
Accelerated DPDK in containers for
networking nodes

Rohan Krishnakumar

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 05.01.2019

Supervisor

Prof. Yu Xiao

Advisors

D.Sc.(tech) Vesa Hirvisalo

MSc. Kati Ilvonen

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Aaltodoc Publication Archive

https://core.ac.uk/display/190045342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c⃝ 2019 Rohan Krishnakumar

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Rohan Krishnakumar
Title Accelerated DPDK in containers for networking nodes
Degree programme Electronics and electrical engineering
Major Communications Engineering Code of major ELEC0007
Supervisor Prof. Yu Xiao
Advisors D.Sc.(tech) Vesa Hirvisalo, MSc. Kati Ilvonen
Date 05.01.2019 Number of pages 54+11 Language English
Abstract
NFV is fast moving towards containers for software virtualization and thereby
imposing stringent requirements on container networking. The current status of
networking in containers is quite limited especially for fast packet processing and
needs further exploration.

The thesis is a comprehensive study on container networking for fast packet
processing in standalone and orchestrated environments. Existing technologies such
as DPDK and SR-IOV are utilized along with OvS and OVN to build different
topologies and measure network latency. Utilizing these results and taking into
account the hardware features supported by different nodes in an orchestrated
environment, the thesis further proposes a latency based scheduler that can meet
the network latency requirements of container applications being deployed.
Keywords Containers, CNI, DPDK, Docker, Kubernetes, NFV, OvS, OVN, SR-IOV

4

Preface
I would like to thank my supervisor Prof. Yu Xiao for her valuable guidance and
insights throughout the course of this thesis. I would also like to thank my advisor
Vesa Hirvisalo for his invaluable guidance and support during the course of my degree.

This thesis was conducted at Oy L M Ericsson Ab. I would like to thank
my manager and advisor Kati Ilvonen and my team members for their constant
encouragement. I would specifically like to thank Dietmar Fiedler, for suggesting the
topic and reviewing the work.

Finally, I would like to thank my family and friends for supporting my studies.

Otaniemi, 04.12.2018

Rohan Krishnakumar

5

Contents
Abstract 3

Preface 4

Contents 5

Abbreviations 6

1 Introduction 7
1.1 Thesis Scope and Objective . 7
1.2 Thesis Contribution . 8
1.3 Thesis Structure . 8

2 Background 9
2.1 Data Plane Development Kit, DPDK 10
2.2 Single Root IO Virtualization, SR-IOV 12
2.3 Container . 13

2.3.1 Container Networking Interface 16
2.4 Kubernetes . 17
2.5 Open vSwitch . 19

3 Related work 20

4 Latency Measurements 22
4.1 Container on DPDK and SR-IOV . 23
4.2 Container on OVS-DPDK . 28
4.3 Fast packet processing in Kubernetes 31
4.4 Building a Kubernetes cluster . 32
4.5 Scenario 1, Multus . 35
4.6 Scenario 2, Node feature discovery . 38
4.7 Scenario 3, Kubernetes with OVN . 38
4.8 Results and Observation . 45

5 Latency based scheduling 47
5.1 A Kubernetes Scheduler . 47

6 Conclusion and Future Work 49

References 50

A Appendix A 55

B Appendix B 61

6

Abbreviations
API Application Programming Interface
CNI Container Networking Interface
DHCP Dynamic Host Configuration Protocol
DMA Direct Memory Access
DNS Domain Name System
DPDK Data Plane Development Kit
DUT Device Under Test
EAL Environment Abstraction Layer
GDB GNU Debugger
HA High Availability
IOMMU I/O Memory Management Unit
IPC Inter Process Communication
ISR Interrupt Service Routine
KVM Kernel-based Virtual Machine
k8s Kubernetes
MAAS Metal As A Service
NAT Network Address Translation
NFV Network Function Virtualization
NIC Network Interface Card
OVN Open Virtual Network
OvS Open vSwitch
PCI Peripheral Component Interconnect
PID Process Identifier
POSIX Portable Operating System Interface
RBAC Role Based Access Control
SR-IOV Single Root IO Virtualization
TLB Translation Look-aside Buffer
VM Virtual Machine
VMDQ Virtual Machine Device Queue
VNF Virtual Network Function
VT-d Virtualization Technology for Directed I/O

1 Introduction
In recent years, the telecommunication industry has evolved towards Network Func-
tion Virtualization (NFV) where the traditional "hardware heavy" network node
functions are being replaced by virtualized software that can run on generic hardware.
Current de facto implementations of software virtualization utilize Virtual Machines
(VMs) and is rapidly moving towards lightweight containers[11]. NFV is still in its
nascent stages in understanding and utilizing containers and this thesis explores the
suitability of containers in NFV from a networking perspective.

1.1 Thesis Scope and Objective
The scope of the thesis is a comprehensive understanding on the networking aspect
of utilizing containers in NFV. Containers and container based deployments have so
far found their use cases predominantly by replacing existing monolithic applications
or by addressing environment specific requirements[22]. For instance, LinkedIn
replaced their monolithic application with microservices in 2011 which resulted in
less complex software and shorter development cycles[21]. Others such as NASA,
have used containers to meet their dependency on specific versions of software, kernel
or tool chain by packing all dependencies together in a container[46]. Utilizing
containers in NFV is still in nascent stages and as a result, the current container
networking is quite limited for NFV applications. Specifically, container run-time
such as Docker and orchestrator like Kubernetes by default have just one interface
attached to the container. Moreover, this interface is often used for management
functions within the cluster. Exposing multiple interfaces and utilizing fast packet
processing technologies on them is an important aspect in meeting the stringent
networking requirements in NFV. Moreover, since most practical use cases of
container applications utilize an orchestrated environment[16], such scenarios are
also considered with equal importance. In short, the thesis tries to address these
issues by exploring different networking scenarios and utilizing existing fast packet
processing tools such as Data Plane Development Kit (DPDK) and Single Root I/O
Virtualization (SR-IOV).

The objective of the thesis is to find a fast packet processing solution in a con-
tainer orchestrated environment that meets the latency requirements of the deployed
application container. The current container orchestrators such as Kubernetes and
Apache Mesos do not consider network latency as an attribute while scheduling con-
tainer applications. Application that are not latency sensitive such as a configuration
management interface could consume nodes that provide best latency results in the
cluster. The thesis considers different networking scenarios based on the availability
of nodes and hardware features supported by each of them and proposes an intelligent
way to deploy containers in the host that meets the latency requirement.

8

1.2 Thesis Contribution
The contribution of the thesis is a study on different fast packet processing solutions
in containers in a standalone and orchestrated environment. To this extent, the
author of the thesis has built a Kubernetes cluster on bare metal using Metal As
A Service (MAAS), a software from Canonical[53] and kubeadm[56], a tool for
bootstrapping Kubernetes. The author of the thesis has measured network latency
for different networking scenarios utilizing primarily DPDK, SR-IOV, Open vSwitch
(OvS) and Open Virtual Network (OVN). Various Container Networking Interface
(CNI) plug-ins were utilized to realize multiple interfaces in containers and use the
above technologies. The author of the thesis has taken the latency measurement
values as a benchmark and has implemented a Kubernetes scheduler that utilizes
these values to intelligently schedule container applications considering their network
latency requirements.

1.3 Thesis Structure
The next chapter in the thesis is the background which covers the related tools
and technologies utilized, their definitions and how they work. It also covers their
motivation and in some cases their evolution. The third chapter covers related work
in the field of interest and how they compare to the work carried out in the thesis.
The fourth and fifth chapters are the core part of the thesis. The motivation for the
experiments, the test topologies and the various measurements and exploration of
different networking scenarios are covered in the fourth chapter. The fifth chapter
utilizes the measurements from chapter four as a benchmark and addresses the need
for a scheduler that considers the latency requirement of the deployed container
application in an orchestrated environment. The final chapter concludes the thesis
and indicates some of the future work that could be carried out.

9

2 Background
In telecommunication industry, the network node functions have traditionally run on
operator proprietary hardware which are dedicated for a specific purpose. This has
led to long development and deployment cycles, higher cost of operation, etc. thereby
hindering rapid technological advancement in the field. Slowly the network node
functions are being replaced by virtualized software solutions that can run on generic
computing hardware, consequently addressing the above problems and making the
network more flexible. This network architecture where virtualized software solutions
are chained together to form network node functions is called Network Function
Virtualization. In the NFV nomenclature, the software implementation of the
network node functions or sub-functions are referred to as Virtual Network Functions
(VNF) - for instance, a network firewall, a DHCP server or a NAT function. The
current de facto VNF implementations run on virtual machines such as Kernel-based
Virtual Machine (KVM). But with the recent advent of containers and their gaining
popularity, virtual machines are being replaced by containers in virtualized software.
Containers are comparatively lightweight and utilize the same host kernel when
compared to virtual machines. They can be booted up with minimum latency[13]
implying that container based deployments focus on on-demand spawning of the
containerized application. For example, a NAT application running on a container
could be spawned up based on the number of clients utilizing it, with one container
handling one or a fixed number of clients.

As depicted in Figure 1, a container orchestrated environment could be visualized
as a cluster of multiple hosts with containers being spawned on request and killed
after serving the request. The orchestrator runs on one host and acts as the master.
It normally has a scheduler that decides on which of the other hosts to deploy the
container, based on the provided requirements of the container, current status of
the cluster and different hardware features supported by different hosts. In the
scope of the thesis, the hardware features that are of interest are the availability of
DPDK and SR-IOV interfaces. Depending on which node the container application
is deployed, the latency could be affected significantly. There are three different
scenarios considered in depth in Chapter 4.3 which also motivate the need for
a scheduler that is aware of the latency requirements of the application and the
capabilities of the system.

The rest of the chapter is divided into subsections that cover the tools and
technologies that are integral to the thesis. The first two subsections cover DPDK
and SR-IOV which are fast packet processing technologies. The third subsection gives
an in-depth understanding on containers and their development from concepts such
as namespaces and control groups. The container orchestration system, specifically
Kubernetes is discussed in the fourth subsection. The final subsection briefly covers
OvS.

10

Figure 1: A cluster of nodes with one acting as a master. Container applications or
pods run on other nodes that have different hardware features.

2.1 Data Plane Development Kit, DPDK
DPDK is a "set of libraries and drivers"[25] that enable fast packet processing. It is an
open-source software framework that can be used to build fast networking applications
and is maintained by the Linux Foundation[26]. As compared to a normal kernel
network stack, DPDK can provide about twenty five percent improvement in packet
processing speed.

The driving factor behind the development of DPDK was to address the handling
of extremely fast packet rates, especially in a communication network infrastructure,
where the packet sizes are typically smaller and packet rates much higher. The
average CPU cycles available for handling one packet in such cases are quite small.
For instance, a 10 Gigabit Ethernet card receiving packets of size 1024 bytes could
potentially receive 1.25 million packets per second. A CPU with 2GHz clock cycles
handling these packets would have on average 1600 cycles per packet. But when the
packet size decreases to, say 64 bytes, these values could be 19.5 million packets per
second and 102 CPU cycles available per packet which is too small a value when
using kernel network stack.

DPDK utilizes a variety of techniques to improve packet processing. Primarily, it
uses Poll Mode Drivers (PMD) instead of interrupt driven ones for packet handling.
As shown in Figure 2, in the traditional network stack, when a packet is received,
the CPU does a context switching from the user space process to kernel. It then runs
the Interrupt Service Routine (ISR) and switches back to user space. This is a big
overhead especially for higher packet rates. Poll Mode Drivers run on the user space
and use a dedicated CPU core to handle the traffic on one or multiple interfaces.

11

The CPU continuously polls the kernel network driver and the utilization hits close
to hundred percent. This can be checked with top command in Linux. DPDK uses
POSIX thread affinity to disable the kernel scheduler from utilizing these cores for
other processing.

Figure 2: Packet processing comparison between DPDK based application and via
the Kernel

DPDK uses Hugepages to improve performance in packet processing. Hugepages
refer to pages in main memory with bigger page size. The standard Linux page size
is 4kB while with Hugepages, the size could be 2MB or even 1GB. For some specific
use cases, even higher values are used. During a normal memory access when a
process is handled by the CPU, the virtual memory address used in the program
needs to be translated to physical memory address before it can be accessed from
the main memory. In the different memory access stages, the critical factor affecting
performance is the Translation Look-aside Buffer (TLB) hit. When bigger page sizes
are used, there are fewer pages and higher probability of a TLB hit[5]. However,
Hugepages are optimal only in scenarios such as network packet handling where
processes utilize enough memory to consume the allocated page size.

Another feature utilized in DPDK is Direct Memory Access (DMA). DMA is
used to speed up copying of packet buffers. Compared to a normal kernel network
stack, when a packet is received, DPDK uses DMA to directly lift the buffer to user
space. The traditional packet handling involves copying of buffer multiple times such
as, from the Network Interface Card (NIC) buffer to kernel socket buffer (skbuf
in Linux) and from there to the user space. This reduces performance due to the
copying overhead and also due to loss of localization of data leading to fewer cache
hits. The method used in DPDK is called zero-copy. Moreover, DPDK uses cache
alignment. In Intel machines, cache lines are normally 64 bytes. If the data fetched

12

from memory is placed in different cache lines, it would require multiple fetches from
cache to retrieve the entire data when compared to data being present on the same
cache line.

There are two modes of operation of a DPDK application, run to completion
and pipeline. In run to completion, each core is assigned a port or a set of ports.
The CPU core that is assigned to the port does the I/O specifically for that set of
ports, accepts the incoming packets, processes and sends it out through the same
set of ports. On the other hand, in pipeline mode, one core is dedicated to just I/O
and processing is handled by other cores. All packets received at a port are sent to
different cores using ring buffers. This method is more complex and could result in
packet order not being maintained.

The main components of DPDK are the core libraries, Poll Mode Drivers for
various supported interface cards and other libraries that deal with packet classifica-
tion, Quality of Service (QoS), etc.[24]. All of these libraries run on the userpace.
Apart from theses, DPDK uses Peripheral Component Interconnect (PCI) drivers in
the kernel such as IGB-UIO or VFIO-PCI that perform the basic PCI functionality.
When an interface is bound to DPDK, it is detached from the normal kernel driver
and attached to one of these DPDK drivers in the kernel.

The core libraries in DPDK have an Environment Abstraction Layer (EAL) which
hides or abstracts the platform from the libraries and applications running above
it. It also handles memory allocation in Hugepages and PCI related buffer handling.
DPDK does not allocate memory at run-time but rather pre-allocates memory during
initialization of the application. For packet processing, it uses memory from this
pool and returns it back to the pool after use. The library that allocates the pool of
memory (Mempool) consists of memory buffer (Mbuf) and lockless queues or ring
buffers for handling them, and are all part of the set of core DPDK libraries.

2.2 Single Root IO Virtualization, SR-IOV
SR-IOV is the hardware virtualization of a PCI Express (PCIe) device, or specifically,
a Network Interface Card, into multiple virtual devices that can be directly assigned
to an instance of a virtual machine or a container. SR-IOV has a Physical Function
(PF) which acts like a normal PCIe device and multiple Virtual Functions (VF) that
are lightweight functions with dedicated Rx/Tx queues[17]. In a virtual machine
context, the host machine kernel can be bypassed and the packets can flow directly
between the VF and PF.

Consider the scenario where one host is running multiple virtual machines (VMs)
and a network interface card (NIC) receiving and transmitting packets for all those
VMs. Without any hardware virtualization, when a packet is received by the NIC, it
triggers an interrupt to the CPU core that is assigned to handle NIC interrupts. This
core services the request and examines the packet. Based on the MAC address or
VLAN tag, it forwards the packet to the correct VM by triggering another interrupt
on the core that is servicing the virtual machine. This is an overhead since there
are multiple interrupt handling in the host even before the packet is transferred to
the guest operating system. There is also an extra copy of the packet buffer from

13

Figure 3: SR-IOV interface with Ethernet Virtual Bridge that sorts packets into one
of the Virtual Functions and forwards to the Virtual Machine

the host to the VM. Moreover, when the packet rate is high, one core handling
all the packets for all the VMs can be a severe bottleneck. As an solution to this,
Intel proposed Virtual Machine Device Queues (VMDQ) [18] technology which has
separate packet queues for each core. The received packets are put into one of the
queues based on the destination MAC or VLAN. Each core services its packet queue
by copying the buffer to the VM. There is distribution of work here and a good
performance enhancement. An even further enhancement is SR-IOV in which the
NIC has separate packet queues for each Virtual Function. When a packet is received,
it is sorted to one of the VF queues based on the destination MAC address or VLAN
tag by a virtual bridge or classifier. The VF then pushes the packet up the virtual
machine directly without involving the CPU using Direct Memory Access (DMA).
SR-IOV needs CPU I/O virtualization technology such as Intel VT-d (Virtualization
Technology for Directed I/O) or AMD-Vi (AMD I/O Virtualization) enabled for
the DMA to the virtual machine[20]. Figure 3 depicts the functioning of Virtual
Functions in SR-IOV.

2.3 Container
A container is an isolated execution environment which includes any necessary run
time dependencies and libraries needed for the application that it packages. It could
be thought of as a software that runs on the host with its own slice of the system
resources such as network, file systems, user groups, etc. but isolated from other
processes. Containers are built on namespaces and control groups which are a part
of the Linux kernel.

14

Namespaces

As per Linux man pages, namespace is an abstraction layer on "global system
resources" that provides isolated instance of the resource to the processes that are
members of the namespace. Linux provides six different namespaces, Inter Process
Communication (IPC) including POSIX and System V message queues, Network,
Mount, Process Identifier (PID), User and Unix Timesharing System (UTS)[27].

With network namespace, the processes in the new namespace can add new
network devices without they being available to host network namespace and vice
versa. Similarly, with mount namespace, different file systems can be mounted and
processes within this namespace cannot access other host file system. Namespace
can be created using Linux system call unshare[29]. The context of namespace that
every process belongs to, is stored in a sub-folder under proc file system as shown
below.

$ ls -l /proc/$$/ns | awk ’{print $1"\t"$(NF -2)$(NF -1) $NF}’
lrwxrwxrwx cgroup ->cgroup :[4026531835]
lrwxrwxrwx ipc ->ipc :[4026531839]
lrwxrwxrwx mnt ->mnt :[4026531840]
lrwxrwxrwx net ->net :[4026532009]
lrwxrwxrwx pid ->pid :[4026531836]
lrwxrwxrwx pid_for_children ->pid :[4026531836]
lrwxrwxrwx user ->user :[4026531837]
lrwxrwxrwx uts ->uts :[4026531838]

Below is an example of using namespace to create an isolated environment. The
current process identifier in a bash shell can be found out using $$. Then use unshare
command to create a new namespace. Here the arguments "pid" and "net" signifies
new namespaces for process identifier and network. The argument "mount-proc"
tells the command to mount the proc file system. The "fork" option makes a fork of
the current process before creating the namespace and attaches the child process to
it[29].

$ echo $$
8009
$ unshare --fork --pid --net --mount -proc bash
root:~# ip l
1: lo: <LOOPBACK > mtu 65536 qdisc noop state DOWN mode

DEFAULT group
default qlen 1000 link/loopback 00:00:00:00:00:00
brd 00:00:00:00:00:00

root:~# ps -aef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 13:37 pts /26 00:00:00 bash
root 12 0 0 13:44 pts /30 00:00:00 -bash
root 32 1 0 13:52 pts /26 00:00:00 ps -aef
root:~#

15

The new namespace created for the container is evident from ip link command
as it does not list any of the interfaces available on the host machine. The command
nsenter[28] can be used to enter a namespace as shown below. The argument -t
takes process identifier of the target process and joins its namespace. The other
arguments correspond to the different namespaces of the target process that it should
enter.

$ ps -aef | grep bash | grep root | awk ’{print $1"\t"$2"\t"
$3"\t"$8}’

root 31215 8009 sudo
root 31294 31215 sudo
root 31295 31294 unshare
root 31296 31295 bash

$ nsenter -m -u -i -n -p -t 31296
root:/# ps -aef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 13:37 pts /26 00:00:00 bash
root 12 0 0 13:44 pts /30 00:00:00 -bash
root 30 12 0 13:45 pts /30 00:00:00 ps -aef
root:/#

As a final step, add a network bridge within the new namespace and it is possible
to verify that this bridge is not available in the host namespace.

root:~# brctl addbr asd
root:~# ip l
1: lo: <LOOPBACK > mtu 65536 qdisc noop state DOWN mode

DEFAULT group
default qlen 1000 link/loopback 00:00:00:00:00:00
brd 00:00:00:00:00:00

2: asd: <BROADCAST ,MULTICAST > mtu 1500 qdisc noop state DOWN
mode
DEFAULT group default qlen 1000 link/ether 4a:18:f1:3c:9c

:b2
brd ff:ff:ff:ff:ff:ff

Control Groups

Control groups on the other hand are useful in allocating and limiting resource
consumption such as memory, CPU time, network bandwidth etc. Control groups or
cgroups are organized hierarchically, child cgroups inherit from parent cgroups. The
pseudo file system "sys" is used as an interface to create and manipulate cgroups. To
create a new cgroup, create a directory under /sys/fs/cgroup and set appropriate
values. For instance, when a Kubernetes pod is created with Hugepage limited to
4GB as described here, cgroups creates a directory in /sys/fs/cgroup/hugetlb/

16

kubepods/ and sets value of hugetlb.1GB.limit_in_bytes to 4294967296 in bytes
which is equivalent to 4GB.

$ sudo cat /sys/fs/cgroup/hugetlb/kubepods/hugetlb .1GB.
limit_in_bytes

4294967296

Comparison to Virtual Machines

Any description of containers is incomplete without a comparison to virtual machines.
As depicted in Figure 4, a virtual machine emulates an entire machine. There is a
hypervisor that runs on the host machine that emulates the underlying hardware and
a complete copy of the guest operating system running on top of it. The advantage
of virtual machines is that, it is completely isolated from the host machine. The
execution environment can be guaranteed in spite of the host hardware and operating
system. While at the same time, virtual machines can be heavy weight and resource
consuming. In contrast, a container essentially runs completely on the host. It uses
namespaces and control groups for isolation of the container from the host. As a
result, they are much more easy to boot up, lightweight and picking up in popularity
when compared to virtual machines [13].

Figure 4: Comaprison between virtual machines and containers

2.3.1 Container Networking Interface

Container Networking Interface Specification is a proposal for standardized networking
solution for container applications. It is documented in GitHub and has its origins from

17

CoreOS and rkt[31]. According to this specification, container run-time is responsible
for creating the network namespace and the network plug-in is an executable that
can be called by the container during execution. It specifies functions that should
be exposed by the network plug-in such as ADD, DEL, GET and VERSION. For
instance, ADD is invoked with the container identifier, network namespace and other
network configurations. This triggers the plug-in executable to insert an interface
into that namespace as per the configuration. Similarly, DEL is invoked when the
container is killed.

2.4 Kubernetes
Kubernetes is an open source container orchestration system. It is used for deploying
and managing container applications in a cluster. It is a result of evolution of
container management system developed by Google internally, known as Borg. Borg
was then replaced by Omega and then finally by Kubernetes[32]. It was made open
source in 2014[33].

Typically a Kubernetes cluster consists of at least one master node and many
worker nodes. The master node is responsible for maintaining the cluster state,
managing the resources, scheduling the work load, etc., while the application con-
tainers actually run in the worker nodes. The smallest unit that can be controlled
by Kubernetes is a pod. A pod can have multiple containers running within it but
all of them share the same namespace. So, if there are multiple containers that need
to interact closely, for instance, through inter process communication (IPC), they
can be placed in the same pod, since the containers in the same pod will share the
same IPC namespace.

The various functionalities of a Kubernetes master node are handled by different
components such as Application Programming Interface (API) server, controller
manager, etcd and scheduler. These components do not necessarily have to be
run on one master node but could be run anywhere in the cluster. But as a good
practice, to support High Availability (HA), it is encouraged to run these control
plane components in one node[34].

The API server exposes API’s that are used by other control plane components to
retrieve, store and manage information about the cluster. It also acts as an endpoint
for communications between the cluster and the Kubernetes master.

The Kubernetes scheduler is responsible for scheduling the workload between
the worker nodes. Typically when a pod is requested to be deployed, the scheduler
considers the resource requests in the pod and runs filtering and prioritizing functions
and binds the pod to the node with the highest priority. The filtering run filters
out nodes that cannot support the pod. For instance, as when a pod requests for
Hugepages and the nodes that do not support Hugepages are filtered out. The
priority function assigns a priority to all the nodes that passed the filtering step.
Effectively, the priority function does some load balancing between the worker nodes
considering primarily CPU and memory pressure on the nodes.

etcd is a database that stores Kubernetes cluster information. It stores key value
pairs and the API server is the only component that interacts with it.

18

Figure 5: Various components Kubernetes master and worker nodes and the way
they interact

Controllers in Kubernetes monitor the state of various resources and try to bring
them to the desired state. For instance, the replication controller makes sure the
desired number of pods are running in the cluster. If there are too many, the
unnecessary ones are killed and if there are fewer, the required number of pods are
created. The collection of all such controllers into one application is the controller
manager. There is also a cloud controller manager in the Kubernetes master that
interacts with the underlying cloud provider such as Google Compute Engine or
Amazon Web Services.

Kubernetes worker nodes contain kubelet, kube-proxy and the container run-
time, Docker. Kubelet manages the pods running in a node. It receives the pod
configuration from the API server and deploys the pod. It also sends back logs and
is used for connecting to a pod, for instance through the kubectl exec command.

Kube-proxy handles the networking part of the worker nodes. For instance, it
implements iptable rules for port forwarding and exposing services running on the
cluster[35].

kubectl is a command line tool that is used to manage and deploy Kubernetes
applications. The easiest way to deploy a pod running Ubuntu image is given below.

$ kubectl run --image=ubuntu:latest test -pod /bin/bash
deployment "test -pod" created
$ kubectl get pods
NAME READY STATUS RESTARTS

AGE
test -pod -79 b4848dd4 -w4srg 1/1 Running 0 8s

19

2.5 Open vSwitch
Open vSwitch is an open source implementation of a virtual switch which is designed
for virtualized environments such as a data center. In essence, it could be considered
as a "feature rich" Linux bridge[36].

The main components of OvS are the database server, the main process daemon
or ovs-vswitchd and a data path which is normally a kernel module. Apart from
these main components, OvS uses mainly three protocols for communicating between
them, namely, OVSDB management protocol[38], OpenFlow[12] and Netlink[30].
The way these components interact along with management tools is depicted in
Figure 6

Figure 6: Various components in Open vSwitch separated into management layer,
user space and kernel

The database server or ovsdb-server is a persistent storage of OvS configuration.
It is configured using an external configuration tool such as the OvS CLI tool ovsdb-
tool or ovs-vsctl. The former is primer for configuring the database while the latter
is for configuring the switch. The database server communicates with ovs-vswitchd
to exchange configuration information using OVSDB management protocol[38].

The main process daemon, ovs-vswitchd, is responsible for managing all the
OvS bridges in the machine. Network flows are installed using an external controller
such as ovs-ofctl. It then installs these flows in the data path or the kernel module
using Netlink.

In this thesis, OvS is configured to run on DPDK. This implies that instead of
the kernel module, the forwarding plane resides on the user space. The physical
interfaces use Poll Mode Drivers (PMD) running in the user space.

20

3 Related work
There has been considerable interest in DPDK based packet processing and further
improvements on it. Optimization of DPDK applications could be considered on
a use case basis and there are quite a few parameters that can be tweaked for
better performance such as the number of CPU cores used for Rx and Tx, Hugepage
allocation and isolation, NUMA locality, buffer allocation, etc. Bl H. et al, explore
further improvements on DPDK based packet processing in the paper "DPDK-based
Improvement of Packet Forwarding" [1]. The focus is on DMA and zero copy methods
that are used in DPDK. The paper proposes an improvement in the DMA method
by reducing the DMA operation during a packet buffer copy to user space. Similarly,
Cerrato I. et al, analyze multiple DPDK based applications running on the same
host with OvS in "Supporting Fine-Grained Network Functions through Intel DPDK"
[43]. In their work, OvS runs on primary CPU core and the network functions on
other secondary ones. The packets are received at OvS and distributed to the correct
network function and flow through a service chain and finally out of the host through
OvS. The study here is optimizing performance by assigning different number of
queues to handle input and output flows.

The research papers mentioned above primarily address optimizing the perfor-
mance of DPDK based applications. This is not in the scope of this thesis and
could be considered for future work. Improvements in packet processing in NFV is
addressed by Kourtis et al, in "Enhancing VNF Performance by Exploiting SR-IOV
and DPDK Packet Processing Acceleration" [7]. The paper considers SR-IOV and
DPDK as the primary methods of fast packet processing and utilize them in a virtu-
alized environment consisting of virtual machines. The study focuses on performance
enhancement using these techniques and compares them to processing of packets
using Linux kernel network stack. This is very similar to the experiment carried out
in 4.1 in this thesis where, in contrast containers are used.

A common problem in virtualized environment is the interface between a hyper-
visor and the guest operating system to emulate physical NIC. Virtio is the industry
standard used and is considered to be much less resource intensive that emulating
a complete PCI device. The underlying concepts are explored by Tan J. et al, in
[9] and Russell R., in [10]. The concepts understood from these research work such
as, vhost and virtio queues are used to make a better judgment on the latency
measurements in later section, 4.2.

Networking solution for containers are gaining in interest with the increasing
popularity of containers. "FreeFlow" [3] is a networking solution in an orchestrated
environment and argues that complete isolation between containers running similar
applications is not necessary. It also use Remote Direct Memory Access (RDMA) for
some performance gains. "An Analysis and Empirical Study of Container Networks"
[16] considers situations where containers are spawned on demand and argues that
establishing a dynamic network for such containers can add considerable delay in
container boot-up time. The research also argues such network incurs throughput
loss and adds latency. The work carried out in "Minimizing latency of Real-Time
Container Cloud for Software Radio Access Networks" [51] is quite close to the scope

21

of the thesis. This explores container networking solution for low latency using
primarily DPDK and a real time kernel. The real time kernel gives priority to
latency sensitive processes even under heavy work load. OvS with DPDK is used
with Kubernetes for inter node communication and for data packet forwarding. The
work concludes that DPDK is essential for a latency sensitive solution. Some of the
latency measurements stated in the paper are compared with the values obtained in
the latency measurements conducted for the thesis.

Other miscellaneous work of interest include "Iron" [14] which argues that complete
CPU resource allocation and isolation using control groups is generally overlooked.
When a process or a container is handling fast network traffic, the time spent by
the CPU handling hardware or software interrupts is unaccounted for. For software
interrupts, the CPU time for interrupt handling is accounted in the process that was
interrupted and not necessarily in the process that generated it. This can break CPU
resource time division. Szabo et al, explore the idea of resource orchestration based
on CPU locality in "Making the Data Plane Ready for NF" [15], which could also be
extended to Kubernetes using Node Feature Discovery. "Scalable High Performance
User Space Networking for Containers" [8] details some good testing topology using
DPDK and mentions that Hugepage isolation in containers is not present. This is
again an important requirement while running multiple containers in the same host
and is noted for future work.

Most of the related work mentioned above focus specifically on some technology
such DPDK, SR-IOV, virtio, etc., all of which are used in the thesis. However, their
focus is primarily on optimizing these applications for better performance. Work
conducted by Kourtis et al. in [7] and Mao et al. in [51] are the closest in scope to
the thesis. As noted before, [7] uses Virtual Machines for NFV. Utilizing containers
is a more recent field and uses different technologies for multiple interfaces and
orchestration. Mao et al. on the other hand, utilize containers in stand alone and
orchestrated environments. In the orchestrated environment, a Kubernetes cluster
with OvS for an overlay network is used and experiments were conducted to measure
network performance in both of these scenarios. In comparison, this thesis explores
networking solutions in a broader scope using third-party CNI plug-ins which have
become an important part of container ecosystem. More importantly, the thesis
extends the network latency measurements and addresses the need for latency aware
scheduling in an orchestrated environment. This consequently reduces the hardware
requirement on the network nodes and retains the flexibility offered by container
orchestration.

22

4 Latency Measurements
This chapter covers the experiments done for the thesis. There are different topologies
considered essentially for containers in standalone and orchestrated environments. In
all the topologies, the packet generator side is kept the same. The packet generator
used for all the experiments, is a DPDK based application pktgen which can generate
packets up to a rate of 14 million packets per second. Emmerich P. et al. do a
comprehensive study on different packet generators considering throughput, precision
and how they are affected at different CPU frequencies and architectures in [19]. In
these experiments, DPDK based pktgen proved to be a good choice and is used in
the thesis. The packet size used is 96 bytes to include time stamps in the buffer.
The latency measurements are done at the packet generator side. This implies the
time stamps are placed on the packets at the generator and compared with reception
time after a complete round trip as represented in Figure 7 with green arrows. The
packet generator and the Device Under Test (DUT) are connected through optical
fibres using SR-IOV interfaces.

Figure 7: Test setup used for latency measurements. The flow of packets is depicted
with green arrows.

Rest of the chapter is divided into subsections that detail the different experiments
and the results obtained. The first two subsections explore a fast data path in
container running on a single host. The first of those is a container running a DPDK
application with interfaces directly exposed to the container. The second subsection
utilizes OvS for forwarding packets within the DUT. There is also a comparative
study to understand how much acceleration is brought about by DPDK.

The last two subsections consider only a cluster environment with Kubernetes.
For a fast data path in this case, multiple scenarios have been considered and some

23

potential solutions discussed and experimented with. For this, initially a Kubernetes
cluster is built on bare metal and then different scenarios are outlined and discussed
one after the other in a detailed manner.

4.1 Container on DPDK and SR-IOV
A default docker container built on a bare Ubuntu image creates by default one
interface that is connected to "docker0" bridge on the host. This is the default
networking option in Docker [41]. The following illustrate running a Docker container
with Ubuntu image and listing its interfaces.

$ docker run -it ubuntu:latest /bin/bash
root@f8344e977497 :/# ifconfig
eth0: flags =4163<UP ,BROADCAST ,RUNNING ,MULTICAST > mtu 1500

inet 172.17.0.2 netmask 255.255.0.0 broadcast
172.17.255.255

ether 02:42: ac :11:00:02 txqueuelen 0 (Ethernet)
RX packets 25 bytes 4140 (4.1 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0

collisions 0

lo: flags=73<UP ,LOOPBACK ,RUNNING > mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
loop txqueuelen 1000 (Local Loopback)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0

collisions 0

The bridge that is created automatically in the host, "docker0", resides in the
same sub-net and acts as a gateway. Multiple Docker containers on the same host
can communicate with each other using this bridge.

$ ip a | grep -A 3 docker0
7: docker0: <NO -CARRIER ,BROADCAST ,MULTICAST ,UP > mtu 1500

qdisc noqueue state DOWN group default
link/ether 02:42:29:09:76:49 brd ff:ff:ff:ff:ff:ff
inet 172.17.0.1/16 brd 172.17.255.255 scope global

docker0
valid_lft forever preferred_lft forever

inet6 fe80 ::42:29 ff:fe09 :7649/64 scope link
valid_lft forever preferred_lft forever

24

Docker supports other networking options such as host, overlay, macvlan [41].
Host networking option in Docker removes the network isolation between the host
and the container. The overlay option is used with Docker swarm. It creates an
overlay network and can be used to communicate with containers in other hosts.
Macvlan assigns a MAC address to the virtual interface in the container and exposes
it to a parent host physical interface making it look like a real physical interface.
All of the above options are suited for specific use cases. The final option in Docker
networking, using network plug-ins, is the most interesting one. It is an interface to
use third part networking plug-ins, or Container Networking Interface (CNI) plug-ins.
The open source CNI plug-ins for SR-IOV and DPDK could be used to explore fast
data path networking in containers and is used for experiments below.

The test setup consists of two physical machines. Both the machines have a
management interface and two SR-IOV interfaces. The management interface is used
to configure them remotely using Secure Shell (SSH). The SR-IOV interfaces are
connected back to back between the two machines, forming a closed loop as shown
in Figure 8.

Figure 8: Test topology. DPDK based pktgen on one side and a Docker container
with DPDK and SR-IOV on the other.

One of the machines is used as a packet generator. The other one utilizes
virtualization of SR-IOV to push the packet directly to a container that runs a
DPDK application. Hence, the packets received are not passed to the kernel network
stack but rather handled by DPDK. The application simply forwards the packets
from one port to the other. To run DPDK based application, SR-IOV Virtual
Functions have to be enabled and CNI plug-ins need to be used to expose them to
Docker container. Configurations of the host environment are described below.

For running DPDK based applications, Hugepages should be enabled in the

25

host machine. The Hugepage sizes that are supported in the most common Linux
distributions are 2MB and 1GB. If 1GB Hugepages are to be used, it is recommended
to have them configured at boot time of the host by setting kernel boot parameters.
This it to ensure the availability of such large contiguous memory (1GB) in main
memory. Allocating 1GB Hugepages is generally not possible at run time due to
fragmentation of main memory. The kernel boot parameters can be set by editing /
etc/default/grub and updating GRUB with update-grub command. For instance,
edit GRUB_CMDLINE_LINUX to include, GRUB_CMDLINE_LINUX="default_Hugepagesz
=1G␣Hugepagesz=1G␣Hugepages=4". Then update GRUB, reboot machine and check
boot parameters and consequently the Hugepage availability as follows,

$ cat /proc/cmdline
BOOT_IMAGE =/boot/vmlinuz -4.4.0 -131 - generic default_Hugepagesz

=1G Hugepagesz =1G Hugepages =4
$ cat /proc/meminfo | grep -i Hugepages_
Hugepages_Total: 4
Hugepages_Free: 4
Hugepages_Rsvd: 0
Hugepages_Surp: 0
Hugepagesize: 1048576 kB

Hugepages have to be mounted on the host. In some versions of Linux distributions,
for instance, in Ubuntu 16.04 and higher, they are mounted automatically in /dev
/Hugepages. It is also possible to isolate the CPU cores that will be used for the
DPDK application using boot parameters so that the kernel scheduler does not use
them. For instance, GRUB_CMDLINE_LINUX="default_Hugepagesz=1G␣Hugepagesz
=1G␣Hugepages=4␣isolcpus=2,3,4,5,6,7"

DPDK supports different Linux kernel drivers such as UIO, VFIO, etc. [24]. VFIO
is used in most of the cases in the thesis since, as stated in DPDK documentation, it
is "more robust and secure". VFIO kernel module if supported, is shipped with the
OS. It also needs IO virtualization such as Intel VT-d and that needs to be enabled
in BIOS. I/O Memory Management Unit (IOMMU) has to be set as a kernel boot
parameter,

$ cat /proc/cmdline
BOOT_IMAGE =/boot/vmlinuz -4.4.0 -131 - generic default_Hugepagesz

=1G Hugepagesz =1G Hugepages =4 intel_iommu=on

Setting up a SR-IOV interface for virtualization requires IOMMU and Intel VT-d
support which are also needed when using VFIO driver as explained above. The
number of VFs to be enabled can be set using sys virtual file system in /sys/class
/net/$IFNAME/device/sriov_numvfs where $IFNAME is the name of the SR-IOV
interface as displayed in ip link command. MAC address needs to be specifically
set for each VF using ip link set dev $IFNAME vf $i mac aa:bb:cc:dd:ee:01
where $i is the VF count. The Physical Function uses this MAC address to forward

26

a received packet to the correct VF and hence directly to the container or VM it is
exposed to.

For using third party CNI plug-ins, when a Docker container is spawned, it looks
for network configuration file in a default location, /etc/cni/net.d/ and binary of
the plug-in in /opt/cni/bin/. The plug-in used for this test case is SR-IOV CNI
plug-in with support for DPDK [42].

The topology needs a DPDK based container on one side and a packet generator
on the other. For building a container that can run a DPDK application, the idea
is to start with a base image of some standard Linux distribution such as Ubuntu
16.04, install the required libraries and tools, including some debugging tools such as
GNU debugger (GDB). Compilation of DPDK requires Linux header files and other
standard build tools, make, etc. Then fetch the DPDK code, compile the libraries
and the required application, testpmd. Some extra compile time flags are used to
enable debugging with GDB.

$ git clone http :// dpdk.org/git/dpdk dpdk
$ cat > build -dpdk.sh <<EOF
echo "Build␣DPDK"
make install T="\$RTE_TARGET" EXTRA_CFLAGS="-g␣-O0" -j8
if [\$? != 0]; then

echo -e "\tBuilding␣DPDK␣failed"
exit 1

fi
cd app/test -pmd/
make -j8
EOF
$ chmod +x build -dpdk.sh
$ cat > Dockerfile <<EOF
FROM ubuntu :16.04
RUN apt -get update; apt -get install -y apt -utils build -

essential less make kmod vim pciutils libnuma -dev python
gdb linux -headers -$(uname -r);

COPY ./dpdk /root/dpdk
COPY ./build -dpdk.sh /root/dpdk/build -dpdk.sh
WORKDIR /root/dpdk/
ENV RTE_SDK "/root/dpdk"
ENV RTE_TARGET "x86_64 -native -linuxapp -gcc"
RUN ./build -dpdk.sh
EOF
$ docker build -t dpdk -docker:latest .

Now, as is visible from Figure 8, one VF per SR-IOV interface is sufficient for
this experiment. However, one VF from each SR-IOV interface is exposed to the
container. The CNI plug-in configuration used is as follows,

$ cat /etc/cni/net.d/10-sriov -dpdk.conf
{

27

"name": "net1",
"type": "sriov",
"if0": "enp1s0f1",
"if0name": "if0",
"dpdk": {

"kernel_driver":"ixgbevf",
"dpdk_driver":"igb_uio",
"dpdk_tool":"\$RTE_SDK/usertools/dpdk -devbind.py"

}
}

In the configuration above, type is always sriov for this plug-in, if0 is the
name of the SR-IOV interface or PF, if0name is the name inside the container and
within dpdk parameters, kernel_driver is the current kernel driver the interface is
using, dpdk_driver is the DPDK driver that needs to be used, such as VFIO and
dpdk_tool is a tool that is shipped with DPDK source code that can be used to
bind interfaces to DPDK. The above configuration could be replicated with different
if0 and if0name for the VF from second SR-IOV interface [42].

To run DPDK application in the container, the container has to be run in
privileged mode so that it can bind the interfaces, get Hugepage information, etc.
This can be done with the --privileged flag in Docker. Also, the Hugepage mount
location has to be mounted in the container as a volume. Docker run command is as
follows,
docker run -it -v /dev/Hugepages :/dev/Hugepages --privileged

dpdk -docker:gdb /bin/bash

Inside the container, start testpmd application and configure it for forwarding
packets received on one port to the other. If there are an even number of ports, this
is also the default behavior of testpmd. This can be checked with show config fwd
command. Start reception and transmission of packets with start command.

testpmd > show config fwd
io packet forwarding - ports=2 - cores=1 - streams =2 - NUMA

support enabled , MP over anonymous pages disabled
Logical Core 1 (socket 0) forwards packets on 2 streams:

RX P=0/Q=0 (socket 0) -> TX P=1/Q=0 (socket 0) peer
=02:00:00:00:00:01

RX P=1/Q=0 (socket 0) -> TX P=0/Q=0 (socket 0) peer
=02:00:00:00:00:00

testpmd > start

On the packet generator side, the DPDK based packet generator pktgen requires
similar configuration as above with the exception that there is no container. The
VFs from SR-IOV interfaces are directly attached to the application. Latency has to
be specifically enabled in both the interfaces and the packet size is set to 96 so that
there is room in the packet buffer for time stamping. Here, we set the destination

28

MAC address as the MAC address of the receiving VF in DUT; if not, the packets
get dropped at PF.

./app/x86_64 -native -linuxapp -gcc/pktgen -l 0-3 -n 4 --proc -
type auto --log -level 7 --socket -mem 2048 --file -prefix pg
-- -T -P --crc -strip -m [1:2].0 -m [2:3].1 -f themes/

black -yellow.theme
pktgen > enable 1 latency
pktgen > set 1 dst mac aa:bb:cc:dd:ee:00
pktgen > set 1 size 96
pktgen > start 1

Above, 1 refers to the port number used for generating packets. And with start
1, packets are generated at a rate of 11 million packets per second (Mpps). Latency

was measured at the packet generator side to be 800 micro seconds. In comparison,
the work conducted in "Supporting Fine-Grained Network Functions through Intel
DPDK" [43] the latency was found to be 100 micro seconds for small number of VNFs.
But this value quickly grew to about than 1890 micro seconds for higher number of
VNFs. It should be noted that in [43], the latency was measured within the system
and does not include wire latency. Also, different optimizations on DPDK were used
to boost performance and the VNFs were implemented just as processes and not as
containers. These are the probable reasons for a better latency value.

For a comparative study, instead of using DPDK based container running testpmd,
the packets were processed using the Linux kernel stack. For this, a Linux bridge
was created and the two SR-IOV interfaces were attached to it. The bridge forwards
the traffic from one port to another. In this case, the latency was measured to be
8700 micro seconds for a packet rate of 10Mpps. It is clear that DPDK based packet
processing provides much better performance, close to a 10 fold improvement.

4.2 Container on OVS-DPDK
The test setup in the previous section used was probably the simplest network
possible. The machines were directly connected and the traffic blindly forwarded
from one port to another. In a more realistic scenario, there could be multiple
containers running on the host and packets forwarded between them. In a container
orchestrated environment with Kubernetes, these containers or pods could very well
reside in different hosts. This calls for exploring a more generic networking solution.

The default networking provided with Docker, using "docker0" bridge is a good
solution that would work for containers in one host. Similarly, the overlay network
driver in Docker and other third part network plug-ins such as using Flannel [44],
Weave Net [47], Calico [48], etc. which also work with Kubernetes are also solutions
that could work with little hassle. But none of these methods provide support for a
fast data path using DPDK or support virtualization with SR-IOV VFs. However,
Open vSwitch (OvS) on the other hand, supports DPDK and provides a way to
easily configure the network using Open Flow. Though it might be an overhead in
a simple topology, it could scale well when the network is more complicated with

29

multiple hosts and different types of interfaces such as for management and data
since it also supports setting up tunneling interfaces to configure an overlay network
which could be helpful with Kubernetes. However, whether the overlay network can
support a DPDK based fast data path needs still to be explored.

This section uses OvS with DPDK and a container with DPDK application,
testpmd on DUT. Both the SR-IOV interfaces are this time connected to the OvS
bridge. The packet generator side is unchanged as the previous test scenario.

OvS release page [49] notes the compatible versions of DPDK with OvS and also
the compatible version of OvS for different Linux kernel versions. In this experiment,
the Linux kernel version used is 4.4.0-131-generic. Correspondingly, the latest
compatible version of OvS is 2.9.x and DPDK version compatible this version of
OvS is 17.11.3.

To use Open vSwitch (OvS) with DPDK data path, DPDK needs to be built
as in normal scenario but with the correct version as described above. The envi-
ronment variables RTE_SDK and RTE_TARGET should be set. The former is the path
to DPDK source code and the later is the build target environment, or x86_64-
native-linuxapp-gcc in this case. Then OvS has to be configured with the flag,
--with-dpdk="$RTE_SDK/$RTE_TARGET" and compiled from source.

DPDK parameters such as lcore, memory and other typical settings used with
most other DPDK applications can be set in the OvS data base as shown below,

sudo ovs -vsctl --no -wait set Open_vSwitch . other_config:dpdk
-init=true

sudo ovs -vsctl --no -wait set Open_vSwitch . other_config:dpdk
-lcore -mask=0x0F

sudo ovs -vsctl --no -wait set Open_vSwitch . other_config:dpdk
-socket -mem =256

sudo ovs -vsctl --no -wait set Open_vSwitch . external -ids:
system -id="${HOSTNAME}id"

The system identifier, system-id above, could come in handy when setting up
an overlay network with OvS. Most other steps in setting up OvS with DPDK are
quite straightforward or well documented and not listed here.

The final part of the previous section had a Linux bridge with interfaces attached
to it and packets forwarded as a normal bridge would do, flood. In this case, something
similar in theory is done with an OvS bridge. But, the interfaces are bound to DPDK
and then attached to an OvS bridge. Also couple of flows are added to the bridge to
forward the packets received on one interface to the other and vice versa instead of
flooding. The commands are shown in detail below.

$ ovs -vsctl add -br dpdk -br -- set bridge dpdk -br
datapath_type=netdev

$ ovs -vsctl add -port dpdk -br p1 -- set Interface p1 type=dpdk
options:dpdk -devargs =0000:01:00.0 ofport_request =1

$ ovs -vsctl add -port dpdk -br p2 -- set Interface p2 type=dpdk
options:dpdk -devargs =0000:01:00.1 ofport_request =2

30

$ ovs -ofctl add -flow ext1 in_port=2,action=output :1
$ ovs -ofctl add -flow ext1 in_port=1,action=output :2

Packets were generated at an average of 10Mpps and the latency was observed to
be 800 micro seconds. This is the same value of latency observed in the previous
section 4.1 with SR-IOV VF exposed to a container running a DPDK application.
This shows that OvS running as a DPDK application does not add any additional
latency since OvS here is just a DPDK application. Also, counter intuitively, a
container does not add any latency to packet processing. This is expected since
containers utilize the host resources and do not have any overhead like a hypervisor
in Virtual Machines.

Figure 9: Test topology with OvS DPDK running on user space and forwarding
packets to a container using vhostuser ports

Now, the next logical step is to add a container in between the two interfaces and
forward the packets to a DPDK application, testpmd, running inside the container
and forward the packets back to the packet generator as shown in Figure 9. To
expose DPDK interfaces to a container via OvS, OvS uses vhostuser port on the
host side. This creates a UNIX domain socket which needs to be exposed to the
container. In DPDK application, a virtiouser port is created using this socket
file. Now, flows are added to forward packets between the DPDK interface and
vhostuser ports. The packets received at vhostuser will be picked by virtiouser
and thus the DPDK application.

$ ovs -vsctl add -port dpdk -br vhu -p1 -- set Interface vhu -p0
type=dpdkvhostuser

31

$ ovs -vsctl add -port dpdk -br vhu -p2 -- set Interface vhu -p1
type=dpdkvhostuser

$ ovs -ofctl add -flow dpdk -br in_port=1,actions=output :3
$ ovs -ofctl add -flow dpdk -br in_port=4,actions=output :2

The port numbers in OvS could be verified with command ovs-ofctl dump-
ports-desc dpdk-br. The UNIX domain sockets are created by default in location
/usr/local/var/run/openvswitch/. So, this also has to be mounted while running
DPDK Docker apart from the Hugepages mount, as shown below.

docker run --privileged -it -v /dev/Hugepages :/dev/Hugepages
-v /usr/local/var/run/openvswitch :/var/run dpdk -docker:gdb
/bin/bash

While running the DPDK application inside container, the PCI devices are
disabled so that the application does not look for physical ports and virtual devices
are created using the two virtiouser ports.

./ testpmd -c 0xf -n 4 -m 1024 --no -pci --vdev=virtio_user0 ,
path=/var/run/vhu -p1 --vdev=virtio_user1 ,path=/var/run/vhu
-p2 --file -prefix=container -- -i

The latency measurement was done with the packet generator sending packets
at a rate of 11 million packets per second. Latency was observed to be 5000 micro
seconds. This is quite a high value when compared to the previous one with just
the addition of a DPDK container. vhostuser and virtio are culpable for causing
the overhead. Russell R., states that virtio implements ring buffers for packet
copy between the Virtual Machines and the host[10]. In this case, this happens
twice between the container application and host for transmission and reception
of packets. Moreover, Bonafiglia et al, state that vhostuser waits for interrupts
to be received from virtio on the container side and a tap interface on the OvS
side before sending or receiving packets [50]. This is again another considerable
overhead. The performance improvements by utilizing DPDK address the exact
issues mentioned above, but the network bottleneck is just shifted with virtio
and vhostuser. However, this is currently the most feasible solution especially
with Virtual Machines since it emulates a PCI device and the hypervisor does not
need extra configurations or drivers[10]. For a comparative understanding, the
paper "Minimizing Latency of Real-Time Container Cloud for Software Radio Access
Networks" [51] notes a latency of 39422 micro seconds with Virtual Machines which
utilize the same vhost ports and virtio queues.

4.3 Fast packet processing in Kubernetes
The previous two sections dealt with the networking aspects when containers were
hosted on just one host and packets were generated from another. But in a real

32

scenario, there would be a cluster of many hosts with some container orchestration
such as Kubernetes managing them. When a request to deploy a new container or
rather a pod, in Kubernetes is received, Kubernetes decides on which worker node
to deploy depending on the requirements to run the pod such as available memory,
CPU cores and any other constraints that may be provided in the pod configuration.
Kubernetes has to find a node that fits all the bills. Fast data path could be also be
another constraint to be considered while deploying pods.

In a Kubernetes cluster, a deployed pod needs one management interface to
communicate with Kubernetes master [52]. As shown in Figure 1, one interface from
each of the worker nodes and master is placed in the same subnet for this. When a
pod is being deployed in Kubernetes and if it needs external DPDK interfaces for
fast packet processing, Kubernetes has to decide on which worker node to deploy the
pod depending on the availability of such interfaces in the worker nodes. There are
three scenarios to be considered and are described below.

The first scenario is when the required number of DPDK interfaces for the pod is
present in all of the Kubernetes worker nodes. In this case the pod could be deployed
in any of the nodes and there is no extra networking constraint to be considered
by the scheduler. The only question to be answered here is how to expose multiple
interfaces to a pod since a Kubernetes pod in its default state supports only one
interface.

The second scenario is when the required external DPDK interaces for the pod
are present in just some of the worker nodes. In this case, the Kubernetes scheduler
needs some mechanism to find out which nodes satisfy this criteria and deploy the
pod in one of them.

The third scenario is the trickiest. If the required number of DPDK interfaces
are say, three, and there are three worker nodes with one DPDK interface each. The
decision on which node to deploy the pod is not important but rather routing the
data between the worker nodes. Earlier it was noted that every Kubernetes pod
has a default management interface. This could maybe leveraged to route the data
packets as well.

The above three scenarios and their potential solutions are discussed in the next
few sections. But the next immediate section is on how to build a Kubernetes cluster
on bare metal.

4.4 Building a Kubernetes cluster
In this section, using bare metal machines, a cluster is formed with local connectivity,
a DHCP server to assign dynamic private IP, and a DNS resolver. Then Kubernetes
is run on this cluster. To build the cluster, MAAS or Metal as a Service, is used.
MAAS is an open source software developed by Canonical [53]. It helps form a
cluster from a set of bare metal machines with cloud like features and flexibility.

MAAS needs a central machine which is the controller. The controller is respon-
sible adding further machines to the cluster, assigning IP address, booting them over
a network interface using Preboot Execution Environment (PXE) booting, etc. The
other nodes are generally accessible through the controller. The topology is shown in

33

Figure 10. The easiest way to setup the MAAS controller is using a Ubuntu server
image and in the install options, choosing MAAS region controller. Another option
is to install standard Ubuntu distribution, use the package manager, aptitude and
install MAAS. The next step is to configure the controller. Most of the configurations
are done using the HTTP server that runs by default on port 5240 on the controller.
A MAAS cluster can have two types of controllers, region and rack controller. Since
the setup is quite small and the machines are physically attached to the same sub
network, just one controller is used which acts both as region and rack controller.

Figure 10: Topology of cluster built with MAAS

Initially, the controller SSH public key will need to be provided to MAAS. This
is later used to allow access to the controller and the other nodes in the cluster. The
version of Ubuntu to be used for deploying the nodes was set to 16.04. For upstream
name resolution, the upstream Domain Name System (DNS) configuration can be
set. Also, since the idea is to run DPDK based applications on Kubernetes and since
some nodes will support SR-IOV interfaces, the required Kernel boot parameters
can be set in MAAS controller API.

intel_iommu=on iommu=pt default_Hugepagesz =1G Hugepagesz =1G
Hugepages =4

To allow access to the external network for other nodes in the cluster, the controller
will have be configured to use NAT to forward the traffic. This is used only for remote
login to the worker nodes and for installing other required packages and not for fast
data path. For convenience, let the interface connected to the external network in
the controller be eth0 and the interface connected to the subnet 10.10.10.0/24 be
eth1. The iptable configurations for NAT’in are as shown below.

34

iptables --table nat --append POSTROUTING --out -interface
eth0 -j MASQUERADE

iptables --append FORWARD --in-interface eth1 -j ACCEPT
echo 1 > /proc/sys/net/ipv4/ip_forward

Other nodes to be added to the cluster should be placed in the sub-net. A
switch could be connected to the MAAS controller interface eth1. Other nodes
should be connected to the switch using the interface with PXE boot enabled. On
booting, the node gets a temporary IP address from the DHCP server running on the
controller. The controller then lists the node in the MAAS dashboard. The power
type in the node has to be configured. If the node supports IPMI, it will be detected
automatically. Otherwise, set the power type to "Manual". The disadvantage is
that, the machines will have to be powered on/off manually. Now, in the MAAS
dashboard, it is possible to commission the node. The machine will boot again, or
will have to be done so manually, after which the controller sends the boot images
and initialization scripts. The machine finally goes to ready state.

Once all the nodes are added and in "Ready" state, they can be acquired while
deploying some application in MAAS. The application of interest here is Kubernetes
and the easiest way to deploy Kubernetes on MAAS is using Juju. A Kubernetes
deployment typically has many components that need to be installed. For instance,
in the master node, "etcd", "easyrsa" for generating certificates for TLS, kubectl
application, some network plug-in and of course the core Kubernetes applications such
as scheduler, config manager, etc. On the worker nodes, Docker, kublet, the proxy
daemon, etc. Juju does an automatic deployment of all the necessary components.
But for this, Juju needs to be deployed first and it needs a dedicated controller.
One way to do so without consuming an additional machine is to use a virtual
machine in MAAS controller and add it to the cluster. It could then be used as
Juju controller. The other way is to use any other node in MAAS cluster as Juju
controller. The choice depends on how machines are available and how many are
needed for Kuberentes. In this experiment, the virtual machine method was used
initially. Juju can deploy a minimal Kubernetes cluster with two machines using
the command, juju deploy cs:bundle/kubernetes-core-251. Verify the status
of machines go to "active" with the following command and sample output

$ juju status
Model Controller Cloud / Region Version SLA
default test - cloud test - cloud 2.3.8 unsupported

App Version Status Scale Charm Store Rev OS Notes
easyrsa 3.0.1 active 1 easyrsa jujucharms 27 ubuntu
etcd 2.3.8 active 1 etcd jujucharms 63 ubuntu
flannel 0.9.1 active 2 flannel jujucharms 40 ubuntu
kubernetes - master 1.9.8 active 1 kubernetes - master jujucharms 78 ubuntu exposed
kubernetes - worker 1.9.8 active 1 kubernetes - worker jujucharms 81 ubuntu exposed

Unit Workload Agent Machine Public address Ports Message
easyrsa /0* active idle 0/ lxd /0 10.10.10.8 Certificate Authority connected

.
etcd /0* active idle 0 10.10.10.6 2379/ tcp Healthy with 1 known peer
kubernetes - master /0* active idle 0 10.10.10.6 6443/ tcp Kubernetes master running .

flannel /0* active idle 10.10.10.6 Flannel subnet 10.1.18.1/24
kubernetes - worker /0* active idle 1 10.10.10.7 80/ tcp ,443/ tcp Kubernetes worker running .

flannel /1 active idle 10.10.10.7 Flannel subnet 10.1.34.1/24

Machine State DNS Inst id Series AZ Message

35

0 started 10.10.10.6 yda8rf xenial default Deployed

0/ lxd /0 started 10.10.10.8 juju -90 b946 -0-lxd -0 xenial default Container started

1 started 10.10.10.7 6 hn4pg xenial default Deployed

Following is a hello world example to test the Kubernetes deployment. To deploy
a simple pod in Kubernetes, create pod manifest file and use kubectl commands to
create the pod.

$ cat > helloworld.yaml <<EOF
apiVersion: v1
kind: Pod
metadata:

name: test -pod
spec:

containers:
- name: test -container

image: ubuntu:latest
command: ["/bin/bash"]
args: ["-c", "echo␣SUCCESS;␣while␣true;␣do␣sleep␣1;␣done"

]
EOF
$ kubectl create -f helloworld.yaml
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
test -pod 1/1 Running 0 5s
$ kubectl logs test -pod
SUCCESS

Another way to deploy Kubernetes is using the tool kubeadm. This is a Kubernetes
project that is still in beta stage but quite good for development purposes. This
deployment of Kubernetes is quite minimalistic when compared to deployment with
Juju. This gives a bit more control. With kubeadm, the network plug-in has to be
installed separately which is ideal for most of the work in the thesis since it can be
easily tweaked and modified.

4.5 Scenario 1, Multus
This section covers in detail the first scenario described above where all the worker
nodes in the Kubernetes cluster have DPDK supported interfaces. The scheduling
decision is hence unaffected by the worker nodes’ hardware features and the normal
scheduling decision could be made based on the CPU, memory and other resource
constraints.

To use the DPDK interfaces in a pod, a Container Network Interface (CNI) plug-in
called "Multus" can be used. It is an open source software developed by Intel [54] and
written in Golang. Multus acts as an interface between Kubernetes and other CNI
plug-ins. It reads the required networking requirement from a configuration file which

36

specifies which other CNI plug-ins to use along with their individual configuration. It
then looks for these CNI plug-in executable in a specific location and runs them with
the given configuration. Consequently exposing the CNI plug-in based interfaces to
the pod. Multus also maintains one interface for Kubernetes related communication.
This is called the master plug-in. In essence, if CNI plug-in, say P1 needs to be called
with configuration C1 and another CNI plug-in P2 with configuration C2, the user
gives these configurations to Multus and Multus calls these individual CNI plug-ins
one after the other, exposing it to the pod.

The CNI plug-in for SR-IOV with DPDK which was used in section 4.1 and
Flannel for management interface are used with Multus in this scenario. Here Flannel
is the master plug-in used in Multus nomenclature and SR-IOV DPDK plug-in is
used for fast packet processing and latency measurements.

There are a couple of different ways of using Multus. Kubernetes allows users
to define custom resource types, called Custom Resource Definition (CRD). The
first approach involves defining a new network resource as a CRD and specifying the
plug-in configurations while defining the resource objects. The other option is to have
a CNI configuration file in each of the worker node with the required configuration.
The second method has a disadvantage that all the pods running in a worker will use
the same configuration file and it is not possible to customize the network per pod.
Since a generic solution is really not needed for the targeted latency measurements,
the second approach is used. Multus configuration file is as follows.

$ cat /etc/cni/net.d/10- multus.conf
{

"name": "multus -demo -network",
"type": "multus",
"delegates": [

{
"type": "flannel",
"masterplug -in": true ,
"delegate": {

"isDefaultGateway": true
}

},
{

"type": "sriov",
"name": "net1",
"if0": "enp1s0f1",
"if0name": "if0",
"dpdk": {

"kernel_driver":"ixgbevf",
"dpdk_driver":"igb_uio",
"dpdk_tool":"\$RTE_SDK/usertools/dpdk -devbind

.py"
}

},
{

37

"type": "sriov",
"name": "net2",
"if0": "enp1s0f2",
"if0name": "if1",
"dpdk": {

"kernel_driver":"ixgbevf",
"dpdk_driver":"igb_uio",
"dpdk_tool":"\$RTE_SDK/usertools/dpdk -devbind

.py"
}

}
]

}

The experiment in this section is similar to the previous sections with a packet
generator on one side sending and receiving packets and calculating the latency. But
this time on the DUT side is a Kubernetes cluster with SR-IOV interfaces from the
packet generator directly connected to one of the worker nodes. The SR-IOV VFs
are exposed to the Kubernetes pod using Multus and other CNI plug-ins as shown in
Figure 11. Here the idea is to measure the latency when all the Kubernetes worker
nodes have DPDK interfaces. The experiment is quite similar to the one in Section
4.1 but instead of a Docker container, a Kubernetes pod is used and Multus is used
for multiple interfaces.

Figure 11: Test topology. DPDK based pktgen on one side and a Kubernetes cluster
with multiple SR-IOV VFs exposed to the pod using Multus.

The latency was found to be 800 micro seconds, similar to the values in Section
4.1. This is quite expected since the CNI plug-ins just expose the interfaces directly

38

to the pod. There is not extra packet copy or any processing induced by them. It
should be noted that the SR-IOV interfaces here are not managed by Kubernetes
and exposed externally and as a result gives "native" DPDK performance. In the
later section 4.7, the overhead caused due an overlay network with packets routed
between nodes is understood.

4.6 Scenario 2, Node feature discovery
In this scenario, only some of the Kubernetes worker nodes may have the required
number of DPDK interfaces. To deploy the pod in one of such nodes, the Kubernetes
scheduler should have some mechanism to find out the interfaces supported in each
of the nodes.

Kubernetes supports "daemon set" as a type of work load which ensures that
the pod runs on all the nodes in Kubernetes. This can be used to figure out the
hardware features of the node and report them to the API server. The scheduler can
then use this information to decide which node can run the pod.

There is a Kubernetes incubator project called "Node Feature Discovery" [37] that
does exactly this, discovering different hardware features supported by the worker
nodes. As of writing, it supports finding out if a node has SR-IOV interfaces. This
could be used along with a modified scheduler to deploy the node. A similar task is
done in the chapter 5 and not repeated here.

4.7 Scenario 3, Kubernetes with OVN
In the final scenario, the required number of DPDK supported interfaces are not
found in one host. It could be scattered over the cluster. For instance, consider
Figure 1 in Page 10. If the application running on the pod needs four interfaces, two
for incoming packets, process them and send them over to another network using
the other two. The pod could very well be placed in any of the worker nodes but
none of them satisfy the required number of interfaces individually. So, the focus
here is on finding a way to route the data packets within the cluster.

One way to achieve this is to add dedicated interfaces between the nodes apart
from the management interfaces that support DPDK and provide fast data path.
But this imposes extra hardware requirement on the cluster, increases cost and
is generally not a good solution. The other solution is to find a way to use the
management interfaces for routing the data packets.

In a typical Kubernetes deployment that uses some networking plug-in such as
Flannel, the requirement that each pod in Kubernetes is reachable via an IP address
is taken care of by the plug-in. Flannel takes care of networking between the nodes in
the cluster. A subnet of the entire allocable IP address is provided to each host [44].
A solution applicable to the scenario here would on top of this, place the external
interfaces and pods in a different private IP subnet and use some tunneling protocol
to route the packets between them. This calls for complicated routing within the
cluster and a more configurable network is handy.

39

Open Virtual Network (OVN) can be used for building such a network. OVN can
be used to create a virtual network and provide Layer 2 and 3 connectivity. Pods
could be placed in this virtual network and provide connectivity similar to what
Flannel does. OVN is like a controller for a virtual network built on OvS comprising
abstractions such as logical switches and routers. It can be used to build a full
scale virtual network with OvS lying underneath it. The OVN architecture [45]
has at the top a Cloud Management System (CMS) through which it receives the
network configuration. CMS populates Northbound database with the configurations.
Below that is a Northbound interface that connects this database to the Southbound
database. It converts the logical network configuration to logical flows. Apart
from these logical flows, Southbound database also contains some physical network
information. This is in turn connected to OVN controller running on each node. These
controllers are connected to ovs-vsctl to configure the OvS bridges underneath.

At the Northbound interface, OVN accepts configurations in terms of logical
switches and routers. For instance, to provide connectivity between pods in Kuber-
netes, a configuration comprising logical switches on all hosts and connected together
using a logical distributed router would suffice[1]. OVN uses gateway routers to
connect to external networks. For two routers to be connected to one another, a
logical switch is needed between them, at the time of writing.

OVN has plug-ins to function with Open Stack and Kubernetes [55]. The plug-in
for Kubernetes sets up the Kubernetes networking requirements similar to Flannel and
provides further possibility to build the network. Most importantly, since underneath
it uses OvS, DPDK could be used for data path.

For Kubernetes, kubeadm based deployment is used instead of Juju as described
in section 4.4. This is because kubeadm gives more flexibility in configuring the
cluster components and network plug-ins are not installed by default. To install
kubeadm, use updated package manager [56] as shown below.

$ curl -s https :// packages.cloud.google.com/apt/doc/apt -key.
gpg | sudo apt -key add -

$ sudo su -
$ cat <<EOF > /etc/apt/sources.list.d/kubernetes.list
deb http ://apt.kubernetes.io/ kubernetes -xenial main
EOF
$ logout
$ sudo apt -get update
$ sudo apt -get install -y docker.io kubeadm

To start kubeadm, swap must be disabled and use the init command with the
required configuration.

$ sudo swapoff --all
$ cat <<EOF > kubeadm.yaml
kind: MasterConfiguration
apiVersion: kubeadm.k8s.io/v1alpha1
controllerManagerExtraArgs:

40

horizontal -pod -autoscaler -use -rest -clients: "true"
horizontal -pod -autoscaler -sync -period: "10s"
node -monitor -grace -period: "10s"

apiServerExtraArgs:
runtime -config: "api/all=true"

kubernetesVersion: "stable -1.11"
EOF
$ sudo kubeadm init --config kubeadm.yaml

After installation, the logs print out the kubeadm join command that can be
used in other nodes to join this cluster. To get OVN to work with Kubernetes,
some default Role Based Access Control (RBAC) that Kubernetes uses needs to be
modified. The following permissions for role system:node should be present so that
the worker nodes can, for instance, watch "endpoints" and "network policies".

$ kubectl edit clusterrole system:node
- apiGroups:

- ""
resources:
- endpoints
- namespaces
verbs:
- get
- list
- watch

- apiGroups:
- networking.k8s.io
resources:
- networkpolicies
verbs:
- get
- list
- watch

Edit role binding for system:node and subjects so that the above permissions
take effect for the worker nodes.

$ kubectl edit clusterrolebinding system:node
subjects:
- apiGroup: rbac.authorization.k8s.io

kind: Group
name: system:nodes

To use OVN CNI plug-in for Kubernetes, OvS needs to be installed first. For
this, the process described in Section 4.2 is followed, with DPDK support. To set
up OVN in the master, start both Northbound daemon and OVN controller. Then
install and start the Kubernetes plug-in.

41

$ export CLUSTER_IP_SUBNET =192.168.0.0/16
$ export NODE_NAME=$HOSTNAME
$ export SERVICE_IP_SUBNET =10.96.0.0/12
$ sudo mkdir -p /var/log/openvswitch
$ sudo touch /var/log/openvswitch/ovnkube.log
$ export CENTRAL_IP =10.10.10.24
$ export TOKEN=u533e5 .9 ml2dhgng8aaesra
$ nohup sudo ovnkube -k8s -kubeconfig $HOME/.kube/config -net -

controller \
-loglevel =4 \
-k8s -apiserver="http :// $CENTRAL_IP :8080" \
-logfile="/var/log/openvswitch/ovnkube.log" \
-init -master=$NODE_NAME -init -node=$NODE_NAME \
-cluster -subnet="$CLUSTER_IP_SUBNET" \
-service -cluster -ip -range=$SERVICE_IP_SUBNET \
-nodeport \
-k8s -token="$TOKEN" \
-nb -address="tcp :// $CENTRAL_IP :6641" \
-sb -address="tcp :// $CENTRAL_IP :6642" 2>&1 &

In the above commands, some environment variables are set and passed to
OVN Kubernetes plug-in. CLUSTER_IP is private IP address space for the cluster.
NODE_NAME is set to the hostname of the machine. SERVICE_IP_SUBNET is taken from
Kubernetes API server command ps -aef | grep kube-apiserver. CENTRAL_IP
is the IP of the master node which is reachable to the worker nodes as well. And the
value of TOKEN can be taken from kubeadm join command.

Once the OVN CNI plug-in is running, the status of node in the command
kubectl get nodes change to "Ready". To start the plug-in in worker nodes,

$ nohup sudo ovnkube -k8s -kubeconfig $HOME/.kube/config -
loglevel =4 \
-logfile="/var/log/openvswitch/ovnkube.log" \
-k8s -apiserver="http :// $CENTRAL_IP :8080" \
-init -node="$NODE_NAME" -nodeport \
-nb -address="tcp :// $CENTRAL_IP :6641" -sb -address="tcp://

$CENTRAL_IP :6642" \
-k8s -token="$TOKEN" -init -gateways -service -cluster -ip -

range=$SERVICE_IP_SUBNET \
-cluster -subnet=$CLUSTER_IP_SUBNET 2>&1 &

OVN Kubernetes plug-in creates a distributed router in the master node. This
router is the main component responsible for routing within the cluster. On every
worker node, there is a logical switch which is allocated a subnet of CLUSTER_IP_SUBNET
Ṫhis logical switch is connected to the distributed router to the top and an OvS bridge
below. The OvS bridge is always named br-int. This in turn is connected to the
pods similar to "docker0" bridge. There are also gateway routers created in the worker

42

Figure 12: OVN based network in Kubernetes with external DPDK interface

nodes for connecting the OVN controller to the Northbound interface. The logical
network topology can be viewed from master using command ovn-nbctl show.

To add external DPDK interfaces to OVN, gateway routers are used. The gateway
router is connected via a logical switch and an OvS bridge to the physical interface.
On top it is connected to the distributed router. For routing of the packets received
at the physical interface, NAT is used to map the physical interface address to a
private IP subnet. Then, ports are added to the distributed router in master and
the logical switches in all worker nodes in the same sub-net as shown in Figure 12.
The configurations are shown below.

// Add GW router on worker node 2 (l0) and add ports
$ sudo ovn -nbctl lr-add gw_ext1
$ sudo ovn -nbctl lrp -add gw_ext1 gw_ext1_down aa:bb:cc:dd:ee

:01 10.127.0.129/24
$ sudo ovn -nbctl lrp -add gw_ext1 gw_ext1_up aa:bb:cc:dd:ee:02

100.65.1.2/24
$ sudo ovn -nbctl lrp -set -gateway -chassis gw_ext1_up l0id
$ sudo ovn -nbctl lrp -set -gateway -chassis gw_ext1_down l0id

// Add port in distributed router in master (l5)
$ sudo ovn -nbctl lrp -add l5 l5-ext1 aa:bb:cc:dd:ee:05

100.65.1.1/24

// Add join logical switch
$ sudo ovn -nbctl ls-add join_ext1
$ sudo ovn -nbctl lsp -add join_ext1 join_ext1_up

43

$ sudo ovn -nbctl lsp -add join_ext1 join_ext1_down
$ sudo ovn -nbctl lsp -set -type join_ext1_up router
$ sudo ovn -nbctl lsp -set -type join_ext1_down router
$ sudo ovn -nbctl lsp -set -addresses join_ext1_up aa:bb:cc:dd:

ee:03
$ sudo ovn -nbctl lsp -set -addresses join_ext1_down aa:bb:cc:dd

:ee:04
$ sudo ovn -nbctl lsp -set -options join_ext1_down router -port=

gw_ext1_up
$ sudo ovn -nbctl lsp -set -options join_ext1_up router -port=

l5_ext1

// Logical switch towards the external network
$ sudo ovn -nbctl ls-add ls_ext1
$ sudo ovn -nbctl lsp -add ls_ext1 ls_ext1_up
$ sudo ovn -nbctl lsp -add ls_ext1 ls_ext1_down
$ sudo ovn -nbctl lsp -set -type ls_ext1_up router
$ sudo ovn -nbctl lsp -set -addresses ls_ext1_up aa:bb:cc:dd:ee

:06
$ sudo ovn -nbctl lsp -set -options ls_ext1_up router -port=

gw_ext1_down

// Create bridge for localnet in l0
$ sudo ovs -vsctl add -br ext1 -- set bridge ext1 datapath_type

=netdev
$ sudo ovs -vsctl set Open_vSwitch . external -ids:ovn -bridge -

mappings=sriov1:ext1

// Configure the localnet port
$ sudo ovn -nbctl lsp -set -addresses ls_ext1_down unknown
$ sudo ovn -nbctl lsp -set -type ls_ext1_down localnet
$ sudo ovn -nbctl lsp -set -options ls_ext1_down network_name=

sriov1

When OVN Kubernetes CNI plug-in is used, it exposes an interface to a pod which
is the management interface used by Kubernetes. With the above configurations, it is
possible to route packets from external DPDK interface to another worker node which
receives it at an OvS bridge. To expose a port from this bridge to the pod along
with the OVN management interface, Multus needs to be used. But currently this is
not possible since the CNI configuration file for OVN plug-in does not distinguish
the underlying OvS bridge. Hence, the measurements were carried out in a similar
manner to the first experiment in Section 4.2 where the OvS bridge just forwards
the packets blindly to the other port without a pod in between. For a packet rate of
11 Mpps, the latency was found to be 10000 micro seconds.

The latency in this setup is quite high and not a good option for NFV. The
extra hop between the worker nodes obviously adds to the latency. But this does
not paint the whole picture. The gateway router uses Network Address Translation

44

to map the external IP address to the internal private IP address used for routing
between the nodes. Moreover, only the OvS bridge runs on DPDK, the tunneling
in the host interfaces connecting multiple worker nodes and master do not. It is
possible to overcome this by separating Kubernetes management interfaces between
the hosts and using extra interfaces between the worker nodes as shown in Figure 13.
But this calls for extra networking hardware requirements and counter productive to
the flexibility offered by Kubernetes. A similar study was done in [51], the overlay
network was built using OvS and further optimized using real time kernel. The latency
varied from 157 to 647 micro seconds. The network latency does not include wire
latency but just time spent in the system processing packet. The extra abstractions
in OVN on top of OvS is also another overhead and in hindsight, OVN is probably
more suited as a Software Defined Networking (SDN) controller than for building a
performance critical network.

Figure 13: An alternative solution to using overlay network in Kubernetes. Dedicated
DPDK interfaces (in green) between the worker nodes for fast data path.

To conclude, using OVN with Kubernetes does make the network much more
configurable which is not possible while using other off-the-shelf networking solutions
for Kubernetes such as Flannel [44], Calico [48]. But the overhead caused due to
extra layer of abstractions and forwarding data packets between different hosts is
probably not suited for a latency sensitive application. Also the solution used above
requires lot of manual configurations right now. Since the Kubernetes OVN plug-in
is open source, it is possible to automate them and also add support to be used with
Multus.

45

4.8 Results and Observation
This chapter so far has explored various fast data path solution for a container
in stand alone and cluster environments. The latency values are summarized in
Figure 14. Based on the results, it is clear that some of the solutions provide much
better latency results. The latency introduced in some of the solutions were software
induced and in some others, due to the extra hops between the nodes. When DPDK
is used in the "native" mode, which includes a container running a DPDK application,
OvS running on DPDK and also with Multus and SR-IOV CNI plug-ins exposing
the interfaces directly to a DPDK based pod, the latency was found to be 800 micro
seconds. This is quite a satisfactory result for NFV applications [58]. Importantly,
it was observed that it is possible to attain the same performance in orchestrated
environments such as with Kubernetes, by exposing the interfaces externally using
CNI plug-ins.

Figure 14: Results of latency measurements for stand alone and orchestrated envi-
ronments

It was also observed that with the addition of a container running DPDK ap-
plication along with OvS on DPDK induced some overhead in packet processing.
The reason for this, as noted in 4.2 could be due to vhost and virtio queues. The
latency here is a six fold increase compared to "native" DPDK performance but still
a much better result than using the default Linux kernel network stack where the
latency was 8700 micro seconds. OVN was used to configure an overlay network
within the cluster to route data packets between different hosts. The latency in this
case was quite high and found to be not suitable for low latency NFV applications.
This implies that scenario 3 described in 4.7 is not a practical solution. As a result,
if a pod running NFV application needs multiple external interfaces, at least one

46

of the Kubernetes worker nodes should support that many interfaces. Section 4.6
describes a way to find out the hardware features available at each worker node.
This information has to be provided to the Kubernetes scheduler so that a NFV
pod is deployed on the correct worker. Also, current Kubernetes scheduler has to
be extended to process this information. The next section describes a Kubernetes
scheduler that achieves this.

47

5 Latency based scheduling
This section is an attempt to utilize the results obtained in the previous section
while deploying pods in a cluster so that their network latency requirements can
be met. Depending on the latency requirement provided at the time of creating
a pod, the right host is chosen based on the network hardware features available.
As noted in 2, the current schedulers for container orchestration systems such as
Kubernetes and Apache Mesos do not consider network latency while scheduling
the pods. This is not quite suitable for NFV where some pods could be running
CPU or memory intensive applications while other have stringent network latency
requirements. While deploying the pods, it is necessary to consider network latency
as well. Consider Figure 1. For instance, if all the nodes have same CPU and memory
resources available, but only some or one of them, such as Node 1, have DPDK or
SR-IOV interfaces, the default scheduler could use this node for pods that are not
network latency sensitive applications.

5.1 A Kubernetes Scheduler
The default scheduler in Kubernetes considers only CPU and memory resources in
the worker nodes while scheduling pods [59]. This implies a new method to provide
the latency requirement for a pod has to be found and also a scheduler capable of
implementing this.

Annotations in Kubernetes could be used to specify the latency requirements for
a pod during deployment. As per the Kubernetes documentation [39], annotations
are used for specifying meta-data and can be retrieved using the client libraries. For
this purpose, the latency requirement is given as a key and value pair.

annotations:
latency : "5000"

In Kubernetes scheduler, there are multiple steps involved while deciding to
which node a pod should be bound. In the first step, the scheduler filters out the
incompatible nodes. For instance, nodes that do not have enough CPU or memory.
Then, from the compatible nodes, the scheduler assigns priority to them while trying
to distribute the work load among all the worker nodes. In the last step, the scheduler
binds the pod to the node with the highest priority and informs the API server [60].

There are different ways to affect the scheduling decision in Kubernetes. One
way is to modify the Kubernetes source code and implement the required features.
Another is to implement a Kubernetes scheduler extender which exposes an IP
address and port that is accessible to the default scheduler. The extender is called
once the default scheduler is done with the first two steps mentioned above, filtering
and prioritizing. This is like an extra step in the scheduling process. The final
approach is to write a new scheduler that replaces or works along with the existing
default scheduler. This new scheduler could be run as a pod in the cluster itself.
The pod that wishes to use this scheduler could specify so in the manifest with
schedulerName:

48

The source code of the scheduler implemented for the thesis is listed in Appendix A.
The scheduler communicates with the Kubernetes API server using the kubeconfig
file or it could be run as a pod in the cluster. It initially gets a list of nodes in
the cluster and also all the pods that are configured to use scheduler with name
latency-scheduler. It then runs the scheduling algorithm, finds the node that
satisfies the latency requirement and sends a "Bind" message to the API server to bind
the pod to that node. From a pod perspective, to use this scheduler, the scheduler
name and latency requirements have to be specified in the manifest.

The second important factor to be addressed for the scheduler to work is to
discover the hardware features of the worker nodes; specifically the support for
DPDK and SR-IOV interfaces. For this, a daemon set is used [40]. A Daemon set
runs on all the nodes in Kubernetes. This could be utilized to fetch the interface
hardware information and report to the API server. The code to implement this
daemon set is listed in Appendix B along with the daemon set manifest file and the
Dockerfile to build a Golang container with the application. The code currently adds a
new map entry of dpdk:<number-of-dpdk-interfaces> to node.Labels [61] where
node is an object of the Node structure in Kubernetes Core v1. This information is
in turn used by the scheduler.

if required_latency less than least latency possible with
Multus:

return error "Latency␣requirement␣cannot␣be␣met"
else if required_latency greater than least latency possible

with Multus and less than latency with hops within the
same host using OvS (for a NFV service chain):
bind_pod(node with required multiple interfaces)

else if required_latency greater than latency with OvS and
less than a default value:
bind_pod(FindNode(nodes , LATENCY_WITH_OVS)

else if required_latency greater than default value:
bind_pod(to any worker node)

In the scheduling algorithm, if the latency requirement is between 800 and 5000
micro seconds, the pod is bound to a host that has DPDK interfaces directly attached
to it. The value of node.Labels is then reduced and updated at the API server so
that in the next run, the available number of interfaces is correct. If the latency
requirement is less that 800 micro seconds, the pod is not scheduled and the scheduler
throws an error. Similarly, if the pod latency is between 5000 and 10000 microseconds,
it is scheduled to a host with OvS. For higher values, it can be scheduled to any of
the hosts. This host is chosen in a random manner from all the hosts that do not
have DPDK interfaces, as those can be saved for low latency applications that may
come up later. Snippet of scheduling algorithm is shown in above and the complete
source code is provided in A.

49

6 Conclusion and Future Work
To conclude, the thesis explores various fast data path solutions for containers in
stand alone and orchestrated environments. Experiments were carried out for various
scenarios primarily utilizing technologies such as DPDK, SR-IOV, OvS and OVN.
The experiments focused on measuring the network latency in these scenarios. It was
found that native DPDK performance could be achieved in Kubernetes by exposing
interface directly to pods using Multus. Some of the other solutions using OvS and
OVN did not give the same performance but provided a more flexible networking
solution as a whole. These results were further utilized to deploy pods in Kubernetes
in an intelligent way by taking into account their network latency requirements.
There is no direct comparison possible of this approach since the existing scheduler
does not take network latency into account at all and deploys the pods based on
other factors such as CPU and memory pressure on worker nodes.

There are several topics that could be explored further as enhancements to
the work done in this thesis. Optimizing DPDK applications for Kubernetes is
one of them. The number of CPU cores used, the Rx and Tx buffers per core,
Hugepage allocation, etc., could be optimized especially when there are multiple
DPDK containers in one host. Also Kubernetes is not NUMA aware and NUMA
locality could increase performance.

Docker does not support Hugepage isolation. When there are multiple DPDK
based containers running on the same host, Hugepage isolation is important as
some applications may end up consuming all the free Hugepages. This could be
implemented using Python SDK provided by Docker to accept an extra argument in
docker for the amount of Hugepages to be allocated and some Python cgroup library
to isolate them.

Another topic is, as explained in "Minimizing latency of Real-Time Container
Cloud for SoftwareRadio Access Network" [51], using a real time kernel. This could be
fruitful in improving packet processing latency. And finally, getting OVN Kubernetes
plug-in working with Multus and also automatically adding the external interface to
a private sub-net which was done manually in this thesis.

50

References
[1] Bl, H. et al. (2016). DPDK-based Improvement of Packet Forwarding. ITM

Web of Conferences.

[2] Molnar L. et al. (2016). Dataplane Specialization for High-performance Open-
Flow Software Switching. SIGCOMM, Brazil.

[3] Yu, T. et al. (2016). FreeFlow: High Performance Container Networking.
Association for Computing Machinery Workshop on Hot Topics in Networks,
USA.

[4] Hong, D. et al. (2017). Considerations on Deploying High-Performance
Container-based NFV. Cloud-Assisted Networking Workshop, Incheon, Republic
of Korea.

[5] Gorman, M., (2010). Hugepages. Available at https://lwn.net/Articles/
374424/. [Accessed: 10.05.2018].

[6] Pongracz, G. et al. (2013). Removing Roadblocks from SDN: OpenFlow Software
Switch Performance on Intel DPDK. European Workshop on Software Defined
Networks, Germany.

[7] Kourtis A., et al. (2015). Enhancing VNF Perfromance by exploiting SR-IOV
and DPDK Packet Processing Acceleration. IEEE Conference on NFV-SDN,
USA.

[8] Liang C. et al. (2016). Scalable High-Performance User Space Networking for
Containers. DPDK US Summit, San Jose, 2016.

[9] Tan, J. et al. (2107). VIRTIO-USER: A New Versatile Channel for Kernel-
Bypass Networks. Association for Computing Machinery, USA.

[10] Russell, R. (2008). virtio: Towards a De-Facto Standard For Virtual I/O
Devices. Association for Computing Machinery SIGOPS Operating System
Review, USA.

[11] Berstein, B. (2014). Containers and Cloud: From LXC to Docker to Kubernetes.
Column: Cloud Tidbits, IEEE Cloud Computing.

[12] McKeown, N. (2008). OpenFlow: enabling innovation in campus networks.
Association for Computing Machinery SIGCOMM Computer Communication
Review, USA.

[13] Joy, M. A. (2015) Performance Comparison Between Linux Containers and Vir-
tual Machines. International Conference on Advances in Computer Engineering
and Applications, IMS Engineering College, India.

https://lwn.net/Articles/374424/
https://lwn.net/Articles/374424/

51

[14] Khalid, J. et al. (2018) Iron: Isolating Network-based CPU in Container
Environments. USENIX Symposium on Networked Systems Design and Imple-
mentation, USA.

[15] Szabo, M. et al. (2017) Making the Data Plane Ready for NFV: An Effective
Way of Handling Resources. Association for Computing Machinery, USA.

[16] Suo, K. (2018). An Analysis and Empirical Study of Container Networks. IEEE
Conference on Computer Communications, INFOCOM, USA.

[17] Intel, Corp. (2011). PCI-SIG SR-IOV Primer: An Introduction to SR-IOV Tech-
nology. Revision 2.5. Available at https://www.intel.sg/content/dam/doc/
application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.
pdf. [Accessed: 13.04.2018].

[18] Intel, Corp. (2008). Intel VMDq Technology: Notes on Softwre Design Support
for Intel VMDq Technology. Revision 1.2. Available at https://www.intel.
com/content/www/us/en/virtualization/vmdq-technology-paper.html.
[Accessed: 04.06.2018].

[19] Emmerich, P. et al. (2017). Mind the Gap – A Comparison of Software Packet
Generators. Association of Computer Machinery, USA.

[20] Intel, Corp. (2014). SR-IOV Configuration Guide. Revision 1.0. Available
at https://www.intel.com/content/dam/www/public/us/en/documents/
technology-briefs/xl710-sr-iov-config-guide-gbe-linux-brief.pdf.
[Accessed: 13.04.2018].

[21] Nangare, S. et al. (April 2018) What is the Status of Containers and Microser-
vices in Enterprises and Telecom. Available at https://blog.calsoftinc.com/
2018/04/status-of-containers-and-microservices-in-enterprises.
html. [Accessed: 09.04.2018].

[22] Sayeed, A. (June 2016) Is NFV ready for containers? Available at https://www.
redhat.com/blog/verticalindustries/is-nfv-ready-for-containers/
[Accessed: 22.04.2018].

[23] Natarajan, S. et al. (Noveber 2015) An Analysis of Container-based Platforms
for NFV. IETF 94 Proceedings, Yokohama, Japan.

[24] DPDK Programmer’s Guide. Available at http://doc.dpdk.org/guides-18.
08/prog_guide/index.html [Accessed: 23.04.2018].

[25] DPDK Data Plane Development Kit. Available at https://www.dpdk.
org/[Accessed: 2.2.2018].

[26] Linux Foundation Projects. Available at https://www.linuxfoundation.org/
projects/. [Accessed: 23.04.2018].

https://www.intel.sg/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf
https://www.intel.sg/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf
https://www.intel.sg/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf
https://www.intel.com/content/www/us/en/virtualization/vmdq-technology-paper.html
https://www.intel.com/content/www/us/en/virtualization/vmdq-technology-paper.html
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/xl710-sr-iov-config-guide-gbe-linux-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/xl710-sr-iov-config-guide-gbe-linux-brief.pdf
https://blog.calsoftinc.com/2018/04/status-of-containers-and-microservices-in-enterprises.html
https://blog.calsoftinc.com/2018/04/status-of-containers-and-microservices-in-enterprises.html
https://blog.calsoftinc.com/2018/04/status-of-containers-and-microservices-in-enterprises.html
https://www.redhat.com/blog/verticalindustries/is-nfv-ready-for-containers/
https://www.redhat.com/blog/verticalindustries/is-nfv-ready-for-containers/
http://doc.dpdk.org/guides-18.08/prog_guide/index.html
http://doc.dpdk.org/guides-18.08/prog_guide/index.html
https://www.dpdk.org/
https://www.dpdk.org/
https://www.linuxfoundation.org/projects/
https://www.linuxfoundation.org/projects/

52

[27] Free Software Foundation(2018). Namespaces manual page. Available
at http://man7.org/linux/man-pages/man7/namespaces.7.html [Accessed:
10.10.2018].

[28] Free Software Foundation(2018). Nsenter manual page. Available at http:
//man7.org/linux/man-pages/man1/nsenter.1.html [Accessed: 10.10.2018].

[29] Free Software Foundation(2018). Unshare manual page. Available at http:
//man7.org/linux/man-pages/man1/unshare.1.html [Accessed: 10.10.2018].

[30] Free Software Foundation(2018). Netlink manual page. Available at http://
man7.org/linux/man-pages/man7/netlink.7.htmll [Accessed: 10.10.2018].

[31] Cloud Native Computing Foundation(2018). Container Network Interface Speci-
fication. Available at https://github.com/containernetworking/cni/blob/
master/SPEC.md [Accessed: 30.06.2018].

[32] Burns, B. et al, (2016) Borg, Omega, and Kubernetes: Lessons learned from
three container-management systems over a decade. Association for Computing
Machinery, vol. 14, issue 1.

[33] The Kubernetes Authors. What is Kubernetes?. Available at https:
//kubernetes.io/docs/concepts/overview/what-is-kubernetes/. [Ac-
cessed: 30.06.2018].

[34] The Kubernetes Authors. Creating Highly Available Clusters with
kubeadm. Available at https://kubernetes.io/docs/setup/independent/
high-availability/. [Accessed: 30.06.2018].

[35] The Kubernetes Authors. Concepts Underlying the Cloud Controller Man-
ager. Available at https://kubernetes.io/docs/concepts/architecture/
cloud-controller/. [Accessed: 30.06.2018].

[36] Open vSwitch Documentation (2016) Why Open vSwitch. Available at
https://github.com/openvswitch/ovs/blob/master/Documentation/
intro/why-ovs.rst. [Accessed: 20.05.2018].

[37] Kubernetes Special Interest Groups. Github project: Node Feature Discov-
ery for Kubernetes. Available at https://github.com/kubernetes-sigs/
node-feature-discovery. [Accessed: 2.12.2018].

[38] Pfaff, B. et al, (2013) The Open vSwitch Database Management Protocol. Inter-
net Engineering Task Force, Request For Comments. http://www.rfc-editor.
org/rfc/rfc7047.txt

[39] The Kubernetes Authors. Kubernetes Concepts: Annotations.
Available at https://kubernetes.io/docs/concepts/overview/
working-with-objects/annotations/. [Accessed: 25.08.2018].

http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man1/nsenter.1.html
http://man7.org/linux/man-pages/man1/nsenter.1.html
http://man7.org/linux/man-pages/man1/unshare.1.html
http://man7.org/linux/man-pages/man1/unshare.1.html
http://man7.org/linux/man-pages/man7/netlink.7.htmll
http://man7.org/linux/man-pages/man7/netlink.7.htmll
https://github.com/containernetworking/cni/blob/master/SPEC.md
https://github.com/containernetworking/cni/blob/master/SPEC.md
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/setup/independent/high-availability/
https://kubernetes.io/docs/setup/independent/high-availability/
https://kubernetes.io/docs/concepts/architecture/cloud-controller/
https://kubernetes.io/docs/concepts/architecture/cloud-controller/
https://github.com/openvswitch/ovs/blob/master/Documentation/intro/why-ovs.rst
https://github.com/openvswitch/ovs/blob/master/Documentation/intro/why-ovs.rst
https://github.com/kubernetes-sigs/node-feature-discovery
https://github.com/kubernetes-sigs/node-feature-discovery
http://www.rfc-editor.org/rfc/rfc7047.txt
http://www.rfc-editor.org/rfc/rfc7047.txt
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

53

[40] The Kubernetes Authors. Kubernetes Concepts: DaemonSet. Avail-
able at https://kubernetes.io/docs/concepts/workloads/controllers/
daemonset/. [Accessed: 25.08.2018].

[41] Docker, Inc. (2016) (Docker: Configure Networking. Available at https://
docs.docker.com/network/. [Accessed: 14.04.2018].

[42] Intel, Corp. Github Project: SR-IOV CNI plug-in. Available at https://
github.com/intel/sriov-cni. [Accessed: 19.07.2018].

[43] Cerrato, I. et al, (2014) Supporting Fine-Grained Network Functions through
Intel DPDK. European Workshop on Software-Defined Networks, Hungary.

[44] RedHat, Inc. Github Project: Flannel. Available at https://github.com/
coreos/flannel. [Accessed: 20.07.2018].

[45] Open vSwitch Documentation. Open vSwitch Manual: ovn-architecture -
Open Virtual Network architecture. Available at http://www.openvswitch.
org/support/dist-docs/ovn-architecture.7.html. [Accessed: 01.11.2018].

[46] Vaughan, G. Duffy, D. Q.˙ Containerizing the NASA Land Information System
Framework. Available at https://www.nas.nasa.gov/SC17/demos/demo29.
html. [Accessed: 25.10.2018].

[47] Weaveworks. Github Project: Flannel. Available at https://github.com/
weaveworks/weave. [Accessed: 20.07.2018].

[48] Calico Documentation. Calico for Kubernetes. Available at https://
docs.projectcalico.org/v2.0/getting-started/kubernetes/. [Accessed:
20.07.2018].

[49] Open vSwitch Documentation. OvS: Releases. Available at http://docs.
openvswitch.org/en/latest/faq/releases/. [Accessed: 15.07.2018].

[50] Bonafiglia, R., et al, (2015). Assessing the Performance of Virtualization
Technologies for NFV: a Preliminary Benchmarking. European Workshop on
Software Defined Networks, Spain.

[51] Mao, C., et al, (2015). Minimizing Latency of Real-Time Container Cloud
for Software Radio Access Networks. IEEE International Conference on Cloud
Computing Technology and Science, Canada.

[52] The Kubernetes Authors. Master-Node Communication. Avail-
able at https://kubernetes.io/docs/concepts/architecture/
master-node-communication/. [Accessed: 07.09.2018].

[53] Canonical, Ltd. Canonical Documentation. Available at https://www.
canonical.com/. [Accessed: 03.03.2018].

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://github.com/intel/sriov-cni
https://github.com/intel/sriov-cni
https://github.com/coreos/flannel
https://github.com/coreos/flannel
http://www.openvswitch.org/support/dist-docs/ovn-architecture.7.html
http://www.openvswitch.org/support/dist-docs/ovn-architecture.7.html
https://www.nas.nasa.gov/SC17/demos/demo29.html
https://www.nas.nasa.gov/SC17/demos/demo29.html
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://docs.projectcalico.org/v2.0/getting-started/kubernetes/
https://docs.projectcalico.org/v2.0/getting-started/kubernetes/
http://docs.openvswitch.org/en/latest/faq/releases/
http://docs.openvswitch.org/en/latest/faq/releases/
https://kubernetes.io/docs/concepts/architecture/master-node-communication/
https://kubernetes.io/docs/concepts/architecture/master-node-communication/
https://www.canonical.com/
https://www.canonical.com/

54

[54] Intel, Corp. Github Project: Multus CNI plug-in. Available at https://github.
com/intel/multus-cni. [Accessed: 29.08.2018].

[55] Linux Foundation Collaborative Project. How to use Open Virtual Net-
working with Kubernetes. Available at https://github.com/openvswitch/
ovn-kubernetes. [Accessed: 01.09.2018].

[56] Käldström, L. (2016). Autoscaling a multi-platform Kubernetes cluster built
with kubeadm. KubeCon, Berlin.

[57] Open vSwithc Documentation. Connecting VMs Using Tunnels
(Userspace). Available at http://docs.openvswitch.org/en/latest/
howto/userspace-tunneling/. [Accessed: 11.08.2018].

[58] Long, T., Veitch, P. (2017). A Low-Latency NFV Infrastructure for Performance-
Critical Applications. Intel Developer Programs.

[59] The Kubernetes Authors. Managing Compute Resources for Contain-
ers: Resources. Available at https://kubernetes.io/docs/concepts/
configuration/manage-compute-resources-container/#resource-types.
[Accessed: 22.09.2018].

[60] The Kubernetes Authors. The Kubernetes Scheduler. Available at
https://github.com/fabric8io/kansible/blob/master/vendor/k8s.
io/kubernetes/docs/devel/scheduler.md. [Accessed: 20.09.2018].

[61] Golang Documentation. Core v1: Node. Available at https://godoc.org/k8s.
io/api/core/v1#Node. [Accessed: 20.09.2018].

https://github.com/intel/multus-cni
https://github.com/intel/multus-cni
https://github.com/openvswitch/ovn-kubernetes
https://github.com/openvswitch/ovn-kubernetes
http://docs.openvswitch.org/en/latest/howto/userspace-tunneling/
http://docs.openvswitch.org/en/latest/howto/userspace-tunneling/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-types
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-types
https://github.com/fabric8io/kansible/blob/master/vendor/k8s.io/kubernetes/docs/devel/scheduler.md
https://github.com/fabric8io/kansible/blob/master/vendor/k8s.io/kubernetes/docs/devel/scheduler.md
https://godoc.org/k8s.io/api/core/v1#Node
https://godoc.org/k8s.io/api/core/v1#Node

55

A Appendix A
Code written in Golang to implement the basic Kubernetes scheduler along with a
Pod manifest to choose this scheduler.

$ cat main.go
package main

import (
"flag"
"fmt"
apiv1 "k8s.io/api/core/v1"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/client -go/kubernetes"
"k8s.io/client -go/rest"
"k8s.io/client -go/tools/clientcmd"
"log"
"os"

)

func main() {
log.Println("Latency␣scheduler")

// Parse arguments
var SchedulerName string
flag.StringVar (& SchedulerName , "scheduler -name", "latency

-scheduler",
"Name␣for␣the␣k8s␣scheduler")

defaultKubeConfig := os.Getenv("HOME") + "/.kube/config"
var ns , label , field , kubeconfig string
flag.StringVar (&ns , "namespace", "default", "namespace")
flag.StringVar (&label , "label", "", "Label␣selector")
flag.StringVar (&field , "field", "", "Field␣selector")
flag.StringVar (& kubeconfig , "kubeconfig",

defaultKubeConfig ,
"Absoulte␣path␣to␣kubeconfig")

var runInCluster = flag.Bool("run -in -cluster", false , "
Run␣in␣cluster␣as␣a␣pod?")

var timeout = flag.Int64("timeout", 5, "Timeout␣for␣
watching␣for␣new␣pods")

flag.Parse()

// Get clientset. If running this process as a pod in the
cluster ,

// remove both args in func BuildConfigFromFlags
var config *rest.Config

56

var err error
if *runInCluster {

config , err = rest.InClusterConfig ()
} else {

config , err = clientcmd.BuildConfigFromFlags("",
kubeconfig)

}
if err != nil {

log.Fatal(err)
}

clientset , err := kubernetes.NewForConfig(config)
if err != nil {

log.Fatal(err)
}

corev1 := clientset.CoreV1 ()

listOptions := metav1.ListOptions{
LabelSelector: label ,
FieldSelector: field ,

}

nodes , err := corev1.Nodes().List(listOptions)
if err != nil {

log.Fatal(err)
}

watchListOptions := metav1.ListOptions{
Watch: true ,
TimeoutSeconds: timeout ,
LabelSelector: label ,
FieldSelector: field ,

}
podWatcher , err := corev1.Pods(ns).Watch(watchListOptions

)
if err != nil {

log.Fatal(err)
}

// go func() {
for {

event := <-podWatcher.ResultChan ()
pod , ok := event.Object .(* apiv1.Pod)
if !ok {

log.Fatal("Failed␣retreiving␣pod")
}
if pod.Status.Phase == "Pending" && pod.Spec.

57

SchedulerName == SchedulerName {
SchedulePod (*pod , *nodes , clientset)

}
}

// }()
fmt.Scanln ()
log.Println("Done")

}

$ cat scheduler.go
package main

import (
"errors"
apiv1 "k8s.io/api/core/v1"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/client -go/kubernetes"
"log"
"math/rand"
"strconv"

)

const (
LATENCY_WITH_OVS = 5000 // With OvS (No overlay)
LATENCY_WITH_MULTUS = 800 // With Multus
LATENCY_DEFAULT = 10000 //With OVN (Overlay)

)

func debugPrintNodes(comment string , nodes [](* apiv1.Node)) {
log.Printf("%s:␣", comment)
for _, node := range nodes {

log.Printf("%s\t", node.Name)
}
log.Printf("\n")

}

func Bind(pod *apiv1.Pod , node *apiv1.Node , clientset *
kubernetes.Clientset) {
log.Printf("Binding␣pod:␣%s␣to␣node:␣%s\n", (*pod).Name ,

(*node).Name)

b := &apiv1.Binding{
ObjectMeta: metav1.ObjectMeta{

Namespace: (*pod).Namespace ,
Name: (*pod).Name ,

},
Target: apiv1.ObjectReference{

58

Kind: "Node",
Name: (*node).Name ,

},
}
corev1 := clientset.CoreV1 ()
err := corev1.Pods ((*pod).Namespace).Bind(b)
if err != nil {

log.Fatal(err)
}

}

// Sort nodes to three groups - dpdk , ovs and default
// with priority in that order
func SortNodes(nodes apiv1.NodeList) (dpdk , ovs , def [](*

apiv1.Node)) {
var dpdkNodes , ovsNodes , defaultNodes [](* apiv1.Node)
for _, node := range nodes.Items {

for k, v := range node.Labels {
if k == "dpdk" && v != "0" {

dpdkNodes = append(dpdkNodes , &node)
break

} else if k == "ovs -dpdk" && v == "true" {
ovsNodes = append(ovsNodes , &node)
break

} else {
defaultNodes = append(defaultNodes , &node)

}
}

}
debugPrintNodes("DPDK␣Nodes", dpdkNodes)
debugPrintNodes("OvS␣Nodes", ovsNodes)
debugPrintNodes("Default␣Nodes", defaultNodes)
return dpdkNodes , ovsNodes , defaultNodes

}

func FindNode(nodes apiv1.NodeList , requirement int) (* apiv1.
Node , error) {
log.Printf("FindNode␣with␣latency␣%d\n", requirement)

dpdkNodes , ovsNodes , defaultNodes := SortNodes(nodes)
switch requirement {
case LATENCY_WITH_MULTUS:

var found bool = false
var numOfIfs int = 0
var err error

// If this node has some DPDK based interface , use
this

59

// and decrement the dpdk -interface count in node.
Labels

for _, node := range dpdkNodes {
for k, v := range (*node).Labels {

if k == "dpdk" {
numOfIfs , err = strconv.Atoi(v)
if err != nil {

return nil , err
}
break

}
}
(*node).Labels["dpdk"] = strconv.Itoa(

numOfIfs - 1)
// TODO update to api server
found = true
return node , nil

}
if !found {

return nil , errors.New("No␣node␣meets␣
requirement")

}

// Pick a random node from the list for the next two
// conditions
case LATENCY_WITH_OVS:

return ovsNodes[rand.Intn(len(ovsNodes))], nil

case LATENCY_DEFAULT:
return defaultNodes[rand.Intn(len(ovsNodes))], nil

default:
return nil , errors.New("Cannot␣be␣scheduled")

}
return nil , errors.New("Cannot␣be␣scheduled")

}

func FitPod(latency int , nodes apiv1.NodeList) (* apiv1.Node ,
error) {

if latency < LATENCY_WITH_MULTUS {
return nil , errors.New("Latency␣requirement␣cannot␣be

␣met")
} else if latency > LATENCY_WITH_MULTUS && latency <

LATENCY_WITH_OVS {
return FindNode(nodes , LATENCY_WITH_MULTUS)

} else if latency > LATENCY_WITH_OVS && latency <
LATENCY_DEFAULT {

return FindNode(nodes , LATENCY_WITH_OVS)

60

} else if latency > LATENCY_DEFAULT {
return FindNode(nodes , LATENCY_DEFAULT)

}
return nil , errors.New("Not␣a␣proper␣latency␣value")

}

func SchedulePod(pod apiv1.Pod , nodes apiv1.NodeList ,
clientset *kubernetes.Clientset) {
log.Printf("Scheduling␣pod␣\"%s\"␣to␣nodes\n", pod.Name)
for _, node := range nodes.Items {

log.Printf("\t%s\n", node.Name)
}

var keyFound bool = false
for key , val := range pod.Annotations {

if key == "latency" {
latencyVal , err := strconv.Atoi(val)
if err != nil {

log.Fatal(err)
}

node , err := FitPod(latencyVal , nodes)
if err != nil {

log.Fatal(err)
}

Bind(&pod , node , clientset)
log.Println(val)
keyFound = true

}
}
if !keyFound {

log.Println("Pod␣annotation␣with␣[latency:␣value]␣
needed")

}
}

$ cat pod.yaml
apiVersion: v1
kind: Pod
metadata:

name: busybox -latency
annotations:

latency : "100"
spec: # specification of the pod ’s contents

schedulerName: latency -scheduler
containers:
- name: busybox -latency -cont

61

image: "busybox"
command: ["top"]
stdin: true
tty: true

B Appendix B
The code written in Golang to check if a node has DPDK supported interfaces. This
is run as a Daemon Set in Kubernetes.

$ cat main.go
package main

import (
"flag"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/client -go/kubernetes"
"k8s.io/client -go/rest"
"k8s.io/client -go/tools/clientcmd"
"log"
"os"

)

func main() {
var runInCluster = flag.Bool("run -in -cluster", false , "

Run␣in␣cluster␣as␣a␣pod?")
flag.Parse()

var config *rest.Config
var err error
if *runInCluster {

config , err = rest.InClusterConfig ()
} else {

homeDir := os.Getenv("HOME")
config , err = clientcmd.BuildConfigFromFlags("",

homeDir+"/.kube/config")
}
if err != nil {

log.Fatal(err)
}

clientset , err := kubernetes.NewForConfig(config)
if err != nil {

log.Fatal(err)
}

62

corev1 := clientset.CoreV1 ()

hostname , err := os.Hostname ()
if err != nil {

log.Fatal(err)
}

node , err := corev1.Nodes().Get(hostname , metav1.
GetOptions {})

if err != nil {
log.Fatal(err)

}

// Get details of the node
infoMap , err := GetInfo ()
if err != nil {

log.Fatal(err)
}

if infoMap == nil {
log.Println("No␣labels␣added␣to␣node")
return

}

if node.Labels == nil {
node.Labels = make(map[string]string)

}
for k, v := range infoMap {

log.Printf("Adding␣node␣label␣%s:␣%s\n", k, v)
node.Labels[k] = v

}

log.Println("Updating␣node␣info␣to␣Kubernetes␣API␣server"
)

corev1.Nodes().Update(node)
}

$ cat get -info.go
package main

import (
"bufio"
"os/exec"
"strconv"
"strings"

)

63

func CheckNameIntel(line string) bool {
validIfNames := [] string{"82571", "82572", "82573", "

82574",
"82583", "ICH8", "ICH9", "ICH10", "PCH", "PCH2", "

I217",
"I218", "I219",
"82598", "82599", "X520", "X540", "X550",
"82540", "82545", "82546",
"82575", "82576", "82580", "I210", "I211", "I350", "

I354", "DH89",
"X710", "XL710", "X722", "XXV710",
"FM10420"}

for _, name := range validIfNames {
if strings.Contains(line , name) {

return true
}

}
return false

}

// Returns a map , infoMap
// infoMap["dpdk"] = string(<no -of -dpdk -ifs >)
// infoMap["ovs -dpdk"] = "true"/"false"
func GetInfo () (map[string]string , error) {

infoMap := make(map[string]string)

// First look for DPDK interfaces
lspciCmd := exec.Command("lspci")
lspciOutput , err := lspciCmd.Output ()
if err != nil {

return nil , err
}

var ifCount int = 0

scanner := bufio.NewScanner(strings.NewReader(string(
lspciOutput)))

for scanner.Scan() {
if strings.Contains(scanner.Text(), "Ethernet␣

controller") && strings.Contains(
scanner.Text(), "Intel") {

if CheckNameIntel(scanner.Text()) {
ifCount ++

}
}

}
infoMap["dpdk"] = strconv.Itoa(ifCount)

64

ovsCmd := exec.Command("ovs -vswitchd", "--version")
ovsCmdOut , err := ovsCmd.Output ()
if err != nil {

return nil , err
}

if strings.Contains(string(ovsCmdOut), "DPDK") {
infoMap["ovs -dpdk"] = "true"

} else {
infoMap["ovs -dpdk"] = "false"

}
return infoMap , nil

}

$ cat Dockerfile
FROM golang :1.10.3

ADD . /go/src/github.com/alpha -black/k8s -node -iftype -discover
WORKDIR /go/src/github.com/alpha -black/k8s -node -iftype -

discover
RUN go get "k8s.io/client -go/kubernetes"
RUN go get "k8s.io/client -go/rest"
RUN go install

$ cat ds.yaml
apiVersion: apps/v1
kind: DaemonSet
metadata:

name: node -if-discovery
namespace: kube -system

spec:
selector:

matchLabels:
name: node -if-discovery

template:
metadata:

labels:
name: node -if-discovery

spec:
tolerations:
- key: node -role.kubernetes.io/master

effect: NoSchedule
containers:
- name: node -if-discovery -container

image: k8s -node -iftype -ds:1.0
command: ["./go/bin/k8s -node -iftype -discovery", "--

logtostderr", "--run -in-cluster=true"]

65

imagePullPolicy: IfNotPresent

	Abstract
	Preface
	Contents
	Abbreviations
	1 Introduction
	1.1 Thesis Scope and Objective
	1.2 Thesis Contribution
	1.3 Thesis Structure

	2 Background
	2.1 Data Plane Development Kit, DPDK
	2.2 Single Root IO Virtualization, SR-IOV
	2.3 Container
	2.3.1 Container Networking Interface

	2.4 Kubernetes
	2.5 Open vSwitch

	3 Related work
	4 Latency Measurements
	4.1 Container on DPDK and SR-IOV
	4.2 Container on OVS-DPDK
	4.3 Fast packet processing in Kubernetes
	4.4 Building a Kubernetes cluster
	4.5 Scenario 1, Multus
	4.6 Scenario 2, Node feature discovery
	4.7 Scenario 3, Kubernetes with OVN
	4.8 Results and Observation

	5 Latency based scheduling
	5.1 A Kubernetes Scheduler

	6 Conclusion and Future Work
	References
	A Appendix A
	B Appendix B

