inc39
32 ret void

• Polly Vectorization starts with ’polly’ and the loop is transformed into

vectorized loop.

• Other LLVM Instructions consists of terminator instructions, binary

instructions, bitwise binary instructions, memory instructions and oth-

ers.

328

C.2 Parallel Benchmark Results

Table C.3: Average execution time (seconds) of parallel LZ77 compression

programs on 4-core (up to 8 threads) standalone machine (Intel(R) Core(TM)

i7-4770 CPU @ 3.40GHz and 16 GB memory)

OpenMP Map/Reduce

Problem Size Compressed Size Seq 1 thread 2 thread 4 thread 8 thread

large1x (0.57 MB) 0.15 MB 0.373 0.423 0.292 0.304 0.339

large2x (1.1 MB) 0.31 MB 0.721 0.794 0.582 0.502 0.627

large4x (2.3 MB) 0.61 MB 1.40 1.57 1.11 0.98 1.22

large8x (4.6 MB) 1.23 MB 2.79 3.10 2.23 2.02 2.37

large16x (9.2 MB) 2.45 MB 5.53 6.16 4.39 3.84 4.69

large32x (18.4 MB) 4.91 MB 11.22 12.32 8.86 7.83 9.37

large64x (36.8 MB) 9.83 MB 22.41 24.60 17.57 15.38 18.69

large128x (73.6 MB) 19.66 MB 44.08 48.99 34.58 30.36 36.41

large256x (147.2 MB) 39.35 MB 88.06 97.95 68.88 60.84 73.46

Cilk Plus Reducer

Problem Size Compressed Size Seq 1 thread 2 thread 4 thread 8 thread

large1x (0.57 MB) 0.15 MB 0.363 0.538 0.539 0.618 0.945

large2x (1.1 MB) 0.31 MB 0.700 1.03 0.99 1.21 1.87

large4x (2.3 MB) 0.61 MB 1.38 2.16 1.94 2.39 3.72

large8x (4.6 MB) 1.23 MB 2.70 4.10 3.84 4.80 7.39

large16x (9.2 MB) 2.45 MB 5.36 8.25 7.69 9.49 14.74

large32x (18.4 MB) 4.91 MB 10.6 16.4 15.4 19.0 29.5

large64x (36.8 MB) 9.83 MB 21.3 32.5 30.5 38.6 58.8

large128x (73.6 MB) 19.66 MB 42.6 64.9 62.3 75.0 117.5

large256x (147.2 MB) 39.35 MB 85.4 131.3 124.1 149.9 235.4

329

Table C.4: Average execution time (sec) of parallel LZ77 compression pro-

grams on 8-core (upto 16 threads) Google Cloud machine(Intel(R) Xeon(R)

CPU@2.20GHz and 16 GB memory)

OpenMP Map/Reduce

Problem Size Seq 1 thread 2 threads 4 threads 8 threads 12 threads 16 threads

large1x (0.57 MB) 0.45 0.50 0.49 0.63 0.88 0.65 0.64

large2x (1.1 MB) 0.90 0.99 1.01 1.22 1.74 1.06 1.22

large4x (2.3 MB) 1.79 1.99 1.89 2.49 3.42 2.10 2.40

large8x (4.6 MB) 3.59 3.95 3.88 4.91 6.73 4.37 4.75

large16x (9.2 MB) 7.24 7.95 8.78 9.86 12.98 8.36 9.20

large32x (18.4 MB) 14.69 16.33 16.64 19.86 27.61 16.89 18.59

large64x (36.8 MB) 29.32 32.29 29.78 36.83 55.38 33.74 36.72

large128x (73.6 MB) 60.82 66.46 60.50 70.39 122.52 68.31 71.73

large256x (147.2 MB) 116.57 127.99 103.72 125.20 191.09 136.20 141.33

Cilk Plus Reducers

Problem Size Seq 1 thread 2 threads 4 threads 8 threads 12 threads 16 threads

large1x (0.57 MB) 0.44 0.68 0.81 1.16 1.84 1.55 1.62

large2x (1.1 MB) 0.90 1.37 1.60 2.77 3.62 2.99 3.19

large4x (2.3 MB) 1.74 2.70 3.84 5.47 7.15 5.98 6.40

large8x (4.6 MB) 3.48 5.42 6.71 9.76 14.33 11.99 12.83

large16x (9.2 MB) 7.22 11.22 14.46 22.90 29.37 23.96 25.71

large32x (18.4 MB) 14.26 22.28 29.11 42.60 58.03 47.86 51.30

large64x (36.8 MB) 30.52 44.93 51.26 74.10 108.94 96.19 103.40

large128x (73.6 MB) 56.19 87.99 100.86 159.68 226.84 192.92 203.90

large256x (147.2 MB) 111.52 173.82 180.62 237.65 343.36 384.74 415.28

	Introduction
	Background Knowledge
	Verifying Compiler
	Whiley Language
	Whiley Intermediate Language
	Example
	WyIL Code Types
	Benefits of WyIL Code

	WyIL To C
	Bounded Integer
	Memory Reduction
	System Architecture

	Related Work
	Static Analysis
	Static Bound Analysis
	Memory Management
	Reference Counting
	Garbage Collection

	Copy Elimination
	Verifying Compiler
	Rust Comparison

	Live Variables and Bound Analysis
	Bound Consistency Check
	CFG Construction
	Live Variable Analysis
	Bound Inference
	Widening Operator

	Pattern Matching and Transform
	Pattern
	Pattern Transformation

	Copy Elimination Analysis
	Function Analyses
	Read-Write Analyser
	Return Analysis
	Live Variable Analysis

	Copy Elimination Analysis
	Reverse Example

	Memory Deallocation Analysis
	Deallocation Invariant
	Deallocation Macros
	Pre-Deallocation Macro
	Post-Deallocation Macros

	Informal Proofs
	Pre-Deallocation Macro
	Array Generator
	Assignment
	ADD_DEALLOC Macro
	TRANSFER_DEALLOC Macro

	Function Call
	RETAIN_DEALLOC macro
	RESET_DEALLOC macro
	CALLER_DEALLOC macro
	CALLEE_DEALLOC macro

	Automatic Proofs by Boogie
	Declaration
	Macro Construction
	Proof Results

	Code Generator
	Naive Code Generator
	Function Signature
	Variable Declaration
	Function Body

	Code Optimisation and Integer Type Choice
	Copy Elimination
	Deallocation Macro
	Code Optimisation and Generation
	Choosing Fixed-Size Integers

	Benchmarks for Sequential Programs
	Micro-Benchmarks
	Case Study: Cash Till
	Case Study: Coin Game
	Case Study: LZ77 Algorithm
	LZ77 Compression
	LZ77 Compression using Append Array
	LZ77 Compression using Pre-allocate Array
	Benchmark Results

	LZ77 Decompression
	LZ77 Decompression using Append Array
	LZ77 Decompression using Array List
	Benchmark Results

	Handwritten Code and Performance
	Handwritten LZ77 compression
	Handwritten LZ77 Decompression

	Conclusions

	Case Study: Sobel Edge Detection
	Algorithm
	Benchmark Results
	Handwritten Code and Performance
	Conclusions

	Benchmarks for Parallel Programs
	OpenMP Data/Task Parallelism
	Polly Compiler Data Parallelism
	Polly Compiler
	Static Control Parts (SCoPs)
	Polly OpenMP Parallelism

	Performance Evaluation
	Micro-benchmark on standalone machine
	MatrixMult benchmarks on virtual machine

	Cilk Plus Task Parallelism
	Performance Evaluation

	Case Study: Coin Game
	OpenMP Parallel For
	Cilk Plus For
	Benchmark Results
	Performance Evaluation on Standalone Machine
	Performance Evaluation on Virtual Machine

	Case Study: LZ77 Compression
	Polly Parallelism
	OpenMP Map/Reduce Code
	Cilk Plus Reducer
	Benchmarks
	Performance Evaluation on Standalone Machine
	Performance Evaluation on Virtual Machine

	Summary

	Conclusions and Future Work
	Appendices
	Boogie Program
	Benchmark Programs
	Benchmark Whiley Program
	LZ77 benchmark results
	Sobel Edge Benchmark Results

	Development Logs
	Development Logs for Parallel Benchmarks
	OpenMP Map/Reduce
	Profiling Results
	Understanding LLVM Code

	Parallel Benchmark Results

