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High-strength concrete (HSC) is a concrete class with higher compressive strengths than that 

of commonly used normal-strength concrete (NSC). Although the limits defining HSC are 

continually changing as concrete in general increases in strength, but today HSC can be de-

fined as concrete with cylindrical compressive strengths in the range of 50-100 MPa. Nev-

ertheless, HSC does not only possess superior compressive strengths compared to NSC, but 

also the modulus of elasticity and general durability are improved when HSC is used appro-

priately. The advantages of using HSC in demanding construction projects has been recog-

nized worldwide ever since it was introduced in the 1960s, enabling the construction of even 

higher skyscrapers in the US. However, since then, HSC has continued to primarily be used 

for extraordinary structures and buildings only.  

 

Therefore, this thesis aims to explain why the application areas of HSC has remained rela-

tively narrow and whether using HSC for a wider range of structures and purposes can be 

beneficial. The unwillingness of using HSC further can in many cases be attributed to justi-

fied or unjustified prejudices connected to the use of this material. Although the general 

durability of structures is improved by using HSC, the fire resistance of plain HSC can un-

doubtedly be poorer than that of NSC. Also, the freeze-thaw resistance of concrete structures 

is indeed improved when using HSC, but to what extent is not fully established. Furthermore, 

beliefs that HSC require more care throughout the construction process, accompanied by that 

higher initial prices of this material will lead to higher total costs, are also aspects that need 

to be addressed to encourage further use of HSC.  

 

To demonstrate that the use of HSC instead of NSC does not result in higher overall costs a 

comparison was conducted evaluating how the use of different concrete strength classes af-

fects the dimensions and final costs of various column cases. These evaluated concrete clas-

ses were also produced in laboratory conditions to study the actual strength and temperature 

developments. The production and testing of these concretes gave some indications on how 

easily obtainable the design strengths are and what other challenges should be considered 

when producing HSC. Although the experimental production of the concrete classes showed 

that reaching the desired properties of both fresh and hardened concrete can be challenging, 

the column comparison indicates that significant economic benefits are attainable by using 

higher strength concrete classes. 
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Höghållfasthetsbetong är en typ av betong som besitter en högre tryckhållfasthet än vad som 

är förknippat med vanligen använd betong. Även om gränserna för vad som kan betraktas 

som höghållfasthetsbetong ständigt ändras i takt med att betongens hållfasthet överlag ökar, 

kan man idag definiera höghållfasthetsbetong som betong med en cylindrisk tryckhållfasthet 

mellan 50–100 MPa. Det är dock inte endast hög tryckhållfasthet som kännetecknar höghåll-

fasthetsbetong, även högre elasticitetsmodul och generellt bättre hållbarhet är förknippat 

med god användning av höghållfasthetsbetong. Fördelarna med användningen av höghåll-

fasthetsbetong för krävande byggprojekt har erkänts världen över ända sedan materialet in-

troducerades och möjliggjorde byggandet av högre skyskrapor på 1960-talet i USA. Sedan 

dess har likväl höghållfasthetsbetong huvudsakligen tillämpats endast vid uppförandet av 

extraordinära byggnader. 

 

Denna avhandling ämnar därför förklara varför tillämpningsområdena för höghållfasthets-

betong har förblivit relativt få, och huruvida en bredare tillämpning av detta material kan 

vara fördelaktigt. Oviljan att använda höghållfasthetsbetongen ytterligare bottnar ofta i an-

tingen grundade eller ogrundade fördomar angående materialet. Även om den generella håll-

barheten ökar vid användning av höghållfasthetsbetong, minskar onekligen brandbeständig-

heten jämfört med konventionell betong. Frostbeständigheten hos höghållfasthetsbetong är 

å andra sidan högre än hos vanlig betong, men till vilken grad är inte fullständigt fastställt. 

Dessutom måste aspekter som att höghållfasthetsbetong är mer krävande att gjuta och att 

användningen av detta material leder till högre totalkostnader adresseras för att främja en 

bredare användning av detta material. 

 

För att demonstrera att användningen av höghållfasthetsbetong, jämfört med konventionell 

betong, inte ger högre totalkostnader genomfördes en utvärdering angående hur betongens 

hållfasthet påverkar kostnader och dimensionering av pelare. De jämförda betongklasserna 

producerades även experimentellt för att studera den verkliga hållfasthetsutvecklingen samt 

temperaturproduktionen. Framställningen och proverna av betongerna gav indikationer om 

hur lättuppnåeliga de eftersträvade materialegenskaperna är, samt vilka utmaningar produkt-

ionen av höghållfasthetsbetong medför. Även om den experimentella produktionen av de 

olika betongklasserna visade att för att uppnå målsättningarna bör produktionsprocessen op-

timeras för den tillgängliga utrustningen, visar pelarjämförelsen att användningen av hög-

hållfasthetsbetong kan medföra märkbara ekonomiska fördelar. 

 

Nyckelord  höghållfasthetsbetong, högpresterande betong, armerade betongpelare, ekono-

misk design 
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1 Introduction 
 

As the construction industry constantly develops, the building materials naturally follows 

this development. As the second most widely used building material in the world, concrete 

have naturally evolved as well. An indication of this evolution are the various subcategories 

that have been developed to increase the efficient use of this material. One such subcategory 

is high-strength concrete (HSC), which has been of  increasing interest all over the world 

since its introduction in the mid-1960s (Aïtcin, 1998).  

 

It is well known that concrete possesses good compressive strength, therefore, high-strength 

concrete focuses on improving this attribute even further. According to the American con-

crete institution (ACI), high-strength concrete is defined as concrete with design compres-

sive strength of 55 MPa or higher (ACI CT-13, 2013). This compressive strength value refers 

to the commonly recognized strength of a cylindrical specimen with the dimensions of       

150 x 300 mm, equivalent to the first value in the European concrete strength classification. 

Additionally, concrete compressive strength can also be derived from cubical specimens 

with the dimensions 150 x 150 mm, the second value in the European classification, or        

100 x 100 mm.  

 

While high-strength concrete is not exactly specified in the Eurocodes (EN 1992-1-1, 2004), 

it is fair to assume that the lower limit of compressive strength class for HSC is C50/60, 

since the formulas and measurements change for concrete classes above this limit. When the 

compressive strength of concrete reaches the regions of 120 MPa and above, the properties 

of the material has been modified to the extent that it is classified as ultra-high-performance 

concrete (UHPC). 

 

High-strength concrete is commonly used for columns or other loadbearing members that 

are exposed to high compression forces. Therefore, typical structures include high-rise build-

ings where the use of HSC enables smaller structural members, thus increasing the valuable 

floor area, which is essential especially on the lower floors. The smaller dimensions of struc-

tural members, made possible by using HSC, is also of great importance in reducing the 

overall weight of the building.  Other favourable application areas for HSC include harsh 

environments, such as infrastructure and marine structures, as well as structures requiring a 

general high durability. For these kind of application areas, the low permeability of HSC is 

often the attribute of importance.  

 

Although the strength and permeability of concrete is closely connected, the desire for good 

durability, or other improved property, can lead to the use of the broader term high perfor-

mance concrete (HPC), instead of focusing on the high strength of the concrete. However, 

due to the strong correlation between high strength and low permeability, which both are 

mainly due to the low water-cementitious materials ratio (w/cm ratio), HPC and HSC are 

often used synonymously. Henceforth, the term high-strength concrete will be used in this 

thesis, but it is important to acknowledge the other improved key properties of concrete that 

HSC possess in addition to a high compressive strength.  These properties should also be 

considered when justifying the use of HSC instead of normal-strength concrete (NSC).  

 

Although the use of high-strength concrete has many advantages, these kinds of concrete 

mixes also require extra precautions and are often considered more demanding to cast and 
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cure than normal-strength concretes. Therefore, the use of HSC has mainly been limited to 

application areas in which its use is essential, and where normal concrete would not suffice.  

 

Compared to NSC, the additional requirements for HSC have been a subject of much re-

search for the recent decades. It has been established that HSC concrete requires careful 

attention to the curing process as well as strict quality control (Aïtcin, 1998; Paulik, 2013). 

Research has also shown that air-entraining is not necessarily needed in order to achieve 

frost resistance in HSC (Hale et al., 2009). Even so, air-entraining is required for making 

frost resistant HSC according to many guidelines. Furthermore, research concerning the eco-

nomical aspect of using HSC has also been conducted, proving particularly the financial 

benefits of using HSC in columns (Yousry and Shikh, 2008). Alves et al (2004) also demon-

strated that existing proportioning methods for HSC might not always be the most efficient. 

Thus, material consumption may vary notably depending on the guidelines used for produc-

ing concrete of the same class with equivalent properties. This being important from both a 

sustainability as well as financial point of view. 

 

Although the use of high-strength concrete is more or less required in demanding construc-

tion projects, such as high-rise buildings, its potential might not be fully utilized in more 

ordinary structures. The use of higher strength concrete could both lead to direct savings in 

material and space as well as improve the durability and sustainability aspects of the struc-

ture. However, due to the lack of national guidelines and experience of using high-strength 

concrete, designers may be reluctant to use high-strength concrete in cases where it is not 

absolutely required. Additionally, to encourage a broader use of HSC, it would be important 

to further develop available standardized ready-mix concretes for Finnish environments and 

purposes. 

 

The aim of this thesis is to investigate at what extent high-strength concrete can or should 

be utilized in different structural applications. Structures common for the Finnish building 

industry, or areas with similar conditions, will primarily be considered. Furthermore, the 

thesis also aims to specify how the use of high-strength concrete differs from normal-

strength concrete, in order to determine what additional considerations and arrangements are 

necessary for reaching the full potential of this high-strength material. However, the thesis 

will principally focus on cast in-situ structures that can be realized with HSC suitable for 

Finnish environments utilizing raw materials that are available in the region. 

 

In addition to the literature review, practical testing will be conducted to reach an under-

standing on which high-strength concrete types are realistically achievable using methods 

and materials familiar to Finnish concrete production. The experimental work includes test-

ing of both fresh and hardened concrete properties of different HSC mixes that could be used 

to improve the economic as well as the quality aspect of mainly reinforced concrete (RC) 

columns. 

 

This thesis will focus primarily on high-strength concrete with compressive strengths rang-

ing from around 50 MPa to 100 MPa. Higher strength classes can be considered ultra high-

strength concrete and will not be included in the thesis since they differ considerably from 

HSC and are difficult to produce simply by lowering the w/cm ratio. The range 50 – 100 

MPa is also a suitable range for the thesis because the concrete classes within can be obtained 

in Finland but are rarely extensively used in construction projects. As higher buildings are 
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emerging also in Finland, it is worth asking the question if this range of concrete strength 

classes should be utilized more widely. 

 

The remainder of this thesis is divided into the following chapters. Chapter 2 introduces 

high-strength concrete along with its uses and guidelines. Chapter 3 reviews the various de-

sign considerations connected to high-strength concrete and approaches to optimize the use 

of this material. Chapter 4 comprises of a column comparison case study. In Chapter 5, the 

performed experimental work of this thesis is described and the results of the conducted 

experiments are presented and analysed. Finally, Chapter 6 discusses concluding remarks. 
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2 Background 
 

2.1 History and development of high-strength concrete 

 

Concrete is an ancient material, its earliest uses dating back to as early as 7000 BC. This 

concrete-like material, found in Israel, made up the floor of a hut and is thought to be made 

of burned limestone mixed with water and stone particles.  The key ingredient of this mate-

rial was the burned limestone, which possesses cementitious properties binding together the 

solid materials (Singh, 2017). Thereafter, lime and various other materials, such as mud, 

straw and rice, was utilized in different forms and compositions to produce concrete-like 

structures throughout the ancient civilizations. The primitive mortar was constantly im-

proved by adding locally available materials to enhance the cementitious properties, e.g. the 

Romans utilizing these lime-based cementitious materials while adding a pozzolanic vol-

canic ash. However, it was not until the introduction of Portland cement in 1824 by Joseph 

Aspdin, that the modern concrete was truly established. 

 

With the introduction of Portland cement, research was initiated on understanding the reac-

tions responsible for the desired properties of the cement and how to produce it in an optimal 

way (Singh, 2017). This naturally led to the optimization of the composition and microstruc-

ture of concrete to maximize the favourable properties of this evolving material. Although 

concrete constantly developed, and its behaviour was fairly well understood, the compres-

sive strength of concrete remained low for a long time. However, the connection between 

the compressive strength of concrete and the so-called water-to-cement ratio, w/c ratio, of 

concrete was well known, i.e. higher strength concrete required a lower w/c ratio (Aïtcin, 

1998). To produce higher strength concretes than was normal at that time therefore called 

for a way to effectively reduce the use of water but keep the concrete mix workable. Alt-

hough lignosulfate-based water-reducing admixtures had been introduced in the 1930s, these 

additives were not effective enough to lower the w/c ratio sufficiently to achieve high-

strength concretes without severely affecting workability. Therefore, it was not until to the 

invention of high-range water-reducing admixtures (HRWRA), or superplasticisers, in the 

1960s that concrete could reach w/c ratios as low as required for producing high-strength 

concrete while still being sufficiently workable.  

 

These new superplasticisers were introduced almost simultaneously, in the early 1960s, in 

both Japan and Germany, and they were based on beta-naphtalene and melamine, respec-

tively (Kawai, 2002). However, high range water reducers based on similar compounds (pol-

ycondensates of naphthalene sulfonate) had been patented as early as 1938 in the US (Aïtcin, 

1998). But since the much more economical lignosulfate-based regular water reducers were 

regarded as satisfactory for producing the required concrete of the time, the utilization of 

superplasticisers did not seem necessary until later in the 1960s when the construction of 

high-rise buildings truly accelerated.  

 

The use of superplasticisers resulted in various problems naturally following the introduction 

of a new technology, most notably the so-called slump loss (Kawai, 2002). The remarkable 

slump loss connected with the use of the early superplasticizers was a big concern for keep-

ing the concrete workable and maintaining the castability even after longer transportation. 
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In Japan, this concern was solved by controlling the slump with a reactive polymeric disper-

sant. Although this concern has since been a topic of research and it is today known how 

problems connected to slump loss in the production of high-strength concrete can be 

avoided, the suitability of certain superplasticizers in combination with the other concrete 

raw materials must be investigated prior to production.   

 

Another important factor in the development of high-strength concrete was the introduction 

of silica fume, also known as micro silica or condensed silica fume (Aïtcin, 1998). Silica 

fume is a by-product of the silicon and ferrosilicon production, and was not commercially 

available at a large extent until stricter environmental regulations were introduced in the 

1970s which made the filtration and collection of these, at the time problematic, fine dust 

particles mandatory (Fidjestol and Dastol, 2008). Once the initial problems of collecting and 

storing these very fine particles had been overcome, the possibilities of using this material 

in the concrete industry was quickly further investigated. In fact, the advantages of using 

microsilica for concrete production had been investigated already in the 1940s and had since 

been the topic of sporadic research and used successfully in occasional projects. However, 

it was not until the abundance of silica fume became a reality in later years it received its 

well-deserved recognition as an extraordinary supplementary cementitious material (SCM).  

 

The reasons for these excellent properties of silica fume, mainly improving the strength and 

durability of concrete, are due to the so called micro-filler effect and the pozzolanic reactivity 

(Kawai, 2002). Therefore, the use of silica fume is, if not required, certainly recommended 

when producing HSC, especially when the concrete is desired to reach compressive strengths 

of 80 MPa and above. However, from being a relatively cheap replacement for cement when 

introduced in the 1970s and 80s, the silica fume is currently mostly used for special concretes 

and when extraordinary strengths are required. Yet, supplementary cementitious materials, 

such as fly ash and ground granulated blast furnace slag (GGBFS), are increasingly exploited 

in the concrete industry. Both fly ash and GGBFS are by-products of industry making the 

use of these materials both economically and environmentally profitable. These materials 

also possess cementitious qualities, although less reactive than ordinary Portland cement and 

considerably less reactive than silica fume.  

 

The effectivity of each supplementary cementitious material can be easily perceived by the 

so-called k-value, which is used in the Eurocodes. This k-value describes the performance 

of the SCMs compared to ordinary Portland cement. The k-values for silica fume, fly ash 

and GGBFS are in Finland generally considered to be 2.0, 0.4 and 0.8/1.0, respectively. The 

k-value for GGBFS may be taken as 0.8 or 1.0 depending on the relevant exposure class (BY 

65, 2016). However, these values may vary for different national standards and circum-

stances. Also, the SCMs may be added to the cement content simply without factors, in these 

cases the cement plus SCMs are often considered as the total binder of the concrete. There-

fore, it is important to recognize what a presented w/c, w/cm or w/b ratio takes into consid-

eration. In this thesis a w/cm ratio that considers the cement content plus present SCMs 

multiplied by the relevant k-value will be preferred. Furthermore, the water to only cement 

and water to binder (cement plus SCMs without correction factor) ratio will be annotated as 

w/c and w/b ratio, respectively, henceforth in this thesis. The fact that FA and GGBFS are 

less reactive than cement also means less heat of hydration generated. This can be an im-

portant aspect, and an incentive for using SCM. Especially when concretes with a high ce-

ment content are produced, such as HSC, and the temperature of the concrete must be kept 

at a reasonable level during curing. 



 

6 

 

 

The first extensive use of high-strength concrete was seen mainly in the construction of high-

rise buildings and bridges. The use of HSC took off in the US, and more specific in the 

Chicago area, in 1965 with the construction of the Lake Point Tower in Chicago which is 

considered the first building to incorporate HSC. The HSC used for some of the columns in 

this building had a compressive strength of 52 MPa, which in modern context would perhaps 

not be considered remarkable, but at the time it was very innovative. This ground-breaking 

and successful use of higher strength concrete in high-rise buildings was quickly utilized and 

developed further as many similar buildings with rising concrete strengths were constructed 

in that area in the following years (Gjørv, 2008). Basic details of some of the early buildings 

where HSC was used, mainly for load bearing columns, are presented in Table 2.1. 

 
Table 2.1. List of early high-rise buildings incorporating HSC (Gjørv, 2008). 

 
 

Simultaneously high-strength concrete was also being introduced in bridge construction, 

firstly in the US and Japan but eventually also in Europe. In Japan, HSC was at the beginning 

almost exclusively used for bridge structures, and mainly in the form of precast elements. 

This was the result of the initial slump-loss problems which made cast-in-situ applications 
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difficult and thus limiting the use of HSC to factory produced products. However, the ad-

vantages of using HSC were clearly observed, in addition to the obvious increased strength 

and rigidity also the reduced dead weight of structural members was of great importance in 

bridge construction. Thus, as the problems concerning slump-loss were eventually over-

come, the application areas for HSC in Japan increased further (Nagataki, 1997; Kawai, 

2002). 

 

In Europe, the first use of high-strength concrete was in the early 1970s for off-shore struc-

tures in Norway and the North Sea. As concrete had not until then been utilized in the off-

shore construction, it had to be proven that concrete could be a durable enough material for 

these challenging environments. The need for a durable concrete that would be acceptable 

for this purpose therefore drove the development of HSC forward in Norway. However, in 

this context it is perhaps more correct to refer to the concrete as high-performance concrete, 

rather than high-strength concrete, since this concrete mainly had to perform very well in a 

durability aspect. Ever since the first concrete off-shore structure in 1973, the concrete used 

for similar structures, as well as a large portion of the infrastructure in Norway, has generally 

been HPC, making Norway a true authority and pioneering country regarding high-strength 

concrete (Helland, 1989; Gjørv 2008). 

 

 

2.2 Comparing and defining high-strength concrete, high-perfor-
mance concrete and regular concrete 

 

Naturally, the definition of high-strength concrete (HSC) has changed during time accord-

ingly with the development of concrete, as the strength of conventionally used concrete has 

risen, so has the limit defining HSC. Although there are some slight geographically differ-

ences regarding the definition of HSC even today, most standards having their own defini-

tion, it can be assumed that concrete possessing a cylindrical compressive strength of around 

60 MPa and above is regarded as HSC.  

 

This makes for a suitable limit in several aspects. Firstly, concrete without any special ad-

mixtures can with proper attention to casting and curing, achieve such compressive strength 

classes quite easily. Secondly, concrete with a cylindrical compressive strength below 60 

MPa is usually adequate for ordinary concrete applications. In addition, concrete with a com-

pressive strength over this start behaving mechanically differently, i.e. showing a more brit-

tle nature, as well as changes in shrinkage and creep behaviour can be observed. However, 

even though the compressive strengths of normal-strength concrete (NSC) might be ade-

quate, the use of HSC can lead to benefits in other aspects, such as more durable and eco-

nomical structures. This will be investigated closer later in the thesis.  

 

Since HSC possesses many other advantageous properties than only high strength, the use 

of the term high performance concrete (HPC) has become more common. The denser mi-

crostructure that gives concrete high strength also gives the concrete a lower permeability, 

thus making it more durable. In some cases, the improved durability might be the required 

property, although normal-strength concrete would suffice strength-wise, this making the 

use of the term HPC more fitting than focusing only on the improved strength. However, as 

predicted by Aïtcin (1998), concretes can have a high performance in aspects that does not 



 

8 

 

necessarily affect the strength of the concrete. Such concretes can for example be self-heal-

ing concrete and self-consolidating concrete, both which can definitely be considered high 

performing concretes without necessarily having a high compressive strength. To be able to 

understand the difference between NSC and HSC, or HPC, and how to benefit the most from 

the higher performing concretes the focus should be put on the singular most determining 

difference, the microstructure.  

 

Generally, no extraordinary materials are required to produce high-strength concrete. The 

same raw materials as for producing NSC, but in optimized proportions, are sufficient also 

for producing HSC. The key proportioning factor being the earlier mentioned w/c ratio, i.e. 

the mass ratio between water and cement. Even more useful is the w/cm-ratio, which also 

takes into consideration the possible supplementary cementitious materials present in the 

concrete, in addition to the pure cement. By simply reducing the w/cm-ratio concrete can in 

theory achieve compressive strengths up to around 100 MPa, but not higher (Breitenbücher, 

1998). However, making concretes with this low w/cm ratios and without additives, means 

that the workability is very much compromised leading to a practically unusable fresh con-

crete. Therefore, the use of plasticizers, or even superplasticizers, is necessary in the produc-

tion of HSC. Not for improving the mechanical properties of the hardened concrete, but 

simply making it possible to obtain as low a w/cm-ratio needed and still maintaining a suf-

ficiently workable fresh concrete mass.  

 

The low w/cm ratios, generally in the range of 0,2-0,4 for HSC, is such a decisive indicator 

of the performance of concrete that Aïtcin (1998) proposed that this should be the definition 

of HPC, and consequently also for HSC, rather than the compressive strength. However, it 

can be challenging to calculate the exact w/cm-ratio that accurately predicts the behaviour 

of the concrete. Partly because varying moisture content and absorption of aggregates used 

can be difficult to accurately monitor, but also determining universally correct reactivity 

factors of different supplementary cementitious materials is challenging. In reality, modern 

cements usually already contain various supplementary cementitious materials, rather than 

just ordinary Portland cement. Therefore, it is of importance to be aware of the exact com-

position of the cement used, and to judge its reactivity accurately as well as evaluating the 

necessity and effects of adding even more SCMs.  

 

In order to estimate the absolute cementitious content of a concrete mixtures a correction 

factor, as mentioned earlier the k-value, based on the reactivity of each SCM is often utilized. 

The k-values should however only be taken as indicative values since variations in compo-

sition of SCMs exist, leading to geographically varying values depending on code or guide-

line used. In this thesis the k-values given in the Eurocodes will be used since they represent 

a good estimate for the SCMs available for the practical work done later. However, it is 

worth mentioning that the constant development and investigation of possible new SCMs 

means that research regarding reactivity of SCMs in different concrete compositions is an 

ongoing process. One thing is certain, the use of supplementary cementitious materials will 

continue increasing, both for making more durable concretes but mainly for reducing the 

CO2 emissions produced by the concrete industry (Snellings, 2016).  

 

Another increasingly popular type of concrete is the self-compacting or self-consolidating 

concrete (SCC). This type of concrete might also be considered as a high performing con-

crete on its own. The SCCs highly flowable nature without occurring segregation, makes it 

ideal for concrete structures where compacting of regular concrete would be difficult or even 
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impossible. The negligible need of compaction and vibration when using SCC also leads to 

notable savings in labour. It is therefore reasonable to believe that a self-consolidation con-

crete with a high compressive strength would be highly beneficial. As Naik et al. demon-

strated in 2012, it is possible to make SCC with 28-day compressive strengths of 62 MPa 

even by replacing 35 % of the cement with fly ash. This making the concrete not only ad-

vantageous economically, material and labour-wise, but also favourable from a sustainability 

aspect. However, it must be mentioned that the relatively high use of fly ash has a consider-

able negative impact on the short term strength development of the concrete (Naik et al., 

2012). The extensive use of fly ash is by no means obligatory when producing SCC, other 

mix designs to achieve quicker and higher strength concretes are possible, but likely at the 

expense of material costs.  

 

Similarly, as for regular high-strength concrete, the adding of silica fume is also an effective 

way of increasing the compressive strength of SCC. This was demonstrated at the construc-

tion of the World Trade Center in San Marino, where a high strength concrete with properties 

otherwise similar to a self-consolidating concrete was required. The main requirements for 

this concrete included a high fluidity, slump flow ≥ 600 mm even 1 hour after mixing, and 

both a high early as well as final compressive strength with 1-day cube compressive strength 

≥ 40 MPa and at 28 days ≥ 80 MPa. Furthermore, it had to exhibit a low drying shrinkage, 

≤ 500 μm/m after 2 months, a dynamic elastic modulus over 50 GPa and uniformity of ma-

terial properties when core samples of the field tests were examined (Collepardi et al., 2003). 

The composition and performance of the resulting concrete can be seen in Table 2.2. 

 
Table 2.2. Composition and performance of the self-consolidating high-strength concrete used at the World 

Trade Center in San Marino (Collepardi et al., 2003). 

 
 

The exceptional uniformity generally connected with even uncompacted SCC, due to its high 

resistance to segregation and bleeding, was also confirmed for the above-mentioned concrete 

by testing of core drillings from an uncompacted 1500 mm thick concrete sample. These 

core tests showing uniform results of compressive strength, dynamic elastic modulus and 

specific gravity throughout the whole thickness of the sample proves that also high-strength 

concrete can be produced and used in structures similarly to self-consolidating concrete 

(Collepardi et al., 2003). 

 

The high-strength concrete, or perhaps more generally speaking, high-performance concrete, 

can usually be considered as a custom-made concrete designed according to project-specific 
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requirements. These requirements demanding the use of HPC ranges from the simple need 

of high compressive strength, to durable concrete that at the same time must be economically 

viable. However, it is safe to assume that an HPC designed to minimize the cross-section of 

highly loaded column, is not also suitable for a massive concrete structure exposed to an 

aggressive marine environment that must be highly durable. Even though the HPC concrete 

used for columns might also provide the necessary properties, such as low permeability, 

needed for making durable marine structures, other factors must also be considered in such 

different cases. The aspect of considerable heat development connected with HPC might for 

instance not be a problem in the case of relatively small columns. But if the same HPC would 

be used in the case of a massive concrete structure, the heat development can cause concern 

during the curing, and therefore this aspect must be carefully investigated in the design pro-

cess of the concrete mixture. However, in both cases the use of conventional concrete would 

not suffice, or certainly not be efficient. This shows that developing a universal high-perfor-

mance concrete can prove difficult and that providing pre-designed HPC mixes might not 

even be profitable from the perspective of a concrete producer. On the other hand, develop-

ing and producing high-performance concrete, particularly higher strength concretes of 

standardized strength classes, and promoting them might encourage designers in utilizing 

this, sometimes underestimated, material. 

 

 

2.3 Use of high-strength concrete 

 

2.3.1 In Europe 

 

The widespread use of high-strength concrete in Europe is a relatively new practise. This is 

mainly because that for a long time higher strength concretes were not specifically regulated. 

Therefore, the use of HSC required extensive tests to attain, often project-specific, certifi-

cates ensuring the performance of that explicit concrete. The quantities of HSC used in con-

struction projects has generally amounted to only a small part of the total concrete used. 

Thus, the additional, relatively expensive, testing procedures needed for using HSC were 

usually thought of as an unnecessary extravagance (Breitenbücher, 1998). In Germany this 

changed in 1995 with the introduction of the “Guidelines for High Strength Concrete” by 

the German Association for Reinforced Concrete, DAfStb. These guidelines dealing with 

concretes in the range of C55-C115 acted as a supplement to the existing German guidelines 

at the time that only dealt with concretes up to C55 and meant that the expensive project-

specific testing of HSC was not required anymore. The same phenomenon also occurred 

around other European countries at that time, e.g. in Britain where the technical report 49 

“Design guidance for high strength concrete” was published in 1998 as an extension to the 

British Standard 8110 which only dealt with concrete up to 40 MPa. Later, the introduction 

of the Eurocodes has facilitated the use of HSC throughout Europe. It is also worth noting 

that Norway was the first country to include high-strength concrete with a characteristic cube 

strength of up to 105 MPa in its national design standards, NS 3473, as early as 1989 (Hel-

land, 1997.  

 

Before any specific standards or guidelines concerning specifically high-strength concrete, 

the use of this material required extensive testing for acquiring permits that recognized the 

improved properties of high strength concrete. Such was the case when HSC was used in 
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Germany for the first time in 1990 for the 186 m high-rise building of the Trianon in Frank-

furt, Figure 2.1. 

 

 

 
Figure 2.1. The Trianon in Frankfurt constructed 1990-1993 was the first high-rise building incorporating 

HSC in Germany (structurae, 2019a). 

 

Because concrete with a strength class of C85 was going to be used in critical load bearing 

columns and walls for the Trianon, permits concerning the structural capabilities of this 

structural concrete had to be attained separately (Breitenbücher, 1998). The Trianon was 

successfully constructed and since then HSC has received a broader recognition and ac-

ceptance as a suitable building material also in the building sector.  

 

Although the tallest buildings in Europe are not of very remarkable heights compared to the 

tallest buildings in the world, the number of skyscrapers constructed in Europe in recent 

years is still substantial. The overall trend of using HSC in tall buildings also correlates with 

the use of this material in European construction projects. High-strength concrete can be 

found at least in some form in most of the skyscrapers in Europe, ranging from plain cast-

in-situ HSC or steel composite load bearing members to pressed concrete floor slabs and 

decorative precast façade elements. 

 

Norway is considered to be among the pioneering countries to utilize high-strength concrete 

on a large scale, not only in Europe but also in the world. The long use of superplasticizers 

and early availability of silica fume were both contributing factors in Norway’s early exper-

imentation with HSC. But the foremost reason for developing HSC was the urgent need for 

a durable construction material that could compete with the expensive steel as the main 

building material for the offshore structures constructed for the oil and gas industry. Since 

the early uses of HSC at the offshore structures, the HSC has also been utilized further at a 

large extent around highway structures in Norway. Numerous bridges like the Helgeland 
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bridge, shown in Figure 2.2, has been constructed in Norway since. At the opening of the 

Helgeland Bridge in 1991, after two years of construction in challenging conditions, the    

425 m main span of the bridge was the third longest concrete main span in the world.  The 

cable stayed bride is made by cast in place prestressed concrete with a compressive strength 

of 65 MPa used throughout (structurae, 2019b). High strength concrete has continued to be 

used for bridges in Europe ever since, especially in prestressed and composite structures 

where higher strength concrete is very useful for achieving longer spans and more slender 

profiles. 

 

 
Figure 2.2. The cable stayed Helgeland Bridge in Norway (structurae, 2019b). 

 

 

2.3.2 Around the world 

 

Concrete, and high-performance concrete in particular, has played a major part in facilitating 

the construction of taller and generally more extraordinary buildings, but it has also had to 

overcome challenges risen from the trend of building higher and higher. Some success-sto-

ries of world renown building projects and how HSC was used at the projects will be pre-

sented in this chapter. 

 

Firstly, as buildings become taller, the importance of reducing deformations and sway of the 

structure increases. Thus, just by using high-strength concrete instead of normal-strength 

concrete in load-bearing elements, the stiffness of the building is improved considerably. In 

fact, the high elastic modulus of HSC should be considered equally important, if not even 

more important than the compressive strength of HSC in the design of skyscrapers. An ex-

ample of this is the Two Union Square building in Seattle, where HSC with a compressive 

strength of 130 MPa was cast in 3 m wide steel tubes to provide sufficient stiffness to the 

building. In this case the remarkably high compressive strength was only a side effect from 

reaching the high elastic modulus required, 50 GPa, to make the building stiff enough, 
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strength-wise a 90 MPa concrete would have sufficed (Aïtcin, 1998). Composite structural 

elements, such as the columns in the Two Union Square building, and generally combining 

structural steel and concrete is a very useful practise when designing and constructing very 

tall buildings today. Not only are the commonly used hollow steel sections filled with HSC 

efficiently increasing the load bearing capacity and stiffness of the structure as well as mak-

ing it more ductile, it is also an efficient way to reduce on-site work and keeping the dead 

weight of the building reasonable.  

 

The Taipei 101 tower in Taiwan provides a good example of how high-performance concrete 

can be used efficiently in combination with structural steel sections. Here the so-called su-

per-columns, as shown in Figure 2.3, are regarded as the most important structural elements. 

These composite super-columns are steel box sections filled with 70 MPa HSC and are lo-

cated at the perimeter of each floor of the building. In addition to the 8 super-columns per 

floor, smaller but similarly concrete filled steel box columns make up the core of the build-

ing. For the 62nd floor and below the steel box columns were filled with concrete, and above 

this they were left hollow to minimize the gravity load of the building (Büyüköztürk and 

Lau, 2004). 

 

 
Figure 2.3. Cross-section of typical super-column in the Taipei 101 Tower. (Shieh et al., 2003)   

 

The concreting of the composite columns for the Taipei 101 Tower was executed by pump-

ing the HSC from the bottom of the columns up. By this approach air can be assumed to 

avoid being trapped in the heavily reinforced column as long as the concrete has a high 

flowability. To assure proper placement of the concrete at the Taipei 101 project, the con-

crete used was designed to have a slump and slump flow of 25 ± 2 cm and 60 ± 10 cm, 

respectively. Extensive testing was conducted prior to the actual casting to ensure the proper 

behaviour of the concrete design. In addition to previously mentioned properties, the con-

crete was also designed to minimize creep and shrinkage effects, as well as not allowing 

bleeding segregation (Büyüköztürk and Lau, 2004). 
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The issue of maintaining adequate pumpability while also avoiding bleeding and segregation 

can become a real challenge as the concrete has to be pumped to high altitudes and placed 

in densely reinforced spaces. This became evident especially clearly at the construction of 

the Burj Khalifa in Dubai, Figure 2.4a, which when finished in 2010 became the tallest 

building in the world. However, the difficulties were overcome without major problems by 

careful attention to pre-construction testing of the materials and equipment as well as con-

stant quality controls during the construction stages. These precautions and arrangements 

are discussed more thoroughly in Chapter 3.2.1. 

 

 

 
Figure 2.4. The Burj Khalifa in Dubai and b) a rendering of the completed Jeddah Tower in Saudi Arabia, 

both structures primarily made with concrete. (CTBUH, 2019) 

 

The successful use of high-strength concrete in the construction of the Burj Khalifa has en-

couraged the further use of HSC in most modern super high-rise buildings, including the 

Jeddah Tower in Saudi Arabia, Figure 2.4b, which is under construction and will be the 

tallest building when completed. The record-breaking skyscraper which is expected to be 

complete in late 2019 and reach an altitude of over 1 km uses HSC in piles, foundation, 

columns and core elements of the building (Nehdi 2013). 

 

 

2.4 Guidelines and codes connected to high-strength concrete 

 

2.4.1 In Europe 

 

Naturally, the guidelines followed in Europe concerning structural design and construction 

in general consists of the Eurocode standards, and more specifically concerning concrete, 

the Eurocode 2 (EN 1992-1-1, 2004) accompanied by the material specification standards 

EN 206. Even though the Eurocodes allow for the design of concretes up to 105 MPa, no 
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specific definition regarding high-strength concrete is given in the standards. However, it 

can be noted that formulas, e.g. for calculating the stress distribution, change for concretes 

possessing compressive strengths over 50 MPa, this indicating some distinction between 

NSC and HSC. Even so, the behaviour concrete is thought to change considerably after 

reaching a certain compressive strength, around 50 MPa, that simply extrapolating formulas 

that are applicable on normal-strength concrete is not good enough for adequately designing 

higher strength concrete (Mendis, 2003; Mcfarlane, 2007). These differences distinguishing 

HSC from NSC includes increased brittleness, poorer fire resistance and a debated sufficient 

frost resistance without additional air-entrainment. The fact that the Eurocodes does not dif-

ferentiate further between NSC and HSC has led to the development of independent guide-

lines, such as the Concrete Society’s Technical Report 49 “Design guidance for higher 

strength concrete”, as well as multiple publications by fib and RILEM explicitly dealing with 

various aspects concerning the design of HSC structures.  

 

The behaviour of concrete under elevated temperatures has been studied since the 1950s and 

is by now well understood. The fact that HSC behaves poorer at elevated temperatures than 

NSC has been established much later. It was when Phan and Carino (2003) compared test 

results of HSC columns in fire situations with relevant codes at that time, it became clear 

that those codes generally overestimated the strength of HSC members subjected to elevated 

temperatures. Since then it has become evident that HSC,  compared to NSC, suffer higher 

strength loss, particularly in the intermediate temperature range, as well as more explosive 

spalling when exposed to the same elevated heating conditions (Phan and Carino, 2003). 

This has since been recognized and additional fire safety measures are now included in most 

guidelines concerning HSC, including the Eurocodes (EN 1992-1-2, 2004).  

 

Guidelines concerning the mixture design of high-strength concrete are often either too 

vague or too specific to be of any actual use. Since even small variations in local raw mate-

rials, such as aggregates or admixtures, may cause significant changes in the behaviour of 

the fresh concrete, the need of trial batches are generally needed when designing new HSC 

mixtures. Therefore, the proportioning of HSC is typically trial and error-based, which has 

led to the concrete producers developing their own methods for perfecting the HSC mix 

depending on relevant parameters and requirements. However, some basic proportioning 

methods exists, such as the Finnish method “Korkealujuuksisten betonien suhteitus” by 

Penttala (1990) and the American Concrete Institutions “Guide for Selecting Proportions for 

High-Strength Concrete with Portland Cement and Fly Ash” (ACI 1993). These basic pro-

portioning methods can be useful when making initial trial batches, but since materials and 

their availability are constantly changing, the methods quickly become outdated and are 

rarely consistent when different materials and admixtures are used.  

 

 

2.4.2 Around the world 

 

There are many esteemed guidelines originating from different parts of the world that pro-

vides support in the design of high-strength concrete structures. One of the most influential 

and valued providers of guides and reports concerning explicitly HSC is the American Con-

crete Institute (ACI). The ACI offers guides and reports concerning everything from propor-

tioning to quality control of HSC. Another corresponding organization to the ACI is the 
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International Federation for Structural Concrete, fib, which provides similar guidelines re-

garding design and production of concrete structures, the most relevant being the extensive 

“fib Model Code for Concrete Structures 2010”. 

 

Furthermore, the existence of national guidelines such as Japans “Recommendation for prac-

tise of High-Strength Concrete” (2005) and Singapore’s “Design guide of High Strength 

Concrete” (2008) provides useful recommendations regarding local concreting practises 

adapted for HSC. These national guidelines are not only useful for the country in question 

but can also be utilized in countries with similar conditions and practises but lacking own 

codes regarding HSC. Alternatively, the necessary specifications concerning higher strength 

concretes can be integrated in the general building codes, such as in the Canadian “Design 

of Concrete Structures” (CSA-A23.3-04) and the Australian “Concrete Structures” 

(AS3600-2009).  

 

However, as illustrated by Wu et.al. (2010), the recommended design values of certain fun-

damental engineering properties may vary considerably depending on which design code is 

being followed. An example of this is shown in Figure 2.5 where the recommended values 

according to American, Australian and European design codes for the characteristic flexural 

tensile strength, f’cf, and the characteristic principal tensile strength, f’ct, are plotted against 

the compressive strength, f’c, of concrete. The values plotted for f’cf and f’ct are according to 

the standards and corresponding equations shown in Table 2.3.  

 
Table 2.3. Table showing the equations used in various standards to calculate the recommended values of the 

characteristic flexural tensile strength, f’cf, and the characteristic principal tensile strength f’ct (Adapted from 

Wu et al., 2010) 

Standard Recommendations for f’cf and f’ct  

AS3600-2001 𝑓′
𝑐𝑓
= 0.6√𝑓′𝑐  

𝑓′𝑐𝑡 = 0.4√𝑓′𝑐  

(1) 

(2) 

AS3600-2009 𝑓′𝑐𝑓 = 0.6√𝑓′𝑐  

𝑓′𝑐𝑡 = 0.36√𝑓′𝑐  

(3) 

(4) 

ACI 318-2005 

ACI 363R 
𝑓′𝑐𝑓 = 0.62√𝑓′𝑐  

𝑓′𝑐𝑡 = 0.59√𝑓′𝑐 

(5) 

(6) 

Eurocode EC2-2004 𝑓′
𝑐𝑡
= 2.12 ln [1 +

𝑓′𝑐+8

10
]  

𝑓′𝑐𝑓 = max⁡[(1.6 − ℎ 1000⁄ )𝑓′
𝑐𝑡
; 𝑓′

𝑐𝑡
]  

Where h is the depth of the cross-section 

(7) 

(8) 
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Figure 2.5. Comparison between different standards on recommended values for the characteristic flexural 

tensile strength, f’cf, and characteristic principal tensile strength, f’ct, plotted against the concretes compressive 

strength (Wu et al., 2010). 

 

In addition to the national standards and building codes, researchers are also constantly in-

vestigating and refining equations that may represent the behaviour of high-strength concrete 

more accurately. The modulus of elasticity for concrete, Ec, and especially how it differs 

between normal and high-strength concrete is a good example of an engineering property 

that has been thoroughly studied. For example, Setunge (1993) showed that Equation 9, used 

in the old Australian building code, AS-3600 2001, tended to overestimate the modulus of 

elasticity for concrete with compressive strength above 40 MPa. Thus, a new equation for 

calculating the modulus of elasticity for HSC more accurately was introduced in the renewed 

AS-3600 2009, Equation 10, while the old equation was still conserved for calculating the 

elastic modulus of NSC. Examples of equations for calculating the elastic modulus are pre-

sented in Table 2.4 and plotted against each other in Figure 2.6 to illustrate how much these 

values may vary depending on which standard is followed (Wu et al., 2010). 

 

 
Table 2.4. Examples of proposed equations for calculating the elastic modulus of concrete, Ec, from both stand-

ards and researchers (Adapted from Wu et al., 2010). 
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Figure 2.6. Varying values of the elastic modulus, Ec, plotted according to the equations presented in Table 

2.4 (Wu et al., 2010). 
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3 Considerations for producing and optimizing the use of 
high-strength concrete 

 

3.1 Production of high-strength concrete 

3.1.1 Structural design considerations 

 

One of the most significant differences between high-strength concrete and normal-strength 

concrete from a structural point of view, besides the obvious compressive strength, is the 

increased brittleness of HSC. This can be understood by looking at the different behaviours 

in the stress-strain relationships between concretes of various strength classes illustrated in 

Figure 3.1. This decrease in ductility for higher strength concretes can be explained by the 

delayed spreading of internal microcracks, which in lower strength concretes spreads exten-

sively at a relatively low stress level to form an interconnected network that helps redistrib-

ute the energy and thus making the material more ductile (Mendis, 2003). Still, the delayed 

forming of microcracks also mean that the higher strength concretes maintain an elastic be-

haviour longer. Another important aspect that should be recognized is the decrease of ulti-

mate compressive strain as the strength increases. However, once the undesirable behaviours 

are acknowledged there are numbers of solutions to remedy them so that sudden failures can 

be avoided.  

  

 

For columns made of HSC sudden failure can easiest be prevented by sufficient confinement 

of the concrete core. This confinement pressure is usually provided by the reinforcement 

links perpendicular to the column length. Below are shown examples of a poorly confined, 

Figure 3.2a, and a well confined RC column, Figure 3.2b (Mcfarlane, 2007). However, the 

needed confinement pressure can also be attained using so-called composite columns where 

Figure 3.1. Typical stress-strain relationship for concrete under uniaxial loading (Mendis 2003) 
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the concrete is cast inside hollow steel sections which both acts as mould for the column, but 

also increases the total capacity of the column.  

 

 
Figure 3.2. Examples of a), transverse reinforcement links poorly confining the column core and b) properly 

confined column core by adequate transverse reinforcement (Mcfarlane, 2007). 

 

Because of the brittle nature of the high-strength concrete, it is mostly used for simple struc-

tural members under compression, such as columns. However, HSC can also be applied for 

flexural- and shear-stressed members such as beams and walls. This use of HSC is particu-

larly useful when minimizing the dimensions of bridge girders as well as when all-concrete 

building frames are called for. When HSC was used for these kind of stresses in Germany 

for the first time, it had to be ensured the brittleness of the material would not be a problem 

(Breitenbücher, 1998). The concrete with a strength class of C105 to be used for the frame 

structure of the high-rise building “Taunustor” in Frankfurt in the middle of the 1990s there-

fore had to be thoroughly tested. Since HSC was going to be used in the building for lower 

level columns it was thought that the same concrete could be utilized for the frame structure 

around big window openings as well. The large-scale testing of the relevant sections showed 

that, despite the brittleness of HSC, the failure of the structure was still preceded by extensive 

cracking and plastification of the reinforcement steel. Thus, demonstrating the suitability of 

the material also for members subject to bending moments and shear forces.  

 

Another way to make concrete more ductile is by adding fibres, most commonly steel or 

synthetic fibres, into the concrete mix (Singh, 2017). In other words, making so called fibre-

reinforced concrete (FRC), or if the bulk concrete is of higher strength, fibre-reinforced high-

performance concrete (FRHPC). The fibres introduced into the concrete matrix prevents the 

microcracks present in both the cement paste and the interfacial transition zone (ITZ) from 

rapidly expanding when come under tension. The improved stress-strain behaviour of fibre 

reinforced HSC and NSC compared to plain concrete can be seen in Figure 3.3. 
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Figure 3.3. Main differences between plain and fibre reinforced concrete under uniaxial compression (fib, 

2012) 

 

Furthermore, the introduction of fibres into HPC have additional advantages than only im-

proved ductility, which is the case for regular strength concrete reinforced with fibres. The 

FRHPC also shows a significant strain hardening behaviour which leads to both improved 

strength and toughness of the concrete (Büyüköztürk and Lau, 2004). 

 

 

3.1.2 Mix design 

 

The mix design of high-strength concrete, despite utilizing the same raw materials used for 

regular concrete, can be fairly complex and usually requires a trial and error method for 

optimizing the mixture. Even though HSC may consist of the same basic materials as NSC, 

the raw material used for producing HSC must be of highest quality and combined in the 

optimum proportions (Rashid and Mansur, 2009). Although many methods for mix design 

of HSC exists, small differences in aggregates or admixtures due to local availability can 

cause significant variations concerning the rheological properties of the fresh concrete mix-

ture. Therefore, it is often crucial to make trial batches to verify that the required aspects for 

a successful cast are fulfilled. The fact that most HPC mixtures are case specific with unique 

requirements to be fulfilled should mean that the mix design process is to be initiated well 

ahead of the delivery of the concrete to the work site. However, this is not always the case, 

meaning that the actual strength, which is determined from the 28-day strength test of the 

trial batch, is yet unknown when the actual concrete batch is delivered and cast (de Larrard 

and Sedran, 2002). 

 

As shown by Alves et al. (2004), considerable differences between high-strength concrete 

mix proportioning methods exist, both concerning performance of the hardened concrete, 

but most notably for the material consumption. Perhaps most importantly, the use of cement 

could be reduced by 50% when certain mix proportion methods were used. It is therefore 
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possible to choose whether to focus on maximizing the performance of the concrete or min-

imizing the material consumption. However, this mainly indicates that whatever the require-

ments of the concrete are, it is generally possible to optimize the existing mix proportioning 

methods for specific cases. 

 

The influence on the workability of the fresh concrete mixture is another important aspect 

that should be considered in the mix design stage. The selection on supplementary cementi-

tious materials and chemical admixtures, as well their proportions and time of addition to 

the concrete mix, can have a considerable effect on setting times and workability. This be-

comes of great importance as the distances that the ready-mix concretes must be transported 

increases, especially for low w/cm ratio concretes such as HSC. These issues, along with 

recommendations for preventing them, will be discussed more in detail in the next chapter.  

 

 

3.1.3 Casting and workability 

 

One of the, perhaps unjust, beliefs associated with using high-strength concrete is a more 

demanding casting process. More demanding in the sense that the fresh high-strength con-

crete might require more work to cast properly and extra care to avoid any considerable loss 

of workability, or so-called slump loss. This is of course due to the lower w/cm ratios and 

an extensive use of water-reducers or superplasticisers (SP), which behaviour might not al-

ways be fully understood.  

 

It has been shown that in addition to using superplasticisers based on different compounds 

(Chandra and Björnström, 2002), also the dosage and time of the addition of SP can influence 

the slump loss of the concrete mixture (Punkki et al., 1996). To avoid sudden slump losses, 

it is crucial to predict the SPs behaviour in the concrete mixture correctly. By doing so the 

concrete is assured to maintain sufficient workability throughout the casting without any 

need of retempering.  

 

Retempering, the adding of extra water and/or chemical admixtures when the concrete ar-

rives to the construction site, can be an effective way to prevent slump loss. However, the 

adding of extra water should be avoided since it has a negative effect on the strength of the 

hardened concrete due to the altered w/cm ratio. Naturally then, if retempering is indeed 

unavoidable, it should be done by adding chemical admixtures such as a superplasticiser 

instead of plain water. Retampering with a chemical admixture, compared to with water, 

requires a more carefully considered dosage but will have a considerably less damaging ef-

fect on the strength of the hardened concrete (Erdoǧdu, 2005). It should also be made clear 

that especially when high-strength concrete is used, it is of utmost importance that the design 

strength of the concrete is truly reached. Therefore, instructions given by designers and con-

crete suppliers regarding the handling of the concrete to reach the desired properties of the 

hardened concrete must be strictly followed. However, if no mention regarding retepering is 

stated by the designer or supplier of the concrete it should not be ventured upon. Similarly, 

instructions regarding the curing of concrete should be followed thoroughly. 

 

Another factor influencing the workability of the concrete is the proportions of supplemen-

tary cementitious materials possibly present in the concrete mix. Johari et al. (2011) showed 

that the general use of fly ash (FA), silica fume (SF) and ground granulated blast-furnace 
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slag, GGBFS, improves the workability, whereas the incorporation of metakaolin signifi-

cantly reduces the workability. However, it was also shown that unlike the use of FA and 

GGBFS which continued to have a positive effect on the workability as the dosage increased, 

the optimum dosage of SF for improved workability seem to be between 5-10 % replacement 

of the cement content. In contrast to Joharis et al. (2011) studies in which only up to 15 % 

of the cement was replaced by SCMs, other studies indicate that larger dosages of especially 

FA and GGBFS can reduce the slump loss of the concrete mix. Erdoǧdu et al. (2011) showed 

that concrete mixes containing 30 % and 20 % FA replacement of cement decreased the 

slump loss compared to the concrete containing no SCMs. Notably is that the concrete mix 

containing only 7 % FA slightly increased the slump loss. Similarly, Marushima et al. (1993) 

found that replacing 40 % of the cement with very fine GGBFS slightly improved the work-

ability but also reduced the rate of slump loss.  

 

The suitability and effects of the available equipment for mixing, transporting and pumping 

or casting of the concrete should also be evaluated to efficiently produce and supply worka-

ble HSC. As reported by Carbonari et al. (2003), it is important to optimize the mixing time 

in accordance to the mixer used and for the concrete in question. Furthermore, the pumping 

equipment should be verified to be able to handle the concrete, and likewise the concrete 

should be able to be pumped with the available equipment without segregating or otherwise 

suffer from being pumped. The actual transportation of the concrete can also be taken ad-

vantage of. If the transportation distances are long, and if the transporting vehicles allow for 

it, the mixing water can even be added at a later stage after leaving the concrete factory to 

remain workable for longer after reaching the construction site. However, as HSC are very 

different, and even small variations in local materials and procedures have a large influence 

on the performance of the concrete, no universal rules can be applied to ensure a satisfactory 

behaviour for HSC in general. Therefore, testing and quality control whenever a new con-

crete is developed remains the only way of ensuring that the actual performance of the con-

crete fulfils the requirements. 

 

 

3.1.4 Curing and hardening behaviour  

 

 

The proper curing of concrete is vital, even very high-quality concrete can be spoiled by 

inadequate curing procedures. The importance of curing for high-strength concrete should 

therefore be emphasized in order to reach the full potential, or at least the required properties, 

of the hardened concrete. Especially when the HSC is designed for resisting severe condi-

tions and aggressive environments the importance of curing becomes evident due to the im-

pact it has on the permeability of concrete, and thus also the durability (Meeks and Carino, 

1999).  

 

It has also been recognized, that curing methods which would be sufficient for normal con-

crete might not be adequate for HSC (Aïtcin, 2003). This is mainly due to the different 

shrinkage behaviour shown by the two concrete types. Firstly, the most immediate threat of 

plastic shrinkage is more evident in HSC because of the scarce bleed water. However, this 

can be remedied by applying water curing or curing membranes immediately after the finish. 

Although this is recommended for both types of concretes, it is of greater importance for 
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HSC that appropriate curing practises are applied at once when the finishing of the concrete 

is done. 

 

Secondly, while the governing long-term shrinkage of NSC is drying shrinkage, due to the 

comparably easily evaporable excess water, HSC is more likely to suffer from autogenous 

shrinkage due to self-desiccation (Aïtcin, 2003). Even though normal curing procedures such 

as curing membranes is adequate to prevent plastic shrinkage, it is not enough to prevent the 

occurrence of autogenous shrinkage in HSC. Providing external water in form of fog misting 

or water curing is therefore vital to keep the autogenous shrinkage at an acceptable level. 

Still, it is crucial that the external water is applied as soon as possible while the pores and 

capillaries of the concrete are still interconnected. Once the capillaries dry out and are dis-

connected from the surface, the external water source becomes insignificant since the water 

is unable to reach the inner pores and capillaries where the self-desiccation takes place. This 

problem of disconnection of capillaries might even be unavoidable for concretes with ex-

ceptionally low w/cm-ratios, in these cases internal curing (IC) might be needed to avoid 

autogenous shrinkage cracks (Zhutovsky and Kovler, 2012). IC can be achieved either by 

using pre-saturated porous lightweight aggregate or by adding super absorbent polymers into 

the concrete mixture. Both methods providing an internal source of free water to avoid self-

desiccation during the cement hydration (Cusson and Hoogeveen, 2008). 

 

It is also commonly recognized that in addition to the curing method used, also the curing 

temperature effects the strength development of concrete, especially at an early age. Ade-

quate curing practises mainly ensures that the strength development is not hindered by the 

problems connected to the low water content of HSC described above (Meeks and Carino, 

1999). Higher initial curing temperatures, around 30 °C and over, on the other hand are 

recognized to give the concrete a higher early strength. Thus, high-temperature curing can 

be used to accelerate the strength development of the concrete to enable quicker demoulding 

and generally fast-tracking construction. This also holds true for HSC. However, the differ-

ences in strength due to early high temperature curing gradually diminishes as the concrete 

matures and it is generally believed that concretes cured under more moderate temperatures, 

around 5-25 °C, catches up, or even surpasses, to the strength developed by high-temperature 

cured concrete (Yang et al 2015). Nevertheless, as every project is different, the main thing 

remains, also for HSC, to accurately predict the temperature development of the concrete 

keep the temperature within reasonable limits during the concrete curing as both too cold 

and too hot temperatures will harm the final performance of the hardened concrete. 

 

3.1.5 Fire resistance 

 

Considering that one of the most common application areas for high-strength concrete is 

indoors columns, the fire resistance becomes in many cases the governing and main durabil-

ity concern. It is therefore unfortunate that HSC has shown poorer resistance to elevated 

temperatures and fires than normal-strength concrete (Kodur, 2005). However, the extent of 

the inferior fire resistance of HSC has been a debated extensively and even cases where HSC 

has performed well under elevated temperatures exist (Aïtcin, 2003). The consensus that can 

be made is that HSC generally has inferior fire resistance properties compared to conven-

tional NSC. Both in the sense of higher strength losses with increasing temperature, shown 

in Figure 3.4, and an increased occurrence of fire induced spalling compared to NSC.  
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Figure 3.4. Strength changes at increasing temperatures for a) normal-strength concrete and b) high-strength 

concrete. (Kodur, 2008) 

 

The dense and often almost impermeable microstructure of HSC makes it more vulnerable 

to fire induced spalling, and even explosive spalling, than normal-strength concrete. The 

more permeable NSC allows the growing pore pressure, due to the vaporising entrapped 

water heating up in the concrete, to escape. Whereas in the denser HSC, the entrapped water 

vapour and the resulting building pore pressure has no way to escape, leading to spalling of 

the concrete once the pore pressure reaches the tensile strength of the concrete (Akca and 

Zihnioǧlu, 2013). It is therefore clear that the main reason for spalling of concrete is an 

adequate amount of water in the concrete, which is possible to vaporise. The amount of 

moisture that can be accepted without risk of spalling is according to Hertz (2003) 3 % in 

mass, this applying to normal concrete. However, denser concretes, such as HSC, might not 

be safe from spalling even with a moisture content of 0 %. This because even the chemically 

bound water released from hydrates dehydrating during increasing temperatures is sufficient 

to produce critical pore pressure in impermeable concrete.  
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Although high-strength concrete has shown to possess inferior fire resistance properties 

compared to normal-strength concrete, it can still be argued that it is considerably safer and 

easier to fireproof than steel members, which usually is the alternative to HSC when NSC is 

not sufficient. Particular cases where HSC structures are especially vulnerable are intense 

fires, resulting in a high rate of temperature rise, and when the concrete is very impermeable, 

i.e. when large quantities of silica fume has been used or the general strength of the concrete 

is very high, at least over 70 MPa (Kodur and Phan, 2007). The performance of high-strength 

concrete when exposed to fire can, and should in most cases, be improved in different ways 

in addition to general fireproofing methods for structural members such as increasing the 

protective cover of concrete or adding other insulating material.  

 

One effective way to considerably improve the fire resistance of HSC is by the addition of 

polypropylene fibres (Kodur et al., 2003; Akca and Zihnioǧlu, 2013). The polypropylene 

fibres give the concrete a better fire resistance by minimizing the occurrence of fire-induced 

spalling. This is because the fibres mixed in the concrete melts at relatively low tempera-

tures, about 160–170 °C, thus leading to the forming of pores through which the building 

pore pressure in a fire situation can escape. Another type of fibres that can increase the fire 

performance of HSC when included in the concrete mixture are steel fibres. The steel fibres 

simply improve the tensile strength of the concrete and thus reduce spalling by increasing 

the tensile strength of the concrete above the tensile stresses caused by the building internal 

pore pressure. However, the introduction of steel fibres to the concrete matrix may not fully 

eliminate fire induced spalling in HSC. Thus, adding a combination of both fibre types men-

tioned, i.e. hybrid fibres, would be the most effective way to increase the fire performance 

of high-strength concrete (Khaliq and Kodur, 2018). Additionally, increased air content 

through the addition of an air-entrainment agent in combination with PP fibres indicates to 

an improved spalling resistance for HSC exposed to fire (Akca and Zihnioǧlu, 2013).  

 

While the steel fibres improve the overall strength of the concrete, the addition of polypro-

pylene fibres will slightly reduce the compressive strength of the concrete, both the initial 

strength (Breitenbücher, 1998) and the residual strength when subject to elevated tempera-

tures (Akca and Zihnioǧlu, 2013). This loss of strength can, and should be, counteracted by 

increasing the cement content of the concrete by approximately 25 kg/m3 according to 

Breitenücher (1998). The recommended amounts of fibres to be added to the concrete mix 

for improved fire resistance is estimated by Kodur (2008) to be 0.1-0.15 % by volume of 

polypropylene fibres or about 1.75 % by mass of steel fibres. 

 

The fire performance of high-strength concrete is also affected by structural parameters such 

as rebar placement, especially the tie arrangements, and the general size of the member 

(Kodur and Phan, 2007). For normally reinforced HSC columns exposed to building fires, a 

tie configuration with 135° hooks instead of 90° hooks, as can be seen in Figure 3.5, has 

been shown to effectively improve the overall fire resistance of columns. 
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Figure 3.5. Comparison between different tie configurations and how they affect the bond strength in HSC 

columns under fire situation. (Khaliq, 2012) 

 

The bond strength between ties and concrete becomes especially important in HSC columns 

where the low permeability of the concrete results in higher pore pressure that in turn causes 

higher forces applied on the confining tie reinforcements (Khaliq, 2012). 

 

Additionally, standard precautions for improving fire performance of concrete members 

such as increasing member size and concrete cover, as well as reduced tie spacing for im-

proved confinement naturally also applies for HSC. 

 

 

3.1.6 Frost resistance 

 

The frost resistance of concrete is often thought to increase when using high-strength con-

crete, or more specifically, when low w/cm-ratios are obtained. For normal-strength concrete 

exposed to freezing and thawing cycles, additional air-entraining is required. This additional 

air provides voids to where the free water in the concrete subject to freezing can expand. If 

no additional unoccupied air voids are available, the expanding water produces an internal 

hydraulic pressure that cannot be relived, thus causing tensile stresses in the concrete. In 

conditions where this mechanism can continue and be repeated, so-called freeze-thaw cycles, 

the tensile stress might eventually exceed the tensile capacity of the concrete and conse-

quently cause cracking (Neville, 2011).  

 

By using high-strength concrete, several of the factors causing concrete structures to be dam-

aged by freeze-thaw cycles are reduced considerably, if not altogether erased Hale et al., 

2009). Firstly, the tensile capacity of high-strength concrete is higher than normal-strength 

concrete. However, since the increase in tensile strength for HSC is not very significant and 

even the tensile strength of very high strength concrete remains relatively low, this aspect 

will not on its own improve the frost resistance of concrete notably. A more important factor 

in explaining why HSC, even without air-entraining, can be frost resistant is the low water 

content of the concrete. Due to the low w/cm ratios connected with HSC, the concrete simply 

does not contain sufficient freezable water to cause any significant tensile stresses in the 
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concrete. The fact that all mixing water in HSC is generally consumed by the hydrating of 

cement, and thereby becoming chemically bound and non-freezable, is considered a central 

aspect of why HSC has an improved freeze-thaw resistance compared to NSC. Furthermore, 

the low permeability of a well-designed HSC effectively prevents external water to penetrate 

the concrete. The low permeability is therefore also absolutely crucial for making frost re-

sistant low air-content concretes. It has been discussed if a limit w/cm ratio exists that would 

lead to adequate properties in making a frost resistant concrete without the need of additional 

air-entraining.  Several studies have been carried out to show that high-strength concretes 

with w/cm ratios ranging from 0.24 to 0.36, and below, appears to possess satisfactory 

freeze-thaw resistance. However, Hale et al. (2009) mentions that similar concrete mixtures 

within the same range of w/cm ratios have shown unsatisfactory frost resistance. Thus, it can 

be concluded that freeze-thaw resistant concrete cannot be confidently realized simply by 

reducing the w/cm ratio.  

 

While there also are other methods for making the concrete less permeable, such as using 

silica fume, the most important factor for successfully achieving an impermeable concrete 

remains good curing practises (Kukko and Tattari, 1995). Therefore, even though in theory 

frost resistant non-air entrained high-strength concrete might be possible to produce, air-

entrainment is recommended if the concrete in question has not indeed been proven frost 

resistance. However, the required percentage of air content in the concrete can be expected 

to decrease as the w/cm ratio is lowered.  

 

 

3.1.7 General durability 

 

Although the dense microstructure of high-strength concrete might be the cause of some 

concern for the concrete durability in specific circumstances, such as in freezing environ-

ments and fire situations, it generally offers an advantage concerning the overall durability 

of the concrete structures.  

 

Carbonation of concrete is the chemical reaction between atmospheric carbon dioxide, OH2, 

and carbon hydroxide, Ca(OH)2, in concrete to produce calcium carbonate, CaCO3,  

according to the chemical reaction formula below: 

 

CO2 + Ca(OH)2 → CaCO3 + H2O           (15) 
 

This reaction, starting from the surface of the concrete, causes the normal pH value of 13-

14 of concrete to drop below 9. The normally high alkalinity of concrete is crucial for pro-

tecting the reinforcement steel from corrosion. Thus, the drop in alkalinity due to carbona-

tion enables the corrosion of the embedded reinforcement steel once the carbonation has 

reached the concrete cover depth. This reaction is one of the main deterioration mechanisms 

of concrete today and often the cause of needed repairs of concrete structures. However, 

carbonation is largely affected by the diffusivity of concrete, which for high-strength con-

crete has been shown to be satisfactory low. Other deleterious phenomenon based on the 

ingression of harmful substances, such as chloride and sulphate ingression, are similarly 

connected to the diffusivity and permeability of concrete. Both diffusivity and permeability 

are closely connected to the porosity and pore structure of the concrete. The low porosity 
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and favourable pore structure of HSC, mainly due to low w/cm ratios and often present sup-

plementary cementitious materials such as silica fume, therefore minimizes the deleterious 

effects of the deterioration mechanisms mentioned above. The effect lower w/c ratios and 

addition of silica fume has on the diffusion coefficient can be seen in Figure 3.6a. Similarly, 

Khan and Lynsdale (2002) demonstrated the correlation between compressive strength and 

carbonation depth by combining previous studies (Byfors, 1985) with own results, as shown 

in Figure 3.6b. The concrete samples studied by Khan and Lynsdale (2002) were made using 

blended cement containing fuel ash and silica fume. The 100 mm cube specimens were 

stored for 2 years, similarly to Byfors’s specimens that were stored 2 ½ years, in a normal 

atmospheric environment and at a constant temperature of 20 ± 3 °C and humidity of 65 ± 5 

% RH. 

 

 
Figure 3.6. a) Correlation between the diffusion coefficient and w/c ratio (CCAA, 2009). b) Effect of com-

pressive strength on carbonation depth after 2 years, for specimens > 70 MPa, and 2 ½ years for specimens 

< 70 MPa (Khan and Lynsdale, 2002).  

 

Another aspect concerning the durability of concrete is whether high-strength concrete is 

subject to alkali-aggregate reactions (AAR), or more specifically, the most common AAR, 

alkali-silica reactions (ASR). This reaction occurs between the alkalies present in the cement 

pore solution and reactive mineral compositions found in some aggregate types. The result 

of this reaction is a water absorbing gel which expands and thus causing internal stresses 

that may lead to extensive cracking of the concrete (Marzouk and Langdon, 2003). There-

fore, HSC with its low w/c ratio, low permeability and lack of free internal water might seem 

like an unlikely environment for the occurrence of ASR. However, Ferraris (1995) argues 

that in such dense and low air content concretes the lack of space for the expanding gel may 

cause concern. Ferraris (1995) also points out that water is always present at the start of 

hydration and that some reactions may occur when water is still available. Similarly to the 

freeze-thaw action, the tensile strength of HSC may arguably be sufficient for dealing with 

the internal stresses due to the expanding substances, but no real consensus on this matter 

concerning ASR has been reached either. However, it has been shown that HSC made with 

reactive aggregate is less affected by the negatives effects associated with ASR than normal-

strength concrete (Trägårdh, 1994; Marzouk and Langdon, 2003). Marzouk et al. (2003) 

attributed the improved performance of HSC under favourable ASR conditions to the en-

hanced microstructure and the secondary pozzolanic reactions, in this case provided by silica 

fume, which is a known additive for preventing negative effects due to ASR (Farny and 
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Kerkhoff, 1997). Although Trägårdh (1994) observed some advantages by using HSC in 

preventing ASR, it could not be proven that HSC is completely unaffected by ASR. Thus, it 

is recommended that when reactive aggregates and high alkaline cement is used for produc-

ing high-strength concrete, the mix must be tested for deleterious alkali-silica reactions.  

 

 

3.2 Optimizing the use of high-strength concrete 

3.2.1 Application areas requiring high-strength concrete 

 

As concrete is mostly recognized and used for its compressive strength, high-strength con-

crete is naturally made to enhance this material property even further. Even though steel is 

a structurally perfectly sound material for constructing high-rise buildings, making whole 

skyscrapers using steel has its problems. Not only is the steel highly vulnerable to fire, it has 

also been shown that structural steel frames are a costly alternative for high-rise buildings 

(Mills, 2010). Therefore, as concrete has seen a drastic rise in strength in recent decades, 

HSC has become a widely used and even favoured building material for constructing high-

rise buildings. High-strength concrete is required for high-rise structures in the sense that 

normal-strength concrete is simply not adequate anymore, especially for the lower level 

highly loaded structural members.  

 

Additionally, composite structures combining HSC and steel, at varying ratios depending on 

situation, can be considered the most optimal way of constructing high-rise buildings today. 

This way the undeniable benefit of using steel, which is reducing the total weight of the 

building, can also be exploited when building with concrete. However, as the clear majority 

of recent super-tall buildings (around 80 stories and more) constructed are primarily rein-

forced concrete structures, it can be understood that high-performance concrete in some form 

is the preferred material for constructing skyscrapers (Aldred, 2010). An indication that con-

crete is indeed at present the preferred skyscraper building material are that both the cur-

rently tallest building, the Burj Khalifa and the Jeddah Tower which will become the tallest 

building when completed, are made by HPC.   

 

Before the construction of the Burj Khalifa, high-strength concrete was rarely pumped to 

high elevations. Normal-strength concrete on the other hand had been pumped to heights of 

several hundred meters in previous projects such as the earlier mentioned Taipei 101, the 

Petronas Towers in Kuala Lumpur and the Jin Mao Building in Shanghai. It is believed that 

the first pumping of HSC concrete to any significantly high altitude happened when SCC 

with a compressive strength of 110 MPa was pumped up to 200 m at the construction of the 

Trump International Hotel and Tower in Chicago which was completed in 2009 (Nehdi 

2013). However, the single stage pumping of HSC up to an elevation of 568 m at the con-

struction of the Burj Khalifa in 2008 crushed the previous world-record of concrete pumping 

height from 1994 when concrete with a compressive strength of merely 25 MPa had been 

pumped to 532 m at the Riva del Garda hydroelectric power plant. 

 

Pumping of concrete, and especially HSC, to high elevations requires both carefully de-

signed concrete mixtures and powerful pumps. Nevertheless, successful pumping of con-

crete is a vital part of maintaining the competitiveness of reinforced concrete as the main 

material for constructing high-rise buildings. Pumping failures or need to use cranes for 



 

31 

 

placing large quantities of concrete means significantly reducing the casting rate and would 

thus question the viability of the material. For the Burj Khalifa project the pumping of the 

concrete represented a significant challenge and staged pumping was originally planned (Al-

dred, 2010). However, after extensive testing of pumping equipment and proposed concrete 

mixture to make sure pumping could be executed successfully in the demanding concreting 

conditions of Dubai single stage pumping was deemed possible. Both the C80 and C60 con-

cretes that were used in the Burj Khalifa were considered highly workable HPC with a slump 

flow of around 600 mm. The effects of pumping the concrete at high pressures for a consid-

erable time to the required heights were considered in the project and samples were taken 

regularly of all concretes when reaching the intended elevation. Although the pumping of 

the concrete on average resulted in a temperature rise of 2-3 °C, 10% reduced slump flow 

and roughly halve the plastic viscosity of the concrete, these effects were considered ac-

ceptable. To minimize the risks for pumping blockages and other problems, all pumping was 

conducted during night time and ice flakes were used as mixing water to keep the tempera-

ture of the concrete at an acceptable level. Naturally, as the building rose, and the pumping 

heights increased, lower grade concrete with higher w/cm ratios as well as smaller maximum 

aggregates could be applied, thus reducing the needed pumping pressure. The effect of the 

reduced concrete strength classes and maximum aggregate size had on the pumping pressure 

can be seen in Figure 3.7. 

 

 

 
Figure 3.7. Increasing pumping pressure as the construction height of the Burj Khalifa rises (Aldred, 2010). 

 

Supplying sufficiently workable concrete to the rising heights of modern skyscrapers effi-

ciently undoubtedly continues to be challenging but is crucial for the continued use of HSC 

in super high-rise buildings. But with the development of more powerful pumps in combi-

nation with the continuous advances in chemical admixture, even possibly establishing con-

crete mixing stations mid-height of high-rise buildings to reduce the pumping height, it is 

certainly possible to find a way to pump high-strength concrete to remarkable heights (Nehdi 

2013). This was proved with the success story of pumping the HSC for the Burj Khalifa 

which took place in one of the most demanding of concreting environments. 
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Another area where the use of high-strength concrete, or high-performance concrete, is es-

sential is at the construction of structures exposed to aggressive and severely damaging en-

vironments. These harmful environments may be encountered in construction projects such 

as marine and off-shore structures, power plants (mainly hydro and nuclear), sewage net-

works and generally demanding infrastructure projects such as bridges and crossovers. 

(Konkov, 2013) 

 

 

3.2.2 Areas where the use of high-strength concrete can be profitable 

 

While the use of high-strength concrete is almost inevitable when constructing concrete 

high-rise buildings and off-shore structures, there are also other aspects and application areas 

which benefit from the use of high-strength concrete. Firstly, the reduced dimensions of load 

bearing members obtained by using HSC in high-rise buildings is naturally also applicable 

in more moderately loaded structures. As Yousry and Shikh (2008) demonstrated, by using 

HSC of various strength classes compared to a normal-strength concrete with 35 MPa com-

pressive strength for columns in 12 story high building, the total costs of the columns could 

be reduced significantly. The fact that the columns in that study, located in the centre, edge 

and corners of the building, and subjected to loads in the range of 3-6 MN showed decreasing 

costs when higher strength concretes were utilized, indicates that the advantages of using 

HSC can also noticeable in more common buildings where the loads present are relatively 

small. 

 

Secondly, high-strength concrete can also be applied for making structures and buildings 

more environmentally sustainable. As cement production is a highly energy consuming pro-

cess, the cement content of concrete should be minimized to make the material more sus-

tainable. Although HSC usually contain more cement, or at least cementitious materials, per 

cubic meter than regular normal-strength concrete, the reduced total volume of concrete 

needed when using HSC can counteract and even outweigh the higher cement content per 

cubic meter. To highlight this an interesting study conducted by Pons and de la Fuente (2013) 

investigated how different strength concrete affects the overall sustainability of the resulting 

reinforced concrete columns in a medium sized residential building. Even for as small loads 

as these, an axial compression load of 2158 kN and a bending moment of 50 kNm, it was 

concluded that using higher strength concrete results in more sustainable columns. The most 

sustainable column alternative in the study proved to be a circular cross-section, compared 

to a square-shaped, made with 75 MPa self-consolidating concrete, when both SCC and vi-

brated concrete for the strength classes 25 MPa, 50 MPa and 75 MPa were compared (Pons 

2013). Similar results were reached in a study conducted by Park et al. (2013) where steel 

reinforced concrete columns of a 35-floor building were optimized considering both column 

costs and CO2 emissions. In this case it was shown that increasing the use of high-strength 

materials, both concrete and steel, resulted decreased overall costs and CO2 emissions alt-

hough unit costs and emissions for the high-strength materials are relatively high (Park et 

al).  

 

Furthermore, HSC often contains relatively high portions of supplementary cementitious 

materials which are industrial by-products, such as fly ash and silica fume, that would oth-

erwise be wasted as landfill (Wu et al., 2010). By using HSC, it is also more realistic to make 
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structures with a longer service life. This aspect should also be considered as a major im-

provement for a more sustainable construction industry.  

 

Additionally, the use of HSC in concrete-steel composite structures also has it clear ad-

vantages compared to NSC. Composite structures combining concrete and steel is a rela-

tively new form of structural elements that maximizes both materials advantages. For col-

umns, these composite members are primarily either in-filled columns, where a hollow steel 

section is filled with concrete, or encased columns where the concrete encases one or several 

steel sections, examples of these types are shown in Figure 3.8.  

 

 
Figure 3.8. Examples of composite columns (Shanmugam and Lakshmi, 2001).  

 

While composite columns made with NSC are an improvement to plain concrete or steel 

columns, the use of HSC instead can be assumed to improve the composite column even 

further (Shanmugam and Lakshmi, 2001). This improvement is mainly due to the increasing 

stiffness, or modulus of elasticity, along with the compressive strength of concrete. For com-

posite encased columns the use of the denser and more impregnable HSC gives the structural 

steel inside the column a better protection against penetration of harmful substances.  

 

As high-strength concrete still cracks at relatively low tensile stresses, the benefits of high 

compressive strength of the material is not so obvious in flexural members as in compression 

members (Neville and Aïtcin 1998). Bridges are good examples of this. Whereas the col-

umns or equivalent structural members carrying the vertical loads of the structure clearly 

benefits from a material with a higher compressive strength in the same way as columns in 

normal buildings, the bridge deck does not necessarily benefit to the same extent from a 

higher compressive strength concrete. However, as the bridge deck must be highly durable 

and be able to resist the ingress of harmful substances, a low w/cm ratio is undoubtedly 

beneficial, and with this naturally follows a high compressive strength. Additionally, con-

crete bridge girders, or concrete beams in general, benefit from the high compressive 

strength of the concrete by reducing the number of necessary girders, allowing shallower 

cross-sections and thus lighter structures. The benefits of using HSC in girders or beams is 

fully exploited when combined with prestressing which, when correctly designed, effec-

tively reduces the cracking of the concrete (Caldarone et al., 2005). The earlier reaching of 

demoulding strengths connected with the use of HSC naturally also applies to bridge con-

struction and general production of traditional or prestressed beams, whether cast in-situ or 

precast, and consequently reducing the overall construction time. 
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Although this thesis focuses on cast in-situ concrete, the use of HSC in the precast industry 

is also worth mentioning. In factory conditions the casting and curing processes are easier to 

control and so HSC, and even UHSC or FRHPC, can be used more effectively to create 

visually stunning concrete elements. These elements with complicated geometries and thin 

structures that at first glance does not appear to be made of concrete are becoming widely 

used on facades and making otherwise boring surfaces more aesthetically appealing. Exam-

ples of such spectacular precast elements are shown in Figure 3.9, both the façade and bal-

cony elements are made by fibre reinforced high-strength concrete. Naturally also more con-

ventional structural precast elements, such as columns, beams and girders, for various appli-

cations are made using higher-than-normal strength concrete when projects benefit from us-

ing precast elements or when concrete cast in-situ is not otherwise possible. 

 

 
 
Figure 3.9. a) The façade of The University of Southern Denmark consisting of precast high-strength steel fibre 

reinforced concrete elements (2014). b) Minimalistic high-strength steel fibre reinforced precast element bal-

conies at the Castor building project in Copenhagen (2018). (hi-con, 2019) 

 

  

3.2.3 Optimizing column design using high-strength concrete  

 

Since high-strength concrete is mainly used for columns, this thesis will focus on how the 

column design oh HSC can be optimized and what aspects should be given extra attention. 

When following the Eurocodes in the design of concrete columns, there are several important 

aspects determining the controlling factors concerning profitability of the use of high-

strength concrete in a column. Firstly, determining the required minimum longitudinal rein-

forcement, As,min, for a column is governed both by the dimension of the column cross-sec-

tion as well as the load, as seen in Equation 16 below; 

 

𝐴𝑠,𝑚𝑖𝑛 = 𝑀𝐴𝑋 {

0.10×𝑁𝐸𝑑

𝑓𝑦𝑑

0.002 × 𝐴𝑐
            (16) 

where NEd is the design axial force, fyd is the reinforcements design yield strength and Ac is 

the gross area of the concrete section. 
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Therefore, when the loading factor is governing, the minimum required reinforcement steel 

will be the same for a normal-strength concrete column and an HSC column, even though 

the HSC could be made with a smaller cross-section. However, the minimum reinforcement 

for columns is very rarely sufficient since this would require a practically purely compressed 

column without any considerable bending moment. Since the Eurocodes requires a minimum 

eccentricity of compression forces according to Equation 17, the presence of a bending mo-

ment is inevitable in column design. This bending moment can become significant, espe-

cially when the forces and cross-sections are getting great.  

 

𝑒0 = 𝑀𝐴𝑋 {
20⁡𝑚𝑚
ℎ/30

             (17) 

where h is the depth of the column. 

 

The brittle nature of HSC compared to NSC is another significant aspect that needs to be 

considered when designing HSC columns. Firstly, it is important to recognize that the stress-

strain curve changes with the increasing compressive strength of concrete from a parabolic-

rectangular to an almost triangular shape, as illustrated in Figure 3.10.  

 

 
Figure 3.10. Proposed stress blocks for varying concrete strength classes, in cube strengths, according to the 

BS 8110, highlighting the almost triangular shape connected to high-strength concrete explaining its more 

brittle failure model (Mcfarlane, 2007). 

 

This is essentially the result of the decreasing ultimate compressive strain of concrete as the 

compressive strength rises. According to the Eurocode this ultimate compressive strain, εcu2, 

can be considered having a constant value of 3,5 ‰ for NSC, fck ≤ 50 MPa, while for HSC 

it decreases with the compressive strength, fck, according to Equation 18 below; 

 

ε𝑐𝑢2(‰) = 2.6 + 35⁡[(90 − 𝑓𝑐𝑘) 100⁄ ]4           (18) 
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Ensuring a sufficiently ductile design of columns made with HSC is thus vital. According to 

McFarlane (2007), this is achieved most effectively by sufficient core confinement. The 

transverse reinforcement of columns that provide the core confinement should enable the 

column to withstand the applied load even after the spalling of the concrete cover shell and 

thus avoid sudden column failures. Although the design of transverse links is also an im-

portant aspect for NSC columns, the detailing for NSC columns regarding transverse rein-

forcement is not adequate in providing sufficient core confinement and restraint to the lon-

gitudinal reinforcement in HSC columns. Thus, when designing HSC columns careful atten-

tion should be put on the transverse reinforcement links in terms of spacing, anchoring and 

general strength of the steel (McFarlane 2007). An important and easy step on the way of 

reaching an acceptable core confinement for HSC columns are assuring that the ends of the 

transverse links are bent into the core of the columns and thus anchored properly, demon-

strated in Figure 3.11. This applies to both circular and rectangular columns and, as men-

tioned in Chapter 3.1.5, is also an effective way of increasing the capacity of HSC columns 

when exposed to fire.  

 

 
Figure 3.11. a) Illustration of the mechanism of the spalling of the concrete cover and core confinement by 

inadequate transverse reinforcement links and in b) properly anchored transverse links to provide sufficient 

core confinement for reinforced HSC columns (McFarlane, 2007). 

 

As the higher strength of HSC will not only enable columns with smaller cross-sections due 

to its superior resistance to compression forces compared to NSC, but also reduce the need 

of reinforcement steel because of its contribution in resisting bending moments. The use of 

HSC thus enables two main optimization options; reducing the dimensions of the columns 

cross-section or maintaining the cross-section dimensions but reducing the reinforcement 

steel. Both options have their advantages, economical, esthetical as well as constructability 

wise. To try and answer whether there exists an optimal balance between these aspects, a 

hypothetical but realistic, scenario will be evaluated in the following chapter. 
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4 Column comparison 
  

To understand what effect the choice of concrete class can have on highly loaded reinforced 

concrete columns, the following imaginary, but realistic, scenario was studied. Simply sup-

ported columns of a high-rise building that are subject to purely compressive loads, ranging 

from 20 MN to 50 MN, were considered for this study. Two different reinforcement ap-

proaches were considered; minimum reinforcement and a reinforcement to minimize the 

cross-section area of the column. For each load case and reinforcement approach, the column 

was calculated and designed using one normal-strength concrete, C35/45, and three different 

high-strength concretes, C55/67, C70/85 and C90/105. This evaluation provides an estimate 

of what savings are realistically achievable by using high-strength concrete. Both from a 

purely economic aspect when only materials and production costs are evaluated, but also 

when the increased free floor space of the HSC columns is taken into consideration. 

 

4.1 Structural analysis and considerations 

 

The columns to be evaluated were to represent typical load bearing members in potential 

future high-rise building projects in Finland. Therefore, loads that can be considered as high, 

or higher than normally occurring column loads in Finland today, were emphasized. In ac-

cordance to this, the varying load cases were chosen as being relevant loads for columns 

positioned in different areas of the building. For every load case, the column was designed 

with each of the compared concrete classes as well as utilizing a minimum reinforcement 

and minimum column cross-section area approach. All calculations relevant in determining 

the required dimensions and quantities of the column and reinforcements were done in ac-

cordance to the Eurocodes.  

For the minimum reinforcement option different dimensions of main longitudinal reinforce-

ment bars for different load cases were used to realistically reach the required area of rein-

forcement, according to Equation 16. For the option of minimizing the area of the column a 

relatively high reinforcement ratio was utilized, but still under the allowed maximum rein-

forcement. Additionally, the maximum reinforcement was restricted to what can reasonably 

be reached by using 32 mm diameter rebars. For this evaluation, and for the sake of compa-

rability, the main longitudinal reinforcements were kept constant for all columns made of 

different concrete within the same load case. This was expected to clearly illustrate what 

effects using high-strength concrete can have on the dimensions of columns and simultane-

ously it enabled the investigation of the economic effects it can have.  

The columns were presumed to have a height of 4 meters, the assumed column type and 

buckling mode for the calculations is shown in Figure 4.1a along with an example drawing 

of a typical column section, illustrating the relevant column dimensions and placement of 

reinforcements, Figure 4.1b. 
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Figure 4.1. a) Assumed column type and buckling type. b) Example of a typical column, 30 MN load case with 

C70/85 concrete and minimum column area option, and its section view showing the general dimensions of the 

column and reinforcement principle applied to all column cases. 

The transverse reinforcement was not regarded as a notable design parameter in this case 

and therefore kept constantly as closed loops made of 10 mm rebars with a 200 mm spacing 

for all the columns. This seemed like a reasonable assumption and was sufficient in all the 

cases according to the Eurocode regulations concerning transverse reinforcements. How-

ever, due to the large cross-sections of the columns, some additional transverse tie-reinforce-

ments in form of cross-ties had to be applied. These cross ties were placed so that no longi-

tudinal reinforcement bar would be further than 150 mm from a bar restrained by a cross tie 

or by the corner of the transverse tie loop reinforcement, as is required in the Eurocodes. An 

example of the column reinforcement from the 30 MN load case of both reinforcement op-

tions with the concrete class C70/85 is shown in Figure 4.2. The same reinforcement princi-

ples are followed for all different load cases and column configurations. 
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Figure 4.2. Example cross-section views of the reinforcement principles applied for the minimum column area, 

left, and the minimum reinforcement option, right. Both examples are from the 30 MN load case with class 

C70/85 concrete. 

As the columns were assumed to be located indoors, the exposure class XC1 was chosen for 

the calculations. Thus, no significant requirements due to environmentally connected expo-

sure classes had to be considered. Similarly, the fire safety aspects were assumed not to 

affect the structural design. If the chosen concrete cover of 35 mm would not suffice in 

ensuring the relevant fire safety class, external fireproofing similar for all columns can be 

added. Other relevant input data for calculating and ensuring that the requirements of the 

columns are fulfilled according to the Eurocodes were chosen as follows: 

 

• Maximum aggregate size of 16 mm 

• Accepted deviation, Δcdev = 10 mm 

• Reinforcement steel strength, fyk = 500 MPa 

• Working life of 100 years 

• Structure class = 1 (rakenneluokka 1), resulting in the following reduced safety fac-

tors: 

o The partial safety factor for concrete, γC = 1.35 

o The partial safety factor for reinforcing steel, γS = 1.1 

• Coefficient for unfavourable effects on the concrete strength, αCC = 0.85 

• The only considerable bending moment applied to the columns was that due to the 

minimum eccentricity of the compression force 

o The minimum eccentricity, 𝑒0 = 𝑀𝐴𝑋 {
ℎ

30

20⁡𝑚𝑚
 

o The determining bending moment, MEd, thus being MEd = e0∙NEd,  

where NEd is the applied compression force  
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Generally, the resistance of a column would not be fully utilized, since some safety is wanted 

against possible changes in the future that could affecting the loads. But since this is only a 

hypothetical scenario, the columns in this study were designed with a utilization ratio as 

close to a hundred percent as possible. This was done by increasing the column dimensions 

by 50 mm at a time until the required resistance was reached. The columns were largely kept 

square shaped, but occasionally only one side was decreased by 50 mm to optimize the re-

quired consumption of concrete. The usual limiting factor demanding larger column dimen-

sions, or increased reinforcement, was not the compression resistance of the column but the 

resistance to biaxial bending Equation 19. This although there was no actual external bend-

ing moment and the second order moment was neglectable. 

 

(
𝑀𝐸𝑑𝑧

𝑀𝑅𝑑𝑧
)
𝑎

+ (
𝑀𝐸𝑑𝑦

𝑀𝑅𝑑𝑦
)
𝑎

≤ 1.0              (19) 

where: 

     MEdz/y is the design moment, including 2nd order moment, around the respective axis 

     MRdz/y is the moment resistance in the respective direction 

     a         is the exponent; 

                for circular and elliptical cross-sections: a = 2.0 

                for rectangular cross-sections: 

   

                 

                with linear interpolation for intermediate values. 

                where: 

NEd is the design value of axial force 

NRd = Acfcd + Asfyd, the design axial resistance of the section 

where: 

     Ac is the gross area of the concrete section 

     As is the area of longitudinal reinforcement  

 

Even so, this proved to be an acceptable design criterion since the utilization ratio of the 

columns remained very high. An example of this high utilization ratio and a typical appear-

ance of the interaction diagram is shown in Figure 4.3, in this case for the minimum column 

area option of the 30 MN load case and 800 x 800 mm2 sized with class C70/85 concrete 

column. 

 

 

NEd/NRd 0.1 0.7 1.0 

a = 1.0 1.5 2.0 
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Figure 4.3. Example of a typical interaction diagram from the calculations of the load case 30 MN and the 

minimum column area option using C70/85 class concrete with resulting 800x800 mm2 column cross-section 

and 28 symmetrically placed 32 mm main rebars. 

 

The resulting column dimensions and specifications from all the load cases can be seen in 

the Tables 4.1 - 4.4 below. These results will be the base for the cost calculations in the 

following chapter where the economic aspect of the different column configurations will be 

evaluated. 

 
Table 4.1. Resulting dimensions and quantities for all column configurations from the 20 MN load case. 

 
 

 

20 MN

Minimum

column area

Profile 

b

[mm]

h

[mm]

Ac

[m2]

Vc

[m3]

Formwork

[m2]

As, min

[mm2]

Longitudinnal

reinforcement,

[nTØ]

As,act

[mm2]

Transverse 

reinforcement*

[kg/column]

Total 

reinforcement

[kg/column]

C35/45 850 800 0.68 2.72 13.2 4400 24T32 19302 66.6 824

C55/67 700 650 0.46 1.82 10.8 4400 24T32 19302 55.5 813

C70/85 650 600 0.39 1.56 10.0 4400 24T32 19302 51.8 809

C90/105 600 600 0.36 1.44 9.6 4400 24T32 19302 49.3 807

20 MN

Minimum

reinforcement

Profile 

b

[mm]

h

[mm]

Ac

[m2]

Vc

[m3]

Formwork

[m2]

As, min

[mm2]

Longitudinnal

reinforcement,

[nTØ]

As,act

[mm2]

Transverse 

reinforcement*

[kg/column]

Total 

reinforcement

[kg/column]

C35/45 1000 950 0.95 3.80 15.6 4400 22T16 4423 77.7 251

C55/67 800 800 0.64 2.56 12.8 4400 22T16 4423 64.1 238

C70/85 750 700 0.53 2.10 11.6 4400 22T16 4423 59.2 233

C90/105 700 700 0.49 1.96 11.2 4400 22T16 4423 56.7 230

*Consists of closed loop ties and additional cross ties where necessary, according to the principal shown 

in Figure 3.1b and 3.2, all with Ø=10 mm and a 200 mm spacing
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Table 4.2. Resulting dimensions and quantities for all column configurations from the 30 MN load case. 

 
 

 

 
Table 4.3 Resulting dimensions and quantities for all column configurations from the 40 MN load case. 

 
 

 
Table 4.4. Resulting dimensions and quantities for all column configurations from the 50 MN load case. 

 

30 MN

Minimum

column area

Profile 

b

[mm]

h

[mm]

Ac

[m2]

Vc

[m3]

Formwork

[m2]

As, min

[mm2]

Longitudinnal

reinforcement,

[nTØ]

As,act

[mm2]

Transverse 

reinforcement*

[kg/column]

Total 

reinforcement

[kg/column]

C35/45 1050 1050 1.10 4.41 16.8 6600 28T32 22519 113.4 997

C55/67 900 850 0.77 3.06 14.0 6600 28T32 22519 97.4 981

C70/85 800 800 0.64 2.56 12.8 6600 28T32 22519 88.8 973

C90/105 750 750 0.56 2.25 12.0 6600 28T32 22519 83.8 968

30 MN

Minimum

reinforcement

Profile 

b

[mm]

h

[mm]

Ac

[m2]

Vc

[m3]

Formwork

[m2]

As, min

[mm2]

Longitudinnal

reinforcement,

[nTØ]

As,act

[mm2]

Transverse 

reinforcement*

[kg/column]

Total 

reinforcement

[kg/column]

C35/45 1200 1150 1.38 5.52 18.8 6600 22T20 6912 92.5 364

C55/67 1000 950 0.95 3.80 15.6 6600 22T20 6912 77.7 349

C70/85 900 900 0.81 3.24 14.4 6600 22T20 6912 71.5 343

C90/105 850 850 0.72 2.89 13.6 6600 22T20 6912 67.8 339

*Consists of closed loop ties and additional cross ties where necessary, according to the principal shown 

in Figure 3.1b and 3.2, all with Ø=10 mm and a 200 mm spacing

40 MN

Minimum

column area

Profile 

b

[mm]

h

[mm]

Ac

[m2]

Vc

[m3]

Formwork

[m2]

As, min

[mm2]

Longitudinnal

reinforcement,

[nTØ]

As,act

[mm2]

Transverse 

reinforcement*

[kg/column]

Total 

reinforcement

[kg/column]

C35/45 1300 1250 1.63 6.50 20.4 8800 30T32 24127 136.9 1084

C55/67 1050 1000 1.05 4.20 16.4 8800 30T32 24127 112.2 1059

C70/85 950 950 0.90 3.61 15.2 8800 30T32 24127 103.6 1051

C90/105 900 900 0.81 3.24 14.4 8800 30T32 24127 98.6 1046

40 MN

Minimum

reinforcement

Profile 

b

[mm]

h

[mm]

Ac

[m2]

Vc

[m3]

Formwork

[m2]

As, min

[mm2]

Longitudinnal

reinforcement,

[nTØ]

As,act

[mm2]

Transverse 

reinforcement*

[kg/column]

Total 

reinforcement

[kg/column]

C35/45 1400 1350 1.89 7.56 22 8800 18T25 8836 107.3 454

C55/67 1150 1100 1.27 5.06 18 8800 18T25 8836 88.8 436

C70/85 1050 1000 1.05 4.20 16.4 8800 18T25 8836 81.4 428

C90/105 1000 950 0.95 3.80 15.6 8800 18T25 8836 77.7 424

*Consists of closed loop ties and additional cross ties where necessary, according to the principal shown 

in Figure 3.1b and 3.2, all with Ø=10 mm and a 200 mm spacing

50 MN

Minimum

column area

Profile 

b

[mm]

h

[mm]

Ac

[m2]

Vc

[m3]

Formwork

[m2]

As, min

[mm2]

Longitudinnal

reinforcement,

[nTØ]

As,act

[mm2]

Transverse 

reinforcement*

[kg/column]

Total 

reinforcement

[kg/column]

C35/45 1450 1400 2.03 8.12 22.8 11000 36T32 28953 151.7 1288

C55/67 1150 1150 1.32 5.29 18.4 11000 36T32 28953 123.3 1260

C70/85 1100 1050 1.16 4.62 17.2 11000 36T32 28953 117.1 1254

C90/105 1000 1000 1.00 4.00 16.0 11000 36T32 28953 108.5 1245

50 MN

Minimum

reinforcement

Profile 

b

[mm]

h

[mm]

Ac

[m2]

Vc

[m3]

Formwork

[m2]

As, min

[mm2]

Longitudinnal

reinforcement,

[nTØ]

As,act

[mm2]

Transverse 

reinforcement*

[kg/column]

Total 

reinforcement

[kg/column]

C35/45 1550 1500 2.33 9.30 24.4 11000 24T25 11781 118.4 581

C55/67 1250 1250 1.56 6.25 20.0 11000 24T25 11781 97.4 560

C70/85 1150 1150 1.32 5.29 18.4 11000 24T25 11781 90.0 552

C90/105 1100 1050 1.16 4.62 17.2 11000 24T25 11781 85.1 547

*Consists of closed loop ties and additional cross ties where necessary, according to the principal shown 

in Figure 3.1b and 3.2, all with Ø=10 mm and a 200 mm spacing
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4.2 Cost evaluation 

 

For the cost evaluation part of the column comparison, the relevant parts contributing to the 

total cost of a column were evaluated. Some aspects, such as work site labour costs and 

concrete pumping, were excluded since they present no noticeable cost difference for the 

different column types. Another aspect which is difficult to accurately value is the true prof-

its of increased free floor space obtained by minimizing the area occupied by load-bearing 

members which is made possible by using higher strength concrete. Besides the free floor 

space gained due to smaller and fewer load bearing members, smaller columns may also be 

more aesthetically pleasing, which is even harder to put an actual price on. Additionally, 

smaller columns also contribute in decreasing the total building weight, enabling savings to 

be made at the foundations. 

 

The more tangible cost aspects contributing to the final expenses of a reinforced concrete 

column are realistic estimations confirmed by experts in the corresponding field. Firstly, the 

costs of the different concrete classes had to be established. Since only normal-strength con-

cretes are continually produced and widely available as ready mixed concretes in Finland, 

only the C35/45 class of the concretes compared in this study was publicly priced. Therefore, 

it was thought that the concrete prices used in this evaluation should be based on the raw 

material costs plus a buffer which considers the production and quality control expenses. 

The raw material costs for concrete applied in this study can be seen in Table 4.5, transpor-

tation costs to the concrete factory are included in these prices.  

 
Table 4.5. Assumed prices for the raw materials used in the studied concretes. 

 
 

All the material costs as well as the final concrete prices were confirmed by Rudus Oy (Ru-

dus, 2018a) to be within realistic limits, and more importantly resulting in a sensible price 

ratio between the concrete classes evaluated in this study. The contents and resulting prices 

of each concrete class that were used in this evaluation are shown in Table 4.6. However, 

the fact that the highest strength concrete, the C90/105, is only modified by reducing the 

water content of the C70/85 class concretes recipe might have resulted in a rather too low 

price for the C90/105 concrete, which will be discussed more thoroughly later. Since the mix 

design for the C35/45, C55/67 and C70/85 were provided by Rudus Oy, one aspect of this 

thesis became to investigate how easily even higher strength concretes could be achieved. 

Thus, the C90/105 concrete is a highly experimental concrete and would undoubtedly require 

extensive testing before becoming publicly available. Especially the raw material contents 

and proportions of this concrete could probably be optimized further. More about the per-

formance of this experimental concrete follows in Chapter 5. 

 

€/tn €/kg

Cement, Mega (1 100 0.1

Cement, SR (2 110 0.11

Silica fume 300 0.3

Fly ash 25 0.025

Aggregate 20 0.02

Superplasticizer 1000 1

2) SR-cement by Finnsementti, CEM I 42.5 N - SR, see also Section 4.1.

1) Mega-cement by Finnsementti, CEM I 52.5 N, see also Section 4.1.
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Table 4.6. Compositions of the evaluated concrete classes and the resulting price components of the total 

cost and final prices including a price margin covering additional production costs. 

 
 

 

The price buffer, or price margin, was chosen so that the final price of the C35/45 concrete 

would coincide with the publicly available price of that concrete, minus about 25 %, which 

is a reasonable discount for contractors. For the high-strength concretes the price buffer was 

chosen to be slightly larger. This is a fair assumption since HSC is more difficult to produce 

and requires more attention to quality control than the accustomed normal-strength con-

cretes. Additionally, the introduction of new concrete types may always cause hidden ex-

penses that are difficult to foresee, thus the price buffer must also cover these. However, 

once the use of these new concretes has become more common, the prices will undoubtedly 

drop accordingly, even though the quantities of HSC needed will presumably stay compar-

atively small.  

 

Regarding the transportation costs of concrete, some assumptions were made. It was as-

sumed that full concrete trucks could always be used to transport the ready-mix concrete the 

hypothetical distance of 8 km to the worksite from the concrete plant. Furthermore, the de-

livery of the ready-mix concrete would take place during normal working hours with a con-

crete truck capable of pumping the concrete as well. According to the pricing list of Rudus 

Oy, this would result in a cost of 15 €/m3 concrete. For the pumping of the concrete it was 

assumed, rather optimistically perhaps, that it could be done in half an hour. This would 

result in a cost of 234.1 €/truck, or 18 €/m3 concrete, for a truck capable of pumping the 

concrete over 30 meters and containing 13 m3 of concrete (Rudus, 2018b). The combined 

cost of transportation and pumping of concrete thus becomes 33 €/m3 concrete. Worth men-

tioning is that in order to fully benefit from the smaller amount of required concrete when 

using high-strength concrete, a more general scenario must be assumed where at least several 

columns can be cast at once and consequently not one single concrete truck would be suffi-

cient for the operation. Also, trucks with a capacity of 13 m3 are admittedly the top-of-the-

range equipment, and trucks with capacities of 6-10 m3 are more commonly used, which 

would result in even larger benefits when smaller quantities of concrete is required. 

 

The use of prefabricated reinforcement units was the chosen method for installing the col-

umn reinforcements in this evaluation. These elements would be transported and lifted into 

place at the worksite. This system is often preferred to manually install the reinforcement at 

the worksite both due to economic advantages, but also for minimizing the work done at site. 

According to information from Finnish reinforcement suppliers, the cost of reinforcements 

of this type is typically in the range of 1.0-1.1 €/kg steel. This variation depending on the 

quantity of the ordered series and how densely reinforced the units are. Thus, it was decided 

C35/45: C55/67: C70/85: C90/105:

kg/m
3

€/m
3

kg/m
3

€/m
3

kg/m
3

€/m
3

kg/m
3

€/m
3

Cement 299 29.9 419 41.9 518 57.0 528 58.1

Silica 0 0.0 0 0.0 27 8.1 28 8.4

Fly ash 84 2.1 118 3.0 0 0.0 0 0.0

Aggregate 1812 36.2 1670 33.4 1696 33.9 1727 34.5

SP 2.2 2.2 3.9 3.9 5.1 5.1 9.8 9.8

Water 188 0 187 0 183 0 163 0

Total 70.5 82.2 104.1 110.8

Plus price margin: 35 % 108 50 % 164 50 % 208 50 % 222
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that for the minimum reinforcement columns option and for the more densely reinforced 

minimized column area option, the values of 1.1 €/kg and 1.0 €/kg steel would be used, 

respectively. Concerning the transportation of the reinforcement elements, a 100 km trans-

portation distance was assumed as well as 20 elements could be transported on one truck. 

This, in combination with a realistic transportation cost of 3 €/km, resulted in total transpor-

tation costs of approximately 15 €/column for the prefabricated reinforcement units. Addi-

tionally, a cost of 35 €/column reinforcement was estimated for lifting the elements in place 

at the worksite.  

 

Due to the relatively large size of the columns, the costs for the formwork was estimated by 

the area of required formwork for each column, i.e. the area of the column sides. For smaller 

columns, with cross-sectional dimensions between 200 x 200 mm2 and 600 x 600 mm2, the 

option of standardized column forms would be available at a unit price of 16 €/day according 

to PERI (2018), a major formworks provider in Finland. However, for larger columns, which 

would be needed in this evaluation, a realistic cost estimation for the formwork is 1.50 €/m2 

per day (Peri, 2018). Therefore, this value was used for the following calculations. Further-

more, since this cost is per day, to get the total cost of the formworks, it was assumed that 

the formwork would be needed for 7 days at the construction site for each column. 

 

The earlier calculations regarding the quantities of concrete, reinforcement steel and form-

work, Tables 4.1-4.4, were used for calculating the final costs of each column type conducted 

below. Also, all the cost calculation tables contain the previously explained assumptions for 

additional expenses, which can be summarized as: 

 

• Transporting the concrete 8 km during normal working hours, using full concrete 

trucks (13 m3 concrete/truck) capable of pumping the concrete within half an hour 

upon arrival at the worksite, 15 + 18 = 33 €/m3 

• Transportation of prefabricated reinforcement units, 15 €/column 

• Lifting of prefabricated reinforcement units in place, 35 €/column 

• Formwork required at the construction site for the duration of 7 days per column 

 

The resulting cost calculations and total costs for each column type for the different loading 

cases are shown in the following Tables 4.7-4.10. 

  



 

46 

 

Table 4.7. Cost breakdown for all the column configurations for the 20 MN load case based on the previously 

calculated quantities. 

 
 
Table 4.8. Cost breakdown for all the column configurations for the 30 MN load case based on the previously 

calculated quantities. 

 
 
Table 4.9. Cost breakdown for all the column configurations for the 40 MN load case based on the previously 

calculated quantities. 

 

20 MN

Minimum

column area

Concrete

[€/m
3
]

Transport

and pumping

[€/m
3
]

Reinforcement

[€/kg]

Formwork

[€/m
2
∙d]

Concrete

[€/column]

Transport

and pumping

[€/column]

Reinforcement

[€/column]

Formwork

[€/column]

Total cost

[€]

C35/45 108 33 1.0 1.5 293.8 89.8 874.2 138.6 1396

C55/67 164 33 1.0 1.5 298.5 60.1 863.1 113.4 1335

C70/85 208 33 1.0 1.5 324.5 51.5 859.4 105.0 1340

C90/105 222 33 1.0 1.5 319.7 47.5 856.9 100.8 1325

20 MN

Minimum 

reinforcement

Concrete

[€/m
3
]

Transport

and pumping

[€/m
3
]

Reinforcement

[€/kg]

Formwork

[€/m
2
∙d]

Concrete

[€/column]

Transport

and pumping

[€/column]

Reinforcement

[€/column]

Formwork

[€/column]

Total cost

[€]

C35/45 108 33 1.1 1.5 410.4 125.4 326.4 163.8 1026

C55/67 164 33 1.1 1.5 419.8 84.5 311.5 134.4 950

C70/85 208 33 1.1 1.5 436.8 69.3 306.1 121.8 934

C90/105 222 33 1.1 1.5 435.1 64.7 303.4 117.6 921

30 MN

Minimum

column area

Concrete

[€/m
3
]

Transport

and pumping

[€/m
3
]

Reinforcement

[€/kg]

Formwork

[€/m
2
∙d]

Concrete

[€/column]

Transport

and pumping

[€/column]

Reinforcement

[€/column]

Formwork

[€/column]

Total cost

[€]

C35/45 108 33 1.0 1.5 476.3 145.5 1047.3 176.4 1846

C55/67 164 33 1.0 1.5 501.8 101.0 1031.3 147.0 1781

C70/85 208 33 1.0 1.5 532.5 84.5 1022.7 134.4 1774

C90/105 222 33 1.0 1.5 499.5 74.3 1017.7 126.0 1717

30 MN

Minimum 

reinforcement

Concrete

[€/m
3
]

Transport

and pumping

[€/m
3
]

Reinforcement

[€/kg]

Formwork

[€/m
2
∙d]

Concrete

[€/column]

Transport

and pumping

[€/column]

Reinforcement

[€/column]

Formwork

[€/column]

Total cost

[€]

C35/45 108 33 1.1 1.5 596.2 182.2 450.2 197.4 1426

C55/67 164 33 1.1 1.5 623.2 125.4 433.9 163.8 1346

C70/85 208 33 1.1 1.5 673.9 106.9 427.1 151.2 1359

C90/105 222 33 1.1 1.5 641.6 95.4 423.0 142.8 1303

40 MN

Minimum

column area

Concrete

[€/m
3
]

Transport

and pumping

[€/m
3
]

Reinforcement

[€/kg]

Formwork

[€/m
2
∙d]

Concrete

[€/column]

Transport

and pumping

[€/column]

Reinforcement

[€/column]

Formwork

[€/column]

Total cost

[€]

C35/45 108 33 1.0 1.5 702.0 214.5 1133.9 214.2 2265

C55/67 164 33 1.0 1.5 688.8 138.6 1109.2 172.2 2109

C70/85 208 33 1.0 1.5 750.9 119.1 1100.6 159.6 2130

C90/105 222 33 1.0 1.5 719.3 106.9 1095.6 151.2 2073

40 MN

Minimum 

reinforcement

Concrete

[€/m
3
]

Transport

and pumping

[€/m
3
]

Reinforcement

[€/kg]

Formwork

[€/m
2
∙d]

Concrete

[€/column]

Transport

and pumping

[€/column]

Reinforcement

[€/column]

Formwork

[€/column]

Total cost

[€]

C35/45 108 33 1.1 1.5 816.5 249.5 549.5 231.0 1846

C55/67 164 33 1.1 1.5 829.8 167.0 529.2 189.0 1715

C70/85 208 33 1.1 1.5 873.6 138.6 521.0 172.2 1705

C90/105 222 33 1.1 1.5 843.6 125.4 516.9 163.8 1650
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Table 4.10. Cost breakdown for all the column configurations for the 50 MN load case based on the previously 

calculated quantities. 

 
 

 

As can be seen from the tables above, and more clearly from the Table 4.11 below, summa-

rizing the final costs of the various combinations evaluated, the use of higher strength con-

crete in columns does not seemingly appear to provide any significant economic benefits.  

 
Table 4.11. Summary of the resulting total costs for each column configuration. 

 
 

However, many of the advantages of using HSC has not been taken into consideration at this 

stage of the evaluation due to the difficulties of accurately valuating these advantages. In the 

following chapter a more thorough evaluation of the results will be conducted. 

 

 

4.3 Discussion of the column comparison results 

 

Even though this case study indicates that the purely economic benefits of using high-

strength concrete in columns are not very significant, many advantages of using HSC were 

left unconsidered. One of the main advantages of using HSC left unconsidered was the space 

saved. As can be seen from Figure 4.4, the cross-section area of all the HSC columns are 

considerably smaller than the compared NSC column for all load cases.  

50 MN

Minimum

column area

Concrete

[€/m
3
]

Transport

and pumping

[€/m
3
]

Reinforcement

[€/kg]

Formwork

[€/m
2
∙d]

Concrete

[€/column]

Transport

and pumping

[€/column]

Reinforcement

[€/column]

Formwork

[€/column]

Total cost

[€]

C35/45 108 15 1.0 1.5 877.0 121.8 1338.1 239.4 2576

C55/67 164 15 1.0 1.5 867.6 79.4 1309.7 193.2 2450

C70/85 208 15 1.0 1.5 961.0 69.3 1303.5 180.6 2514

C90/105 222 15 1.0 1.5 888.0 60.0 1294.9 168.0 2411

50 MN

Minimum 

reinforcement

Concrete

[€/m
3
]

Transport

and pumping

[€/m
3
]

Reinforcement

[€/kg]

Formwork

[€/m
2
∙d]

Concrete

[€/column]

Transport

and pumping

[€/column]

Reinforcement

[€/column]

Formwork

[€/column]

Total cost

[€]

C35/45 108 15 1.1 1.5 1004.4 139.5 688.9 256.2 2089

C55/67 164 15 1.1 1.5 1025.0 93.8 665.8 210.0 1995

C70/85 208 15 1.1 1.5 1100.3 79.4 657.7 193.2 2031

C90/105 222 15 1.1 1.5 1025.6 69.3 652.2 180.6 1928

20 MN 30 MN 40 MN 50 MN

Minimum column 

area option

C35/45 1396 1846 2265 2576

C55/67 1335 1781 2109 2450

C70/85 1340 1774 2130 2514

C90/105 1325 1717 2073 2411

20 MN 30 MN 40 MN 50 MN

Minimum

reinforcement option
C35/45 1026 1426 1846 2089

C55/67 950 1346 1715 1995

C70/85 934 1359 1705 2031

C90/105 921 1303 1650 1928

Total column costs for each load case

[€]

Column loads

Total column costs for each load case

[€]
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Figure 4.4. Graph illustrating the obtainable reductions in single column areas by using higher strength con-

cretes. 

 

The reduction of area per column compared to the C35/45 concrete column ranges from 31 

% to 35 %, 41 % to 45 % and 47 % to 51 % for the C55/67, C70/85 and C90/105 columns, 

respectively. In addition to the decreased absolute area of one column, the smaller required 

cross-section area of HSC columns gives the designer more freedom for optimizing the final 

free floor area as well as adjusting the cross-sections of the columns throughout the building. 

The higher loadbearing capacity of HSC columns with equal dimensions as regular concrete 

columns could for instance be utilized to reduce the total number of columns needed, and 

thus liberate floor space in a more optimal way than by simply reducing the cross-section 

area of the columns. Using different strength classes of concrete for columns on different 

levels of the building also gives the opportunity to maintain the same column dimensions 

throughout the whole building, thus facilitating the reuse of the same column formworks 

throughout parts, or all of the floors of the building. 

 

From Figure 4.4 it can also be observed that the variation in area between the three high-

strength concrete columns is relatively small. This can be explained by that as the cross-

section dimensions decreases, the moment arm of the columns resisting moment also de-

creases. Thus, as the reinforcement in this case study was kept constant for the different 

column types, the resisting moment of the column also decreases even though the concrete 

compressive strength increases. Although no significant bending moment was applied in this 

case study, the effect of the biaxial bending was generally the limiting factor for decreasing 

the cross-section dimensions of the columns further. The moment resistance of the columns 

could of course be increased by adding more reinforcing steel, but since steel is relatively 

expensive this would be an economically unattractive option. Therefore, it is safe to say that 

focusing simply on decreasing the dimensions of the columns by increasing the reinforce-

ment ratio is not an appropriate design approach, especially when significant external mo-

ments must be taken into consideration.  

 

A clearer overview of how the use of different concrete strength classes influence the total 

costs per column can be found from Figure 4.5. From these graphs it can be confirmed that 

as the loading increases the discrepancies between the final costs also grow. This indicates 

that especially for greater load cases, the choice of concrete strength class can have a signif-

icant effect on the final costs of the columns. However, admittedly the concrete C90/105 

was only a simply modified version of the C70/85 concrete, with less mixing water to reach 
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a lower w/cm ratio. Therefore, as this mix design was used for the cost calculation for the 

concrete price, the price for such a high strength concrete as class C90/105 was perhaps 

somewhat optimistically low. Consequently, the final costs presented in this study concern-

ing all columns made with the C90/105 concrete are also slightly optimistic. Even so, a pat-

tern that less expensive columns can be obtained by using HSC is clearly visible.  

 

 
Figure 4.5. Overview of the varying column costs for the different load cases and depending on used concrete 

strength class when only material and production costs are evaluated. 

 

As this study only focused on two column options, minimizing the reinforcement steel and 

minimizing the column dimensions, the seemingly most economically viable option would 

be the columns applying the minimum reinforcement principal. However, as mentioned ear-

lier, the increased free floor space due to reduced column sizes was not accounted for in any 

way at this point of the evaluation. Thus, the final cost of a column is heavily influenced by 

how valuable the floor space in the building is. Yet, it is unlikely that the minimizing the 

column area to extreme extents would be a very economic option since this requires adding 

large quantities of reinforcement steel or using concretes with a very high compressive 

strength. This aspect is of course greatly influenced by the price of steel. From Figure 4.6, 

where the portions making up the total cost of a column are presented, it can be noted that 

the cost portion of the reinforcement steel is greatly increased for the minimized column area 

option.  
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Figure 4.6. Cost portions of the total costs for the different column types for the 40 MN load case. The resulting 

dimensions (mm) of the columns in parenthesis under the used concrete strength class. 

 

As can be observed from Figure 4.6, the proportions of the cost portions remained very sim-

ilar although the concrete classes and column dimensions changed. Naturally the cost por-

tions for formwork and transportation and pumping decreased as the dimension of the col-

umns could be reduced with rising concrete strength classes. As the quantities of reinforce-

ment were kept constant for all four concrete classes in each column type, the only change 

in the total steel consumption per column origins from the varying tie lengths as the column 

dimensions changes. Thus, the absolute costs of the reinforcing decreased slightly with the 

rising strength class. But since the overall column costs also decreased, the cost portion of 

the reinforcements rose slightly in proportion to the total cost of a column. The absolute cost 

of concrete remained similar for all column types although the assumed prices and quantities 

of concrete differed quite significantly. This indicates that opting for an inexpensive regular 

concrete is not more economical in the end, especially when considering the additional gains 

high-strength concrete offers. Similarly, the minimum reinforced column option is undoubt-

edly not always the most economic option. The optimum reinforcement ratio is always going 

to be case specific, where the need of free space, low costs and future structural flexibility 

must be compared and evaluated against each other.  

 

However, even without considering the advantages of increased free floor space and im-

proved durability which high-strength concrete offers, columns made of HSC seem to be 

slightly more financially viable than the normal-strength concrete columns. Furthermore, it 

can be assumed that once the higher strength concrete classes become more widely used and 

produced, the prices of these concrete grades will drop. It should also be noted that the 

transport distance and pumping times were kept to a minimum in this study. Thus, when the 

distances and pumping times inevitably increases, the costs from these factors become more 

significant and the advantages of the smaller quantities of concrete needed for HSC columns 

will truly start showing. 

 

Although it is challenging to accurately assess the value of increased free floor space con-

nected to the use of high-strength concrete in columns, an attempt to do so was made in order 
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to give a more realistic view of what the overall economic benefits of using HSC are. By 

estimating the free floor value for the studied hypothetical building to be either 2000 €/m2 

or 5000 €/m2, two cases representing bottom and top floor valuation cases, gives a realistic 

range of savings obtainable by using HSC depending on how valuable the free floor space 

in the relevant project is. To obtain the final costs of each column configuration, the areas of 

each column case were compared to the smallest column area of that column case, i.e. the 

column made with the highest concrete strength class, C90/105. The difference in column 

areas were then multiplied by the mentioned floor values and added to the previously pre-

sented column costs in Table 4.11. The additional floor area required by columns made with 

lower strength concrete and the corresponding additional costs are presented in Table 4.12. 

The resulting final cost for each column configuration is presented in Table 4.13 and plotted 

against each other in Figure 4.7. 

 
Table 4.12. Differences in column areas compared to columns made with C90/105 concrete and the resulting 

additional costs from the increased column areas when floor area was valued at 2000 €/m2 and 5000 €/m2. 

 
 
Table 4.13. Final costs for all column configurations when additional costs for larger column areas is added 

to the total column costs from material and production expenses. 

 
 

 

 

Minimum

column area

option 2000 €/m2 5000 €/m2 2000 €/m2 5000 €/m2 2000 €/m2 5000 €/m2 2000 €/m2 5000 €/m2

[m
2
] [€] [€] [m

2
] [€] [€] [m

2
] [€] [€] [m

2
] [€] [€]

C35/45 0.32 640 1600 0.54 1080 2700 0.82 1630 4075 1.03 2060 5150

C55/67 0.10 190 475 0.20 405 1013 0.24 480 1200 0.32 645 1613

C70/85 0.03 60 150 0.08 155 388 0.09 185 463 0.16 310 775

C90/105 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0

Minimum

reinforcement

option [m
2
] 2000 €/m

2
5000 €/m

2
[m

2
] 2000 €/m

2
5000 €/m

2
[m

2
] 2000 €/m

2
5000 €/m

2
[m

2
] 2000 €/m

2
5000 €/m

2

C35/45 0.46 920 2300 0.66 1315 3288 0.94 1880 4700 1.17 2340 5850

C55/67 0.15 300 750 0.23 455 1138 0.32 630 1575 0.41 815 2038

C70/85 0.04 70 175 0.09 175 438 0.10 200 500 0.17 335 838

C90/105 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0

Differences in column areas 

and cost additions when 

 floor area valued at;

Differences in column areas 

and cost additions when 

 floor area valued at;

Differences in column areas 

and cost additions when 

 floor area valued at;

20 MN 30 MN 40 MN 50 MN

Differences in column areas 

and cost additions when 

 floor area valued at;

20 MN 30 MN 40 MN 50 MN 20 MN 30 MN 40 MN 50 MN

Minimum column 

area option

C35/45 2036 2926 3895 4636 2996 4546 6340 7726

C55/67 1525 2186 2589 3095 1810 2794 3309 4062

C70/85 1400 1929 2315 2824 1490 2162 2593 3289

C90/105 1325 1717 2073 2411 1325 1717 2073 2411

20 MN 30 MN 40 MN 50 MN 20 MN 30 MN 40 MN 50 MNMinimum

reinforcement 

option

C35/45 1946 2741 3726 4429 3326 4713 6546 7939

C55/67 1250 1801 2345 2810 1700 2484 3290 4032

C70/85 1004 1534 1905 2366 1109 1797 2205 2868

C90/105 921 1303 1650 1928 921 1303 1650 1928

Final cost for each column configuration

 when 2000 €/m
2
 is added to the total costs

Final cost for each column configuration

 when 5000 €/m
2
 is added to the total costs

Load cases Load cases

Final cost for each column configuration

 when 2000 €/m
2
 is added to the total costs

Final cost for each column configuration

 when 5000 €/m
2
 is added to the total costs
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Figure 4.7. Graphs showing more realistically achievable economic benefits from using high-strength concrete 

in columns when the value of free floor space is also taken into consideration. 

 

From the results presented above, the economic benefits of using HSC for main load bearing 

columns in high-rise buildings are now much more distinct and perceivable. The overall 

economic savings per column, when using HSC compared to the NSC C35/45, ranges from 

25-56 % when one square meter of free floor space was valued at 2000 €/m2 and 40-76 % 

when the floor value was set at 5000 €/m2. Although these results indicate that very substan-

tial profits can be made by using HSC instead of NSC, the absolute increased floor space 

due to smaller columns might not be as useful and as valuable as completely removing one 

row of columns or increasing the gap between columns. Thus, this estimation is admittedly 

a simplification regarding how much actual free floor area can be obtained and effectively 

utilized by using higher strength concrete. However, as the average floor prices in Helsinki 

for multi-storey residential buildings in 2018 were around 5000 €/m2, the results from this 

comparison should not be considered overly optimistic. Additionally, the aspects of archi-

tecturally more appealing thinner columns and generally more durable structures connected 

with the use of HSC is not yet taken into consideration in any way. It can thus be expected 

that when all aspects of using HSC in large construction projects can be accurately evaluated 

and applied in practice, the overall benefits of using this material is even greater than this 

evaluation reveals.  

 

Furthermore, as the reinforcement ratio of columns rises extensively it is worth mentioning 

that the use of other than the conventional steel reinforcement bars option should be consid-

ered. High-strength steel and larger steel sections, such as tubes filled with concrete or dif-

ferent steel profiles encased in concrete columns, are today widely used in high-rise build-

ings. These column designs, especially when combined with high-strength concrete, have 

been proven to be an effective way of constructing load bearing columns that are particularly 

useful in very high-rise buildings (Shanmugam and Lakshmi, 2001). Similarly as using HSC 
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instead of NSC, these developed ways of utilizing steel sections, and, especially high-

strength steel, for composite structures also supports decreasing the total weight of the build-

ing. But since the behavior of these kinds of columns differ considerably from convention-

ally reinforced concrete columns, they were not evaluated further in this study. 
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5 Experimental work 
 

The purpose of the experimental work was to verify the appropriate behaviour of the con-

crete classes compared earlier. The testing was also intended to expose differences in behav-

iour between the different concrete classes, especially between the normal-strength concrete 

and high-strength concretes. The concretes to be produced were to represent the same con-

crete classes as compared in the previous chapter. In other words, one widely used normal-

strength concrete class as reference, C35/45, and three high-strength concretes of different 

strength classes, C55/67, C70/85 and C90/105. 

 

5.1 Composition of test specimens 

 

In order for the tested concretes to be feasible concretes for the Finnish construction industry, 

the recipes for the concretes C35/45, C55/67 and C70/85 were provided by Rudus Oy, a 

Finnish building materials producer. As higher strength concretes are uncommon in Finland, 

the recipe for the concrete to represent the class C90/105 concrete was simply created by 

reducing the mixing water of the C70/85 mix design and increasing the superplasticizer dos-

age to reach the desired workability. However, the classification of this concrete as C90/105 

concrete was only an initial speculation, based mainly on the w/cm ratio, on what strength 

range this concrete might prove to be in. The purpose of making this experimental higher 

strength concrete by simply reducing the water content was mainly to verify the impact the 

w/cm ratios have on the compressive strength of concrete. Additionally, it provided a valu-

able insight in how this change altered the overall behaviour of the fresh concrete and how 

effective modern superplasticizers truly are.  

 

Since the aggregate used for the experimental work in this thesis differs from what Rudus 

Oy uses, the dosage of the superplasticizer had to be optimized in order to obtain similar 

workability as in the original concrete mix design made by Rudus Oy. While Rudus Oy at 

this time used Finnsementti’s Parmix-Silika for their concretes containing silica fume, the 

concretes requiring silica fume in this thesis were made with Elkem Microsilica 920ED. 

Both mentioned silica fumes are made and tested according to the standard EN 13263-1. 

Otherwise the ingredients used were the same as in the original recipes. A summary of the 

materials used for the experimental work is shown in Table 5.1 and the chemical composition 

of the clinkers of the two cement types presented in Table 5.2.  
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Table 5.1. Summary of the materials used for the experiments (Finnsementti, 2019). 

 
 
Table 5.2. Chemical composition of the cements used for the experiments (Finnsementti, 2019). 

 
 

As can be seen from Figure 5.1a, the Mega-cement has a slightly faster and higher strength 

development than the SR cement, likewise the hydration heat of the Mega-cement is also 

slightly higher. This justifies the choice of SR cement for the concretes with a higher cement 

content, Classes C70/85 and C90/105, in order to keep the hydration heat at a reasonable 

level. However, as indicated in Figure 5.1b, when purely high strength is required, the use 

of Valko-cement must be considered the best option. 

Material Name Manufacturer Specifications

Cement Mega-cement Finnsementti Oy • CEM I 52,5 N 

• Initial setting time, 170-230 min

• Fineness (Blaine), 380-420m
2
/kg

• Loss of ignition, 2.1-2.4 %

SR-cement Finnsementti Oy • CEM I 42.5 N - SR3

• Initial setting time, 160-200 min

• Fineness (Blaine), 310-390m
2
/kg

• Loss of ignition, 1.9-3.6 %

Superplasticizer Saitti-Parmix Finnsementti Oy • Polycarboxylate ether (PCE) based

  high range water reducing admixture

• Normal dosage, 0.3-2.0 % of cement weight

Silica fume Microsilica 920ED Elkem AS • Produced in accordance to the standard EN 13263

  regarding silica fuma for concrete

Fly ash Category A Fly ash from Virkkala • Fulfiling the requirements set for category A

  fly ash according to the standard EN 450-1

Chemical properties

of cement clinker

Mega-cement

[%]

SR-cement

[%]

CaO 60-61 64-66

SiO2 18-19 20-22

Al2O3 5.0-5.2 3.1-3.7

Fe2O3 3.1-3.2 3.9-4.2

MgO 4.3-4.6 2.7-3.5
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Figure 5.1. a) The strength development of different cement types available in Finland and b) how the cement 

type affects the 28-day compressive strength of the concrete at different w/c ratios (Finnsementti 2012). 

 

The aggregate used for the experimental work in this thesis was composed of seven different 

aggregates available in the concrete laboratory at Aalto University, all natural and 

uncrushed. This in contrast to Rudus Oy, that use four different aggregates, one of which 

crushed. Therefore, a gradation test was performed on all seven of the laboratory aggregates 

in order to combine the aggregates and match the particle size distribution given in the orig-

inal recipes by Rudus Oy. The aggregates used in the testing ranged from filler to 16 mm 

and were divided in the following seven classes; filler, 0.1-0.6 mm, 0.5-1.2 mm, 1-2 mm, 2-

5 mm, 5-10 mm and 8-16 mm. The results of the gradation tests and aggregate combination 

can be seen in Appendix 1. Even though the size distribution can be matched well, concretes 

made by different aggregates may still behave dissimilarly due to differences in aggregate 

properties, such as absorption and surface area. However, the slight differences are mainly 

seen through an increased or decreased water need for the concrete. This consequently takes 

form in workability variations. Therefore, the possible variation in the behaviour of the con-

cretes due to the use of different aggregates was minimized by the superplasticizer optimi-

zation process for the laboratory created concretes where everything except the superplasti-

cizer dosage was kept unchanged.  

 

The final concrete compositions, after the optimization of superplasticizer dosage, are shown 

in Table 5.3a. The combined aggregate of each concrete was made to match the original 

gradation curves of the aggregates used by Rudus Oy in the original recipes. The final com-

position of the combined aggregates consisting of the available aggregates fractions in the 

concrete laboratory is shown in Table 5.3b. All aggregate details and combined aggregate 

gradation curves plotted against the upper and lower limits, according to the Nykänen pro-

portioning method for concrete with 16 mm maximum aggregate size, can be seen in Ap-

pendix 2. 
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Table 5.3. a) Composition of the concretes studied. b) Composition of the final combined aggregate for each 

concrete class. 

 
 

All the aggregates used were dry. However, no extra water was added to counteract the ag-

gregates absorption. Thus, the effective mixing water would be slightly lower than what is 

expressed in the Table 5.3a above. This was not seen as a problem since any possible work-

ability losses due to the aggregates water absorption would still be minor and the effects 

minimized by the superplasticizer dosage optimization process. 

 

The w/cm ratio presented in Table 5.3a includes the performance factor of the supplementary 

cementitious materials. By multiplying the silica fume and fly ash content by a k-value of 

kSF = 2.0 and kFA = 0.4, respectively, and adding these to the cement content, a general value 

for the cementitious materials is obtained. Thus, the w/cm ratio was calculated according to 

the following Equation 20 below; 

 
𝑤

𝑐𝑚⁄ =
𝑊

𝐶+𝑘𝑆𝐹∗𝑆𝐹+𝑘𝐹𝐴∗𝐹𝐴
             (20)

  

where W is the mixing water, C is the cement content, SF is the silica fume content and FA 

is the fly ash content. 

 

 

5.2 Experiment procedures 

 

In the following sections the applied procedures connected to producing and testing of the 

studied concrete classes are described. 

 

 

5.2.1 Mixing 

 

The mixing of all the concrete batches was done in a Pemat Zyklos ZZ75HE rotating pan 

type of mixer with a capacity of 120 kg. The addition of each dry constituent material into 

the mixer followed the sequence shown in Figure 5.2. The mixing started with 30 seconds 

mixing of only dry materials. Thereafter about 90 % of the mixing water was added and 

mixed for one minute. After this the superplasticizer combined with the remaining water was 

added and the concrete was mixed for another three minutes.  

 

a) b)

C35/45

[kg/m3]

C55/67

[kg/m3]

C70/85

[kg/m3]

C90/105

[kg/m3]

Cement 299* 419* 518** 518** Filler 11 % 8 % 8 % 8 %

Silica fume - - 27 27 0.1-0.6 7 % 10 % 9 % 9 %

Fly ash 84 118 - - Fine 0.5-1.2 12 % 6 % 8 % 8 %

Aggregate 1812 1670 1696 1696 1-2 12 % 15 % 13 % 13 %

Superplasticizer 1.017 3.143 6.009 9.583 2-5 15 % 16 % 17 % 17 %

Water 188 187 183 160 Coarse 5-10 15 % 16 % 16 % 16 %

SP/C 0.34 % 0.75 % 1.16 % 1.85 % 8-16 28 % 29 % 29 % 29 %

w/cm 0.57 0.40 0.32 0.28

* Mega-cement

** SR-cement

Aggregate 

fraction

[mm]

C35/45

 % of total

aggregate

C55/67

% of total

aggregate

C70/85

% of total

aggregate

C90/105

% of total

aggregate
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Figure 5.2. Material adding sequence and mixing durations. 

 

The required mixing time for high w/cm ratio-concretes are likely to be lower than that of 

low w/cm-ratio-concretes. Therefore, the mixing time could probably be optimized for each 

concrete class, but for overall comparability reasons the mixing times presented above were 

considered appropriate and kept constant for all concrete classes. However, a sufficient mix-

ing time, to assure that the concrete ingredients get properly mixed even in a drier mixture, 

is a crucial part in accomplishing the design strength of the concrete, especially for high-

strength concretes. 

 

 

5.2.2 Workability 

 

The easiest, but perhaps not always the best, way of measuring the workability of fresh con-

crete is the slump test. The slump test according to EN 12350-2:2009, was used extensively 

in the practical testing part of this thesis. Not only for the final batches of each concrete, but 

also in the process of optimizing the superplasticizer dosage. In the original recipes provided 

by Rudus Oy, the designed slump class was S3, equalling 100-150 mm, for this work a target 

slump of 150 ± 25 mm was therefore decided as satisfactory. From Table 5.4, the optimiza-

tion process and resulting optimal SP dosage for each concrete class can be obtained. 

 
Table 5.4. The process of optimizing the superplasticizer dosage to reach the target slump. Optimization 

batches being 30 dm3 and the final batches 40dm3. 

 
 

Although the raw materials and mixing process during the testing period was kept un-

changed, it was noticed how easily affected the slump values can be, even by seemingly 

minor variables. These variations in slump became most perceptible during the mixing and 

casting of the final batches of the two highest strength concretes. At the final casting the 

concretes, C70/85 and C90/105, with the previously established optimal SP dosage showed 

an unexpected increase in slump. The C70/85 concrete had a slump of 190 mm and had to 

be re-mixed with a lower SP dosage to reach the target slump, whereas the C90/105 concrete 

got a slump of 175 mm and was assessed borderline satisfactory. These discrepancies, com-

pared to the optimizing trial batches, are likely to be a result of the combination of an increase 

C35/45: C55/67: C70/85 I: C90/105:

SP

[g]

SP/C

[%]

Slump

[mm]

SP

[g]

SP/C

[%]

Slump

[mm]

SP

[g]

SP/C

[%]

Slump

[mm]

SP

[g]

SP/C

[%]

Slump

[mm]

67.2 0.75 245 75.4 0.60 75 139.9 0.90 55 318.6 2.05 220

35.9 0.40 175 100.6 0.80 185 194.3 1.25 155 303.0 1.95 190

30.0 0.34 150 94.3 0.75 150 287.5 1.85 145

Final batches 0.34 150 0.75 135 1.25 190* 1.85 175

175

* Too high slump, resulting in another batch, named C70/85 II, with SP/C = 1.16 % and a slump of 175 mm

C70/85 II:  1.16

Optimization

batches



 

59 

 

in temperature and humidity in the laboratory, different cement batches used and a slight 

change of batch size. The actual air-content is another factor that could affect the slump, but 

since no air-entraining was used and the mixing procedures were unchanged, this should not 

be the cause to the changes in slump in this case. However, small batches like these, 30-40 

dm3, are always more sensitive to even the slightest changes in the mixing procedures and 

environmental factors than larger concrete batches. 

 

 

5.2.3 Air content 

 

Since the concretes evaluated in this study were designed as non-air-entrained concretes 

without any air-entraining agents the measurement of the actual air content of the fresh con-

crete mixes was considered unnecessary. Even so, measurements would have been useful to 

confirm that the fresh concrete mixes did not have an unexpected and undesirable air content, 

over 20 dm3/m3. However, the presence of undesirable excess entrapped air seems unlikely 

since the measured densities or the test specimens concurred with the theoretically calculated 

densities based on the densities of the constituents of the concrete along with the assumption 

of an air content of 2 %. 

 

 

5.2.4 Casting and curing 

 

Of each concrete class, twelve samples were cast into 100 mm steel and plastic cube moulds 

for the compressive strength tests. The first batch of C70/85 concrete, which showed the 

unexpected and too high slump value, was nevertheless cast into the cubes required for the 

compressive strength testing, thus resulting in the label C70/85 I. The plastic moulds were 

only used for the second batch of the C70/85 concrete, subsequently called C70/85 II. All 

the 100 mm cube specimens were wet cured in a humid room, RH = 95 %, after the de-

moulding which took place roughly 24 hours after casting. During the first day in the moulds 

the specimens were covered by a plastic sheet to minimize the evaporation.  

 

For the temperature development monitoring of each concrete class, an additional specimen 

was cast into a polystyrene form to represent the circumstances in the core of a large concrete 

column. The samples in the polystyrene moulds were kept in a normal indoor environment 

with an ambient temperature of approximately 22 °C.  

 

 

5.2.5 Temperature development 

 

Although problems due to the hydration heat of concrete is mainly associated with mass 

concrete, the use of high cement content concretes, such as high-strength concrete, may also 

cause concern in other types of structures. Especially when the dimensions of structural el-

ements, such as columns, necessarily grow relatively large due to great loads, as demon-

strated in Chapter 4.1. Therefore, a testing procedure to monitor temperature changes in the 

concretes studied in this thesis was implemented to investigate whether concrete structures 

made with concretes like these, may result in harmful temperature levels. The testing was 
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mainly designed for recognizing the magnitude of maximum temperatures that might de-

velop in the core of a massive reinforced high-strength concrete column. Another interesting 

aspect enabled by this test was to analyse the variations of the temperature development and 

scale between the peak values of the different concrete classes tested. As the two lower grade 

concretes incorporated fly ash as a SCM compared to the two higher grade concretes which 

contained silica fume instead, it was also expected that the difference this should have on 

the concretes heat developments could be recognized. 

 

The isolating moulds used to cast the concrete samples consisted of a polystyrene box, in-

cluding a lid, additionally insulated with 50 mm of polystyrene on all outside surfaces, as 

can be seen in Figure 5.3. The original polystyrene boxes having 22 mm thick walls and the 

inside measurements of 218 x 188 x 154 mm3 resulted in concrete specimens of 6,3 dm3 cast 

into them. This amount of concrete was considered being a well big enough sample for the 

purpose. While the insulating layer was probably not sufficient for reaching the absolute 

maximum temperatures of the concretes, it was thought adequate for realistically represent-

ing the temperature behaviour at the centre of a column structure made with the studied 

concrete. 

 

 

 
Figure 5.3. Picture of the isolating mould used for monitoring he temperature development of the different 

concrete classes. On The right, the additional insulation into which the original polystyrene box, left, was 

placed. 

 

Directly as the concrete had been mixed, it was placed in the mould and a sensor placed in 

the middle of the concrete sample. The sensors were connected to a Pico TC-08 thermocou-

ple data logger which recorded the temperatures at an interwall of one minute for at least 

6000 minutes for each concrete batch. 

 

 

5.2.6 Strength development 

 

Compressive strength tests at the ages 3d, 7d, 28d and 91d were scheduled in order to eval-

uate the variations in strength development between the different concrete strength classes. 

This was done mainly to confirm the differences between normal and high-strength con-

cretes strength, but also to examine whether the use different cements and SCMs would 

result in any noticeable variations. Another interesting aspect would be how the experimental 
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C90/105 named concrete would perform and how much simply reducing the mixing water 

can improve the strength of concrete.  

 

Three concrete samples at the different test ages, for each concrete, was assumed to be suf-

ficient for the purposes of these tests. For the test specimens the 100 mm cube size was 

chosen due to its more convenient handling properties and because the concretes to be tested 

were of a relatively high strength, made with 16 mm maximum aggregate size. The different 

mould types used, shown in Figure 5.4, would prove to have an interesting effect on the 

compressive strengths of the specimens and will be discussed further in the following chap-

ter.  

 

 
Figure 5.4. The moulds used for casting the 100 mm cube specimens for the compressive testing. 

 

 

5.3 Results and discussion 

 

The results from the temperature monitoring and compressive strength tests are presented 

and discussed in the following sections along with analyses on why these results were ob-

tained and what they may indicate. 

 

 

5.3.1 Temperature development 

 

The results from the temperature development monitoring tests are presented in Figure 5.5. 

The maximum temperature reached by the concretes C35/45, C55/67, C70/80 and C90/105 

were 44.4, 55.1, 60.9 and 60.3 °C, respectively. As expected, the three high-strength con-

cretes showed a significantly higher maximum temperature than the normal-strength con-

crete. Additionally, the resemblance between the temperature curves of the C70/85 and 

C90/105 concrete classes was also completely predictable due to the identical amount of 

cement in the two concretes. This would suggest that very high-strength concretes do not 

cause more trouble concerning excessive temperature rise during curing than moderate high-

strength concrete. This heat generation is after all mainly governed by the cement content 

and type, not the w/cm ratio. 
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Figure 5.5. Results from the temperature development monitoring of each concrete class studied. 

 

Considering that the concretes C35/45 and C55/67 contains fly ash, which is known to re-

duce the heat generation of concrete, at a replacement ratio of about 22 % of the cement, 

especially the temperature of the C55/67 concrete is noticeably close to the higher strength 

concretes which has a considerably higher cement content and also containing silica fume. 

However, this might be explained by different types of cements used, the higher strength 

concretes were indeed made using the slightly less reactive SR cement. 

 

In comparison to the laboratory testing, the temperature development of four column cases, 

familiar from Chapter 4, were modelled by Rudus Oy in the BetoPlus software. The columns 

modelled were those from the 30 MN load-case applying the minimum reinforcement prin-

ciple, with varying cross-section dimensions corresponding to the concrete class used. The 

cross-sections modelled with the resulting maximum temperatures are listed in Table 5.5 and 

the corresponding temperature curves are shown in Figure 5.6. Additionally, the accuracy of 

the modelling by BetoPlus can be considered being around ± 5 °C.  

 

 
Table 5.5. The maximum temperatures obtained for a sample of column cases modelled in the BetoPlus soft-

ware by Rudus Oy. 

 
 

Concrete Maximum temperature

strength class b [mm] x h [mm] [°C]

C35/45 1200 x 1150 53.0

C55/67 1000 x 950 63.7

C70/85 900 x 900 75.6

C90/105 850 x 850 74.5

Column cross-section dimensions
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Figure 5.6. Resulting temperature curves from the BetoPlus modelling of the temperature development for a 

set of studied column cases. 

 

As the results show, significantly higher temperatures were obtained from the modelled col-

umn cases than from the practical tests. This indicates that the experimental testing practises 

and results should not be relied upon as an accurate representation of the actual maximum 

temperatures at the core of columns with similar dimensions as mentioned before. Therefore, 

especially when massive columns made by high cement-content HSC are designed, the sig-

nificant temperatures caused by the hydrating cement during the curing of the concrete col-

umns should be taken into serious consideration and actions for minimizing the harmful 

effects this can have on the concrete should be evaluated. However, as the shapes of the 

curves of the modelled temperature development and the experimental test results are simi-

lar, the experimentally obtained temperatures presumably correspond better with the actual 

temperature development at the centre of less massive cast in-situ concrete columns.  

 

 

5.3.2 Strength development 

 

The results of the compressive strength tests are presented in the Table 5.6 and Figure 5.7. 

These values are the mean value of three 100 mm cube specimens at each test age, a full 

record of the test results can be seen in appendix A. 

 
Table 5.6. The mean compressive strength at the different test ages for each concrete class studied. 

 

Age

[d]

C35/45

[MPa]

C55/67

[MPa]

C70/85 I

[MPa]

C70/85 II

[MPa]

C90/105

[MPa]

3 29.8 44.7 58.9 56.9 68.8

7 38.2 54.3 69.1 64.0 78.1

28 47.9 65.4 82.0 77.0 93.1

91 58.4 79.3 88.4 84.2 100.2
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Figure 5.7. Graph showing the compressive strength development of the studied concrete classes at each spec-

ified test age. 

 

To transform the compressive strengths of the tested 100 mm cube specimens to commonly 

recognised 150 mm cube compressive strengths a correction factor, kcorr, should be applied 

according to the Equation 21 below; 

 

𝑓𝑐𝑘.𝑐𝑢𝑏𝑒150 =
𝑓𝑐𝑘.𝑐𝑢𝑏𝑒100

𝑘𝑐𝑜𝑟𝑟
                (21) 

 

According to the Finnish concrete norms (BY 65, 2016), the correction factor to be applied 

in this case has the value, kcorr = 1.03. The correction factor may vary depending on which 

standard is followed but it is commonly recognized that the strength of 150 mm cubes are a 

few percent lower than that of 100 mm cubes, according to Neville (2011) the 150 mm cube 

has 96 % of the strength of a 100 mm cube. 

 

As can be concluded from the resulting compressive strength values, the requirements for 

the initial supposed strength classes of the concretes are not fulfilled at the age of 28 days 

by any of the specimens tested in this study. Especially when considering that a safety mar-

gin based on the standard deviation of the compressive test results should be added as well. 

However, the inferior results are likely caused by multiple factors that could be improved by 

utilizing optimized production methods and equipment.  

 

Firstly, the mixing procedures for such small batches as was produced in this study were 

probably not optimal, especially for the drier concretes. It was noticed that at the end of the 

mixing, a layer of un-mixed dry materials remained densely packed at the bottom rim of the 

mixing drum. This could have been especially significant for the higher strength concretes 

containing silica fume since the materials stuck in the pan appeared to consist mostly of fine 

particles resembling silica fume to the colour. To ensure proper mixing and full incorpora-

tion of the relatively small amount of silica fume into the concrete mixture, the addition of 

silica fume should perhaps have been done as a slurry with a small amount of the mixing 
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water instead of as plain silica fume powder. Alternatively, the total mixing time of the con-

crete should have been increased or a more optimal sequence of adding the materials inves-

tigated. However, this problem is most likely due to the small batches produced in this work, 

where even small amounts of unblended silica fume or cement can have a significant effect 

on the end results. Thus, this is an unlikely problem for concrete producers with modern 

equipment, optimized mixing procedures and producing large concrete batches.  

 

Secondly, the consolidation of the concrete specimens might not have been ideal and could 

have been investigated more thoroughly in order to achieve higher compressive strengths in 

the compression tests. The cube samples for the compression tests were compacted using a 

vibrating table for only a couple of seconds. This was assumed adequate since the concretes 

were relatively workable, with slumps of 150 ± 25 mm. However, since no air content meas-

urements were done at the casting occasion to verify that the concretes did not contain a 

higher percent of air than normal in non-air-entrained concretes, the vibration time could 

perhaps have been longer to ensure no additionally entrapped air was present in the concrete 

specimens. Nevertheless, the vibration time should not be exaggerated either, since this 

could lead to segregation and bleeding. The density of the test specimens measured at the 

time of the compression tests did not however indicate that the concretes contained any un-

expectedly high percentages of air. As can be seen from Figure 5.8, the theoretically calcu-

lated densities of the concretes, assuming an air content of 2 %, were all lower than the 

measured mean densities for the concrete samples for the compressive strength tests.  

 

 
Figure 5.8. The mean densities with the extreme low and high values measured for the compression test samples 

against the calculated densities assuming an air content of 1 and 2 %.  

 

As can be seen from the graph above, the measured densities for the concrete specimens 

matches fairly well the calculated densities when an air-content of only 1 % was assumed. 

This indicates that the actual air-contents of the tested concretes were closer to 1 % than 2 

%. The fact that even the extreme values of the measured densities, as plotted in the diagram 

above as the error margin, barely fell below the calculated densities, assuming an air-content 

of 2 %, for only a few specimens also indicates that excess air-content was not a problem in 

the tests. Additionally, it can be mentioned that the standard deviation of the densities for all 

the concrete samples of each concrete class, C35/45, C55/67, C70/85 and C90/105, were 
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1.37 %, 1.02 %, 1.84 % and 1.01 %, respectively. All exact values for the measured densities 

at the compression tests can be seen in Appendix A. 

 

Although the compressive strengths of the concretes did not, or barely reached the minimum 

strength values connected with each of the initially proposed concrete strength classes, even 

after 91 days, the testing showed that high-strength concrete classes are by no means unob-

tainable. Even the optimistically labelled C90/105 concrete class, which was a simply mod-

ified version of the C70/85 only with less mixing water, showed promise that even strength 

classes above 100 MPa are fairly easily achievable. The author is thus confident that by 

optimizing the production procedures according to the available equipment, the minimum 

strength values for at least the classes C35/45, C55/67 and C70/85 are reachable. For the 

concrete C90/105 to confidently reach the minimum compressive strength of that class, mi-

nor modifications to optimize the mix design is probably necessary. However, this shows 

that if even in laboratory conditions the fulfilment of the design strengths is no certainty, the 

correct handling of the concrete mixture, from mixing to curing, is of utmost importance for 

achieving hardened concrete satisfying the initial design properties.  
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6 Conclusions 
 

The aim of this thesis was to evaluate the use of high-strength concrete and investigate how 

to most effectively reach the full potential of this material. The results from the literature 

review indicates that HSC is primarily used for high-rise buildings but also for particular 

structures where the requirements on the concrete and its performance are very demanding. 

Such structures can include bridges, off-shore structures and power stations, or more gener-

ally, structures that require a high durability. Thus, it can be assumed that the trend of build-

ing higher and higher has been the main reason for the increased use of HSC. However, 

studies also indicate that HSC can be used in more common building projects to enable more 

economical and environmentally sustainable building designs. 

 

The comparison conducted in this thesis, on the effects of using different concrete strength 

classes for highly loaded reinforced concrete columns in a high-rise building, strengthens 

the previously stated assumptions regarding the benefits of using HSC. The comparison 

where a hypothetical high-rise building project with realistic values and variables was inves-

tigated to evaluate how the use of different concrete strength classes affects the dimensions 

and total costs of the main load-bearing columns of the building. Between the four concrete 

strength classes evaluated, C35/45, C55/67, C70/85 and C90/105, it was clearly seen that 

the three high-strength classes were in all load cases more cost-effective than the normal-

strength concrete option. However, the initial economic benefits of using HSC only in the 

range of 3-11 % decreased column costs. The differences between the three high-strength 

concrete classes varied depending on load case, but no specific strength class could be cho-

sen as the generally most optimal.  

 

Although the economic benefits of using HSC did not appear very significant from the pre-

liminary results of the column comparison, as presented in Chapter 4, some central ad-

vantages of using HSC were initially left unevaluated due to the difficulties of valuing them 

accurately. These aspects were mainly the increased free floor space and better durability 

connected to the use of HSC. The increased free floor area obtained by using C55/67, C70/85 

and C90/105 concrete classes resulted on average in 33 %, 43 % and 49 % smaller column 

cross-section areas, respectively, compared to the NSC column option. These results indicate 

that the economic benefits of increased free floor space due to the use of higher strength 

concretes should be considered a significant variable for the final costs of RC columns. Thus, 

this aspect was also attempted to realistically implement into the comparison by fixing floor 

prices at both a low, 2000 €/m2, and a high value, 5000 €/m2. As the additional free floor 

area obtained by using HSC was multiplied with the mentioned floor values, a significant 

reduction in final column costs for the higher strength concrete column options could be 

observed in all cases. When the valuation of floor area was added to the evaluation, the 

resulting final costs of the HSC columns were 25-56 % and 40-76 % less expensive than the 

corresponding NSC column options, when the floor area was valued at 2000 €/m2 and 5000 

€/m2, respectively.  

 

Another purpose of this thesis was to investigate the uncertainties and problems connected 

to the use of HSC. These uncertainties are mainly related to the freeze-thaw resistance, fire 

endurance and workability issues of HSC. It is fair to assume that the frost durability of HSC 

is indeed better than normal concrete. However, it should not be assumed that HSC without 

additional air-entraining is per definition totally frost resistant. Although most studies indi-

cate that even non-air-entrained HSC exhibits good frost resistance, especially as the w/cm 
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ratio drops towards 0,3 and below, cases exist where HSC has shown poor freeze-thaw du-

rability. Regarding the fire resistance of HSC on the other hand, the literature and studies 

are unanimous that it is indeed poorer than for regular concrete. Nevertheless, once the poor 

fire resistance of HSC is acknowledged there are numerous means to effectively overcome 

it, the most convenient in many cases is to incorporate polypropylene fibres to the concrete 

mixture. The reputation of HSC being less workable than ordinary concrete is perhaps a bit 

vaguer than the earlier mentioned problems. Undoubtedly the high cement contents and 

small amount of mixing water makes higher strength concretes “stickier” and more prone to 

significant workability losses if not properly designed and handled. Even so, with the con-

stant progresses in superplasticizer and chemical additives industry this problem seems to 

be surmountable with adequate testing and quality control of new high-strength concrete 

mixtures. 

 

Finally, this thesis aimed to examine how easily achievable the higher strength concretes are 

and whether excess hydration heat can be a problem for HSC columns. The same concrete 

strength classes as compared in the column comparison in Chapter 4 were produced in the 

laboratory of the University. Twelve 100 x 100 x 100 mm3 specimens of each concrete class 

were cast to study the strength development by performing compression tests at the ages of 

3, 7, 28 and 90 days. From the results of the compression tests it was acknowledged that 

none of the produced concretes met the requirements for the characteristic strength at 28 

days, and only the classes C35/45 and C55/67 exceeded the required strengths at 90 days. 

From this it can be concluded that concrete with high strengths can be challenging to reach 

without thoroughly optimizing the applied mix designs and procedures. However, as the 

initial mix designs were intended for large scale concrete production, and even the NSC 

concrete failed to reach the minimum strengths for its strength class at 28 days, it can be 

assumed that the mixing and casting conditions were not optimal and should have been in-

vestigated further to reach the full potential of the mix designs.  

 

To examine the hydration heat of the concrete classes, the temperature development for 6.3 

dm3 concrete specimens of each class were kept in an insulated environment and monitored 

for 100 hours after the casting. The temperature monitoring was designed to model the con-

ditions at the centre of massive RC columns made with the studied concrete classes. The 

obtained maximum temperatures of the concrete classes C35/45, C55/67, C70/80 and 

C90/105 were 44.4, 55.1, 60.9 and 60.3 °C, respectively. These results, in combination with 

even higher temperatures obtained from BetoPlus temperature development models con-

cerning the same column cases, suggest that especially for massive HSC columns the hydra-

tion heat produced during the curing process can be significant. Thus, precautions for the 

concrete mix design and curing conditions should be considered to avoid harmful conse-

quences from elevated temperatures of the concrete caused by cement hydration. 

 

To further enable the use of high-strength concrete, more thorough studies should be con-

ducted concerning the economic benefits of using HSC in high-rise buildings, but also for 

more common and moderately loaded structures. Additionally, the probable benefits of using 

high strength steel in combination with HSC should also be investigated further. Further-

more, conclusive research regarding the freeze-thaw durability of HSC would be valuable. 

However, the basic assessment conducted in this study regarding the economic viability of 

using HSC in highly loaded structures strongly indicates that the use of HSC for such pur-

poses is indeed favourable. Therefore, the author can recommend further utilization of high-

strength concrete, particularly in load bearing elements of high-rise buildings.  
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Appendix 1. Gradation and combining of aggregates for 
tested concretes. 
 

 
 
 

Fraction

[mm]

Portion

[%]
0.125 0.25 0.5 1 2 4 8 16 32 64

Filler 11 % 43 78 92 97 99 99 100 100 100 100

0.1-0.6 7 % 7 28 72 100 100 100 100 100 100 100

0.5-1.2 12 % 0 1 2 64 100 100 100 100 100 100

1-2 12 % 1 4 9 14 84 100 100 100 100 100

2-5 15 % 0 1 1 2 2 44 100 100 100 100

5-10 15 % 0 0 0 0 0 2 75 100 100 100

8-16 28 % 0 0 0 0 0 0 0 89 100 100

Combined

 [%]
100 % 5 11 17 27 40 49 68 97 100 100
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Fraction

[mm]

Portion

[%]
0.125 0.25 0.5 1 2 4 8 16 32 64

Filler 8 % 43 78 92 97 99 99 100 100 100 100

0.1-0.6 10 % 7 28 72 100 100 100 100 100 100 100

0.5-1.2 6 % 0 1 2 64 100 100 100 100 100 100

1-2 15 % 1 4 9 14 84 100 100 100 100 100

2-5 16 % 0 1 1 2 2 44 100 100 100 100

5-10 16 % 0 0 0 0 0 2 75 100 100 100

8-16 29 % 0 0 0 0 0 0 0 89 100 100

Combined

 [%]
100 % 4 10 16 24 37 46 67 97 100 100

Gradation and combining of aggregate for concrete class C55/67 
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Fraction

[mm]

Portion

[%]
0.125 0.25 0.5 1 2 4 8 16 32 64

Filler 8 % 43 78 92 97 99 99 100 100 100 100

0.1-0.6 9 % 7 28 72 100 100 100 100 100 100 100

0.5-1.2 8 % 0 1 2 64 100 100 100 100 100 100

1-2 13 % 1 4 9 14 84 100 100 100 100 100

2-5 17 % 0 1 1 2 2 44 100 100 100 100

5-10 16 % 0 0 0 0 0 2 75 100 100 100

8-16 29 % 0 0 0 0 0 0 0 89 100 100

Combined

 [%]
100 % 4 10 15 24 36 46 67 97 100 100

Gradation and combining of aggregate for concrete classes C70/85 and C90/105 
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Appendix 2. Full record of compressive strength tests. 
 

 
 

3 d compression test, 20.07.2018:

Test

specimen

l

[mm]

b

[mm]

h

[mm]

Mass

[kg]

Density

[kg/dm3]

Test face

[mm2]

Max load

[kN]

Compressive

strength

[N/mm2]

1 100.0 100.0 100.2 2.374 2.369 10000.0 301.0 30.10

2 99.7 99.7 100.2 2.368 2.378 9940.1 301.5 30.33

3 100.2 100.2 100.3 2.382 2.365 10040.0 292.1 29.09

Mean: 2.371 29.84

7 d compression test, 24.07.2018:

Test

specimen

l

[mm]

b

[mm]

h

[mm]

Mass

[kg]

Density

[kg/dm
3
]

Test face

[mm
2
]

Max load

[kN]

Compressive

strength

[N/mm
2
]

1 100.4 100.4 100.0 2.376 2.357 10080.2 382.2 37.92

2 100.4 100.4 100.4 2.388 2.360 10080.2 397.2 39.40

3 100.4 100.4 100.0 2.381 2.362 10080.2 375.0 37.20

Mean: 2.360 38.17

28 d compression test, 14.08.2018:

Test

specimen

l

[mm]

b

[mm]

h

[mm]

Mass

[kg]

Density

[kg/dm3]

Test face

[mm2]

Max load

[kN]

Compressive

strength

[N/mm2]

1 100.6 100.6 100.5 2.377 2.337 10120.4 470.9 46.53

2 100.6 100.6 100.1 2.414 2.383 10120.4 492.1 48.62

3 100.4 100.4 100.4 2.393 2.365 10080.2 487.9 48.40

Mean: 2.361 47.85

91 d compression test, 16.10.2018:

Test

specimen

l

[mm]

b

[mm]

h

[mm]

Mass

[kg]

Density

[kg/dm
3
]

Test face

[mm
2
]

Max load

[kN]

Compressive

strength

[N/mm
2
]

1 99.7 99.7 100.6 2.383 2.383 9940.1 573.0 57.65

2 100.9 100.9 100.1 2.388 2.343 10180.8 598.0 58.74

3 100.2 100.2 100.5 2.375 2.354 10040.0 590.0 58.76

Mean: 2.360 58.38

C35/45, cast 17.07.2018
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3 d compression test, 20.07.2018:

Test

specimen

l

[mm]

b

[mm]

h

[mm]

Mass

[kg]

Density

[kg/dm
3
]

Test face

[mm
2
]

Max load

[kN]

Compressive

strength

[N/mm
2
]

1 101.1 101.1 100.4 2.436 2.374 10221.2 449.9 44.02

2 100.4 100.4 100.6 2.394 2.361 10080.2 451.1 44.75

3 100.4 100.4 100.6 2.415 2.382 10080.2 456.5 45.29

Mean: 2.372 44.68

7 d compression test, 24.07.2018:

Test

specimen

l

[mm]

b

[mm]

h

[mm]

Mass

[kg]

Density

[kg/dm
3
]

Test face

[mm
2
]

Max load

[kN]

Compressive

strength

[N/mm
2
]

1 100.9 100.9 100.3 2.404 2.354 10180.8 549.0 53.92

2 100.0 100.0 100.8 2.394 2.375 10000.0 534.0 53.40

3 100.0 100.0 100.5 2.401 2.389 10000.0 555.0 55.50

Mean: 2.373 54.27

28 d compression test, 14.08.2018:

Test

specimen

l

[mm]

b

[mm]

h

[mm]

Mass

[kg]

Density

[kg/dm3]

Test face

[mm2]

Max load

[kN]

Compressive

strength

[N/mm2]

1 100.9 100.9 100 2.403 2.360 10180.8 666.0 65.42

2 100.0 100.0 100.8 2.39 2.371 10000.0 642.0 64.20

3 100.7 100.7 100 2.419 2.385 10140.5 676.0 66.66

Mean: 2.372 65.43

91 d compression test, 16.10.2018:

Test

specimen

l

[mm]

b

[mm]

h

[mm]

Mass

[kg]

Density

[kg/dm
3
]

Test face

[mm
2
]

Max load

[kN]

Compressive

strength

[N/mm
2
]

1 100.7 100.7 100.7 2.425 2.375 10140.5 792.0 78.10

2 100.4 100.4 100.8 2.419 2.381 10080.2 822.0 81.55

3 100.4 100.4 100.2 2.392 2.368 10080.2 790.0 78.37

Mean: 2.375 79.34

C55/67, cast 17.07.2018
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3 d compression test, 26.07.2018:

Test

specimen

l

[mm]

b

[mm]

h

[mm]

Mass

[kg]

Density

[kg/dm3]

Test face

[mm2]

Max load

[kN]

Compressive

strength

[N/mm2]

1 100.9 100.9 99.9 2.440 2.399 10180.8 609 59.8

2 101.4 101.4 100.6 2.455 2.373 10282.0 595 57.9

3 100.4 100.4 99.8 2.427 2.413 10080.2 596 59.1

Mean: 2.395 58.9

7 d compression test, 30.07.2018:

Test

specimen

l

[mm]

b

[mm]

h

[mm]

Mass

[kg]

Density

[kg/dm
3
]

Test face

[mm
2
]

Max load

[kN]

Compressive

strength

[N/mm
2
]

1 100.2 100.2 100 2.426 2.416 10040.0 696 69.3

2 100.9 100.9 100.2 2.448 2.400 10180.8 694 68.2

3 100.0 100.0 100.6 2.454 2.439 10000.0 699 69.9

Mean: 2.418 69.1

28 d compression test, 20.08.2018:

Test

specimen

l

[mm]

b

[mm]

h

[mm]

Mass

[kg]

Density

[kg/dm3]

Test face

[mm2]

Max load

[kN]

Compressive

strength

[N/mm2]

1 100.6 100.6 100.3 2.462 2.425 10120.4 830 82.0

2 100.9 100.9 100.3 2.435 2.385 10180.8 845 83.0

3 100.9 100.9 99.9 2.433 2.392 10180.8 826 81.1

Mean: 2.401 82.0

91 d compression test, 22.10.2018:

Test

specimen

l

[mm]

b

[mm]

h

[mm]

Mass

[kg]

Density

[kg/dm3]

Test face

[mm2]

Max load

[kN]

Compressive

strength

[N/mm2]

1 100.0 100.0 100.5 2.448 2.436 10000.0 884 88.4

2 100.2 100.2 100.1 2.433 2.421 10040.0 892 88.8

3 101.2 101.2 100.2 2.436 2.374 10241.4 902 88.1

Mean: 2.410 88.4

C70/85 I, cast 23.07.2018
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3 d compression test, 26.07.2018:

Test

specimen

l

[mm]

b

[mm]

h

[mm]

Mass

[kg]

Density

[kg/dm3]

Test face

[mm2]

Max load

[kN]

Compressive

strength

[N/mm2]

1 99.4 99.4 99.7 2.383 2.419 9880.4 578 58.5

2 99.9 99.9 99.8 2.387 2.397 9980.0 555 55.6

3 100.2 100.2 99.6 2.389 2.389 10040.0 567 56.5

Mean: 2.402 56.9

7 d compression test, 30.07.2018:

Test

specimen

l

[mm]

b

[mm]

h

[mm]

Mass

[kg]

Density

[kg/dm
3
]

Test face

[mm
2
]

Max load

[kN]

Compressive

strength

[N/mm
2
]

1 100.2 100.2 99.7 2.389 2.387 10040.0 639 63.6

2 99.9 99.9 99.9 2.404 2.411 9980.0 655 65.6

3 100.2 100.2 99.8 2.393 2.388 10040.0 630 62.7

Mean: 2.395 64.0

28 d compression test, 20.08.2018:

Test

specimen

l

[mm]

b

[mm]

h

[mm]

Mass

[kg]

Density

[kg/dm3]

Test face

[mm2]

Max load

[kN]

Compressive

strength

[N/mm2]

1 100.6 100.6 99.8 2.413 2.389 10120.4 776 76.7

2 100.2 100.2 99.9 2.417 2.410 10040.0 774 77.1

3 100.0 100.0 99.7 2.406 2.413 10000.0 771 77.1

Mean: 2.404 77.0

91 d compression test, 22.10.2018:

Test

specimen

l

[mm]

b

[mm]

h

[mm]

Mass

[kg]

Density

[kg/dm3]

Test face

[mm2]

Max load

[kN]

Compressive

strength

[N/mm2]

1 100.2 100.2 99.9 2.412 2.405 10040.0 842 83.9

2 99.9 99.9 99.8 2.406 2.416 9980.0 844 84.6

3 99.5 99.5 99.6 2.401 2.435 9900.3 832 84.0

Mean: 2.418 84.2

C70/85 II, cast 23.07.2018
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3 d compression test, 26.07.2018:

Test

specimen

l

[mm]

b

[mm]

h

[mm]

Mass

[kg]

Density

[kg/dm3]

Test face

[mm2]

Max load

[kN]

Compressive

strength

[N/mm2]

1 100.4 100.4 100.2 2.442 2.418 10080.2 683 67.8

2 99.9 99.9 100.5 2.465 2.458 9980.0 688 68.9

3 100.4 100.4 100.4 2.469 2.440 10080.2 703 69.7

Mean: 2.438 68.8

7 d compression test, 30.07.2018:

Test

specimen

l

[mm]

b

[mm]

h

[mm]

Mass

[kg]

Density

[kg/dm
3
]

Test face

[mm
2
]

Max load

[kN]

Compressive

strength

[N/mm
2
]

1 99.7 99.7 100.5 2.436 2.438 9940.1 766 77.1

2 99.5 99.5 100.3 2.434 2.451 9900.3 790 79.8

3 100.4 100.4 100.6 2.468 2.434 10080.2 781 77.5

Mean: 2.441 78.1

28 d compression test, 20.08.2018:

Test

specimen

l

[mm]

b

[mm]

h

[mm]

Mass

[kg]

Density

[kg/dm3]

Test face

[mm2]

Max load

[kN]

Compressive

strength

[N/mm2]

1 100.6 100.6 100.5 2.479 2.437 10120.4 950 93.9

2 100.7 100.7 100.5 2.48 2.433 10140.5 907 89.4

3 100.0 100.0 100.2 2.452 2.447 10000.0 959 95.9

Mean: 2.439 93.1

91 d compression test, 22.10.2018:

Test

specimen

l

[mm]

b

[mm]

h

[mm]

Mass

[kg]

Density

[kg/dm3]

Test face

[mm2]

Max load

[kN]

Compressive

strength

[N/mm2]

1 100.7 100.7 100 2.475 2.441 10140.5 1004 99.0

2 100.0 100.0 100.9 2.474 2.452 10000.0 1017 101.7

3 100.4 100.4 101.1 2.49 2.443 10080.2 1007 99.9

Mean: 2.445 100.2

C90/105, cast 23.07.2018


